Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Modeling individual differences in working memory performance: a source activation account
Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.
2008-01-01
Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561
Pimperton, Hannah; Nation, Kate
2014-01-01
Differing etiological explanations have been proposed to account for poor comprehenders' difficulties with reading comprehension, with some researchers emphasizing working memory deficits and others arguing for oral language weaknesses playing a key causal role. The authors contrasted these two theoretical accounts using data obtained from direct measures of working memory and from teacher ratings of poor comprehenders' behavior in the classroom. At the group level, poor comprehenders showed weaknesses on verbal but not nonverbal working memory tasks, in keeping with the "language account." However, they also showed evidence of elevated levels of problem behaviors specifically associated with working memory deficits. Further analysis revealed that these group differences in working-memory-related problem behaviors were carried by a small subgroup of poor comprehenders who also displayed domain-general (verbal and nonverbal) working memory problems, argued to be reflective of "genuine" underlying working memory deficits.
Kofler, Michael J; Alderson, R Matt; Raiker, Joseph S; Bolden, Jennifer; Sarver, Dustin E; Rapport, Mark D
2014-05-01
The current study examined competing predictions of the default mode, cognitive neuroenergetic, and functional working memory models of attention-deficit/hyperactivity disorder (ADHD) regarding the relation between neurocognitive impairments in working memory and intraindividual variability. Twenty-two children with ADHD and 15 typically developing children were assessed on multiple tasks measuring intraindividual reaction time (RT) variability (ex-Gaussian: tau, sigma) and central executive (CE) working memory. Latent factor scores based on multiple, counterbalanced tasks were created for each construct of interest (CE, tau, sigma) to reflect reliable variance associated with each construct and remove task-specific, test-retest, and random error. Bias-corrected, bootstrapped mediation analyses revealed that CE working memory accounted for 88% to 100% of ADHD-related RT variability across models, and between-group differences in RT variability were no longer detectable after accounting for the mediating role of CE working memory. In contrast, RT variability accounted for 10% to 29% of between-group differences in CE working memory, and large magnitude CE working memory deficits remained after accounting for this partial mediation. Statistical comparison of effect size estimates across models suggests directionality of effects, such that the mediation effects of CE working memory on RT variability were significantly greater than the mediation effects of RT variability on CE working memory. The current findings question the role of RT variability as a primary neurocognitive indicator in ADHD and suggest that ADHD-related RT variability may be secondary to underlying deficits in CE working memory.
Contrasting single and multi-component working-memory systems in dual tasking.
Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels
2016-05-01
Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.
Stereotype threat can both enhance and impair older adults' memory.
Barber, Sarah J; Mather, Mara
2013-12-01
Negative stereotypes about aging can impair older adults' memory via stereotype threat; however, the mechanisms underlying this phenomenon are unclear. In two experiments, we tested competing predictions derived from two theoretical accounts of stereotype threat: executive-control interference and regulatory fit. Older adults completed a working memory test either under stereotype threat about age-related memory declines or not under such threat. Monetary incentives were manipulated such that recall led to gains or forgetting led to losses. The executive-control-interference account predicts that stereotype threat decreases the availability of executive-control resources and hence should impair working memory performance. The regulatory-fit account predicts that threat induces a prevention focus, which should impair performance when gains are emphasized but improve performance when losses are emphasized. Results were consistent only with the regulatory-fit account. Although stereotype threat significantly impaired older adults' working memory performance when remembering led to gains, it significantly improved performance when forgetting led to losses.
Zook, Nancy A; Davalos, Deana B; Delosh, Edward L; Davis, Hasker P
2004-12-01
The contributions of working memory, inhibition, and fluid intelligence to performance on the Tower of Hanoi (TOH) and Tower of London (TOL) were examined in 85 undergraduate participants. All three factors accounted for significant variance on the TOH, but only fluid intelligence accounted for significant variance on the TOL. When the contribution of fluid intelligence was accounted for, working memory and inhibition continued to account for significant variance on the TOH. These findings support argument that fluid intelligence contributes to executive functioning, but also show that the executive processes elicited by tasks vary according to task structure.
Time Constraints and Resource Sharing in Adults' Working Memory Spans
ERIC Educational Resources Information Center
Barrouillet, Pierre; Bernardin, Sophie; Camos, Valerie
2004-01-01
This article presents a new model that accounts for working memory spans in adults, the time-based resource-sharing model. The model assumes that both components (i.e., processing and maintenance) of the main working memory tasks require attention and that memory traces decay as soon as attention is switched away. Because memory retrievals are…
Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2014-06-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.
Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497
A working memory account of the interaction between numbers and spatial attention.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Acar, Freya; Ketels, Boris; Fias, Wim
2014-01-01
Rather than reflecting the long-term memory construct of a mental number line, it has been proposed that the relation between numbers and space is of a more temporary nature and constructed in working memory during task execution. In three experiments we further explored the viability of this working memory account. Participants performed a speeded dot detection task with dots appearing left or right, while maintaining digits or letters in working memory. Just before presentation of the dot, these digits or letters were used as central cues. These experiments show that the "attentional SNARC-effect" (where SNARC is the spatial-numerical association of response codes) is not observed when only the lastly perceived number cue--and no serially ordered sequence of cues--is maintained in working memory (Experiment 1). It is only when multiple items (numbers in Experiment 2; letters in Experiment 3) are stored in working memory in a serially organized way that the attentional cueing effect is observed as a function of serial working memory position. These observations suggest that the "attentional SNARC-effect" is strongly working memory based. Implications for theories on the mental representation of numbers are discussed.
Refining the quantitative pathway of the Pathways to Mathematics model.
Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda
2015-03-01
In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.
Proactive interference and item similarity in working memory.
Bunting, Michael
2006-03-01
Proactive interference (PI) may influence the predictive utility of working memory span tasks. Participants in one experiment (N=70) completed Ravens Advanced Progressive Matrices (RAPM) and multiple versions of operation span and probed recall, modified for the type of memoranda (digits or words). Changing memoranda within- or across-trials released PI, but not doing so permitted PI buildup. Scores from PI-build trials, but not PI-release trials, correlated with RAPM and accounted for as much variance in RAPM as unmodified tasks. These results are consistent with controlled attention and inhibition accounts of working memory, and they elucidate a fundamental component of working memory span tasks.
Working Memory and Strategy Use Contribute to Gender Differences in Spatial Ability
ERIC Educational Resources Information Center
Wang, Lu; Carr, Martha
2014-01-01
In this review, a new model that is grounded in information-processing theory is proposed to account for gender differences in spatial ability. The proposed model assumes that the relative strength of working memory, as expressed by the ratio of visuospatial working memory to verbal working memory, influences the type of strategies used on spatial…
ERIC Educational Resources Information Center
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valerie
2009-01-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and…
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
ERIC Educational Resources Information Center
Unsworth, Nash; Spillers, Gregory J.
2010-01-01
The current study examined the extent to which attention control abilities, secondary memory abilities, or both accounted for variation in working memory capacity (WMC) and its relation to fluid intelligence. Participants performed various attention control, secondary memory, WMC, and fluid intelligence measures. Confirmatory factor analyses…
Neurocognitive architecture of working memory
Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars
2015-01-01
The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571
Working Memory Costs of Task Switching
ERIC Educational Resources Information Center
Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, Andre; Camos, Valerie
2008-01-01
Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks…
Rusli, Yazmin Ahmad; Montgomery, James W
2017-10-17
The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.
Reactivation in Working Memory: An Attractor Network Model of Free Recall
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690
Reactivation in working memory: an attractor network model of free recall.
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.
The nature of short-term consolidation in visual working memory.
Ricker, Timothy J; Hardman, Kyle O
2017-11-01
Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Chuderski, Adam; Jastrzebski, Jan
2017-01-01
The "nothing-special" account of insight predicts positive correlations of insight problem solving and working memory capacity (WMC), whereas the "special-process" account expects no, or even negative, correlations. In the latter vein, DeCaro, Van Stockum Jr., and Wieth (2016) have recently reported weak negative WMC…
Owens, Matthew; Stevenson, Jim; Norgate, Roger; Hadwin, Julie A
2008-10-01
Working memory skills are positively associated with academic performance. In contrast, high levels of trait anxiety are linked with educational underachievement. Based on Eysenck and Calvo's (1992) processing efficiency theory (PET), the present study investigated whether associations between anxiety and educational achievement were mediated via poor working memory performance. Fifty children aged 11-12 years completed verbal (backwards digit span; tapping the phonological store/central executive) and spatial (Corsi blocks; tapping the visuospatial sketchpad/central executive) working memory tasks. Trait anxiety was measured using the State-Trait Anxiety Inventory for Children. Academic performance was assessed using school administered tests of reasoning (Cognitive Abilities Test) and attainment (Standard Assessment Tests). The results showed that the association between trait anxiety and academic performance was significantly mediated by verbal working memory for three of the six academic performance measures (math, quantitative and non-verbal reasoning). Spatial working memory did not significantly mediate the relationship between trait anxiety and academic performance. On average verbal working memory accounted for 51% of the association between trait anxiety and academic performance, while spatial working memory only accounted for 9%. The findings indicate that PET is a useful framework to assess the impact of children's anxiety on educational achievement.
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278
On the Law Relating Processing to Storage in Working Memory
ERIC Educational Resources Information Center
Barrouillet, Pierre; Portrat, Sophie; Camos, Valerie
2011-01-01
"Working memory" is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of…
Evidence for Different Components in Children's Visuospatial Working Memory
ERIC Educational Resources Information Center
Mammarella, Irene C.; Pazzaglia, Francesca; Cornoldi, Cesare
2008-01-01
There are a large number of studies demonstrating that visuospatial working memory (VSWM) involves different subcomponents, but there is no agreement on the identity of these dimensions. The present study attempts to combine different theoretical accounts by measuring VSWM. A battery composed of 13 tests was used to assess working memory and, in…
Working Memory in the Processing of Long-Distance Dependencies: Interference and Filler Maintenance
ERIC Educational Resources Information Center
Ness, Tal; Meltzer-Asscher, Aya
2017-01-01
During the temporal delay between the filler and gap sites in long-distance dependencies, the "active filler" strategy can be implemented in two ways: the filler phrase can be actively maintained in working memory ("maintenance account"), or it can be retrieved only when the parser posits a gap ("retrieval account").…
Involvement of Working Memory in Longitudinal Development of Number-Magnitude Skills
ERIC Educational Resources Information Center
Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.
2014-01-01
The ability to connect numbers and magnitudes is an important prerequisite for math learning, here referred to as number-magnitude skills. It has been proposed that working memory plays an important role in constructing these connections. The aim of the current study was to examine if working memory accounts for constructing these connections by…
ERIC Educational Resources Information Center
Pimperton, Hannah; Nation, Kate
2014-01-01
Differing etiological explanations have been proposed to account for poor comprehenders' difficulties with reading comprehension, with some researchers emphasizing working memory deficits and others arguing for oral language weaknesses playing a key causal role. The authors contrasted these two theoretical accounts using data obtained from direct…
Liu, Pei; Zhao, Fengqing; Zhang, Baoshan; Dang, Qingxiu
2017-10-03
Assuming that the principle of an active-self account holds true in real life, priming certain constructs could selectively activate a working self-concept, which in turn guides behavior. The current study involved two experiments that examined the relationships between stereotypic identity, working self-concept, and memory performance in older adults. Specifically, Study 1 tested whether a stereotype threat can affect older adults' working self-concept and memory performance. A modified Stroop color naming task and a separate recognition task showed that a stereotype threat prime altered the activation of the working self-concept and deteriorated the older adults' memory performance. Additionally, the working self-concept mediated the effect of stereotype threat on memory performance. Accordingly, we designed Study 2 to assess whether priming different identities can alter the working self-concept of the elderly and buffer the stereotype threat effect on memory performance. The results not only were the same as Study 1 but also revealed that activating multiple identities could mitigate the stereotype threat. These results support an active-self account and the efficacy of stereotype threat intervention. This intervention strategy may be able to be used in real situations to help the elderly alleviate stereotype threats and memory impairment.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
The role of working memory and declarative memory in trace conditioning
Connor, David A.; Gould, Thomas J.
2017-01-01
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory. PMID:27422017
Working memory still needs verbal rehearsal.
Lucidi, Annalisa; Langerock, Naomi; Hoareau, Violette; Lemaire, Benoît; Camos, Valérie; Barrouillet, Pierre
2016-02-01
The causal role of verbal rehearsal in working memory has recently been called into question. For example, the SOB-CS (Serial Order in a Box-Complex Span) model assumes that there is no maintenance process for the strengthening of items in working memory, but instead a process of removal of distractors that are involuntarily encoded and create interference with memory items. In the present study, we tested the idea that verbal working memory performance can be accounted for without assuming a causal role of the verbal rehearsal process. We demonstrate in two experiments using a complex span task and a Brown-Peterson paradigm that increasing the number of repetitions of the same distractor (the syllable ba that was read aloud at each of its occurrences on screen) has a detrimental effect on the concurrent maintenance of consonants whereas the maintenance of spatial locations remains unaffected. A detailed analysis of the tasks demonstrates that accounting for this effect within the SOB-CS model requires a series of unwarranted assumptions leading to undesirable further predictions contradicted by available experimental evidence. We argue that the hypothesis of a maintenance mechanism based on verbal rehearsal that is impeded by concurrent articulation still provides the simplest and most compelling account of our results.
Simon, Corey B; Lentz, Trevor A; Bishop, Mark D; Riley, Joseph L; Fillingim, Roger B; George, Steven Z
2016-07-01
Because of its high global burden, determining biopsychosocial influences of chronic low back pain (CLBP) is a research priority. Psychological factors such as pain catastrophizing are well established. However, cognitive factors such as working memory warrant further investigation to be clinically useful. The purpose of this study was to determine how working memory and pain catastrophizing are associated with CLBP measures of daily pain intensity and movement-evoked pain intensity. This study was a cross-sectional analysis of individuals with ≥3 months of CLBP (n=60) compared with pain-free controls (n=30). Participants completed measures of working memory, pain catastrophizing, and daily pain intensity. Movement-evoked pain intensity was assessed using the Back Performance Scale. Outcome measures were compared between individuals with CLBP and those who were pain-free using nonparametric testing. Associations were determined using multivariate regression analyses. Participants with CLBP (mean age=47.7 years, 68% female) had lower working memory performance (P=.008) and higher pain catastrophizing (P<.001) compared with pain-free controls (mean age=47.6 years, 63% female). For individuals with CLBP, only working memory remained associated with daily pain intensity (R(2)=.07, standardized beta=-.308, P=.041) and movement-evoked pain intensity (R(2)=.14, standardized beta=-.502, P=.001) after accounting for age, sex, education, and interactions between pain catastrophizing and working memory. The cross-sectional design prevented prospective analysis. Findings also are not indicative of overall working memory (eg, spatial) or cognitive performance. Working memory demonstrated the strongest association with daily pain and movement-evoked pain intensity compared with (and after accounting for) established CLBP factors. Future research will elucidate the prognostic value of working memory on prevention and recovery of CLBP. © 2016 American Physical Therapy Association.
Lentz, Trevor A.; Bishop, Mark D.; Riley, Joseph L.; Fillingim, Roger B.; George, Steven Z.
2016-01-01
Background Because of its high global burden, determining biopsychosocial influences of chronic low back pain (CLBP) is a research priority. Psychological factors such as pain catastrophizing are well established. However, cognitive factors such as working memory warrant further investigation to be clinically useful. Objective The purpose of this study was to determine how working memory and pain catastrophizing are associated with CLBP measures of daily pain intensity and movement-evoked pain intensity. Design This study was a cross-sectional analysis of individuals with ≥3 months of CLBP (n=60) compared with pain-free controls (n=30). Method Participants completed measures of working memory, pain catastrophizing, and daily pain intensity. Movement-evoked pain intensity was assessed using the Back Performance Scale. Outcome measures were compared between individuals with CLBP and those who were pain-free using nonparametric testing. Associations were determined using multivariate regression analyses. Results Participants with CLBP (mean age=47.7 years, 68% female) had lower working memory performance (P=.008) and higher pain catastrophizing (P<.001) compared with pain-free controls (mean age=47.6 years, 63% female). For individuals with CLBP, only working memory remained associated with daily pain intensity (R2=.07, standardized beta=−.308, P=.041) and movement-evoked pain intensity (R2=.14, standardized beta=−.502, P=.001) after accounting for age, sex, education, and interactions between pain catastrophizing and working memory. Limitations The cross-sectional design prevented prospective analysis. Findings also are not indicative of overall working memory (eg, spatial) or cognitive performance. Conclusion Working memory demonstrated the strongest association with daily pain and movement-evoked pain intensity compared with (and after accounting for) established CLBP factors. Future research will elucidate the prognostic value of working memory on prevention and recovery of CLBP. PMID:26700272
ERIC Educational Resources Information Center
Kaufman, Scott Barry
2007-01-01
Sex differences in spatial ability are well documented, but poorly understood. In order to see whether working memory is an important factor in these differences, 50 males and 50 females performed tests of three-dimensional mental rotation and spatial visualization, along with tests of spatial and verbal working memory. Substantial differences…
ERIC Educational Resources Information Center
Mainela-Arnold, Elina; Evans, Julia L.
2005-01-01
Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…
Slot-like capacity and resource-like coding in a neural model of multiple-item working memory.
Standage, Dominic; Pare, Martin
2018-06-27
For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of `slots', each with a fixed resolution. On the other hand, any number of items may be stored, but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data, nor speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioural data from human and non-human primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks.
Working memory differences in long-distance dependency resolution
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component. PMID:25852623
Working memory differences in long-distance dependency resolution.
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.
2009-01-01
Many accounts of working memory posit specialized storage mechanisms for the maintenance of serial order. We explore an alternative, that maintenance is achieved through temporary activation in the language production architecture. Four experiments examined the extent to which the phonological similarity effect can be explained as a sublexical…
Working Memory Span Development: A Time-Based Resource-Sharing Model Account
ERIC Educational Resources Information Center
Barrouillet, Pierre; Gavens, Nathalie; Vergauwe, Evie; Gaillard, Vinciane; Camos, Valerie
2009-01-01
The time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004) assumes that during complex working memory span tasks, attention is frequently and surreptitiously switched from processing to reactivate decaying memory traces before their complete loss. Three experiments involving children from 5 to 14 years of age…
Concurrent working memory load can facilitate selective attention: evidence for specialized load.
Park, Soojin; Kim, Min-Shik; Chun, Marvin M
2007-10-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA
Cognitive Correlates of Perseverations in Individuals with Memory Impairment.
Kavé, Gitit; Heinik, Jeremia
2017-02-01
This study examines which cognitive measure best accounts for perseverations in individuals with memory impairment. The sample included 85 individuals, of whom 21 had subjective memory concerns, 27 had mild cognitive impairment, and 37 had Alzheimer's disease. Participants produced responses on a semantic category fluency task and on the ideational fluency (IF) task from the Cambridge Cognitive Examination-Revised. Measures of word finding, working memory, and abstract thinking were also assessed. Significant group differences in percentage of perseverations emerged on both tasks. No cognitive measure accounted for the percentage of perseverations on the semantic fluency task. A measure of abstract thinking was the best predictor of the percentage of perseverations on the IF task, followed by a measure of working memory. The underlying cognitive mechanisms that lead to perseverations differ across tasks, with perseverations on the IF task reflecting both conceptual deficits and working memory limitations. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S
2017-03-01
Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin
2015-01-01
Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253
Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin
2015-05-01
Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.
Working memory and the memory distortion component of hindsight bias.
Calvillo, Dustin P
2012-01-01
One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.
ERIC Educational Resources Information Center
Kronenberger, William G.; Pisoni, David B.; Harris, Michael S.; Hoen, Helena M.; Xu, Huiping; Miyamoto, Richard T.
2013-01-01
Purpose: Verbal short-term memory (STM) and working memory (WM) skills predict speech and language outcomes in children with cochlear implants (CIs) even after conventional demographic, device, and medical factors are taken into account. However, prior research has focused on single end point outcomes as opposed to the longitudinal process of…
Binding Objects to Locations: The Relationship between Object Files and Visual Working Memory
ERIC Educational Resources Information Center
Hollingworth, Andrew; Rasmussen, Ian P.
2010-01-01
The relationship between object files and visual working memory (VWM) was investigated in a new paradigm combining features of traditional VWM experiments (color change detection) and object-file experiments (memory for the properties of moving objects). Object-file theory was found to account for a key component of object-position binding in VWM:…
Working memory costs of task switching.
Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie
2008-05-01
Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.
Memory-Based Approaches and Beyond
ERIC Educational Resources Information Center
Sanford, Anthony J.; Garrod, Simon C.
2005-01-01
In this article, we discuss 2 issues that we believe any theory of discourse comprehension has to take account of-accessing irrelevant information and granularity. Along the lines that have been suggested as demonstrating the memory-based account, we describe some work in favor of the recruitment of apparently irrelevant information from memory…
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
Dube, Blaire; Emrich, Stephen M; Al-Aidroos, Naseem
2017-10-01
Across 2 experiments we revisited the filter account of how feature-based attention regulates visual working memory (VWM). Originally drawing from discrete-capacity ("slot") models, the filter account proposes that attention operates like the "bouncer in the brain," preventing distracting information from being encoded so that VWM resources are reserved for relevant information. Given recent challenges to the assumptions of discrete-capacity models, we investigated whether feature-based attention plays a broader role in regulating memory. Both experiments used partial report tasks in which participants memorized the colors of circle and square stimuli, and we provided a feature-based goal by manipulating the likelihood that 1 shape would be probed over the other across a range of probabilities. By decomposing participants' responses using mixture and variable-precision models, we estimated the contributions of guesses, nontarget responses, and imprecise memory representations to their errors. Consistent with the filter account, participants were less likely to guess when the probed memory item matched the feature-based goal. Interestingly, this effect varied with goal strength, even across high probabilities where goal-matching information should always be prioritized, demonstrating strategic control over filter strength. Beyond this effect of attention on which stimuli were encoded, we also observed effects on how they were encoded: Estimates of both memory precision and nontarget errors varied continuously with feature-based attention. The results offer support for an extension to the filter account, where feature-based attention dynamically regulates the distribution of resources within working memory so that the most relevant items are encoded with the greatest precision. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
D'Antuono, Giovanni; La Torre, Francesca Romana; Marin, Dario; Antonucci, Gabriella; Piccardi, Laura; Guariglia, Cecilia
2017-01-01
We investigated the relationship between verbal and visuo-spatial measures of working memory, inhibition, fluid intelligence and the performance on the Tower of London (ToL) task in a large sample of 830 healthy participants aged between 18 and 71 years. We found that fluid intelligence and visuo-spatial working memory accounted for a significant variance in the ToL task, while performances on verbal working memory and on the Stroop Test were not predictive for performance on the ToL. The present results confirm that fluid intelligence has a fundamental role on planning tests, but also show that visuo-spatial working memory plays a crucial role in ToL performance.
The contents of visual working memory reduce uncertainty during visual search.
Cosman, Joshua D; Vecera, Shaun P
2011-05-01
Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.
Working Memory: Maintenance, Updating, and the Realization of Intentions
Nyberg, Lars; Eriksson, Johan
2016-01-01
“Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287
ERIC Educational Resources Information Center
Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael
2013-01-01
Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…
Exploring Expressive Vocabulary Variability in Two-Year-Olds: The Role of Working Memory.
Newbury, Jayne; Klee, Thomas; Stokes, Stephanie F; Moran, Catherine
2015-12-01
This study explored whether measures of working memory ability contribute to the wide variation in 2-year-olds' expressive vocabulary skills. Seventy-nine children (aged 24-30 months) were assessed by using standardized tests of vocabulary and visual cognition, a processing speed measure, and behavioral measures of verbal working memory and phonological short-term memory. Strong correlations were observed between phonological short-term memory, verbal working memory, and expressive vocabulary. Speed of spoken word recognition showed a moderate significant correlation with expressive vocabulary. In a multivariate regression model for expressive vocabulary, the most powerful predictor was a measure of phonological short-term memory (accounting for 66% unique variance), followed by verbal working memory (6%), sex (2%), and age (1%). Processing speed did not add significant unique variance. These findings confirm previous research positing a strong role for phonological short-term memory in early expressive vocabulary acquisition. They also extend previous research in two ways. First, a unique association between verbal working memory and expressive vocabulary in 2-year-olds was observed. Second, processing speed was not a unique predictor of variance in expressive vocabulary when included alongside measures of working memory.
