Sample records for work-function phosphorus doped

  1. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the dopingmore » efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.« less

  2. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    DOE PAGES

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; ...

    2017-03-10

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. Thismore » shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.« less

  3. Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping

    2017-10-01

    Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.

  4. p-type doping by platinum diffusion in low phosphorus doped silicon

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Pichaud, B.; Vervisch, W.; Lanois, F.

    2003-07-01

    In this work we show that the cooling rate following a platinum diffusion strongly influences the electrical conductivity in weakly phosphorus doped silicon. Diffusions were performed at the temperature of 910 °C in the range of 8 32 hours in 0.6, 30, and 60 Ωrm cm phosphorus doped silicon samples. Spreading resistance profile analyses clearly show an n-type to p-type conversion under the surface when samples are cooled slowly. On the other hand, a compensation of the phosphorus donors can only be observed when samples are quenched. One Pt related acceptor deep level at 0.43 eV from the valence band is assumed to be at the origin of the type conversion mechanism. Its concentration increases by lowering the applied cooling rate. A complex formation with fast species such as interstitial Pt atoms or intrinsic point defects is expected. In 0.6 Ωrm cm phosphorus doped silicon, no acceptor deep level in the lower band gap is detected by DLTS measurement. This removes the opportunity of a pairing between phosphorus and platinum and suggests the possibility of a Fermi level controlled complex formation.

  5. Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Del Alamo, Jesus A.; Swanson, Richard M.

    1987-01-01

    The relevant hole transport and recombination parameters in heavily doped n-type silicon under steady state are the hole diffusion length and the product of the hole diffusion coefficient times the hole equilibrium concentration. These parameters have measured in phosphorus-doped silicon grown by epitaxy throughout nearly two orders of magnitude of doping level. Both parameters are found to be strong functions of donor concentration. The equilibrium hole concentration can be deduced from the measurement. A rigid shrinkage of the forbidden gap appears as the dominant heavy doping mechanism in phosphorus-doped silicon.

  6. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    NASA Astrophysics Data System (ADS)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06749a

  7. Optical absorption properties of Ge 2–44 and P-doped Ge nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Wei; Lu, Wen-Cai; Zhao, Li-Zhen

    The optical absorption properties of non-crystalline and crystalline Ge nanoparticles with the sizes from ~ 2.5 to 15 Å have been studied at the B3LYP/6-31G level using time-dependent density functional theory. Hydrogen passivation and phosphorus doping on some selected Ge nanoparticles were also calculated. With the increase of cluster size, the optical absorption spectra of the non-crystalline Ge nanoparticles change from many peaks to a continuous broad band and at the same time exhibit a systematic red-shift. Doping phosphorus also causes the absorption spectra to shift toward the lower energy region for both non-crystalline and crystalline Ge nanoparticles. The non-crystallinemore » Ge nanoparticles are found to have stronger absorption in the visible region in comparison with the crystalline ones, regardless phosphorus doping.« less

  8. Optical absorption properties of Ge 2–44 and P-doped Ge nanoparticles

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Zhao, Li-Zhen; ...

    2017-09-15

    The optical absorption properties of non-crystalline and crystalline Ge nanoparticles with the sizes from ~ 2.5 to 15 Å have been studied at the B3LYP/6-31G level using time-dependent density functional theory. Hydrogen passivation and phosphorus doping on some selected Ge nanoparticles were also calculated. With the increase of cluster size, the optical absorption spectra of the non-crystalline Ge nanoparticles change from many peaks to a continuous broad band and at the same time exhibit a systematic red-shift. Doping phosphorus also causes the absorption spectra to shift toward the lower energy region for both non-crystalline and crystalline Ge nanoparticles. The non-crystallinemore » Ge nanoparticles are found to have stronger absorption in the visible region in comparison with the crystalline ones, regardless phosphorus doping.« less

  9. Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Hou, Hongshuai; Shao, Lidong; Zhang, Yan; Zou, Guoqiang; Chen, Jun; Ji, Xiaobo

    2017-01-01

    Large-area phosphorus-doped carbon nanosheets (P-CNSs) are first obtained from carbon dots (CDs) through self-assembly driving from thermal treatment with Na catalysis. This is the first time to realize the conversion from 0D CDs to 2D nanosheets doped with phosphorus. The sodium storage behavior of phosphorus-doped carbon material is also investigated for the first time. As anode material for sodium-ion batteries (SIBs), P-CNSs exhibit superb performances for electrochemical storage of sodium. When cycled at 0.1 A g -1 , the P-CNSs electrode delivers a high reversible capacity of 328 mAh g -1 , even at a high current density of 20 A g -1 , a considerable capacity of 108 mAh g -1 can still be maintained. Besides, this material also shows excellent cycling stability, at a current density of 5 A g -1 , the reversible capacity can still reach 149 mAh g -1 after 5000 cycles. This work will provide significant value for the development of both carbon materials and SIBs anode materials.

  10. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  11. Probing the Structures and Electronic Properties of Dual-Phosphorus-Doped Gold Cluster Anions (AunP-2, n = 1–8): A Density functional Theory Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong

    2015-07-29

    The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. Themore » higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.« less

  12. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    NASA Astrophysics Data System (ADS)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  13. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  14. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.

    PubMed

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-10

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  15. Prediction of phonon-mediated superconductivity in hole-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong

    2018-01-01

    We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.

  16. Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae

    2018-05-01

    Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.

  17. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is verymore » stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.« less

  18. Defect chemistry and characterization of Hg sub 1x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1982-01-01

    Single crystal samples of undoped and doped Hg sub 1-x Cd sub x Te were annealed at varying temperatures and partial pressures of Hg. Hall effect and mobility measurements were carried out on these samples after quenching to room temperature. Based on the variation of the carrier concentration and the carrier mobility as a function of the partial pressure of Hg temperature, and dopant concentration, defect models were established for the doped and the undoped crystals. These models indicate that the native acceptor defects in both Hg0.8Cd0.2Te and Hg0.6Cd0.4Te doubly ionized and the native donor defects are negligible in concentration, implying that p to n conversion in these alloys occurs due only to residual donors. Incorporation mechanism of copper, indium, iodine, and phosphorus were investigated. A large concentration of indium is found to be paired with the native acceptor defects. Results on crystals doped with phosphorus indicate that phosphorus behaves amphoterically, acting as a donor on Hg lattice sites and as an acceptor intersitially on Te lattice sites. A majority of the phosphorus is found to be present as neutral species formed from the pairing reaction between phosphorus on Hg lattice sites and phosphorus in interstitial sites. Equilibrium constants for the intrinsic excitation reaction, as well as for the incorporation of the different dopants and the native acceptor defects were established.

  19. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen

    2018-02-01

    In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.

  20. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2CO3) and MoO3, respectively. Cs2CO3 was found to strongly electron dope black phosphorus. The electron mobility of black phosphorus was significantly enhanced to ˜27 cm2V-1s-1 after 10 nm Cs2CO3 modification, indicating a greatly improved electron transport behavior. In contrast, MoO3 decoration demonstrated a giant hole doping effect. In situ PES characterization confirms the interfacial charge transfer between black phosphorus and doping layers. This doping can also modulate the Schottky junctions formed between metal contacts and black phosphorus flakes, and hence to enhance the responsivity of black phosphorus based photodetectors. These findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics. Following the same surface transfer doping technique, I will demonstrate a remarkable performance enhancement of graphene/Si Schottky junction based self-powered photodetectors via surface modification with MoO3 thin film. It was found that the photocurrent responsivity of MoO3 doped graphene/Si photodetectors was highly increased under a wide spectrum of illuminated light from ultraviolet to near infrared. The current on-off ratio reached up to ˜104 under illumination of 500 nm light with intensity of ˜62 muWcm-2. More importantly, the external quantum efficiency of graphene/Si devices was significantly enhanced up to ˜80% by almost four times in the visible light region after MoO3 functionalization. The largely improved photodetecting performance originates from the increased Schottky barrier height at the graphene/Si interface as well as the reduced series resistance after MoO3 modification, which was further corroborated by the in situ PES and electrical transport characterizations. These observations promise a simple method to effectively modify the graphene/Si Schottky junction based self-powered photodetectors and thus significantly enhance their photodetecting performance. After discussion of the first surface functionalization method, next I will introduce the second approach which is H2 annealing, to greatly extend the photoresponse range of single MoO3 nanobelt based photodetector from UV to visible light by introducing substantial gap states. After annealing, the conductance of MoO3 nanobelt was largely enhanced; at the same time, the photodetector possessed wide visible spectrum response. As corroborated by in situ PES investigations, such strong wide spectrum photoresponse arises from the largely enriched oxygen vacancies and gap states in MoO3 nanobelt after H2 annealing. These results open up a new avenue to extend the wide bandgap metal oxide nanomaterials based optoelectronics devices with efficient visible light response through surface modification, i.e. the introduction of the high density of carefully engineered gap states.

  1. A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer

    NASA Astrophysics Data System (ADS)

    Mapasha, R. E.; Igumbor, E.; Chetty, N.

    2016-10-01

    We present a hybrid density functional study of silicon (Si) and phosphorus (P) doped hexagonal boron nitride (h-BN). The local geometry, electronic structure and thermodynamic stability of Si B , Si N , P B and P N are examined using hybrid Heyd-Scuseria- Ernzerhof (HSE) functional. The defect induced buckling and the local bond distances around the defect are sensitive to charge state modulation q = -2, -1, 0, +1 and +2. The +1 charge state is found to be the most energetically stable state and significantly reduces the buckling. Based on the charge state thermodynamic transition levels, we noted that the Si N , Si N and P B defects are too deep to be ionized, and can alter the optical properties of h-BN material.

  2. Back-junction back-contact n-type silicon solar cell with diffused boron emitter locally blocked by implanted phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian

    2014-09-08

    The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less

  3. Surface modification of titania powder P25 with phosphate and phosphonic acids--effect on thermal stability and photocatalytic activity.

    PubMed

    Djafer, Lahcène; Ayral, André; Boury, Bruno; Laine, Richard M

    2013-03-01

    Phosphorus is frequently reported as a doping element for TiO(2) as photocatalyst; however, the previously reported methods used to prepare P-doped TiO(2) do not allow control over the location of the phosphorus either in the bulk or at the surface or both. In this study, we report on the surface modification of Evonik P25 with phosphonic (H(3)PO(3)) and octylphosphonic acid [C(8)H(17)-PO(OH)(2)], done to limit the introduction of phosphorus only to the photocatalyst surface. The effect of this element on the thermal behavior and photocatalytic properties is reported through characterization using elemental analyses, solid state (31)P NMR, X-ray powder diffraction, N(2) porosimetry, dilatometry, etc. Thus, the objective of the work reported here is to focus on the role(s) that phosphorus plays only at TiO(2) crystallite surfaces. For comparison, other samples were treated with phosphoric acid. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  5. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Thomas E., E-mail: zoomtotom@gmail.com; Goldberg, Alexander; Halls, Mat D.

    2016-01-15

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactionsmore » for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.« less

  6. Doping-stabilized two-dimensional black phosphorus.

    PubMed

    Xuan, Xiaoyu; Zhang, Zhuhua; Guo, Wanlin

    2018-05-03

    Two-dimensional (2D) black phosphorus (BP) has attracted broad interests but remains to be synthesized. One of the issues lies in its large number of 2D allotropes with highly degenerate energies, especially 2D blue phosphorus. Here, we show that both nitrogen and hole-carrier doping can lift the energy degeneracy and locate 2D BP in a deep global energy minimum, while arsenic doping favours the formation of 2D blue phosphorus, attributed to a delicate interplay between s-p overlapping and repulsion of lone pairs. Chemically inert substrates, e.g. graphene and hexagonal boron nitride, can be synergic with carrier doping to stabilize the BP further over other 2D allotropes, while frequently used metal substrates severely reduce the stability of 2D BP. These results not only offer new insight into the structural stability of 2D phosphorus but also suggest a promising pathway towards the chemical synthesis of 2D BP.

  7. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    NASA Astrophysics Data System (ADS)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  8. Electrically-inactive phosphorus re-distribution during low temperature annealing

    NASA Astrophysics Data System (ADS)

    Peral, Ana; Youssef, Amanda; Dastgheib-Shirazi, Amir; Akey, Austin; Peters, Ian Marius; Hahn, Giso; Buonassisi, Tonio; del Cañizo, Carlos

    2018-04-01

    An increased total dose of phosphorus (P dose) in the first 40 nm of a phosphorus diffused emitter has been measured after Low Temperature Annealing (LTA) at 700 °C using the Glow Discharge Optical Emission Spectrometry technique. This evidence has been observed in three versions of the same emitter containing different amounts of initial phosphorus. A stepwise chemical etching of a diffused phosphorus emitter has been carried out to prepare the three types of samples. The total P dose in the first 40 nm increases during annealing by 1.4 × 1015 cm-2 for the sample with the highly doped emitter, by 0.8 × 1015 cm-2 in the middle-doped emitter, and by 0.5 × 1015 cm-2 in the lowest-doped emitter. The presence of surface dislocations in the first few nanometers of the phosphorus emitter might play a role as preferential sites of local phosphorus gettering in phosphorus re-distribution, because the phosphorus gettering to the first 40 nm is lower when this region is etched stepwise. This total increase in phosphorus takes place even though the calculated electrically active phosphorus concentration shows a reduction, and the measured sheet resistance shows an increase after annealing at a low temperature. The reduced electrically active P dose is around 0.6 × 1015 cm-2 for all the emitters. This can be explained with phosphorus-atoms diffusing towards the surface during annealing, occupying electrically inactive configurations. An atomic-scale visual local analysis is carried out with needle-shaped samples of tens of nm in diameter containing a region of the highly doped emitter before and after LTA using Atom Probe Tomography, showing phosphorus precipitates of 10 nm and less before annealing and an increased density of larger precipitates after annealing (25 nm and less).

  9. Formation of vacancy-impurity complexes in heavily Zn-doped InP

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.

    2003-03-01

    Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.

  10. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  11. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry.

    PubMed

    Ryder, Christopher R; Wood, Joshua D; Wells, Spencer A; Yang, Yang; Jariwala, Deep; Marks, Tobin J; Schatz, George C; Hersam, Mark C

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  12. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

    NASA Astrophysics Data System (ADS)

    Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  13. Negative differential resistance observed from vertical p+-n+ junction device with two-dimensional black phosphorous

    NASA Astrophysics Data System (ADS)

    Lee, Daeyeong; Jang, Young Dae; Kweon, Jaehwan; Ryu, Jungjin; Hwang, Euyheon; Yoo, Won Jong; Samsung-SKKU Graphene/2D Center (SSGC) Collaboration

    A vertical p+-n+ homojunction was fabricated by using black phosphorus (BP) as a van der Waals two-dimensional (2D) material. The top and bottom layers of the materials were doped by chemical dopants of gold chloride (AuCl3) for p-type doping and benzyl viologen (BV) for n-type doping. The negative differential resistance (NDR) effect was clearly observed from the output curves of the fabricated BP vertical devices. The thickness range of the 2D material showing NDR and the peak to valley current ratio of NDR are found to be strongly dependent on doping condition, gate voltage, and BP's degradation level. Furthermore, the carrier transport of the p+-n+ junction was simulated by using density functional theory (DFT) and non-equilibrium Green's function (NEGF). Both the experimental and simulation results confirmed that the NDR is attributed to the band-to-band tunneling (BTBT) across the 2D BP p+-n+ junction, and further quantitative details on the carrier transport in the vertical p+-n+ junction devices were explored, according to the analyses of the measured transfer curves and the DFT simulation results. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2013R1A2A2A01015516).

  14. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

    NASA Astrophysics Data System (ADS)

    Dong, Gangqiang; Liu, Fengzhen; Liu, Jing; Zhang, Hailong; Zhu, Meifang

    2013-12-01

    A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm-3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.

  15. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Nasini, Udaya B.; Bairi, Venu Gopal; Ramasahayam, Sunil Kumar; Bourdo, Shawn E.; Viswanathan, Tito; Shaikh, Ali U.

    2014-03-01

    Phosphorus (P) and nitrogen (N) dual heteroatom doped mesoporous carbon (PNDC) synthesized by microwave assisted carbonization of tannin cross-linked to melamine in the presence of polyphosphoric acid was evaluated electrochemically for supercapacitor application. Controlling the N content by varying the amount of tannin to melamine in the carbonization process produced varying nitrogen, phosphorus and oxygen functionalities along with different physical properties. Electrochemical characterization studies revealed that N content is responsible for pseudocapacitance and high surface area plays a vital role in improving the capacitative behavior by enhanced electric double layer formation. In 1.0 M H2SO4 and 6.0 M KOH, PNDC-2 showed a high specific capacitance of 271 F g-1 and 236 F g-1, respectively. XPS results demonstrate the presence of pyridinic-N, quaternary-N as well as quinone type oxygen functionalities, which accounts for redox reactions and likely play an important role in the transportation of electrons during the charge/discharge process. Thus, the microwave assisted synthesis of doped carbon can provide a novel method of synthesizing materials useful for the fabrication of cheap and high performance supercapacitors.

  16. Six Sigma-based approach to optimise the diffusion process of crystalline silicon solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Prasad, A. Guru; Saravanan, S.; Gijo, E. V.; Dasari, Sreenivasa Murty; Tatachar, Raghu; Suratkar, Prakash

    2016-02-01

    Silicon-based photovoltaics (PV) plays the dominant role in the history of PV due to the continuous process and technology improvement in silicon solar cells and its manufacturing flow. In general, silicon solar cell process uses either p-type- or n-type-doped silicon as the starting material. Currently, most of the PV industries use p-type, boron-doped silicon wafer as the starting material. In this work too, the boron-doped wafers were considered as the starting material to create pn junction and phosphorus was used as n-type doping material. Industries use either phosphorous oxy chloride (POCl3) or ortho phosphoric acid (H3PO4) as the precursor for doping phosphorous. While the industries use POCl3 as the precursor, the throughput is lesser than that of the industries' use of H3PO4 due to the manufacturing limitations of the POCl3-based equipments. Hence, in order to achieve the operational excellence in POCl3-based equipments, business strategies such as the Six Sigma methodology have to be adapted. This paper describes the application of Six Sigma Define-Measure-Analyze-Improve-Control methodology for throughput improvement of the phosphorus doping process. The optimised recipe has been implemented in the production and it is running successfully. As a result of this project, an effective gain of 0.9 MW was reported per annum.

  17. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  18. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe getteringmore » processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.« less

  19. Transmutation doping of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  20. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  1. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Laine, Hannu S.; Vähänissi, Ville; Savin, Hele

    2018-01-01

    The presence of copper (Cu) contamination is known to cause relevant light-induced degradation (Cu-LID) effects in p-type silicon. Due to its high diffusivity, Cu is generally regarded as a relatively benign impurity, which can be readily relocated during device fabrication from the wafer bulk, i.e. the region affected by Cu-LID, to the surface phosphorus-doped emitter. This contribution examines in detail the impact of gettering by industrially relevant phosphorus layers on the strength of Cu-LID effects. We find that phosphorus gettering does not always prevent the occurrence of Cu-LID. Specifically, air-cooling after an isothermal anneal at 800°C results in only weak impurity segregation to the phosphorus-doped layer, which turns out to be insufficient for effectively mitigating Cu-LID effects. Furthermore, we show that the gettering efficiency can be enhanced through the addition of a slow cooling ramp (-4°C/min) between 800°C and 600°C, resulting in the nearly complete disappearance of Cu-LID effects.

  2. Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes.

    PubMed

    Cruz-Silva, Eduardo; Cullen, David A; Gu, Lin; Romo-Herrera, Jose Manuel; Muñoz-Sandoval, Emilio; López-Urías, Florentino; Sumpter, Bobby G; Meunier, Vincent; Charlier, Jean-Christophe; Smith, David J; Terrones, Humberto; Terrones, Mauricio

    2008-03-01

    Arrays of multiwalled carbon nanotubes doped with phosphorus (P) and nitrogen (N) are synthesized using a solution of ferrocene, triphenyl-phosphine, and benzylamine in conjunction with spray pyrolysis. We demonstrate that iron phosphide (Fe(3)P) nanoparticles act as catalysts during nanotube growth, leading to the formation of novel PN-doped multiwalled carbon nanotubes. The samples were examined by high resolution electron microscopy and microanalysis techniques, and their chemical stability was explored by means of thermogravimetric analysis in the presence of oxygen. The PN-doped structures reveal important morphology and chemical changes when compared to N-doped nanotubes. These types of heterodoped nanotubes are predicted to offer many new opportunities in the fabrication of fast-response chemical sensors.

  3. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yi, Jianan; Qing, Yan; Wu, ChuTian; Zeng, Yinxiang; Wu, Yiqiang; Lu, Xihong; Tong, Yexiang

    2017-05-01

    Engineering porous heteroatom-doped carbon nanomaterials with remarkable capacitive performance is highly attractive. Herein, a simple and smart method has been developed to synthesize phosphorus (P) doped carbon with hierarchical porous structure derived from lignocellulose. Hierarchically porous P doped carbon is readily obtained by the pyrolysis of lignocellulose immersed in ZnCl2/NaH2PO4 aqueous solution, and exhibits excellent capacitive properties. The as-obtained P doped porous carbon delivers a significant capacitance of 133 F g-1 (146 mF cm-2) at a high current density of 10 A g-1 with outstanding rate performance. Furthermore, the P doped carbon electrode yields a long-term cycling durability with more than 97.9% capacitance retention after 10000 cycles as well. A symmetric supercapacitor with a maximum energy density of 4.7 Wh kg-1 is also demonstrated based on these P doped carbon electrodes.

  4. Defect chemistry and characterization of (Hg, Cd)Te

    NASA Technical Reports Server (NTRS)

    Vydyanath, H. R.

    1981-01-01

    Single crystal samples of phosphorus doped Hg sub 0.8 Cd sub 0.2 Te were anneald at temperatures varying from 450 C to 600 C in various Hg atmospheres. The samples were quenched to room temperature from the annealing temperatures. Hall effect and mobility measurements were performed at 77 K on all these samples. The results indicate the crystals to be p type for a total phosphorus concentration of 10 to the 19th power/cu cm in all the samples. The hole concentration at 77 K increases with increasing Hg pressures at 450 C and 500 C contrary to the observation in undoped crystals. Also, at low Hg pressures the concentration of holes in the phosphorus doped crystals is lower than in the undoped crystals. The hole concentration in all the samples is lower than the intrinsic carrier concentration at the annealing temperatures. The hole mobility in the doped crystals is similar to that in the undoped crystals. A defect model according to which phosphorus behaves as a single acceptor interstitially, occupying Te lattice sites while it acts as a single donor occupying Hg lattice sites was established. Equilibrum constants established for the incorporation of all the phosphorus species explain the experimental results

  5. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  6. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramaniam, Y.; Pobedinskas, P., E-mail: paulius.pobedinskas@uhasselt.be; Janssens, S. D.

    2016-08-08

    The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 μm thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 μm h{sup −1}. A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 × 10{sup 16} cm{sup −3} phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates formore » future use in high-power electronic applications.« less

  7. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance.

    PubMed

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-08-05

    Graphitic carbon nitride (g-C3N4) has been deemed a promising heterogeneous metal-free catalyst for a wide range of applications, such as solar energy utilization toward water splitting, and its photocatalytic performance is reasonably adjustable through tailoring its texture and its electronic and optical properties. Here phosphorus-doped graphitic carbon nitride nanostructured flowers of in-plane mesopores are synthesized by a co-condensation method in the absence of any templates. The interesting structures, together with the phosphorus doping, can promote light trapping, mass transfer, and charge separation, enabling it to perform as a more impressive catalyst than its pristine carbon nitride counterpart for catalytic hydrogen evolution under visible light irradiation. The catalyst has low cost, is environmentally friendly, and represents a potential candidate in photoelectrochemistry.

  8. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  9. Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe(3+) in Human Serum and Living Cells.

    PubMed

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Huang, Mengjiao; Liu, Rongjun; Zhao, Shulin

    2016-05-04

    Chemical doping with heteroatoms can effectively modulate physicochemical and photochemical properties of carbon dots (CDs). However, the development of multi heteroatoms codoped carbon nanodots is still in its early stage. In this work, a facile hydrothermal synthesis strategy was applied to synthesize multi heteroatoms (nitrogen and phosphorus) codoped carbon nanodots (N,P-CDs) using glucose as carbon source, and ammonia, phosphoric acid as dopant, respectively. Compared with CDs, the multi heteroatoms doped CDs resulted in dramatic improvement in the electronic characteristics and surface chemical activities. Therefore, the N,P-CDs prepared as described above exhibited a strong blue emission and a sensitive response to Fe(3+). The N,P-CDs based fluorescent sensor was then applied to sensitively determine Fe(3+) with a detection limit of 1.8 nM. Notably, the prepared N,P-CDs possessed negligible cytotoxicity, excellent biocompatibility, and high photostability. It was also applied for label-free detection of Fe(3+) in complex biological samples and the fluorescence imaging of intracellular Fe(3+), which indicated its potential applications in clinical diagnosis and other biologically related study.

  10. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    PubMed

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

  11. Single-electron quantization at room temperature in a-few-donor quantum dot in silicon nano-transistors

    NASA Astrophysics Data System (ADS)

    Samanta, Arup; Muruganathan, Manoharan; Hori, Masahiro; Ono, Yukinori; Mizuta, Hiroshi; Tabe, Michiharu; Moraru, Daniel

    2017-02-01

    Quantum dots formed by donor-atoms in Si nanodevices can provide a breakthrough for functionality at the atomic level with one-by-one control of electrons. However, single-electron effects in donor-atom devices have only been observed at low temperatures mainly due to the low tunnel barriers. If a few donor-atoms are closely coupled as a molecule to form a quantum dot, the ground-state energy level is significantly deepened, leading to higher tunnel barriers. Here, we demonstrate that such an a-few-donor quantum dot, formed by selective conventional doping of phosphorus (P) donors in a Si nano-channel, sustains Coulomb blockade behavior even at room temperature. In this work, such a quantum dot is formed by 3 P-donors located near the center of the selectively-doped area, which is consistent with a statistical analysis. This finding demonstrates practical conditions for atomic- and molecular-level electronics based on donor-atoms in silicon nanodevices.

  12. Low-pressure chemical vapor deposition of low in situ phosphorus doped silicon thin films

    NASA Astrophysics Data System (ADS)

    Sarret, M.; Liba, A.; Bonnaud, O.

    1991-09-01

    In situ low phosphorus doped silicon films are deposited onto glass substrates by low-pressure chemical vapor deposition method. The deposition parameters, temperature, total pressure, and pure silane gas flow are, respectively, fixed at 550 °C, 0.08 Torr, and 50 sccm. The varying deposition parameter is phosphine/silane mole ratio; when this ratio varies from 2×10-6 to 4×10-4, the phosphorus concentration and the resistivity after annealing, respectively, vary from 2×1018 to 3×1020 atoms cm-3 and from 1.5 Ω cm to 2.5×10-3 Ω cm.

  13. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  14. Controlled doping by self-assembled dendrimer-like macromolecules

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  15. Impact of vacancies on electronic properties of black phosphorus probed by STM

    NASA Astrophysics Data System (ADS)

    Riffle, J. V.; Flynn, C.; St. Laurent, B.; Ayotte, C. A.; Caputo, C. A.; Hollen, S. M.

    2018-01-01

    Black phosphorus (BP) is receiving significant attention because of its direct 0.4-1.5 eV layer-dependent bandgap and high mobility. Because BP devices rely on exfoliation from bulk crystals, there is a need to understand the native impurities and defects in the source material. In particular, samples are typically p-doped, but the source of the doping is not well understood. Here, we use scanning tunneling microscopy and spectroscopy to compare the atomic defects of BP samples from two commercial sources. Even though the sources produced crystals with an order of magnitude difference in impurity atoms, we observed a similar defect density and level of p-doping. We attribute these defects to phosphorus vacancies and provide evidence that they are the source of p-doping. We also compare these native defects to those induced by air exposure and show that they are distinct and likely more important for the control of electronic structure. These results indicate that impurities in BP play a minor role compared to vacancies, which are prevalent in commercially available materials, and call for better control of vacancy defects.

  16. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    NASA Astrophysics Data System (ADS)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  17. Doping profile measurement on textured silicon surface

    NASA Astrophysics Data System (ADS)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  18. "Doping" pentacene with sp(2)-phosphorus atoms: towards high performance ambipolar semiconductors.

    PubMed

    Long, Guankui; Yang, Xuan; Chen, Wangqiao; Zhang, Mingtao; Zhao, Yang; Chen, Yongsheng; Zhang, Qichun

    2016-01-28

    Recent research progress in black phosphorus sheets strongly encourages us to employ pentacene as a parent system to systematically investigate how the "doping" of sp(2)-phosphorus atoms onto the backbone of pentacene influences its optical and charge transport properties. Our theoretical investigations proved that increasing the contribution of the pz atomic orbital of the sp(2)-phosphorus to the frontier molecular orbital of phosphapentacenes could significantly decrease both hole and electron reorganization energies and dramatically red-shift the absorption of pentacene. The record smallest hole and electron reorganization energies of 69.80 and 95.74 meV for heteropentacene derivatives were obtained. These results suggest that phosphapentacenes (or phosphaacenes) could be potential promising candidates to achieve both higher and balanced mobilities in organic field effect transistors and realize a better power conversion efficiency in organic photovoltaics.

  19. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.

    PubMed

    Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H

    2016-11-24

    To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.

  20. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors.

    PubMed

    Wen, Yangyang; Wang, Bei; Huang, Congcong; Wang, Lianzhou; Hulicova-Jurcakova, Denisa

    2015-01-02

    Phosphorus-doped (P-doped) graphene with the P doping level of 1.30 at % was synthesized by annealing the mixture of graphene and phosphoric acid. The presence of P was confirmed by elemental mapping and X-ray photoelectron spectroscopy, while the morphology of P-doped graphene was revealed by using scanning electron microscopy and transmission electron microscopy. To investigate the effect of P doping, the electrochemical properties of P-doped graphene were tested as a supercapacitor electrode in an aqueous electrolyte of 1 M H2 SO4. The results showed that doping of P in graphene exhibited significant improvement in terms of specific capacitance and cycling stability, compared with undoped graphene electrode. More interestingly, the P-doped graphene electrode can survive at a wide voltage window of 1.7 V with only 3 % performance degradation after 5000 cycles at a current density of 5 A g(-1), providing a high energy density of 11.64 Wh kg(-1) and a high power density of 831 W kg(-1). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phosphorus Doping in Si Nanocrystals/SiO2 msultilayers and Light Emission with Wavelength compatible for Optical Telecommunication

    PubMed Central

    Lu, Peng; Mu, Weiwei; Xu, Jun; Zhang, Xiaowei; Zhang, Wenping; Li, Wei; Xu, Ling; Chen, Kunji

    2016-01-01

    Doping in semiconductors is a fundamental issue for developing high performance devices. However, the doping behavior in Si nanocrystals (Si NCs) has not been fully understood so far. In the present work, P-doped Si NCs/SiO2 multilayers are fabricated. As revealed by XPS and ESR measurements, P dopants will preferentially passivate the surface states of Si NCs. Meanwhile, low temperature ESR spectra indicate that some P dopants are incorporated into Si NCs substitutionally and the incorporated P impurities increase with the P doping concentration or annealing temperature increasing. Furthermore, a kind of defect states will be generated with high doping concentration or annealing temperature due to the damage of Si crystalline lattice. More interestingly, the incorporated P dopants can generate deep levels in the ultra-small sized (~2 nm) Si NCs, which will cause a new subband light emission with the wavelength compatible with the requirement of the optical telecommunication. The studies of P-doped Si NCs/SiO2 multilayers suggest that P doping plays an important role in the electronic structures and optoelectronic characteristics of Si NCs. PMID:26956425

  2. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    NASA Technical Reports Server (NTRS)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  3. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser.

    PubMed

    Feng, Tianxian; Mao, Dong; Cui, Xiaoqi; Li, Mingkun; Song, Kun; Jiang, Biqiang; Lu, Hua; Quan, Wangmin

    2016-11-11

    We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP) nanosheets were prepared via a liquid exfoliation approach exploiting N -methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI), a piece of BP-PI film was obtained after evaporating the mixture in a petri dish. The BP-PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP-PI film can act as a promising nonlinear optical device for laser applications.

  4. Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits.

    PubMed

    Liu, Yuanda; Ang, Kah-Wee

    2017-07-25

    Two-dimensional (2D) inverters are a fundamental building block for flexible logic circuits which have previously been realized by heterogeneously wiring transistors with two discrete channel materials. Here, we demonstrate a monolithically integrated complementary inverter made using a homogeneous black phosphorus (BP) nanosheet on flexible substrates. The digital logic inverter circuit is demonstrated via effective threshold voltage tuning within a single BP material, which offers both electron and hole dominated conducting channels with nearly symmetric pinch-off and current saturation. Controllable electron concentration is achieved by accurately modulating the aluminum (Al) donor doping, which realizes BP n-FET with a room-temperature on/off ratio >10 3 . Simultaneously, work function engineering is employed to obtain a low Schottky barrier contact electrode that facilities hole injection, thus enhancing the current density of the BP p-FET by 9.4 times. The flexible inverter circuit shows a clear digital logic voltage inversion operation along with a larger-than-unity direct current voltage gain, while exhibits alternating current dynamic signal switching at a record high frequency up to 100 kHz and remarkable electrical stability upon mechanical bending with a radii as small as 4 mm. Our study demonstrates a practical monolithic integration strategy for achieving functional logic circuits on one material platform, paving the way for future high-density flexible electronic applications.

  5. Novel passivation dielectrics-The boron- or phosphorus-doped hydrogenated amorphous silicon carbide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.Y.; Fang, Y.K.; Huang, C.F.

    1985-02-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less

  6. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrof, Julian; Müller, Ralph; Reedy, Robert C.

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr3 furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in more detailmore » by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr3 diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr3 diffusion« less

  7. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating.

    PubMed

    Saito, Yu; Iwasa, Yoshihiro

    2015-03-24

    We report ambipolar transport properties in black phosphorus using an electric-double-layer transistor configuration. The transfer curve clearly exhibits ambipolar transistor behavior with an ON-OFF ratio of ∼5 × 10(3). The band gap was determined as ≅0.35 eV from the transfer curve, and Hall-effect measurements revealed that the hole mobility was ∼190 cm(2)/(V s) at 170 K, which is 1 order of magnitude larger than the electron mobility. By inducing an ultrahigh carrier density of ∼10(14) cm(-2), an electric-field-induced transition from the insulating state to the metallic state was realized, due to both electron and hole doping. Our results suggest that black phosphorus will be a good candidate for the fabrication of functional devices, such as lateral p-n junctions and tunnel diodes, due to the intrinsic narrow band gap.

  8. Optically stimulated luminescence in Cu+ doped lithium orthophosphate

    NASA Astrophysics Data System (ADS)

    Barve, R. A.; Patil, R. R.; Moharil, S. V.; Bhatt, B. C.; Kulkarni, M. S.

    2015-02-01

    Optically stimulated luminescence (OSL) in Cu+ doped Li3PO4 synthesized by co-precipitation technique using different phosphorus precursors was studied. Changes in the luminescent properties were observed with change in the phosphorus precursors. All the synthesized phosphors showed intense fading but the OSL sensitivity was comparable to that of the commercially available Al2O3:C (Landauer Inc.). In general, BSL (blue stimulated luminescence) decay was very fast but the GSL (green stimulated luminescence) decay was comparable to that of Al2O3:C phosphor. Phosphors with fast decay, good sensitivity and intense fading are suitable for real-time dosimetry. Therefore, Cu-doped Li3PO4 could be developed for real-time dosimetry using a fiber optic based OSL reader system.

  9. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  10. Phosphorus and Cu2+ removal by periphytic biofilm stimulated by upconversion phosphors doped with Pr3+-Li.

    PubMed

    Zhu, Yan; Zhang, Jianhong; Zhu, Ningyuan; Tang, Jun; Liu, Junzhuo; Sun, Pengfei; Wu, Yonghong; Wong, Po Keung

    2018-01-01

    Upconversion phosphors (UCPs) can convert visible light into luminescence, such as UV, which can regulate the growth of microbes. Based on these fundamentals, the community composition of periphytic biofilms stimulated by UCPs doped with Pr 3+ -Li + was proposed to augment the removal of phosphorus (P) and copper (Cu). Results showed that the biofilms with community composition optimized by UCPs doped with Pr 3+ -Li + had high P and Cu 2+ removal rates. This was partly due to overall bacterial and algal abundance and biomass increases. The synergistic actions of algal, bacterial biomass and carbon metabolic capacity in the Pr-Li stimulated biofilms facilitated the removal of P and Cu 2+ . The results show that the stimulation of periphytic biofilms by lanthanide-doped UCPs is a promising approach for augmenting P and Cu 2+ removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The preparation of in situ doped hydrogenated amorphous silicon by homogeneous chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meyerson, B. S.; Scott, B. A.; Wolford, D. J.

    1983-03-01

    Raman scattering, infrared absorption, conductivity measurements, electron microprobe, and secondary ion mass spectrometry (SIMS) were used to characterize boron and phosphorus doped hydrogenated amorphous silicon (a-Si:H) films prepared by Homogeneous Chemical Vapor Deposition (HOMOCVD). HOMOCVD is a thermal process which relies upon the gas phase pyrolysis of a source (silane containing up to 1.0% diborane or phosphine) to generate activated species for deposition upon a cooled substrate. Doped films prepared at 275 °C by this process were found to contain ˜12-at. % hydrogen as determined by infrared absorption. We examined dopant incorporation from the gas phase, obtaining values for a distribution coefficient CD (film dopant content/gas phase dopant concentration, atomic basis) of 0.33≤CD ≤0.63 for boron, while 0.4≤CD ≤10.75 in the limits 3.3×10-5≤PH3/SiH4≤0.004. We interpret the data as indicative of the formation of an unstable phosphorus/silicon intermediate in the gas phase, leading to the observed enhancements in CD at high gas phase phosphine content. HOMOCVD films doped at least as efficiently as their prepared counterparts, but tended to achieve higher conductivities [σ≥0.1 (Ω cm)-1 for 4.0% incorporated phosphorus] in the limit of heavy doping. Raman spectra showed no evidence of crystallinity in the doped films. Film properties (conductivity, activation energy of of conduction) have not saturated at the doping levels investigated here, making the attainment of higher ``active'' dopant levels a possibility. We attribute the observation that HOMOCVD appears more amenable to high ``active'' dopant levels than plasma techniques to the low (˜0.1 eV) thermal energy at which HOMOCVD proceeds, versus ˜10-100 eV for plasma techniques. Low substrate temperature (75 °C) doped films were prepared with initial results showing these films to dope as readily as those prepared at high temperature (T˜275 °C).