Working memory, situation models, and synesthesia
Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy
2013-03-04
Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme–color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefitmore » for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. As a result, this suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.« less
Working memory, situation models, and synesthesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radvansky, Gabriel A.; Gibson, Bradley S.; McNerney, M. Windy
Research on language comprehension suggests a strong relationship between working memory span measures and language comprehension. However, there is also evidence that this relationship weakens at higher levels of comprehension, such as the situation model level. The current study explored this relationship by comparing 10 grapheme–color synesthetes who have additional color experiences when they read words that begin with different letters and 48 normal controls on a number of tests of complex working memory capacity and processing at the situation model level. On all tests of working memory capacity, the synesthetes outperformed the controls. Importantly, there was no carryover benefitmore » for the synesthetes for processing at the situation model level. This reinforces the idea that although some aspects of language comprehension are related to working memory span scores, this applies less directly to situation model levels. As a result, this suggests that theories of working memory must take into account this limitation, and the working memory processes that are involved in situation model construction and processing must be derived.« less
The scope and control of attention: Sources of variance in working memory capacity.
Chow, Michael; Conway, Andrew R A
2015-04-01
Working memory capacity is a strong positive predictor of many cognitive abilities, across various domains. The pattern of positive correlations across domains has been interpreted as evidence for a unitary source of inter-individual differences in behavior. However, recent work suggests that there are multiple sources of variance contributing to working memory capacity. The current study (N = 71) investigates individual differences in the scope and control of attention, in addition to the number and resolution of items maintained in working memory. Latent variable analyses indicate that the scope and control of attention reflect independent sources of variance and each account for unique variance in general intelligence. Also, estimates of the number of items maintained in working memory are consistent across tasks and related to general intelligence whereas estimates of resolution are task-dependent and not predictive of intelligence. These results provide insight into the structure of working memory, as well as intelligence, and raise new questions about the distinction between number and resolution in visual short-term memory.
Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn
2006-06-01
This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.
Working Memory and Down Syndrome
ERIC Educational Resources Information Center
Baddeley, A.; Jarrold, C.
2007-01-01
A brief account is given of the evolution of the concept of working memory from a unitary store into a multicomponent system. Four components are distinguished, the phonological loop which is responsible for maintaining speech-based information, the visuospatial sketchpad performing a similar function for visual information, the central executive…
Deater-Deckard, Kirby; Cutting, Laurie; Thompson, Lee A.; Petrill, Stephen A.
2012-01-01
The purpose of the current study was to investigate potential genetic and environmental correlations between working memory and three behavioral aspects of the attention network (i.e., executive, alerting, and orienting) using a twin design. Data were from 90 monozygotic (39% male) and 112 same-sex dizygotic (41% male) twins. Individual differences in working memory performance (digit span) and parent-rated measures of executive, alerting, and orienting attention included modest to moderate genetic variance, modest shared environmental variance, and modest to moderate nonshared environmental variance. As hypothesized, working memory performance was correlated with executive and alerting attention, but not orienting attention. The correlation between working memory, executive attention, and alerting attention was completely accounted for by overlapping genetic covariance, suggesting a common genetic mechanism or mechanisms underlying the links between working memory and certain parent-rated indicators of attentive behavior. PMID:21948215
Specific Language or Working Memory Impairments: A Small Scale Observational Study
ERIC Educational Resources Information Center
Archibald, Lisa M. D.; Joanisse, Marc; Edmunds, Alan
2011-01-01
Study of the developmental relationship between language and working memory skills has only just begun, despite the prominent role of their interdependency in some theoretical accounts of developmental language impairments. Recently, Archibald and Joanisse (2009) identified children with specific language impairment (SLI), or specific working…
Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contra-lateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory. PMID:25436671
Working memory delay activity predicts individual differences in cognitive abilities.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2015-05-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
Modulation of working memory updating: Does long-term memory lexical association matter?
Artuso, Caterina; Palladino, Paola
2016-02-01
The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Working memory, age, and hearing loss: susceptibility to hearing aid distortion.
Arehart, Kathryn H; Souza, Pamela; Baca, Rosalinda; Kates, James M
2013-01-01
Hearing aids use complex processing intended to improve speech recognition. Although many listeners benefit from such processing, it can also introduce distortion that offsets or cancels intended benefits for some individuals. The purpose of the present study was to determine the effects of cognitive ability (working memory) on individual listeners' responses to distortion caused by frequency compression applied to noisy speech. The present study analyzed a large data set of intelligibility scores for frequency-compressed speech presented in quiet and at a range of signal-to-babble ratios. The intelligibility data set was based on scores from 26 adults with hearing loss with ages ranging from 62 to 92 years. The listeners were grouped based on working memory ability. The amount of signal modification (distortion) caused by frequency compression and noise was measured using a sound quality metric. Analysis of variance and hierarchical linear modeling were used to identify meaningful differences between subject groups as a function of signal distortion caused by frequency compression and noise. Working memory was a significant factor in listeners' intelligibility of sentences presented in babble noise and processed with frequency compression based on sinusoidal modeling. At maximum signal modification (caused by both frequency compression and babble noise), the factor of working memory (when controlling for age and hearing loss) accounted for 29.3% of the variance in intelligibility scores. Combining working memory, age, and hearing loss accounted for a total of 47.5% of the variability in intelligibility scores. Furthermore, as the total amount of signal distortion increased, listeners with higher working memory performed better on the intelligibility task than listeners with lower working memory did. Working memory is a significant factor in listeners' responses to total signal distortion caused by cumulative effects of babble noise and frequency compression implemented with sinusoidal modeling. These results, together with other studies focused on wide-dynamic range compression, suggest that older listeners with hearing loss and poor working memory are more susceptible to distortions caused by at least some types of hearing aid signal-processing algorithms and by noise, and that this increased susceptibility should be considered in the hearing aid fitting process.
Robust relationship between reading span and speech recognition in noise
Souza, Pamela; Arehart, Kathryn
2015-01-01
Objective Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. Design The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. Study sample The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Results Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Conclusions Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition. PMID:25975360
Robust relationship between reading span and speech recognition in noise.
Souza, Pamela; Arehart, Kathryn
2015-01-01
Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition.
Working memory load and the retro-cue effect: A diffusion model account.
Shepherdson, Peter; Oberauer, Klaus; Souza, Alessandra S
2018-02-01
Retro-cues (i.e., cues presented between the offset of a memory array and the onset of a probe) have consistently been found to enhance performance in working memory tasks, sometimes ameliorating the deleterious effects of increased memory load. However, the mechanism by which retro-cues exert their influence remains a matter of debate. To inform this debate, we applied a hierarchical diffusion model to data from 4 change detection experiments using single item, location-specific probes (i.e., a local recognition task) with either visual or verbal memory stimuli. Results showed that retro-cues enhanced the quality of information entering the decision process-especially for visual stimuli-and decreased the time spent on nondecisional processes. Further, cues interacted with memory load primarily on nondecision time, decreasing or abolishing load effects. To explain these findings, we propose an account whereby retro-cues act primarily to reduce the time taken to access the relevant representation in memory upon probe presentation, and in addition protect cued representations from visual interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.
2015-01-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772
Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F
2015-10-01
As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.
The development of visuo-spatial working memory.
Pickering, S J
2001-01-01
Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.
Krkovic, Katarina; Moritz, Steffen; Lincoln, Tania M
2017-05-01
Poor performance in neurocognitive tasks is consistently found across studies in all stages of schizophrenia spectrum disorders and is interpreted as an underlying, brain function-related, neurocognitive deficit. However, neurocognitive test performance in schizophrenia might be compromised by patients' increased stress level. We investigated group-differences in neurocognitive performance while accounting for psychophysiological (salivary cortisol, heart rate, skin conductance level) and self-reported stress. We included 35 patients with schizophrenia, 29 participants with attenuated psychotic symptoms, 26 first-degree relatives of individuals with schizophrenia and 28 healthy controls. Participants completed a neurocognitive test battery that assessed processing speed, task switching, attention, working memory, verbal episodic memory, and verbal comprehension. Multivariate analyses of covariance (MANCOVA) were calculated to test for main effects of group on neurocognitive performance thereby not accounting versus accounting for confounding effects of stress. As expected, patients with schizophrenia scored lower than the other groups in all neurocognitive domains. Participants with attenuated psychotic symptoms, first-degree relatives and healthy individuals did not differ from each other in their performance. After accounting for heart rate and self-reported stress, the multivariate effect of group on neurocognition remained significant, but was rendered non-significant for specific domains - working memory capacity, episodic memory, and long-term memory. The findings imply that stress is relevant to neurocognitive performance and this should be taken into account when interpreting the origin of performance deficits in schizophrenia patients. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wong, Anita M.-Y.; Ho, Connie S.-H.; Au, Terry K.-F.; McBride, Catherine; Ng, Ashley K.-H.; Yip, Lesley P.-W.; Lam, Catherine C.-C.
2017-01-01
This study examined (1) whether working memory and higher-level languages skills--inferencing and comprehension monitoring--accounted for individual differences among Chinese children in Chinese reading comprehension, after controlling for age, Chinese word reading and oral language skills, and (2) whether children with specific language…
Similarity, Not Complexity, Determines Visual Working Memory Performance
ERIC Educational Resources Information Center
Jackson, Margaret C.; Linden, David E. J.; Roberts, Mark V.; Kriegeskorte, Nikolaus; Haenschel, Corinna
2015-01-01
A number of studies have shown that visual working memory (WM) is poorer for complex versus simple items, traditionally accounted for by higher information load placing greater demands on encoding and storage capacity limits. Other research suggests that it may not be complexity that determines WM performance per se, but rather increased…
Individual differences in simultaneous color constancy are related to working memory.
Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K
2012-02-01
Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011)], the current study examined the relation between simultaneous color constancy and working memory-the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability. © 2012 Optical Society of America
Vergauwe, Evie; Barrouillet, Pierre; Camos, Valérie
2009-07-01
Examinations of interference between visual and spatial materials in working memory have suggested domain- and process-based fractionations of visuo-spatial working memory. The present study examined the role of central time-based resource sharing in visuo-spatial working memory and assessed its role in obtained interference patterns. Visual and spatial storage were combined with both visual and spatial on-line processing components in computer-paced working memory span tasks (Experiment 1) and in a selective interference paradigm (Experiment 2). The cognitive load of the processing components was manipulated to investigate its impact on concurrent maintenance for both within-domain and between-domain combinations of processing and storage components. In contrast to both domain- and process-based fractionations of visuo-spatial working memory, the results revealed that recall performance was determined by the cognitive load induced by the processing of items, rather than by the domain to which those items pertained. These findings are interpreted as evidence for a time-based resource-sharing mechanism in visuo-spatial working memory.
Hill, B D; Elliott, Emily M; Shelton, Jill T; Pella, Russell D; O'Jile, Judith R; Gouvier, W Drew
2010-03-01
Working memory is the cognitive ability to hold a discrete amount of information in mind in an accessible state for utilization in mental tasks. This cognitive ability is impaired in many clinical populations typically assessed by clinical neuropsychologists. Recently, there have been a number of theoretical shifts in the way that working memory is conceptualized and assessed in the experimental literature. This study sought to determine to what extent the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Working Memory Index (WMI) measures the construct studied in the cognitive working memory literature, whether an improved WMI could be derived from the subtests that comprise the WAIS-III, and what percentage of variance in individual WAIS-III subtests is explained by working memory. It was hypothesized that subtests beyond those currently used to form the WAIS-III WMI would be able to account for a greater percentage of variance in a working memory criterion construct than the current WMI. Multiple regression analyses (n = 180) revealed that the best predictor model of subtests for assessing working memory was composed of the Digit Span, Letter-Number Sequencing, Matrix Reasoning, and Vocabulary. The Arithmetic subtest was not a significant contributor to the model. These results are discussed in the context of how they relate to Unsworth and Engle's (2006, 2007) new conceptualization of working memory mechanisms.
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
Categorical Working Memory Representations are used in Delayed Estimation of Continuous Colors
Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J
2016-01-01
In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In two experiments we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. PMID:27797548
Categorical working memory representations are used in delayed estimation of continuous colors.
Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J
2017-01-01
In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember, and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work, we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In 2 experiments, we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-10-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Guida, Alessandro; van Dijck, Jean-Philippe; Abrahamse, Elger
2017-05-01
In a recent study, Kreitz et al. (Psychological Research 79:1034-1041, 2015) reported on a relationship between verbal working memory capacity and visuo-spatial attentional breadth. The authors hinted at attentional control to be the major link underlying this relationship. We put forward an alternative explanation by framing it within the context of a recent theory on serial order in memory: verbal item sequences entering in working memory are coded by adding a spatial context that can be derived from reading/writing habits. The observation by Kreitz et al. (Psychological Research 79:1034-1041, 2015) enriches this framework by suggesting that a larger visuo-spatial attentional breadth allows for internal coding of the verbal items in a more (spatially) distinct manner-thereby increasing working memory performance. As such, Kreitz et al. (Psychological Research 79:1034-1041, 2015) is the first study revealing a functional link between visuo-spatial attentional breadth and verbal working memory size, which strengthens spatial accounts of serial order coding in working memory.
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
Knowledge Cannot Explain the Developmental Growth of Working Memory Capacity
ERIC Educational Resources Information Center
Cowan, Nelson; Ricker, Timothy J.; Clark, Katherine M.; Hinrichs, Garrett A.; Glass, Bret A.
2015-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We…
Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children
ERIC Educational Resources Information Center
Camos, Valerie
2008-01-01
This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…
Modeling Working Memory Tasks on the Item Level
ERIC Educational Resources Information Center
Luo, Dasen; Chen, Guopeng; Zen, Fanlin; Murray, Bronwyn
2010-01-01
Item responses to Digit Span and Letter-Number Sequencing were analyzed to develop a better-refined model of the two working memory tasks using the finite mixture (FM) modeling method. Models with ordinal latent traits were found to better account for the independent sources of the variability in the tasks than those with continuous traits, and…
Chung, Dongil; Raz, Amir; Lee, Jaewon; Jeong, Jaeseung
2013-01-01
Negative priming (NP), slowing down of the response for target stimuli that have been previously exposed, but ignored, has been reported in multiple psychological paradigms including the Stroop task. Although NP likely results from the interplay of selective attention, episodic memory retrieval, working memory, and inhibition mechanisms, a comprehensive theoretical account of NP is currently unavailable. This lacuna may result from the complexity of stimuli combinations in NP. Thus, we aimed to investigate the presence of different degrees of the NP effect according to prime-probe combinations within a classic Stroop task. We recorded reaction times (RTs) from 66 healthy participants during Stroop task performance and examined three different NP subtypes, defined according to the type of the Stroop probe in prime-probe pairs. Our findings show significant RT differences among NP subtypes that are putatively due to the presence of differential disinhibition, i.e., release from inhibition. Among the several potential origins for differential subtypes of NP, we investigated the involvement of selective attention and/or working memory using a parallel distributed processing (PDP) model (employing selective attention only) and a modified PDP model with working memory (PDP-WM, employing both selective attention and working memory). Our findings demonstrate that, unlike the conventional PDP model, the PDP-WM successfully simulates different levels of NP effects that closely follow the behavioral data. This outcome suggests that working memory engages in the re-accumulation of the evidence for target response and induces differential NP effects. Our computational model complements earlier efforts and may pave the road to further insights into an integrated theoretical account of complex NP effects. PMID:24312046
Berggren, Nick; Eimer, Martin
2016-12-01
During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.
Working Memory for Linguistic and Non-linguistic Manual Gestures: Evidence, Theory, and Application.
Rudner, Mary
2018-01-01
Linguistic manual gestures are the basis of sign languages used by deaf individuals. Working memory and language processing are intimately connected and thus when language is gesture-based, it is important to understand related working memory mechanisms. This article reviews work on working memory for linguistic and non-linguistic manual gestures and discusses theoretical and applied implications. Empirical evidence shows that there are effects of load and stimulus degradation on working memory for manual gestures. These effects are similar to those found for working memory for speech-based language. Further, there are effects of pre-existing linguistic representation that are partially similar across language modalities. But above all, deaf signers score higher than hearing non-signers on an n-back task with sign-based stimuli, irrespective of their semantic and phonological content, but not with non-linguistic manual actions. This pattern may be partially explained by recent findings relating to cross-modal plasticity in deaf individuals. It suggests that in linguistic gesture-based working memory, semantic aspects may outweigh phonological aspects when processing takes place under challenging conditions. The close association between working memory and language development should be taken into account in understanding and alleviating the challenges faced by deaf children growing up with cochlear implants as well as other clinical populations.
Working Memory for Linguistic and Non-linguistic Manual Gestures: Evidence, Theory, and Application
Rudner, Mary
2018-01-01
Linguistic manual gestures are the basis of sign languages used by deaf individuals. Working memory and language processing are intimately connected and thus when language is gesture-based, it is important to understand related working memory mechanisms. This article reviews work on working memory for linguistic and non-linguistic manual gestures and discusses theoretical and applied implications. Empirical evidence shows that there are effects of load and stimulus degradation on working memory for manual gestures. These effects are similar to those found for working memory for speech-based language. Further, there are effects of pre-existing linguistic representation that are partially similar across language modalities. But above all, deaf signers score higher than hearing non-signers on an n-back task with sign-based stimuli, irrespective of their semantic and phonological content, but not with non-linguistic manual actions. This pattern may be partially explained by recent findings relating to cross-modal plasticity in deaf individuals. It suggests that in linguistic gesture-based working memory, semantic aspects may outweigh phonological aspects when processing takes place under challenging conditions. The close association between working memory and language development should be taken into account in understanding and alleviating the challenges faced by deaf children growing up with cochlear implants as well as other clinical populations. PMID:29867655
Morrell, R W; Park, D C
1993-09-01
Older adults may be disadvantaged in the performance of procedural assembly tasks because of age-related declines in working memory operations. It was hypothesized that adding illustrations to instructional text may lessen age-related performance differences by minimizing processing demands on working memory in the elderly. In the present study, younger and older adults constructed a series of 3-dimensional objects from 3 types of instructions (text only, illustration only, or text and illustrations). Results indicated that instructions consisting of text and illustrations reduced errors in construction for both age groups compared with the other formats. Younger adults, however, outperformed older adults under all instructional format conditions. Measures of spatial and verbal working memory and text comprehension ability accounted for substantial age-related variance across the different format conditions but did not fully account for the age differences observed.
Interactive Groups: Examining and Interrogating Issues of Heterogeneity and Accountability
ERIC Educational Resources Information Center
Frost, Gail; Connolly, Maureen
2009-01-01
Teachers and learners alike bring past experiences into present teaching and learning contexts. Group work is an experience that carries equal measures of joyful anticipation and mournful trepidation. Learners typically experience group work as an uneven distribution of time, competence, and accountability, and seem to have lingering memories of…
Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory
Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali
2009-01-01
Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361
Dynamic search and working memory in social recall.
Hills, Thomas T; Pachur, Thorsten
2012-01-01
What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to recall individuals from their personal social networks and measured each participant's working memory capacity. Additionally, participants provided social-category and contact-frequency information about the recalled individuals as well as information about the social proximity among the recalled individuals. On the basis of these data, we tested various computational models of memory search regarding their ability to account for the patterns in which participants recalled from social memory. Although recall patterns showed clustering based on social categories, models assuming dynamic transitions between representations cued by social proximity and frequency information predicted participants' recall patterns best-no additional explanatory power was gained from social-category information. Moreover, individual differences in the time between transitions were positively correlated with differences in working memory capacity. These results highlight the role of social proximity in structuring social memory and elucidate the role of working memory for maintaining search criteria during search within that structure.
ERIC Educational Resources Information Center
Berg, Derek H.; Hutchinson, Nancy L.
2010-01-01
This study investigated whether processing speed, short-term memory, and working memory accounted for the differential mental addition fluency between children typically achieving in arithmetic (TA) and children at-risk for failure in arithmetic (AR). Further, we drew attention to fluency differences in simple (e.g., 5 + 3) and complex (e.g., 16 +…
Ravizza, Susan M; Hazeltine, Eliot; Ruiz, Sandra; Zhu, David C
2011-04-15
Patients with damage to the left temporoparietal junction (TPJ) have a low verbal span without concomitant deficits in speech perception. This pattern of cognitive impairment is taken as evidence for a dedicated phonological buffer that plays little role in perception (storage-specific account). In contrast, other research suggests that items are maintained and perceived in the same regions (sensory-specific account). In an fMRI study, we demonstrate that the left TPJ does not respond in a way predicted of a phonological buffer; that is, activity in this region is not sustained during encoding or maintenance. Instead, a region in the superior temporal gyrus that has been associated with both speech perception and production demonstrated the expected profile of a store: it was more active in the verbal condition than the object condition and was active during both encoding and maintenance. These results support the sensory-specific account of short term memory rather than the storage-specific account. Based on the pattern of activity in the left TPJ, we suggest that the impairment of verbal working memory observed in patients with TPJ damage may be due to diminished attentional processes rather than reduced storage capacity. Copyright © 2010 Elsevier Inc. All rights reserved.
The cost of misremembering: Inferring the loss function in visual working memory.
Sims, Chris R
2015-03-04
Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.
Verbal Working Memory in Children With Cochlear Implants
Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.
2017-01-01
Purpose Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Results Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. Conclusions The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code. PMID:29075747
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete’s domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account. PMID:25713552
Reevaluating the Sensory Account of Visual Working Memory Storage.
Xu, Yaoda
2017-10-01
Recent human fMRI pattern-decoding studies have highlighted the involvement of sensory areas in visual working memory (VWM) tasks and argue for a sensory account of VWM storage. In this review, evidence is examined from human behavior, fMRI decoding, and transcranial magnetic stimulation (TMS) studies, as well as from monkey neurophysiology studies. Contrary to the prevalent view, the available evidence provides little support for the sensory account of VWM storage. Instead, when the ability to resist distraction and the existence of top-down feedback are taken into account, VWM-related activities in sensory areas seem to reflect feedback signals indicative of VWM storage elsewhere in the brain. Collectively, the evidence shows that prefrontal and parietal regions, rather than sensory areas, play more significant roles in VWM storage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computational principles of working memory in sentence comprehension.
Lewis, Richard L; Vasishth, Shravan; Van Dyke, Julie A
2006-10-01
Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of cross-linguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.
Working Memory Inefficiency: Minimal Information Is Utilized in Visual Recognition Tasks
ERIC Educational Resources Information Center
Chen, Zhijian; Cowan, Nelson
2013-01-01
Can people make perfect use of task-relevant information in working memory (WM)? Specifically, when questioned about an item in an array that does not happen to be in WM, can participants take into account other items that are in WM, eliminating them as response candidates? To address this question, an ideal-responder model that assumes perfect…
ERIC Educational Resources Information Center
Pereiro Rozas, Arturo X.; Juncos-Rabadan, Onesimo; Gonzalez, Maria Soledad Rodriguez
2008-01-01
Processing speed, inhibitory control and working memory have been identified as the main possible culprits of age-related cognitive decline. This article describes a study of their interrelationships and dependence on age, including exploration of whether any of them mediates between age and the others. We carried out a LISREL analysis of the…
ERIC Educational Resources Information Center
Swanson, H. Lee; Orosco, Michael J.; Lussier, Cathy M.; Gerber, Michael M.; Guzman-Orth, Danielle A.
2011-01-01
In this study, we explored whether the contribution of working memory (WM) to children's (N = 471) 2nd language (L2) reading and language acquisition was best accounted for by processing efficiency at a phonological level and/or by executive processes independent of phonological processing. Elementary school children (Grades 1, 2, & 3) whose…
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Bender, Andrew R.; Raz, Naftali
2012-01-01
Ability to form new associations between unrelated items is particularly sensitive to aging, but the reasons for such differential vulnerability are unclear. In this study, we examined the role of objective and subjective factors (working memory and beliefs about memory strategies) on differential relations of age with recognition of items and associations. Healthy adults (N = 100, age 21 to 79) studied word pairs, completed item and association recognition tests, and rated the effectiveness of shallow (e.g., repetition) and deep (e.g., imagery or sentence generation) encoding strategies. Advanced age was associated with reduced working memory (WM) capacity and poorer associative recognition. In addition, reduced WM capacity, beliefs in the utility of ineffective encoding strategies, and lack of endorsement of effective ones were independently associated with impaired associative memory. Thus, maladaptive beliefs about memory in conjunction with reduced cognitive resources account in part for differences in associative memory commonly attributed to aging. PMID:22251381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less
Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En
2015-05-01
The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.
Seidman, Larry J; Pousada-Casal, Andrea; Scala, Silvia; Meyer, Eric C; Stone, William S; Thermenos, Heidi W; Molokotos, Elena; Agnew-Blais, Jessica; Tsuang, Ming T; Faraone, Stephen V
2016-11-01
The degree of overlap between schizophrenia (SCZ) and affective psychosis (AFF) has been a recurring question since Kraepelin's subdivision of the major psychoses. Studying nonpsychotic relatives allows a comparison of disorder-associated phenotypes, without potential confounds that can obscure distinctive features of the disorder. Because attention and working memory have been proposed as potential endophenotypes for SCZ and AFF, we compared these cognitive features in individuals at familial high-risk (FHR) for the disorders. Young, unmedicated, first-degree relatives (ages, 13-25 years) at FHR-SCZ (n=41) and FHR-AFF (n=24) and community controls (CCs, n=54) were tested using attention and working memory versions of the Auditory Continuous Performance Test. To determine if schizotypal traits or current psychopathology accounted for cognitive deficits, we evaluated psychosis proneness using three Chapman Scales, Revised Physical Anhedonia, Perceptual Aberration, and Magical Ideation, and assessed psychopathology using the Hopkins Symptom Checklist -90 Revised. Compared to controls, the FHR-AFF sample was significantly impaired in auditory vigilance, while the FHR-SCZ sample was significantly worse in working memory. Both FHR groups showed significantly higher levels of physical anhedonia and some psychopathological dimensions than controls. Adjusting for physical anhedonia, phobic anxiety, depression, psychoticism, and obsessive-compulsive symptoms eliminated the FHR-AFF vigilance effects but not the working memory deficits in FHR-SCZ. The working memory deficit in FHR-SZ was the more robust of the cognitive impairments after accounting for psychopathological confounds and is supported as an endophenotype. Examination of larger samples of people at familial risk for different psychoses remains necessary to confirm these findings and to clarify the role of vigilance in FHR-AFF. (JINS, 2016, 22, 1026-1037).
Associations Between White Matter Microstructure and Infants’ Working Memory
Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.
2013-01-01
Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623
Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P
2013-06-04
Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.
ERIC Educational Resources Information Center
Lin, Wei-Lun; Lien, Yunn-Wen
2013-01-01
This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…
ERIC Educational Resources Information Center
Eichorn, Naomi; Marton, Klara; Schwartz, Richard G.; Melara, Robert D.; Pirutinsky, Steven
2016-01-01
Purpose: The present study examined whether engaging working memory in a secondary task benefits speech fluency. Effects of dual-task conditions on speech fluency, rate, and errors were examined with respect to predictions derived from three related theoretical accounts of disfluencies. Method: Nineteen adults who stutter and twenty adults who do…
The contribution of temporary storage and executive processes to category learning.
Wang, Tengfei; Ren, Xuezhu; Schweizer, Karl
2015-09-01
Three distinctly different working memory processes, temporary storage, mental shifting and inhibition, were proposed to account for individual differences in category learning. A sample of 213 participants completed a classic category learning task and two working memory tasks that were experimentally manipulated for tapping specific working memory processes. Fixed-links models were used to decompose data of the category learning task into two independent components representing basic performance and improvement in performance in category learning. Processes of working memory were also represented by fixed-links models. In a next step the three working memory processes were linked to components of category learning. Results from modeling analyses indicated that temporary storage had a significant effect on basic performance and shifting had a moderate effect on improvement in performance. In contrast, inhibition showed no effect on any component of the category learning task. These results suggest that temporary storage and the shifting process play different roles in the course of acquiring new categories. Copyright © 2015 Elsevier B.V. All rights reserved.
Kolata, Stefan; Light, Kenneth; Townsend, David A; Hale, Gregory; Grossman, Henya C; Matzel, Louis D
2005-11-01
Up to 50% of an individuals' performance across a wide variety of distinct cognitive tests can be accounted for by a single factor (i.e., "general intelligence"). Despite its ubiquity, the processes or mechanisms regulating this factor are a matter of considerable debate. Although it has been hypothesized that working memory may impact cognitive performance across various domains, tests have been inconclusive due to the difficulty in isolating working memory from its overlapping operations, such as verbal ability. We address this problem using genetically diverse mice, which exhibit a trait analogous to general intelligence. The general cognitive abilities of CD-1 mice were found to covary with individuals' working memory capacity, but not with variations in long-term retention. These results provide evidence that independent of verbal abilities, variations in working memory are associated with general cognitive abilities, and further, suggest a conservation across species of mechanisms and/or processes that regulate cognitive abilities.
Choi, Koeun; Kirkorian, Heather L; Pempek, Tiffany A
2017-04-17
Researchers tested the impact of contextual mismatch, proactive interference, and working memory (WM) on toddlers' transfer across contexts. Forty-two toddlers (27-34 months) completed four object-retrieval trials, requiring memory updating on Trials 2-4. Participants watched hiding events on a tablet computer. Search performance was tested using another tablet (match) or a felt board (mismatch). WM was assessed. On earlier search trials, WM predicted transfer in both conditions, and toddlers in the match condition outperformed those in the mismatch condition; however, the benefit of contextual match and WM decreased over trials. Contextual match apparently increased proactive interference on later trials. Findings are interpreted within existing accounts of the transfer deficit, and a combined account is proposed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L
2016-12-14
Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.
Monkeys and humans take local uncertainty into account when localizing a change.
Devkar, Deepna; Wright, Anthony A; Ma, Wei Ji
2017-09-01
Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an "uncertainty-indifferent" decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans.
Monkeys and humans take local uncertainty into account when localizing a change
Devkar, Deepna; Wright, Anthony A.; Ma, Wei Ji
2017-01-01
Since sensory measurements are noisy, an observer is rarely certain about the identity of a stimulus. In visual perception tasks, observers generally take their uncertainty about a stimulus into account when doing so helps task performance. Whether the same holds in visual working memory tasks is largely unknown. Ten human and two monkey subjects localized a single change in orientation between a sample display containing three ellipses and a test display containing two ellipses. To manipulate uncertainty, we varied the reliability of orientation information by making each ellipse more or less elongated (two levels); reliability was independent across the stimuli. In both species, a variable-precision encoding model equipped with an “uncertainty–indifferent” decision rule, which uses only the noisy memories, fitted the data poorly. In both species, a much better fit was provided by a model in which the observer also takes the levels of reliability-driven uncertainty associated with the memories into account. In particular, a measured change in a low-reliability stimulus was given lower weight than the same change in a high-reliability stimulus. We did not find strong evidence that observers took reliability-independent variations in uncertainty into account. Our results illustrate the importance of studying the decision stage in comparison tasks and provide further evidence for evolutionary continuity of working memory systems between monkeys and humans. PMID:28877535
Knowledge Cannot Explain the Developmental Growth of Working Memory Capacity
Cowan, Nelson; Ricker, Timothy J.; Clark, Katherine M.; Hinrichs, Garrett A.; Glass, Bret A.
2014-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We document developmental increases in working memory for visual arrays of English letters versus unfamiliar characters. Although letter knowledge played a special role in development between the ages of 6 to 8 years, children with adequate letter knowledge showed practically the same developmental growth in normalized functions for letters and unfamiliar characters. The results contribute to a growing body of evidence that the developmental improvement in working memory does not wholly stem from supporting processes such as encoding, mnemonic strategies, and knowledge. PMID:24942111
Work stealing for GPU-accelerated parallel programs in a global address space framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram
Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less
Low working memory capacity is only spuriously related to poor reading comprehension.
Van Dyke, Julie A; Johns, Clinton L; Kukona, Anuenue
2014-06-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. Copyright © 2014 Elsevier B.V. All rights reserved.
The relationship of working memory, inhibition, and response variability in child psychopathology.
Verté, Sylvie; Geurts, Hilde M; Roeyers, Herbert; Oosterlaan, Jaap; Sergeant, Joseph A
2006-02-15
The aim of this study was to investigate the relationship between working memory and inhibition in children with attention deficit hyperactivity disorder (ADHD), high-functioning autism (HFA), and Tourette syndrome (TS), compared to normally developing children. Furthermore, the contribution of variation in processing speed on working memory and inhibition was investigated in these childhood psychopathologies. Four groups of children are reported in this study: 65 children with ADHD, 66 children with HFA, 24 children with TS, and 82 normal control children. All children were in the age range of 6-13 years. The relationship between working memory and inhibition was similar in children with ADHD, HFA, TS, and normally developing children. The relationship between both domains did not alter significantly for any of the groups, when variation in processing speed was taken into account. More symptoms of hyperactivity/impulsivity are related to a poorer inhibitory process and greater response variability. More symptoms of autism are related to a poorer working memory process. The current study showed that working memory, inhibition, and response variability, are distinct, but related cognitive domains in children with developmental psychopathologies. Research with experimental manipulations is needed to tackle the exact relationship between these cognitive domains.
Gold, James M; Robinson, Benjamin; Leonard, Carly J; Hahn, Britta; Chen, Shuo; McMahon, Robert P; Luck, Steven J
2017-11-11
People with schizophrenia demonstrate impairments in selective attention, working memory, and executive function. Given the overlap in these constructs, it is unclear if these represent distinct impairments or different manifestations of one higher-order impairment. To examine this question, we administered tasks from the basic cognitive neuroscience literature to measure visual selective attention, working memory capacity, and executive function in 126 people with schizophrenia and 122 healthy volunteers. Patients demonstrated deficits on all tasks with the exception of selective attention guided by strong bottom-up inputs. Although the measures of top-down control of selective attention, working memory, and executive function were all intercorrelated, several sources of evidence indicate that working memory and executive function are separate sources of variance. Specifically, both working memory and executive function independently contributed to the discrimination of group status and independently accounted for variance in overall general cognitive ability as assessed by the MATRICS battery. These two cognitive functions appear to be separable features of the cognitive impairments observed in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Rojas, Manuel J.; Cardenas P., Fernando
2017-01-01
Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level. PMID:28503368
Linking working memory and long-term memory: a computational model of the learning of new words.
Jones, Gary; Gobet, Fernand; Pine, Julian M
2007-11-01
The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children's vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model's behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
Learning STEM through Integrative Visual Representations
ERIC Educational Resources Information Center
Virk, Satyugjit Singh
2013-01-01
Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with…
Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M
2016-02-01
In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.
Sandberg, Petra; Rönnlund, Michael; Derwinger-Hallberg, Anna; Stigsdotter Neely, Anna
2016-10-01
The study investigated the relationship between cognitive factors and gains in number recall following training in a number-consonant mnemonic in a sample of 112 older adults (M = 70.9 years). The cognitive factors examined included baseline episodic memory, working memory, processing speed, and verbal knowledge. In addition, predictors of maintenance of gains to a follow-up assessment, eight months later, were examined. Whereas working memory was a prominent predictor of baseline recall, the magnitude of gains in recall from pre- to post-test assessments were predicted by baseline episodic memory, processing speed, and verbal knowledge. Verbal knowledge was the only significant predictor of maintenance. Collectively, the results indicate the need to consider multiple factors to account for individual differences in memory plasticity. The potential contribution of additional factors to individual differences in memory plasticity is discussed.
Low working memory capacity is only spuriously related to poor reading comprehension
Van Dyke, Julie A.; Johns, Clinton L.; Kukona, Anuenue
2014-01-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order—but not simple verbal memory or working memory—were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. PMID:24657820
Role of Prefrontal Persistent Activity in Working Memory
Riley, Mitchell R.; Constantinidis, Christos
2016-01-01
The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between BOLD activation and spiking activity findings, and point out that fMRI methods do not currently have the spatial resolution necessary to decode information within the prefrontal cortex, which is likely organized at the micrometer scale. Therefore, we make the case that prefrontal persistent activity is both necessary and sufficient for the maintenance of information in working memory. PMID:26778980
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Maehler, Claudia; Schuchardt, Kirsten
2016-11-01
Given the well-known relation between intelligence and school achievement we expect children with normal intelligence to perform well at school and those with intelligence deficits to meet learning problems. But, contrary to these expectations, some children do not perform according to these predictions: children with normal intelligence but sub-average school achievement and children with lower intelligence but average success at school. Yet, it is an open question how the unexpected failure or success can be explained. This study examined the role of working memory sensu Baddeley (1986) for school achievement, especially for unexpected failure or success. An extensive working memory battery with a total of 14 tasks for the phonological loop, the visual-spatial sketchpad and central executive skills was presented in individual sessions to four groups of children differing in IQ (normal vs. low) and school success (good vs. poor). Results reveal that children with sub-average school achievement showed deficits in working memory functioning, irrespective of intelligence. By contrast, children with regular school achievement did not show deficits in working memory, again irrespective of intelligence. Therefore working memory should be considered an important predictor of academic success that can lead both to unexpected overachievement and failure at school. Individual working memory competencies should be taken into account with regard to diagnosis and intervention for children with learning problems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geiger, Lena S; Moessnang, Carolin; Schäfer, Axel; Zang, Zhenxiang; Zangl, Maria; Cao, Hengyi; van Raalten, Tamar R; Meyer-Lindenberg, Andreas; Tost, Heike
2018-05-11
The functional role of the basal ganglia (BG) in the gating of suitable motor responses to the cortex is well established. Growing evidence supports an analogous role of the BG during working memory encoding, a task phase in which the "input-gating" of relevant materials (or filtering of irrelevant information) is an important mechanism supporting cognitive capacity and the updating of working memory buffers. One important aspect of stimulus relevance is the novelty of working memory items, a quality that is understudied with respect to its effects on corticostriatal function and connectivity. To this end, we used functional magnetic resonance imaging (fMRI) in 74 healthy volunteers performing an established Sternberg working memory task with different task phases (encoding vs. retrieval) and degrees of stimulus familiarity (novel vs. previously trained). Activation analyses demonstrated a highly significant engagement of the anterior striatum, in particular during the encoding of novel working memory items. Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a selective positive modulatory influence of novelty encoding on the connection from the dorsolateral prefrontal cortex (DLPFC) to the anterior striatum. These data extend prior research by further underscoring the relevance of the BG for human cognitive function and provide a mechanistic account of the DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the "input-gating" of novel working memory materials.
Time limits during visual foraging reveal flexible working memory templates.
Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni
2018-06-01
During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Sex differences in visual-spatial working memory: A meta-analysis.
Voyer, Daniel; Voyer, Susan D; Saint-Aubin, Jean
2017-04-01
Visual-spatial working memory measures are widely used in clinical and experimental settings. Furthermore, it has been argued that the male advantage in spatial abilities can be explained by a sex difference in visual-spatial working memory. Therefore, sex differences in visual-spatial working memory have important implication for research, theory, and practice, but they have yet to be quantified. The present meta-analysis quantified the magnitude of sex differences in visual-spatial working memory and examined variables that might moderate them. The analysis used a set of 180 effect sizes from healthy males and females drawn from 98 samples ranging in mean age from 3 to 86 years. Multilevel meta-analysis was used on the overall data set to account for non-independent effect sizes. The data also were analyzed in separate task subgroups by means of multilevel and mixed-effects models. Results showed a small but significant male advantage (mean d = 0.155, 95 % confidence interval = 0.087-0.223). All the tasks produced a male advantage, except for memory for location, where a female advantage emerged. Age of the participants was a significant moderator, indicating that sex differences in visual-spatial working memory appeared first in the 13-17 years age group. Removing memory for location tasks from the sample affected the pattern of significant moderators. The present results indicate a male advantage in visual-spatial working memory, although age and specific task modulate the magnitude and direction of the effects. Implications for clinical applications, cognitive model building, and experimental research are discussed.
An Ideal Observer Analysis of Visual Working Memory
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2013-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744
Brandenburg, Janin; Klesczewski, Julia; Fischbach, Anne; Schuchardt, Kirsten; Büttner, Gerhard; Hasselhorn, Marcus
2015-01-01
In transparent orthographies like German, isolated learning disabilities in either reading or spelling are common and occur as often as a combined reading and spelling disability. However, most issues surrounding the cognitive causes of these isolated or combined literacy difficulties are yet unresolved. Recently, working memory dysfunctions have been demonstrated to be promising in explaining the emergence of literacy difficulties. Thus, we applied a 2 (reading disability: yes vs. no) × 2 (spelling disability: yes vs. no) factorial design to examine distinct and overlapping working memory profiles associated with learning disabilities in reading versus spelling. Working memory was assessed in 204 third graders, and multivariate analyses of variance were conducted for each working memory component. Children with spelling disability suffered from more pronounced phonological loop impairments than those with reading disability. In contrast, domain-general central-executive dysfunctions were solely associated with reading disability, but not with spelling disability. Concerning the visuospatial sketchpad, no impairments were found. In sum, children with reading disability and those with spelling disability seem to be characterized by different working memory profiles. Thus, it is important to take both reading and spelling into account when investigating cognitive factors of literacy difficulties in transparent orthographies. © Hammill Institute on Disabilities 2014.
Differences in brain morphology and working memory capacity across childhood.
Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E
2018-05-01
Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Girls Can Play Ball: Stereotype Threat Reduces Variability in a Motor Skill
Huber, Meghan E.; Brown, Adam J.; Sternad, Dagmar
2016-01-01
The majority of research on stereotype threat shows what is expected: threat debilitates performance. However, facilitation is also possible, although seldom reported. This study investigated how stereotype threat influences novice females when performing the sensorimotor task of bouncing a ball to target. We tested the predictions of two prevailing accounts for debilitation and facilitation due to ST effects: working memory and mere effort. Experimental results showed that variability in performance decreased more in stigmatized females than in control females, consistent with the prediction of the mere effort account, but inconsistent with the working memory account. These findings suggest that stereotype threat effects may be predicated upon the correctness of the dominant motor behavior rather than on a novice-expert distinction or task difficulty. Further, a comprehensive understanding should incorporate the fact that stereotype threat can facilitate, as well as debilitate, performance. PMID:27249638
Girls can play ball: Stereotype threat reduces variability in a motor skill.
Huber, Meghan E; Brown, Adam J; Sternad, Dagmar
2016-09-01
The majority of research on stereotype threat shows what is expected: threat debilitates performance. However, facilitation is also possible, although seldom reported. This study investigated how stereotype threat influences novice females when performing the sensorimotor task of bouncing a ball to a target. We tested the predictions of two prevailing accounts for debilitation and facilitation due to sterotype threat effects: working memory and mere effort. Experimental results showed that variability in performance decreased more in stigmatized females than in control females, consistent with the prediction of the mere effort account, but inconsistent with the working memory account. These findings suggest that stereotype threat effects may be predicated upon the correctness of the dominant motor behavior, rather than on a novice-expert distinction or task difficulty. Further, a comprehensive understanding should incorporate the fact that stereotype threat can facilitate, as well as debilitate, performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113
Lerch, Rachel A; Sims, Chris R
2016-06-01
Limitations in visual working memory (VWM) have been extensively studied in psychophysical tasks, but not well understood in terms of how these memory limits translate to performance in more natural domains. For example, in reaching to grasp an object based on a spatial memory representation, overshooting the intended target may be more costly than undershooting, such as when reaching for a cup of hot coffee. The current body of literature lacks a detailed account of how the costs or consequences of memory error influence what we encode in visual memory and how we act on the basis of remembered information. Here, we study how externally imposed monetary costs influence behavior in a motor decision task that involves reach planning based on recalled information from VWM. We approach this from a decision theoretic perspective, viewing decisions of where to aim in relation to the utility of their outcomes given the uncertainty of memory representations. Our results indicate that subjects accounted for the uncertainty in their visual memory, showing a significant difference in their reach planning when monetary costs were imposed for memory errors. However, our findings indicate that subjects memory representations per se were not biased by the imposed costs, but rather subjects adopted a near-optimal post-mnemonic decision strategy in their motor planning.
Brébion, G; Stephan-Otto, C; Huerta-Ramos, E; Usall, J; Perez Del Olmo, M; Contel, M; Haro, J M; Ochoa, S
2014-10-01
Verbal working memory span is decreased in patients with schizophrenia, and this might contribute to impairment in higher cognitive functions as well as to the formation of certain clinical symptoms. Processing speed has been identified as a crucial factor in cognitive efficiency in this population. We tested the hypothesis that decreased processing speed underlies the verbal working memory deficit in patients and mediates the associations between working memory span and clinical symptoms. Forty-nine schizophrenia inpatients recruited from units for chronic and acute patients, and forty-five healthy participants, were involved in the study. Verbal working memory span was assessed by means of the letter-number span. The Digit Copy test was used to assess motor speed, and the Digit Symbol Substitution Test to assess cognitive speed. The working memory span was significantly impaired in patients (F(1,90)=4.6, P<0.05). However, the group difference was eliminated when either the motor or the cognitive speed measure was controlled (F(1,89)=0.03, P=0.86, and F(1,89)=0.03, P=0.88). In the patient group, working memory span was significantly correlated with negative symptoms (r=-0.52, P<0.0001) and thought disorganisation (r=-0.34, P<0.025) scores. Regression analyses showed that the association with negative symptoms was no longer significant when the motor speed measure was controlled (β=-0.12, P=0.20), while the association with thought disorganisation was no longer significant when the cognitive speed measure was controlled (β=-0.10, P=0.26). Decrement in motor and cognitive speed plays a significant role in both the verbal working memory impairment observed in patients and the associations between verbal working memory impairment and clinical symptoms. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E
2016-08-24
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.
Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate
2016-01-01
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180
When Does Length Cause the Word Length Effect?
ERIC Educational Resources Information Center
Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.
2011-01-01
The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…
How Can One Learn Mathematical Word Problems in a Second Language? A Cognitive Load Perspective
ERIC Educational Resources Information Center
Moussa-Inaty, Jase; Causapin, Mark; Groombridge, Timothy
2015-01-01
Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one's native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a…
Accounting for Individual Variability in Inversion Shortcut Use
ERIC Educational Resources Information Center
Dube, Adam K.; Robinson, Katherine M.
2010-01-01
This study investigated whether children's inversion shortcut use (i.e., reasoning that no calculations are required for the problem 4 x 8 divided by 8, as the answer is the first number) is related to their analogical reasoning ability, short-term memory capacity, and working memory capacity. Children from Grades 6 and 8 solved multiplication and…
Gillies, Val; Harden, Angela; Johnson, Katherine; Reavey, Paula; Strange, Vicki; Willig, Carla
2004-03-01
The research presented in this paper uses memory work as a method to explore six women's collective constructions of two embodied practices, sweating and pain. The paper identifies limitations in the ways in which social constructionist research has theorized the relationship between discourse and materiality, and it proposes an approach to the study of embodiment which enjoins, rather than bridges, the discursive and the non-discursive. The paper presents an analysis of 25 memories of sweating and pain which suggests that Cartesian dualism is central to the women's accounts of their experiences. However, such dualism does not operate as a stable organizing principle. Rather, it offers two strategies for the performance of a split between mind and body. The paper traces the ways in which dualism can be both functional and restrictive, and explores the tensions between these two forms. The paper concludes by identifiying opportunities and limitations associated with memory work as a method for studying embodiment.
Cross-modal working memory binding and word recognition skills: how specific is the link?
Wang, Shinmin; Allen, Richard J
2018-04-01
Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.
Assessing the associative deficit of older adults in long-term and short-term/working memory.
Chen, Tina; Naveh-Benjamin, Moshe
2012-09-01
Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.
Crocker, N.; Riley, E.P.; Mattson, S.N.
2014-01-01
Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323
Crocker, Nicole; Riley, Edward P; Mattson, Sarah N
2015-01-01
The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Subjects were 56 children (29 AE, 27 CON) who were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory, and visual memory data were entered together on Step 1 followed by group on Step 2, and the interaction terms on Step 3. Model 1 accounted for a significant amount of variance in both mathematics achievement measures; however, model fit improved with the addition of group on Step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-01-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430
Knowledge cannot explain the developmental growth of working memory capacity.
Cowan, Nelson; Ricker, Timothy J; Clark, Katherine M; Hinrichs, Garrett A; Glass, Bret A
2015-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We document developmental increases in working memory for visual arrays of English letters versus unfamiliar characters. Although letter knowledge played a special role in development between the ages of 6 and 8 years, children with adequate letter knowledge showed practically the same developmental growth in normalized functions for letters and unfamiliar characters. The results contribute to a growing body of evidence that the developmental improvement in working memory does not wholly stem from supporting processes such as encoding, mnemonic strategies, and knowledge. A video abstract is available at: https://www.youtube.com/watch?v=LJdqErLR2Hs&feature=youtu.be. © 2014 John Wiley & Sons Ltd.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Hanson, Jamie L.; Chung, Moo K.; Avants, Brian B.; Rudolph, Karen D.; Shirtcliff, Elizabeth A.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.