  12. Photoluminescence of phosphorus atomic layer doped Ge grown on Si

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Nien, Li-Wei; Capellini, Giovanni; Virgilio, Michele; Costina, Ioan; Schubert, Markus Andreas; Seifert, Winfried; Srinivasan, Ashwyn; Loo, Roger; Scappucci, Giordano; Sabbagh, Diego; Hesse, Anne; Murota, Junichi; Schroeder, Thomas; Tillack, Bernd

    2017-10-01

    Improvement of the photoluminescence (PL) of Phosphorus (P) doped Ge by P atomic layer doping (ALD) is investigated. Fifty P delta layers of 8 × 1013 cm-2 separated by 4 nm Ge spacer are selectively deposited at 300 °C on a 700 nm thick P-doped Ge buffer layer of 1.4 × 1019 cm-3 on SiO2 structured Si (100) substrate. A high P concentration region of 1.6 × 1020 cm-3 with abrupt P delta profiles is formed by the P-ALD process. Compared to the P-doped Ge buffer layer, a reduced PL intensity is observed, which might be caused by a higher density of point defects in the P delta doped Ge layer. The peak position is shifted by ˜0.1 eV towards lower energy, indicating an increased active carrier concentration in the P-delta doped Ge layer. By introducing annealing at 400 °C to 500 °C after each Ge spacer deposition, P desorption and diffusion is observed resulting in relatively uniform P profiles of ˜2 × 1019 cm-3. Increased PL intensity and red shift of the PL peak are observed due to improved crystallinity and higher active P concentration.

  13. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  14. Doping of two-dimensional MoS2 by high energy ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  15. Cat-doping: Novel method for phosphorus and boron shallow doping in crystalline silicon at 80 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Hideki; Hayakawa, Taro; Ohta, Tatsunori

    Phosphorus (P) or boron (B) atoms can be doped at temperatures as low as 80 to 350 °C, when crystalline silicon (c-Si) is exposed only for a few minutes to species generated by catalytic cracking reaction of phosphine (PH₃) or diborane (B₂H₆) with heated tungsten (W) catalyzer. This paper is to investigate systematically this novel doping method, “Cat-doping”, in detail. The electrical properties of P or B doped layers are studied by the Van der Pauw method based on the Hall effects measurement. The profiles of P or B atoms in c-Si are observed by secondary ion mass spectrometry mainlymore » from back side of samples to eliminate knock-on effects. It is confirmed that the surface of p-type c-Si is converted to n-type by P Cat-doping at 80 °C, and similarly, that of n-type c-Si is to p-type by B Cat-doping. The doping depth is as shallow as 5 nm or less and the electrically activated doping concentration is 10¹⁸ to 10¹⁹cm⁻³ for both P and B doping. It is also found that the surface potential of c-Si is controlled by the shallow Cat-doping and that the surface recombination velocity of minority carriers in c-Si can be enormously lowered by this potential control.« less

  16. Work function tunability of borophene via doping: A first principle study

    NASA Astrophysics Data System (ADS)

    Katoch, Neha; Sharma, Munish; Thakur, Rajesh; Ahluwalia, P. K.

    2018-04-01

    A first principle study of structural properties, work function and electronic properties of pristine and substitutional doped borophene atomic layer with X atoms (X = F, Cl, H, Li, Na) have been carried out within the framework of density functional theory (DFT). Studied adsorption energies are high for all dopants indicating adsorption to be chemisorption type. The reduction in work function of pristine borophene has been found with n-type (Li, Na) dopants is of the order of 0.42 eV which is higher than that of the reduction in work function of borophene with p-type (F, Cl) dopants. For H dopants there is no reduction in work function of borophene. Quantum ballistic conductance has been found to modulate with doping. The quantum ballistic conductance is decreasing for doped borophene in the order Li > Cl ˜ H ˜ Na > F as compared to pristine borophene.

  17. Time-resolved spectroscopy and optical gain of silica-based fibers co-doped with Bi, Al and/or Ge, P, and Ti

    NASA Astrophysics Data System (ADS)

    Firstov, S. V.; Bufetov, I. A.; Khopin, V. F.; Umnikov, A. A.; Guryanov, A. N.; Dianov, E. M.

    2009-04-01

    The optical properties of optical fibers based on silica glass doped with bismuth and co-doped with aluminum oxides and/or germanium, phosphorus, and titanium oxides are studied. The optical loss and luminescence spectra of optical fibers substantially depend on the core composition. The gain spectra of single-mode optical fibers are measured in the IR range. It is demonstrated that the phosphorus-germanium-silicate optical fiber doped with bismuth exhibits a broad gain band (1270-1520 nm) when pumped at a wavelength of 1230 nm. It is also shown that the bismuth-aluminosilicate optical fibers additionally doped with Ge or Ti at about 1 at % have the gain spectra that are significantly narrower than the IR luminescence spectra (in contrast to the fibers that do not contain Ge and Ti). The intensity decay curves of the IR luminescence in such fibers indicate the presence of both short-lived (with the lifetime τ≤4 μs) and long-lived (τ ˜ 1 ms) energy levels in the bismuth active centers.

  18. Impact of implanted phosphorus on the diffusivity of boron and its applicability to silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrof, Julian, E-mail: julian.schrof@ise.fraunhofer.de; Müller, Ralph; Benick, Jan

    2015-07-28

    Boron diffusivity reduction in extrinsically doped silicon was investigated in the context of a process combination consisting of BBr{sub 3} furnace diffusion and preceding Phosphorus ion implantation. The implantation of Phosphorus leads to a substantial blocking of Boron during the subsequent Boron diffusion. First, the influences of ion implantation induced point defects as well as the initial P doping on B diffusivity were studied independently. Here, it was found that not the defects created during ion implantation but the P doping itself results in the observed B diffusion retardation. The influence of the initial P concentration was investigated in moremore » detail by varying the P implantation dose. A secondary ion mass spectrometry (SIMS) analysis of the BSG layer after the B diffusion revealed that the B diffusion retardation is not due to potential P content in the BSG layer but rather caused by the n-type doping of the crystalline silicon itself. Based on the observations the B diffusion retardation was classified into three groups: (i) no reduction of B diffusivity, (ii) reduced B diffusivity, and (iii) blocking of the B diffusion. The retardation of B diffusion can well be explained by the phosphorus doping level resulting in a Fermi level shift and pairing of B and P ions, both reducing the B diffusivity. Besides these main influences, there are probably additional transient phenomena responsible for the blocking of boron. Those might be an interstitial transport mechanism caused by P diffusion that reduces interstitial concentration at the surface or the silicon/BSG interface shift due to oxidation during the BBr{sub 3} diffusion process. Lifetime measurements revealed that the residual (non-blocked) B leads to an increased dark saturation current density in the P doped region. Nevertheless, electrical quality is on a high level and was further increased by reducing the B dose as well as by removing the first few nanometers of the silicon surface after the BBr{sub 3} diffusion.« less

  19. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  20. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-01

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g‑1 at a current density of 100 mA g‑1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  1. Synthesis and electrochemical sodium-storage of few-layered MoS2/nitrogen, phosphorus-codoped graphene.

    PubMed

    Xu, Limei; Ma, Lin; Li, Wenyan; Yang, Xinxin; Ling, Yan

    2018-07-27

    Few-layered molybdenum disulfide/nitrogen, phosphorus co-doped graphene composites are synthesized by a quaternary phosphonium salt-assisted hydrothermal and annealing procedure. The prepared composites are analyzed by x-ray powder diffraction, x-ray photoelectron spectra, scanning electronic microscopy, transmission electronic microscopy, Raman spectra and nitrogen adsorption and desorption. Experimental results indicate that the MoS 2 nanosheets are of few-layered and defective structures and are well anchored on flexible conductive nitrogen, phosphorus co-doped graphene to constitute mesoporous composites with increased surface areas. Benefiting from the structural merits as well as surface-dominated pseudocapacitive contribution, the composite electrode presents a high electrochemical sodium storage capacity that arrives at 542 mAh g -1 at a current density of 100 mA g -1 with an excellent cyclability. Moreover, a superior high-rate capability can also be achieved.

  2. Notes on the plasma resonance peak employed to determine doping in SiC

    DOE PAGES

    Engelbrecht, J. A. A.; van Rooyen, I. J.; Henry, A.; ...

    2015-07-23

    In this study, the doping level of a semiconductor material can be determined using the plasma resonance frequency to obtain the carrier concentration associated with doping. This paper provides an overview of the procedure for the three most common polytypes of SiC. Results for 3C-SiC are presented and discussed. In phosphorus doped samples analysed, it is submitted that the 2nd plasma resonance cannot be detected due to high values of the free carrier damping constant γ.

  3. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  4. Bottom-up assembly of metallic germanium

    NASA Astrophysics Data System (ADS)

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, Lareine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-08-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm-3) low-resistivity (10-4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  5. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  6. Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus

    NASA Astrophysics Data System (ADS)

    Petersen, René; Pedersen, Thomas Garm; Javier García de Abajo, F.

    2017-11-01

    Plasmons in two-dimensional (2D) materials have emerged as a new source of physical phenomena and optoelectronic applications due in part to the relatively small number of charge carriers on which they are supported. Unlike conventional plasmonic materials, they possess a large Fermi wavelength, which can be comparable with the plasmon wavelength, thus leading to unusually strong nonlocal effects. Here, we study the optical response of a selection of 2D crystal layers (graphene, MoS2, and black phosphorus) with inclusion of nonlocal and thermal effects. We extensively analyze their plasmon dispersion relations and focus on the Purcell factor for the decay of an optical emitter in close proximity to the material as a way to probe nonlocal and thermal effects, with emphasis placed on the interplay between temperature and doping. The results are based on tight-binding modeling of the electronic structure combined with the random-phase approximation response function in which the temperature enters through the Fermi-Dirac electronic occupation distribution. Our study provides a route map for the exploration and exploitation of the ultrafast optical response of 2D materials.

  7. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  8. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  9. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  10. Phosphorus out-diffusion in laser molten silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köhler, J. R.; Eisele, S. J.

    2015-04-14

    Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less

  11. Feasibility study of oxygen-dispensing emitters for thermionic converters, phase 1

    NASA Technical Reports Server (NTRS)

    Desteese, J. G.

    1972-01-01

    A metal/ceramic Marchuk tube was used to measure work functions of oxygen-doped tantalum, to determine applicability of the material to plasma-mode thermionic converters. Oxygen-doped tantalum was shown to increase in work function monotonically with oxygen doping in the range 0.1 to 0.3 atomic percent. Oxygenated test emitters were run at an average temperature of 2165 K and a T/T sub Cs ratio -5.8 to observe the influence of oxygen depletion. Bare work function decreased with outgassing of oxygen. Projections were made based on outgassing kinetics and area/volume ratios to calculate the longevity of oxygen doping in a practical converter. Calculations indicated that the program goal of 10,000 hr could be achieved at 1800 K with an initial oxygen doping of 1 atomic percent and a practical emitter area/volume ratio.

  12. Optical and magnetic properties of free-standing silicene, germanene and T-graphene system

    NASA Astrophysics Data System (ADS)

    Chowdhury, Suman; Bandyopadhyay, Arka; Dhar, Namrata; Jana, Debnarayan

    2017-05-01

    The physics of two-dimensional (2D) materials is always intriguing in their own right. For all of these elemental 2D materials, a generic characteristic feature is that all the atoms of the materials are exposed on the surface, and thus tuning the structure and physical properties by surface treatments becomes very easy and straightforward. The discovery of graphene have fostered intensive research interest in the field of graphene like 2D materials such as silicene and germanene (hexagonal network of silicon and germanium, respectively). In contrast to the planar graphene lattice, the silicene and germanene honeycomb lattice is slightly buckled and composed of two vertically displaced sublattices.The magnetic properties were studied by introducing mono- and di-vacancy (DV), as well as by doping phosphorus and aluminium into the pristine silicene. It is observed that there is no magnetism in the mono-vacancy system, while there is large significant magnetic moment present for the DV system. The optical anisotropy of four differently shaped silicene nanodisks has revealed that diamond-shaped (DS) silicene nanodisk possesses highest static dielectric constant having no zero-energy states. The study of optical properties in silicene nanosheet network doped by aluminium (Al), phosphorus (P) and aluminium-phosphorus (Al-P) atoms has revealed that unlike graphene, no new electron energy loss spectra (EELS) peak occurs irrespective of doping type for parallel polarization. Tetragonal graphene (T-graphene) having non-equivalent (two kinds) bonds and non-honeycomb structure shows Dirac-like fermions and high Fermi velocity. The higher stability, large dipole moment along with high-intensity Raman active modes are observed in N-doped T-graphene. All these theoretical results may shed light on device fabrication in nano-optoelectronic technology and material characterization techniques in T-graphene, doped silicene, and germanene.

  13. Advanced Density Functional Theory Methods for Materials Science

    NASA Astrophysics Data System (ADS)

    Demers, Steven

    In this work we chiefly deal with two broad classes of problems in computational materials science, determining the doping mechanism in a semiconductor and developing an extreme condition equation of state. While solving certain aspects of these questions is well-trodden ground, both require extending the reach of existing methods to fully answer them. Here we choose to build upon the framework of density functional theory (DFT) which provides an efficient means to investigate a system from a quantum mechanics description. Zinc Phosphide (Zn3P2) could be the basis for cheap and highly efficient solar cells. Its use in this regard is limited by the difficulty in n-type doping the material. In an effort to understand the mechanism behind this, the energetics and electronic structure of intrinsic point defects in zinc phosphide are studied using generalized Kohn-Sham theory and utilizing the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. Novel 'perturbation extrapolation' is utilized to extend the use of the computationally expensive HSE functional to this large-scale defect system. According to calculations, the formation energy of charged phosphorus interstitial defects are very low in n-type Zn3P2 and act as 'electron sinks', nullifying the desired doping and lowering the fermi-level back towards the p-type regime. Going forward, this insight provides clues to fabricating useful zinc phosphide based devices. In addition, the methodology developed for this work can be applied to further doping studies in other systems. Accurate determination of high pressure and temperature equations of state is fundamental in a variety of fields. However, it is often very difficult to cover a wide range of temperatures and pressures in an laboratory setting. Here we develop methods to determine a multi-phase equation of state for Ta through computation. The typical means of investigating thermodynamic properties is via 'classical' molecular dynamics where the atomic motion is calculated from Newtonian mechanics with the electronic effects abstracted away into an interatomic potential function. For our purposes, a 'first principles' approach such as DFT is useful as a classical potential is typically valid for only a portion of the phase diagram (i.e. whatever part it has been fit to). Furthermore, for extremes of temperature and pressure quantum effects become critical to accurately capture an equation of state and are very hard to capture in even complex model potentials. This requires extending the inherently zero temperature DFT to predict the finite temperature response of the system. Statistical modelling and thermodynamic integration is used to extend our results over all phases, as well as phase-coexistence regions which are at the limits of typical DFT validity. We deliver the most comprehensive and accurate equation of state that has been done for Ta. This work also lends insights that can be applied to further equation of state work in many other materials.

  14. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  15. Structural characteristics of phosphorus-doped C60 thin film prepared by radio frequency-plasma assisted thermal evaporation technique.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-02-01

    Phosphorus doped C60 (P:C60) thin films were prepared by a radio frequency plasma assisted thermal evaporation technique using C60 powder as a carbon source and a mixture of argon and phosphine (PH3) gas as a dopant precursor. The effects of the plasma power on the structural characteristics of the as-prepared films were then studied using Raman spectroscopy, Auger electron spectroscopy (AES) and X-ray photo-electrons spectroscopy (XPS). XPS and Auger analysis indicated that the films were mainly composed of C and P and that the concentration of P was proportional to the plasma power. The Raman results implied that the doped films contained a more disordered carbon structure than the un-doped samples. The P:C60 films were then used as a coating layer for the Si anodes of lithium ion secondary batteries. The cyclic voltammetry (CV) analysis of the P:C60 coated Si electrodes demonstrated that the P:C60 coating layer might be used to improve the transport of Li-ions at the electrode/electrolyte interface.

  16. Effect of the fabrication conditions of SiGe LEDs on their luminescence and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyadin, A. E.; Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Strel’chuk, A. M.

    2016-02-15

    SiGe-based n{sup +}–p–p{sup +} light-emitting diodes (LEDs) with heavily doped layers fabricated by the diffusion (of boron and phosphorus) and CVD (chemical-vapor deposition of polycrystalline silicon layers doped with boron and phosphorus) techniques are studied. The electroluminescence spectra of both kinds of LEDs are identical, but the emission intensity of CVD diodes is ∼20 times lower. The reverse and forward currents in the CVD diodes are substantially higher than those in diffusion-grown diodes. The poorer luminescence and electrical properties of the CVD diodes are due to the formation of defects at the interface between the emitter and base layers.

  17. Record Efficiency on Large Area P-Type Czochralski Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo

    2012-10-01

    In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.

  18. Stable black phosphorus quantum dots for alkali PH sensor

    NASA Astrophysics Data System (ADS)

    Guo, Weilan; Song, Haizeng; Yan, Shancheng

    2018-01-01

    Black phosphorus, as a new two-dimensional material has been widely used in sensors, photovoltaic devices, etc. However, thin layered black phosphorus chemically degrades rapidly under ambient and aqueous conditions, which hinders the application of it in the chemical sensors. In this work, stable black phosphorus quantum dots (BPQDs) in solution are successfully synthesized by functionalization with 4-nitrobenzene-diazonium (4-NBD). The stable BPQDs are investigated by TEM, AFM, Raman, and UV-absorption. As a potential application, the stable BPQDs are used as sensors in alkali solution, which exhibit outstanding performance. Our work paves the way towards a new application with BPQDs in solution.

  19. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  20. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  1. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries.

    PubMed

    Ma, Ruifang; Fan, Ling; Chen, Suhua; Wei, Zengxi; Yang, Yuhua; Yang, Hongguan; Qin, Yong; Lu, Bingan

    2018-05-09

    Sodium dual-ion batteries (NDIBs) are attracting extensive attention recently because of their low cost and abundant sodium resources. However, the low capacity of the carbonaceous anode would reduce the energy density, and the formation of the solid-electrolyte interphase (SEI) in the anode during the initial cycles will lead to large amount consumption of Na + in the electrolyte, which results in low Coulombic efficiency and inferior stability of the NDIBs. To address these issues, a phosphorus-doped soft carbon (P-SC) anode combined with a presodiation process is developed to enhance the performance of the NDIBs. The phosphorus atom doping could enhance the electric conductivity and further improve the sodium storage property. On the other hand, an SEI could preform in the anode during the presodiation process; thus the anode has no need to consume large amounts of Na + to form the SEI during the cycling of the NDIBs. Consequently, the NDIBs with P-SC anode after the presodiation process exhibit high Coulombic efficiency (over 90%) and long cycle stability (81 mA h g -1 at 1000 mA g -1 after 900 cycles with capacity retention of 81.8%), far more superior to the unsodiated NDIBs. This work may provide guidance for developing high performance NDIBs in the future.

  2. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries.

    PubMed

    Yan, Chao; Liu, Qianru; Gao, Jianzhi; Yang, Zhibo; He, Deyan

    2017-01-01

    Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge-charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  3. Trends and Techniques for Space Base Electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1979-01-01

    Simulations of various phosphorus and boron diffusions in SOS were completed and a sputtering system, furnaces, and photolithography related equipment were set up. Double layer metal experiments initially utilized wet chemistry techniques. By incorporating ultrasonic etching of the vias, premetal cleaning a modified buffered HF, phosphorus doped vapox, and extended sintering, yields of 98% were obtained using the standard test pattern. A two dimensional modeling program was written for simulating short channel MOSFETs with nonuniform substrate doping. A key simplifying assumption used is that the majority carriers can be represented by a sheet charge at the silicon dioxide silicon interface. Although the program is incomplete, the two dimensional Poisson equation for the potential distribution was achieved. The status of other Z-D MOSFET simulation programs is summarized.

  4. Phosphorus doped graphitic carbon nitride nanosheets as fluorescence probe for the detection of baicalein

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Li, Xuebing; Chen, Wenfang; Wang, Rulin; Bian, Wei; Choi, Martin M. F.

    2018-06-01

    Phosphorus doped graphitic carbon nitride (P-g-C3N4) nanosheets were synthesized by calcination. P-g-C3N4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C3N4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30 μM with a detection limit of 53 nM. The quenching mechanism was discussed. The P-g-C3N4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples.

  5. Effects of Phosphorus Implantation on the Activation of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Ting; Chang, Shoou-Jinn; Wu, Sean

    2009-08-01

    The effects of phosphorus implantation on the activation of magnesium doped in GaN at different dopant concentration ratios have been systematically investigated. Hall effect measurements show that P implantation improves the hole concentration, and that this improvement is dependent on P/Mg dopant concentration ratio and annealing conditions. This phenomenon is attributable to the reduction in self-compensation that results from the formation of deep donors and the enhanced Mg atom activation, which is in reasonable agreement with the optical properties observed by photoluminescence measurements. In addition, a new photoluminescence peak resulting from P-related transitions is also observed, evidently owing to the recombination of electrons from the shallow native donors with holes previously captured by isoelectronic P traps.

  6. Mechanism of phosphorus passivation of near-interface oxide traps in 4H–SiC MOS devices investigated by CCDLTS and DFT calculation

    NASA Astrophysics Data System (ADS)

    Jayawardena, Asanka; Shen, X.; Mooney, P. M.; Dhar, Sarit

    2018-06-01

    Interfacial charge trapping in 4H–SiC MOS capacitors with P doped SiO2 or phospho-silicate glass (PSG) as a gate dielectric has been investigated with temperature dependent capacitance–voltage measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements. The measurements indicate that P doping in the dielectric results in significant reduction of near-interface electron traps that have energy levels within 0.5 eV of the 4H–SiC conduction band edge. Extracted trap densities confirm that the phosphorus induced near-interface trap reduction is significantly more effective than interfacial nitridation, which is typically used for 4H–SiC MOSFET processing. The CCDLTS measurements reveal that the two broad near-interface trap peaks, named ‘O1’ and ‘O2’, with activation energies around 0.15 eV and 0.4 eV below the 4H–SiC conduction band that are typically observed in thermal oxides on 4H–SiC, are also present in PSG devices. Previous atomic scale ab initio calculations suggested these O1 and O2 traps to be carbon dimers substituted for oxygen dimers (CO=CO) and interstitial Si (Sii) in SiO2, respectively. Theoretical considerations in this work suggest that the presence of P in the near-interfacial region reduces the stability of the CO=CO defects and reduces the density of Sii defects through the network restructuring. Qualitative comparison of results in this work and reported work suggest that the O1 and O2 traps in SiO2/4H–SiC MOS system negatively impact channel mobility in 4H–SiC MOSFETs.

  7. Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction.

    PubMed

    Liu, Xiaochi; Qu, Deshun; Li, Hua-Min; Moon, Inyong; Ahmed, Faisal; Kim, Changsik; Lee, Myeongjin; Choi, Yongsuk; Cho, Jeong Ho; Hone, James C; Yoo, Won Jong

    2017-09-26

    Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS 2 ) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS 2 junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.

  8. Phosphorus Doping Using Electron Cyclotron Resonance Plasma for Large-Area Polycrystalline Silicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Kakinuma, Hiroaki; Mohri, Mikio; Tsuruoka, Taiji

    1994-01-01

    We have investigated phosphorus doping using an electron cyclotron resonance (ECR) plasma, for application to the poly-Si driving circuits of liquid crystal displays or image sensors. The PH3/He was ionized and accelerated to poly-Si and c-Si substrates with a self bias of -220 V. The P concentration, as detected by secondary ion mass spectroscopy (SIMS), is ˜5×1021 cm-3 at the surface, which decayed to ˜1017 cm-3 within 50 100 nm depth. The surface is found to be etched during doping. The etching is restored by adding a small amount of SiH4 and the sheet resistance R s decreases. The optimized as-irradiated R s is ˜ 1× 105 Ω/\\Box and 1.7× 102 Ω/\\Box for poly-Si and (110) c-Si, respectively. The dependence of R s on the substrates and the anomalous diffusion constants derived from SIMS are also discussed.

  9. Low Work Function 2.81 eV Rb2CO3-Doped Polyethylenimine Ethoxylated for Inverted Organic Light-Emitting Diodes.

    PubMed

    Kim, Jeonggi; Kim, Hyo-Min; Jang, Jin

    2018-06-06

    We report a low work function (2.81 eV), Rb 2 CO 3 -doped polyethyleneimine ethoxylated (PEIE) which is used for highly efficient and long-lifetime, inverted organic light-emitting diodes (OLEDs). Doping Rb 2 CO 3 into PEIE decreases the work function of Li-doped ZnO (LZO) by 1.0 eV and thus significantly improves electron injection ability into the emission layer (EML). The inverted OLED with PEIE:Rb 2 CO 3 interfacial layer (IL) exhibits higher efficiency and longer operation lifetime than those of the device with a PEIE IL. It is found also that Mg-doped ZnO (MZO) can be used instead of LZO as electron transporting layer. Rb 2 CO 3 shows a low work function of 2.81 eV. The OLED with MZO/PEIE:Rb 2 CO 3 exhibits low operating voltage of 5.0 V at 1000 cd m -2 and low efficiency roll-off of 11.8% at high luminance of 10 000 cd m -2 . The results are due to the suppressed exciton quenching at the MZO/organic EML interface.

  10. Bottom-up assembly of metallic germanium.

    PubMed

    Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R

    2015-08-10

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  11. Suppression of surface segregation of the phosphorous δ-doping layer by insertion of an ultra-thin silicon layer for ultra-shallow Ohmic contacts on n-type germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp

    2015-09-28

    We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Möller, Christian, E-mail: cmoeller@cismst.de; TU Ilmenau, Institut für Physik, Weimarer Str. 32, 98693 Ilmenau; Bartel, Til

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permitsmore » the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.« less

  13. Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes.

    PubMed

    Jang, Yeonsik; Kwon, Sung-Joo; Shin, Jaeho; Jeong, Hyunhak; Hwang, Wang-Taek; Kim, Junwoo; Koo, Jeongmin; Ko, Taeg Yeoung; Ryu, Sunmin; Wang, Gunuk; Lee, Tae-Woo; Lee, Takhee

    2017-12-06

    In this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of ∼4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (∼5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.

  14. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less

  15. Black silicon significantly enhances phosphorus diffusion gettering.

    PubMed

    Pasanen, Toni P; Laine, Hannu S; Vähänissi, Ville; Schön, Jonas; Savin, Hele

    2018-01-31

    Black silicon (b-Si) is currently being adopted by several fields of technology, and its potential has already been demonstrated in various applications. We show here that the increased surface area of b-Si, which has generally been considered as a drawback e.g. in applications that require efficient surface passivation, can be used as an advantage: it enhances gettering of deleterious metal impurities. We demonstrate experimentally that interstitial iron concentration in intentionally contaminated silicon wafers reduces from 1.7 × 10 13  cm -3 to less than 10 10  cm -3 via b-Si gettering coupled with phosphorus diffusion from a POCl 3 source. Simultaneously, the minority carrier lifetime increases from less than 2 μs of a contaminated wafer to more than 1.5 ms. A series of different low temperature anneals suggests segregation into the phosphorus-doped layer to be the main gettering mechanism, a notion which paves the way of adopting these results into predictive process simulators. This conclusion is supported by simulations which show that the b-Si needles are entirely heavily-doped with phosphorus after a typical POCl 3 diffusion process, promoting iron segregation. Potential benefits of enhanced gettering by b-Si include the possibility to use lower quality silicon in high-efficiency photovoltaic devices.

  16. Experimental evidence of six-fold oxygen coordination for phosphorus and XANES calculations

    NASA Astrophysics Data System (ADS)

    Flank, A.-M.; Trcera, N.; Brunet, F.; Itié, J.-P.; Irifune, T.; Lagarde, P.

    2009-11-01

    Phosphorus, a group V element, has always been found so far in minerals, biological systems and synthetic compounds with an oxygen coordination number of four (i.e, PO4 groups). We demonstrate here using phosphorus K-edge XANES spectroscopy that this element can also adopt a six-fold oxygen coordination (i.e, PO6 groups). This new coordination was achieved in AlPO4 doped SiO2 stishovite synthesized at 18 GPa and 1873 K and quenched down to ambient conditions. The well-crystallized P-bearing stishovite grains (up to 100μm diameter) were embedded in the back-transformation products of high pressure form of AlPO4 matrix. They were identified by elemental mapping (μ-XRF). μ-XANES spectra collected at the Si and P K edges in the Si rich region with a very low concentration of P present striking resemblance, Si itself being characteristic of pure stishovite. We can therefore infer that phosphorus in the corresponding stishovite crystal is involved in an octahedral coordination made of six oxygen atoms. First principle XANES calculations using a plane-wave density functional formalism with core-hole effects treated in a supercell approach at the P K edge for a P atom substituting an Si one in the stishovite structure confirm this assertion. This result shows that in the lower-mantle where all silicon is six-fold coordinated, phosphorus has the crystal-chemical ability to remain incorporated into silicate structures.

  17. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  18. Superconductivity in two-dimensional phosphorus carbide (β0-PC).

    PubMed

    Wang, Bao-Tian; Liu, Peng-Fei; Bo, Tao; Yin, Wen; Eriksson, Olle; Zhao, Jijun; Wang, Fangwei

    2018-05-09

    Two-dimensional (2D) boron has been predicted to show superconductivity. However, intrinsic 2D carbon and phosphorus have not been reported to be superconductors, which has inspired us to study the superconductivity of their mixture. Here we performed first-principles calculations for the electronic structure, phonon dispersion, and electron-phonon coupling of the metallic phosphorus carbide monolayer, β0-PC. The results show that it is an intrinsic phonon-mediated superconductor, with an estimated superconducting temperature Tc of ∼13 K. The main contribution to the electron-phonon coupling is from the out-of-plane vibrations of phosphorus. A Kohn anomaly on the first acoustic branch is observed. The superconducting related physical quantities are found to be tunable by applying strain or by carrier doping.

  19. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.

    PubMed

    Zhu, Shiyang; Fang, Q; Yu, M B; Lo, G Q; Kwong, D L

    2009-11-09

    Polycrystalline silicon (polySi) wire waveguides with width ranging from 200 to 500 nm are fabricated by solid-phase crystallization (SPC) of deposited amorphous silicon (a-Si) on SiO(2) at a maximum temperature of 1000 degrees C. The propagation loss at 1550 nm decreases from 13.0 to 9.8 dB/cm with the waveguide width shrinking from 500 to 300 nm while the 200-nm-wide waveguides exhibit quite large loss (>70 dB/cm) mainly due to the relatively rough sidewall of waveguides induced by the polySi dry etch. By modifying the process sequence, i.e., first patterning the a-Si layer into waveguides by dry etch and then SPC, the sidewall roughness is significantly improved but the polySi crystallinity is degraded, leading to 13.9 dB/cm loss in the 200-nm-wide waveguides while larger losses in the wider waveguides. Phosphorus implantation causes an additional loss in the polySi waveguides. The doping-induced optical loss increases relatively slowly with the phosphorus concentration increasing up to 1 x 10(18) cm(-3), whereas the 5 x 10(18) cm(-3) doped waveguides exhibit large loss due to the dominant free carrier absorption. For all undoped polySi waveguides, further 1-2 dB/cm loss reduction is obtained by a standard forming gas (10%H(2) + 90%N(2)) annealing owing to the hydrogen passivation of Si dangling bonds present in polySi waveguides, achieving the lowest loss of 7.9 dB/cm in the 300-nm-wide polySi waveguides. However, for the phosphorus doped polySi waveguides, the propagation loss is slightly increased by the forming gas annealing.

  20. DC and analog/RF performance optimisation of source pocket dual work function TFET

    NASA Astrophysics Data System (ADS)

    Raad, Bhagwan Ram; Sharma, Dheeraj; Kondekar, Pravin; Nigam, Kaushal; Baronia, Sagar

    2017-12-01

    We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated.

  1. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    NASA Astrophysics Data System (ADS)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  2. Energy Harvesting and Storage Systems for Future AF Vehicles

    DTIC Science & Technology

    2012-05-11

    of Bi dopant . Thermal conductivity are little influenced by Bi (Fig. B 12c ). From the result of the figure-of-merit (Fig. B12d), 3 at% Bi doped...type doping element, and K is n-type dopant while Ag doped Mg2Si has a transition from n-type top-type at 350C. ZT of these TE alloys are much lower...metal (2 llflll Eledrolyte - Uthium phosphorus oxynitride (UPON) Uz.gPOnNo.45 (2 llfll) developed by ORNL c.thode - Uthium cobalt oxide UCo02(6

  3. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  4. Room temperature ferromagnetism in transition metal-doped black phosphorous

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang

    2018-05-01

    High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.

  5. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  6. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explainmore » the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.« less

  7. Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    NASA Astrophysics Data System (ADS)

    Crowe, I. F.; Papachristodoulou, N.; Halsall, M. P.; Hylton, N. P.; Hulko, O.; Knights, A. P.; Yang, P.; Gwilliam, R. M.; Shah, M.; Kenyon, A. J.

    2013-01-01

    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.

  8. A new computer-aided simulation model for polycrystalline silicon film resistors

    NASA Astrophysics Data System (ADS)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  9. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size.

    PubMed

    Hiller, Daniel; López-Vidrier, Julian; Gutsch, Sebastian; Zacharias, Margit; Nomoto, Keita; König, Dirk

    2017-04-13

    Phosphorus doping of silicon nanostructures is a non-trivial task due to problems with confinement, self-purification and statistics of small numbers. Although P-atoms incorporated in Si nanostructures influence their optical and electrical properties, the existence of free majority carriers, as required to control electronic properties, is controversial. Here, we correlate structural, optical and electrical results of size-controlled, P-incorporating Si nanocrystals with simulation data to address the role of interstitial and substitutional P-atoms. Whereas atom probe tomography proves that P-incorporation scales with nanocrystal size, luminescence spectra indicate that even nanocrystals with several P-atoms still emit light. Current-voltage measurements demonstrate that majority carriers must be generated by field emission to overcome the P-ionization energies of 110-260 meV. In absence of electrical fields at room temperature, no significant free carrier densities are present, which disproves the concept of luminescence quenching via Auger recombination. Instead, we propose non-radiative recombination via interstitial-P induced states as quenching mechanism. Since only substitutional-P provides occupied states near the Si conduction band, we use the electrically measured carrier density to derive formation energies of ~400 meV for P-atoms on Si nanocrystal lattice sites. Based on these results we conclude that ultrasmall Si nanovolumes cannot be efficiently P-doped.

  10. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Kaisheng; Huang, Zhiyuan; Zheng, Lin; Han, Bo; Gao, Qiang; Zhou, Chenggang; Wang, Hongquan; Wu, Jinping

    2017-10-01

    Improving the energy density of carbon-based supercapacitors is one of the most urgent demands for developing high-power energy supplies, which in general requires delicate engineering of the carbon composition and textures. By pre-functionalization of graphene nanosheets and successive one-step (NH4)3PO4 activation, we prepared a type of nitrogen and phosphorus co-doped graphene (NPG) with high specific surface areas, hierarchical pore structures as well as tunable N and P contents. The as-obtained NPG shows high specific capacitances of 219 F g-1 (123 F cm-3) at 0.25 A g-1 and 175 F g-1 (98 F cm-3) at 10 A g-1, respectively. Accordingly, the NPG-based symmetrical supercapacitor device, working at a potential window of 1.3 V, could deliver an enhanced energy density of 8.2 Wh kg-1 (4.6 Wh L-1) at a power density of 162 W kg-1 (91 W L-1), which still retains 6.7 Wh kg-1 at 6.5 kW kg-1. In particular, under a current density of 5 A g-1, the device endows an 86% capacitance retention of initial after 20,000 cycles, displaying superior cycle stability. Our results imply the feasibility of NPG as a promising candidate for high-performance supercapacitors.

  11. Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime

    NASA Astrophysics Data System (ADS)

    Latiff, A. A.; Rusdi, M. F. M.; Hisyam, M. B.; Ahmad, H.; Harun, S. W.

    2016-11-01

    This paper reports a few-layer black phosphorus (BP) as a saturable absorber (SA) or phase-locker in generating modelocked pulses from a double-clad ytterbium-doped fiber laser (YDFL). We mechanically exfoliated the BP flakes from BP crystal through a scotch tape, and repeatedly press until the flakes thin and spread homogenously. Then, a piece of BP tape was inserted in the cavity between two fiber connectors end facet. Under 810 mW to 1320 mW pump power, stable mode-locked operation at 1085 nm with a repetition rate of 13.4 MHz is successfully achieved in normal dispersion regime. Before mode-locked operation disappears above maximum pump, the output power and pulse energy is about 80 mW and 6 nJ, respectively. This mode-locked laser produces peak power of 0.74 kW. Our work may validates BP SA as a phase-locker related to two-dimensional nanomaterials and pulsed generation in normal dispersion regime.

  12. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  13. Effects of Contact-Induced Doping on the Behaviors of Organic Photovoltaic Devices

    DOE PAGES

    Wang, Jian; Xu, Liang; Lee, Yun -Ju; ...