2012-01-01
A large corpus of research indicates exposure to stress impairs cognitive abilities, specifically executive functioning dependent on the prefrontal cortex (PFC). We collected structural MRI scans (n=61), well-validated assessments of executive functioning, and detailed interviews assessing stress exposure in humans, to examine whether cumulative life stress affected brain morphometry and one type of executive functioning, spatial working memory, during adolescence—a critical time of brain development and reorganization. Analysis of variations in brain structure revealed that cumulative life stress and spatial working memory were related to smaller volumes in the PFC, specifically prefrontal gray and white matter between the anterior cingulate and the frontal poles. Mediation analyses revealed that individual differences in prefrontal volumes accounted for the association between cumulative life stress and spatial working memory. These results suggest that structural changes in the PFC may serve as a mediating mechanism through which greater cumulative life stress engenders decrements in cognitive functioning. PMID:22674267
Working memory capacity and self-repair behavior in first and second language oral production.
Mojavezi, Ahmad; Ahmadian, Mohammad Javad
2014-06-01
This study explores the relationship between working memory capacity and self-repair behavior in first (L1) and second language (L2) oral production. 40 Iranian intermediate EFL learners participated in this study. Their working memory capacity was measured via a version of listening span test. The participants performed two oral narrative tasks, one in their L2 (English) and one in their L1 (Farsi). Then, they were asked to listen to their own narrations and comment on the repairs they made in their speech. Self-repairs were analyzed and categorized taking into account the participants' stimulated recall comments. Results of the analyses pointed to positive correlations between the participants' working memory capacity and self-repairs in the L2 but not in the L1. Also, results revealed that whereas in the case of L1, the participants effectuated different-information and appropriacy repairs more than error-repairs, in the case of L2 more error-repairs were made.
Attention to Attributes and Objects in Working Memory
Cowan, Nelson; Blume, Christopher L.; Saults, J. Scott
2013-01-01
It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence of appropriate mathematical models to estimate the number of items in working memory in different stimulus conditions. We re-examined working memory limits in two experiments with a wide array of conditions involving color and shape attributes, relying on a set of new models to fit various stimulus situations. In Experiment 2, a new procedure allowed identical retrieval conditions across different conditions of attention at encoding. The results show that multiple attributes compete for attention, but that retaining the binding between attributes is accomplished only by retaining the attributes themselves. We propose a theoretical account in which a fixed object capacity limit contains within it the possibility of the incomplete retention of object attributes, depending on the direction of attention. PMID:22905929
Working memory and the design of health materials: a cognitive factors perspective.
Wilson, Elizabeth A H; Wolf, Michael S
2009-03-01
Working memory and other supportive cognitive processes involved in learning are reviewed in the context of developing patient education materials. We specifically focus on the impact of certain design factors such as text format and syntax, the inclusion of images, and the choice of modality on individuals' ability to understand and remember health information. A selective review of relevant cognitive and learning theories is discussed with regard to their potential impact on the optimal design of health materials. Working memory is measured as an individual's capacity to hold and manipulate information in active consciousness. It is limited by necessity, and well-designed health materials can effectively minimize extraneous cognitive demands placed on individuals, making working memory resources more available to better process content-related information. Further research is needed to evaluate specific design principles and identify ideal uses of print versus video-based forms of communication for conveying information. The process of developing health materials should account for the cognitive demands that extrinsic factors such as modality place on patients.
Gordon-Salant, Sandra; Cole, Stacey Samuels
2016-01-01
This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.
Etiological Distinction of Working Memory Components in Relation to Mathematics
Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.
2014-01-01
Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures. PMID:29311875
Vermeij, Anouk; van Beek, Arenda H E A; Reijs, Babette L R; Claassen, Jurgen A H R; Kessels, Roy P C
2014-01-01
Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures.
Working-memory capacity protects model-based learning from stress.
Otto, A Ross; Raio, Candace M; Chiang, Alice; Phelps, Elizabeth A; Daw, Nathaniel D
2013-12-24
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive-dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response--believed to have detrimental effects on prefrontal cortex function--should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress.
Working-memory capacity protects model-based learning from stress
Otto, A. Ross; Raio, Candace M.; Chiang, Alice; Phelps, Elizabeth A.; Daw, Nathaniel D.
2013-01-01
Accounts of decision-making have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental advances suggest that this classic distinction between habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning, called model-free and model-based learning. Popular neurocomputational accounts of reward processing emphasize the involvement of the dopaminergic system in model-free learning and prefrontal, central executive–dependent control systems in model-based choice. Here we hypothesized that the hypothalamic-pituitary-adrenal (HPA) axis stress response—believed to have detrimental effects on prefrontal cortex function—should selectively attenuate model-based contributions to behavior. To test this, we paired an acute stressor with a sequential decision-making task that affords distinguishing the relative contributions of the two learning strategies. We assessed baseline working-memory (WM) capacity and used salivary cortisol levels to measure HPA axis stress response. We found that stress response attenuates the contribution of model-based, but not model-free, contributions to behavior. Moreover, stress-induced behavioral changes were modulated by individual WM capacity, such that low-WM-capacity individuals were more susceptible to detrimental stress effects than high-WM-capacity individuals. These results enrich existing accounts of the interplay between acute stress, working memory, and prefrontal function and suggest that executive function may be protective against the deleterious effects of acute stress. PMID:24324166
Ebert, Kerry Danahy
2014-01-01
Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. To explore the relationship between a measure of non-verbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and non-word repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, non-word repetition and NVWM. NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by non-word repetition. Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Non-verbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. © 2014 Royal College of Speech and Language Therapists.
Who's Who? Memory updating and character reference in children's narratives.
Whitely, Cristy; Colozzo, Paola
2013-10-01
The capacity to update and monitor the contents of working memory is an executive function presumed to play a critical role in language processing. The current study used an individual differences approach to consider the relationship between memory updating and accurate reference to story characters in the narratives of typically developing children. English-speaking children from kindergarten to grade 2 ( N = 63; M age = 7.0 years) completed updating tasks, short-term memory tasks, and narrative productions. The authors used multiple regression to test whether updating accounted for independent variability in referential adequacy. The capacity to update working memory was related to adequate character reference beyond the effects of age and of short-term memory capacity, with the strongest relationship emerging for maintaining reference over multiple utterances. This individual differences study is the first to show a link between updating and performance in a discourse production task for young school-age children. The findings contribute to the growing body of research investigating the role of working memory in shaping language production. This study invites extension to children of different ages and language abilities as well as to other language production tasks.
Ebert, Kerry Danahy
2015-01-01
Background Sentence repetition performance is attracting increasing interest as a valuable clinical marker for Primary (or Specific) Language Impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but nonverbal memory has not yet been considered. Aims The purpose of this study was to explore the relationship between a measure of nonverbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Methods & Procedures Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and nonword repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, nonword repetition, and NVWM. Outcomes & Results NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by nonword repetition. Conclusions & Implications Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Nonverbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. PMID:24894308
Spatial Working Memory Ability in Individuals at Ultra High Risk for Psychosis
Goghari, Vina M.; Brett, Caroline; Tabraham, Paul; Johns, Louise; Valmaggia, Lucia; Broome, Matthew; Woolley, James; Bramon, Elvira; Howes, Oliver
2014-01-01
The goal of this investigation was to clarify the nature of spatial working memory difficulties in individuals at ultra high risk (UHR) for psychosis. We evaluated spatial working memory and intelligence in 96 individuals at UHR for psychosis, 28 patients with first episode psychosis (FEP), and 23 healthy controls. Fourteen UHR individuals developed a psychotic disorder during follow-up. Compared to controls, the UHR group was impaired in both the short-term maintenance of material and in the effective use of strategy, but not more immediate memory. These impairments were not as severe as those in the FEP group, as the UHR group performed better than the FEP group. A similar pattern of results was found for the intelligence measures. Discriminant function analyses demonstrated short-term maintenance of material significantly differentiated the UHR and healthy control groups even when accounting for full scale intelligence quotient (IQ); whereas full scale IQ significantly differentiated the UHR and FEP groups and FEP and control groups. Notably, within the UHR group, impaired spatial working memory performance was associated with lower global functioning, but not full scale IQ. The subgroup of UHR individuals who later developed psychosis was not significantly more impaired on any aspect of working memory performance than the group of UHR individuals who did not develop psychosis. Given, the relationship between spatial working memory deficits and functional outcome, these results indicate that cognitive remediation could be useful in individuals at UHR for psychosis to potentially improve functioning. PMID:24398256
Retest effects in working memory capacity tests: A meta-analysis.
Scharfen, Jana; Jansen, Katrin; Holling, Heinz
2018-06-15
The repeated administration of working memory capacity tests is common in clinical and research settings. For cognitive ability tests and different neuropsychological tests, meta-analyses have shown that they are prone to retest effects, which have to be accounted for when interpreting retest scores. Using a multilevel approach, this meta-analysis aims at showing the reproducibility of retest effects in working memory capacity tests for up to seven test administrations, and examines the impact of the length of the test-retest interval, test modality, equivalence of test forms and participant age on the size of retest effects. Furthermore, it is assessed whether the size of retest effects depends on the test paradigm. An extensive literature search revealed 234 effect sizes from 95 samples and 68 studies, in which healthy participants between 12 and 70 years repeatedly performed a working memory capacity test. Results yield a weighted average of g = 0.28 for retest effects from the first to the second test administration, and a significant increase in effect sizes was observed up to the fourth test administration. The length of the test-retest interval and publication year were found to moderate the size of retest effects. Retest effects differed between the paradigms of working memory capacity tests. These findings call for the development and use of appropriate experimental or statistical methods to address retest effects in working memory capacity tests.
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
DeCaro, Renee; Peelle, Jonathan E; Grossman, Murray; Wingfield, Arthur
2016-01-01
Reduced hearing acuity is among the most prevalent of chronic medical conditions among older adults. An experiment is reported in which comprehension of spoken sentences was tested for older adults with good hearing acuity or with a mild-to-moderate hearing loss, and young adults with age-normal hearing. Comprehension was measured by participants' ability to determine the agent of an action in sentences that expressed this relation with a syntactically less complex subject-relative construction or a syntactically more complex object-relative construction. Agency determination was further challenged by inserting a prepositional phrase into sentences between the person performing an action and the action being performed. As a control, prepositional phrases of equivalent length were also inserted into sentences in a non-disruptive position. Effects on sentence comprehension of age, hearing acuity, prepositional phrase placement and sound level of stimulus presentations appeared only for comprehension of sentences with the more syntactically complex object-relative structures. Working memory as tested by reading span scores accounted for a significant amount of the variance in comprehension accuracy. Once working memory capacity and hearing acuity were taken into account, chronological age among the older adults contributed no further variance to comprehension accuracy. Results are discussed in terms of the positive and negative effects of sensory-cognitive interactions in comprehension of spoken sentences and lend support to a framework in which domain-general executive resources, notably verbal working memory, play a role in both linguistic and perceptual processing.
Memory mechanisms supporting syntactic comprehension.
Caplan, David; Waters, Gloria
2013-04-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829-839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension--the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance-long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory.
Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry
2015-01-01
Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.
Li, Wei; Yang, Yuye; Ye, Qing; Yang, Bo; Wang, Zhengrong
2007-03-15
Repetitive transcranial magnetic stimulation (rTMS) is a novel, non-invasive neurological and psychiatric tool. The low-frequency (1 Hz or less) rTMS is likely to play a particular role in its mechanism of action with different effects in comparison with high-frequency (>1 Hz) rTMS. There is limited information regarding the effect of low-frequency rTMS on spatial memory. In our study, each male Wistar rat was daily given 300 stimuli (1.0 T, 200 micros) at a rate of 0.5 Hz or sham stimulation. We investigated the effects of chronic and acute rTMS on reference/working memory process in Morris water maze test with the hypothesis that the effect would differ by chronic or acute condition. Chronic low-frequency rTMS impaired the retrieval of spatial short- and long-term spatial reference memory but not acquisition process and working memory, whereas acute low-frequency rTMS predominantly induced no deficits in acquisition or short-term spatial reference memory as well as working memory except for long-term reference memory. In summary, chronic 0.5 Hz rTMS disrupts spatial short- and long-term reference memory function, but acute rTMS differently affects reference memory. Chronic low-frequency rTMS may be used to modulate reference memory. Treatment protocols using low-frequency rTMS in neurological and psychiatric disorders need to take into account the potential effect of chronic low-frequency rTMS on memory and other cognitive functions.
ERIC Educational Resources Information Center
Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.
2011-01-01
Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…
Smith, Matthew J.; Horan, William P.; Cobia, Derin J.; Karpouzian, Tatiana M.; Fox, Jaclyn M.; Reilly, James L.; Breiter, Hans C.
2014-01-01
Empathic deficits have been linked to poor functioning in schizophrenia, but this work is mostly limited to self-report data. This study examined whether performance-based empathy measures account for incremental variance in social competence and social attainment above and beyond self-reported empathy, neurocognition, and clinical symptoms. Given the importance of working memory in theoretical models of empathy and in the prediction of functioning in schizophrenia, we also examined whether empathy mediates the relationship between working memory and functioning. Sixty outpatients and 45 healthy controls were compared on performance-based measures of 3 key components of empathic responding, including facial affect perception, emotional empathy (affective responsiveness), and cognitive empathy (emotional perspective-taking). Participants also completed measures of self-reported empathy, neurocognition, clinical symptoms, and social competence and attainment. Patients demonstrated lower accuracy than controls across the 3 performance-based empathy measures. Among patients, these measures showed minimal relations to self-reported empathy but significantly correlated with working memory and other neurocognitive functions as well as symptom levels. Furthermore, cognitive empathy explained significant incremental variance in social competence (∆R 2 = .07, P < .05) and was found to mediate the relation between working memory and social competence. Performance-based measures of empathy were sensitive to functionally relevant disturbances in schizophrenia. Working memory deficits appear to have an important effect on these disruptions in empathy. Empathy is emerging as a promising new area for social cognitive research and for novel recovery-oriented treatment development. PMID:23770935
Effects of memory rehearsal on driver performance: experiment and theoretical account.
Salvucci, Dario D; Beltowska, Joanna
2008-10-01
We report an experiment and a theoretical analysis concerning the effects of an exclusively cognitive task, specifically a memory rehearsal task, on driver performance. Although recent work on driver distraction has elucidated the sometimes significant effects of cognitive processing on driver performance, these studies have typically mixed cognitive with perceptual and motor processing, making it difficult to isolate the effects of cognitive processing alone. We asked participants to drive in a driving simulator during only the rehearsal stage of a serial-recall memory task while we measured their ability to maintain a central lane position and respond to the illumination of a lead vehicle's brake lights. Memory rehearsal significantly affected drivers' steering performance as measured by lateral deviation from lane center, and it also significantly affected drivers' response time to the braking stimulus for the higher load memory task. These results lend support to a theoretical account of cognitive distraction provided by threaded cognition theory in terms of a cognitive bottleneck in procedural processing, and they also suggest that consideration of task urgency may be important in accounting for performance trade-offs among concurrent tasks. The experiment augments the current understanding of cognitive driver distraction and suggests that even exclusively cognitive secondary tasks may sometimes affect driver performance.
Orban, Sarah A; Rapport, Mark D; Friedman, Lauren M; Eckrich, Samuel J; Kofler, Michael J
2018-05-01
Children with ADHD exhibit clinically impairing inattentive behavior during classroom instruction and in other cognitively demanding contexts. However, there have been surprisingly few attempts to validate anecdotal parent/teacher reports of intact sustained attention during 'preferred' activities such as watching movies. The current investigation addresses this omission, and provides an initial test of how ADHD-related working memory deficits contribute to inattentive behavior during classroom instruction. Boys ages 8-12 (M = 9.62, SD = 1.22) with ADHD (n = 32) and typically developing boys (TD; n = 30) completed a counterbalanced series of working memory tests and watched two videos on separate assessment days: an analogue math instructional video, and a non-instructional video selected to match the content and cognitive demands of parent/teacher-described 'preferred' activities. Objective, reliable observations of attentive behavior revealed no between-group differences during the non-instructional video (d = -0.02), and attentive behavior during the non-instructional video was unrelated to all working memory variables (r = -0.11 to 0.19, ns). In contrast, the ADHD group showed disproportionate attentive behavior decrements during analogue classroom instruction (d = -0.71). Bias-corrected, bootstrapped, serial mediation revealed that 59% of this between-group difference was attributable to ADHD-related impairments in central executive working memory, both directly (ER = 41%) and indirectly via its role in coordinating phonological short-term memory (ER = 15%). Between-group attentive behavior differences were no longer detectable after accounting for ADHD-related working memory impairments (d = -0.29, ns). Results confirm anecdotal reports of intact sustained attention during activities that place minimal demands on working memory, and indicate that ADHD children's inattention during analogue classroom instruction is related, in large part, to their underdeveloped working memory abilities.
Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.
2012-01-01
Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205
Brébion, Gildas; Stephan-Otto, Christian; Huerta-Ramos, Elena; Ochoa, Susana; Usall, Judith; Abellán-Vega, Helena; Roca, Mercedes; Haro, Josep Maria
2015-01-01
Previous research has revealed the contribution of decreased processing speed and reduced working memory span in verbal and visual memory impairment in patients with schizophrenia. The role of affective symptoms in verbal memory has also emerged in a few studies. The authors designed a picture recognition task to investigate the impact of these factors on visual encoding. Two types of pictures (black and white vs. colored) were presented under 2 different conditions of context encoding (either displayed at a specific location or in association with another visual stimulus). It was assumed that the process of encoding associated pictures was more effortful than that of encoding pictures that were presented alone. Working memory span and processing speed were assessed. In the patient group, working memory span was significantly associated with the recognition of the associated pictures but not significantly with that of the other pictures. Controlling for processing speed eliminated the patients' deficit in the recognition of the colored pictures and greatly reduced their deficit in the recognition of the black-and-white pictures. The recognition of the black-and-white pictures was inversely related to anxiety in men and to depression in women. Working memory span constrains the effortful visual encoding processes in patients, whereas processing speed decrement accounts for most of their visual encoding deficit. Affective symptoms also have an impact on visual encoding, albeit differently in men and women. PsycINFO Database Record (c) 2015 APA, all rights reserved.
ERIC Educational Resources Information Center
Hu, Yi; Ericsson, K. Anders
2012-01-01
In a recent paper, Hu, Ericsson, Yang, and Lu (2009) found that an ability to memorize very long lists of digits is not mediated by the same mechanisms as exceptional memory for rapidly presented lists, which has been the traditional focus of laboratory research. Chao Lu is the holder of the "Guinness World Record" for reciting the most decimal…
Memory and cognitive control in an integrated theory of language processing.
Slevc, L Robert; Novick, Jared M
2013-08-01
Pickering & Garrod's (P&G's) integrated model of production and comprehension includes no explicit role for nonlinguistic cognitive processes. Yet, how domain-general cognitive functions contribute to language processing has become clearer with well-specified theories and supporting data. We therefore believe that their account can benefit by incorporating functions like working memory and cognitive control into a unified model of language processing.
System Safety Management Lessons Learned
1989-05-01
DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government . Neither the United States Government nor... Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect...those of the United States Government or any agency thereof. PACIFIC NORTHWEST LABORATORY operated by BATTELLE MEMORIAL INSTITUTE for the UNITED
Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank
2016-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957
Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank
2017-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span.
Neath, Ian; VanWormer, Lisa A; Bireta, Tamra J; Surprenant, Aimée M
2014-09-01
Three memory tasks-Brown-Peterson, complex span, and continual distractor-all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems.
Marley, Christopher J; Sinnott, Andrew; Hall, Judith E; Morris-Stiff, Gareth; Woodsford, Paul V; Lewis, Michael H; Bailey, Damian M
2017-06-01
Carotid endarterectomy (CEA) is a surgical procedure to remove stenotic atherosclerotic plaque from the origin of the carotid artery to reduce the risk of major stroke. Its impact on postoperative cognitive function (POCF) remains controversial; complicated, in part, by a traditional failure to account for practice effects incurred during consecutive psychometric testing. To address this for the first time, we performed psychometric testing (learning and memory, working memory, attention and information processing, and visuomotor coordination) in 15 male patients aged 68 ± 8 years with symptomatic carotid stenosis the day before and 24 h following elective CEA (two consecutive tests, 48 h apart). Multiple baselining was also performed in a separate cohort of 13 educationally, anthropometrically and age-matched controls (63 ± 9 years) not undergoing revascularization at identical time points with additional measures performed over a further 96 h (four consecutive tests, each 48 h apart). A single consecutive test in the control group resulted in progressive improvements in learning and memory, working memory, and attention and information ( P < 0.05 vs. Test 1), with three tests required before cognitive performance stabilized. Following correction for practice effects in the patient group, CEA was associated with a deterioration rather than an improvement in learning and memory as originally observed ( P < 0.05). These findings highlight the potential for the clinical misinterpretation of POCF unless practice effects are taken into account and provide practical recommendations for implementation within the clinical setting. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J
2012-06-01
The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.
Brébion, Gildas; Stephan-Otto, Christian; Ochoa, Susana; Nieto, Lourdes; Contel, Montserrat; Usall, Judith
2018-01-01
Decreased processing speed in schizophrenia patients has been identified as a major impairment factor in various neuropsychological domains. Working memory span has been found to be involved in several deep or effortful cognitive processes. We investigated the impact that these 2 cognitive functions may have on phonological and semantic fluency in schizophrenia patients and healthy participants. Fifty-five patients with schizophrenia and 60 healthy participants were administered a neuropsychological battery including phonological and semantic fluency, working memory, and cognitive and motor speed. Regression analyses revealed that motor speed was related to phonological fluency in female patients, whereas cognitive speed was related to semantic fluency in male patients. In addition, working memory span was related to verbal fluency in women from both the patient and the healthy control groups. Decreased processing speed, but not decreased working memory span, accounted for the verbal fluency deficit in patients. Verbal fluency was inversely related to attention deficit in female patients and to negative symptoms in male patients. Decreased processing speed may be the main factor in verbal fluency impairment of patients. Further, the cognitive and clinical predictors of verbal fluency efficiency are different in men and women. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Nondecomposable idiom understanding in children: recursive theory of mind and working memory.
Caillies, Stéphanie; Le Sourn-Bissaoui, Sandrine
2013-06-01
Which skills are required to start understanding ambiguous, unfamiliar nondecomposable idioms in context? In this study, we examined the contributions of both second-order false-belief understanding and working memory to the understanding of unfamiliar nondecomposable idioms in children aged 6, 7 and 8 years old. We assumed that, in order to process these idioms, children would have to be able to (a) take a double perspective (Perner & Wimmer, 1985), (b) maintain both literal and figurative meanings as being different from the expression itself, and (c) take the context into account. Six-, 7- and 8-year-old children performed three, second-order false-belief tasks and three working-memory tasks, and listened to 15 nondecomposable idioms inserted into a context, before performing a multiple-choice task. Results indicated that nondecomposable idiom understanding was explained by theory-of-mind skills.
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J
2013-02-01
Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.
Exploring the relations among physical fitness, executive functioning, and low academic achievement.
de Bruijn, A G M; Hartman, E; Kostons, D; Visscher, C; Bosker, R J
2018-03-01
Physical fitness seems to be related to academic performance, at least when taking the role of executive functioning into account. This assumption is highly relevant for the vulnerable population of low academic achievers because their academic performance might benefit from enhanced physical fitness. The current study examined whether physical fitness and executive functioning are independent predictors of low mathematics and spelling achievement or whether the relation between physical fitness and low achievement is mediated by specific executive functions. In total, 477 students from second- and third-grade classes of 12 primary schools were classified as either low or average-to-high achievers in mathematics and spelling based on their scores on standardized achievement tests. Multilevel structural equation models were built with direct paths between physical fitness and academic achievement and added indirect paths via components of executive functioning: inhibition, verbal working memory, visuospatial working memory, and shifting. Physical fitness was only indirectly related to low achievement via specific executive functions, depending on the academic domain involved. Verbal working memory was a mediator between physical fitness and low achievement in both domains, whereas visuospatial working memory had a mediating role only in mathematics. Physical fitness interventions aiming to improve low academic achievement, thus, could potentially be successful. The mediating effect of executive functioning suggests that these improvements in academic achievement will be preceded by enhanced executive functions, either verbal working memory (in spelling) or both verbal and visuospatial working memory (in mathematics). Copyright © 2017 Elsevier Inc. All rights reserved.
Memory mechanisms supporting syntactic comprehension
Waters, Gloria
2013-01-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829–839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension—the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance—long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory. PMID:23319178
Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning
van der Schaaf, Marieke E; Fallon, Sean J; ter Huurne, Niels; Buitelaar, Jan; Cools, Roshan
2013-01-01
Increased use of stimulant medication, such as methylphenidate, by healthy college students has raised questions about its cognitive-enhancing effects. Methylphenidate acts by increasing extracellular catecholamine levels and is generally accepted to remediate cognitive and reward deficits in patients with attention deficit hyperactivity disorder. However, the cognitive-enhancing effects of such ‘smart drugs' in the healthy population are still unclear. Here, we investigated effects of methylphenidate (Ritalin, 20 mg) on reward and punishment learning in healthy students (N=19) in a within-subject, double-blind, placebo-controlled cross-over design. Results revealed that methylphenidate effects varied both as a function of task demands and as a function of baseline working memory capacity. Specifically, methylphenidate improved reward vs punishment learning in high-working memory subjects, whereas it impaired reward vs punishment learning in low-working memory subjects. These results contribute to our understanding of individual differences in the cognitive-enhancing effects of methylphenidate in the healthy population. Moreover, they highlight the importance of taking into account both inter- and intra-individual differences in dopaminergic drug research. PMID:23612436
Working memory capacity and the scope and control of attention.
Shipstead, Zach; Harrison, Tyler L; Engle, Randall W
2015-08-01
Complex span and visual arrays are two common measures of working memory capacity that are respectively treated as measures of attention control and storage capacity. A recent analysis of these tasks concluded that (1) complex span performance has a relatively stronger relationship to fluid intelligence and (2) this is due to the requirement that people engage control processes while performing this task. The present study examines the validity of these conclusions by examining two large data sets that include a more diverse set of visual arrays tasks and several measures of attention control. We conclude that complex span and visual arrays account for similar amounts of variance in fluid intelligence. The disparity relative to the earlier analysis is attributed to the present study involving a more complete measure of the latent ability underlying the performance of visual arrays. Moreover, we find that both types of working memory task have strong relationships to attention control. This indicates that the ability to engage attention in a controlled manner is a critical aspect of working memory capacity, regardless of the type of task that is used to measure this construct.
Rudolph, Marc D; Graham, Alice M; Feczko, Eric; Miranda-Dominguez, Oscar; Rasmussen, Jerod M; Nardos, Rahel; Entringer, Sonja; Wadhwa, Pathik D; Buss, Claudia; Fair, Damien A
2018-05-01
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function.
The Contribution of Verbal Working Memory to Deaf Children’s Oral and Written Production
Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia
2015-01-01
This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8–13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension test, the Wechsler Intelligence Scale for Children-Fourth Edition forward digit span task, and a reading span task. Oral and written stories were analyzed at the microstructural (i.e., clause) and macrostructural (discourse) levels. Hearing children’s stories scored higher than deaf children’s at both levels. Verbal working memory skills contributed to deaf children’s oral and written production over and above age and reading comprehension skills. Verbal rehearsal skills (forward digit span) contributed significantly to deaf children’s ability to organize oral and written stories at the microstructural level; they also accounted for unique variance at the macrostructural level in writing. Written story production appeared to involve greater verbal working memory resources than oral story production. PMID:25802319
Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.
Schneegans, Sebastian; Bays, Paul M
2018-05-23
Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. SIGNIFICANCE STATEMENT Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage. Copyright © 2018 Schneegans and Bays.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-06-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between 2 languages in early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
An investigation of multitasking information behavior and the influence of working memory and flow
NASA Astrophysics Data System (ADS)
Alexopoulou, Peggy; Hepworth, Mark; Morris, Anne
2015-02-01
This study explored the multitasking information behaviour of Web users and how this is influenced by working memory, flow and Personal, Artefact and Task characteristics, as described in the PAT model. The research was exploratory using a pragmatic, mixed method approach. Thirty University students participated; 10 psychologists, 10 accountants and 10 mechanical engineers. The data collection tools used were: pre and post questionnaires, a working memory test, a flow state scale test, audio-visual data, web search logs, think aloud data, observation, and the critical decision method. All participants searched information on the Web for four topics: two for which they had prior knowledge and two more without prior knowledge. Perception of task complexity was found to be related to working memory. People with low working memory reported a significant increase in task complexity after they had completed information searching tasks for which they had no prior knowledge, this was not the case for tasks with prior knowledge. Regarding flow and task complexity, the results confirmed the suggestion of the PAT model (Finneran and Zhang, 2003), which proposed that a complex task can lead to anxiety and low flow levels as well as to perceived challenge and high flow levels. However, the results did not confirm the suggestion of the PAT model regarding the characteristics of web search systems and especially perceived vividness. All participants experienced high vividness. According to the PAT model, however, only people with high flow should experience high levels of vividness. Flow affected the degree of change of knowledge of the participants. People with high flow gained more knowledge for tasks without prior knowledge rather than people with low flow. Furthermore, accountants felt that tasks without prior knowledge were less complex at the end of the web seeking procedure than psychologists and mechanical engineers. Finally, the three disciplines appeared to differ regarding the multitasking information behaviour characteristics such as queries, web search sessions and opened tabs/windows.
DeCaro, Renee; Peelle, Jonathan E.; Grossman, Murray; Wingfield, Arthur
2016-01-01
Reduced hearing acuity is among the most prevalent of chronic medical conditions among older adults. An experiment is reported in which comprehension of spoken sentences was tested for older adults with good hearing acuity or with a mild-to-moderate hearing loss, and young adults with age-normal hearing. Comprehension was measured by participants’ ability to determine the agent of an action in sentences that expressed this relation with a syntactically less complex subject-relative construction or a syntactically more complex object-relative construction. Agency determination was further challenged by inserting a prepositional phrase into sentences between the person performing an action and the action being performed. As a control, prepositional phrases of equivalent length were also inserted into sentences in a non-disruptive position. Effects on sentence comprehension of age, hearing acuity, prepositional phrase placement and sound level of stimulus presentations appeared only for comprehension of sentences with the more syntactically complex object-relative structures. Working memory as tested by reading span scores accounted for a significant amount of the variance in comprehension accuracy. Once working memory capacity and hearing acuity were taken into account, chronological age among the older adults contributed no further variance to comprehension accuracy. Results are discussed in terms of the positive and negative effects of sensory–cognitive interactions in comprehension of spoken sentences and lend support to a framework in which domain-general executive resources, notably verbal working memory, play a role in both linguistic and perceptual processing. PMID:26973557
Pisoni, David B.; Cleary, Miranda
2012-01-01
Large individual differences in spoken word recognition performance have been found in deaf children after cochlear implantation. Recently, Pisoni and Geers (2000) reported that simple forward digit span measures of verbal working memory were significantly correlated with spoken word recognition scores even after potentially confounding variables were statistically controlled for. The present study replicates and extends these initial findings to the full set of 176 participants in the CID cochlear implant study. The pooled data indicate that despite statistical “partialling-out” of differences in chronological age, communication mode, duration of deafness, duration of device use, age at onset of deafness, number of active electrodes, and speech feature discrimination, significant correlations still remain between digit span and several measures of spoken word recognition. Strong correlations were also observed between speaking rate and both forward and backward digit span, a result that is similar to previously reported findings in normalhearing adults and children. The results suggest that perhaps as much as 20% of the currently unexplained variance in spoken word recognition scores may be independently accounted for by individual differences in cognitive factors related to the speed and efficiency with which phonological and lexical representations of spoken words are maintained in and retrieved from working memory. A smaller percentage, perhaps about 7% of the currently unexplained variance in spoken word recognition scores, may be accounted for in terms of working memory capacity. We discuss how these relationships may arise and their contribution to subsequent speech and language development in prelingually deaf children who use cochlear implants. PMID:12612485
Phonological similarity in working memory span tasks.
Chow, Michael; Macnamara, Brooke N; Conway, Andrew R A
2016-08-01
In a series of four experiments, we explored what conditions are sufficient to produce a phonological similarity facilitation effect in working memory span tasks. By using the same set of memoranda, but differing the secondary-task requirements across experiments, we showed that a phonological similarity facilitation effect is dependent upon the semantic relationship between the memoranda and the secondary-task stimuli, and is robust to changes in the representation, ordering, and pool size of the secondary-task stimuli. These findings are consistent with interference accounts of memory (Brown, Neath, & Chater, Psychological Review, 114, 539-576, 2007; Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves, Psychonomic Bulletin & Review, 19, 779-819, 2012), whereby rhyming stimuli provide a form of categorical similarity that allows distractors to be excluded from retrieval at recall.
Feature binding and attention in working memory: a resolution of previous contradictory findings.
Allen, Richard J; Hitch, Graham J; Mate, Judit; Baddeley, Alan D
2012-01-01
We aimed to resolve an apparent contradiction between previous experiments from different laboratories, using dual-task methodology to compare effects of a concurrent executive load on immediate recognition memory for colours or shapes of items or their colour-shape combinations. Results of two experiments confirmed previous evidence that an irrelevant attentional load interferes equally with memory for features and memory for feature bindings. Detailed analyses suggested that previous contradictory evidence arose from limitations in the way recognition memory was measured. The present findings are inconsistent with an earlier suggestion that feature binding takes place within a multimodal episodic buffer Baddeley, ( 2000 ) and support a subsequent account in which binding takes place automatically prior to information entering the episodic buffer Baddeley, Allen, & Hitch, ( 2011 ). Methodologically, the results suggest that different measures of recognition memory performance (A', d', corrected recognition) give a converging picture of main effects, but are less consistent in detecting interactions. We suggest that this limitation on the reliability of measuring recognition should be taken into account in future research so as to avoid problems of replication that turn out to be more apparent than real.
Hu, Yi; Ericsson, K Anders
2012-06-01
In a recent paper, Hu, Ericsson, Yang, and Lu (2009) found that an ability to memorize very long lists of digits is not mediated by the same mechanisms as exceptional memory for rapidly presented lists, which has been the traditional focus of laboratory research. Chao Lu is the holder of the Guinness World Record for reciting the most decimal positions of pi, yet he lacks an exceptional memory span for digits. In the first part of this paper we analyzed the reliability and structure of his reported encodings for lists of 300 digits and his application of the story mnemonic. Next, his study and recall times for lists of digits were analyzed to test hypotheses about his detailed encoding processes, and cued-recall performance was used to assess the structure of his encodings. Three experiments were then designed to interfere with the uniqueness of Chao Lu's story encodings, and evidence was found for his remarkable ability to adapt his encoding processes to reduce the interference. Finally, we show how his skills for encoding and recalling long lists can be accounted for within the theoretical framework of Ericsson and Kintsch's (1995) Long-Term Working Memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Briscoe, J; Rankin, P M
2009-01-01
Children with specific language impairment (SLI) often experience difficulties in the recall and repetition of verbal information. Archibald and Gathercole (2006) suggested that children with SLI are vulnerable across two separate components of a tripartite model of working memory (Baddeley and Hitch 1974). However, the hierarchical relationship between the 'slave' systems (temporary storage) and the central executive components places a particular challenge for interpreting working memory profiles within a tripartite model. This study aimed to examine whether a 'double-jeopardy' assumption is compatible with a hierarchical relationship between the phonological loop and central executive components of the working memory model in children with SLI. If a strong double-jeopardy assumption is valid for children with SLI, it was predicted that raw scores of working memory tests thought to tap phonological loop and central executive components of tripartite working memory would be lower than the scores of children matched for chronological age and those of children matched for language level, according to independent sources of constraint. In contrast, a hierarchical relationship would imply that a weakness in a slave component of working memory (the phonological loop) would also constrain performance on tests tapping a super-ordinate component (central executive). This locus of constraint would predict that scores of children with SLI on working memory tests that tap the central executive would be weaker relative to the scores of chronological age-matched controls only. Seven subtests of the Working Memory Test Battery for Children (Digit recall, Word recall, Non-word recall, Word matching, Listening recall, Backwards digit recall and Block recall; Pickering and Gathercole 2001) were administered to 14 children with SLI recruited via language resource bases and specialist schools, as well as two control groups matched on chronological age and vocabulary level, respectively. Mean group differences were ascertained by directly comparing raw scores on memory tests linked to different components of the tripartite model using a series of multivariate analyses. The majority of working memory scores of the SLI group were depressed relative to chronological age-matched controls, with the exception of spatial recall (block tapping) and word (order) matching tasks. Marked deficits in serial recall of words and digits were evident, with the SLI group scoring more poorly than the language-ability matched control group on these measures. Impairments of the SLI group on phonological loop tasks were robust, even when covariance with executive working memory scores was accounted for. There was no robust effect of group on complex working memory (central executive) tasks, despite a slight association between listening recall and phonological loop measures. A predominant feature of the working memory profile of SLI was a marked deficit on phonological loop tasks. Although scores on complex working memory tasks were also depressed, there was little evidence for a strong interpretation of double-jeopardy within working memory profiles for these children, rather these findings were consistent with an interpretation of a constraint on phonological loop for children with SLI that operated at all levels of a hierarchical tripartite model of working memory (Baddeley and Hitch 1974). These findings imply that low scores on complex working memory tasks alone do not unequivocally imply an independent deficit in central executive (domain-general) resources of working memory and should therefore be treated cautiously in a clinical context.
Source monitoring and false memories in children: relation to certainty and executive functioning.
Ruffman, T; Rustin, C; Garnham, W; Parkin, A J
2001-10-01
We presented children aged 6, 8, and 10 years with a video and then an audio tape about a dog named Mick. Some information was repeated in the two sources and some was unique to one source. We examined: (a) children's hit rate for remembering whether events occurred and their tendency to make false alarms, (b) their memory for the context in which events occurred (source monitoring), (c) their certainty about hits, false alarms, and source, and (d) whether working memory and inhibition were related to hits, false alarms, and source monitoring. The certainty ratings revealed deficits in children's understanding of when they had erred on source questions and of when they had made false alarms. In addition, inhibitory ability accounted for unique variance in the ability to avoid false alarms and in some kinds of source monitoring but not hits. In contrast, working memory tended to correlate with all forms of memory including hits. Copyright 2001 Academic Press.
Wykes, Til; Reeder, Clare; Huddy, Vyv; Taylor, Rumina; Wood, Helen; Ghirasim, Natalia; Kontis, Dimitrios; Landau, Sabine
2012-01-01
Background Cognitive remediation (CRT) affects functioning but the extent and type of cognitive improvements necessary are unknown. Aim To develop and test models of how cognitive improvement transfers to work behaviour using the data from a current service. Method Participants (N49) with a support worker and a paid or voluntary job were offered CRT in a Phase 2 single group design with three assessments: baseline, post therapy and follow-up. Working memory, cognitive flexibility, planning and work outcomes were assessed. Results Three models were tested (mediation — cognitive improvements drive functioning improvement; moderation — post treatment cognitive level affects the impact of CRT on functioning; moderated mediation — cognition drives functioning improvements only after a certain level is achieved). There was evidence of mediation (planning improvement associated with improved work quality). There was no evidence that cognitive flexibility (total Wisconsin Card Sorting Test errors) and working memory (Wechsler Adult Intelligence Scale III digit span) mediated work functioning despite significant effects. There was some evidence of moderated mediation for planning improvement if participants had poorer memory and/or made fewer WCST errors. The total CRT effect on work quality was d = 0.55, but the indirect (planning-mediated CRT effect) was d = 0.082 Conclusion Planning improvements led to better work quality but only accounted for a small proportion of the total effect on work outcome. Other specific and non-specific effects of CRT and the work programme are likely to account for some of the remaining effect. This is the first time complex models have been tested and future Phase 3 studies need to further test mediation and moderated mediation models. PMID:22503640
Familiarity enhances visual working memory for faces.
Jackson, Margaret C; Raymond, Jane E
2008-06-01
Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or inverted and a low- or high-load concurrent verbal WM task was administered to suppress contribution from verbal WM. Even with a high verbal memory load, visual WM performance was significantly better and capacity estimated as significantly greater for famous versus unfamiliar faces. Face inversion abolished this effect. Thus, neither strategic, explicit support from verbal WM nor low-level feature processing easily accounts for the observed benefit of high familiarity for visual WM. These results demonstrate that storage of items in visual WM can be enhanced if robust visual representations of them already exist in long-term memory.
Allott, Kelly A; Cotton, Susan M; Chinnery, Gina L; Baksheev, Gennady N; Massey, Jessica; Sun, Pamela; Collins, Zoe; Barlow, Emma; Broussard, Christina; Wahid, Tasha; Proffitt, Tina-Marie; Jackson, Henry J; Killackey, Eoin
2013-10-01
To examine whether baseline neurocognition and social cognition predict vocational outcomes over 6 months in patients with first-episode psychosis (FEP) enrolled in a randomised controlled trial of Individual Placement and Support (IPS) versus treatment as usual (TAU). 135 FEP participants (IPS n=69; TAU n=66) completed a comprehensive neurocognitive and social cognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying cognitive structure of the battery. Setwise (hierarchical) logistic and multivariate linear regressions were used to examine predictors of: (a) enrolment in education and employment; and (b) hours of employment over 6 months. Neurocognition and social cognition factors were entered into the models after accounting for premorbid IQ, baseline functioning and treatment group. Six cognitive factors were extracted: (i) social cognition; (ii) information processing speed; (iii) verbal learning and memory; (iv) attention and working memory; (v) visual organisation and memory; and (vi) verbal comprehension. Enrolment in education over 6 months was predicted by enrolment in education at baseline (p=.002) and poorer visual organisation and memory (p=.024). Employment over 6 months was predicted by employment at baseline (p=.041) and receiving IPS (p=.020). Better visual organisation and memory predicted total hours of paid work over 6 months (p<.001). Visual organisation and memory predicted the enrolment in education and duration of employment, after accounting for premorbid IQ, baseline functioning and treatment. Social cognition did not contribute to the prediction of vocational outcomes. Neurocognitive interventions may enhance employment duration in FEP. © 2013 Elsevier B.V. All rights reserved.
Testing the Motor Simulation Account of Source Errors for Actions in Recall
Lange, Nicholas; Hollins, Timothy J.; Bach, Patric
2017-01-01
Observing someone else perform an action can lead to false memories of self-performance – the observation inflation effect. One explanation is that action simulation via mirror neuron activation during action observation is responsible for observation inflation by enriching memories of observed actions with motor representations. In three experiments we investigated this account of source memory failures, using a novel paradigm that minimized influences of verbalization and prior object knowledge. Participants worked in pairs to take turns acting out geometric shapes and letters. The next day, participants recalled either actions they had performed or those they had observed. Experiment 1 showed that participants falsely retrieved observed actions as self-performed, but also retrieved self-performed actions as observed. Experiment 2 showed that preventing participants from encoding observed actions motorically by taxing their motor system with a concurrent motor task did not lead to the predicted decrease in false claims of self-performance. Indeed, Experiment 3 showed that this was the case even if participants were asked to carefully monitor their recall. Because our data provide no evidence for a motor activation account, we also discussed our results in light of a source monitoring account. PMID:29033874
Mainela-Arnold, Elina; Evans, Julia L.
2016-01-01
Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that verbal memory capacity and long-term linguistic knowledge may not be distinct constructs. It has been suggested that linguistic representations in SLI are weak in ways that result in a breakdown in language processing on tasks that require manipulation of unfamiliar material. In this study, the effects of word frequency, long-term linguistic knowledge, and serial order position on recall performance in the competing language processing task (CLPT) were investigated in 10 children with SLI and 10 age-matched peers (age 8 years 6 months to 12 years 4 months). The children with SLI recalled significantly fewer target words on the CLPT as compared with their age-matched controls. The SLI group did not differ, however, in their ability to recall target words having high word frequency but were significantly poorer in their ability to recall words on the CLPT having low word frequency. Differences in receptive and expressive language abilities also appeared closely related to performance on the CLPT, suggesting that working memory capacity is not distinct from language knowledge and that degraded linguistic representations may have an effect on performance on verbal working memory span tasks in children with SLI. PMID:16378481
Mifflin, Katherine; Chorney, Jill; Dick, Bruce
2016-07-01
Adolescents with chronic pain often report inattention and poor memory. There has been little research on cognitive function in this population. The goal of this preliminary pilot study was to examine differences in cognitive function between adolescents with chronic pain to pain-free adolescents. All participants completed baseline assessments of pain, school absences, depression, anxiety, and sleep habits. Standardized neurocognitive tests were used to examine cognitive function with a focus on working memory and attention. Recruitment from the chronic pain clinic resulted in a female sample of 13 individuals (largely reflective of the clinical population). Pain-free age-matched and sex-matched individuals (n=12) were therefore also recruited as controls. Individuals with chronic pain had significantly lower working memory scores than controls. Differences were found between groups on the most difficult selective attention task and not on tests of sustained attention, divided attention, or attentional switching. In a stepwise regression with baseline characteristics entered in the first step, pain accounted for approximately 15% of the variance in working memory and medication score counted for 49% of the variance. This pilot study is the first study to examine differences in working memory and attention between participants with chronic pain and pain-free adolescents. Our findings suggest that chronic pain may negatively affect adolescents' working memory function and highlights the risk for cognitive difficulties and problems with educational progression in addition to negative health and social effects associated with chronic pain. The study provides a starting point for more research and has the potential to direct better identification and treatment of these cognitive deficits.
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Unsworth, Nash; McMillan, Brittany D
2014-07-01
The current study examined the extent to which task-unrelated thoughts represent both vulnerability to mind-wandering and susceptibility to external distraction from an individual difference perspective. Participants performed multiple measures of attention control, working memory capacity, and fluid intelligence. Task-unrelated thoughts were assessed using thought probes during the attention control tasks. Using latent variable techniques, the results suggested that mind-wandering and external distraction reflect distinct, yet correlated constructs, both of which are related to working memory capacity and fluid intelligence. Furthermore, the results suggest that the common variance shared by mind-wandering, external distraction, and attention control is what primarily accounts for their relation with working memory capacity and fluid intelligence. These results support the notion that lapses of attention are strongly related to cognitive abilities. Copyright © 2014 Elsevier B.V. All rights reserved.
Franco-Watkins, Ana M; Davis, Matthew E; Johnson, Joseph G
2016-11-01
Many decisions are made under suboptimal circumstances, such as time constraints. We examined how different experiences of time constraints affected decision strategies on a probabilistic inference task and whether individual differences in working memory accounted for complex strategy use across different levels of time. To examine information search and attentional processing, we used an interactive eye-tracking paradigm where task information was occluded and only revealed by an eye fixation to a given cell. Our results indicate that although participants change search strategies during the most restricted times, the occurrence of the shift in strategies depends both on how the constraints are applied as well as individual differences in working memory. This suggests that, in situations that require making decisions under time constraints, one can influence performance by being sensitive to working memory and, potentially, by acclimating people to the task time gradually.
Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru
2015-08-01
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).
Dissociation of long-term verbal memory and fronto-executive impairment in first-episode psychosis
Leeson, V. C.; Robbins, T. W.; Franklin, C.; Harrison, M.; Harrison, I.; Ron, M. A.; Barnes, T. R. E.; Joyce, E. M.
2009-01-01
Background Verbal memory is frequently and severely affected in schizophrenia and has been implicated as a mediator of poor clinical outcome. Whereas encoding deficits are well demonstrated, it is unclear whether retention is impaired. This distinction is important because accelerated forgetting implies impaired consolidation attributable to medial temporal lobe (MTL) dysfunction whereas impaired encoding and retrieval implicates involvement of prefrontal cortex. Method We assessed a group of healthy volunteers (n=97) and pre-morbid IQ- and sex-matched first-episode psychosis patients (n=97), the majority of whom developed schizophrenia. We compared performance of verbal learning and recall with measures of visuospatial working memory, planning and attentional set-shifting, and also current IQ. Results All measures of performance, including verbal memory retention, a memory savings score that accounted for learning impairments, were significantly impaired in the schizophrenia group. The difference between groups for delayed recall remained even after the influence of learning and recall was accounted for. Factor analyses showed that, in patients, all variables except verbal memory retention loaded on a single factor, whereas in controls verbal memory and fronto-executive measures were separable. Conclusions The results suggest that IQ, executive function and verbal learning deficits in schizophrenia may reflect a common abnormality of information processing in prefrontal cortex rather than specific impairments in different cognitive domains. Verbal memory retention impairments, however, may have a different aetiology. PMID:19419594
Berryhill, Marian E.