    2015-10-09

    Substrates can significantly affect the electronic properties of organic semiconductors. In this paper, we report the effects of contact-induced doping, arising from charge transfer between a high work function hole extraction layer (HEL) and the organic active layer, on organic photovoltaic device performance. Employing a high work function HEL is found to increase doping in the active layer and decrease photocurrent. Combined experimental and modeling investigations reveal that higher doping increases polaron–exciton quenching and carrier recombination within the field-free region. Consequently, there exists an optimal HEL work function that enables a large built-in field while keeping the active layer dopingmore » low. This value is found to be ~0.4 eV larger than the pinning level of the active layer material. As a result, these understandings establish a criterion for optimal design of the HEL when adapting a new active layer system and can shed light on optimizing performance in other organic electronic devices.« less

  14. Effect of boron and phosphorus codoping on the electronic and optical properties of graphitic carbon nitride monolayers: First-principle simulations

    NASA Astrophysics Data System (ADS)

    Yousefi, Mahdieh; Faraji, Monireh; Asgari, Reza; Moshfegh, Alireza Z.

    2018-05-01

    We study the effect of boron (B) and phosphorous (P) doping and B/P codoping on electronic and optical properties of graphitic carbon nitride (g-C3N4 or GCN) monolayers using density functional simulations. The energy band structure indicates that the incorporation of both B and P into a hexagonal lattice of GCN reduces the energy band gap from 3.1 for pristine GCN to 1.9 eV, thus extending light absorption toward the visible region. Moreover, on the basis of calculating absorption spectra and dielectric function, the codoped system exhibits an improved absorption intensity in the visible region and more electronic transitions, which named π* electronic transitions that occurred and were prohibited in the pristine GCN. These transitions can be attributed to charge redistribution upon doping, caused by distorted configurable B/P-codoped GCN confirmed by both electron density and Mulliken charge population. Therefore, B/P-codoped GCN is expected to be an auspicious candidate to be used as a promising photoelectrode in photoelectrochemical water splitting reactions leading to efficient solar H2 production.

  15. Influence of porous texture and surface chemistry on the CO₂ adsorption capacity of porous carbons: acidic and basic site interactions.

    PubMed

    Sánchez-Sánchez, Angela; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D

    2014-12-10

    Doped porous carbons exhibiting highly developed porosity and rich surface chemistry have been prepared and subsequently applied to clarify the influence of both factors on carbon dioxide capture. Nanocasting was selected as synthetic route, in which a polyaramide precursor (3-aminobenzoic acid) was thermally polymerized inside the porosity of an SBA-15 template in the presence of different H3PO4 concentrations. The surface chemistry and the porous texture of the carbons could be easily modulated by varying the H3PO4 concentration and carbonization temperature. Porous texture was found to be the determinant factor on carbon dioxide adsorption at 0 °C, while surface chemistry played an important role at higher adsorption temperatures. We proved that nitrogen functionalities acted as basic sites and oxygen and phosphorus groups as acidic ones toward adsorption of CO2 molecules. Among the nitrogen functional groups, pyrrolic groups exhibited the highest influence, while the positive effect of pyridinic and quaternary functionalities was smaller. Finally, some of these N-doped carbons exhibit CO2 heats of adsorption higher than 42 kJ/mol, which make them excellent candidates for CO2 capture.

  16. An Organic Vertical Field-Effect Transistor with Underside-Doped Graphene Electrodes.

    PubMed

    Kim, Jong Su; Kim, Beom Joon; Choi, Young Jin; Lee, Moo Hyung; Kang, Moon Sung; Cho, Jeong Ho

    2016-06-01

    High-performance vertical field-effect transistors are developed, which are based on graphene electrodes doped using the underside doping method. The underside doping method enables effective tuning of the graphene work function while maintaining the surface properties of the pristine graphene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  18. First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojiao; Zhang, Dan; Xie, Fang; Zheng, Xialian; Wang, Haiyan; Long, Mengqiu

    2017-07-01

    Using the first-principles calculations, we investigate the geometric structure, electronic and magnetic properties of armchair silicene nanoribbons (ASiNRs) doped with aluminum (Al) or phosphorus (P) atoms. Total energy analysis shows that both Al and P atoms are preferentially doping at the edge site of ASiNRs. And the magnetism can be found in both Al and P doped systems. For Al doped ASiNRs, we find that the magnetic moment and band gap are dependent on the ribbon width. While for P doped ASiNRs, the magnetic moment always keeps 1μB and is independent of the ribbon width, meanwhile the band gap oscillates with a period of three with the ribbon width increasing. Our results present a new avenue for band engineering of SiNRs and benefit for the designing of silicone-based nano-spin-devices in nanoelectronics.

  19. Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (1 0 0) by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Minhyeong; Kim, Sungtae; Ko, Dae-Hong

    2018-06-01

    In this work, we investigated the chemical bonding states in highly P-doped Si thin films epitaxially grown on Si (0 0 1) substrates using high-resolution X-ray photoelectron spectroscopy (HR-XPS). HR-XPS P 2p core-level spectra clearly show spin-orbital splitting between P 2p1/2 and P 2p3/2 peaks in Si films doped with a high concentration of P. Moreover, the intensities of P 2p1/2 and P 2p3/2 peaks for P-doped Si films increase with P concentrations, while their binding energies remained almost identical. These results indicate that more P atoms are incorporated into the substitutional sites of the Si lattice with the increase of P concentrations. In order to identify the chemical states of P-doped Si films shown in XPS Si 2p spectra, the spectra of bulk Si were subtracted from those of Si:P samples, which enables us to clearly identify the new chemical state related to Sisbnd P bonds. We observed that the presence of the two well-resolved new peaks only for the Si:P samples at the binding energy higher than those of a Sisbnd Si bond, which is due to the strong electronegativity of P than that of Si. Experimental findings in this study using XPS open up new doors for evaluating the chemical states of P-doped Si materials in fundamental researches as well as in industrial applications.

  20. Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique

    NASA Astrophysics Data System (ADS)

    Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.

    2018-04-01

    Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.

  1. Conductive-probe atomic force microscopy characterization of silicon nanowire

    PubMed Central

    2011-01-01

    The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623

  2. Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2013-10-01

    In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02987e

  3. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  4. Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping

    NASA Astrophysics Data System (ADS)

    Zhang, Kenan; Deng, Ke; Li, Jiaheng; Zhang, Haoxiong; Yao, Wei; Denlinger, Jonathan; Wu, Yang; Duan, Wenhui; Zhou, Shuyun

    2018-05-01

    SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interest due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.

  5. Layer-dependent band alignment of few layers of blue phosphorus and their van der Waals heterostructures with graphene

    NASA Astrophysics Data System (ADS)

    Pontes, Renato B.; Miwa, Roberto H.; da Silva, Antônio J. R.; Fazzio, Adalberto; Padilha, José E.

    2018-06-01

    The structural and electronic properties of few layers of blue phosphorus and their van der Waals heterostructures with graphene were investigated by means of first-principles electronic structure calculations. We study the four energetically most stable stacking configurations for multilayers of blue phosphorus. For all of them, the indirect band-gap semiconductor character, are preserved. We show that the properties of monolayer graphene and single-layer (bilayer) blue phosphorus are preserved in the van der Waals heterostructures. Further, our results reveal that under a perpendicular applied electric field, the position of the band structure of blue phosphorus with respect to that of graphene is tunable, enabling the effective control of the Schottky barrier height. Indeed, for the bilayer blue phosphorene on top of graphene, it is possible to even move the system into an Ohmic contact and induce a doping level of the blue phosphorene. All of these features are fundamental for the design of new nanodevices based on van der Waals heterostructures.

  6. Graded recombination layers for multijunction photovoltaics.

    PubMed

    Koleilat, Ghada I; Wang, Xihua; Sargent, Edward H

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers.

  7. Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young

    2017-06-01

    Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.

  8. Positronium formation at Si surfaces

    NASA Astrophysics Data System (ADS)

    Kawasuso, A.; Maekawa, M.; Miyashita, A.; Wada, K.; Kaiwa, T.; Nagashima, Y.

    2018-06-01

    Positronium formation at Si(111) and Si(001) surfaces has been investigated by changing the doping level systematically over the range 300-1000 K. The temperature dependence of the positronium fraction varied with the doping condition, and there were practically no differences between the two surface orientations. In heavily doped n -type Si (n ≳1018cm-3) , the positronium fraction (IPs) increased above 700 K and reached more than 95% at 1000 K. In undoped and lightly doped Si (n , p ≲1015cm-3 ), IPs decreased from 300 to 500 K and increased above 700 K. In heavily doped p -type Si (p ≳1018cm-3 ), IPs increased in two steps: one at 500-600 K and one above 700 K. Overall, the positronium fraction increased with the amount of n -type doping. These phenomena were found to be dominated by two kinds of positronium with energies of 0.6-1.5 eV and 0.1-0.2 eV, which were attributed to the work-function mechanism and the surface-positron-mediated process, respectively, with contributions from conduction electrons. The positron work function was estimated to be positive. This agrees with first-principles calculation. The positive positron work function implies that the formation of excitonic electron-positron bound states begins in the bulk subsurface region and transits to the final positronium state in the vacuum.

  9. Role of microstructure and doping on the mechanical strength and toughness of polysilicon thin films

    DOE PAGES

    Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

    2015-03-24

    We investigated the role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm ×more » 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Moreover, the removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.« less

  10. Negligible Electronic Interaction between Photoexcited Electron-Hole Pairs and Free Electrons in Phosphorus-Boron Co-Doped Silicon Nanocrystals

    DOE PAGES

    Limpens, Rens; Neale, Nathan R; Fujii, Minoru; ...

    2018-03-05

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  11. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  12. Surface sensitization mechanism on negative electron affinity p-GaN nanowires

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-03-01

    The surface sensitization is the key to prepare negative electron affinity photocathode. The thesis emphasizes on the study of surface sensitization mechanism of p-type doping GaN nanowires utilizing first principles based on density function theory. The adsorption energy, work function, dipole moment, geometry structure, electronic structure and optical properties of Mg-doped GaN nanowires surfaces with various coverages of Cs atoms are investigated. The GaN nanowire with Mg doped in core position is taken as the sensitization base. At the initial stage of sensitization, the best adsorption site for Cs atom on GaN nanowire surface is BN, the bridge site of two adjacent N atoms. Surface sensitization generates a p-type internal surface with an n-type surface state, introducing a band bending region which can help reduce surface barrier and work function. With increasing Cs coverage, work functions decrease monotonously and the "Cs-kill" phenomenon disappears. For Cs coverage of 0.75 ML and 1 ML, the corresponding sensitization systems reach negative electron affinity state. Through surface sensitization, the absorption curves are red shifted and the absorption coefficient is cut down. All theoretical calculations can guide the design of negative electron affinity Mg doped GaN nanowires photocathode.

  13. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties

    NASA Astrophysics Data System (ADS)

    Habibpour, Razieh; Kashi, Eslam; Vazirib, Raheleh

    2018-03-01

    The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.

  14. Laser doping of boron-doped Si paste for high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi

    2015-08-01

    Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.

  15. Transport spectroscopy of coupled donors in silicon nano-transistors

    PubMed Central

    Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu

    2014-01-01

    The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032

  16. Compositions of Mg and Se, surface morphology, roughness and Raman property of Zn1-xMgxSeyTe1-y layers grown at various substrate temperatures or dopant transport rates by MOVPE

    NASA Astrophysics Data System (ADS)

    Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin

    2015-03-01

    The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.

  17. Photoelectrochemical biosensor for HEN1 RNA methyltransferase detection using peroxidase mimics PtCu NFs and poly(U) polymerase-mediated RNA extension.

    PubMed

    Wang, Haiyan; Zhu, Libang; Duan, Junling; Wang, Minghui; Yin, Huanshun; Wang, Po; Ai, Shiyun

    2018-04-30

    2'-O-methyl group on the 3' terminal nucleotide in plant microRNAs, as one kind of RNA methylations, is caused by HEN1 RNA methyltransferase (HENMT1), which is thought to be crucial for ribosome biogenesis and function. Herein, a simple and label-free PEC biosensing method was proposed for assay of HENMT1 activity and inhibitor screening based on peroxidase mimic PtCu nanoframes (PtCu NFs) catalytic signal amplification. In this work, MoS 2 @Graphene quantum dots/Phosphorus-doped rodlike carbon nitride (MoS 2 @GQDs/P-RCN) heterojunction was used as photoactive materials. With the doping of GQDs and the formation of heterojunction, the photoactivity of MoS 2 is greatly improved. After the double-stranded RNA (dsRNA) with 2 nt 3' overhangs was treated with HENMT1 in the presence of S-adenosyl-L-methionine, the 3' terminal nucleotide of the unmethylated dsRNA could be extended under the catalysis of the poly(U) polymerase in the existence of UTP. Poly(A) nucleotide chain modified with carboxyl group was captured on the electrode surface through hybridization reaction and acted as a bridge for the immobilization of reticular DNA-functionalized PtCu NFs (PtCu@DNA). Under the catalysis effect of peroxidase mimics PtCu@DNA towards hydrogen peroxide, O 2- was in situ generated as electron donor and a strong photocurrent was obtained. The proposed PEC bioassay exhibited high selectivity and low detection limit of 3.36ng/mL for HENMT1 activity assay. Furthermore, the inhibition research indicated that chlorpyrifos could inhibit the HENMT1 activity with the IC 50 value of 48.32nM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of pentacene-doped PEDOT:PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells.

    PubMed

    Kim, Hyunsoo; Lee, Jungrae; Ok, Sunseong; Choe, Youngson

    2012-01-05

    We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis.

  19. Effects of pentacene-doped PEDOT:PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells

    PubMed Central

    2012-01-01

    We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis. PMID:22221320

  20. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  1. Spontaneous time reversal symmetry breaking in atomically confined two-dimensional impurity bands in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam

    Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).

  2. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaofeng; Raaen, Steinar, E-mail: sraaen@ntnu.no

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbonmore » cone containing material.« less

  3. Black phosphorus saturable absorber for ultrashort pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M.

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation.more » The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.« less

  4. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    PubMed

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Catalysts for use in electrochemical applications and electrodes and devices using same

    DOEpatents

    Ozkan, Umit S.; von Deak, Dieter; Biddinger, Elizabeth

    2015-09-15

    An electrode for reduction of an oxidant including a phosphorus-doped carbon-containing catalyst represented by the chemical formula CN.sub.xP.sub.y, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. A device for producing electricity by facilitating an electrochemical reaction between a fuel and an oxidant. The device including a first electrode for oxidizing the fuel to produce protons and electrons. The device further includes a second electrode in electrical communication with the first electrode when electrically connected to the external circuit. The second electrode includes a phosphorus-doped carbon-containing catalyst for reducing the oxidant and is represented by the chemical formula CN.sub.xP.sub.y, where x is from 0 to about 10 wt. % and y is from about 1 ppm to about 10 wt. %. The device further includes an electrolyte, such as, a membrane, separating the first electrode from the second electrode.

  6. Investigation of tip-depletion-induced fail in scanning capacitance microscopy for the determination of carrier type.

    PubMed

    Wang, Lin; Gautier, Brice; Sabac, Andrei; Bremond, Georges

    2017-03-01

    Scanning capacitance microscopy (SCM) was performed on an n-type Si multilayer structure doped by phosphorus whose concentration ranges from 2×10 17 to 2×10 19 cm -3 . Three types of tips were used, i.e. fresh Pt/Ir coated tip, worn Pt/Ir coated tip and non-coated commercial Si tip. The use of fresh Pt/Ir coated tips produces SCM result in good agreement with the doping profile including the correct identification of the carrier type. In contrast, a worn Pt/Ir coated tip which has lost its metal coating and a non-coated tip will fail to recognize successfully the carrier type for phosphorus dopant concentration above 8×10 18 cm -3 (identifying as p instead of n) due to the tip depletion effect. These results alert us to carefully interpret the SCM results, especially in the case for identification of carrier type inside the sample of interest which is unknown. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Doping reaction of PH3 and B2H6 with Si(100)

    NASA Astrophysics Data System (ADS)

    Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.

    1986-06-01

    The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.

  8. Strongly anisotropic RKKY interaction in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2018-06-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional black phosphorus, phosphorene. The RKKY interaction enhances significantly for the low levels of hole doping owing to the nearly valence flat band. Remarkably, for the hole-doped phosphorene, the highest RKKY interaction occurs when two impurities located along the zigzag direction and it tends to a minimum value with changing the direction from the zigzag to the armchair direction. We show that the interaction is highly anisotropic and the magnetic ground-state of two magnetic adatoms can be tuned by changing the rotational configuration of impurities. Owing to the anisotropic band dispersion, the oscillatory behavior with respect to the angle of the rotation and the distance of two magnetic impurities, R is well-described by sin (2kF R) , where the Fermi wavelength kF changes in different directions. We also find that the tail of the RKKY oscillations falls off as 1 /R2 at large distances.

  9. Polynomial dual energy inverse functions for bone Calcium/Phosphorus ratio determination and experimental evaluation.

    PubMed

    Sotiropoulou, P; Fountos, G; Martini, N; Koukou, V; Michail, C; Kandarakis, I; Nikiforidis, G

    2016-12-01

    An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  11. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  12. Observation of defects evolution in electronic materials

    NASA Astrophysics Data System (ADS)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2 annealing, ion-implantation, and thermal oxidation. Advanced characterization techniques have been used to obtain information about strain, relaxation, layer thickness, elemental composition, defects, surface/interface morphology changes and so on. Based on the understanding of defects behavior during the strain relaxation after post thermal processes, a new manufacturing process to obtain highly-relaxed and thin Si1-xGex layers, which could be used as virtual substrates for strained-Si applications, was found.

  13. High work-function hole transport layers by self-assembly using a fluorinated additive

    DOE PAGES

    Mauger, Scott A.; Li, Jun; Özmen, Özge Tüzün; ...

    2013-10-30

    The hole transport polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) derives many of its favorable properties from a PSS-rich interfacial layer that forms spontaneously during coating. Since PEDOT:PSS is only usable as a blend it is not possible to study PEDOT:PSS without this interfacial layer. Through the use of the self-doped polymer sulfonated poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl) (S-P3MEET) and a polyfluorinated ionomer (PFI) it is possible to compare transparent conducting organic films with and without interfacial layers and to understand their function. Using neutron reflectometry, we show that PFI preferentially segregates at the top surface of the film during coating and forms a thermally stable surfacemore » layer. Because of this distribution we find that even small amounts of PFI increase the electron work function of the HTL. We also find that annealing at 150°C and above reduces the work function compared to samples heated at lower temperatures. Using near edge x-ray absorption fine structure spectroscopy and gas chromatography we show that this reduction in work function is due to S-P3MEET being doped by PFI. Organic photovoltaic devices with S-P3MEET/PFI hole transport layers yield higher power conversion efficiency than devices with pure S-P3MEET or PEDOT:PSS hole transport layers. Additionally, devices with a doped interface layer of S-P3MEET/PFI show superior performance to those with un-doped S-P3MEET.« less

  14. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    PubMed Central

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion. PMID:25520602

  15. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    PubMed

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  16. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonergan, Mark

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less

  17. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.

    PubMed

    Robak, Elżbieta; Coy, Emerson; Kotkowiak, Michał; Jurga, Stefan; Załęski, Karol; Drozdowski, Henryk

    2016-04-29

    Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.

  18. Phosphorus and carrier density of heavily n-type doped germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takinai, K.; Wada, K.

    2016-05-14

    The threshold current density of n-type, tensile-strained Ge lasers strongly depends on the electron density. Although optical net gain analyses indicate that the optimum electron density should be on the order of 1 × 10{sup 20} cm{sup −3} to get the lowest threshold, it is not a simple task to increase the electron density beyond the mid range of 10{sup 19} cm{sup −3}. The present paper analyzes the phenomenon where electron density is not proportional to phosphorus donor density, i.e., “saturation” phenomenon, by applying the so-called amphoteric defect model. The analyses indicate that the saturation phenomenon can be well explained by the charge compensationmore » between the phosphorus donors (P{sup +}) and doubly negative charged Ge vacancies (V{sup 2−}).« less

  19. Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide.

    PubMed

    Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L

    2014-02-25

    Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.

  20. Electronic Transport Properties of Carbon-Nanotube Networks: The Effect of Nitrate Doping on Intratube and Intertube Conductances

    NASA Astrophysics Data System (ADS)

    Ketolainen, T.; Havu, V.; Jónsson, E. Ö.; Puska, M. J.

    2018-03-01

    The conductivity of carbon-nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO3 molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density-functional-theory band-structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p -type doping. The average doping efficiency of the NO3 molecules is higher if the NO3 molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we also study electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we find that in addition to turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through the junctions between them.

  1. Doping and structural properties for the phosphorous-doped polysilicon layers used for micromechanical applications

    NASA Astrophysics Data System (ADS)

    Gaiseanu, Florin; Esteve, Jaume; Cane, Carles; Perez-Rodriguez, Alejandro; Morante, Juan R.; Serre, Christoph

    1999-08-01

    Our researches were devoted to the micromechanical elements fabricated by the surface micromachining technology, in order to reduce or to eliminate the internal stress or the stress gradients. We used an analysis based on secondary ion mass spectroscopy and the spreading resistance profiling determinations, correlated with cross-section electron transmission spectroscopy. The stress induced in the polysilicon layers by the technological processes depends on: (i) the conditions of the low pressure chemical vapor deposition process; (ii) the phosphorus doping technique; (iii) the subsequent multi-step annealing processes. In our experiments the LP-CVD conditions were maintained the same, but the condition specified previously as items (ii) was varied by using two different doping techniques: thermal- chemical doping consisting in prediffusion from a POCl3 source in an open furnace tube; ionic implantation with an energy E equals 65KeV and a dose N equals 4.5 X 1015 cm-2. The implantation process was followed by an annealing at 900 degrees C in an oxygen ambient for 30 minutes. The thermal budget was varied after the doping in order to reduce the stress gradient in the polysilicon layers. The results of our analysis allow us to show that: (1) the doping gradients are correlated with the slower phosphorus grains forme by an excess of the oxygen atoms; a concurrent process induced by the silicon self-interstitial injection during the diffusion and oxidation, determines the enhancement of the grain growth and therefore the enhancement of the electrical activation especially near the internal polysilicon interface; (2) the post-doping annealing conditions could be varied in a convenient manner, so that the doping induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical induced stress gradients into the polysilicon layers to be reduced or completely eliminated for suitable micromechanical applications. The results were used for the process optimization of micromechanical elements. The internal stress was determined by using anew, pull-in voltage method, allowing the comparison of the theory with the experimental data. It was deduced a new form of the equations set useful to extract the mechanical parameters like the internal stress and the Young's module. It was also deduced a simplified approximate formula useful to apply the least square fitting method for the extraction of the mechanical parameters. The results confirms the conclusions of the doping and the structural analysis.

  2. Effects of phosphorus doping by plasma immersion ion implantation on the structural and optical characteristics of Zn{sub 0.85}Mg{sub 0.15}O thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, S.; Nagar, S.; Chakrabarti, S., E-mail: subho@ee.iitb.ac.in

    2014-08-11

    ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101{sup ¯}0〉 and 〈101{sup ¯}3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering andmore » localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.« less

  3. The effect of PO 4 doping on the luminescent properties of Sr 3-3zEu 2zV 2-xP xO 8

    NASA Astrophysics Data System (ADS)

    Cao, S.; Ma, Y. Q.; Yang, K.; Zhu, W. L.; Yin, W. J.; Zheng, G. H.; Wu, M. Z.; Sun, Z. Q.

    2010-07-01

    The luminescent properties of Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2), Eu 3+ doped Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) and Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) have been investigated. For the Sr 3V 2-xP xO 8 (0 ⩽ x ⩽ 2) samples, the VO43- activation and emission intensity reaches the strongest as x = 1.6. For the Sr 2.7Eu 0.2V 2-yP yO 8 (0 ⩽ y ⩽ 2) samples, an appropriate amount of phosphorus doping enhances the Eu 3+ emission with the strongest emission occurring at y = 1.2. For the Sr 3-3zEu 2zV 0.8P 1.2O 8 (0 < z ⩽ 0.3) sample with the phosphorus content fixed at 1.2, it exhibits the most intense emission as Eu 3+ concentration reaches at z = 0.2. Our results indicate that the introduction of the PO43- plays an important role in the photoluminescence properties of the studied samples and the relevant mechanism has been discussed.

  4. The physical properties of Li-doped g-C{sub 3}N{sub 4} monolayer sheet investigated by the first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Linwei; Xu, Gengsheng; Gu, Lina

    2015-06-15

    Highlights: • Systematically research on Li-doped g-C{sub 3}N{sub 4} monolayer sheets by first-principles calculation. • Optimal dopant concentration for optical absorption is 7.12%. • Thermodynamics stability of the doped substrate g-C{sub 3}N{sub 4} decreased with Li dopant concentration increasing. • The values of work function Φ decreased monotonously with the increasing of Li dopant concentration. - Abstract: The geometric, electronic, optical properties, thermodynamic stability, and work function of Li-doped g-C{sub 3}N{sub 4} monolayer were investigated by the first-principles calculation. It was found that the Li atoms were preferentially substituted the open-hollow sites of g-C{sub 3}N{sub 4}. Interestingly, the “odd” numbermore » of Li doped g-C{sub 3}N{sub 4} showed metallic properties, while the “even” number of Li atoms widened the band gap of g-C{sub 3}N{sub 4}. The HOMO and LUMO distributions reveal that the active sites located at edge N and C atoms for both pristine and the Li-doped g-C{sub 3}N{sub 4}. In addition, thermodynamic analysis showed that the doped Li atoms reduced the thermodynamic stability of g-C{sub 3}N{sub 4} monolayer sheets.« less

  5. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.

  6. Phosphorus allotropes: Stability of black versus red phosphorus re-examined by means of the van der Waals inclusive density functional method

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Doak, Jeff W.; Wolverton, C.

    2017-06-01

    We evaluate the energetic stabilities of white, red, and black allotropes of phosphorus using density functional theory (DFT) and hybrid functional methods, van der Waals (vdW) corrections (DFT+vdW and hybrid+vdW), vdW density functionals, and random phase approximation (RPA). We find that stability of black phosphorus over red-V (i.e., the violet form) is not ubiquitous among these methods, and the calculated enthalpies for the reaction phosphorus (red-V)→phosphorus (black) are scattered between -20 and 40 meV/atom. With local density and generalized gradient approximations, and hybrid functionals, mean absolute errors (MAEs) in densities of P allotropes relative to experiments are found to be around 10%-25%, whereas with vdW-inclusive methods, MAEs in densities drop below ˜5 %. While the inconsistency among the density functional methods could not shed light on the stability puzzle of black versus red phosphorus, comparison of their accuracy in predicting densities and the supplementary RPA results on relative stabilities indicate that opposite to the common belief, black and red phosphorus are almost degenerate, or the red-V (violet) form of phosphorus might even be the ground state.

  7. Reactive phosphorus removal from aquaculture and poultry productions systems using polymeric hydrogels.

    PubMed

    Kofinas, Peter; Kioussis, Dimitri R

    2003-01-15

    This work reports on the features of a sorption processes for the ultimate removal and recovery of reactive phosphorus from aquaculture and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA-HCl) polymeric hydrogel. The PAA-HCl hydrogels were prepared by chemically cross-linking aqueous solutions of linear PAA-HCl chains with epichlorohydrin (EPI). The phosphorus binding capacity of the gels was measured in standard aqueous solutions as a function of ionic strength. Equilibrium PO4(3-), loadings of 100 mg anion/g gel were obtained. The regeneration ability of the gels was demonstrated by release of the bound phosphorus anions upon washing with 1-2 M NaOH solution, providing opportunities to recover and reuse the gel over multiple cycles. The ionic polyamine gels have been demonstrated to be appropriate materials for treating poultry and aquaculture wastewater effluents. Upon treatment phosphorus anion concentrations were reduced to levels suitable for discharge into natural surface waters.

  8. Chemical scissors cut phosphorene and their novel electronic properties

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Wei, Qun

    2015-03-01

    Phosphorene, a recently fabricated two-dimensional puckered honeycomb structure of black phosphorus, showed promising properties for applications in nano-electronics. In this work, we report a chemical scissors effect on phosphorene, using first principles density-functional methods. It was found that chemical species, such as H, OH, F, and Cl, can act as scissors to cut phosphorene. Phosphorus nanochains and nanoribbons can be obtained using such chemical scissors. The scissors effect results from the strong bonding between the chemical species and phosphorus atoms. Other species such as O, S and Se fail to cut phosphorene due to their weak bonding with phosphorus. The electronic structures of the produced P-chains reveal that the hydrogenated P-chain is an insulator; however, the pristine P-chain is a one-dimensional Dirac material, in which the charge carriers are massless fermions travelling at an effective speed of light approximately 8x105 m/s. The obtained zigzag phosphorene nanoribbons show either metallic or semiconducting behaviors, depending on the treatment of the edge phosphorus atoms.

  9. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  10. Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes

    DOE PAGES

    Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon; ...

    2018-01-11

    n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less

  11. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.

    PubMed

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Chen, Jie-Zhi; ManduLa, Huhe; Zhang, Yan-Yang; Yang, Shen-Yuan; Jiang, Xiang-Wei

    2018-02-21

    The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm -1 and 1652 μA μm -1 , respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm -1 and 1368 μA μm -1 , respectively, which is closer to realistic nanodevices.

  12. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    PubMed

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  13. 3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin

    2018-03-13

    We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.

  14. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    NASA Astrophysics Data System (ADS)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten

    2017-12-01

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.

  15. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction ( μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe amore » set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.« less

  16. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    DOE PAGES

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; ...

    2017-12-29

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction ( μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe amore » set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.« less

  17. Plasma-Functionalized Polytetrafluoroethylene Nanoparticles for Improved Wear in Lubricated Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vinay; Timmons, Richard; Erdemir, Ali

    Plasma-functionalized polytetrafluoroethylene (PTFE) nanoparticles were employed to evaluate their utility in improving the lubrication property of a group III mineral oil with a significantly low amount of zinc dialkyl dithiophosphate (ZDDP). The particles were coated with two consecutive films; the initial coating contained silica to enhance amorphous glassy tribofilm formation, followed by a methacrylate film to protect the silica coating and enhance dispersibility in the oil. The functionalized nanoparticles were evaluated for their tribological performance using a high-frequency reciprocating rig, in a cylinder-on-flat configuration. The oil formulations containing ZDDP (350 ppm phosphorus level) and the functionalized nanoparticles resulted in dramaticmore » reductions in the friction coefficient and overall wear compared to the samples containing nonfunctionalized PTFE nanoparticles, ZDDP (350 ppm P), and samples devoid of nanoparticles but containing ZDDP with a 700 ppm P treat rate. XPS and XANES spectroscopy were employed to characterize the tribological films formed on the test samples. The samples with functionalized particles and ZDDP clearly exhibited tribofilms with Si- and F-doped polyphosphates of Zn coupled with the presence of ZnS at the metal-tribofilm interface. On the other hand, oils without the functionalized nanoparticles have oxides of Fe and to a lesser extent short-chain phosphates of Zn. The overall results suggest that the synergism between plasma-coated PTFE nanoparticles and ZDDP contributed to the development of protective tribofilms even at reduced amount of phosphorus in the oil. This new method of employing nanoparticles to deliver novel antifriction and antiwear chemistries at the tribological interfaces stands out as a promising approach to further reduce P levels in oils without compromising friction and wear performance.« less

  18. Phosphorus doping of Si and Si1 - xGex grown by ultrahigh vacuum chemical vapor deposition using Si2H6 and GeH4

    NASA Astrophysics Data System (ADS)

    Chen, L. P.; Huang, G. W.; Chang, C. Y.

    1996-03-01

    100 ppm PH3 diluted in hydrogen is used as the n-type dopant gas in Si and Si1-xGex epilayers grown by ultrahigh vacuum chemical vapor deposition (UHVCVD) using Si2H6 and GeH4. The phosphorus concentration in Si increases linearly at a small PH3 flow rate and becomes nearly saturated at higher flow rates, while the phosphorus concentration in Si1-xGex only shows a nearly linear behavior with PH3 flow rate. The growth rates of Si and Si1-xGex epilayers decrease seriously (˜50%) and slightly (˜10%) with the increase of PH3 flow rate, respectively. These results can be explained by a model based on the enhancement of hydrogen desorption rate at smaller PH3 flow rates and different levels of the effects of phosphorus blocking of surface-activated sites between Si and Si1-xGex epilayers at higher PH3 flow rates.

  19. Effective work function engineering for a TiN/XO(X = La, Zr, Al)/SiO{sub 2} stack structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongjin, E-mail: dongjin0710.lee@samsung.com; Lee, Jieun; Jung, Kyoungho

    In this study, we demonstrated that work function engineering is possible over a wide range (+200 mV to −430 mV) in a TiN/XO (X = La, Zr, or Al)/SiO{sub 2} stack structures. From ab initio simulations, we selected the optimal material for the work function engineering. The work function engineering mechanism was described by metal diffusion into the TiN film and silicate formation in the TiN/SiO{sub 2} interface. The metal doping and the silicate formation were confirmed by transmission electron microscopy and energy dispersive spectroscopy line profiling, respectively. In addition, the amount of doped metal in the TiN film depended on the thickness ofmore » the insertion layer XO. From the work function engineering technique, which can control a variety of threshold voltages (Vth), an improvement in transistors with different V{sub th} values in the TiN/XO/SiO{sub 2} stack structures is expected.« less

  20. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.

    PubMed

    Kim, Ki Kang; Kim, Soo Min; Lee, Young Hee

    2016-03-15

    Nanocarbons such as fullerene and carbon nanotubes (CNT) in late 20th century have blossomed nanoscience and nanotechnology in 21st century, which have been further proliferated by the new finding of graphene and have indeed opened a new carbon era. Several new branches of research, for example, zero-dimensional nanoparticles, one-dimensional nanowires, and two-dimensional insulating hexagonal boron nitride, and semiconducting and metallic transition metal dichalcogenides including the recently emerging black phosphorus, have been explored and numerous unprecedented quantum mechanical features have been revealed, that have been hardly accessible otherwise. Extensive research has been done on devices and applications related to such materials. Many experimental instruments have been developed with high sensitivity and improved spatial and temporal resolution to detect such tiny objects. The need for multidisciplinary research has been growing stronger than ever, which will be the tradition in the next few decades. In this Account, we will demonstrate an example of multidisciplinary effort of utilizing CNTs and graphene for electronics by modulating electronic structures. While there are several methods of modifying electronic structures of nanocarbons such as gate bias, contact metal, and conventional substitutional doping, we focus on chemical doping approaches here. We first introduce the concept of chemical doping on CNTs and graphene in terms of electronegativity of molecules and electrochemical potential of CNTs and graphene. To understand the relationship of electrochemical potential of CNTs and graphene to electronegativity of molecules, we propose a simple water bucket model: how to fill or drain water (electrons in CNTs or graphene) in the bucket (density of states) by the chemical dopants. The doping concept is then demonstrated experimentally by tracking the absorption spectroscopy, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Raman spectroscopy, transmittance, and transport measurements and by relating them to the reduction potential of molecules relative to that of CNTs or graphene. Two effects of chemical doping in electronics, transparent conducting films, and field effect transistors are extensively discussed. One critical issue, the stability of chemical dopants under ambient conditions, is further discussed. We believe that the presented doping concept will be useful tools for other low dimensional materials such as recently emerging transition metal dichalcogenides and black phosphorus.

  1. Efficiency of Cs-free materials for negative ion production in H2 and D2 plasmas

    NASA Astrophysics Data System (ADS)

    Friedl, R.; Kurutz, U.; Fantz, U.

    2017-08-01

    High power negative ion sources use caesium to reduce the work function of the converter surface which significantly increases the negative ion yield. Caesium, however, is a very reactive alkali-metal and shows complex redistribution dynamics in consequence of plasma-surface-interaction. Thus, maintaining a stable and homogenous low work function surface is a demanding task, which is not easily compatible with the RAMI issues (reliability, availability, maintainability, inspectability) for a future DEMO fusion reactor. Hence, Cs-free alternative materials for efficient negative ion formation are desirable. At the laboratory experiment HOMER materials which are referred to as promising are investigated under identical and ion source relevant parameters: the refractory metals Ta and W, non-doped and boron-doped diamond as well as materials with inherent low work function (lanthanum-doped molybdenum, MoLa and lanthanum hexaboride, LaB6). The results are compared to the effect of in-situ caesiation, which at HOMER leads to a maximal increase of the negative ion density by a factor of 2.5. Among the examined samples low work function materials are most efficient. In particular, MoLa leads to an increase of almost 50 % compared to pure volume formation. The difference to a caesiated surface can be attributed to the still higher work function of MoLa, which is expected to be slightly below 3 eV. Using deuterium instead of hydrogen leads to increased atomic and positive ion densities, while comparable negative ion densities are achieved. In contrast to the low work function materials, bulk samples of the refractory metals as well as carbon based materials have no enhancing effect on H-, where the latter materials furthermore show severe erosion due to the hydrogen plasma.

  2. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  3. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  4. Single Schottky junction FETs based on Si:P nanowires with axially graded doping

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Keiper, Timothy; Zhang, Mei; Xiong, Peng

    2015-03-01

    Si nanowires (NWs) with a systematic axial increase in phosphorus doping have been synthesized via a vapor-liquid-solid method. Silane and phosphine precursor gases are utilized for the growth and doping, respectively. The phosphorous doping profile is controlled by the flow ratio of the precursor gases. After the as-grown product is ultrasonically agitated into a solution, the Si NWs are dispersed on a SiO2 substrate with a highly doped Si back gate. Individual NWs are identified for the fabrication of field-effect transistors (FETs) with multiple Cr/Ag contacts along the NW. Two-probe and four-probe measurements are taken systematically under vacuum conditions at room temperature and the contribution from each contact and each NW section between adjacent contacts is determined. The graded doping level, produced by a systematic reduction in dopant density along the length of the NWs, is manifested in the regular increases in the channel and contact resistances. Our Si NWs facilitate the fabrication of asymmetric FETs with one ohmic and one Schottky contact. A significant increase in gate modulation is obtained due to the single Schottky-barrier contact. Characterization details and the applicability for sensing purposes will be discussed.