2012-01-01
The role of posterior parietal cortex (PPC) in various forms of memory is a current topic of interest in the broader field of cognitive neuroscience. This large cortical region has been linked with a wide range of mnemonic functions affecting each stage of memory processing: encoding, maintenance, and retrieval. Yet, the precise role of the PPC in memory remains mysterious and controversial. Progress in understanding PPC function will require researchers to incorporate findings in a convergent manner from multiple experimental techniques rather than emphasizing a particular type of data. To facilitate this process, here, we review findings from the human neuropsychological research and examine the consequences to memory following PPC damage. Recent patient-based research findings have investigated two typically disconnected fields: working memory (WM) and episodic memory. The findings from patient participants with unilateral and bilateral PPC lesions performing diverse experimental paradigms are summarized. These findings are then related to findings from other techniques including neurostimulation (TMS and tDCS) and the influential and more abundant functional neuroimaging literature. We then review the strengths and weaknesses of hypotheses proposed to account for PPC function in these forms of memory. Finally, we address what missing evidence is needed to clarify the role(s) of the PPC in memory. PMID:22701406
Yonelinas, Andrew P.
2013-01-01
It is well established that the hippocampus plays a critical role in our ability to recollect past events. A number of recent studies have indicated that the hippocampus may also play a critical role in working memory and perception, but these results have been highly controversial because other similar studies have failed to find evidence for hippocampal involvement. Thus, the precise role that the hippocampus plays in cognition is still debated. In the current paper, I propose that the hippocampus supports the generation and utilization of complex high-resolution bindings that link together the qualitative aspects that make up an event; these bindings are essential for recollection, and they can also contribute to performance across a variety of tasks including perception and working memory. An examination of the existing patient literature provides support for this proposal by showing that hippocampal damage leads to impairments on perception and working memory tasks that require complex high-resolution bindings. Conversely, hippocampal damage is much less likely to lead to impairments on tasks that require only low-resolution or simple associations/relations. The current proposal can be distinguished from earlier accounts of hippocampal function, and it generates a number of novel predictions that can be tested in future studies. PMID:23721964
A Positive Generation Effect on Memory for Auditory Context
Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.
2016-01-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145
Pechey, Rachel; Couturier, Dominique-Laurent; Deary, Ian J.; Marteau, Theresa M.
2016-01-01
Objective Executive function, impulsivity, and intelligence are correlated markers of cognitive resource that predict health-related behaviours. It is unknown whether executive function and impulsivity are unique predictors of these behaviours after accounting for intelligence. Methods Data from 6069 participants from the Avon Longitudinal Study of Parents and Children were analysed to investigate whether components of executive function (selective attention, attentional control, working memory, and response inhibition) and impulsivity (parent-rated) measured between ages 8 and 10, predicted having ever drunk alcohol, having ever smoked, fruit and vegetable consumption, physical activity, and overweight at age 13, after accounting for intelligence at age 8 and childhood socioeconomic characteristics. Results Higher intelligence predicted having drunk alcohol, not smoking, greater fruit and vegetable consumption, and not being overweight. After accounting for intelligence, impulsivity predicted alcohol use (odds ratio = 1.10; 99% confidence interval = 1.02, 1.19) and smoking (1.22; 1.11, 1.34). Working memory predicted not being overweight (0.90; 0.81, 0.99). Conclusions After accounting for intelligence, executive function predicts overweight status but not health-related behaviours in early adolescence, whilst impulsivity predicts the onset of alcohol and cigarette use, all with small effects. This suggests overlap between executive function and intelligence as predictors of health behaviour in this cohort, with trait impulsivity accounting for additional variance. PMID:27479488
Stautz, Kaidy; Pechey, Rachel; Couturier, Dominique-Laurent; Deary, Ian J; Marteau, Theresa M
2016-01-01
Executive function, impulsivity, and intelligence are correlated markers of cognitive resource that predict health-related behaviours. It is unknown whether executive function and impulsivity are unique predictors of these behaviours after accounting for intelligence. Data from 6069 participants from the Avon Longitudinal Study of Parents and Children were analysed to investigate whether components of executive function (selective attention, attentional control, working memory, and response inhibition) and impulsivity (parent-rated) measured between ages 8 and 10, predicted having ever drunk alcohol, having ever smoked, fruit and vegetable consumption, physical activity, and overweight at age 13, after accounting for intelligence at age 8 and childhood socioeconomic characteristics. Higher intelligence predicted having drunk alcohol, not smoking, greater fruit and vegetable consumption, and not being overweight. After accounting for intelligence, impulsivity predicted alcohol use (odds ratio = 1.10; 99% confidence interval = 1.02, 1.19) and smoking (1.22; 1.11, 1.34). Working memory predicted not being overweight (0.90; 0.81, 0.99). After accounting for intelligence, executive function predicts overweight status but not health-related behaviours in early adolescence, whilst impulsivity predicts the onset of alcohol and cigarette use, all with small effects. This suggests overlap between executive function and intelligence as predictors of health behaviour in this cohort, with trait impulsivity accounting for additional variance.
Engel de Abreu, Pascale M J; Abreu, Neander; Nikaedo, Carolina C; Puglisi, Marina L; Tourinho, Carlos J; Miranda, Mônica C; Befi-Lopes, Debora M; Bueno, Orlando F A; Martin, Romain
2014-01-01
This study examined executive functioning and reading achievement in 106 6- to 8-year-old Brazilian children from a range of social backgrounds of whom approximately half lived below the poverty line. A particular focus was to explore the executive function profile of children whose classroom reading performance was judged below standard by their teachers and who were matched to controls on chronological age, sex, school type (private or public), domicile (Salvador/BA or São Paulo/SP) and socioeconomic status. Children completed a battery of 12 executive function tasks that were conceptual tapping cognitive flexibility, working memory, inhibition and selective attention. Each executive function domain was assessed by several tasks. Principal component analysis extracted four factors that were labeled "Working Memory/Cognitive Flexibility," "Interference Suppression," "Selective Attention," and "Response Inhibition." Individual differences in executive functioning components made differential contributions to early reading achievement. The Working Memory/Cognitive Flexibility factor emerged as the best predictor of reading. Group comparisons on computed factor scores showed that struggling readers displayed limitations in Working Memory/Cognitive Flexibility, but not in other executive function components, compared to more skilled readers. These results validate the account that working memory capacity provides a crucial building block for the development of early literacy skills and extends it to a population of early readers of Portuguese from Brazil. The study suggests that deficits in working memory/cognitive flexibility might represent one contributing factor to reading difficulties in early readers. This might have important implications for how educators might intervene with children at risk of academic under achievement.
Correlated resistive/capacitive state variability in solid TiO2 based memory devices
NASA Astrophysics Data System (ADS)
Li, Qingjiang; Salaoru, Iulia; Khiat, Ali; Xu, Hui; Prodromakis, Themistoklis
2017-05-01
In this work, we experimentally demonstrated the correlated resistive/capacitive switching and state variability in practical TiO2 based memory devices. Based on filamentary functional mechanism, we argue that the impedance state variability stems from the randomly distributed defects inside the oxide bulk. Finally, our assumption was verified via a current percolation circuit model, by taking into account of random defects distribution and coexistence of memristor and memcapacitor.
A Positive Generation Effect on Memory for Auditory Context.
Overman, Amy A; Richard, Alison G; Stephens, Joseph D W
2017-06-01
Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.
Oberauer, Klaus; Lewandowsky, Stephan
2016-11-01
The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Loo, Katie J; Rydell, Robert J
2013-03-01
This research examined whether feeling powerful can eliminate the deleterious effect of stereotype threat (i.e., concerns about confirming a negative self-relevant stereotype) on women's math performance. In Experiments 1 and 2, priming women with high power buffered them from reduced math performance in response to stereotype threat instructions, whereas women in the low and control power conditions showed poorer math performance in response to threat. Experiment 3 found that working memory capacity is one mechanism through which power moderates the effect of threat on women's math performance. In the low and control power conditions, women showed reduced working memory capacity in response to stereotype threat, accounting for threat's effect on performance. In contrast, women in the high power condition did not show reductions in working memory capacity or math performance in response to threat. This work demonstrates that perceived power moderates stereotype threat-based performance effects and explains why this occurs.
van der Donk, Marthe L A; Hiemstra-Beernink, Anne-Claire; Tjeenk-Kalff, Ariane C; van der Leij, Aryan V; Lindauer, Ramón J L
2013-01-11
Deficits in executive functioning are of great significance in attention-deficit/hyperactivity disorder (ADHD). One of these executive functions, working memory, plays an important role in academic performance and is often seen as the core deficit of this disorder. There are indications that working memory problems and academic performance can be improved by school-oriented interventions but this has not yet been studied systematically. In this study we will determine the short- and long-term effects of a working memory--and an executive function training applied in a school situation for children with AD(H)D, taking individual characteristics, the level of impairment and costs (stepped-care approach) into account. The study consists of two parts: the first part is a randomised controlled trial with school-aged children (8-12 yrs) with AD(H)D. Two groups (each n = 50) will be randomly assigned to a well studied computerized working memory training 'Cogmed', or to the 'Paying attention in class' intervention which is an experimental school-based executive function training. Children will be selected from regular -and special education primary schools in the region of Amsterdam, the Netherlands. The second part of the study will determine which specific characteristics are related to non-response of the 'Paying attention in class' intervention. School-aged children (8-12 yrs) with AD(H)D will follow the experimental school-based executive function training 'Paying attention in class' (n = 175). Academic performance and neurocognitive functioning (primary outcomes) are assessed before, directly after and 6 months after training. Secondary outcome measures are: behaviour in class, behaviour problems and quality of life. So far, there is limited but promising evidence that working memory - and other executive function interventions can improve academic performance. Little is know about the applicability and generalization effects of these interventions in a classroom situation. This study will contribute to this lack of information, especially information related to real classroom and academic situations. By taking into account the costs of both interventions, level of impairment and individual characteristics of the child (stepped-care approach) we will be able to address treatment more adequately for each individual in the future. Nederlands Trial Register NTR3415.
Smith, Matthew J; Horan, William P; Cobia, Derin J; Karpouzian, Tatiana M; Fox, Jaclyn M; Reilly, James L; Breiter, Hans C
2014-07-01
Empathic deficits have been linked to poor functioning in schizophrenia, but this work is mostly limited to self-report data. This study examined whether performance-based empathy measures account for incremental variance in social competence and social attainment above and beyond self-reported empathy, neurocognition, and clinical symptoms. Given the importance of working memory in theoretical models of empathy and in the prediction of functioning in schizophrenia, we also examined whether empathy mediates the relationship between working memory and functioning. Sixty outpatients and 45 healthy controls were compared on performance-based measures of 3 key components of empathic responding, including facial affect perception, emotional empathy (affective responsiveness), and cognitive empathy (emotional perspective-taking). Participants also completed measures of self-reported empathy, neurocognition, clinical symptoms, and social competence and attainment. Patients demonstrated lower accuracy than controls across the 3 performance-based empathy measures. Among patients, these measures showed minimal relations to self-reported empathy but significantly correlated with working memory and other neurocognitive functions as well as symptom levels. Furthermore, cognitive empathy explained significant incremental variance in social competence (∆R (2) = .07, P < .05) and was found to mediate the relation between working memory and social competence. Performance-based measures of empathy were sensitive to functionally relevant disturbances in schizophrenia. Working memory deficits appear to have an important effect on these disruptions in empathy. Empathy is emerging as a promising new area for social cognitive research and for novel recovery-oriented treatment development. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan
2014-01-01
The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630
Pouw, Wim T J L; Mavilidi, Myrto-Foteini; van Gog, Tamara; Paas, Fred
2016-08-01
Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.
Sandry, Joshua; Trafimow, David; Marks, Michael J.; Rice, Stephen
2013-01-01
Memory may have evolved to preserve information processed in terms of its fitness-relevance. Based on the assumption that the human mind comprises different fitness-relevant adaptive mechanisms contributing to survival and reproductive success, we compared alternative fitness-relevant processing scenarios with survival processing. Participants rated words for relevancy to fitness-relevant and control conditions followed by a delay and surprise recall test (Experiment 1a). Participants recalled more words processed for their relevance to a survival situation. We replicated these findings in an online study (Experiment 2) and a study using revised fitness-relevant scenarios (Experiment 3). Across all experiments, we did not find a mnemonic benefit for alternative fitness-relevant processing scenarios, questioning assumptions associated with an evolutionary account of remembering. Based on these results, fitness-relevance seems to be too wide-ranging of a construct to account for the memory findings associated with survival processing. We propose that memory may be hierarchically sensitive to fitness-relevant processing instructions. We encourage future researchers to investigate the underlying mechanisms responsible for survival processing effects and work toward developing a taxonomy of adaptive memory. PMID:23585858
Improper activation of D1 and D2 receptors leads to excess noise in prefrontal cortex
Avery, Michael C.; Krichmar, Jeffrey L.
2015-01-01
The dopaminergic system has been shown to control the amount of noise in the prefrontal cortex (PFC) and likely plays an important role in working memory and the pathophysiology of schizophrenia. We developed a model that takes into account the known receptor distributions of D1 and D2 receptors, the changes these receptors have on neuron response properties, as well as identified circuitry involved in working memory. Our model suggests that D1 receptor under-stimulation in supragranular layers gates internal noise into the PFC leading to cognitive symptoms as has been proposed in attention disorders, while D2 over-stimulation gates noise into the PFC by over-activation of cortico-striatal projecting neurons in infragranular layers. We apply this model in the context of a memory-guided saccade paradigm and show deficits similar to those observed in schizophrenic patients. We also show set-shifting impairments similar to those observed in rodents with D1 and D2 receptor manipulations. We discuss how the introduction of noise through changes in D1 and D2 receptor activation may account for many of the symptoms of schizophrenia depending on where this dysfunction occurs in the PFC. PMID:25814948
Simmering, Vanessa R
2016-09-01
Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.
Hassett, Thomas C; Hampton, Robert R
2017-05-01
Functionally distinct memory systems likely evolved in response to incompatible demands placed on learning by distinct environmental conditions. Working memory appears adapted, in part, for conditions that change frequently, making rapid acquisition and brief retention of information appropriate. In contrast, habits form gradually over many experiences, adapting organisms to contingencies of reinforcement that are stable over relatively long intervals. Serial reversal learning provides an opportunity to simultaneously examine the processes involved in adapting to rapidly changing and relatively stable contingencies. In serial reversal learning, selecting one of the two simultaneously presented stimuli is positively reinforced, while selection of the other is not. After a preference for the positive stimulus develops, the contingencies of reinforcement reverse. Naïve subjects adapt to such reversals gradually, perseverating in selection of the previously rewarded stimulus. Experts reverse rapidly according to a win-stay, lose-shift response pattern. We assessed whether a change in the relative control of choice by habit and working memory accounts for the development of serial reversal learning expertise. Across three experiments, we applied manipulations intended to attenuate the contribution of working memory but leave the contribution of habit intact. We contrasted performance following long and short intervals in Experiments 1 and 2, and we interposed a competing cognitive load between trials in Experiment 3. These manipulations slowed the acquisition of reversals in expert subjects, but not naïve subjects, indicating that serial reversal learning expertise is facilitated by a shift in the control of choice from passively acquired habit to actively maintained working memory.
Hu, Meng; Clark, Kelsey L.; Gong, Xiajing; Noudoost, Behrad; Li, Mingyao; Moore, Tirin
2015-01-01
Inferotemporal (IT) neurons are known to exhibit persistent, stimulus-selective activity during the delay period of object-based working memory tasks. Frontal eye field (FEF) neurons show robust, spatially selective delay period activity during memory-guided saccade tasks. We present a copula regression paradigm to examine neural interaction of these two types of signals between areas IT and FEF of the monkey during a working memory task. This paradigm is based on copula models that can account for both marginal distribution over spiking activity of individual neurons within each area and joint distribution over ensemble activity of neurons between areas. Considering the popular GLMs as marginal models, we developed a general and flexible likelihood framework that uses the copula to integrate separate GLMs into a joint regression analysis. Such joint analysis essentially leads to a multivariate analog of the marginal GLM theory and hence efficient model estimation. In addition, we show that Granger causality between spike trains can be readily assessed via the likelihood ratio statistic. The performance of this method is validated by extensive simulations, and compared favorably to the widely used GLMs. When applied to spiking activity of simultaneously recorded FEF and IT neurons during working memory task, we observed significant Granger causality influence from FEF to IT, but not in the opposite direction, suggesting the role of the FEF in the selection and retention of visual information during working memory. The copula model has the potential to provide unique neurophysiological insights about network properties of the brain. PMID:26063909
Koen, Joshua D.; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P.
2013-01-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test three competing theories for why this occurs - the encoding variability, attention failure, and recollection accounts. Distinguishing amongst these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all four experiments confirmed the predictions of the recollection account, and were inconsistent with the encoding variability account. The evidence supporting the attention failure account was mixed, with two of the four experiments confirming the account and two disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance, and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PMID:23834057
How working memory enables fluid reasoning.
Dehn, Milton J
2017-01-01
The strong relation between fluid reasoning (Gf) and working memory (WM) is well established. Gf depends on WM to hold necessary information in a span of awareness until the reasoning task is completed. The influence of time constraints on the Gf-WM relation indicates that the abilities to control attention and inhibit interference may be the underlying traits that account for the Gf-WM relation. Neuroanatomy also explains the interrelations among these cognitive processes. Neuroimaging (fMRI) studies have confirmed that the same regions of the prefrontal cortex (PFC) are active during Gf and WM functioning. The dorsolateral prefrontal cortex (dPFC) is also a critical structure for attention functions and inhibition.
Bilinearity, Rules, and Prefrontal Cortex
Dayan, Peter
2007-01-01
Humans can be instructed verbally to perform computationally complex cognitive tasks; their performance then improves relatively slowly over the course of practice. Many skills underlie these abilities; in this paper, we focus on the particular question of a uniform architecture for the instantiation of habitual performance and the storage, recall, and execution of simple rules. Our account builds on models of gated working memory, and involves a bilinear architecture for representing conditional input-output maps and for matching rules to the state of the input and working memory. We demonstrate the performance of our model on two paradigmatic tasks used to investigate prefrontal and basal ganglia function. PMID:18946523
Epele, Maria E
2010-03-01
Closely linked to the increase in psychotropic pill consumption, forgetting and remembering emerged from devastated social scenarios as a new local idiom among poor youth in the late 1990s and the new millennium. Drawing on ethnographic fieldwork carried out during the years of the deepest economic crisis in Argentina (2001-03), I argue that psychotropic pill consumption is associated with not only deteriorating economic conditions but also changes in the quality and price of cocaine, and in the scarcity and subsequent change of status of medications during the economic breakdown. Taking into account developments in the field of memory studies, I examine the relationship among political economy, social memory work, and changing drug-use practices. Regarding memory as a social practice, I argue that the growth of psychotropic pill consumption in the late 1990s can be understood through the interplay of Paul Ricoeur's notions regarding different kinds and levels of forgetting. By analyzing changing survival strategies, social network dismantlement, changing mortality patterns, and abusive police repression, I discuss how social fragmentation engendered by structural reforms has modified social memory work.
Associations among false belief understanding, counterfactual reasoning, and executive function.
Guajardo, Nicole R; Parker, Jessica; Turley-Ames, Kandi
2009-09-01
The primary purposes of the present study were to clarify previous work on the association between counterfactual thinking and false belief performance to determine (1) whether these two variables are related and (2) if so, whether executive function skills mediate the relationship. A total of 92 3-, 4-, and 5-year-olds completed false belief, counterfactual, working memory, representational flexibility, and language measures. Counterfactual reasoning accounted for limited unique variance in false belief. Both working memory and representational flexibility partially mediated the relationship between counterfactual and false belief. Children, like adults, also generated various types of counterfactual statements to differing degrees. Results demonstrated the importance of language and executive function for both counterfactual and false belief. Implications are discussed.
Engel de Abreu, Pascale M. J.; Abreu, Neander; Nikaedo, Carolina C.; Puglisi, Marina L.; Tourinho, Carlos J.; Miranda, Mônica C.; Befi-Lopes, Debora M.; Bueno, Orlando F. A.; Martin, Romain
2014-01-01
This study examined executive functioning and reading achievement in 106 6- to 8-year-old Brazilian children from a range of social backgrounds of whom approximately half lived below the poverty line. A particular focus was to explore the executive function profile of children whose classroom reading performance was judged below standard by their teachers and who were matched to controls on chronological age, sex, school type (private or public), domicile (Salvador/BA or São Paulo/SP) and socioeconomic status. Children completed a battery of 12 executive function tasks that were conceptual tapping cognitive flexibility, working memory, inhibition and selective attention. Each executive function domain was assessed by several tasks. Principal component analysis extracted four factors that were labeled “Working Memory/Cognitive Flexibility,” “Interference Suppression,” “Selective Attention,” and “Response Inhibition.” Individual differences in executive functioning components made differential contributions to early reading achievement. The Working Memory/Cognitive Flexibility factor emerged as the best predictor of reading. Group comparisons on computed factor scores showed that struggling readers displayed limitations in Working Memory/Cognitive Flexibility, but not in other executive function components, compared to more skilled readers. These results validate the account that working memory capacity provides a crucial building block for the development of early literacy skills and extends it to a population of early readers of Portuguese from Brazil. The study suggests that deficits in working memory/cognitive flexibility might represent one contributing factor to reading difficulties in early readers. This might have important implications for how educators might intervene with children at risk of academic under achievement. PMID:24959155
Look before you leap: sensory memory improves decision making.
Vlassova, Alexandra; Pearson, Joel
2013-09-01
Simple decisions require the processing and evaluation of perceptual and cognitive information, the formation of a decision, and often the execution of a motor response. This process involves the accumulation of evidence over time until a particular choice reaches a decision threshold. Using a random-dot-motion stimulus, we showed that simply delaying responses after the stimulus offset can almost double accuracy, even in the absence of new incoming visual information. However, under conditions in which the otherwise blank interval was filled with a sensory mask or concurrent working memory load was high, performance gains were lost. Further, memory and perception showed equivalent rates of evidence accumulation, suggesting a high-capacity memory store. We propose an account of continued evidence accumulation by sequential sampling from a simultaneously decaying memory trace. Memories typically decay with time, hence immediate inquiry trumps later recall from memory. However, the results we report here show the inverse: Inspecting a memory trumps viewing the actual object.
Working memory retrieval as a decision process
Pearson, Benjamin; Raškevičius, Julius; Bays, Paul M.; Pertzov, Yoni; Husain, Masud
2014-01-01
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation. PMID:24492597
Working memory retrieval as a decision process.
Pearson, Benjamin; Raskevicius, Julius; Bays, Paul M; Pertzov, Yoni; Husain, Masud
2014-02-03
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation.
Decay Theory of Immediate Memory: From Brown (1958) to Today (2014)
Ricker, Timothy J.; Vergauwe, Evie; Cowan, Nelson
2014-01-01
This work takes a historical approach to discussing Brown’s (1958) paper, “Some Tests of the Decay Theory of Immediate Memory”. This work was and continues to be extremely influential in the field of forgetting over the short-term. Its primary importance is in establishing a theoretical basis to consider a process of fundamental importance, memory decay. Brown (1958) established that time-based explanations of forgetting can account for both memory capacity and forgetting of information over short periods of time. We discuss this view both in the context of the intellectual climate at the time of the paper’s publication and in the context of the modern intellectual climate. The overarching theme we observe is that decay is as controversial now as it was in the 1950s and 1960s. PMID:24853316
The relationship between baseline pupil size and intelligence.
Tsukahara, Jason S; Harrison, Tyler L; Engle, Randall W
2016-12-01
Pupil dilations of the eye are known to correspond to central cognitive processes. However, the relationship between pupil size and individual differences in cognitive ability is not as well studied. A peculiar finding that has cropped up in this research is that those high on cognitive ability have a larger pupil size, even during a passive baseline condition. Yet these findings were incidental and lacked a clear explanation. Therefore, in the present series of studies we systematically investigated whether pupil size during a passive baseline is associated with individual differences in working memory capacity and fluid intelligence. Across three studies we consistently found that baseline pupil size is, in fact, related to cognitive ability. We showed that this relationship could not be explained by differences in mental effort, and that the effect of working memory capacity and fluid intelligence on pupil size persisted even after 23 sessions and taking into account the effect of novelty or familiarity with the environment. We also accounted for potential confounding variables such as; age, ethnicity, and drug substances. Lastly, we found that it is fluid intelligence, more so than working memory capacity, which is related to baseline pupil size. In order to provide an explanation and suggestions for future research, we also consider our findings in the context of the underlying neural mechanisms involved. Copyright © 2016 Elsevier Inc. All rights reserved.
Unsworth, Nash
2016-01-01
The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results suggested that WMC and LTM recall were related, and part of this relation was due to effective strategy use. However, adaptive changes in strategy use and study time allocation were not related to WMC. Examining multiple variables with structural equation modeling suggested that the relation between WMC and LTM recall was due to variation in effective strategy use, search efficiency, and monitoring abilities. Furthermore, all variables were shown to account for individual differences in LTM recall. These results suggest that the relation between WMC and recall from LTM is due to multiple strategic factors operating at both encoding and retrieval. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Event boundaries and anaphoric reference.
Thompson, Alexis N; Radvansky, Gabriel A
2016-06-01
The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition.
Time and resource limits on working memory: cross-age consistency in counting span performance.
Ransdell, Sarah; Hecht, Steven
2003-12-01
This longitudinal study separated resource demand effects from those of retention interval in a counting span task among 100 children tested in grade 2 and again in grades 3 and 4. A last card large counting span condition had an equivalent memory load to a last card small, but the last card large required holding the count over a longer retention interval. In all three waves of assessment, the last card large condition was found to be less accurate than the last card small. A model predicting reading comprehension showed that age was a significant predictor when entered first accounting for 26% of the variance, but counting span accounted for a further 22% of the variance. Span at Wave 1 accounted for significant unique variance at Wave 2 and at Wave 3. Results were similar for math calculation with age accounting for 31% of the variance and counting span accounting for a further 34% of the variance. Span at Wave 1 explained unique variance in math at Wave 2 and at Wave 3.
Koen, Joshua D; Aly, Mariam; Wang, Wei-Chun; Yonelinas, Andrew P
2013-11-01
A prominent finding in recognition memory is that studied items are associated with more variability in memory strength than new items. Here, we test 3 competing theories for why this occurs-the encoding variability, attention failure, and recollection accounts. Distinguishing among these theories is critical because each provides a fundamentally different account of the processes underlying recognition memory. The encoding variability and attention failure accounts propose that old item variance will be unaffected by retrieval manipulations because the processes producing this effect are ascribed to encoding. The recollection account predicts that both encoding and retrieval manipulations that preferentially affect recollection will affect memory variability. These contrasting predictions were tested by examining the effect of response speeding (Experiment 1), dividing attention at retrieval (Experiment 2), context reinstatement (Experiment 3), and increased test delay (Experiment 4) on recognition performance. The results of all 4 experiments confirm the predictions of the recollection account and are inconsistent with the encoding variability account. The evidence supporting the attention failure account is mixed, with 2 of the 4 experiments confirming the account and 2 disconfirming the account. These results indicate that encoding variability and attention failure are insufficient accounts of memory variance and provide support for the recollection account. Several alternative theoretical accounts of the results are also considered. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Jones, Jasmin Niedo; Abbott, Robert D.; Berninger, Virginia W.
2014-01-01
Human traits tend to fall along normal distributions. The aim of this research was to evaluate an evidence-based conceptual framework for predicting expected individual differences in reading and writing achievement outcomes for typically developing readers and writers in early and middle childhood from Verbal Reasoning with or without Working Memory Components (phonological, orthographic, and morphological word storage and processing units, phonological and orthographic loops, and rapid switching attention for cross-code integration). Verbal Reasoning (reconceptualized as Bidirectional Cognitive-Linguistic Translation) plus the Working Memory Components (reconceptualized as a language learning system) accounted for more variance than Verbal Reasoning alone, except for handwriting for which Working Memory Components alone were better predictors. Which predictors explained unique variance varied within and across reading (oral real word and pseudoword accuracy and rate, reading comprehension) and writing (handwriting, spelling, composing) skills and grade levels (second and fifth) in this longitudinal study. Educational applications are illustrated and theoretical and practical significance discussed. PMID:24948868
Noordermeer, Siri D. S.; Luman, Marjolein; Buitelaar, Jan K.; Hartman, Catharina A.; Hoekstra, Pieter J.; Franke, Barbara; Faraone, Stephen V.; Heslenfeld, Dirk J.; Oosterlaan, Jaap
2016-01-01
Objective Oppositional Defiant Disorder (ODD) is highly prevalent in Attention-Deficit/Hyperactivity Disorder (ADHD) and may account for inconsistencies in findings on neurocognitive functioning in ADHD. Our aim was to assess cool and hot executive functioning (EF) and temporal processing in ADHD with and without comorbid ODD to elucidate the effects of comorbid ODD. Method ADHD-only (n = 82), ADHD + ODD (n = 82), and controls (n = 82), with mean age 16 years (SD = 3.1), matched for age, gender, IQ, and ADHD type (clinical groups) were assessed on cool EF (inhibition, working memory), hot EF (reinforcement processing, emotion recognition), and temporal processing (time production and reproduction). Results Individuals with ADHD + ODD showed abnormalities in inhibition, working memory, facial emotion recognition, and temporal processing, whereas individuals with ADHD-only were solely impaired in working memory and time production. Conclusion Findings suggest that ODD carries a substantial part of the EF deficits observed in ADHD and contrast with current theories of neurocognitive impairments in ADHD. PMID:26486602
Colbert, Alison M; Bo, Jin
2017-07-01
This study examined relationships between inattentive and hyperactive/impulsive behaviors and working memory (WM) functioning, and the utility of WM in categorical diagnosis of ADHD versus considering ADHD symptoms on a continuum. The study included 50 male children (6-12 years). Inattentive and hyperactive/impulsive behaviors were measured by the Conners-3P parent report, and WM was assessed by the WISC-IV WM subtests and Working Memory Index (WMI). WISC-IV Arithmetic and Digit Span Backward were most consistently related to inattentive behaviors, and no WM measure was consistently related to ADHD hyperactive/impulsive behaviors. Arithmetic and Digit Span Backward also accounted for significant variance in inattentive behaviors and ADHD inattention symptoms, respectively. Neither the WMI nor the Arithmetic subtest correctly classified individuals diagnosed with ADHD. Measurement of inattentive behaviors on a continuum best characterized relationships between symptoms of ADHD and WM functioning; WM functioning did not have utility in categorical understanding of ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wolf, Tabea; Zimprich, Daniel
2016-10-01
The reminiscence bump phenomenon has frequently been reported for the recall of autobiographical memories. The present study complements previous research by examining individual differences in the distribution of word-cued autobiographical memories. More importantly, we introduce predictor variables that might account for individual differences in the mean (location) and the standard deviation (scale) of individual memory distributions. All variables were derived from different theoretical accounts for the reminiscence bump phenomenon. We used a mixed location-scale logitnormal model, to analyse the 4602 autobiographical memories reported by 118 older participants. Results show reliable individual differences in the location and the scale. After controlling for age and gender, individual proportions of first-time experiences and individual proportions of positive memories, as well as the ratings on Openness to new Experiences and Self-Concept Clarity accounted for 29% of individual differences in location and 42% of individual differences in scale of autobiographical memory distributions. Results dovetail with a life-story account for the reminiscence bump which integrates central components of previous accounts.
Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment.
Pace-Schott, Edward F; Spencer, Rebecca M C
2015-01-01
Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging and their further decline with MCI may account for concomitant declines in SDC. Notably these same sleep features further markedly decline, in concert with declining cognitive function, with the progression to AD. Therefore, progressive changes in sleep quality, architecture, and neural regulation may constitute a contributing factor to cognitive decline that is seen both with healthy aging and, to a much greater extent, with neurodegenerative disease.
Chuderski, Adam; Jastrzębski, Jan
2017-12-01
The "nothing-special" account of insight predicts positive correlations of insight problem solving and working memory capacity (WMC), whereas the "special-process" account expects no, or even negative, correlations. In the latter vein, DeCaro, Van Stockum Jr., and Wieth (2016) have recently reported weak negative WMC correlations with 2 constraint relaxation matchstick problems and 3 insight problems, and thus they claim that WM hinders insight. Here, we report on 3 studies that investigated WMC and various matchstick and classical problems (including 1 study that precisely replicated DeCaro et al.'s procedure). All 3 studies yielded moderate positive correlations of WMC with both the constraint relaxation and the classical problems. WMC explained 10% variance in problem solving, no matter what problems were used or how they were applied. Thus, DeCaro et al.'s claim that WM hinders insight is unwarranted. The opposite is true: WM facilitates insight. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Enhanced visual short-term memory in action video game players.
Blacker, Kara J; Curby, Kim M
2013-08-01
Visual short-term memory (VSTM) is critical for acquiring visual knowledge and shows marked individual variability. Previous work has illustrated a VSTM advantage among action video game players (Boot et al. Acta Psychologica 129:387-398, 2008). A growing body of literature has suggested that action video game playing can bolster visual cognitive abilities in a domain-general manner, including abilities related to visual attention and the speed of processing, providing some potential bases for this VSTM advantage. In the present study, we investigated the VSTM advantage among video game players and assessed whether enhanced processing speed can account for this advantage. Experiment 1, using simple colored stimuli, revealed that action video game players demonstrate a similar VSTM advantage over nongamers, regardless of whether they are given limited or ample time to encode items into memory. Experiment 2, using complex shapes as the stimuli to increase the processing demands of the task, replicated this VSTM advantage, irrespective of encoding duration. These findings are inconsistent with a speed-of-processing account of this advantage. An alternative, attentional account, grounded in the existing literature on the visuo-cognitive consequences of video game play, is discussed.
Cognitive hearing aids? Insights and possibilities
NASA Astrophysics Data System (ADS)
Petersen, Eline Borch; Lunner, Thomas
2015-12-01
The working memory plays an important role in successfully overcoming adverse listening conditions and should consequently be considered when designing and testing hearing aids. A number of studies have established the relationship between hearing in noise and working memory involvement, but with the Sentence-final Word Identification and Recall (SWIRL) test, it is possible to show that working memory is also involved in listening under favorable conditions and that noise reduction has a positive influence in situation with very little noise. Although the capacity of the working memory is a finite individual size, its involvement can differ with fatigue and other factors and individualization of hearing aids should take this into account to obtain the best performance. A way of individually adapting hearing aids is based on changes in the electrical activity of the brain (EEG). Here we present the possibilities that arise from using EEG and show that ear-mounted electrodes is able to record useful EEG that can be explored for individualization of hearing aids. Such an adaptation could be done based on changes in the electrical activity of the brain (EEG). Here we present the possibilities that arise from using EEG and show that ear-mounted electrodes is able to record useful EEG that can be explored for individualization of hearing aids.
Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G
2017-01-01
The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Derraugh, Lesley S; Neath, Ian; Surprenant, Aimée M; Beaudry, Olivia; Saint-Aubin, Jean
2017-03-01
The word-length effect, the finding that lists of short words are better recalled than lists of long words, is 1 of the 4 benchmark phenomena that guided development of the phonological loop component of working memory. However, previous work has noted a confound in word-length studies: The short words used had more orthographic neighbors (valid words that can be made by changing a single letter in the target word) than long words. The confound is that words with more neighbors are better recalled than otherwise comparable words with fewer neighbors. Two experiments are reported that address criticisms of the neighborhood-size account of the word-length effect by (1) testing 2 new stimulus sets, (2) using open rather than closed pools of words, and (3) using stimuli from a language other than English. In both experiments, words from large neighborhoods were better recalled than words from small neighborhoods. The results add to the growing number of studies demonstrating the substantial contribution of long-term memory to what have traditionally been identified as working memory tasks. The data are more easily explained by models incorporating the concept of redintegration rather than by frameworks such as the phonological loop that posit decay offset by rehearsal. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex
Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing
2015-01-01
A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212
Information processing efficiency in patients with multiple sclerosis.
Archibald, C J; Fisk, J D
2000-10-01
Reduced information processing efficiency, consequent to impaired neural transmission, has been proposed as underlying various cognitive problems in patients with Multiple Sclerosis (MS). This study employed two measures developed from experimental psychology that control for the potential confound of perceptual-motor abnormalities (Salthouse, Babcock, & Shaw, 1991; Sternberg, 1966, 1969) to assess the speed of information processing and working memory capacity in patients with mild to moderate MS. Although patients had significantly more cognitive complaints than neurologically intact matched controls, their performance on standard tests of immediate memory span did not differ from control participants and their word list learning was within normal limits. On the experimental measures, both relapsing-remitting and secondary-progressive patients exhibited significantly slowed information processing speed relative to controls. However, only the secondary-progressive patients had an additional decrement in working memory capacity. Depression, fatigue, or neurologic disability did not account for performance differences on these measures. While speed of information processing may be slowed early in the disease process, deficits in working memory capacity may appear only as there is progression of MS. It is these latter deficits, however, that may underlie the impairment of new learning that patients with MS demonstrate.
Diffusion theory of decision making in continuous report.
Smith, Philip L
2016-07-01
I present a diffusion model for decision making in continuous report tasks, in which a continuous, circularly distributed, stimulus attribute in working memory is matched to a representation of the attribute in the stimulus display. Memory retrieval is modeled as a 2-dimensional diffusion process with vector-valued drift on a disk, whose bounding circle represents the decision criterion. The direction and magnitude of the drift vector describe the identity of the stimulus and the quality of its representation in memory, respectively. The point at which the diffusion exits the disk determines the reported value of the attribute and the time to exit the disk determines the decision time. Expressions for the joint distribution of decision times and report outcomes are obtained by means of the Girsanov change-of-measure theorem, which allows the properties of the nonzero-drift diffusion process to be characterized as a function of a Euclidian-distance Bessel process. Predicted report precision is equal to the product of the decision criterion and the drift magnitude and follows a von Mises distribution, in agreement with the treatment of precision in the working memory literature. Trial-to-trial variability in criterion and drift rate leads, respectively, to direct and inverse relationships between report accuracy and decision times, in agreement with, and generalizing, the standard diffusion model of 2-choice decisions. The 2-dimensional model provides a process account of working memory precision and its relationship with the diffusion model, and a new way to investigate the properties of working memory, via the distributions of decision times. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Gaze behavior predicts memory bias for angry facial expressions in stable dysphoria.
Wells, Tony T; Beevers, Christopher G; Robison, Adrienne E; Ellis, Alissa J
2010-12-01
Interpersonal theories suggest that depressed individuals are sensitive to signs of interpersonal rejection, such as angry facial expressions. The present study examined memory bias for happy, sad, angry, and neutral facial expressions in stably dysphoric and stably nondysphoric young adults. Participants' gaze behavior (i.e., fixation duration, number of fixations, and distance between fixations) while viewing these facial expressions was also assessed. Using signal detection analyses, the dysphoric group had better accuracy on a surprise recognition task for angry faces than the nondysphoric group. Further, mediation analyses indicated that greater breadth of attentional focus (i.e., distance between fixations) accounted for enhanced recall of angry faces among the dysphoric group. There were no differences between dysphoria groups in gaze behavior or memory for sad, happy, or neutral facial expressions. Findings from this study identify a specific cognitive mechanism (i.e., breadth of attentional focus) that accounts for biased recall of angry facial expressions in dysphoria. This work also highlights the potential for integrating cognitive and interpersonal theories of depression.
Structural violence in Afghanistan: gendered memory, narratives, and food.
Dossa, Parin
2013-01-01
Afghanistan has been subject to political amnesia by the occupying powers of the United States and its North Atlantic Treaty Organization allies. Using the Taliban as a reference point, they have ensured that they are not implicated in the everyday and structural violence to which the people of Afghanistan have been subject over the past three decades. But Afghan women remember. Based on my ethnographic research in Kabul (in fall 2008 and 2009), I show how women in Afghanistan engage in memory work through narratives and food preparation within spaces of devastation. I argue that through these mediums, structural violence becomes knowable. I also argue that memory work is a politicized enterprise through which people remember to seek justice, in the process evoking the attention of a listening audience. This focus fosters a conversation on how the anthropology of violence can engage with issues of representation and engaged accountability.
Lewandowska, Koryna; Wachowicz, Barbara; Marek, Tadeusz; Oginska, Halszka; Fafrowicz, Magdalena
2018-01-01
Across a wide range of tasks, cognitive functioning is affected by circadian fluctuations. In this study, we investigated diurnal variations of working memory performance, taking into account not only hits and errors rates, but also sensitivity (d') and response bias (c) indexes (established by signal detection theory). Fifty-two healthy volunteers performed four experimental tasks twice - in the morning and in the evening (approximately 1 and 10 h after awakening). All tasks were based on Deese-Roediger-McDermott paradigm version dedicated to study working/short-term memory distortions. Participants were to memorize sets of stimuli characterized by either conceptual or perceptual similarity, and to answer if they recognized subsequent stimulus (probe) as an "old" one (i.e. presented in the preceding memory set). The probe was of three types: positive, negative or related lure. In two verbal tasks, memory sets were characterized by semantic or phonological similarity. In two visual tasks, abstract objects were characterized by a number of overlapping similarities or differed in only one detail. The type of experimental material and the participants' diurnal preference were taken into account. The analysis showed significant effect of time of day on false alarms rate (F (1,50) = 5.29, p = 0.03, η p 2 = 0.1) and response bias (F (1,50) = 11.16, p = 0.002, η p 2 = 0.18). In other words, in the evening participants responded in more liberal way than in the morning (answering "yes" more often). As the link between variations in false alarms rate, response bias and locus coeruleus activity was indicated in literature before, we believe that our data may be interpreted as supporting the hypothesis that diurnal fluctuations in norepinephrine release have effect on cognitive functioning in terms of decision threshold.
An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents
ERIC Educational Resources Information Center
Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap
2012-01-01
Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…
Dissociating Interference-Control Processes between Memory and Response
ERIC Educational Resources Information Center
Bissett, Patrick G.; Nee, Derek Evan; Jonides, John
2009-01-01
The ability to mitigate interference is of central importance to cognition. Previous research has provided conflicting accounts about whether operations that resolve interference are singular in character or form a family of functions. Here, the authors examined the relationship between interference-resolution processes acting on working memory…
A revised limbic system model for memory, emotion and behaviour.
Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel
2013-09-01
Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Remembered study mode: support for the distinctiveness account of the production effect.
Ozubko, Jason D; Major, Jennifer; MacLeod, Colin M
2014-01-01
The production effect is the finding that words spoken aloud at study are subsequently remembered better than are words read silently at study. According to the distinctiveness account, aloud words are remembered better because the act of speaking those words aloud is encoded and later recovery of this information can be used to infer that those words were studied. An alternative account (the strength-based account) is that memory strength is simply greater for words read aloud. To discriminate these two accounts, we investigated study mode judgements (i.e., "aloud"/"silent"/"new" ratings): The strength-based account predicts that "aloud" responses should positively correlate with memory strength, whereas the distinctiveness account predicts that accuracy of study mode judgements will be independent of memory strength. Across three experiments, where the strength of some silent words was increased by repetition, study mode was discriminable regardless of strength-even when the strength of aloud and repeated silent items was equivalent. Consistent with the distinctiveness account, we conclude that memory for "aloudness" is independent of memory strength and a likely candidate to explain the production effect.
Characterization of a normal control group: are they healthy?
Aine, C J; Sanfratello, L; Adair, J C; Knoefel, J E; Qualls, C; Lundy, S L; Caprihan, A; Stone, D; Stephen, J M
2014-01-01
We examined the health of a control group (18-81years) in our aging study, which is similar to control groups used in other neuroimaging studies. The current study was motivated by our previous results showing that one third of the elder control group had moderate to severe white matter hyperintensities and/or cortical volume loss which correlated with poor performance on memory tasks. Therefore, we predicted that cardiovascular risk factors (e.g., hypertension, high cholesterol) within the control group would account for significant variance on working memory task performance. Fifty-five participants completed 4 verbal and spatial working memory tasks, neuropsychological exams, diffusion tensor imaging (DTI), and blood tests to assess vascular risk. In addition to using a repeated measures ANOVA design, a cluster analysis was applied to the vascular risk measures as a data reduction step to characterize relationships between conjoint risk factors. The cluster groupings were used to predict working memory performance. The results show that higher levels of systolic blood pressure were associated with: 1) poor spatial working memory accuracy; and 2) lower fractional anisotropy (FA) values in multiple brain regions. In contrast, higher levels of total cholesterol corresponded with increased accuracy in verbal working memory. An association between lower FA values and higher cholesterol levels were identified in different brain regions from those associated with systolic blood pressure. The conjoint risk analysis revealed that Risk Cluster Group 3 (the group with the greatest number of risk factors) displayed: 1) the poorest performance on the spatial working memory tasks; 2) the longest reaction times across both spatial and verbal memory tasks; and 3) the lowest FA values across widespread brain regions. Our results confirm that a considerable range of vascular risk factors are present in a typical control group, even in younger individuals, which have robust effects on brain anatomy and function. These results present a new challenge to neuroimaging studies both for defining a cohort from which to characterize 'normative' brain circuitry and for establishing a control group to compare with other clinical populations. © 2013.
Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier
2012-07-01
Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (P<0.03); (ii) with a deficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency and the negative results of group studies. Finally, the frontal dysexecutive syndrome cannot be attributed to central executive impairment, although it may contribute to some dysexecutive disorders.
Keilp, J G; Gorlyn, M; Russell, M; Oquendo, M A; Burke, A K; Harkavy-Friedman, J; Mann, J J
2013-03-01
Executive dysfunction, distinct from other cognitive deficits in depression, has been associated with suicidal behavior. However, this dysfunction is not found consistently across samples. Medication-free subjects with DSM-IV major depressive episode (major depressive disorder and bipolar type I disorder) and a past history of suicidal behavior (n = 72) were compared to medication-free depressed subjects with no history of suicidal behavior (n = 80) and healthy volunteers (n = 56) on a battery of tests assessing neuropsychological functions typically affected by depression (motor and psychomotor speed, attention, memory) and executive functions reportedly impaired in suicide attempters (abstract/contingent learning, working memory, language fluency, impulse control). All of the depressed subjects performed worse than healthy volunteers on motor, psychomotor and language fluency tasks. Past suicide attempters, in turn, performed worse than depressed non-attempters on attention and memory/working memory tasks [a computerized Stroop task, the Buschke Selective Reminding Task (SRT), the Benton Visual Retention Test (VRT) and an N-back task] but not on other executive function measures, including a task associated with ventral prefrontal function (Object Alternation). Deficits were not accounted for by current suicidal ideation or the lethality of past attempts. A small subsample of those using a violent method in their most lethal attempt showed a pattern of poor executive performance. Deficits in specific components of attention control, memory and working memory were associated with suicidal behavior in a sample where non-violent attempt predominated. Broader executive dysfunction in depression may be associated with specific forms of suicidal behavior, rather than suicidal behavior per se.
An ideal observer analysis of visual working memory.
Sims, Chris R; Jacobs, Robert A; Knill, David C
2012-10-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Symbiosis of executive and selective attention in working memory
Vandierendonck, André
2014-01-01
The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved. PMID:25152723
Symbiosis of executive and selective attention in working memory.
Vandierendonck, André
2014-01-01
The notion of working memory (WM) was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated WM system that controls task coordination. To that end, WM models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in WM activities. A model is proposed in which selective attention control is directly linked to the executive control part of the WM system. The model assumes that apart from storage of declarative information, the system also includes an executive WM module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.
Stochastic switching of TiO2-based memristive devices with identical initial memory states
2014-01-01
In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953
Gender differences in navigational memory: pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico
2015-02-01
The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.
Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D
2016-06-01
To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bäuml, Karl-Heinz T; Dobler, Ina M
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas recall specificity of the beneficial effect has not been examined to date. Addressing the issue, we compared in 2 experiments the effects of retrieval and restudy on recall of other items, when access to the study context was (largely) maintained and when access to the study context was impaired (in Experiment 1 by using the listwise directed-forgetting task, in Experiment 2 by using a prolonged retention interval). In both experiments, selective retrieval but not restudy induced forgetting of other items when context access was maintained, which replicates prior work. In contrast, when context access was impaired, both selective retrieval and restudy induced beneficial effects on other memories. These findings suggest that the detrimental but not the beneficial effect of selective memory retrieval is recall specific. The results are consistent with a recent 2-factor account of selective memory retrieval that attributes the detrimental effect to inhibition or blocking but the beneficial effect to context reactivation processes. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Forgetting, Reminding, and Remembering: The Retrieval of Lost Spatial Memory
Morris, Richard G. M
2004-01-01
Retrograde amnesia can occur after brain damage because this disrupts sites of storage, interrupts memory consolidation, or interferes with memory retrieval. While the retrieval failure account has been considered in several animal studies, recent work has focused mainly on memory consolidation, and the neural mechanisms responsible for reactivating memory from stored traces remain poorly understood. We now describe a new retrieval phenomenon in which rats' memory for a spatial location in a watermaze was first weakened by partial lesions of the hippocampus to a level at which it could not be detected. The animals were then reminded by the provision of incomplete and potentially misleading information—an escape platform in a novel location. Paradoxically, both incorrect and correct place information reactivated dormant memory traces equally, such that the previously trained spatial memory was now expressed. It was also established that the reminding procedure could not itself generate new learning in either the original environment, or in a new training situation. The key finding is the development of a protocol that definitively distinguishes reminding from new place learning and thereby reveals that a failure of memory during watermaze testing can arise, at least in part, from a disruption of memory retrieval. PMID:15314651
The Cognitive Profile of Chinese Children with Mathematics Difficulties
ERIC Educational Resources Information Center
Chan, Becky Mee-yin; Ho, Connie Suk-han
2010-01-01
This study examined how four domain-specific skills (arithmetic procedural skills, number fact retrieval, place value concept, and number sense) and two domain-general processing skills (working memory and processing speed) may account for Chinese children's mathematics learning difficulties. Children with mathematics difficulties (MD) of two age…
The Influence of Temporal Resolution Power and Working Memory Capacity on Psychometric Intelligence
ERIC Educational Resources Information Center
Troche, Stefan J.; Rammsayer, Thomas H.