  5. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at atmospheric pressures necessitates high plasma densities to reach temperatures required for crystallization of nanoparticles. Using experimentally determined plasma properties from the literature, the model estimates the nanoparticle temperature that is achieved during synthesis at atmospheric pressures. It was found that temperatures well above those required for crystallization can be achieved. Now that the synthesis of nanocrystals is understood, the second half of this thesis will focus on doping of the nanocrystals. The doping of semiconductor nanocrystals, which is vital for the optimization of nanocrystal-based devices, remains a challenge. Gas phase plasma approaches have been very successful in incorporating dopant atoms into nanocrystals by simply adding a dopant precursor during synthesis. However, little is known about the electronic activation of these dopants. This was investigated with field-effect transistor measurements using doped silicon nanocrystal films. It was found that, analogous to bulk silicon, boron and phosphorous electronically dope silicon nanocrystals. However, the dopant activation efficiency remains low as a result of self-purification of the dopants to the nanocrystal surface. Next the plasmonic properties of heavily doped silicon nanocrystals was explored. While the synthesis method was identical, the plasmonic behavior of phosphorus-doped and boron-doped nanocrystals was found the be significantly different. Phosphorus-doped nanocrystals exhibit a plasmon resonance immediately after synthesis, while boron-doped nanocrystals require a post-synthesis annealing or oxidation treatment. This is a result of the difference in dopant location. Phosphorus is more likely to be incorporated into the core of the nanocrystal, while the majority of boron is placed on the surface of the nanocrystal. The oxidized boron-doped particles exhibit stable plasmonic properties, and therefore this allows for the production of air-stable silicon-based plasmonic materials which is very interesting for certain applications. Finally the boron atoms were used to form a Lewis acidic nanocrystal surface chemistry allowing for the creation of ligand-less silicon nanocrystal solutions. This represents an immense step towards an abundant, non-toxic alternative to Pb and Cd-based nanocrystal technologies. The lack of long ligand chains enables the production of dense films with excellent electrical conductivity. This was demonstrated by forming uniform nanocrystal thin-films using simple and inexpensive spray coating techniques.

  6. Low thermal budget n-type doping into Ge(001) surface using ultraviolet laser irradiation in phosphoric acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kouta, E-mail: ktakahas@alice.xtal.nagoya-u.ac.jp, E-mail: kurosawa@alice.xtal.nagoya-u.ac.jp; Sakashita, Mitsuo; Takeuchi, Wakana

    2016-02-01

    We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shots. Indeed, a high concentration of electrically activated P of 2.4 × 10{sup 19} cm{sup −3} was realized by 1000-times laser shots at a laser energy of 1.0 J/cm{sup 2}, which is comparable or better than the counterparts of conventional n-type doping using a high thermal budget over 600 °C. The generation current is dominant in the reverse biasmore » condition for the laser-doped pn-junction diodes independent on the number of laser shots, thus indicating low-damage during the pn-junction formation. These results open up the possibility for applicable low thermal budget doping process for Ge-based devices fabricated on flexible substrates as well as Si electronics.« less

  7. Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Xia, Congxin; Wang, Tianxing; Liu, Yufang

    2017-03-01

    By using a combined method of density functional theory and non-equilibrium Green’s function formalism, we investigate the electronic transport properties of carbon-doped armchair phosphorene nanoribbons (APNRs). The results show that C atom doping can strongly affect the electronic transport properties of the APNR and change it from semiconductor to metal. Meanwhile, obvious negative differential resistance (NDR) behaviors are obtained by tuning the doping position and concentration. In particular, with reducing doping concentration, NDR peak position can enter into mV bias range. These results provide a theoretical support to design the related nanodevice by tuning the doping position and concentration in the APNRs. Project supported by the National Natural Science Foundation of China (No. 11274096), the University Science and Technology Innovation Team Support Project of Henan Province (No. 13IRTSTHN016), the University key Science Research Project of Henan Province (No.16A140043). The calculation about this work was supported by the High Performance Computing Center of Henan Normal University.

  8. Spatial Distribution of Dopant Incorporation in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reachmore » high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.« less

  9. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics.

    PubMed

    Hu, Guohua; Albrow-Owen, Tom; Jin, Xinxin; Ali, Ayaz; Hu, Yuwei; Howe, Richard C T; Shehzad, Khurram; Yang, Zongyin; Zhu, Xuekun; Woodward, Robert I; Wu, Tien-Chun; Jussila, Henri; Wu, Jiang-Bin; Peng, Peng; Tan, Ping-Heng; Sun, Zhipei; Kelleher, Edmund J R; Zhang, Meng; Xu, Yang; Hasan, Tawfique

    2017-08-17

    Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency (< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment. Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following encapsulation, the printed black phosphorus is stable against long-term (> 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.Atomically thin black phosphorus shows promise for optoelectronics and photonics, yet its instability under environmental conditions and the lack of well-established large-area synthesis protocols hinder its applications. Here, the authors demonstrate a stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors.

  10. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strempel, Verena E.; Naumann d'Alnoncourt, Raoul, E-mail: r.naumann@bascat.tu-berlin.de; Löffler, Daniel

    2016-01-15

    Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V{sub 2}O{sub 5} in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO){sub 2}P{sub 2}O{sub 7} industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V{sup 5+} and is enriched in phosphorus under reaction conditions. On account of this, V{sub 2}O{sub 5} with themore » oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V{sub 2}O{sub 5} substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V{sub 2}O{sub 5} by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.« less

  12. Dopant-Modulating Mechanism of Lithium Adsorption and Diffusion at the Graphene /Li2S Interface

    NASA Astrophysics Data System (ADS)

    Guo, Lichao; Li, Jiajun; Wang, Huayu; Zhao, Naiqin; Shi, Chunsheng; Ma, Liying; He, Chunnian; He, Fang; Liu, Enzuo

    2018-02-01

    Graphene modification is one of the most effective routes to enhance the electrochemical properties of the transition-metal sulfide anode for Li-ion batteries and the Li2S cathode for Li-S batteries. Boron, nitrogen, oxygen, phosphorus, and sulfur doping greatly affect the electrochemical properties of Li2S /graphene . Here, we investigate the interfacial binding energy, lithium adsorption energy, interface diffusion barrier, and electronic structure by first-principles calculations to unveil the diverse effects of different dopants during interfacial lithiation reactions. The interfacial lithium storage follows the pseudocapacitylike mechanism with intercalation character. Two different mechanisms are revealed to enhance the interfacial lithium adsorption and diffusion, which are the electron-deficiency host doping and the vacancylike structure evolutions with bond breaking. The synergistic effect between different dopants with diverse doping effects is also proposed. The results give a theoretical basis for the materials design with doped graphene as advanced materials modification for energy storage.

  13. Influence of the doping type and level on the morphology of porous Si formed by galvanic etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatilova, O. V., E-mail: 5ilova87@gmail.com; Gavrilov, S. A.; Shilyaeva, Yu. I.

    The formation of porous silicon (por-Si) layers by the galvanic etching of single-crystal Si samples (doped with boron or phosphorus) in an HF/C{sub 2}H{sub 5}OH/H{sub 2}O{sub 2} solution is investigated. The por-Si layers are analyzed by the capillary condensation of nitrogen and scanning electron microscopy (SEM). The dependences of the morphological characteristics of por-Si (pore diameter, specific surface area, pore volume, and thickness of the pore walls), which determine the por-Si combustion kinetics, on the dopant type and initial wafer resistivity are established.

  14. Luminescence of phosphorus containing oxide materials: Crystalline SiO{sub 2}‐P and 3P{sub 2}O{sub 5}⋅7SiO{sub 2}; CaO⋅P{sub 2}O{sub 5}; SrO⋅P{sub 2}O{sub 5} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhin, A. N., E-mail: truhins@cfi.lu.lv; Smits, K., E-mail: truhins@cfi.lu.lv; Jansons, J., E-mail: truhins@cfi.lu.lv

    2014-10-21

    Luminescence of phosphate glasses such as CaO⋅P{sub 2}O{sub 5} and SrO⋅P{sub 2}O{sub 5} is compared with that of phosphorus doped crystalline α-quartz and phosphosilicate glass with content 3P{sub 2}O{sub 5}⋅7SiO{sub 2}. Water and OH groups are found by IR spectra in these materials. The spectrum of luminescence contains many bands in the range 1.5 - 5.5 eV. The luminescence bands in UV range at 4.5-5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in μs range was detected. PL band of μs component is shifted to lowmore » energy with respect to that of ∼37 ns component. This shift is about 0.6 eV. It is explained as singlet-triplet splitting of excited state. Below 14 K increase of luminescence kinetics duration in μs range was observed and it was ascribed to zero magnetic field splitting of triplet excited state of the center. Yellow-red luminescence was induced by irradiation in phosphorus doped crystalline α-quartz, phosphosilicate glasses. The yellowl uminescence contains two bands at 600 and 740 nm. Their decay is similar under 193 nm laser and may be fitted with the first order fractal kinetics or stretched exponent. Thermally stimulated luminescence contains only band at 600 nm. The 248 nm laser excites luminescence at 740 nm according to intra center process with decay time constant about 4 ms at 9 K. Both type of luminescence UV and yellow were ascribed to different defects containing phosphorus. P-doped α-quartz sample heated to 550 co become opalescent. Ir spectra related to water and OH groups are changed. Photoluminescence intensity of all three bands, UV (250 nm), yellow (600 nm) and red (740 nm) strongly diminished and disappeared after heating to 660 C°. Radiation induced red luminescence of non-bridging oxygen luminescence center (NBO) appeared in crystal after heat treatment. We had observed a crystalline version of this center (l. Skuja et al, Nuclear Instruments and Methods in Physics Research B 286,159-168 (2012)). Effect of heat treatment explained as sedimentation of phosphorus in some state. Keeping of treated sample at 450-500 C° leads to partial revival of ability to create yellow luminescence center under irradiation.« less

  15. 3-D Observation of dopant distribution at NAND flash memory floating gate using Atom probe tomography

    NASA Astrophysics Data System (ADS)

    Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung

    2015-01-01

    Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.

  16. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO 3 , WO 3 , CrO 3 , and V 2 O 5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  17. Electrical Study of Trapped Charges in Copper-Doped Zinc Oxide Films by Scanning Probe Microscopy for Nonvolatile Memory Applications

    PubMed Central

    Su, Ting; Zhang, Haifeng

    2017-01-01

    Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335

  18. Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling

    NASA Astrophysics Data System (ADS)

    Tayeb, Mohammed A.

    Flexibility in raw materials, the lower natural gas prices, and the increased use of nonconventional Electric Arc Furnace (EAF) steelmaking using up to 100% Direct Reduced Iron (DRI) have prompted a renewed interest in better control of phosphorus. Iron ore and DRI have higher phosphorus and silica compared to scrap. Although significant work has been done on understanding the partitioning of phosphorus between slag and metal for slags with chemistries relevant to those used in the Basic Oxygen Furnace (BOF), there is little reported work on slag chemistries corresponding to that in the EAF when DRI is used (EAF-DRI). In the current research, phosphorus equilibria between molten Fe-P alloys and CaO-SiO2-Al2O3-P 2O5-FeO-MgOsaturated slag system were investigated. An equilibrium correlation for phosphorus partition as a function of slag composition and temperature has been developed and resulted in better predictions compared with those proposed by earlier workers. As well, it is suitable for both BOF and EAF slags and includes coefficients for silica and alumina, unlike previous correlations. Low amounts of Al2O3 are present in EAF and BOF slags, but no appreciable work has been carried out to study the effect of alumina on the phosphorus partition. When DRI is used, the Al2O 3 contents can also be much higher. The data from this work indicates that there is significant reduction in Lp as the alumina fraction in the slag increases. The observed effect of alumina is attributed to its acidity, which contributes to the reduction of the phosphorus capacity of the slag by lowering the activities of iron oxide and calcium oxide. This in turn lowers the activity of oxygen and oxygen ions needed for phosphorus partition to the slag phase. Alumina in such situation is believed to elongate the silicate slag structure by forming [AlO45-]-tetrahedra. However, it is apparent that for higher alumina, lower silica slags the behavior of alumina changes and dephosphorization would improve. Alumina becomes less acidic acting as a diluting agent and probably forming [AlO6 9-]-octahedra according to which alumina is hypothesized to behave amphoterically. While understanding the equilibrium and kinetics of the phosphorus reaction is important in order to improve the ability to remove phosphorus from the melt, practical use of this understanding in industry is limited. Modeling the phosphorus reaction in steelmaking, however, would result in a better and easier use of conceptual understanding by operators and engineers in plants. This work describes dynamic process models for phosphorus and sulfur reactions when using DRI, scrap, and pig iron in EAF steelmaking. The present models are based on the assumption that thermodynamic equilibrium is locally established at the steel-slag interface, the bulk liquid steel and slag remain homogeneous throughout the reaction, and the rate is predominantly controlled by the mass transfer of phosphorus in the metal and slag boundary layers. The models, which consist of a series of rate and mass balance equations, were converted into a Python code and are capable of predicting trajectories of steel and slag phosphorus and sulfur levels as well as slag chemistry and slag liquid and solid phases. The effect of operating variables on the final phosphorus and sulfur contents, for instance the effect of DRI and pig iron P and S concentrations, oxygen use, temperature, melting rates, and flux addition were tested. The results imply that dephosphorization could be improved by maintaining lower bath temperatures for period of time. Additionally, dephosphorization and desulfurization were improved by higher flux addition.

  19. CONSIDERATION ON THE WEAKENING PHENOMENON OF FILAMENT USED FOR ELECTRIC LAMPS BY P-32 TRACER TECHNIQUE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozasa, M.; Ichikawa, S.; Kohara, R.

    1963-01-01

    The filament of high-wattage electric lamps using red phosphorus as getter has a tendency to down at the end parts. According to the metallurgical study, the phenomenon seems to be caused by phosphorus. Hence an attempt was made to trace the behavior of a smail amount of phosphorus on the filament with the aid of radioactive red phosphorus, P/sup 32/, in order to make clear the role of phosphorus in the weakening phenomenon by comparing the results with the metallurgical observation. Radioactive red phosphorus obtained as an irradiated unit was refined chemically, powdered, and spread on the filaments in themore » form of an alcoholic suspension. The test lamps using these filaments were raade and then running tests were carried out under several conditions. After running tests the filaments were taken out and the phosphorus remaining on the fllaments was determined by beta counting. The distribution of phosphorus on the filaments was observed by autoradiography. Before running tests, 247 plus or minus 57 mu g of phosphorus existed over a whole filament, although its distribution was not necessarily uniform. Most of the phosphorus vaporized from the filament during the running test. However, 0.05 to 0.5 mu g of phosphorus remained at the end parts of the filament even after 600 min of running time. The remaining phosphorus is due to the temperature of the end parts of the filament, which is about 1000 deg C lower than that of the central part (about 2500 deg C). In addition, it was confirmed by microautoradiography that phosphorus diffused into the filament at those parts. According to the metallurgical study, reductive non- metallic elements such as phosphorus affect the recrystallization of tungsten crystals by reducing the doping materials. From the microphotographic observation of those parts, it was found that the fiber structure changed completely to the block structure after running, which fact causes the filament to weaken. Further experimental results show that such a structure appears at a temperature higher than 1200 deg C when the filament contacts with phosphorus. It is thus presumed that the weakening phenomenon at the end parts of the filament will be caused by phosphorus remaining at those parts. Therefore, when phosphorus is spread only near the central part of the filament, where the temperature is high enough to vaporize phosphorus rapidly, phosphorus was not found anywhere on the filament after running, and the change of crystal structure was not recognized. (JAIF)« less

  20. Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chang, K. J.

    2012-02-01

    Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.

  1. Homojunction silicon solar cells doping by ion implantation

    NASA Astrophysics Data System (ADS)

    Milési, Frédéric; Coig, Marianne; Lerat, Jean-François; Desrues, Thibaut; Le Perchec, Jérôme; Lanterne, Adeline; Lachal, Laurent; Mazen, Frédéric

    2017-10-01

    Production costs and energy efficiency are the main priorities for the photovoltaic (PV) industry (COP21 conclusions). To lower costs and increase efficiency, we are proposing to reduce the number of processing steps involved in the manufacture of N-type Passivated Rear Totally Diffused (PERT) silicon solar cells. Replacing the conventional thermal diffusion doping steps by ion implantation followed by thermal annealing allows reducing the number of steps from 7 to 3 while maintaining similar efficiency. This alternative approach was investigated in the present work. Beamline and plasma immersion ion implantation (BLII and PIII) methods were used to insert n-(phosphorus) and p-type (boron) dopants into the Si substrate. With higher throughput and lower costs, PIII is a better candidate for the photovoltaic industry, compared to BL. However, the optimization of the plasma conditions is demanding and more complex than the beamline approach. Subsequent annealing was performed on selected samples to activate the dopants on both sides of the solar cell. Two annealing methods were investigated: soak and spike thermal annealing. Best performing solar cells, showing a PV efficiency of about 20%, was obtained using spike annealing with adapted ion implantation conditions.

  2. Hole spectral functions in lightly doped quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  3. The Multi-Player Performance-Enhancing Drug Game

    PubMed Central

    Haugen, Kjetil K.; Nepusz, Tamás; Petróczi, Andrea

    2013-01-01

    This paper extends classical work on economics of doping into a multi-player game setting. Apart from being among the first papers formally formulating and analysing a multi-player doping situation, we find interesting results related to different types of Nash-equilibria (NE). Based mainly on analytic results, we claim at least two different NE structures linked to the choice of prize functions. Linear prize functions provide NEs characterised by either everyone or nobody taking drugs, while non-linear prize functions lead to qualitatively different NEs with significantly more complex predictive characteristics. PMID:23691018

  4. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.

    PubMed

    Henke, Helena; Brüggemann, Oliver; Teasdale, Ian

    2017-02-01

    This feature article briefly highlights some of the recent advances in polymers in which phosphorus is an integral part of the backbone, with a focus on the preparation of functional, highly branched, soluble polymers. A comparison is made between the related families of materials polyphosphazenes, phosphazene/phosphorus-based dendrimers and polyphosphoesters. The work described herein shows this to be a rich and burgeoning field, rapidly catching up with organic chemistry in terms of the macromolecular synthetic control and variety of available macromolecular architectures, whilst offering unique property combinations not available with carbon backbones, such as tunable degradation rates, high multi-valency and facile post-polymerization functionalization. As an example of their use in advanced applications, we highlight some investigations into their use as water-soluble drug carriers, whereby in particular the degradability in combination with multivalent nature has made them useful materials, as underlined by some of the recent studies in this area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure prediction of boron-doped graphene by machine learning

    NASA Astrophysics Data System (ADS)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  6. Pseudo-Jahn-Teller Distortion in Two-Dimensional Phosphorus: Origin of Black and Blue Phases of Phosphorene and Band Gap Modulation by Molecular Charge Transfer.

    PubMed

    Chowdhury, Chandra; Jahiruddin, Sheik; Datta, Ayan

    2016-04-07

    Phosphorene (Pn) is stabilized as a layered material like graphite, yet it possess a natural direct band gap (Eg = 2.0 eV). Interestingly, unlike graphene, Pn exhibits a much richer phase diagram which includes distorted forms like the stapler-clip (black Pn, α form) and chairlike (blue Pn, β form) structures. The existence of these phases is attributed to pseudo-Jahn-Teller (PJT) instability of planar hexagonal P6(6-) rings. In both cases, the condition for vibronic instability of the planar P6(6-) rings is satisfied. Doping with electron donors like tetrathiafulvalene and tetraamino-tetrathiafulvalene and electron acceptors like tetracyanoquinodimethane and tetracyanoethylene convert blue Pn into N-type and black Pn into efficient P-type semiconductors, respectively. Interestingly, pristine blue Pn, an indirect gap semiconductor, gets converted into a direct gap semiconductor on electron or hole doping. Because of comparatively smaller undulation in blue Pn (with respect to black Pn), the van der Waals interactions between the dopants and blue Pn is stronger. PJT distortions for two-dimensional phosphorus provides a unified understanding of structural features and chemical reactivity in its different phases.

  7. Effect of sulfur doping on thermoelectric properties of Sodium Tantalate - A first principles study

    NASA Astrophysics Data System (ADS)

    Chowdary, Bharadwaj; Jayaraman, Kaushik; Molli, Muralikrishna

    2018-05-01

    In this work, we report the thermoelectric (TE) transport properties of perovskite-like Sodium Tantalate and studied the effect of Sulfur doping on TE properties of Sodium Tantalate. The band structures are calculated in the purview of density functional theory using the mBJ exchange correlation potential. The transport properties are evaluated using the Boltzmann transport theory in the constant relaxation time approximation. Our results suggest that Sulfur doped Sodium Tantalate is better n-type thermoelectric compared to Sodium Tantalate.

  8. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  9. Effects of doping Na and Cl atom on electronic structure of silicene: Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf

    2018-04-01

    Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.

  10. Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors.

    PubMed

    Jiang, Jingui; Chen, Hao; Wang, Zhao; Bao, Luke; Qiang, Yiwei; Guan, Shiyou; Chen, Jianding

    2015-08-15

    A porous carbon microsphere with moderate specific surface area and superior specific capacitance for supercapacitors is fabricated from polyphosphazene microsphere as the single heteroatoms source by the carbonization and subsequent KOH activation under N2 atmosphere. With KOH activation, X-ray photoelectron spectroscopy analysis confirms that the phosphorus of polyphosphazene microsphere totally vanishes, and the doping content of nitrogen and its population of various functionalities on porous carbon microsphere surface are tuned. Compared with non-porous carbon microsphere, the texture property of the resultant porous carbon microsphere subjected to KOH activation has been remarkably developed with the specific surface area growing from 315 to 1341 m(2) g(-1)and the pore volume turning from 0.17 to 0.69 cm(3) g(-1). Prepared with the KOH/non-porous carbon microsphere weight ratio at 1.0, the porous carbon microsphere with moderate specific surface area of 568 m(2) g(-1), exhibits intriguing electrochemical behavior in 1 M H2SO4 aqueous electrolyte, with superior specific capacitance (278 F g(-1) at 0.1 A g(-1)), good rate capability (147 F g(-1) remained at 10 A g(-1)) and robust cycling durability (No capacitance loss after 5000 cycles). The promising electrochemical performance could be ascribed to the synergy of nitrogen heteroatom functionalities and the porous morphology. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer.

    PubMed

    Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin

    2018-04-25

    Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.

  12. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  13. Flat-plate solar array project process development area, process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.

  14. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of these novel solar cells.

  15. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers

    PubMed Central

    Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt

    2014-01-01

    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process. PMID:28788219

  16. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers.

    PubMed

    Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt

    2014-09-25

    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.

  17. Metal adsorption on monolayer blue phosphorene: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  18. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    NASA Astrophysics Data System (ADS)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  19. Full color emitting fluorescent carbon material as reversible pH sensor with multicolor live cell imaging.

    PubMed

    Sharma, Vinay; Kaur, Navpreet; Tiwari, Pranav; Mobin, Shaikh M

    2018-05-01

    Carbon-based nano materials are developed as a cytocompatible alternative to semiconducting quantum dots for bioimaging and fluorescence-based sensing. The green alternatives for the synthesis of carbon materials are imminent. The present study demonstrates microwave based one step quick synthesis of fluorescent carbon material (FCM) having three variants: (i) un-doped fluorescent carbon material (UFCM) (ii) nitrogen doped FCM (N@FCM), and (iii) nitrogen & phosphorus co-doped FCM (N-P@FCM) using sugarcane extract as a carbon source. The N doping was performed using ethylenediamine and phosphoric acid was used for P doping. The heteroatom doped FCM were synthesized due to insolubility of UFCM in water. Unlike, UFCM, the N@FCM and N-P@FCM were found to be highly soluble in water. The N-P@FCM shows highest quantum yield among the three. The N-P@FCM was explored for alkaline pH sensing and it shows a quenching of fluorescence in the pH range 09-14. The sensing behaviour shows reversibility and high selectivity. Further, the sensor was also investigated for their biocompatibility and hence employed as a promising multicolour probe for cancer cell imaging. The generality in cell imaging was investigated by flow cytometry. The hetero-atom doped green carbon-dots may open new avenues for sensing and selective cellular targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    NASA Astrophysics Data System (ADS)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  1. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Peterman, Nils; ...

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less

  2. Ion chemistry of phosphorus in hydrocarbon flames : Part 1. electron scavenging by negative ion formation

    NASA Astrophysics Data System (ADS)

    Goodings, John M.; Hassanali, Carl S.

    1990-12-01

    Premixed methane--oxygen flames at atmospheric pressure of both fuel-rich (FR) and fuel-lean (FL; i.e. oxygen-rich) composition were doped with small amounts ( < 0.1 mol %) of volatile phosphorus alkyl triesters. It was demonstrated that these organo phosphorus compounds lead to efficient scavenging of the free electrons, normally present in the burnt gas of hydrocarbon flames, by negative ion formation. The anions produced by chemical ionization reactions were observed by sampling the flame gas through a nozzle into a mass spectrometer. Under both FR and FL conditions, the mass spectrum of phosphorus anions was dominated by PO-3, with a lesser contribution from PO-2. Also, H2PO-4 and PO- were observed below 100 u, as well as HPO-4 and PO-4 in the FL flame, and H2CPO-2 in the FR case. Above 100 u, the identity of the additive survivedin the FR flame to give anions of the type (RO)xPOy(OH)-z, where R is the alkyl group. However, these were replaced in the FL flame by anions of the type PO-n (n = 5-8) below 160 u. The formation chemistry of this considerable variety of phosphorus anions is discussed in detail, involving mainly three-body association, nucleophilic displacement (SN2) and proton abstraction reactions.

  3. Wavelength dependence and multiple-induced states in photoresponses of copper phthalocyanine-doped gold nanoparticle single-electron device

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji; Ishii, Hisao; Noguchi, Yutaka

    2014-01-01

    We have proposed a gold nanoparticle (GNP)-based single-electron transistor (SET) doped with a dye molecule, where the molecule works as a photoresponsive floating gate. Here, we examined the source-drain current (I_{\\text{SD}}) at a constant drain voltage under light irradiation with various wavelengths ranging from 400 to 700 nm. Current change was enhanced at the wavelengths of 600 and 700 nm, corresponding to the optical absorption band of the doped molecule (copper phthalocyanine: CuPc). Moreover, several peaks appear in the histograms of I_{\\text{SD}} during light irradiation, indicating that multiple discrete states were induced in the device. The results suggest that the current change was initiated by the light absorption of CuPc and multiple CuPc molecules near the GNP working as a floating gate. Molecular doping can activate advanced device functions in GNP-based SETs.

  4. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    DTIC Science & Technology

    2016-04-18

    Capannelli, F. Canepa, M. Napoletano, M.R. Cimberle, et al., Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in...Hennig, R.D. Robinson, Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis...Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: Synthesis , characterization and magnetic properties, J. Alloys Compd. 476 (2009) 797–801.

  5. Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes.

    PubMed

    Wang, Chuan; Ryu, Koungmin; Badmaev, Alexander; Zhang, Jialu; Zhou, Chongwu

    2011-02-22

    Complementary metal-oxide semiconductor (CMOS) operation is very desirable for logic circuit applications as it offers rail-to-rail swing, larger noise margin, and small static power consumption. However, it remains to be a challenging task for nanotube-based devices. Here in this paper, we report our progress on metal contact engineering for n-type nanotube transistors and CMOS integrated circuits using aligned carbon nanotubes. By using Pd as source/drain contacts for p-type transistors, small work function metal Gd as source/drain contacts for n-type transistors, and evaporated SiO(2) as a passivation layer, we have achieved n-type transistor, PN diode, and integrated CMOS inverter with an air-stable operation. Compared with other nanotube n-doping techniques, such as potassium doping, PEI doping, hydrazine doping, etc., using low work function metal contacts for n-type nanotube devices is not only air stable but also integrated circuit fabrication compatible. Moreover, our aligned nanotube platform for CMOS integrated circuits shows significant advantage over the previously reported individual nanotube platforms with respect to scalability and reproducibility and suggests a practical and realistic approach for nanotube-based CMOS integrated circuit applications.

  6. CMOS-compatible method for doping of buried vertical polysilicon structures by solid phase diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkulets, Yury; Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 8410501; Silber, Amir

    2016-03-28

    Polysilicon receives attention nowadays as a means to incorporate 3D-structured photonic devices into silicon processes. However, doping of buried layers of a typical 3D structure has been a challenge. We present a method for doping of buried polysilicon layers by solid phase diffusion. Using an underlying silicon oxide layer as a dopant source facilitates diffusion of dopants into the bottom side of the polysilicon layer. The polysilicon is grown on top of the oxide layer, after the latter has been doped by ion implantation. Post-growth heat treatment drives in the dopant from the oxide into the polysilicon. To model themore » process, we studied the diffusion of the two most common silicon dopants, boron (B) and phosphorus (P), using secondary ion mass spectroscopy profiles. Our results show that shallow concentration profiles can be achieved in a buried polysilicon layer using the proposed technique. We present a quantitative 3D model for the diffusion of B and P in polysilicon, which turns the proposed method into an engineerable technique.« less

  7. Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.

    2017-04-01

    The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  8. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.

    PubMed

    Saha, Rajarshi; Muthuswamy, Jit

    2007-06-01

    We had earlier demonstrated the use of polysilicon microelectrodes for recording electrical activity from single neurons in vivo. Good machinability and compatibility with CMOS processing further make polysilicon an attractive interface material between biological environments on one hand and MEMS technology and digital circuits on the other hand. In this study, we focus on optimizing the polysilicon thin films for (a) electrical recording and (b) stimulation of single neurons by minimizing its electrochemical impedance spectra and maximizing its charge storage/injection capacity respectively. The structure-property relationships in ion-implanted (phosphorus) LPCVD polysilicon thin films under different annealing and doping conditions were carefully assessed during this optimization process. A 2D model of the polysilicon thin film consisting of 4 grains and 3 grain boundaries was constructed and the effect of grain size and grain boundaries on dc resistivity was simulated using device simulator ATLAS. Optimal processing conditions and doping concentrations resulted in a 10-fold decrease in electrochemical impedance from 1.1 kOmega to 0.1 kOmega at 1 kHz (area of polysilicon interface = 4.8 mm(2)). Subsequent characterizations showed that evolution of secondary grains within the polysilicon thin films at optimal doping and annealing conditions (10(21)/cm(3) of phosphorus and annealed at 1200 degrees C) was responsible for decreasing the impedance. Cyclic voltammetry studies demonstrated that charge storage properties of low doped (10(15)/cm(3)) thin films was 111.4 microC/cm(2) in phosphate buffered saline which compares well with platinum wires (approximately 50 microC/cm(2)) and the double-layered capacitance (C(dl)) could be sustained between -1 to 1 V before breakdown and hydrolysis. We conclude that polysilicon can be optimized for recording and stimulating single neurons and can be a valuable interface material between neurons and CMOS or MEMS devices.

  9. Reaction paths of alane dissociation on the Si(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Smith, Richard; Bowler, David R.

    2018-03-01

    Building on our earlier study, we examine the kinetic barriers to decomposition of alane, AlH3, on the Si(0 0 1) surface, using the nudged elastic band approach within density functional theory. We find that the initial decomposition to AlH with two H atoms on the surface proceeds without a significant barrier. There are several pathways available to lose the final hydrogen, though these present barriers of up to 1 eV. Incorporation is more challenging, with the initial structures less stable in several cases than the starting structures, just as was found for phosphorus. We identify a stable route for Al incorporation following selective surface hydrogen desorption (e.g. by scanning tunneling microscope tip). The overall process parallels PH3, and indicates that atomically precise acceptor doping should be possible.

  10. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the Florida Object Oriented Process Simulator (FLOOPS). The nucleation of defects is controlled by the diffusion-limited competition for excess interstitials between PICs and {311} clusters. The release of interstitials is driven by cluster dissolution. Modeling results show a strong correlation to those experimentally observed over a wide temporal and thermal domain using a single set of parameters. Improvements in process simulator accuracy are demonstrated with respect to dopant activation, TED, and dose loss.

  11. A new approach for design and investigation of junction-less tunnel FET using electrically doped mechanism

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Kondekar, Pravin; Sharma, Dheeraj; Raad, Bhagwan Ram

    2016-10-01

    For the first time, a distinctive approach based on electrically doped concept is used for the formation of novel double gate tunnel field effect transistor (TFET). For this, the initially heavily doped n+ substrate is converted into n+-i-n+-i (Drain-Channel-Source) by the selection of appropriate work functions of control gate (CG) and polarity gate (PG) as 4.7 eV. Further, the formation of p+ region for source is performed by applying -1.2 V at PG. Hence, the structure behave like a n+-i-n+-p+ gated TFET, whereas, the control gate is used to modulate the effective tunneling barrier width. The physical realization of delta doped n+ layer near to source region is a challenging task for improving the device performance in terms of ON current and subthreshold slope. So, the proposed work will provide a better platform for fabrication of n+-i-n+-p+ TFET with low cost and suppressed random dopant fluctuation (RDF) effects. ATLAS TCAD device simulator is used to carry out the simulation work.

  12. The effect of Fe 3+ doping in Potassium Hydrogen Phthalate single crystals on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, R. Ashok; Sivakumar, N.; Vizhi, R. Ezhil; Babu, D. Rajan

    2011-02-01

    This work investigates the influence of iron doping on Potassium Hydrogen Phthalate (KHP) single crystals by the slow evaporation solution growth technique. Factors such as evaporation rate, solution pH, solute concentration, super saturation limit, etc. are very important in order to have optically transparent single crystals. As part of the work, the effects of metallic salt FeCl 3 in different concentrations were analyzed with pure KHP. Powder X-ray diffraction suggests that the grown crystals are crystallized in the orthorhombic structure. The functional groups and the effect of moisture on the doped crystals can be analyzed with the help of a FTIR spectrum. The pure and doped KHP single crystal shows good transparency in the entire visible region, which is suitable for optical device applications. The refractive indices along b axis of pure and doped KHP single crystals were analyzed by the prism coupling technique. The emission of green light with the use of a Nd:YAG laser ( λ=1064 nm) confirmed the second harmonic generation properties of the grown crystals.

  13. Phosphorus atomic layer doping in Ge using RPCVD

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Kurps, Rainer; Mai, Christian; Costina, Ioan; Murota, Junichi; Tillack, Bernd

    2013-05-01

    Phosphorus atomic layer doping (P-ALD) in Ge is investigated at temperatures between 100 °C and 400 °C using a single wafer reduced pressure chemical vapor deposition (RPCVD) system. Hydrogen-terminated and hydrogen-free Ge (1 0 0) surfaces are exposed to PH3 at different PH3 partial pressures after interrupting Ge growth. The adsorption and reaction of PH3 proceed on a hydrogen-free Ge surface. For all temperatures and PH3 partial pressures used for the P-ALD, the P dose increased with increasing PH3 exposure time and saturated. The saturation value of the incorporated P dose at 300 °C is ˜1.5 × 1014 cm-3, which is close to a quarter of a monolayer of the Ge (1 0 0) surface. The P dose could be simulated assuming a Langmuir-type kinetics model with a saturation value of Nt = 1.55 × 1014 cm-2 (a quarter of a monolayer), reaction rate constant kr = 77 s-1 and thermal equilibrium constant K = 3.0 × 10-2 Pa-1. An electrically active P concentration of 5-6 × 1019 cm-3, which is a 5-6 times higher thermal solubility of P in Ge, is obtained by multiple P spike fabrication using the P-ALD process.

  14. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys: Lattice dynamics and thermoelectric properties of nc Si-Ge alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudio, Tania; Stein, Niklas; Petermann, Nils

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon–germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low-temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000°C. A peak figure of merit zT=0.88 at 900°C is observed and is comparatively insensitive to the aforementioned parameter variations.

  15. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  16. Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybaltovsky, A A; Bobkov, K K; Likhachev, M E

    2013-11-30

    We have studied the photodarkening in active fibres with an ytterbium-doped phosphosilicate glass core under IR irradiation with a pump source (920 nm) and UV irradiation (193 nm). Analysis of absorption and luminescence spectra suggests that such irradiations produce phosphorus – oxygen – hole centres (P-OHCs) in the core glass network and lead to the reduction of the ytterbium ions to a divalent state (Yb{sup 2+}). The photoinduced optical loss in the fibres in the visible range (400 – 700 nm) is mainly due to absorption by the P-OHCs. A quantum-mechanical model is proposed for P-OHC and Yb{sup 2+} formation.more » (nonlinear optical phenomena)« less

  17. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  18. Silicone intraocular lens surface calcification in a patient with asteroid hyalosis.

    PubMed

    Matsumura, Kazuhiro; Takano, Masahiko; Shimizu, Kimiya; Nemoto, Noriko

    2012-07-01

    To confirm a substance presence on the posterior intraocular lens (IOL) surface in a patient with asteroid hyalosis. An 80-year-old man had IOLs for approximately 12 years. Opacities and neodymium-doped yttrium aluminum garnet pits were observed on the posterior surface of the right IOL. Asteroid hyalosis and an epiretinal membrane were observed OD. An IOL exchange was performed on 24 March 2008, and the explanted IOL was analyzed using a light microscope and a transmission electron microscope with a scanning electron micrograph and an energy-dispersive X-ray spectrometer for elemental analysis. To confirm asteroid hyalosis, asteroid bodies were examined with the ionic liquid (EtMeIm+ BF4-) method using a field emission scanning electron microscope (FE-SEM) with digital beam control RGB mapping. X-ray spectrometry of the deposits revealed high calcium and phosphorus peaks. Spectrometry revealed that the posterior IOL surface opacity was due to a calcium-phosphorus compound. Examination of the asteroid bodies using FE-SEM with digital beam control RGB mapping confirmed calcium and phosphorus as the main components. Calcium hydrogen phosphate dihydrate deposits were probably responsible for the posterior IOL surface opacity. Furthermore, analysis of the asteroid bodies demonstrated that calcium and phosphorus were its main components.

  19. Atomic and electronic structure of exfoliated black phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less

  20. The development of self-expanding peripheral stent with ion-modified surface layer

    NASA Astrophysics Data System (ADS)

    Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.

    2016-11-01

    In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.

  1. Chemical treatment of contaminated sediment for phosphorus control and subsequent effects on ammonia-oxidizing and ammonia-denitrifying microorganisms and on submerged macrophyte revegetation.

    PubMed

    Lin, Juan; Zhong, Yufang; Fan, Hua; Song, Chaofeng; Yu, Chao; Gao, Yue; Xiong, Xiong; Wu, Chenxi; Liu, Jiantong

    2017-01-01

    In this work, sediments were treated with calcium nitrate, aluminum sulfate, ferric sulfate, and Phoslock®, respectively. The impact of treatments on internal phosphorus release, the abundance of nitrogen cycle-related functional genes, and the growth of submerged macrophytes were investigated. All treatments reduced total phosphorus (TP) and soluble reactive phosphorus (SRP) in interstitial water, and aluminum sulfate was most efficient. Aluminum sulfate also decreased TP and SRP in overlying water. Treatments significantly changed P speciations in the sediment. Phoslock® transformed other P species into calcium-bound P. Calcium nitrate, ferric sulfate, and Phoslock® had negative influence on ammonia oxidizers, while four chemicals had positive influence on denitrifies, indicating that chemical treatment could inhibit nitrification but enhance denitrification. Aluminum sulfate had decreased chlorophyll content of the leaves of submerged macrophytes, while ferric sulfate and Phoslock® treatment would inhibit the growth of the root. Based on the results that we obtained, we emphasized that before application of chemical treatment, the effects on submerged macrophyte revegetation should be taken into consideration.

  2. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    PubMed

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Optoelectrical modeling of solar cells based on c-Si/a-Si:H nanowire array: focus on the electrical transport in between the nanowires.

    PubMed

    Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul

    2018-06-22

    By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell's performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

  4. Optoelectrical modeling of solar cells based on c-Si/a-Si:H nanowire array: focus on the electrical transport in between the nanowires

    NASA Astrophysics Data System (ADS)

    Levtchenko, Alexandra; Le Gall, Sylvain; Lachaume, Raphaël; Michallon, Jérôme; Collin, Stéphane; Alvarez, José; Djebbour, Zakaria; Kleider, Jean-Paul

    2018-06-01

    By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell’s performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V bi) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively. Consequently, the solar cell’s performance is degraded if either the doping concentration of the c-Si core, or/and the work function of the back contact is too low. By inserting a thin (p) a-Si:H layer between both core/absorber and back contact/absorber, the performance of the solar cell can be improved by partly fixing the V bi at both interfaces due to strong electrostatic screening effect. Depositing such a buffer layer playing the role of an electrostatic screen for charge carriers is a suggested way of enhancing the performance of solar cells based on radial p-i-n or n-i-p nanowire array.

  5. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  6. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  7. First-principles study of oxygen evolution reaction on Co doped NiFe-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Perdew, John; Yan, Qimin

    The conversion of solar energy to renewable fuels is a grand challenge. One of the crucial steps for this energy conversion process is the discovery of efficient catalysts with lower overpotential for the oxygen evolution reaction (OER). Layered double hydroxides (LDH) with earth abundant elements such as Ni and Fe have been found as promising OER catalysts and shown to be active for water oxidation. Doping is one of the feasible ways to even lower the overpotential of host materials and breaks the linear scaling law. In this talk we'll present our study on the reaction mechanism of OER on pure and Co-doped NiFe-LDH systems in alkaline solution. We study the absorption energetics of reaction intermediate states and calculate the thermodynamic reaction energy using density functional theory with the PBE +U and the newly developed SCAN functionals. It is shown that the NiFe-LDH system with Co dopants has lower overpotential and higher activity compared with the undoped system. The improvement in activity is related to the presence of Co states in the electronic structure. The work provides a clear clue for the further improvement of the OER activity of LDH systems by chemical doping. The work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  8. An Integrated Study on a Novel High Temperature High Entropy Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shizhong

    2016-12-31

    This report summarizes our recent works of theoretical modeling, simulation, and experimental validation of the simulation results on the new refractory high entropy alloy (HEA) design and oxide doped refractory HEA research. The simulation of the stability and thermal dynamics simulation on potential thermal stable candidates were performed and related HEA with oxide doped samples were synthesized and characterized. The HEA ab initio density functional theory and molecular dynamics physical property simulation methods and experimental texture validation techniques development, achievements already reached, course work development, students and postdoc training, and future improvement research directions are briefly introduced.

  9. Negative differential resistance and rectifying performance induced by doped graphene nanoribbons p-n device

    NASA Astrophysics Data System (ADS)

    Zhou, Yuhong; Qiu, Nianxiang; Li, Runwei; Guo, Zhansheng; Zhang, Jian; Fang, Junfeng; Huang, Aisheng; He, Jian; Zha, Xianhu; Luo, Kan; Yin, Jingshuo; Li, Qiuwu; Bai, Xiaojing; Huang, Qing; Du, Shiyu

    2016-03-01

    Employing nonequilibrium Green's Functions in combination with density functional theory, the electronic transport properties of armchair graphene nanoribbon (GNR) devices with various widths are investigated in this work. In the adopted model, two semi-infinite graphene electrodes are periodically doped with boron or nitrogen atoms. Our calculations reveal that these devices have a striking nonlinear feature and show notable negative differential resistance (NDR). The results also indicate the diode-like properties are reserved and the rectification ratios are high. It is found the electronic transport properties are strongly dependent on the width of doped nanoribbons and the positions of dopants and three distinct families are elucidated for the current armchair GNR devices. The NDR as well as rectifying properties can be well explained by the variation of transmission spectra and the relative shift of discrete energy states with applied bias voltage. These findings suggest that the doped armchair GNR is a promising candidate for the next generation nanoscale device.

  10. Interface Trap Profiles in 4H- and 6H-SiC MOS Capacitors with Nitrogen- and Phosphorus-Doped Gate Oxides

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Ahyi, A. C.; Dhar, S.; Morisette, D.; Myers-Ward, R.

    2017-04-01

    We report results on the interface trap density ( D it) of 4H- and 6H-SiC metal-oxide-semiconductor (MOS) capacitors with different interface chemistries. In addition to pure dry oxidation, we studied interfaces formed by annealing thermal oxides in NO or POCl3. The D it profiles, determined by the C- ψ s method, show that, although the as-oxidized 4H-SiC/SiO2 interface has a much higher D it profile than 6H-SiC/SiO2, after postoxidation annealing (POA), both polytypes maintain comparable D it near the conduction band edge for the gate oxides incorporated with nitrogen or phosphorus. Unlike most conventional C- V- or G- ω-based methods, the C- ψ s method is not limited by the maximum probe frequency, therefore taking into account the "fast traps" detected in previous work on 4H-SiC. The results indicate that such fast traps exist near the band edge of 6H-SiC also. For both polytypes, we show that the total interface trap density ( N it) integrated from the C- ψ s method is several times that obtained from the high-low method. The results suggest that the detected fast traps have a detrimental effect on electron transport in metal-oxide-semiconductor field-effect transistor (MOSFET) channels.

  11. Introduction of Interfacial Charges to Black Phosphorus for a Family of Planar Devices

    NASA Astrophysics Data System (ADS)

    Bao, Lihong; Wang, Guocai; Du, Shixuan; Pantelides, Sokrates; Gao, Hong-Jun

    As a young member in the family of two dimensional materials, black phosphorus (BP) has attracted great attention since its discovery due to its high hole mobility and a sizable and tunable bandgap, which meets the basic requirements for logic circuits applications. Naturally, for realization of complementary logic operation, the challenge lies in how to control the conduction type in BP FETs, i.e., the dominant carrier types, holes (p-type) or electrons (n-type). However, the absence of reliable substitutional doping techniques makes this task a great challenge. Introducing interfacial charges into 2D materials has been proven to be a successfulway to control conduction. In this work, we, for the first time, demonstrate that capping a thin BP layer with a layer of cross-linked PMMA can modify the conductivity type of the BP by a surface charge transfer process, converting a BP layer dominated by hole conduction in the absence of an external electric field (p-type) to one dominated by electron conduction (n-type). Combining BP films capped by cross-linked PMMA with standard BP, a familyof planar devices can be created, including BP gated diodes and bidirectional recitifiers (rectification ratio >102) and BP logic inverter (gain¡«0.75) which are capable of performing current rectification, switching, and signal inversion operations. The device performance demonstrated here suggests a promising route for developing 2D-based electronics.

  12. Electronic transport properties of graphene doped by gallium.

    PubMed

    Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T

    2017-10-13

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10 -7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  13. Electronic transport properties of graphene doped by gallium

    NASA Astrophysics Data System (ADS)

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.

    2017-10-01

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  14. An Infrared Spectroscopic Study Toward the Formation of Alkylphosphonic Acids and Their Precursors in Extraterrestrial Environments

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.

    2018-01-01

    The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.

  15. Electronic and transport properties of Li-doped NiO epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J. Y.; Li, W. W.; Hoye, R. L. Z.

    NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm2 V -1s -1). The conduction mechanism is better described by small-polaron hoping model in the temperaturemore » range of 200 K < T <330 K, and variable range hopping at T <200 K. A combination of x-ray photoemission and O K-edge x-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization.NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. This work reports the controlling of conductivity and increase of work functions by Li doping.« less

  16. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond.more » The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.« less

  17. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing.

    PubMed

    Li, Na; Liu, Shi Gang; Fan, Yu Zhu; Ju, Yan Jun; Xiao, Na; Luo, Hong Qun; Li, Nian Bing

    2018-07-12

    The various synthetic routes of carbon dots (C-dots) feature a considerable step toward their potential use in chemical sensors and biotechnology. Herein, by coupling phosphorus and nitrogen element introduction, the adenosine-derived N/P co-doped C-dots with fluorescence enhancement were achieved. By separately employing adenosine, adenosine monophosphate, adenosine diphosphate, and adenosine-5'-triphosphate as precursors, the effect of N/P co-doping on the fluorescence emission is discussed in detail. The formed C-dots with adenosine monophosphate exhibited strong blue fluorescence with a high quantum yield of 33.81%. Then the C-dots were employed as a fluorescent probe and utilized to develop a fast, sensitive, and selective picric acid sensor. The fluorescence of C-dots can be quenched by picric acid immediately, giving rise to a picric acid determination down to 30 nM. The possible mechanism of fluorescence quenching was discussed, which was proved to be inner filter effect and static quenching. Moreover, this method has the potential to detect picric acid in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Frigerio, Jacopo; Ballabio, Andrea; Isella, Giovanni; Sakat, Emilie; Pellegrini, Giovanni; Biagioni, Paolo; Bollani, Monica; Napolitani, Enrico; Manganelli, Costanza; Virgilio, Michele; Grupp, Alexander; Fischer, Marco P.; Brida, Daniele; Gallacher, Kevin; Paul, Douglas J.; Baldassarre, Leonetta; Calvani, Paolo; Giliberti, Valeria; Nucara, Alessandro; Ortolani, Michele

    2016-08-01

    Heavily doped semiconductor thin films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in the 5 to 50 μ m wavelength range at least. In this work, we investigate the electrodynamics of heavily n -type-doped germanium epilayers at infrared frequencies beyond the assumptions of the Drude model. The films are grown on silicon and germanium substrates, are in situ doped with phosphorous in the 1017 to 1019 cm-3 range, then screened plasma frequencies in the 100 to 1200 cm-1 range were observed. We employ infrared spectroscopy, pump-probe spectroscopy, and dc transport measurements to determine the tunability of the plasma frequency. Although no plasmonic structures have been realized in this work, we derive estimates of the decay time of mid-infrared plasmons and of their figures of merit for field confinement and for surface plasmon propagation. The average electron scattering rate increases almost linearly with excitation frequency, in agreement with quantum calculations based on a model of the ellipsoidal Fermi surface at the conduction band minimum of germanium accounting for electron scattering with optical phonons and charged impurities. Instead, we found weak dependence of plasmon losses on neutral impurity density. In films where a transient plasma was generated by optical pumping, we found significant dependence of the energy relaxation times in the few-picosecond range on the static doping level of the film, confirming the key but indirect role played by charged impurities in energy relaxation. Our results indicate that underdamped mid-infrared plasma oscillations are attained in n -type-doped germanium at room temperature.

  19. Work function characterization of solution-processed cobalt silicide

    DOE PAGES

    Ullah, Syed Shihab; Robinson, Matt; Hoey, Justin; ...

    2012-05-08

    Cobalt silicide thin films were prepared by spin-coating Si6H12-based inks onto various substrates followed by a thermal treatment. The work function of the solution processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoelectron spectroscopy (UPS). The UPS-derived work function was 4.80 eV for a Co-Si film on Si (100) while C-V of MOS structures yielded a work function of 4.36 eV where the metal was solution-processed Co-Si, the oxide was SiO2 and the semiconductor was a B-doped Si wafer.

  20. Stable high-power saturable absorber based on polymer-black-phosphorus films

    NASA Astrophysics Data System (ADS)

    Mao, Dong; Li, Mingkun; Cui, Xiaoqi; Zhang, Wending; Lu, Hua; Song, Kun; Zhao, Jianlin

    2018-01-01

    Black phosphorus (BP), a rising two-dimensional material with a layer-number-dependent direct bandgap of 0.3-1.5 eV, is very interesting for optoelectronics applications from near- to mid-infrared wavebands. In the atmosphere, few-layer BP tends to be oxidized or degenerated during interacting with lasers. Here, we fabricate few-layer BP nanosheets based on a liquid exfoliation method using N-methylpyrrolidone as the dispersion liquid. By incorporating BP nanosheets with polymers (polyvinyl alcohol or high-melting-point polyimide), two flexible filmy BP saturable absorbers are fabricated to realize passive mode locking in erbium-doped fiber lasers. The polymer-BP saturable absorber, especially the polyimide-BP saturable absorber, can prevent the oxidation or water-induced etching under high-power laser illuminations, providing a promising candidate for Q-switchers, mode lockers, and light modulators.

  1. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts.

    PubMed

    Wang, Ching-Hua; Incorvia, Jean Anne C; McClellan, Connor J; Yu, Andrew C; Mleczko, Michal J; Pop, Eric; Wong, H-S Philip

    2018-05-09

    Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.

  2. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  3. Location and Electronic Nature of Phosphorus in the Si Nanocrystal − SiO2 System

    PubMed Central

    König, Dirk; Gutsch, Sebastian; Gnaser, Hubert; Wahl, Michael; Kopnarski, Michael; Göttlicher, Jörg; Steininger, Ralph; Zacharias, Margit; Hiller, Daniel

    2015-01-01

    Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P. PMID:25997696

  4. High Serum Phosphorus Level Is Associated with Left Ventricular Diastolic Dysfunction in Peritoneal Dialysis Patients.

    PubMed

    Ye, Min; Tian, Na; Liu, Yanqiu; Li, Wei; Lin, Hong; Fan, Rui; Li, Cuiling; Liu, Donghong; Yao, Fengjuan

    We initiated this study to explore the relationships of serum phosphorus level with left ventricular ultrasound features and diastolic function in peritoneal dialysis (PD) patients. 174 patients with end-stage renal disease (ESRD) receiving PD were enrolled in this retrospective observational study. Conventional echocardiography examination and tissue Doppler imaging (TDI) were performed in each patient. Clinical information and laboratory data were also collected. Analyses of echocardiographic features were performed according to phosphorus quartiles groups. And multivariate regression models were used to determine the association between serum phosphorus and Left ventricular diastolic dysfunction (LVDD). With the increase of serum phosphorus levels, patients on PD showed an increased tissue Doppler-derived E/e' ratio of lateral wall (P < 0.001), indicating a deterioration of left ventricular diastolic function. Steady growths of left atrium and left ventricular diameters as well as increase of left ventricular muscle mass were also observed across the increasing quartiles of phosphorus, while left ventricular ejection fraction remained normal. In a multivariate analysis, the regression coefficient for E/e' ratio in the highest phosphorus quartile was almost threefold higher relative to those in the lowest quartile group. And compared with patients in the lowest phosphorus quartile (<1.34 mmol/L) those in the highest phosphorus quartile (>1.95 mmol/L) had a more than fivefold increased odds of E/e' ratio >15. Our study showed an early impairment of left ventricular diastolic function in peritoneal dialysis patients. High serum phosphorus level was independently associated with greater risk of LVDD in these patients. Whether serum phosphorus will be a useful target for prevention or improvement of LVDD remains to be proved by further studies.

  5. Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Askari Ardehjani, Nastaran

    2018-06-01

    In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.

  6. Transition metal doped (X = V, Cr) CdS monolayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal

    2018-05-01

    In this work based on density functional theory approach with generalized gradient approximation we have investigated the effect doping and co-doping of transition metal atoms in CdS monolayer sheet. On the basis cohesive energy, we have determined the stability of all the transition metal doped systems. CdS monolayer is of nonmagnetic character but the insertion of transition metal atoms introduces the spontaneous spin polarization which results in a significant value of magnetic moment. The band structure analysis reveals that three different types of conducting nature such as spin-select-half-semiconductor, half metallic and metallic nature with total spin polarization has also been observed. The versatile conducting nature of the transition metal doped CdS monolayer predicts the possibility of using these systems in spintronics mainly as a spin filter and also to form metal-semiconductor interface etc. at nanoscale level.

  7. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  8. Electrical doping of poly(9,9-dioctylfluorenyl-2,7-diyl) with tetrafluorotetracyanoquinodimethane by solution method

    NASA Astrophysics Data System (ADS)

    Hwang, Jaehyung; Kahn, Antoine

    2005-05-01

    We investigate p-type doping of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) films with tetrafluorotetracyanoquinodimethane (F4-TCNQ) introduced via cosolution. Doped and undoped films are compared using ultraviolet photoelectron spectroscopy (UPS) and current-voltage (I-V) measurement. In spite of the difference between the ionization energy of PFO (5.8 eV) and the electron affinity of F4-TCNQ (5.24 eV), p doping occurs, as seen from the movement of the Fermi level (EF) toward the polymer highest occupied molecular orbital (HOMO). Interface hole barriers are measured for undoped and doped PFO deposited on three substrates with different work functions, indium-tin-oxide (ITO), gold (Au), and poly-3,4-ethylenedioxythiophene•polystyrenesulfonate (PEDOT•PSS). Doping leads to the formation of a depletion region at the PFO/ITO and PFO /Au interfaces. The depletion region is believed to be at the origin of the (hole) current enhancement observed on simple metal/PFO/substrate devices.

  9. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  10. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: the phosphorus indicator in Northeast China.

    PubMed

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila.

    PubMed

    Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2018-03-01

    In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.

  12. Bosonic excitations and electron pairing in an electron-doped cuprate superconductor

    NASA Astrophysics Data System (ADS)

    Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.

    2018-04-01

    By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.

  13. Working with Farmers to Reduce Phosphorus in Lake Champlain

    EPA Pesticide Factsheets

    EPA researchers are working with Vermont small dairy farmers to explore whether pasture-based rotational grazing can be a viable, cost-effective, option for small farms to help to reduce phosphorus loadings to the lake.

  14. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface

    NASA Astrophysics Data System (ADS)

    Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin

    2018-06-01

    The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.

  15. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    NASA Astrophysics Data System (ADS)

    Kimmerle, Achim; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin; Haug, Halvard

    2016-01-01

    We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1-14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953-959 (1992); 35, 961-967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598-1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684-3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1-6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30-36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181-1183 (1993)].

  16. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    PubMed

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  17. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    PubMed

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  18. Dietary Phosphorus Intake and the Kidney

    PubMed Central

    Chang, Alex R.; Anderson, Cheryl

    2017-01-01

    Although phosphorus is an essential nutrient required for multiple physiological functions, recent research raises concerns that high phosphorus intake could have detrimental effects on health. Phosphorus is abundant in the food supply of developed countries, occurring naturally in protein-rich foods and as an additive in processed foods. High phosphorus intake can cause vascular and renal calcification, renal tubular injury, and premature death in multiple animal models. Small studies in human suggest that high phosphorus intake may result in positive phosphorus balance and correlate with renal calcification and albuminuria. Although serum phosphorus is strongly associated with cardiovascular disease, progression of kidney disease, and death, limited data exist linking high phosphorus intake directly to adverse clinical outcomes. Further prospective studies are needed to determine whether phosphorus intake is a modifiable risk factor for kidney disease. PMID:28613982

  19. Doped and undoped graphene platforms: the influence of structural properties on the detection of polyphenols

    PubMed Central

    Chng, Chu’Er; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    There is a huge interest in doped graphene and how doping can tune the material properties for the specific application. It was recently demonstrated that the effect of doping can have different influence on the electrochemical detection of electroactive probes, depending on the analysed probe, on the structural characteristics of the graphene materials and on the type and amount of heteroatom used for the doping. In this work we wanted to investigate the effect of doping on graphene materials used as platform for the detection of catechin, a standard probe which is commonly used for the measurement of polyphenols in food and beverages. To this aim we compared undoped graphene with boron-doped graphene and nitrogen doped graphene platforms for the electrochemical detection of standard catechin oxidation. Finally, the material providing the best electrochemical performance was employed for the analysis of real samples. We found that the undoped graphene, possessing lower amount of oxygen functionalities, higher density of defects and larger electroactive surface area provided the best electroanalytical performance for the determination of catechin in commercial beer samples. Our findings are important for the development of novel graphene platforms for the electrochemical assessment of food quality. PMID:26861507

  20. Doped and undoped graphene platforms: the influence of structural properties on the detection of polyphenols

    NASA Astrophysics Data System (ADS)

    Chng, Chu'Er; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-02-01

    There is a huge interest in doped graphene and how doping can tune the material properties for the specific application. It was recently demonstrated that the effect of doping can have different influence on the electrochemical detection of electroactive probes, depending on the analysed probe, on the structural characteristics of the graphene materials and on the type and amount of heteroatom used for the doping. In this work we wanted to investigate the effect of doping on graphene materials used as platform for the detection of catechin, a standard probe which is commonly used for the measurement of polyphenols in food and beverages. To this aim we compared undoped graphene with boron-doped graphene and nitrogen doped graphene platforms for the electrochemical detection of standard catechin oxidation. Finally, the material providing the best electrochemical performance was employed for the analysis of real samples. We found that the undoped graphene, possessing lower amount of oxygen functionalities, higher density of defects and larger electroactive surface area provided the best electroanalytical performance for the determination of catechin in commercial beer samples. Our findings are important for the development of novel graphene platforms for the electrochemical assessment of food quality.

  1. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhardt, Fabien; Muller, Dominique; Slaoui, Abdelilah, E-mail: abdelilah.slaoui@unistra.fr

    2016-05-07

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size ofmore » the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.« less

  2. Covalent functionalized black phosphorus quantum dots

    NASA Astrophysics Data System (ADS)

    Scotognella, Francesco; Kriegel, Ilka; Sassolini, Simone

    2018-01-01

    Black phosphorus (BP) nanostructures enable a new strategy to tune the electronic and optical properties of this atomically thin material. In this paper we show, via density functional theory calculations, the possibility to modify the optical properties of BP quantum dots via covalent functionalization. The quantum dot selected in this study has chemical formula P24H12 and has been covalent functionalized with one or more benzene rings or anthracene. The effect of functionalization is highlighted in the absorption spectra, where a red shift of the absorption is noticeable. The shift can be ascribed to an electron delocalization in the black phosphorus/organic molecule nanostructure.

  3. Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors.

    PubMed

    Qian, Qingkai; Li, Guanhong; Jin, Yuanhao; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan; Li, Qunqing

    2014-09-23

    The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible.

  4. Factors effective on peritoneal phosphorus transport and clearance in peritoneal dialysis patients
.

    PubMed

    Cebeci, Egemen; Gursu, Meltem; Uzun, Sami; Karadag, Serhat; Kazancioglu, Rumeyza; Ozturk, Savas

    2017-02-01

    Transport characteristics of phosphorus are different from other small solutes that are evaluated in routine peritoneal equilibration test (PET) in peritoneal dialysis (PD) patients. We aimed to evaluate peritoneal phosphorus clearance and permeability, and their relationship with peritoneal membrane transport type and creatinine clearance as well as factors affecting peritoneal phosphorus clearance. 70 adult patients on a PD program were included in our study. Phosphorus transport status was classified according to dialysate/plasma (D/P) phosphorus at the 4th hour of PET as slow transporter (< 0.47), slow-average transporter (0.47 - 0.56), fast-average transporter (0.57 - 0.67), and fast transporter (> 0.67). We evaluated the relationship of peritoneal phosphorus clearance and transport type with PD regime, phosphorus level, and presence of residual renal function in addition to investigating factors that are effective on peritoneal phosphorus clearance. D/P phosphorus and peritoneal phosphorus clearance were positively correlated with D/P creatinine and peritoneal creatinine clearance, respectively. Automated PD and continuous ambulatory PD patients were similar regarding phosphorus and creatinine clearances and transport status based on D/P phosphorus. The major determinant of peritoneal phosphorus clearance was anuria status. Anuric patients had higher dialysate volume (11.6 ± 3.0 L vs. 8.4 ± 2.1 L, p < 0.001) and therefore higher peritoneal phosphorus clearance (61.7 ± 15.1 L/week/1.73 m2 vs. 48.4 ± 14.0 L/week/1.73 m2, p = 0.001). Hyperphosphatemia was present in 40% and 11% of anuric patients and those with residual renal function, respectively (p = 0.005). Peritoneal phosphorus transport characteristics are similar to that of creatinine. Although increased dialysis dose may increase peritoneal phosphorus clearance, it may be insufficient to prevent hyperphosphatemia in anuric patients.
.

  5. Effects of Pressure on Optically Active Deep Levels in Phosphorus Doped ZnSe

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Iota, V.

    1998-03-01

    We report high pressure photoluminescence (PL) and PL-excitation (PLE) studies at 8K of the 'midgap' emission in P-doped ZnSe using a diamond-cell with He medium. The dominant emission at low pressure is due to donor-acceptor-pair (DAP) transitions between shallow donors and deep trigonally relaxed P_Se acceptors.(J. Davies, et al., J. Luminescence 18/19, 322 (1979)) Its PL and PLE peaks shift by 8.2meV/kbar and 5.9meV/kbar, respectively -- Stokes shift decreasing with pressure. At 35kbar a new PL band, shifting to lower energy (-5.4meV/kbar), emerges from above the absorption edge, and concurrently the original DAP PL quenches. This shows that a resonant level, a deep donor or possibly a P_Se antibonding state,(R. Watts, et al., Phys. Rev. B3), 404 (1971) crosses the conduction edge into the gap. A third PL band is seen only with internse UV excitation. It occurs initially as a high energy shoulder of the original DAP peak, but shifts more rapidly upward (9.4meV/kbar) until it crosses the edge and quenches at 40kbar. We discuss candidates for this band, including donor-P_Se complexes, and we compare our results to similar work on the Zn vacancy in ZnSe. (figures)

  6. A characterization of low luminance static and dynamic modulation transfer function curves for P-1, P-43, and P-53 phosphorus

    NASA Astrophysics Data System (ADS)

    Beasley, Howard H.; Martin, John S.; Klymenko, Victor; Harding, Thomas H.; Verona, Robert W.; Rash, Clarence E.

    1995-07-01

    A counterphase modulation technique is used to measure the static and dynamic modulation transfer functions for three phosphorus of current interest to U.S. Army aviation helmet-mounted displays (P-1, P-43, and P-53). A family of modulation transfer curves, one for each temporal frequency, is presented for each phosphorus. The measured MFT curves generally support the supposition that phosphorus persistence is a critical parameter in the ability of a CRT display to accurately reproduce contrast modulation transfer in dynamic environments.

  7. First-principles study of the effect of phosphorus on nickel grain boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenguan; Ren, Cuilan; Han, Han, E-mail: hanhan@sinap.ac.cn, E-mail: xuhongjie@sinap.ac.cn

    2014-01-28

    Based on first-principles quantum-mechanical calculations, the impurity-dopant effects of phosphorus on Σ5(012) symmetrical tilt grain boundary in nickel have been studied. The calculated binding energy suggests that phosphorus has a strong tendency to segregate to the grain boundary. Phosphorus forms strong and covalent-like bonding with nickel, which is beneficial to the grain boundary cohesion. However, a too high phosphorus content can result in a thin and fragile zone in the grain boundary, due to the repulsion between phosphorus atoms. As the concentration of phosphorus increases, the strength of the grain boundary increases first and then decreases. Obviously, there exists anmore » optimum concentration for phosphorus segregation, which is consistent with observed segregation behaviors of phosphorus in the grain boundary of nickel. This work is very helpful to understand the comprehensive effects of phosphorus.« less

  8. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    NASA Astrophysics Data System (ADS)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  9. Phosphorus solubility in basaltic glass: Limitations for phosphorus immobilization in glass and glass-ceramics.

    PubMed

    Tarrago, M; Garcia-Valles, M; Martínez, S; Neuville, D R

    2018-05-11

    The composition of sewage sludge from urban wastewater treatment plants is simulated using P-doped basalts. Electron microscopy analyses show that the solubility of P in the basaltic melt is limited by the formation of a liquid-liquid immiscibility in the form of an aluminosilicate phase and a Ca-Mg-Fe-rich phosphate phase. The rheological behavior of these compositions is influenced by both phase separation and nanocrystallization. Upon a thermal treatment, the glasses will crystallize into a mixture of inosilicates and spinel-like phases at low P contents and into Ca-Mg-Fe phosphate at high P contents. Hardness measurements yield values between 5.41 and 7.66 GPa, inside the range of commercial glasses and glass-ceramics. Leaching affects mainly unstable Mg 2+ -PO 4 3- complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  11. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral compositionmore » of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.« less

  12. A study of trends and techniques for space base electronics

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.; Gassaway, J. D.

    1978-01-01

    Furnaces and photolithography related equipment were applied to experiments on double layer metal. The double layer metal activity emphasized wet chemistry techniques. By incorporating the following techniques: (1) ultrasonic etching of the vias; (2) premetal clean using a modified buffered hydrogen fluoride; (3) phosphorus doped vapor; and (4) extended sintering, yields of 98 percent were obtained using the standard test pattern. The two dimensional modeling problems have stemmed from, alternately, instability and too much computation time to achieve convergence.

  13. Lock-in detection for pulsed electrically detected magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.

    2012-04-01

    We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.

  14. NASA AMES infrared detector assemblies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Silicon: Gallium infrared detector assemblies were designed, fabricated, and tested using techniques representative of those employed for hybrid arrays to determine the suitability of this candidate technology for infrared astronomical detector array applications. Both the single channel assembly and the assembly using a 32 channel CMOS multiplexer are considered. The detector material was certified to have a boron background of less than 10 to the 13th power atoms/sq cm counter doped with phosphorus. The gallium concentration is 2 x 10 to the 16th power atoms/cu cm.

  15. Work Function Variations in Twisted Graphene Layers

    DOE PAGES

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann; ...

    2018-01-31

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  16. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hüseyin

    2010-04-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  17. Work Function Variations in Twisted Graphene Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Jeremy T.; Culbertson, James; Berg, Morgann

    By combining optical imaging, Raman spectroscopy, kelvin probe force microscopy (KFPM), and photoemission electron microscopy (PEEM), we show that graphene’s layer orientation, as well as layer thickness, measurably changes the surface potential (Φ). Detailed mapping of variable-thickness, rotationally-faulted graphene films allows us to correlate Φ with specific morphological features. Using KPFM and PEEM we measure ΔΦ up to 39 mV for layers with different twist angles, while ΔΦ ranges from 36–129 mV for different layer thicknesses. The surface potential between different twist angles or layer thicknesses is measured at the KPFM instrument resolution of ≤ 200 nm. The PEEM measuredmore » work function of 4.4 eV for graphene is consistent with doping levels on the order of 10 12cm -2. Here, we find that Φ scales linearly with Raman G-peak wavenumber shift (slope = 22.2 mV/cm -1) for all layers and twist angles, which is consistent with doping-dependent changes to graphene’s Fermi energy in the ‘high’ doping limit. Our results here emphasize that layer orientation is equally important as layer thickness when designing multilayer two-dimensional systems where surface potential is considered.« less

  18. Physical characterization of functionalized spider silk: electronic and sensing properties

    PubMed Central

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Lopes, Elsa Branco; Brooks, James S; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G

    2011-01-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of functionalized spider silk are presented for thermoelectric (Seebeck) effects and incandescence in iodine-doped pyrolized silk fibers, and metallic conductivity and flexibility of micron-sized gold-sputtered silk fibers. In the latter case, we demonstrate the application of gold-sputtered neat spider silk to make four-terminal, flexible, ohmic contacts to organic superconductor samples. PMID:27877440

  19. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    NASA Astrophysics Data System (ADS)

    Wade, A. J.; Palmer-Felgate, E. J.; Halliday, S. J.; Skeffington, R. A.; Loewenthal, M.; Jarvie, H. P.; Bowes, M. J.; Greenway, G. M.; Haswell, S. J.; Bell, I. M.; Joly, E.; Fallatah, A.; Neal, C.; Williams, R. J.; Gozzard, E.; Newman, J. R.

    2012-11-01

    This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames - one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

  20. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes.

    PubMed

    Chang, Wei-Chung; Tseng, Kuan-Wei; Tuan, Hsing-Yu

    2017-02-08

    Red phosphorus (RP) is a promising anode material for lithium-ion batteries due to its earth abundance and a high theoretical capacity of 2596 mA h g -1 . Although RP-based anodes for lithium-ion batteries have been reported, they were all in the form of carbon-P composites, including P-graphene, P-graphite, P-carbon nanotubes (CNTs), and P-carbon black, to improve P's extremely low conductivity and large volume change during cycling process. Here, we report the large-scale synthesis of red phosphorus nanoparticles (RPNPs) with sizes ranging from 100 to 200 nm by reacting PI 3 with ethylene glycol in the presence of cetyltrimethylammonium bromide (CTAB) in ambient environment. Unlike the insulator behavior of commercial RP (conductivity of <10 -12 S m -1 ), the conductivity of RPNPs is between 2.62 × 10 -3 and 1.81 × 10 -2 S m -1 , which is close to that of semiconductor germanium (1.02 × 10 -2 S m -1 ), and 2 orders of magnitude higher than silicon (5.35 × 10 -4 S m -1 ). Around 3-5 wt % of iodine-doping was found in RPNPs, which was speculated as the key to significantly improve the conductivity of RPNPs. The significantly improved conductivity of RPNPs and their uniform colloidal nanostructures enable them to be used solely as active materials for LIBs anodes. The RPNPs electrodes exhibit a high specific capacity of 1700 mA h g -1 (0.2 C after 100 cycles, 1 C = 2000 mA g -1 ), long cycling life (∼900 mA h g -1 after 500 cycles at 1 C), and outstanding rate capability (175 mA h g -1 at the charge current density of 120 A g -1 , 60 C). Moreover, as a proof-of-concept example, pouch-type full cells using RPNPs anodes and Li(Ni 0.5 Co 0.3 Mn 0.2 )O 2 (NCM-532) cathodes were assembled to show their practical uses.

  1. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    PubMed

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  2. Controllable Synthesis of Multi-Heteroatoms Co-Doped Hierarchical Porous Carbon Spheres as an Ideal Catalysis Platform.

    PubMed

    Yang, Shuliang; Zhu, Yanan; Cao, Changyan; Peng, Li; Queen, Wendy L; Song, Weiguo

    2018-05-23

    The synthesis of porous carbon spheres with hierarchical porous structures coupled with the doping of heteroatoms is particularly important for advanced applications. In this research, a new route for efficient and controllable synthesis of hierarchical porous carbon spheres co-doped with nitrogen, phosphorus, and sulfur (denoted as NPS-HPCs) was reported. This new approach combines in situ polymerization of hexachlorocyclophosphazene and 4, 4'-sulfonyldiphenol with the self-assembly of colloidal silica nanoparticles (SiO2 NPs). After pyrolysis and subsequent removing the SiO2 NPs, the resulting NPS-HPCs possess high surface area (960 m2/g) as well as homogeneously distributed N, P and S heteroatoms. The NPS-HPCs are shown to be an ideal support for anchoring highly dispersed and uniformly sized noble metal NPs for heterogeneous catalysis. As a proof of concept, Pd NPs are loaded onto NPS-HPCs using only methanol as a reductant at room temperature. The prepared Pd/NPS-HPCs are shown to exhibit high activity, excellent stability and recyclability for hydrogenation of nitroarenes.

  3. Synthesis, photophysical properties and application of dye doped water soluble silica-based nanoparticles to label bacteria E. coli O157:H7

    NASA Astrophysics Data System (ADS)

    Tan Pham, Minh; Van Nguyen, Thi; Thi, Thuy Duong Vu; Nghiem Thi, Ha Lien; Thuan Tong, Kim; Thuy Tran, Thanh; Chu, Viet Ha; Brochon, Jean-Claude; Nhung Tran, Hong

    2012-12-01

    Organically modified silicate (ORMOSIL) nanoparticles (NPs) doped with rhodamine 6G and rhodamine B (RB) dyes were synthesized by Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). The NPs are surface functionalized by cationic amino groups. The optical characterization of dye-doped ORMOSIL NPs was studied in comparison with that of free dye in solution. The synthesized NPs were used for labeling bacteria E. coli O157:H7. The number of bacteria have been counted using the fluorescent spectra and microscope images of labeled bacteria. The results show the ability of NPs to work as biomarkers.

  4. New insight into the properties of proton conducting oxides from neutron total scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proffen, Thomas E; Kim, Hyunjeong; Malavasi, Lorenzo

    In recent years there has been a growing interest in searching for new proton conducting materials that could be successfully used in medium temperature solid oxide fuel cells (SOFC). In particular, proton conducting oxides have been the subject of a massive research activity. Among the most promising oxide the acceptor doped cerates appears to be those most appealing in view of practical applications. A relevant aspect of these materials is the investigation of the local distortion of the structure arising from water incorporation. This kind of study is of great help in defining how the structure changes in order tomore » accommodate the proton which is usually thought to enter the structure in form of hydroxyl group where the oxygen vacancy results from the acceptor doping on the Ce site. Atomistic simulation work confirmed that the preferential location of dopant ions is on the Ce site. To the best of our knowledge the only experimental work addressing the role of dopant and water incorporation on the local structure of V-doped cerates is a X-ray absorption spectroscopy (XAS) work carried out by Longo and coworkers at the Y K-edge. The main conclusion of that work was the observation that Y-doping induces a distortion of the parent BaCe0{sub 3} structure resulting in a significantly distorted Y local environment. However, local structure information derived from XAS study does not provide a direct structural information and depends strongly upon the model used to calcualte theoretical {chi}(k) which is not unique. Moreover, the XAS analysis usually provide significant information only up to the second shell. As a consequence, a more reliable and useful technique to investigate the local arrangement in these proton conducting oxides appears to be the Pair Distribution Function (PDF) analysis derived from total neutron scattering measurements. In the present work we investigated the pure BaCeO{sub 3} and the acceptor doped BaCe{sub 0.90}Y{sub 0.10}O{sub 2.85} compounds. In both cases the samples have been measured at room temperature and after being exposed to dry and wet air (humidification attained through bubbling air in D{sub 2}O). Aim of this work is to look at the effect of Y-doping and water doping on the local structure of the above mentioned samples.« less

  5. Effects of nitrogen impurities on the microstructure and electronic properties of P-doped Si nanocrystals emebedded in silicon-rich SiNx films

    NASA Astrophysics Data System (ADS)

    Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei

    2016-05-01

    Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.

  6. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  7. Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices

    NASA Astrophysics Data System (ADS)

    Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar

    2017-06-01

    Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.

  8. Phonon renormalization and anharmonicity in Al-doped MgB2

    NASA Astrophysics Data System (ADS)

    Ortiz, Filiberto; Aguayo, Aarón

    2005-03-01

    We have studied the evolution of the E2g phonon mode dynamics in Mg1-xAlxB2 as a function of doping using the Frozen Phonon Approximation (FPA). The doping was modeled in the ab-initio Virtual Crystal Approximation (VCA). The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the phonon frequency and anharmonicity of the E2g mode as a function of Al concentration (x). From a comparison of the experimental data with the calculated E2g phonon frequency we show that the VCA-FPA reproduces the observed phonon renormalization in the whole range of Al concentrations. More interestingly, we find that the anharmonicity gradually decreases with Al doping and vanishes for x(Al)>0.5, that behaviour correlates with the evolution of the measured Raman linewidth in Al-doped MgB2. The significance of these results are discussed in the light of the experimentally observed loss of superconductivity in Mg1- xAlxB2.This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F.

  9. Long-term balancing selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza).

    PubMed

    Vigueira, Cynthia C; Small, Linda L; Olsen, Kenneth M

    2016-04-22

    The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.

  10. Phosphorus Segregation in Meta-Rapidly Solidified Carbon Steels

    NASA Astrophysics Data System (ADS)

    Li, Na; Qiao, Jun; Zhang, Junwei; Sha, Minghong; Li, Shengli

    2017-09-01

    Twin-roll strip casters for near-net-shape manufacture of steels have received increased attention in the steel industry. Although negative segregation of phosphorus occurred in twin-roll strip casting (TRSC) steels in our prior work, its mechanism is still unclear. In this work, V-shaped molds were designed and used to simulate a meta-rapid solidification process without roll separating force during twin roll casting of carbon steels. Experimental results show that no obvious phosphorus segregation exist in the V-shaped mold casting (VMC) steels. By comparing TRSC and the VMC, it is proposed that the negative phosphorus segregation during TRSC results from phosphorus redistribution driven by recirculating and vortex flow in the molten pool. Meanwhile, solute atoms near the advancing interface are overtaken and incorporated into the solid because of the high solidification speed. The high rolling force could promote the negative segregation of alloying elements in TRSC.

  11. VOx effectively doping CVD-graphene for transparent conductive films

    NASA Astrophysics Data System (ADS)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  12. From two-dimension to one-dimension: the curvature effect of silicon-doped graphene and carbon nanotubes for oxygen reduction reaction.

    PubMed

    Zhang, Peng; Hou, Xiuli; Mi, Jianli; He, Yanqiong; Lin, Lin; Jiang, Qing; Dong, Mingdong

    2014-09-07

    For the goal of practical industrial development of fuel cells, inexpensive, sustainable, and highly efficient electrocatalysts for oxygen reduction reactions (ORR) are highly desirable alternatives to platinum (Pt) and other rare metals. In this work, based on density functional theory, silicon (Si)-doped carbon nanotubes (CNTs) and graphene as metal-free, low cost, and high-performance electrocatalysts for ORR are studied systematically. It is found that the curvature effect plays an important role in the adsorption and reduction of oxygen. The adsorption of O2 becomes weaker as the curvature varies from positive values (outside CNTs) to negative values (inside CNTs). The free energy change of the rate-determining step of ORR on the concave inner surface of Si-doped CNTs is smaller than that on the counterpart of Si-doped graphene, while that on the convex outer surface of Si-doped CNTs is larger than that on Si-doped graphene. Uncovering this new ORR mechanism on silicon-doped carbon electrodes is significant as the same principle could be applied to the development of various other metal-free efficient ORR catalysts for fuel cell applications.

  13. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  14. Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics.

    PubMed

    Huang, Jen-Hsien; Fang, Jheng-Hao; Liu, Chung-Chun; Chu, Chih-Wei

    2011-08-23

    In this study, we found that the work functions (Φ(w)) of solution-processable, functional graphene/carbon nanotube-based transparent conductors were readily manipulated, varying between 5.1 and 3.4 eV, depending on the nature of the doping alkali carbonate salt. We used the graphene-based electrodes possessing lower values of Φ(w) as cathodes in inverted-architecture polymer photovoltaic devices to effectively collect electrons, giving rise to an optimal power conversion efficiency of 1.27%. © 2011 American Chemical Society

  15. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric

    NASA Astrophysics Data System (ADS)

    Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra

    2018-04-01

    This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.

  16. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    PubMed

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  17. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  18. Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Han, Dong; Li, Xian-Bin; Chen, Nian-Ke; West, Damien; Meunier, Vincent; Zhang, Shengbai; Sun, Hong-Bo

    2017-10-01

    Energy evaluation of charged defects is tremendously important in two-dimensional (2D) semiconductors for the industrialization of 2D electronic devices because of its close relation with the corresponding type of conductivity and its strength. Although the method to calculate the energy of charged defects in single-layer one-atom-thick systems of equilateral unit-cell geometry has recently been proposed, few-layer 2D semiconductors are more common in device applications. As it turns out, one may not apply the one-layer formalism to multilayer cases without jeopardizing accuracy. Here, we generalize the approach to 2D systems of arbitrary cell geometry and thickness and use few-layer black phosphorus to illustrate how defect properties, mainly group-VI substitutional impurities, are affected. Within the framework of density functional theory, we show that substitutional Te (T eP) is the best candidate for n -type doping, and as the thickness increases, the ionization energy is found to decrease monotonically from 0.67 eV (monolayer) to 0.47 eV (bilayer) and further to 0.33 eV (trilayer). Although these results show the ineffectiveness of the dielectric screening at the monolayer limit, they also show how it evolves with increasing thickness whereby setting a new direction for the design of 2D electronics. The proposed method here is generally suitable to all the 2D materials regardless of their thickness and geometry.

  19. Phosphorus removal from eutrophic water using modified biochar.

    PubMed

    Novais, Sarah Vieira; Zenero, Mariana Delgado Olivieira; Barreto, Matheus Sampaio Carneiro; Montes, Célia Regina; Cerri, Carlos Eduardo Pelegrino

    2018-08-15

    Increasing problems related to water eutrophication, commonly caused by the high concentration of phosphorus (P), are stimulating studies aimed at an environmentally safe solution. Moreover, some research has focused on the reuse of P due to concerns about the end of its natural reserves. Biochar appears to be a solution to both problems and may act as a recovery of eutrophic/residual water with the subsequent reuse of P in agriculture, the purpose of which is to test such an assertion. Samples of biochar from poultry manure (BPM) and sugarcane straw (BCS) had their maximum adsorption capacities of Al obtained by Langmuir isotherm. These values were used to conduct the so-called post-doping process, conferring P adsorption capacity to the pyrolysed materials. Langmuir and Freundlich isotherms were adjusted for the same biochar types (Al-doped) at increasing P concentrations, in order to obtain their maximum P adsorption capacities (MPAC) and their parameters. The desorption of the adsorbed P in its MPAC was tested by three extractors: H 2 SO 4 , NaHCO 3 , and H 2 O. Finally, these biochars were used in competitive adsorption assays of phosphate, sulfate, chloride and nitrate anions and applied in a synthetic eutrophic water. The high values of MPAC of the powder materials (701.65 and 758.96mgg -1 of P for BPM and BCS, respectively) are reduced by almost half for the fragment materials (356.04 and 468.84mgg -1 of P for BPM and BCS, respectively), these values being almost entirely extracted the extractors. Its application in eutrophic/residual water, in addition to presenting a good MPAC, these materials adsorbed, in equal proportions, phosphates and sulfates, as well as to a lesser extent, nitrates and chlorides. Thus, biochar from poultry manure and sugarcane straw, after post-doping with Al, have high MPAC, being excellent materials for the recovery of waters and subsequent reuse in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption.

    PubMed

    Novais, Sarah Vieira; Zenero, Mariana Delgado Oliveira; Tronto, Jairo; Conz, Rafaela Feola; Cerri, Carlos Eduardo Pellegrino

    2018-05-15

    Increases in agricultural productivity associated to the crescent use of finite reserves of phosphorus improved the demand for ways to recycle and reuse this nutrient. Biochars, after doping processes, seem to be an alternative to mitigate the large use of P reserves. Sugarcane straw and poultry manure were submerged in an MgCl 2 solution in a 1:10 solid/liquid ratio and subsequently pyrolyzed at 350 and 650 °C producing biochar. Increasing concentrations of P were agitated with biochars in order to obtain the maximum adsorption capacity of P with the aid of Langmuir and Freudelich isotherm. MPAC was extracted, successively, with H 2 SO 4 (0.5 mol L -1 ), NaHCO 3 (0.5 mol l -1 a pH 8.5) and H 2 O, until no P was detected in the solution. Biochars without the addition of Mg did not have the ability to adsorb P but had this property developed after the doping process. The poultry manure biochar presented higher MPAC (250.8 and 163.6 mg g -1 of P at 350 and 650 °C, respectively) than that of sugarcane straw (17.7 and 17.6 mg g -1 of P at 350 and 650 °C, respectively). The pyrolysis temperature changed significantly the MPAC values for the poultry manure biochar, with an increase in the adsorbed P binding energy for both biochars. H 2 SO 4 showed the best extraction power, desorbing, with a lower number of extractions, the greater amount of the adsorbed P. These materials doped with Mg and subjected to pyrolysis have characteristics that allow their use in P adsorption from eutrophic and wastewaters and therefore its use as a slow release phosphate fertilizer, indicating to be competitive in quality and quantity with available soluble chemical sources in the market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  2. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmerle, Achim, E-mail: achim-kimmerle@gmx.de; Momtazur Rahman, Md.; Werner, Sabrina

    We investigate the surface recombination velocity S{sub p} at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carriermore » concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased S{sub p} at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].« less

  3. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  4. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  5. Rich interfacial chemistry and properties of carbon-doped hexagonal boron nitride nanosheets revealed by electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Tamura, Takahiro; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro

    2018-04-01

    The effect of C doping to hexagonal boron nitride (h-BN) to its electronic structure is examined by first principles calculations using the association from π-electron systems of organic molecules embedded in a two-dimensional insulator. In a monolayered carbon-doped structure, odd-number doping with carbon atoms confers metallic properties with different work functions. Various electronic interactions occur between two layers with odd-number carbon substitution. A direct sp3 covalent chemical bond is formed when C replaces adjacent B and N in different layers. A charge transfer complex between layers is found when C replaces B and N in the next-neighboring region, which results in narrower band gaps (e.g., 0.37 eV). Direct bonding between C and B atoms is found when two C atoms in different layers are at a certain distance.

  6. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  7. Alexandrium minutum growth controlled by phosphorus . An applied model

    NASA Astrophysics Data System (ADS)

    Chapelle, A.; Labry, C.; Sourisseau, M.; Lebreton, C.; Youenou, A.; Crassous, M. P.

    2010-11-01

    Toxic algae are a worldwide problem threatening aquaculture, public health and tourism. Alexandrium, a toxic dinoflagellate proliferates in Northwest France estuaries (i.e. the Penzé estuary) causing Paralytic Shellfish Poisoning events. Vegetative growth, and in particular the role of nutrient uptake and growth rate, are crucial parameters to understand toxic blooms. With the goal of modelling in situ Alexandrium blooms related to environmental parameters, we first try to calibrate a zero-dimensional box model of Alexandrium growth. This work focuses on phosphorus nutrition. Our objective is to calibrate Alexandrium minutum as well as Heterocapsa triquetra (a non-toxic dinoflagellate) growth under different rates of phosphorus supply, other factors being optimal and constant. Laboratory experiments are used to calibrate two growth models and three uptake models for each species. Models are then used to simulate monospecific batch and semi-continuous experiments as well as competition between the two algae (mixed cultures). Results show that the Droop growth model together with linear uptake versus quota can represent most of our observations, although a power law uptake function can more accurately simulate our phosphorus uptake data. We note that such models have limitations in non steady-state situations and cell quotas can depend on a variety of factors, so care must be taken in extrapolating these results beyond the specific conditions studied.

  8. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Zhang, Yanfang; Li, Geng

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02 eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precisemore » nitrogen-doped graphene nanoribbons.« less

  9. Iron incorporation in InP layers using a ferrocene source in atmospheric pressure MOVPE

    NASA Astrophysics Data System (ADS)

    Robein, D.; Kazmierski, C.; Pougnet, A. M.; Rose, B.

    1991-02-01

    Iron incorporation into InP has been studied using an AP MOVPE method. A very good control of the iron doping has been obtained with a ferrocene diffusion cell source. Semi-insulating material with a resistivity as a high as 5 × 10 8 Ω cm has been measured on n-SI-n diodes with iron-doped 1 mum thick layers. A compensation activity of iron near 100% has been found. An iron incorporation activition energy of 2.5 eV has been determined below the solubility limit. The iron concentration was found to be proportional to the gas-phase ferrocene concentration and to follow an inverse square-root law under increasing phosphine flow. In order to explain the observed phenomena, an incorporation mechanism model is developed assuming a two-phosphorus vacancy— substitutional iron complex as the incorporated species.

  10. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-02

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  11. Dynamic behavior of pump light radiation induced photo-bleaching effect on BAC-Si in bismuth/erbium co-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Luo, Yanhua; Wen, Jianxiang; Peng, Gang-Ding

    2018-02-01

    Ultra-wide emission in bismuth doped optical fiber has been extremely studied for the development of the laser and amplifier working at near infrared band. In our homemade bismuth/erbium co-doped optical fiber, bismuth active center associated with silica (BAC-Si) has been found that when pumping at its resonant wavelength at 830 nm the NIR emission could be partially bleached. In addition, a self-recovery process has been observed at room temperature. However, the exact mechanism is still unclear. In this work, we have investigated the photo-bleaching effect on the BAC-Si via the pump power, pump wavelength and temperature dependence. Based on analyzing the result using stretched exponential function, it shows that the bleaching effect on BAC-Si has a strong link with the excitation process of Bi ion in BAC-Si. A potential energy curve model is used to illustrate the BAC-Si photo-bleaching process.

  12. Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods

    NASA Astrophysics Data System (ADS)

    Madre, M. A.; Rasekh, Sh; Diez, J. C.; Sotelo, A.

    2009-03-01

    The flexural strength of 1 wt.% Ag-doped Bi2Sr2CaCu2O8+δ thin rods textured by a laser heated floating zone was measured as a function of the environmental conditions (air versus water) at room temperature. Loading rates spanning three orders of magnitude (1, 10 and 100 μm/min) were used to explore their susceptibility to the environmental conditions. These mechanical tests were completed with electrical characterization (critical current at 77K and resistivity from 77 to 300 K) of samples submerged in distilled water for different time lengths (0, 12 and 120h). While Bi2Sr2CaCu2O8+δ has been shown, in previous works, to be unstable during contact with water molecules, the Ag-doped Bi-2212 textured rods tested in this work are very inert to the water environment, with respect to their mechanical and electrical properties, due to the presence of a narrow (approx150 μm) low textured outer ring formed in the growth process.

  13. λ5-Phosphorus-Containing α-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules.

    PubMed

    Marinozzi, Maura; Pertusati, Fabrizio; Serpi, Michaela

    2016-11-23

    The compounds characterized by the presence of a λ 5 -phosphorus functionality at the α-position with respect to the diazo moiety, here referred to as λ 5 -phosphorus-containing α-diazo compounds (PCDCs), represent a vast class of extremely versatile reagents in organic chemistry and are particularly useful in the preparation of phosphonate- and phosphinoxide-functionalized molecules. Indeed, thanks to the high reactivity of the diazo moiety, PCDCs can be induced to undergo a wide variety of chemical transformations. Among them are carbon-hydrogen, as well as heteroatom-hydrogen insertion reactions, cyclopropanation, ylide formation, Wolff rearrangement, and cycloaddition reactions. PCDCs can be easily prepared from readily accessible precursors by a variety of different methods, such as diazotization, Bamford-Stevens-type elimination, and diazo transfer reactions. This evidence along with their relative stability and manageability make them appealing tools in organic synthesis. This Review aims to demonstrate the ongoing utility of PCDCs in the modern preparation of different classes of phosphorus-containing compounds, phosphonates, in particular. Furthermore, to address the lack of precedent collective papers, this Review also summarizes the methods for PCDCs preparation.

  14. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  15. Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells.

    PubMed

    Xu, Jixian; Voznyy, Oleksandr; Comin, Riccardo; Gong, Xiwen; Walters, Grant; Liu, Min; Kanjanaboos, Pongsakorn; Lan, Xinzheng; Sargent, Edward H

    2016-04-13

    A crosslinked hole-extracting electrical contact is reported, which simultaneously improves the stability and lowers the hysteresis of perovskite solar cells. Polymerizable monomers and crosslinking processes are developed to obviate in situ degradation of the under lying perovskite. The crosslinked material is band-aligned with perovskite. The required free carrier density is induced by a high-work-function metal oxide layer atop the device, following a remote-doping strategy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials formore » efficient spectral up-conversion devices.« less

  17. Highly-stable and -flexible graphene/(CF3SO2)2NH/graphene transparent conductive electrodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Sang Woo; Lee, Ha Seung; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kim, Jong Min; Kim, Sung; Choi, Suk-Ho

    2017-10-01

    We first employ highly-stable and -flexible (CF3SO2)2NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.89 ± 0.16 and 4.97 ± 0.18 eV, respectively, which are not only larger than those of the ITO TCEs but also indicate p-type doping of GR, and are therefore more suitable for anode TCEs of OSCs. In addition, typical GR/TFSA/GR-TCE OSCs are much more mechanically flexible than the ITO-TCE ones with their photovoltaic parameters being similar, as proved by bending tests as functions of cycle and curvature.

  18. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan

    2018-01-01

    In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.

  19. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters.

    PubMed

    Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin

    2015-03-12

    Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.

  20. Spin-Orbital entangled 2DEG in the δ-doped interface LaδSr2IrO4: Density-Functional Studies and Transport Results from Boltzmann Equations

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi

    The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and highmore » recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.« less

  2. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation.

    PubMed

    Deng, Yaocheng; Tang, Lin; Feng, Chengyang; Zeng, Guangming; Wang, Jiajia; Zhou, Yaoyu; Liu, Yani; Peng, Bo; Feng, Haopeng

    2018-02-15

    To realize the full utilization of solar energy, the design of highly efficient photocatalyst with improved visible-near-infrared photocatalysis performance has attracted great attentions for environment pollutant removal. In this work, we rationally employed the surface plasmon resonance effect of metallic Ag in the phosphorus doped ultrathin g-C 3 N 4 nanosheets (PCNS) and BiVO 4 composites to construct a ternary Ag@PCNS/BiVO 4 photocatalyst. It was applied for the photodegradation of ciprofloxacin (CIP), exhibiting 92.6% removal efficiency under visible light irradiation (λ>420nm) for 10mg/L CIP, and presenting enhanced photocatalytic ability than that of single component or binary nanocomposites under near-infrared light irradiation (λ>760nm). The improved photocatalytic activity of the prepared Ag@PCNS/BiVO 4 nanocomposite can be attributed to the synergistic effect among the PCNS, BiVO 4 and Ag, which not only improves the visible light response ability and hinders the recombination efficiency of the photogenerated electrons and holes, but also retains the strong the redox ability of the photogenerated charges. According to the trapping experiment and ESR measurements results, OH, h + and O 2 - all participated in the photocatalytic degradation process. Considering the SPR effect of metallic Ag and the established local electric field around the interfaces, a dual Z-scheme electrons transfer mechanism was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. First-principles study of Mn-S codoped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  4. Influence of Luminol Doping of Poly(o-phenylenediamine) on the Spectral, Morphological, and Fluorescent properties: A Potential Fluorescent Marker for Early detection and Diagnosis of Leishmania donovani.

    PubMed

    Riaz, Ufana; Jadoun, Sapana; Kumar, Prabhat; Arish, Mohd; Rub, Abdur; Ashraf, S M

    2017-09-27

    There has been a steady progress in the development of doped conjugated polymers to remarkably improve their photo physical properties for their application as biomarkers. With a view to enhance the spectral, morphological, and photo physical properties of poly(o-phenylenediamine) (POPD), the present work reports the synthesis of poly(o-phenylenediamine) and doping of this polymer using luminol. The formation of luminol-doped POPD was confirmed by infrared and ultraviolet-visible spectroscopies and X-ray diffraction studies. The energy band gap values and oscillator strength of luminol in acidic, basic, and neutral media were computed by density functional theory calculations using the B3LYP/6-31G (d) basis set and were compared with experimental data. The luminol doped POPDs show significant in vitro anti-leishmanial activity. Live cell imaging also proved that these molecules bind with the organelle of Leishmania also. These luminol doped POPDs were found non-toxic at the used concentrations on THP-1 derived human macrophage cells through methyl tetrazolium (MTT) assay. The results revealed that luminol doped POPDs were potentially non-toxic to human cells though exhibited immense potential to be used as a fluorescent marker to label Leishmania donovani for diagnostic and other studies.

  5. Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis

    2013-01-01

    Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091

  6. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.

    PubMed

    Zhang, S J; Lin, S S; Li, X Q; Liu, X Y; Wu, H A; Xu, W L; Wang, P; Wu, Z Q; Zhong, H K; Xu, Z J

    2016-01-07

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

  7. Metal Composition and Polyethylenimine Doping Capacity Effects on Semiconducting Metal Oxide-Polymer Blend Charge Transport.

    PubMed

    Huang, Wei; Guo, Peijun; Zeng, Li; Li, Ran; Wang, Binghao; Wang, Gang; Zhang, Xinan; Chang, Robert P H; Yu, Junsheng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2018-04-25

    Charge transport and film microstructure evolution are investigated in a series of polyethylenimine (PEI)-doped (0.0-6.0 wt%) amorphous metal oxide (MO) semiconductor thin film blends. Here, PEI doping generality is broadened from binary In 2 O 3 to ternary (e.g., In+Zn in IZO, In+Ga in IGO) and quaternary (e.g., In+Zn+Ga in IGZO) systems, demonstrating the universality of this approach for polymer electron doping of MO matrices. Systematic comparison of the effects of various metal ions on the electronic transport and film microstructure of these blends are investigated by combined thin-film transistor (TFT) response, AFM, XPS, XRD, X-ray reflectivity, and cross-sectional TEM. Morphological analysis reveals that layered MO film microstructures predominate in PEI-In 2 O 3 , but become less distinct in IGO and are not detectable in IZO and IGZO. TFT charge transport measurements indicate a general coincidence of a peak in carrier mobility (μ peak ) and overall TFT performance at optimal PEI doping concentrations. Optimal PEI loadings that yield μ peak values depend not only on the MO elemental composition but also, equally important, on the metal atomic ratios. By investigating the relationship between the MO energy levels and PEI doping by UPS, it is concluded that the efficiency of PEI electron-donation is highly dependent on the metal oxide matrix work function in cases where film morphology is optimal, as in the IGO compositions. The results of this investigation demonstrate the broad generality and efficacy of PEI electron doping applied to electronically functional metal oxide systems and that the resulting film microstructure, morphology, and energy level modifications are all vital to understanding charge transport in these amorphous oxide blends.

  8. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com; Banerjee, Alok

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples.more » EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.« less

  9. Relation between film thickness and surface doping of MoS2 based field effect transistors

    NASA Astrophysics Data System (ADS)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  10. An impurity intermediate band due to Pb doping induced promising thermoelectric performance of Ca5In2Sb6.

    PubMed

    Feng, Zhenzhen; Wang, Yuanxu; Yan, Yuli; Zhang, Guangbiao; Yang, Jueming; Zhang, Jihua; Wang, Chao

    2015-06-21

    Band engineering is one of the effective approaches for designing ideal thermoelectric materials. Introducing an intermediate band in the band gap of semiconducting thermoelectric compounds may largely increase the carrier concentration and improve the electrical conductivity of these compounds. We test this hypothesis by Pb doping in Zintl Ca5In2Sb6. In the current work, we have systematically investigated the electronic structure and thermoelectric performances of substitutional doping with Pb on In sites at a doping level of 5% (0.2 e per cell) for Ca5In2Sb6 by using density functional theory combined with semi-classical Boltzmann theory. It is found that in contrast to Zn doping, Pb doping introduces a partially filled intermediate band in the band gap of Ca5In2Sb6, which originates from the Pb s states by weakly hybridizing with the Sb p states. Such an intermediate band dramatically increases the electrical conductivity of Ca5In2Sb6 and has little detrimental effect on its Seebeck coefficient, which may increase its thermoelectric figure of merit, ZT. Interestingly, a maximum ZT value of 2.46 may be achieved at 900 K for crystalline Pb-doped Ca5In2Sb6 when the carrier concentration is optimized. Therefore, Pb-doped Ca5In2Sb6 may be a promising thermoelectric material.

  11. Investigations on Cs-free alternatives for negative ion formation in a low pressure hydrogen discharge at ion source relevant parameters

    NASA Astrophysics Data System (ADS)

    Kurutz, U.; Friedl, R.; Fantz, U.

    2017-07-01

    Caesium (Cs) is applied in high power negative hydrogen ion sources to reduce a converter surface’s work function and thus enabling an efficient negative ion surface formation. Inherent drawbacks with the usage of this reactive alkali metal motivate the search for Cs-free alternative materials for neutral beam injection systems in fusion research. In view of a future DEMOnstration power plant, a suitable material should provide a high negative ion formation efficiency and comply with the RAMI issues of the system: reliability, availability, maintainability, inspectability. Promising candidates, like low work function materials (molybdenum doped with lanthanum (MoLa) and LaB6), as well as different non-doped and boron-doped diamond samples were investigated in this context at identical and ion source relevant parameters at the laboratory experiment HOMER. Negative ion densities were measured above the samples by means of laser photodetachment and compared with two reference cases: pure negative ion volume formation with negative ion densities of about 1× {10}15 {{{m}}}-3 and the effect of H- surface production using an in situ caesiated stainless steel sample which yields 2.5 times higher densities. Compared to pure volume production, none of the diamond samples did exhibit a measurable increase in H- densities, while showing clear indications of plasma-induced erosion. In contrast, both MoLa and LaB6 produced systematically higher densities (MoLa: ×1.60 LaB6: ×1.43). The difference to caesiation can be attributed to the higher work functions of MoLa and LaB6 which are expected to be about 3 eV for both compared to 2.1 eV of a caesiated surface.

  12. Reduction of Iodine by Phosphorus(I): Integration of the Rate Equation

    ERIC Educational Resources Information Center

    Kustin, Kenneth; Ross, Edward W.

    2005-01-01

    A. D. Mitchell's work on the phosphorus(I) reduction of the halogens and of mercury(II) and copper(II) chlorides is examined. A review of some salient characteristics of the Mitchell mechanism is presented, together with a discussion on how a student might benefit from a case study of the phosphorus(I) reduction of iodine or the similarly behaving…

  13. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  14. Gallium hole traps in irradiated KTiOPO{sub 4}:Ga crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, V.; Meyer, M.; Malovichko, G.

    2014-12-07

    Nominally pure and gallium doped single crystals of potassium titanyl phosphate (KTiOPO{sub 4}) have been studied by Electron Paramagnetic Resonance at low temperatures before and after irradiation. Irradiation with 20 MeV electrons performed at room temperature and liquid nitrogen temperature caused an appearance of electrons and holes. Gallium impurities act as hole traps in KTiOPO{sub 4} creating Ga{sup 4+} centers. Two different Ga{sup 4+} centers were observed, Ga1 and Ga2. The Ga1 centers are dominant in Ga-doped samples. For the Ga1 center, a superhyperfine structure with one nucleus with nuclear spin ½ was registered and attributed to the interaction of galliummore » electrons with a phosphorus nucleus or proton in its surrounding. In both Ga1 and Ga2 centers, Ga{sup 4+} ions substitute for Ti{sup 4+} ions, but with a preference to one of two electrically distinct crystallographic positions (site selective substitution). The Ga doping eliminates one of the shortcomings of KTP crystals—ionic conductivity of bulk crystals. However, this does not improve significantly the resistance of the crystals to electron and γ-radiation.« less

  15. Body Doping Profile of Select Device to Minimize Program Disturbance in Three-Dimensional Stack NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Choe, Byeong-In; Park, Byung-Gook; Lee, Jong-Ho

    2013-06-01

    The program disturbance characteristic in the three-dimensional (3D) stack NAND flash was analyzed for the first time in terms of string select line (SSL) threshold voltage (Vth) and p-type body doping profile. From the edge word line (W/L) program disturbance, we can observe the boosted channel potential loss as a function of SSL Vth and body doping profile for SSL device. According to simulation work, a high Vth of the SSL device is required to suppress channel leakage during programming. When the body doping of the SSL device is high in the channel, there is a large band bending near the gate edge of the SSL adjacent to the edge W/L cell of boosted cell strings, which generates significantly electron-hole pairs. The generated electrons decreases the boosted channel potential, resulting in increase of program disturbance of the inhibit strings. Through optimization of the body doping profile of the SSL device, both channel leakage and the program disturbance are successfully suppressed for a highly reliable 3D stack NAND flash memory cell operation.

  16. Solution-based electrical doping of semiconducting polymer films over a limited depth

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Chou, Wen-Fang; Aizawa, Naoya; Larrain, Felipe A.; Wang, Ming; Perrotta, Alberto; Choi, Sangmoo; Graham, Samuel; Bazan, Guillermo C.; Nguyen, Thuc-Quyen; Marder, Seth R.; Kippelen, Bernard

    2017-04-01

    Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 +/- 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.

  17. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  18. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Lin, S. S.; Li, X. Q.; Liu, X. Y.; Wu, H. A.; Xu, W. L.; Wang, P.; Wu, Z. Q.; Zhong, H. K.; Xu, Z. J.

    2015-12-01

    Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications. Electronic supplementary information (ESI) available: Synthetic process of the SiG sheet; UPS spectra of SiG and graphene; J-V curves for the SiG/GaAs and graphene/GaAs solar cells under dark conditions and AM1.5 illumination at 100 mW cm-2, respectively; Statistic PCE of SiG/GaAs solar cells with different Si doping levels; EQE of SiG/GaAs and graphene/GaAs solar cells; a comparison of the parameters between the SiG and graphene/GaAs solar cells. See DOI: 10.1039/c5nr06345k

  19. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.

    PubMed

    Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F

    2012-11-01

    Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.

  20. Two-electron spin correlations in precision placed donors in silicon.

    PubMed

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  1. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Desheng; Wang, Dongya; Rui, Kun; Ma, Zhongyuan; Xie, Ling; Liu, Jinhua; Zhang, Yu; Chen, Runfeng; Yan, Yan; Lin, Huijuan; Xie, Xiaoji; Zhu, Jixin; Huang, Wei

    2018-04-01

    The emerging wearable and foldable electronic devices drive the development of flexible lithium ion batteries (LIBs). Carbon materials are considered as one of the most promising electrode materials for LIBs due to their light weight, low cost and good structural stability against repeated deformations. However, the specific capacity, rate capability and long-term cycling performance still need to be improved for their applications in next-generation LIBs. Herein, we report a facile approach for immobilizing phosphorus into a large-area carbon nanosheets/nanofibers interwoven free-standing paper for LIBs. As an anode material for LIBs, it shows high reversible capacity of 1100 mAh g-1 at a current density of 200 mA g-1, excellent rate capabilities (e.g., 200 mAh g-1 at 20,000 mA g-1). Even at a high current density of 1000 mA g-1, it still maintains a superior specific capacity of 607 mAh g-1 without obvious decay.

  2. Direct observation of a surface resonance state and surface band inversion control in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.

    2018-01-01

    We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.

  3. Nanoscopy reveals surface-metallic black phosphorus

    DOE PAGES

    Abate, Yohannes; Gamage, Sampath; Li, Zhen; ...

    2016-10-21

    Black phosphorus (BP) is an emerging two-dimensional material with intriguing physical properties. It is highly anisotropic and highly tunable by means of both the number of monolayers and surface doping. Here, we experimentally investigate and theoretically interpret the near-field properties of a-few-atomic-monolayer nanoflakes of BP. We discover near-field patterns of bright outside fringes and a high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared frequencies <1176 cm -1. We conclude that these fringes are caused by the formation of a highly polarizable layer at the BP surface. This layer has a thickness of ~1 nmmore » and exhibits plasmonic behavior. We estimate that it contains free carriers in a concentration of n≈1.1 × 10 20 cm -3. Surface plasmonic behavior is observed for 10–40 nm BP thicknesses but absent for a 4-nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics, plasmonics and optoelectronics.« less

  4. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    PubMed

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  5. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model

    PubMed Central

    Penumatcha, Ashish V.; Salazar, Ramon B.; Appenzeller, Joerg

    2015-01-01

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses. PMID:26563458

  6. Graphene for thermoelectronic solar energy conversion

    NASA Astrophysics Data System (ADS)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  7. Computational study of dye adsorption onto Brookite TiO2 surfaces for the applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maluta, N. E.; Dima, R. S.; Nemudzivhadi, H.; Maphanga, R. R.; Sankaran

    2017-10-01

    The theoretical and computational studies of dye sensitized solar cells (DSSCs) can contribute to a deeper understanding of these type of solar cells. In the current study the density functional theory (DFT) is used to understand the electronic properties of low index brookite (1 0 0) surface doped with ruthenium. The structural optimizations, band structure, and electronic density of states of doped and undoped titanium dioxide (TiO2) brookite surface was performed using the first-principles calculations based on DFT emplotying a plane-wave pseudopotential method. The generalized gradient approximation (GGA) was used in the scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation functional. All calculations were carried out with CASTEP (Cambridge Sequential Total Energy Package) code in Materials Studio of Accelrys Inc. The two different doping methods employed in the current work are, doping by replacement and adsorption. The overlap among the Ruthenium (Ru) 3d, Titanium (Ti) 3d, and Oxygen (O) 2p states enhance photocatalytic activity in the visible light region. The adsorption method shows that an equilibrium position is reached for ruthenium element after optimization. All the methods show that the TiO2 brookite (1 0 0) surface reduces its band gap after been doped with the ruthenium element. From the two techniques used, the total energy of the doped structures show that they are energetically favorable, with the band gap being reduced to 0.263 eV compared to 2.376 eV of the pure system.

  8. Influence of Scattering on Ballistic Nanotransistor Design

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Svizhenko, Alexei; Biegel, Bryan, A. (Technical Monitor)

    2002-01-01

    Importance of this work: (1) This is the first work to model electron-phonon scattering within a quantum mechanical approach to nanotransistors. The simulations use the non equilibrium Green's function method. (2) A simple equation which captures the importance of scattering as a function of the spatial location from source to drain is presented. This equation helps interpret the numerical simulations. (3) We show that the resistance per unit length in the source side is much larger than in the drain side. Thus making scattering in the source side of the device much more important than scattering in the drain side. Numerical estimates of ballisticity for 10nm channel length devices in the presence of of electron-phonon scattering are given. Based on these calculations, we propose that to achieve a larger on-current in nanotransistors, it is crucial to keep the highly doped source extension region extremely small, even if this is at the cost of making the highly doped drain extension region longer.

  9. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Films Using Various p-Type Dopants and Their Application to GaN-Based Light-Emitting Diodes.

    PubMed

    Lee, Byeong Ryong; Kim, Tae Geun

    2017-01-01

    This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  10. Negligible Electronic Interaction between Photoexcited Electron–Hole Pairs and Free Electrons in Phosphorus–Boron Co-Doped Silicon Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limpens, Rens; Fujii, Minoru; Neale, Nathan R.

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  11. Negligible Electronic Interaction between Photoexcited Electron–Hole Pairs and Free Electrons in Phosphorus–Boron Co-Doped Silicon Nanocrystals

    DOE PAGES

    Limpens, Rens; Fujii, Minoru; Neale, Nathan R.; ...

    2018-02-28

    Phosphorus (P) and boron (B) co-doped Si nanocrystals (NCs) have raised interest in the optoelectronic industry due to their electronic tunability, optimal carrier multiplication properties, and straightforward dispersibility in polar solvents. Yet a basic understanding of the interaction of photoexcited electron-hole (e-h) pairs with new physical features that are introduced by the co-doping process (free carriers, defect states, and surface chemistry) is missing. Here, we present the first study of the ultrafast carrier dynamics in SiO2-embedded P-B co-doped Si NC ensembles using induced absorption spectroscopy through a two-step approach. First, the induced absorption data show that the large fraction ofmore » the dopants residing on the NC surface slows down carrier relaxation dynamics within the first 20 ps relative to intrinsic (undoped) Si NCs, which we interpret as enhanced surface passivation. On longer time-scales (picosecond to nanosecond regime), we observe a speeding up of the carrier relaxation dynamics and ascribe it to doping-induced trap states. This argument is deduced from the second part of the study, where we investigate multiexciton interactions. From a stochastic modeling approach we show that localized carriers, which are introduced by the P or B dopants, have minor electronic interactions with the photoexcited e-h pairs. This is understood in light of the strong localization of the introduced carriers on their original P- or B-dopant atoms, due to the strong quantum confinement regime in these relatively small NCs (<6 nm).« less

  12. Design, Synthesis, and Structure-Property Relationships of Er3+-Doped TiO2 Luminescent Particles Synthesized by Sol-Gel

    PubMed Central

    Lopez-Iscoa, Pablo; Baldi, Giovanni

    2018-01-01

    Titania particles doped with various concentrations of Erbium were synthesized by the sol-gel method followed by different heat treatments. The shape and the grain growth of the particles were noticeably affected by the concentration of Erbium and the heat treatment conditions. An infrared emission at 1530 nm, as well as green and red up-conversion emissions at 550 and 670 nm, were observed under excitation at 976 nm from all of the synthesized particles. The emission spectra and lifetime values appeared to be strongly influenced by the presence of the different crystalline phases. This work presents important guidelines for the synthesis of functional Er3+-doped titania particles with controlled and tailored spectroscopic properties for photonic applications. PMID:29301282

  13. Serum phosphorus and association with anemia among a large diverse population with and without chronic kidney disease

    PubMed Central

    Tran, Lac; Batech, Michael; Rhee, Connie M.; Streja, Elani; Kalantar-Zadeh, Kamyar; Jacobsen, Steven J.; Sim, John J.

    2016-01-01

    Background We hypothesized that phosphorus has an effect on anemia in both normal kidney function and early chronic kidney disease (CKD). We sought to determine whether higher phosphorus levels are associated with anemia in a large diverse population without CKD and early CKD. Methods This study is a historical population-based study within the Kaiser Permanente Southern California health system (1 January 1998 to 31 December 2013) among individuals aged 18 years and older with estimated glomerular filtration rate >30 mL/min/1.73 m2 and measurements of serum phosphorus, creatinine and hemoglobin. Individuals were excluded if they had secondary causes of anemia. Odds ratio (OR) estimated for moderate anemia defined as hemoglobin <11 g/dL for both sexes. Mild anemia was defined as <12 g/dL (females) and <13 g/dL (males). Results Among 155 974 individuals, 4.1% had moderate anemia and 12.9% had mild anemia. Serum phosphorus levels ≥3.5 mg/dL were associated with both mild and moderate anemia. Moderate anemia OR (95% confidence interval) was 1.16 (1.04–1.29) for every 0.5 mg/dL phosphorus increase and 1.26 (1.07–1.48) in the highest versus middle phosphorus tertile. Additional independent anemia risk factors, including female sex, Asian race, diabetes, low albumin and low iron saturation, were observed, but did not alter the anemia–phosphorus association. Conclusions Higher phosphorus levels were associated with a greater likelihood for anemia in a population with early CKD and normal kidney function. Phosphorus may be a biomarker for anemia and may affect aspects of hematopoiesis. PMID:26254460

  14. Serum phosphorus is related to left ventricular remodeling independent of renal function in hospitalized patients with chronic kidney disease.

    PubMed

    Zou, Jun; Yu, Yi; Wu, Ping; Lin, Fu-Jun; Yao, Yao; Xie, Yun; Jiang, Geng-Ru

    2016-10-15

    Increasing evidence indicated that phosphorus emerged as an important cardiovascular risk factor in patients with chronic kidney disease (CKD). The fact that serum phosphorus was closely linked to vascular and valvar calcification may account for one important reason. However, left ventricular remodeling may also serve as another potential mechanism of the cardiac toxicity of phosphorus. In the present study, we evaluated the association of serum phosphorus with left ventricular remodeling. We investigated consecutive hospitalized patients with pre-dialysis CKD, who did not have symptomatic heart failure or take any phosphorus binder or calcitriol medications. Transthoracic echocardiography was applied to assess their left ventricular remodeling indices, both structural and functional. The 296 study subjects (mean age 56.4years) included 169 (57.1%) men, 203 (68.6%) hypertensive patients. In addition to gender, systolic blood pressure, and estimated glomerular filtration rate, serum phosphorus was an independent determinant of left ventricular mass index (LVMI, P=0.001). Similarly, serum phosphorus was also a determinant of left ventricular end diastolic dimension (P=0.0003), but not of relative wall thickness. In multivariate logistic analyses, serum phosphorus was significantly and independently associated with the prevalence of left ventricular hypertrophy (LVH, odds ratio [OR] 2.38 for each 1mmol/L increase, 95% CI 1.20-4.75, P=0.01). Moreover, the association was only confirmatory in eccentric LVH (OR 3.01, 95% CI 1.43-6.32, P=0.003) but not in concentric LVH (1.38, 95% CI, 0.54-3.49, P=0.50). Serum phosphorus was significantly and independently associated with LVMI and the prevalence of eccentric LVH in hospitalized patients with CKD. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Recovery of phosphorus compounds from thermally-processed wastes

    NASA Astrophysics Data System (ADS)

    Czechowska-Kosacka, A.; Pawłowski, L.; Niedbala, G.; Cel, W.

    2018-05-01

    Depletion of phosphorus deposits is one of the most serious global problems, which may soon lead to a crisis in food production. It is estimated that if the current living standard is maintained, the available reserves will be depleted in 130 years. Considering the principle of sustainable development, searching for alternative phosphorus sources is extremely important. The work presented the results of the research on the possibility of utilizing wastes as a source of phosphorus. The studies were conducted on poultry manure. The physicochemical properties of phosporus-rich wastes were determined as well. The fertilizing properties of ashes from poultry manure combustion – obtained from different systems, i.e. caged and barn production. The assimilability of phosphorus from the obtained ashes was determined. Potential applications of phosphorus-rich ashes were proposed as well.

  16. Phosphorus recovery from municipal and fertilizer wastewater: China's potential and perspective.

    PubMed

    Zhou, Kuangxin; Barjenbruch, Matthias; Kabbe, Christian; Inial, Goulven; Remy, Christian

    2017-02-01

    Phosphorus (P) is a limited resource, which can neither be synthesized nor substituted in its essential functions as nutrient. Currently explored and economically feasible global reserves may be depleted within generations. China is the largest phosphate fertilizer producing and consuming country in the world. China's municipal wastewater contains up to 293,163Mgyear of phosphorus, which equals approximately 5.5% of the chemical fertilizer phosphorus consumed in China. Phosphorus in wastewater can be seen not only as a source of pollution to be reduced, but also as a limited resource to be recovered. Based upon existing phosphorus-recovery technologies and the current wastewater infrastructure in China, three options for phosphorus recovery from sewage sludge, sludge ash and the fertilizer industry were analyzed according to the specific conditions in China. Copyright © 2016. Published by Elsevier B.V.

  17. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    PubMed

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  18. Functional group interactions with single wall carbon NT studied by ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Cicero, Giancarlo

    2005-03-01

    With the goal of designing functionalized nanotube materials, recent AFM measurements have succeeded in determining the force between individual chemical groups an single-wall carbon nanotubes (SWCNT) [1]. In order to rationalize and understand these experimental results, we have performed Density Functional Theory calculations for a number of structural arrangements of model tips functionalized with the same groups as those used experimentally. Our calculations include full geometry optimization of the composite SWCNT/tip system as well as `pulling-out' simulations to compute interaction forces. We considered (14x0), semi- conducting tubes, and AFM tips where modeled by a SiH3CH2-X molecule, with X- representing -CN, -CH3, -NH2 or -CH2OCH2. As X is varied, computed forces reproduce the same trend as that observed experimentally when n-doped SWCNT are considered; significantly different trends are observed for neutral and p-doped tubes. We propose that the polar solvent present in the experimental setup may be responsible for the n-doping of the nanotube suggested by our calculations. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. [1] M.C. LeMieux et al, preprint

  19. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    PubMed

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  20. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    PubMed

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-09-05

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  1. Effects of carbon on phosphorus diffusion in SiGe:C and the implications on phosphorus diffusion mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi

    2014-10-14

    The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusionmore » any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.« less

  2. Change in the thermionic work function of semiconductor powders exposed to electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Bourasseau, S.; Martin, J. R.; Juillet, F.; Teichner, S. J.

    1977-01-01

    The variations of the thermoelectronic work function of titanium dioxide, submitted to an ultraviolet or visible and infrared radiation, in the presence of oxygen, are studied by the vibrating condenser method. It is shown that during the ultraviolet irradiation, a desorption of a first species of oxygen simultaneously occurs with the adsorption of a second species of oxygen and that this phenomenon is found for any structure of TiO2 (anatase or rutile) any texture, oxygen pressure, radiation intensity, and nature of introduced dopes.

  3. Speciation of Phosphorus by coupled HPLC-ICPMS: Application for quantification of reduced forms of phosphorus in rocks and natural waters.

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Pasek, M. A.; Sampson, J.

    2014-12-01

    Phosphorus is a geologically important element making up approximately 0.12 % of the Earth's crust. It is commonly found as relatively insoluble apatite and this causes phosphorus to be a limiting nutrient in biologic processes. Despite this, phosphorus is a key element in DNA, RNA and other cellular materials. Recent works suggest that reduced phosphorus played a substantial role in the development of life on the early Earth. Reduced phosphorus is considerably more soluble than oxidized phosphorus, and reduced phosphorus may continue to play a role in biologic productivity. This study examines a new methodology for quantification of reduced phosphorus separated by coupled HPLC - ICP-MS. We show that phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICP-MS reaction cell (using O2 gas) effectively convert elemental P to P-O producing lower background and flatter baseline chromatography. Results suggest very low detection limits (0.05 mM) for P species analyzed as P-O at M/Z = 47. Additionally this technique has potential to speciate at least 5 other metastable forms of phosphorus. We verified this method on numerous materials including leached Archean rocks to suburban retention pond waters and many samples show small but detectible levels of reduced phosphorus. These data highlight a significant role of redox processing of phosphorus throughout the history of the Earth, with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  4. Hidden sources of phosphorus: presence of phosphorus-containing additives in processed foods.

    PubMed

    Lou-Arnal, Luis M; Arnaudas-Casanova, Laura; Caverni-Muñoz, Alberto; Vercet-Tormo, Antonio; Caramelo-Gutiérrez, Rocío; Munguía-Navarro, Paula; Campos-Gutiérrez, Belén; García-Mena, Mercedes; Moragrera, Belén; Moreno-López, Rosario; Bielsa-Gracia, Sara; Cuberes-Izquierdo, Marta

    2014-01-01

    An increased consumption of processed foods that include phosphorus-containing additives has led us to propose the following working hypothesis: using phosphate-rich additives that can be easily absorbed in processed foods involves a significant increase in phosphorus in the diet, which may be considered as hidden phosphorus since it is not registered in the food composition tables. The quantity of phosphorus contained in 118 processed products was determined by spectrophotometry and the results were contrasted with the food composition tables of the Higher Education Centre of Nutrition and Diet, those of Morandeira and those of the BEDCA (Spanish Food Composition Database) Network. Food processing frequently involves the use of phosphoric additives. The products whose label contains these additives have higher phosphorus content and higher phosphorus-protein ratio. We observed a discrepancy with the food composition tables in terms of the amount of phosphorus determined in a sizeable proportion of the products. The phosphorus content of prepared refrigerated foods hardly appears in the tables. Product labels provide little information on phosphorus content. We observed a discrepancy in phosphorus content in certain foods with respect to the food composition tables. We should educate our patients on reviewing the additives on the labels and on the limitation of processed foods. There must be health policy actions to deal with the problem: companies should analyse the phosphorus content of their products, display the correct information on their labels and incorporate it into the food composition tables. Incentives could be established to prepare food with a low phosphorus content and alternatives to phosphorus-containing additives.

  5. Ni doping effect on the electronic and sensing properties of 2D SnO2

    NASA Astrophysics Data System (ADS)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  6. Structural equation model of total phosphorus loads in the Red River of the North Basin, USA and Canada

    USGS Publications Warehouse

    Ryberg, Karen R.

    2017-01-01

    Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.

  7. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  8. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  9. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    NASA Astrophysics Data System (ADS)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  10. High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode.

    PubMed

    Wu, Tien-Lin; Yeh, Chao-Hui; Hsiao, Wen-Ting; Huang, Pei-Yun; Huang, Min-Jie; Chiang, Yen-Hsin; Cheng, Chien-Hong; Liu, Rai-Shung; Chiu, Po-Wen

    2017-05-03

    The hole-injection barrier between the anode and the hole-injection layer (HIL) is of critical importance to determine the device performance of organic light-emitting diodes (OLEDs). Here, we report on a record-high external quantum efficiency (EQE) (24.6% in green phosphorescence) of OLEDs fabricated on both rigid and flexible substrates, with the performance enhanced by the use of nearly defect-free and high-mobility boron-doped graphene as an effective anode and hexaazatriphenylene hexacarbonitrile as a new type of HIL. This new structure outperforms the existing graphene-based OLEDs, in which MoO 3 , AuCl 3 , or bis(trifluoromethanesulfonyl)amide are typically used as a doping source for the p-type graphene. The improvement of the OLED performance is attributed mainly to the appreciable increase of the hole conductivity in the nearly defect-free boron-doped monolayer graphene, along with the high work function achieved by the use of a newly developed hydrocarbon precursor containing boron in the graphene growth by chemical vapor deposition.

  11. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arezki, Hakim, E-mail: hakim.arezki@lgep.supelec.fr; Jaffré, Alexandre; Alamarguy, David

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges.more » Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.« less

  12. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Conductivity Modifications of Graphene by Electron Donative Organic Molecules

    NASA Astrophysics Data System (ADS)

    Masujima, Hiroaki; Mori, Takehiko; Hayamizu, Yuhei

    2017-07-01

    Graphene has been studied for the application of transparent electrodes in flexible electrical devices with semiconductor organics. Control of the charge carrier density in graphene is crucial to reduce the contact resistance between graphene and the active layer of organic semiconductor. Chemical doping of graphene is an approach to change the carrier density, where the adsorbed organic molecules donate or accept electrons form graphene. While various acceptor organic molecules have been demonstrated so far, investigation about donor molecules is still poor. In this work, we have investigated doping effect in graphene field-effect transistors functionalized by organic donor molecules such as dibenzotetrathiafulvalene (DBTTF), hexamethyltetrathiafulvalene (HMTTF), 1,5-diaminonaphthalene (DAN), and N, N, N', N'-tetramethyl- p-phenylenediamine (TMPD). Based on conductivity measurements of graphene transistors, the former three molecules do not have any significant effect to graphene transistors. However, TMPD shows effective n-type doping. The doping effect has a correlation with the level of highest occupied molecular orbital (HOMO) of each molecule, where TMPD has the highest HOMO level.

  14. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3

    NASA Astrophysics Data System (ADS)

    Tordjman, Moshe; Weinfeld, Kamira; Kalish, Rafi

    2017-09-01

    An advanced charge-transfer yield is demonstrated by employing single monolayers of transition-metal oxides—tungsten trioxide (WO3) and rhenium trioxide (ReO3)—deposited on the hydrogenated diamond surface, resulting in improved p-type sheet conductivity and thermal stability. Surface conductivities, as determined by Hall effect measurements as a function of temperature for WO3, yield a record sheet hole carrier concentration value of up to 2.52 × 1014 cm-2 at room temperature for only a few monolayers of coverage. Transfer doping with ReO3 exhibits a consistent narrow sheet carrier concentration value of around 3 × 1013 cm-2, exhibiting a thermal stability of up to 450 °C. This enhanced conductivity and temperature robustness exceed those reported for previously exposed surface electron acceptor materials used so far on a diamond surface. X-ray photoelectron spectroscopy measurements of the C1s core level shift as a function of WO3 and ReO3 layer thicknesses are used to determine the respective increase in surface band bending of the accumulation layers, leading to a different sub-surface two-dimensional hole gas formation efficiency in both cases. This substantial difference in charge-exchange efficiency is unexpected since both surface acceptors have very close work functions. Consequently, these results lead us to consider additional factors influencing the transfer doping mechanism. Transfer doping with WO3 reveals the highest yet reported transfer doping efficiency per minimal surface acceptor coverage. This improved surface conductivity performance and thermal stability will promote the realization of 2D diamond-based electronic devices facing process fabrication challenges.

  15. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    NASA Astrophysics Data System (ADS)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  16. The fundamental science of nitrogen-doping of niobium superconducting cavities

    NASA Astrophysics Data System (ADS)

    Gonnella, Daniel Alfred

    Doping of niobium superconducting RF cavities with impurities has been demonstrated to have the ability to significantly improve the cryogenic efficiency of the accelerating structures. Doping SRF cavities with nitrogen is a relatively simple additional step to cavity preparation that can make drastic improvements in a cavity's intrinsic quality factor, Q0. Nitrogen-doping consists of treating SRF cavities at high temperatures in a low nitrogen-atmosphere. This leads to two important effects: an improvement in Q0 at low fields, and the presence of an "anti-Q slope" in which the cryogenic efficiency of doped cavities actually improves at higher fields. After its initial discovery, nitrogen-doping showed real promise but many fundamental scientific questions remained about the process. Nitrogen-doped cavities consistently quenched at lower fields than un-doped cavities, cooling the cavities through their critical temperature slowly led to poor performance, and the mechanism behind the Q0 improvement was not well understood. This dissertation focuses on addressing these issues. Single-cell 1.3 GHz cavities were prepared with different nitrogen-dopings and their effects studied systematically. It was found that nitrogen-doping drastically lowers the mean free path of the RF penetration layer of the niobium, leading to a lowering of the temperature-dependent BCS resistance, RBCS, at low fields. Theoretical work to predict the anti-Q slope was compared with experimental results to more fundamentally understand the nature of the field dependence of RBCS. Nitrogen-doped cavities were found to have a much larger sensitivity of residual resistance from trapped magnetic flux than un-doped cavities. Fast cool downs with large spatial temperature gradients through Tc were found to more efficiently expel magnetic flux. The full dependence of this sensitivity to trapped magnetic flux was studied as a function of changing mean free path and found to be in good agreement with theoretical predictions. The nature of the low-field quench in nitrogen-doped cavities was also studied with high power pulsed measurements and found to be related to a lowering of the lower critical field, Bc1 due to lowering of the mean free path. Finally, five cryomodule tests were carried out on nitrogen-doped 9-cell cavities to understand how the cryomodule environment affects the performance of doped cavities. This is the first demonstration that environmental factors can be controlled to achieve high Q0 of more than 2.7x10 10 at 16 MV/m and 2.0 K in a cryomodule, meeting and exceeding the specification for LCLS-II. The work presented here represents a significant leap forward in the understanding of the underlying science behind nitrogen-doped cavities and demonstrates their readiness for use in future particle accelerators.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu, E-mail: santanu@dese.iisc.ernet.in

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS{sub 2} with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS{sub 2} supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the puremore » supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS{sub 2}.« less

  18. Prospects and limitations for p-type doping in boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Weston, Leigh; van de Walle, Chris G.

    Using first-principles calculations, we examine the potential for p-type doping of BN polymorphs via substitutional impurities. Based on density functional theory with a hybrid functional, our calculations reveal that group-IV elements (C, Si) substituting at the N site result in acceptor levels that are more than 1 eV above the valence-band maximum in all of the BN polymorphs, and hence far too deep to allow for p-type doping. On the other hand, group-II elements (Be, Mg) substituting at the B site lead to shallower acceptor levels. However, for the ground-state hexagonal phase (h-BN), we show that p-type doping at the B site is inhibited by the formation of hole polarons. Our calculations reveal that hole localization is intrinsic to sp2 bonded h-BN, and this places fundamental limits on hole conduction in this material. In contrast, the sp3 bonded wurtzite (w-BN) and cubic (c-BN) polymorphs are capable of forming shallow acceptor levels. For Be dopants, the acceptor ionization energies are 0.31 eV and 0.24 eV for w-BN and c-BN, respectively; these values are only slightly larger than the ionization energy of the Mg acceptor in GaN. This work was supported by NSF.

  19. Facile Synthesis of Pre-Doping Lithium-Ion Into Nitrogen-Doped Graphite Negative Electrode for Lithium-Ion Capacitor.

    PubMed

    Lee, Seul-Yi; Kim, Ji-Il; Rhee, Kyong Yop; Park, Soo-Jin

    2015-09-01

    Nitrogen-doped graphite, prepared via the thermal decomposition of melamine into a carbon matrix for use as the negative electrode in lithium-ion capacitors (LICs), was evaluated by electrochemical measurements. Furthermore, in order to study the performance of pre-doped lithium components as a function of nitrogen-doped material, the pre-doped lithium graphite was allowed to react with a lithium salt solution. The results showed that the nitrogen functional groups in the graphite largely influenced the pre-doped lithium components, thereby contributing to the discharge capacity and cycling performance. We confirmed that the large initial irreversible capacity could be significantly decreased by using pre-doped lithium components obtained through the nitrogen-doping method.

  20. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-01

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.

  1. Synergistic effect of non-covalent interaction in colloidal nematic liquid crystal doped with magnetic functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dalir, Nima; Javadian, Soheila

    2018-03-01

    Single-walled carbon nanotubes (SWCNTs), CNT@Fe3O4, and Fe3O4 nanocomposites were doped to eutectic uniaxial nematic liquid crystal (NLC's) (E5CN7) to improve physiochemical properties such as phase transition temperature, activation energy (Ea), dielectric anisotropy, and electro-optical properties. The thermal study of nematic phase shows a decrease in the nematic to isotropic phase transition temperature as CNT is doped. However, higher doping concentration of CNTs leads to the further increase in transition temperature. The anchoring effect or π-π interaction plays a key role in N-I phase transition. The functionalization of SWCNTs with Fe3O4 diminishes the CNT aggregation while the magnetic susceptibility is increased. The functionalized CNT doping to NLC's decrease significantly the phase transition temperature compared to doping of non-functionalized CNTs. Attractive interaction between guest and host molecules by magnetic and geometry effect increased the enthalpy and entropy of phase transition in the SWCNT@Fe3O4 sample compared to non-functionalized CNT doped system. Also, the Ea values are decreased as SWCNT@Fe3O4 is doped to pure E5CN7. The difference of N-I phase transition temperature was observed in Fe3O4 and CNT@Fe3O4 compared to SWCNT doped systems. Finally, dielectric anisotropy was increased in the doped system compared to pure NLC.

  2. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

    NASA Astrophysics Data System (ADS)

    Heard, Christopher J.; Johnston, Roy L.

    2013-02-01

    The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8- n) and Cu n Au(8- n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

  3. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  4. DENSITY FUNCTIONAL STUDY OF ELEMENTAL MERCURY ADSORPTION ON X (X=Mn, Si, Ti, Al, AND Zn)-DOPED CuO (110) SURFACE

    NASA Astrophysics Data System (ADS)

    He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing

    Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.

  5. Catalytic Hydrogenation of Carbon Dioxide with Ammonia-Borane by Pincer-type Phosphorus Compound: A Theoretical Prediction.

    PubMed

    Zeng, Guixiang; Maeda, Satoshi; Taketsugu, Tetsuya; Sakaki, Shigeyoshi

    2016-10-01

    Theoretically designed pincer-type phosphorus compound is found to be active for the hydrogenation of carbon dioxide (CO 2 ) with ammonia-borane. DFT, ONIOM(CCSD(T):MP2), and CCSD(T) computational results demonstrated that the reaction occurs through the phosphorus-ligand cooperative catalysis function, which provides an unprecedented protocol for metal-free CO 2 conversion. The phosphorus compounds with the NNN ligand are more active than those with the ONO ligand. The conjugate and planar ligand considerably improves the efficiency of the catalyst.

  6. Inorganic nanotubes and fullerenes . Structure and properties of hypothetical phosphorus fullerenes

    NASA Astrophysics Data System (ADS)

    Seifert, G.; Heine, T.; Fowler, P. W.

    The possibility of stable non-carbon fullerenes is discussed for the case of phosphorus fullerene-like cage structures. On the basis of Density Functional Tight Binding calculations it is shown that many such cages correspond to metastable structures, but with increasing nuclearity become less stable with respect to separate molecular P4 units. Stability rules, known for carbon fullerenes, such as the ``isolated pentagon rule'', do not reflect the different electronic and steric requirements of the phosphorus atom. The computational results tend to rule out phosphorus fullerenes.

  7. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter.

    PubMed

    Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, G P

    2018-08-24

    To realize a graphene based spintronic device, the prime challenge is to control the electronic structure of edges. In this work we find the origin of the spin filtering property in edge boron doped zigzag graphene nanoribbons (ZGNRs) and provide a guide to preparing a graphene based next-generation spin filter based device. Here, we unveil the role of orbitals (p-electron) to tune the electronic, magnetic and transport properties of edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B doping), the system undergoes a semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p-electron is correlated in-depth. 50% edge B doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also show half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin filtering efficiency for a wide range of bias voltages. Zero-bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics.

  8. The effect of air stable n-doping through mild plasma on the mechanical property of WSe2 layers

    NASA Astrophysics Data System (ADS)

    Xu, Linyan; Qian, Shuangbei; Xie, Yuan; Wu, Enxiu; Hei, Haicheng; Feng, Zhihong; Wu, Sen; Hu, Xiaodong; Guo, Tong; Zhang, Daihua

    2018-04-01

    Two-dimensional transition metal dichalcogenides have been widely applied to electronic and optoelectronic device owing to their remarkable material properties. Many studies present the platform for regulating the contact resistance via various doping schemes. Here, we report the alteration of mechanical properties of few top layers of the WSe2 flake which are processed by air stable n-doping of N2O with a constant gas flow through mild plasma and present better manufacturability and friability. The single-line nanoscratching experiments on the WSe2 flakes with different doping time reveal that the manufacturable depths are positively correlated with the exposure time at a certain range and tend to be stable afterwards. Meanwhile, material characterization by x-ray photoelectron spectroscopy confirms that the alteration of mechanical properties is owing to the creation of Se vacancies and substitution of O atoms, which breaks the primary molecular structure of the WSe2 flakes. The synchronous Kelvin probe force microscopy and topography results of ROI nanoscratching of a stepped WSe2 sample confirmed that the depth of the degenerate doping is five layers, which was consistent with the single-line scratching experiments. Our results reveal the interrelationship of the mechanical property, chemical bonds and work function changes of the doped WSe2 flakes.

  9. The effect of air stable n-doping through mild plasma on the mechanical property of WSe2 layers.

    PubMed

    Xu, Linyan; Qian, Shuangbei; Xie, Yuan; Wu, Enxiu; Hei, Haicheng; Feng, Zhihong; Wu, Sen; Hu, Xiaodong; Guo, Tong; Zhang, Daihua

    2018-04-27

    Two-dimensional transition metal dichalcogenides have been widely applied to electronic and optoelectronic device owing to their remarkable material properties. Many studies present the platform for regulating the contact resistance via various doping schemes. Here, we report the alteration of mechanical properties of few top layers of the WSe 2 flake which are processed by air stable n-doping of N 2 O with a constant gas flow through mild plasma and present better manufacturability and friability. The single-line nanoscratching experiments on the WSe 2 flakes with different doping time reveal that the manufacturable depths are positively correlated with the exposure time at a certain range and tend to be stable afterwards. Meanwhile, material characterization by x-ray photoelectron spectroscopy confirms that the alteration of mechanical properties is owing to the creation of Se vacancies and substitution of O atoms, which breaks the primary molecular structure of the WSe 2 flakes. The synchronous Kelvin probe force microscopy and topography results of ROI nanoscratching of a stepped WSe 2 sample confirmed that the depth of the degenerate doping is five layers, which was consistent with the single-line scratching experiments. Our results reveal the interrelationship of the mechanical property, chemical bonds and work function changes of the doped WSe 2 flakes.

  10. Ab initio study of phonon dispersion and thermodynamic properties of pure and doped pyrites

    NASA Astrophysics Data System (ADS)

    Musari, Abolore A.; Joubert, Daniel P.; Olowofela, Joseph A.; Akinwale, Adio T.; Adebayo, Gboyega A.

    2017-12-01

    Pyrites (FeS2) are solid minerals that are found abundantly in Nigeria and are easy to prepare in laboratories. In this work, FeS2 is studied extensively in its pure state as well as when iron is substitutionally doped with zinc and calcium at concentrations of 0, 0.25, 0.5, 0.75 and 1. Using density functional theory, the eectronic, dynamic and thermodynamic properties were calculated. The results revealed that the lattice parameters and bulk modulus increases with increasing concentration and the obtained values are in agreement with available experimental and theoretical values. Though pyrite, when doped with zinc, obeys Vegard's law, doping with calcium revealed pronounced deviation from this law. The calculated band structures showed that FeS2 has an indirect band gap whose size decreases after introducing zinc while doping with calcium increases the band gap. The phonon dispersion of the end members FeS2 and ZnS2 indicate that the systems are dynamically stable while CaS2 is dynamically unstate. Also, the thermodynamic properties of the pure and doped pyrites were calculated and the ranges of temperature at which the lattice and electronic degrees of freedom contribute to the specific heat capacity are presented.

  11. Sodium adsorption and diffusion on monolayer black phosphorus with intrinsic defects

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Wang, Zhiguo

    2018-01-01

    Monolayer black phosphorus is a potential anode material for rechargeable ion batteries. In this work, the effects of intrinsic defects including mono-vacancy (MV), di-vacancy, and Stone-Wales (SW) defects on the adsorption and diffusion of sodium on monolayer black phosphorus were investigated using first-principles calculations. The adsorption energies for sodium on monolayer black phosphorus are in the range of -1.80 to -0.56 eV, which is lower than the value of -0.48 eV for sodium adsorbed on pristine monolayer phosphorus. This indicates that these defects can enhance the adsorption of sodium on monolayer black phosphorus. The diffusivity of sodium on monolayer phosphorus with SW and MV defects is 2.35 × 10-4-3.36 × 10-6 cm2/s, and 7.38 × 10-5-1.48 × 10-9 cm2/s, respectively. Although these values are smaller than that of the pristine monolayer phosphorus at 7.38 × 10-5 cm2/s, defects are inevitably introduced during these fabrication processes. These diffusivity values are reasonable for defective monolayer phosphorus used as an effective anode for sodium ion batteries.

  12. Can We Better Integrate the Role of Anti-Doping in Sports and Society? A Psychological Approach to Contemporary Value-Based Prevention.

    PubMed

    Petróczi, Andrea; Norman, Paul; Brueckner, Sebastian

    2017-01-01

    In sport, a wide array of substances with established or putative performance-enhancing properties is used. Most substances are fully acceptable, whilst a defined set, revised annually, is prohibited; thus, using any of these prohibited substances is declared as cheating. In the increasingly tolerant culture of pharmacological and technical human enhancements, the traditional normative approach to anti-doping, which involves telling athletes what they cannot do to improve their athletic ability and performance, diverges from the otherwise positive values attached to human improvement and enhancement in society. Today, doping is the epitome of conflicting normative expectations about the goal (performance enhancement) and the means by which the goal is achieved (use of drugs). Owing to this moral-functional duality, addressing motivations for doping avoidance at the community level is necessary, but not sufficient, for effective doping prevention. Relevant and meaningful anti-doping must also recognise and respect the values of those affected, and consolidate them with the values underpinning structural, community level anti-doping. Effective anti-doping efforts are pragmatic, positive, preventive, and proactive. They acknowledge the progressive nature of how a "performance mindset" forms in parallel with the career transition to elite level, encompasses all levels and abilities, and directly addresses the reasons behind doping use with tangible solutions. For genuine integration into sport and society, anti-doping should consistently engage athletes and other stakeholders in developing positive preventive strategies to ensure that anti-doping education not only focuses on the intrinsic values associated with the spirit of sport but also recognises the values attached to performance enhancement, addresses the pressures athletes are under, and meets their needs for practical solutions to avoid doping. Organisations involved in anti- doping should avoid the image of "controlling" but, instead, work in partnerships with all stakeholders to involve and ensure integration of the targeted individuals in global community-based preventive interventions. © 2017 S. Karger AG, Basel.

  13. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-01

    In this work, Barium Titanate (BaTiO3) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO3 on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectric constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.

  14. Invalidity of the Fermi liquid theory and magnetic phase transition in quasi-1D dopant-induced armchair-edged graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Davoudiniya, Masoumeh; Yarmohammadi, Mohsen

    2018-04-01

    Based on theoretically tight-binding calculations considering nearest neighbors and Green's function technique, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons with width ranging from 9.83 Å to 69.3 Å would be observed in the presence of injecting electrons by doping. This transition is explained by the temperature-dependent static charge susceptibility through calculation of the correlation function of charge density operators. This work showed that charge concentration of dopants in such system plays a crucial role in determining the magnetic phase. A variety of multicritical points such as transition temperatures and maximum susceptibility are compared in undoped and doped cases. Our findings show that there exist two different transition temperatures and maximum susceptibility depending on the ribbon width in doped structures. Another remarkable point refers to the invalidity (validity) of the Fermi liquid theory in nanoribbons-based systems at weak (strong) concentration of dopants. The obtained interesting results of magnetic phase transition in such system create a new potential for magnetic graphene nanoribbon-based devices.

  15. Seasonal Expression of the Picocyanobacterial Phosphonate Transporter Gene phnD in the Sargasso Sea

    PubMed Central

    Ilikchyan, Irina N.; McKay, Robert Michael L.; Kutovaya, Olga A.; Condon, Rob; Bullerjahn, George S.

    2010-01-01

    In phosphorus-limited marine environments, picocyanobacteria (Synechococcus and Prochlorococcus spp.) can hydrolyze naturally occurring phosphonates as a P source. Utilization of 2-aminoethylphosphonate (2-AEP) is dependent on expression of the phn genes, encoding functions required for uptake, and C–P bond cleavage. Prior work has indicated that expression of picocyanobacterial phnD, encoding the phosphonate binding protein of the phosphonate ABC transporter, is a proxy for the assimilation of phosphonates in natural assemblages of Synechococcus spp. and Prochlorococcus spp (Ilikchyan et al., 2009). In this study, we expand this work to assess seasonal phnD expression in the Sargasso Sea. By RT-PCR, our data confirm that phnD expression is constitutive for the Prochlorococcus spp. detected, but in Synechococcus spp. phnD transcription follows patterns of phosphorus availability in the mixed layer. Specifically, our data suggest that phnD is repressed in the spring when P is bioavailable following deep winter mixing. In the fall, phnD expression follows a depth-dependent pattern reflecting depleted P at the surface following summertime drawdown, and elevated P at depth. PMID:21687717

  16. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials.

    PubMed

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-08

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  17. Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jinqiu; Wang, Mengfan; Qian, Tao; Liu, Sisi; Cao, Xuecheng; Yang, Tingzhou; Yang, Ruizhi; Yan, Chenglin

    2017-09-01

    It is highly challenging to explore high-performance bi-functional oxygen electrode catalysts for their practical application in next-generation energy storage and conversion devices. In this work, we synthesize hierarchical N-doped carbon microspheres with porous yolk-shell structure (NCYS) as a metal-free electrocatalyst toward efficient oxygen reduction through a template-free route. The enhanced oxygen reduction performances in both alkaline and acid media profit well from the porous yolk-shell structure as well as abundant nitrogen functional groups. Furthermore, such yolk-shell microspheres can be used as precursor materials to motivate the oxygen reduction activity of oxygen evolution oriented materials to obtain a desirable bi-functional electrocatalyst. To verify its practical utility, Zn-air battery tests are conducted and exhibit satisfactory performance, indicating that this constructed concept for preparation of bi-functional catalyst will afford a promising strategy for exploring novel metal-air battery electrocatalysts.

  18. Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene

    DOE PAGES

    Schiros, Theanne; Nordlund, Dennis; Palova, Lucia; ...

    2016-06-21

    Chemical doping has been demonstrated to be an effective method for producing high-quality, large-area graphene with controlled carrier concentrations and an atomically tailored work function. Furthermore, the emergent optoelectronic properties and surface reactivity of carbon nanostructures are dictated by the microstructure of atomic dopants. Co-doping of graphene with boron and nitrogen offers the possibility to further tune the electronic properties of graphene at the atomic level, potentially creating p- and n-type domains in a single carbon sheet, opening a gap between valence and conduction bands in the 2-D semimetal. When using a suite of high-resolution synchrotron-based X-ray techniques, scanning tunnelingmore » microscopy, and density functional theory based computation we visualize and characterize B–N dopant bond structures and their electronic effects at the atomic level in single-layer graphene grown on a copper substrate. We find there is a thermodynamic driving force for B and N atoms to cluster into BNC structures in graphene, rather than randomly distribute into isolated B and N graphitic dopants, although under the present growth conditions, kinetics limit segregation of large B–N domains. We also observe that the doping effect of these BNC structures, which open a small band gap in graphene, follows the B:N ratio (B > N, p-type; B < N, n-type; B=N, neutral). We attribute this to the comparable electron-withdrawing and -donating effects, respectively, of individual graphitic B and N dopants, although local electrostatics also play a role in the work function change.« less

  19. Performance Impact Associated with Ni-Based SOFCs Fueled with Higher Hydrocarbon-Doped Coal Syngas

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory A.; Gerdes, Kirk; Chen, Yun; Song, Xueyan; Zondlo, John

    2015-03-01

    Energy generation strategies demonstrating high efficiency and fuel flexibility are desirable in the contemporary energy market. When integrated with a gasification process, a solid oxide fuel cell (SOFC) can produce electricity at efficiencies exceeding 50 pct by consuming fuels such as coal, biomass, municipal solid waste, or other opportunity wastes. The synthesis gas derived from such fuel may contain trace species (including arsenic, lead, cadmium, mercury, phosphorus, sulfur, and tars) and low concentration organic species that adversely affect the SOFC performance. This work demonstrates the impact of exposure of the hydrocarbons ethylene, benzene, and naphthalene at various concentrations. The cell performance degradation rate is determined for tests exceeding 500 hours at 1073 K (800 °C). Cell performance is evaluated during operation with electrochemical impedance spectroscopy, and exposed samples are post-operationally analyzed by scanning electron microscopy/energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The short-term performance is modeled to predict performances to the desired 40,000-hours operational lifetime for SOFCs. Possible hydrocarbon interactions with the nickel anode are postulated, and acceptable hydrocarbon exposure limits are discussed.

  20. A Regional Modeling Framework of Phosphorus Sources and Transport in Streams of the Southeastern United States

    USGS Publications Warehouse

    Garcia, A.M.; Hoos, A.B.; Terziotti, S.

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  1. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.

    PubMed

    Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru

    2014-11-01

    Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.

  2. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique

    NASA Astrophysics Data System (ADS)

    Rajamannan, B.; Mugundan, S.; Viruthagiri, G.; Praveen, P.; Shanmugam, N.

    2014-01-01

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500 °C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP).

  3. Linear and nonlinear optical studies of bare and copper doped TiO2 nanoparticles via sol gel technique.

    PubMed

    Rajamannan, B; Mugundan, S; Viruthagiri, G; Praveen, P; Shanmugam, N

    2014-01-24

    In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500°C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage.

    PubMed

    Wang, Zhijie; Wang, Yanyan; Wang, Wenhui; Yu, Xiaoliang; Lv, Wei; Xiang, Bin; He, Yan-Bing

    2018-01-01

    In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA) are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S) doping of 0.9% and nitrogen (N) doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g -1 , it still delivers a high discharge capacity of 329 mA h g -1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  5. Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: A first-principle study

    NASA Astrophysics Data System (ADS)

    Cheng, Yongfa; Meng, Ruishen; Tan, Chunjian; Chen, Xianping; Xiao, Jing

    2018-01-01

    Two-dimensional (2D) materials have gained tremendous research interests for gas sensing applications because of their ultrahigh theoretical specific surface areas and unique electronic properties. Here, we investigate the adsorption of CO, SO2, NH3, O2, NO and NO2 gas molecules on pure and doped boron phosphide (BP) systems using first-principles calculations to exploit their potential in gas sensing. Our results predict that all six gas molecules show stronger adsorption interactions on impurities-doped BP over the pristine monolayer BP. Al-doped BP shows the highest sensitivity to all gas molecules, but N-doped BP is more suitable as a sensing material for SO2, NO and NO2 due to the feasibility of desorption. We further calculated the current-voltage (I-V) relation by mean of nonequilibrium Green's function (NEGF) formalism. The I-V curves indicate that the electronic properties of the doping systems change significantly with gas adsorption by studying the nonparamagnetic molecules NH3 and the paramagnetic molecules NO, which can be more likely to be measured experimentally compared to graphene and phosphorene. This work explores the possibility of BP as a superior sensor through introducing the appropriate dopants.

  6. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    NASA Astrophysics Data System (ADS)

    Wang, Zhijie; Wang, Yanyan; Wang, Wenhui; Yu, Xiaoliang; Lv, Wei; Xiang, Bin; He, Yan-Bing

    2018-04-01

    In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA) are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S) doping of 0.9 % and nitrogen (N) doping of as high as 15.5 %, in which the electrochemically active N accounts for 84 % of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g-1, it still delivered a high discharge capacity of 329 mA h g-1 after 1000 cycles. First principle calculations verified that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  7. Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon.

    PubMed

    Shamim, Saquib; Weber, Bent; Thompson, Daniel W; Simmons, Michelle Y; Ghosh, Arindam

    2016-09-14

    The atomically precise doping of silicon with phosphorus (Si:P) using scanning tunneling microscopy (STM) promises ultimate miniaturization of field effect transistors. The one-dimensional (1D) Si:P nanowires are of particular interest, retaining exceptional conductivity down to the atomic scale, and are predicted as interconnects for a scalable silicon-based quantum computer. Here, we show that ultrathin Si:P nanowires form one of the most-stable electrical conductors, with the phenomenological Hooge parameter of low-frequency noise being as low as ≈10(-8) at 4.2 K, nearly 3 orders of magnitude lower than even carbon-nanotube-based 1D conductors. A in-built isolation from the surface charge fluctuations due to encapsulation of the wires within the epitaxial Si matrix is the dominant cause for the observed suppression of noise. Apart from quantum information technology, our results confirm the promising prospects for precision-doped Si:P structures in atomic-scale circuitry for the 11 nm technology node and beyond.

  8. Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin

    2010-01-01

    A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.

  9. Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials.

    PubMed

    Chen, Daqin; Wang, Yuansheng

    2013-06-07

    Many technological nanomaterials are intentionally 'doped' by introducing appropriate amounts of foreign elements into hosts to impart electronic, magnetic and optical properties. In fact, impurity doping was recently found to have significant influence on nucleation and growth of many functional nanocrystals (NCs), and provide a fundamental approach to modify the crystallographic phase, size, morphology, and electronic configuration of nanomaterials. In this feature article, we provide an overview of the most recent progresses in doping-induced control of phase structures, sizes, shapes, as well as performances of functional nanomaterials for the first time. Two kinds of impurity doping strategies, including the homo-valence ion doping and hetero-valence ion doping, are discussed in detail. We lay emphases on impurity doping induced modifications of microstructures and optical properties of upconversion (UC) lanthanide (Ln(3+)) NCs, but do not limit to them. In addition, we also illustrate the control of Ln(3+) activator distribution in the core@shell architecture, which has recently provided scientists with new opportunities for designing and tuning the multi-color emissions of Ln(3+)-doped UC NCs. Finally, the challenges and future perspectives of this novel impurity doping strategy are pointed out.

  10. How lithium atoms affect the first hyperpolarizability of BN edge-doped graphene.

    PubMed

    Song, Yao-Dong; Wu, Li-Ming; Chen, Qiao-Ling; Liu, Fa-Kun; Tang, Xiao-Wen

    2016-01-01

    How do lithium atoms affect the first hyperpolarizability (β0) of boron-nitrogen (BN) edge-doped graphene. In this work, using pentacene as graphene model, Lin@BN-1 edge-doped pentacene and Lin@BN-2 edge-doped pentacene (n = 1, 5) were designed to study this problem. First, two models (BN-1 edge-doped pentacene, and BN-2 edge-doped pentacene ) were formed by doping the BN into the pentacene with different order, and then Li@BN-1 edge-doped pentacene and Li@ BN-2 edge-doped pentacene were obtained by substituting the H atom in BN edge-doped pentacene with a Li atom. The results show that the first hyperpolarizabilities of BN-1 edge-doped pentacene and Li@BN-1 edge-doped pentacene were 4059 a.u. and 6249 a.u., respectively; the first hyperpolarizabilities of BN-2 edge-doped pentacene and Li@BN-2 edge-doped pentacene were 2491 a.u. and 4265 a.u., respectively. The results indicate that the effect of Li substitution is to greatly increase the β0 value. To further enhance the first hyperpolarizability, Li5@ BN-1 edge-doped pentacene and Li5@BN-2 edge-doped pentacene were designed, and were found to exhibit considerably larger first hyperpolarizabilities (β0) (12,112 a.u. and 7921a.u., respectively). This work may inspire further study of the nonlinear properties of BN edge-doped graphene.

  11. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  12. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  13. Superconducting gap evolution in overdoped BaFe₂(As 1-xP x)₂ single crystals through nanocalorimetry

    DOE PAGES

    Campanini, D.; Diao, Z.; Fang, L.; ...

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As 1-xP x)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T| T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/k BT c ~ 2.2. Increasing the phosphorus concentration x,more » the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γ r, all samples however show similar behavior [γ r(H) - γ r (H = 0)∝ H n, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  14. Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport

    NASA Astrophysics Data System (ADS)

    Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning

    2016-09-01

    We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.

  15. Recent progress in reversible photodegradation of Disperse Orange 11 when doped in PMMA

    NASA Astrophysics Data System (ADS)

    Ramini, Shiva K.; Anderson, Benjamin; Kuzyk, Mark G.

    2011-12-01

    We report observations that dye-doped PMMA polymer with the organic dye Disperse Orange 11 exhibits self healing after photodegradation by continuous optical pumping whereas in liquid solution, degradation is permanent. This observation illustrates the important role of the polymer matrix in facilitating recovery of the dye molecules. In this work, we report on linear optical absorbance studies that confirm the existence of a quasi-stable state that is not formed in liquid solution. Studies as a function of dye concentration and temperature support our hypothesis of the role of molecular interactions in the decay and healing process that is mediated by the polymer host.

  16. Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhizae in alpine systems.

    PubMed

    Mullen, R B; Schmidt, S K

    1993-05-01

    Phosphorus levels, phenology of roots and shoots, and development of vesicular arbuscular mycorrhizal (VAM) fungi were monitored for two years in natural populations of the perennial alpine herb, Ranunculus adoneus. The purpose of this study was to understand how phosphorus uptake relates to the phenology of R. adoneus and to ascertain whether arbusculus, fungal structures used for nutrient transfer, were present when maximum phosphorus accumulation was occurring. Arbuscules were only present for a few weeks during the growing season of R. adoneus and their presence corresponded with increased phosphorus accumulation in both the roots and shoots of R. adoneus. In addition, phosphorus accumulation and peaks in mycorrhizal development occurred well after plant reproduction and most plant growth had occurred. The late season accumulation of phosphorus by mycorrhizal roots of R. adoneus is stored for use during early season growth and flowering the following spring. In this way R. adoneus can flower before soils thaw and root or mycorrhizal nutrient uptake can occur.

  17. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    PubMed

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  18. Edge effects on the electronic properties of phosphorene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xihong, E-mail: xihong.peng@asu.edu; Copple, Andrew; Wei, Qun

    2014-10-14

    Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs)more » show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the p{sub z} orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap.« less

  19. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Film Using Various p-Type Dopants and Its Application to GaN-Based Light-Emitting Diodes.

    PubMed

    Lee, Byeong Ryong; Kim, Tae Geun

    2016-06-01

    This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  20. Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT.

    PubMed

    Li, Zhongtao; Zhao, Weinan; Yin, Changzhi; Wei, Liangqin; Wu, Wenting; Hu, Zhenpeng; Wu, Mingbo

    2017-12-27

    A covalent organic framework that is composed of hexachlorocyclotriphosphazene and dicyanamide has been coated on CNT to prepare metal-free oxygen reduction reaction catalyst through thermal polymerization of the Zn-air battery cathode. The N,P-codoped nanohybrids have highly porous structure and active synergistic effect between graphitic-N and -P, which promoted the electrocatalytic performance. The electrocatalysts exhibits remarkable half-wave potential (-0.162 V), high current density (6.1 mA/cm -2 ), good stability (83%), and excellent methanol tolerance for ORR in alkaline solution. Furthermore, the N,P-codoped nanohybrids were used as an air electrode for fabrication of a high performance Zn-air battery. The battery achieves a high open-circuit potential (1.53 V) and peak power density (0.255 W cm -2 ). Moreover, the effect of N,P codoping on the conjugate carbon system and the synergistic effect between graphitic-N and P have been calculated through density functional theory calculations, which are essentially in agreement with experimental data.

  1. Nanopatterning of Group V Elements for Tailoring the Electronic Properties of Semiconductors by Monolayer Doping.

    PubMed

    Thissen, Peter; Cho, Kyeongjae; Longo, Roberto C

    2017-01-18

    Control of the electronic properties of semiconductors is primarily achieved through doping. While scaling down the device dimensions to the molecular regime presents an increasing number of difficulties, doping control at the nanoscale is still regarded as one of the major challenges of the electronic industry. Within this context, new techniques such as monolayer doping (MLD) represent a substantial improvement toward surface doping with atomic and specific doping dose control at the nanoscale. Our previous work has explained in detail the atomistic mechanism behind MLD by means of density-functional theory calculations (Chem. Mater. 2016, 28, 1975). Here, we address the key questions that will ultimately allow one to optimize the scalability of the MLD process. First, we show that dopant coverage control cannot be achieved by simultaneous reaction of several group V elements, but stepwise reactions make it possible. Second, using ab initio molecular dynamics, we investigate the thermal decomposition of the molecular precursors, together with the stability of the corresponding binary and ternary dopant oxides, prior to the dopant diffusion into the semiconductor surface. Finally, the effect of the coverage and type of dopant on the electronic properties of the semiconductor is also analyzed. Furthermore, the atomistic characterization of the MLD process raises unexpected questions regarding possible crystal damage effects by dopant exchange with the semiconductor ions or the final distribution of the doping impurities within the crystal structure. By combining all our results, optimization recipes to create ultrashallow doped junctions at the nanoscale are finally proposed.

  2. Functional thiols as repair and doping agents of defective MoS2 monolayers

    NASA Astrophysics Data System (ADS)

    Förster, Anja; Gemming, Sibylle; Seifert, Gotthard

    2018-06-01

    Recent experimental and theoretical studies indicate that thiols (R-SH) can be used to repair sulfur vacancy defects in MoS2 monolayers (MLs). This density functional theory study investigates how the thiol repair mechanism process can be used to dope MoS2 MLs. Fluorinated thiols as well as amine-containing ones are used to p- and n-dope the MoS2 ML, respectively. It is shown that functional groups are only physisorbed on the repaired MoS2 surface. This explains the reversible doping with fluorinated thiols.

  3. Structure and properties of strontium-doped phosphate-based glasses

    PubMed Central

    Abou Neel, Ensanya A.; Chrzanowski, Wojciech; Pickup, David M.; O'Dell, Luke A.; Mordan, Nicola J.; Newport, Robert J.; Smith, Mark E.; Knowles, Jonathan C.

    2008-01-01

    Owing to similarity in both ionic size and polarity, strontium (Sr2+) is known to behave in a comparable way to calcium (Ca2+), and its role in bone metabolism has been well documented as both anti-resorptive and bone forming. In this study, novel quaternary strontium-doped phosphate-based glasses, containing 1, 3 and 5 mol% SrO, were synthesized and characterized. 31P magic angle spinning (MAS) nuclear magnetic resonance results showed that, as the Sr2+ content is increased in the glasses, there is a slight increase in disproportionation of Q2 phosphorus environments into Q1 and Q3 environments. Moreover, shortening and strengthening of the phosphorus to bridging oxygen distance occurred as obtained from FTIR. The general broadening of the spectral features with Sr2+ content is most probably due to the increased variation of the phosphate–cation bonding interactions caused by the introduction of the third cation. This increased disorder may be the cause of the increased degradation of the Sr-containing glasses relative to the Sr-free glass. As confirmed from elemental analysis, all Sr-containing glasses showed higher Na2O than expected and this also could be accounted for by the higher degradation of these glasses compared with Sr-free glasses. Measurements of surface free energy (SFE) showed that incorporation of strontium had no effect on SFE, and samples had relatively higher fractional polarity, which is not expected to promote high cell activity. From viability studies, however, the incorporation of Sr2+ showed better cellular response than Sr2+-free glasses, but still lower than the positive control. This unfavourable cellular response could be due to the high degradation nature of these glasses and not due to the presence of Sr2+. PMID:18826914

  4. The effect of grain boundary chemistry on Intergranular stress corrosion cracking of Ni-Cr-Fe alloys in 50 Pct NaOH at 140 °C

    NASA Astrophysics Data System (ADS)

    Sung, J. K.; Koch, J.; Angeliu, T.; Was, G. S.

    1992-10-01

    The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.

  5. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    PubMed

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  6. The electrothermal conductance and heat capacity of black phosphorus

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-01

    We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  7. The electrothermal conductance and heat capacity of black phosphorus.

    PubMed

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-14

    We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  8. Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites

    NASA Astrophysics Data System (ADS)

    Schierning, G.; Theissmann, R.; Stein, N.; Petermann, N.; Becker, A.; Engenhorst, M.; Kessler, V.; Geller, M.; Beckel, A.; Wiggers, H.; Schmechel, R.

    2011-12-01

    Phosphorus-doped silicon nanopowder from a gas phase process was compacted by DC-current sintering in order to obtain thermoelectrically active, nanocrystalline bulk silicon. A density between 95% and 96% compared to the density of single crystalline silicon was achieved, while preserving the nanocrystalline character with an average crystallite size of best 25 nm. As a native surface oxidation of the nanopowder usually occurs during nanopowder handling, a focus of this work is on the role of oxygen on microstructure and transport properties of the nanocomposite. A characterization with transmission electron microscopy (TEM) showed that the original core/shell structure of the nanoparticles was not found within the sintered nanocomposites. Two different types of oxide precipitates could be identified by energy filtered imaging technique. For a detailed analysis, 3-dimensional tomography with reconstruction was done using a needle-shaped sample prepared by focused ion beam (FIB). The 3-dimensional distribution of silicon dioxide precipitates confirmed that the initial core/shell structure breaks down and precipitates are formed. It is further found that residual pores are exclusively located within oxide precipitates. Thermoelectric characterization was done on silicon nanocomposites sintered between 960 °C and 1060 °C with varying oxygen content between room temperature and 950 °C. The higher sintering temperature led to a better electrical activation of the phosphorus dopant. The oxidic precipitates support densification and seem to be able to reduce the thermal conductivity therefore enhancing thermoelectric properties. A peak figure of merit, zT, of 0.5 at 950 °C was measured for a sample sintered at 1060 °C with a mean crystallite size of 46 nm.

  9. Doping Li-rich cathode material Li2MnO3 : Interplay between lattice site preference, electronic structure, and delithiation mechanism

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2017-12-01

    We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.

  10. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III.

    PubMed

    Chang, Alex R; Lazo, Mariana; Appel, Lawrence J; Gutiérrez, Orlando M; Grams, Morgan E

    2014-02-01

    Elevated serum phosphorus is associated with all-cause mortality, but little is known about risk associated with dietary phosphorus intake. We investigated the association between phosphorus intake and mortality in a prospective cohort of healthy US adults (NHANES III; 1998-1994). Study participants were 9686 nonpregnant adults aged 20-80 y without diabetes, cancer, or kidney or cardiovascular disease. Exposure to dietary phosphorus, which was assessed by using a 24-h dietary recall, was expressed as the absolute intake and phosphorus density (phosphorus intake divided by energy intake). All-cause and cardiovascular mortality was assessed through 31 December 2006. Median phosphorus intake was 1166 mg/d (IQR: 823-1610 mg/d); median phosphorus density was 0.58 mg/kcal (0.48-0.70 mg/kcal). Individuals who consumed more phosphorus-dense diets were older, were less often African American, and led healthier lifestyles (smoking, physical activity, and Healthy Eating Index). In analyses adjusted for demographics, cardiovascular risk factors, kidney function, and energy intake, higher phosphorus intake was associated with higher all-cause mortality in individuals who consumed >1400 mg/d [adjusted HR (95% CI): 2.23 (1.09, 4.5) per 1-unit increase in ln(phosphorus intake); P = 0.03]. At <1400 mg/d, there was no association. A similar association was seen between higher phosphorus density and all-cause mortality at a phosphorus density amount >0.35 mg/kcal [adjusted HR (95% CI): 2.27 (1.19, 4.33) per 0.1-mg/kcal increase in phosphorus density; P = 0.01]. At <0.35 mg/kcal (approximately the fifth percentile), lower phosphorus density was associated with increased mortality risk. Phosphorus density was associated with cardiovascular mortality [adjusted HR (95% CI): 3.39 (1.43, 8.02) per 0.1 mg/kcal at >0.35 mg/kcal; P = 0.01], whereas no association was shown in analyses with phosphorus intake. Results were similar by subgroups of diet quality and in analyses adjusted for sodium and saturated fat intakes. High phosphorus intake is associated with increased mortality in a healthy US population. Because of current patterns in phosphorus consumption in US adults, these findings may have important public health implications.

  11. Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination.

    PubMed

    van Druenen, Maart; Collins, Gillian; Glynn, Colm; O'Dwyer, Colm; Holmes, Justin D

    2018-01-17

    Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO 2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (∼2 × 10 20 atoms/cm 3 ). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO 2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.

  12. Studies of ferroelectric and dielectric properties of pure and doped barium titanate prepared by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisen, Supriya; Mishra, Ashutosh; Jarabana, Kanaka M.

    2016-05-23

    In this work, Barium Titanate (BaTiO{sub 3}) powders were synthesized via Sol-Gel auto combustion method using citric acid as a chelating agent. We study the behavior of ferroelectric and dielectric properties of pure and doped BaTiO{sub 3} on different concentration. To understand the phase and structure of the powder calcined at 900°C were characterized by X-ray Diffraction shows that tetragonal phase is dominant for pure and doped BTO and data fitted by Rietveld Refinement. Electric and Dielectric properties were characterized by P-E Hysteresis and Dielectric measurement. In P-E measurement ferroelectric loop tracer applied for different voltage. The temperature dependant dielectricmore » constant behavior was observed as a function of frequency recorded on hp-Hewlett Packard 4192A, LF impedance, 5Hz-13Hz analyzer.« less

  13. Hydrogen storage in N- and B-doped graphene decorated by small platinum clusters: A computational study

    NASA Astrophysics Data System (ADS)

    Chen, I.-Nan; Wu, Shiuan-Yau; Chen, Hsin-Tsung

    2018-05-01

    In this work, we perform density functional theory (DFT) calculations to investigate the hydrogen adsorption on Pt4 cluster supported on pristine, B-, and N-doped graphene sheets. It is found that the doping B or N atom in the graphene could enhance the interaction between the Pt4 cluster and the supporting substrate. The first H2 molecule is found to be dissociative chemisorption on the three substrates. Further, dissociative and molecular adsorption of multiple H2 molecules are co-adsorbed on the three substrates. In addition, the interaction between Pt4(H2)x and the substrate is illustrated for the stability of Pt4(H2)x on the substrate. AIMD simulation is also performed to verify the stability and hydrogen storage. Accordingly, the B-graphene is predicted to be the most potential materials for hydrogen storage among these three materials.

  14. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    NASA Astrophysics Data System (ADS)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  15. Doping Y 2O 3 with Mn 4+ for energy-efficient lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less

  16. Cs-doped Mo as surface converter for H{sup −}/D{sup −} generation in negative ion sources: First steps and proof of principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiesko, L., E-mail: loic.schiesko@ipp.mpg.de; Hopf, C.; Höschen, T.

    2015-04-08

    In a proof-of-principle study, molybdenum samples were implanted with a very small dose of Cs in order to test the properties of the compound as a surface converter for negative hydrogen ion production. First results on the properties of Cs doped Mo compounds show a reduction of the work function and a stable H{sup −} yield up to four hours in low density hydrogen plasma. The implanted Cs atoms were stable in the Mo lattice over one year for samples stored in vacuum and not exposed to the plasma. The surface H{sup −} generation mechanisms were identified and a comparisonmore » of the negative ion yield with pure Mo showed that the Cs doped Mo sample’s yield was much larger.« less

  17. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  18. Doping Y 2O 3 with Mn 4+ for energy-efficient lighting

    DOE PAGES

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2018-03-28

    Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less

  19. Point Defects and p -Type Doping in ScN from First Principles

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Tsunoda, Naoki; Oba, Fumiyasu

    2018-03-01

    Scandium nitride (ScN) has been intensively researched as a prototype of rocksalt nitrides and a potential counterpart of the wurtzite group IIIa nitrides. It also holds great promise for applications in various fields, including optoelectronics, thermoelectrics, spintronics, and piezoelectrics. We theoretically investigate the bulk properties, band-edge positions, chemical stability, and point defects, i.e., native defects, unintentionally doped impurities, and p -type dopants of ScN using the Heyd-Scuseria-Ernzerhof hybrid functional. We find several fascinating behaviors: (i) a high level for the valence-band maximum, (ii) the lowest formation energy among binary nitrides, (iii) high formation energies of native point defects, (iv) low formation energies of donor-type impurities, and (v) a p -type conversion by Mg doping. Furthermore, we uncover the origins of the Burstein-Moss shift commonly observed in ScN. Our work sheds light on a fundamental understanding of ScN in regard to its technological applications.

  20. Electronic and Magnetic Properties of Cd-Doped PuRhIn5

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Xin

    Since their discovery nearly a decade ago, plutonium-based superconductors have attracted considerable interest, which is now heightened by the latest discovery of superconductivity in other Pu-115 compounds. Within the generalized gradient approximation (GGA) of density functional theory and its combination with the dynamical mean-field theory, we present a study of electronic structure in the paramagnetic state of Cd-doped PuRhIn5. A doping-induced delocalization-localization transition is identified. In addition, the spin-polarized GGA-based total energy calculations are performed to determine the magnetic exchange interactions in the pristine PuRhIn5. The implication to the nature of quantum criticality is discussed. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at LANL under Contract No. DE-AC52-06NA25396, and was supported by the LANL ASC Program.

  1. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  2. Flat-plate solar array project process development area process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Three sets of samples were laser processed and then cell processed. The laser processing was carried out on P-type and N-type web at laser power levels from 0.5 joule/sq cm to 2.5 joule/sq cm. Six different liquid dopants were tested (3 phosphorus dopants, 2 boron dopants, 1 aluminum dopant). The laser processed web strips were fabricated into solar cells immediately after laser processing and after various annealing cycles. Spreading resistance measurements made on a number of these samples indicate that the N(+)P (phosphorus doped) junction is approx. 0.2 micrometers deep and suitable for solar cells. However, the P(+)N (or P(+)P) junction is very shallow ( 0.1 micrometers) with a low surface concentration and resulting high resistance. Due to this effect, the fabricated cells are of low efficiency. The maximum efficiency attained was 9.6% on P-type web after a 700 C anneal. The main reason for the low efficiency was a high series resistance in the cell due to a high resistance back contact.

  3. Associations of Socioeconomic Status and Processed Food Intake with Serum Phosphorus in Community-Living Adults: the Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Gutiérrez, Orlando M.; Katz, Ronit; Peralta, Carmen A.; de Boer, Ian H.; Siscovick, David; Wolf, Myles; Roux, Ana Diez; Kestenbaum, Bryan; Nettleton, Jennifer A.; Ix, Joachim H.

    2011-01-01

    Objective Higher serum phosphorus concentrations are associated with cardiovascular disease events and mortality. Low socioeconomic status is linked with higher serum phosphorus, but the reasons are unclear. Poor individuals disproportionately consume inexpensive processed foods commonly enriched with phosphorus-based food preservatives. Accordingly, we hypothesized that excess intake of these foods accounts for a relationship between lower socioeconomic status and higher serum phosphorus. Design Cross-sectional analysis. Setting and Participants We examined a random cohort of 2,664 participants with available phosphorus measurements in the Multi-Ethnic Study of Atherosclerosis, a community-based sample of individuals free of clinically apparent cardiovascular disease from across the United States. Predictor Variables Socioeconomic status, the intake of foods commonly enriched with phosphorus additives (processed meats, sodas) and frequency of fast food consumption. Outcomes Fasting morning serum phosphorus concentrations. Results In unadjusted analyses, lower income and lower educational achievement categories were associated with modestly higher serum phosphorus (by 0.02 to 0.10 mg/dL, P < 0.05 for all). These associations were attenuated in models adjusted for demographic and clinical factors, almost entirely due to adjustment for female gender. There were no statistically significant associations of processed meat intake or frequency of fast-food consumption with serum phosphorus in multivariable-adjusted analyses. In contrast, each serving per day higher soda intake was associated with 0.02 mg/dl lower serum phosphorus (95% confidence interval, −0.04, −0.01). Conclusions Greater intake of foods commonly enriched with phosphorus additives was not associated with higher serum phosphorus in a community-living sample with largely preserved kidney function. These results suggest that excess intake of processed and fast foods may not impact fasting serum phosphorus concentrations among individuals without kidney disease. PMID:22217539

  4. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  5. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus.

    PubMed

    Kong, Lingjun; Han, Meina; Shih, Kaimin; Su, Minhua; Diao, Zenghui; Long, Jianyou; Chen, Diyun; Hou, Li'an; Peng, Yan

    2018-02-01

    Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO 3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Li, Zhenyu

    2018-06-01

    Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zr n+1C n T2, T = O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zr n+1C n T2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

  7. Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells.

    PubMed

    Jafari, Mohammad Javad; Liu, Jiang; Engquist, Isak; Ederth, Thomas

    2017-01-25

    An understanding of the doping and ion distributions in light-emitting electrochemical cells (LECs) is required to approach a realistic conduction model which can precisely explain the electrochemical reactions, p-n junction formation, and ion dynamics in the active layer and to provide relevant information about LECs for systematic improvement of function and manufacture. Here, Fourier-transform infrared (FTIR) microscopy is used to monitor anion density profile and polymer structure in situ and for time-resolved mapping of electrochemical doping in an LEC under bias. The results are in very good agreement with the electrochemical doping model with respect to ion redistribution and formation of a dynamic p-n junction in the active layer. We also physically slow ions by decreasing the working temperature and study frozen-junction formation and immobilization of ions in a fixed-junction LEC device by FTIR imaging. The obtained results show irreversibility of the ion redistribution and polymer doping in a fixed-junction device. In addition, we demonstrate that infrared microscopy is a useful tool for in situ characterization of electroactive organic materials.

  8. Improving Si solar cell performance using Mn:ZnSe quantum dot-doped PLMA thin film

    PubMed Central

    2013-01-01

    Poly(lauryl methacrylate) (PLMA) thin film doped with Mn:ZnSe quantum dots (QDs) was spin-deposited on the front surface of Si solar cell for enhancing the solar cell efficiency via photoluminescence (PL) conversion. Significant solar cell efficiency enhancements (approximately 5% to 10%) under all-solar-spectrum (AM0) condition were observed after QD-doped PLMA coatings. Furthermore, the real contribution of the PL conversion was precisely assessed by investigating the photovoltaic responses of the QD-doped PLMA to monochromatic and AM0 light sources as functions of QD concentration, combined with reflectance and external quantum efficiency measurements. At a QD concentration of 1.6 mg/ml for example, among the efficiency enhancement of 5.96%, about 1.04% was due to the PL conversion, and the rest came from antireflection. Our work indicates that for the practical use of PL conversion in solar cell performance improvement, cautions are to be taken, as the achieved efficiency enhancement might not be wholly due to the PL conversion. PMID:23787125

  9. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE PAGES

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; ...

    2015-12-09

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  10. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  11. On Defect Cluster Aggregation and Non-Reducibilty in Tin-Doped Indium Oxide

    NASA Astrophysics Data System (ADS)

    Warschkow, Oliver; Ellis, Donald E.; Gonzalez, Gabriela; Mason, Thomas O.

    2003-03-01

    The conductivity of tin-doped indium oxide (ITO), a transparent conductor, is critically dependent on the amount of tin-doping and oxygen partial pressure during preparation and annealing. Frank and Kostlin (Appl. Phys. A 27 (1982) 197-206) rationalized the carrier concentration dependence by postulating the formation of two types of neutral defect clusters at medium tin-doping levels: "Reducible" and "non-reducible" defect clusters; so named to indicate their ability to create carriers under reduction. According to Frank and Kostlin, both are composed of a single oxygen interstitial and two tin atoms substituting for indium, positioned in non-nearest and nearest coordination, respectively. This present work, seeking to distinguish reducible and non-reducible clusters by use of an atomistic model, finds only a weak correlation of oxygen interstitial binding energies with the relative positioning of dopants. Instead, the number of tin-dopants in the vicinity of the interstitial has a much larger effect on how strongly it is bound, a simple consequence of Coulomb interactions. We postulate that oxygen interstitials become non-reducible when clustered with three or more Sn_In. This occurs at higher doping levels as reducible clusters aggregate and share tin atoms. A simple probabilistic model, estimating the average number of clusters so aggregated, provides a qualitatively correct description of the carrier density in reduced ITO as a function of Sn doping level.

  12. Nonlinear experimental dye-doped nematic liquid crystal optical transmission spectra estimated by neural network empirical physical formulas

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Köysal, Oğuz

    2010-09-01

    In this paper, two complementary objectives related to optical transmission spectra of nematic liquid crystals (NLCs) were achieved. First, at room temperature, for both pure and dye (DR9) doped E7 NLCs, the 10-250 W halogen lamp transmission spectra (wavelength 400-1200 nm) were measured at various bias voltages. Second, because the measured spectra were inherently highly nonlinear, it was difficult to construct explicit empirical physical formulas (EPFs) to employ as transmittance functions. To avoid this difficulty, layered feedforward neural networks (LFNNs) were used to construct explicit EPFs for these theoretically unknown nonlinear NLC transmittance functions. As we theoretically showed in a previous work, a LFNN, as an excellent nonlinear function approximator, is highly relevant to EPF construction. The LFNN-EPFs efficiently and consistently estimated both the measured and yet-to-be-measured nonlinear transmittance response values. The experimentally obtained doping ratio dependencies and applied bias voltage responses of transmittance were also confirmed by LFFN-EPFs. This clearly indicates that physical laws embedded in the physical data can be faithfully extracted by the suitable LFNNs. The extraordinary success achieved with LFNN here suggests two potential applications. First, although not attempted here, these LFNN-EPFs, by such mathematical operations as derivation, integration, minimization etc., can be used to obtain further transmittance related functions of NLCs. Second, for a given NLC response function, whose theoretical nonlinear functional form is yet unknown, a suitable experimental data based LFNN-EPF can be constructed to predict the yet-to-be-measured values.

  13. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    DOE PAGES

    Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.; ...

    2017-10-30

    Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less

  14. Root and Rhizosphere Bacterial Phosphatase Activity Varies with Tree Species and Soil Phosphorus Availability in Puerto Rico Tropical Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.

    Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less

  15. Etude des trois molecules H 2P-NH 2, ClHP-NH 2, H 2P-NHCl au moyen d'une methode de pseudopotentiels

    NASA Astrophysics Data System (ADS)

    Barthelat, M.; Mathis, R.; Mathis, F.

    The three molecules H 2P-NH 2, ClHP-NH 2 and H 2P-NHCl have been studied by a pseudo-potential method, with a minimal basis of quality mono-zeta, with 3 d functions on the phosphorus atom. The geometry of each molecule was optimized and the phosphorus-nitrogen rotation barrier calculated. The results of the calculations confirm that the polarity of the phosphorus-nitrogen bond is P +-N -. Three weak interactions appear: a partial coordinative bond between the nitrogen doublet and a 3 d orbital of the phosphorus atom, hyperconjugation between the nitrogen doublet and the P-H bonds, and participation of the 3 d orbital of phosphorus in the P-N bond.

  16. Optical and electronic structure description of metal-doped phthalocyanines.

    PubMed

    Leal, Luciano Almeida; da Cunha, Wiliam Ferreira; Ribeiro Junior, Luiz Antonio; Pereira, Tamires Lima; Blawid, Stefan Michael; de Sousa Junior, Rafael Timóteo; da Silva Filho, Demétrio Antonio

    2017-05-01

    Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

  17. Electrical and optical properties of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) and AuCl3-doped reduced graphene oxide/single-walled carbon nanotube films for ultraviolet light-emitting diodes.

    PubMed

    Lee, Byeong Ryong; Lee, Jae Hoon; Kim, Kyeong Heon; Kim, Hee-Dong; Kim, Tae Geun

    2014-12-01

    We report the effects of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and gold chloride (AuCl) co-doping on the electrical and optical properties of reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films fabricated by dipcoating methods. The RGO/SWNT films were doped with both AuCl3 dissolved in nitromethane and PSS hole injection layers by spin coating to improve their electrical properties by increasing the work function of the RGO/SWNT films, thereby reducing the Schottky barrier height between the RGO/SWNT and p-GaN films. As a result, we obtained a reduced sheet resistance of 851.9 Ω/Ω and a contact resistance of 1.97 x 10(-1) Ω x cm2, together with a high transmittance of 84.1% at 380 nm. The contact resistance of these films should be further reduced to fully utilize the feature of the electrode scheme proposed in this work, but the current result suggests its potential use as a transparent conductive electrode for ultraviolet light-emitting diodes.

  18. Spatial variation in sediment-water exchange of phosphorus in Florida Bay: AMP as a model organic compound.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2010-10-15

    Dissolved organic phosphorus (DOP) has been recognized as dominant components in total dissolved phosphorus (TDP) pools in many coastal waters, and its exchange between sediment and water is an important process in biogeochemical cycle of phosphorus. Adenosine monophosphate (AMP) was employed as a model DOP compound to simulate phosphorus exchange across sediment-water interface in Florida Bay. The sorption data from 40 stations were fitted to a modified Freundlich equation and provided a detailed spatial distribution both of the sediment's zero equilibrium phosphorus concentration (EPC(0-T)) and of the distribution coefficient (K(d-T)) with respect to TDP. The K(d-T) was found to be a function of the index of phosphorus saturation (IPS), a molar ratio of the surface reactive phosphorus to the surface reactive iron oxide content in the sediment, across the entire bay. However, the EPC(0-T) was found to correlate to the contents of phosphorus in the eastern bay only. Sediment in the western bay might act as a source of the phosphorus in the exchange process due to their high EPC(0-T) and low K(d-T), whereas sediments in the eastern bay might act as a sink because of their low EPC(0-T) and high K(d-T). These results strongly support the hypothesis that both phosphorus and iron species in calcareous marine sediments play a critical role in governing the sediment-water exchange of both phosphate and DOP in the coastal and estuarine ecosystems.

  19. Magnetic Resonance Imaging of Phosphocreatine and Determination of BOLD Kinetics in Lower Extremity Muscles using a Dual-Frequency Coil Array

    NASA Astrophysics Data System (ADS)

    Brown, Ryan; Khegai, Oleksandr; Parasoglou, Prodromos

    2016-07-01

    Magnetic resonance imaging (MRI) provides the unique ability to study metabolic and microvasculature functions in skeletal muscle using phosphorus and proton measurements. However, the low sensitivity of these techniques can make it difficult to capture dynamic muscle activity due to the temporal resolution required for kinetic measurements during and after exercise tasks. Here, we report the design of a dual-nuclei coil array that enables proton and phosphorus MRI of the human lower extremities with high spatial and temporal resolution. We developed an array with whole-volume coverage of the calf and a phosphorus signal-to-noise ratio of more than double that of a birdcage coil in the gastrocnemius muscles. This enabled the local assessment of phosphocreatine recovery kinetics following a plantar flexion exercise using an efficient sampling scheme with a 6 s temporal resolution. The integrated proton array demonstrated image quality approximately equal to that of a clinical state-of-the-art knee coil, which enabled fat quantification and dynamic blood oxygen level-dependent measurements that reflect microvasculature function. The developed array and time-efficient pulse sequences were combined to create a localized assessment of calf metabolism using phosphorus measurements and vasculature function using proton measurements, which could provide new insights into muscle function.

  20. DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying

    2018-05-01

    Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.

Top