2009-01-01
According to the temporal resolution power (TRP) hypothesis, higher TRP as reflected by better performance on psychophysical timing tasks accounts for faster speed of information processing and increased efficiency of information processing leading to better performance on tests of psychometric intelligence. An alternative explanation of…
Reduced Interference from Memory Testing: A Postretrieval Monitoring Account
ERIC Educational Resources Information Center
Pierce, Benton H.; Gallo, David A.; McCain, Jason L.
2017-01-01
Initial learning can interfere with subsequent learning (proactive interference [PI]), but recent work indicates initial testing can reduce PI. Here, we tested 2 alternative hypotheses of this effect: Does testing reduce PI by constraining retrieval to the target list, or by facilitating a postretrieval monitoring process? Participants first…
The role of executive functioning in memory performance in pediatric focal epilepsy
Sepeta, Leigh N.; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D.; Berl, Madison M.
2016-01-01
Objective Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Methods Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (WASI/DAS), as well as visual (CMS Dot Locations) and verbal episodic memory (WRAML Story Memory and CVLT-C). Executive functioning was measured directly (WISC-IV Digit Span Backward; CELF-IV Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function (BRIEF)). Results Children with focal epilepsy had lower delayed free recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η2 = .12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η2 = .03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η2 = .08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9–19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9–10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extra-temporal, frontal vs. extra-frontal). Significance Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. PMID:28111742
Rose, Nathan S; Craik, Fergus I M
2012-07-01
Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved
Pan, Yi; Soto, David
2010-07-09
Recent research suggests that visual selection can be automatically biased to those stimuli matching the contents of working memory (WM). However, a complete functional account of the interplay between WM and attention remains to be established. In particular, the boundary conditions of the WM effect on selection are unclear. Here, the authors investigate the influence of the focus of spatial attention (i.e., diffused vs. focused) by assessing the effect of spatial precues on attentional capture by WM. Experiments 1 and 2 showed that relative to a neutral condition without memory-matching stimuli, the presence of a memory distractor can trigger attentional capture despite being entirely irrelevant for the attention task but this happened only when the item was actively maintained in WM and not when it was merely repeated. Experiments 3a, 3b and 3c showed that attentional capture by WM can be modulated by endogenous spatial pre-cueing of the incoming target of selection. The authors conclude that WM-driven capture of visual selection is dependent on the focus of spatial attention. Copyright 2009 Elsevier Ltd. All rights reserved.
Attitudes and learning difficulties in middle school science in South Korea
NASA Astrophysics Data System (ADS)
Jung, Eun Sook
The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is difference of opinions related to various aspects of learning science between age 13 and 15, and between high and middle and low working memory capacity groups, students responses were compared by just looking at the distribution of percentages without doing more statistics. Correlation coefficients were calculated to see if student's working memory capacity is linked with attitudes. As a result of data analyses from the working memory test and the questionnaire, it is seen that working memory space is related to some student attitudes towards science and their way of studying. Compared to students with high working memory capacity, students who have low working memory capacity are likely to lose their interest in science, feel science is difficult, and have low confidence about studying science. In addition, they tend to depend on memorization when they study science, consider science as a future career less, and are less motivated to study science by attitudinal factors such as "I really enjoy studying science", "Science is useful in my life". This exploratory study has suggested some important issues which need addressed in developing positive attitudes as well as encouraging meaningful learning.
Attention problems of very preterm children compared with age-matched term controls at school-age.
de Kieviet, Jorrit F; van Elburg, Ruurd M; Lafeber, Harrie N; Oosterlaan, Jaap
2012-11-01
To clarify the severity, specificity, and neurocognitive underpinnings of attention problems in very preterm children. A sample of 66 preterm (<32 weeks gestation), mean (SD) age 7.5 (0.4) years, and 66 age-matched term controls participated. Symptoms of inattention were assessed using parent and teacher-rated questionnaires, and neurocognitive measures included speed and consistency in speed of information processing, lapses of attention (tau), alerting, orienting, and executive attention, as well as verbal and visuospatial working memory. Group differences were investigated using ANOVA, and Sobel tests were used to clarify the mediating role of neurocognitive impairments on attention problems. There was a large decrease in visuospatial working memory abilities (P < .001, d = .87), and medium increases in tau (P = .002, d = 0.55) as well as parent and teacher ratings of inattention (range d = 0.40-0.56) in very preterm children compared with term peers. Tau and visuospatial working memory were significant predictors of parent (R(2) = .161, P < .001 and R(2) = .071, P = .001; respectively) and teacher (R(2) = .152, P < .001 and R(2) = .064, P = .002; respectively) ratings of inattention, and completely explained the effects of very preterm birth on attention problems. Increased lapses of attention and poorer visuospatial working memory fully account for the attention problems in very premature children at school-age. Copyright © 2012 Mosby, Inc. All rights reserved.
Factorial Comparison of Working Memory Models
van den Berg, Ronald; Awh, Edward; Ma, Wei Ji
2014-01-01
Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory. PMID:24490791
Working Memory Contributions to Reinforcement Learning Impairments in Schizophrenia
Brown, Jaime K.; Gold, James M.; Waltz, James A.; Frank, Michael J.
2014-01-01
Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learning curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory (WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited) mechanisms in healthy adult human subjects. Here, we used this task to assess patients' specific sources of impairments in learning. In 15 separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared. These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia. PMID:25297101
Kofler, Michael J; Rapport, Mark D; Bolden, Jennifer; Sarver, Dustin E; Raiker, Joseph S
2010-02-01
Inattentive behavior is considered a core and pervasive feature of ADHD; however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory deficits and inattentive behavior. The current study investigated whether inattentive behavior in children with ADHD is functionally related to the domain-general central executive and/or subsidiary storage/rehearsal components of working memory. Objective observations of children's attentive behavior by independent observers were conducted while children with ADHD (n = 15) and typically developing children (n = 14) completed counterbalanced tasks that differentially manipulated central executive, phonological storage/rehearsal, and visuospatial storage/rehearsal demands. Results of latent variable and effect size confidence interval analyses revealed two conditions that completely accounted for the attentive behavior deficits in children with ADHD: (a) placing demands on central executive processing, the effect of which is evident under even low cognitive loads, and (b) exceeding storage/rehearsal capacity, which has similar effects on children with ADHD and typically developing children but occurs at lower cognitive loads for children with ADHD.
Reading Comprehension in Children with ADHD: Cognitive Underpinnings of the Centrality Deficit
Miller, Amanda C.; Keenan, Janice M.; Betjemann, Rebecca S.; Willcutt, Erik; Pennington, Bruce F.; Olson, Richard K.
2012-01-01
We examined reading comprehension in children with ADHD by assessing their ability to build a coherent mental representation that allows them to recall central and peripheral information. We compared children with ADHD (mean age 9.78) to word reading-matched controls (mean age 9.89) on their ability to retell a passage. We found that even though children with ADHD recalled more central than peripheral information, they showed their greatest deficit, relative to controls, on central information – a centrality deficit (Miller & Keenan, 2009). We explored the cognitive underpinnings of this deficit using regressions to compare how well cognitive factors (working memory, inhibition, processing speed, and IQ) predicted the ability to recall central information, after controlling for word reading ability, and whether these cognitive factors interacted with ADHD symptoms. Working memory accounted for the most unique variance. Although previous evidence for reading comprehension difficulties in children with ADHD have been mixed, this study suggests that even when word reading ability is controlled, children with ADHD have difficulty building a coherent mental representation, and this difficulty is likely related to deficits in working memory. PMID:23054132
van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim
2013-10-01
Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Eye movements reduce vividness and emotionality of "flashforwards".
Engelhard, Iris M; van den Hout, Marcel A; Janssen, Wilco C; van der Beek, Jorinde
2010-05-01
Earlier studies have shown that eye movements during retrieval of disturbing images about past events reduce their vividness and emotionality, which may be due to both tasks competing for working memory resources. This study examined whether eye movements reduce vividness and emotionality of visual distressing images about feared future events: "flashforwards". A non-clinical sample was asked to select two images of feared future events, which were self-rated for vividness and emotionality. These images were retrieved while making eye movements or without a concurrent secondary task, and then vividness and emotionality were rated again. Relative to the no-dual task condition, eye movements while thinking of future-oriented images resulted in decreased ratings of image vividness and emotional intensity. Apparently, eye movements reduce vividness and emotionality of visual images about past and future feared events. This is in line with a working memory account of the beneficial effects of eye movements, which predicts that any task that taxes working memory during retrieval of disturbing mental images will be beneficial. Copyright 2010 Elsevier Ltd. All rights reserved.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.
Dissociating the two faces of selective memory retrieval.
Dobler, Ina M; Bäuml, Karl-Heinz T
2012-07-01
Research in the past four decades has repeatedly shown that selective retrieval of some (non-target) memories can impair subsequent retrieval of other (target) information, a finding known as retrieval-induced forgetting. More recently, however, there is evidence that selective retrieval can both impair and enhance recall of related memories (K-H. T. Bäuml & Samenieh, 2010). To identify possible experimental dissociations between the detrimental and the beneficial effects of memory retrieval, we examined retrieval dynamics in listwise directed forgetting, varying the delay between preceding non-target and subsequent target recall. When target recall immediately followed non-target recall, we replicated the prior work and found detrimental effects of memory retrieval on to-be-remembered items but beneficial effects on to-be-forgotten items. In contrast, when a delay was introduced between non-target and target recall, the detrimental effects were present but the beneficial effects were absent. The results demonstrate a first experimental dissociation between the two effects of memory retrieval. They are consistent with a recent two-factor account of the two faces of selective memory retrieval.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized.
Haut, Kristen M; Karlsgodt, Katherine H; Bilder, Robert M; Congdon, Eliza; Freimer, Nelson B; London, Edythe D; Sabb, Fred W; Ventura, Joseph; Cannon, Tyrone D
2015-10-01
Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects' distributional positions across memory domains was measured. Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual's task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. Copyright © 2015 Elsevier B.V. All rights reserved.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized
Haut, Kristen M.; Karlsgodt, Katherine H.; Bilder, Robert M.; Congdon, Eliza; Freimer, Nelson; London, Edythe D.; Sabb, Fred W.; Ventura, Joseph; Cannon, Tyrone D.
2015-01-01
Objective Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Method Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects’ distributional positions across memory domains was measured. Results Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual’s task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Conclusions Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. PMID:26299707
Neurocognitive development of the ability to manipulate information in working memory.
Crone, Eveline A; Wendelken, Carter; Donohue, Sarah; van Leijenhorst, Linda; Bunge, Silvia A
2006-06-13
The ability to manipulate information in working memory is a key factor in cognitive development. Here, we used event-related functional MRI to test the hypothesis that developmental improvements in manipulation, relative to pure maintenance, are associated with increased recruitment of dorsolateral (DL) prefrontal cortex (PFC) and superior parietal cortex. Three age groups (8-12 years old, 13-17 years old, and 18-25 years old) performed an object-working memory task with separate maintenance and manipulation conditions. We found that 8- to 12-year-olds did not perform the task as well as adolescents or adults, particularly on trials requiring manipulation in addition to maintenance. In this study, no age differences were observed in the activation profile of ventrolateral PFC, a region associated with online maintenance. In contrast, unlike the older participants, 8- to 12-year-olds failed to recruit right DL PFC and bilateral superior parietal cortex during the delay period for manipulation relative to maintenance. This group difference was observed specifically during the delay period, while participants reordered items in working memory, and could not be accounted for by group differences in performance. Across participants, activation levels in right DL PFC and superior parietal cortex, but not ventrolateral PFC, were positively correlated with performance on manipulation trials. These results indicate that increased recruitment of right DL PFC and bilateral parietal cortex during adolescence is associated with improvements in the ability to work with object representations.
Differentiation of subsequent memory effects between retrieval practice and elaborative study.
Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan
2017-07-01
Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by Elsevier B.V.
Vinogradov, Sophia; Fisher, Melissa; Warm, Heather; Holland, Christine; Kirshner, Margaret A; Pollock, Bruce G
2009-09-01
Schizophrenia is treated with medications that raise serum anticholinergic activity and are known to adversely affect cognition. The authors examined the relationship between serum anticholinergic activity and baseline cognitive performance and response to computerized cognitive training in outpatients with schizophrenia. Fifty-five patients were randomly assigned to either computerized cognitive training or a computer games control condition. A neurocognitive battery based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was performed at baseline and after the intervention. Serum anticholinergic activity, measured at study entry by radioreceptor assay, was available for 49 patients. Serum anticholinergic activity showed a significant negative correlation with baseline performance in verbal working memory and verbal learning and memory, accounting for 7% of the variance in these measures, independent of age, IQ, or symptom severity. Patients in the cognitive training condition (N=25) showed a significant gain in global cognition compared to those in the control condition, but this improvement was negatively correlated with anticholinergic burden. Serum anticholinergic activity uniquely accounted for 20% of the variance in global cognition change, independent of age, IQ, or symptom severity. Serum anticholinergic activity in schizophrenia patients shows a significant association with impaired performance in MATRICS-based measures of verbal working memory and verbal learning and memory and is significantly associated with a lowered response to an intensive course of computerized cognitive training. These findings underscore the cognitive cost of medications that carry a high anticholinergic burden. The findings also have implications for the design and evaluation of cognitive treatments for schizophrenia.
Visual perception as retrospective Bayesian decoding from high- to low-level features
Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning
2017-01-01
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108
Trick, Lana M; Mutreja, Rachna; Hunt, Kelly
2012-02-01
An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.
[Cognitive remediation and work outcome in schizophrenia].
Franck, N
2014-06-01
Recovery is partly defined by the patients' capacity to work, since doing well in a job favors hope and responsibilities' taking. Diminished job placement or tenure is linked with cognitive disorders, which impact directly and indirectly (through negative symptoms) functional outcomes. Attention, executive functions and working memory disorders can result in an alteration of the ability to manage the tasks required in the workplace. Executive function, working memory and social cognition disorders may also have an impact on behavior in relationships. Cognitive disorders do not automatically directly contribute to vocational outcome, yet their effects may be mediated by other variables such as symptoms, metacognition, social skills and intrinsic motivation. Then, since all these dimensions have to be taken into account, reducing the impact of cognitive troubles becomes a major challenge for the care of schizophrenia. Cognitive remediation is the more effective therapeutic tool to reduce cognitive dysfunctions. It rests in particular on the development of new strategies that allow taking concrete situations into account more efficiently. Cognitive remediation reduces the detrimental consequences of cognitive disorders and permits their compensation. It has emerged as an effective treatment, that improves not only cognitive abilities but also functioning, as it has been shown by numerous randomized controlled studies and several meta-analyses. The present article considers the effects on cognitive remediation on work function in schizophrenia. Several randomized controlled trials that compared supported employment alone versus supported employment associated with cognitive remediation showed significant improvement of employment rates in the latter condition. These results favor the use of cognitive remediation before job placement. The specific needs of the occupation that will be provided and the cognitive profile of the user should be taken into account. Copyright © 2014. Published by Elsevier Masson SAS.
Cognitive Constraints and the Early Learning Goals in Writing
ERIC Educational Resources Information Center
Bourke, Lorna; Adams, Anne-Marie
2010-01-01
This study examined the relative importance of a number of cognitive factors (i.e. working memory, vocabulary knowledge, general cognitive ability and reading skills) in accounting for differences in the rate of progress made by children in the development of emergent writing skills. Sixty-seven children were assessed on tasks measuring the…
Why Computational Models Are Better than Verbal Theories: The Case of Nonword Repetition
ERIC Educational Resources Information Center
Jones, Gary; Gobet, Fernand; Freudenthal, Daniel; Watson, Sarah E.; Pine, Julian M.
2014-01-01
Tests of nonword repetition (NWR) have often been used to examine children's phonological knowledge and word learning abilities. However, theories of NWR primarily explain performance either in terms of phonological working memory or long-term knowledge, with little consideration of how these processes interact. One theoretical account that…
The Crosstalk Hypothesis: Why Language Interferes with Driving
ERIC Educational Resources Information Center
Bergen, Benjamin; Medeiros-Ward, Nathan; Wheeler, Kathryn; Drews, Frank; Strayer, David
2013-01-01
Performing two cognitive tasks at the same time can degrade performance for either domain-general reasons (e.g., both tasks require attention) or domain-specific reasons (e.g., both tasks require visual working memory). We tested predictions of these two accounts of interference on the task of driving while using language, a naturally occurring…
Supramodality Effects in Visual and Haptic Spatial Processes
ERIC Educational Resources Information Center
Cattaneo, Zaira; Vecchi, Tomaso
2008-01-01
In this article, the authors investigated unimodal and cross-modal processes in spatial working memory. A number of locations had to be memorized within visual or haptic matrices according to different experimental conditions known to be critical in accounting for the effects of perception on imagery. Results reveal that some characteristics of…
Redick, Thomas S; Shipstead, Zach; Meier, Matthew E; Montroy, Janelle J; Hicks, Kenny L; Unsworth, Nash; Kane, Michael J; Hambrick, D Zachary; Engle, Randall W
2016-11-01
Previous research has identified several cognitive abilities that are important for multitasking, but few studies have attempted to measure a general multitasking ability using a diverse set of multitasks. In the final dataset, 534 young adult subjects completed measures of working memory (WM), attention control, fluid intelligence, and multitasking. Correlations, hierarchical regression analyses, confirmatory factor analyses, structural equation models, and relative weight analyses revealed several key findings. First, although the complex tasks used to assess multitasking differed greatly in their task characteristics and demands, a coherent construct specific to multitasking ability was identified. Second, the cognitive ability predictors accounted for substantial variance in the general multitasking construct, with WM and fluid intelligence accounting for the most multitasking variance compared to attention control. Third, the magnitude of the relationships among the cognitive abilities and multitasking varied as a function of the complexity and structure of the various multitasks assessed. Finally, structural equation models based on a multifaceted model of WM indicated that attention control and capacity fully mediated the WM and multitasking relationship. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Crane, Catherine; Duggan, Danielle S
2009-03-01
To explore the association between age of onset of childhood sexual abuse (CSA) and overgeneral memory (OGM) in a clinical sample. Presence and age of onset of CSA and levels of OGM were assessed in 49 patients attending hospital following a recurrence of suicidal behaviour. Twenty six participants reported CSA. Earlier age of onset of CSA was associated with greater OGM, indexed by fewer specific and more categoric memories. The association was not accounted for either by elevated levels of depression in those reporting earlier abuse, nor by levels of general verbal fluency. The findings are consistent with previous work and support the hypothesis that abuse occurring earlier in development results in more pronounced OGM.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual’s perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual’s overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work–family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators’ alertness and job-performance. PMID:25232346
The Role of Metarepresentation in the Production and Resolution of Referring Expressions.
Horton, William S; Brennan, Susan E
2016-01-01
In this paper we consider the potential role of metarepresentation-the representation of another representation, or as commonly considered within cognitive science, the mental representation of another individual's knowledge and beliefs-in mediating definite reference and common ground in conversation. Using dialogues from a referential communication study in which speakers conversed in succession with two different addressees, we highlight ways in which interlocutors work together to successfully refer to objects, and achieve shared conceptualizations. We briefly review accounts of how such shared conceptualizations could be represented in memory, from simple associations between label and referent, to "triple co-presence" representations that track interlocutors in an episode of referring, to more elaborate metarepresentations that invoke theory of mind, mutual knowledge, or a model of a conversational partner. We consider how some forms of metarepresentation, once created and activated, could account for definite reference in conversation by appealing to ordinary processes in memory. We conclude that any representations that capture information about others' perspectives are likely to be relatively simple and subject to the same kinds of constraints on attention and memory that influence other kinds of cognitive representations.
A pilot study on factors involved with work participation in the early stages of multiple sclerosis.
Van der Hiele, Karin; Middelkoop, Huub A M; Ruimschotel, Rob; Kamminga, Noëlle G A; Visser, Leo H
2014-01-01
Up to 30% of recently diagnosed MS patients lose their jobs in the first four years after diagnosis. Taking into account the personal and socio-economic importance of sustaining employment, it is of the utmost importance to examine factors involved with work participation. To investigate differences in self-reported functioning in recently diagnosed MS patients with and without a paid job. Self-reports of physical and cognitive functioning, depression, anxiety and fatigue were gathered from 44 relapsing-remitting MS patients diagnosed within 3 years. Patients with a paid job (57%) reported better physical functioning (p<0.001), better memory functioning (p = 0.01) and a lower physical impact of fatigue (p = 0.018) than patients without a paid job. Physical functioning was the main predictor of employment status in a logistic regression model. In those with a paid job better memory functioning (r = 0.54, p = 0.005) and a lower social impact of fatigue (r = -0.46, p = 0.029) correlated with an increased number of working hours. Better physical functioning is the primary factor involved with increased work participation in early MS. Better self-reported memory functioning and less social fatigue were associated with increased working hours. These findings highlight the importance of battling these symptoms in the early stages of MS.
Vanbinst, Kiran; Ceulemans, Eva; Peters, Lien; Ghesquière, Pol; De Smedt, Bert
2018-02-01
Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3years of primary education (5-8years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children's ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children's development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children's arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, X Jessie; Wickens, Christopher D; Park, Taezoon; Fong, Liesel; Siah, Kewin T H
2015-12-01
We aimed to examine the effects of information access cost and accountability on medical residents' information retrieval strategy and performance during prehandover preparation. Prior studies observing doctors' prehandover practices witnessed the use of memory-intensive strategies when retrieving patient information. These strategies impose potential threats to patient safety as human memory is prone to errors. Of interest in this work are the underlying determinants of information retrieval strategy and the potential impacts on medical residents' information preparation performance. A two-step research approach was adopted, consisting of semistructured interviews with 21 medical residents and a simulation-based experiment with 32 medical residents. The semistructured interviews revealed that a substantial portion of medical residents (38%) relied largely on memory for preparing handover information. The simulation-based experiment showed that higher information access cost reduced information access attempts and access duration on patient documents and harmed information preparation performance. Higher accountability led to marginally longer access to patient documents. It is important to understand the underlying determinants of medical residents' information retrieval strategy and performance during prehandover preparation. We noted the criticality of easy access to patient documents in prehandover preparation. In addition, accountability marginally influenced medical residents' information retrieval strategy. Findings from this research suggested that the cost of accessing information sources should be minimized in developing handover preparation tools. © 2015, Human Factors and Ergonomics Society.
Working memory is related to perceptual processing: a case from color perception.
Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K
2011-07-01
We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher WM individuals than for lower WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and it provides a first account of the individual differences in color constancy known about for decades.
Working memory is related to perceptual processing: A case from color perception
Allen, Elizabeth C.; Beilock, Sian L.; Shevell, Steven K.
2011-01-01
We explored the relation between individual differences in working memory (WM) and color constancy, the phenomenon of color perception that allows us to perceive the color of an object as relatively stable under changes in illumination. Successive color constancy (measured by first viewing a colored surface under a particular illumination and later recalling it under a new illumination) was better for higher-WM individuals than for lower-WM individuals. Moreover, the magnitude of this WM difference depended on how much contextual information was available in the scene, which typically improves color constancy. By contrast, simple color memory, measured by viewing and recalling a colored surface under the same illumination, showed no significant relation to WM. This study reveals a relation between WM and a low-level perceptual process not previously thought to operate within the confines of attentional control, and provides a first account of the individual differences in color constancy known about for decades. PMID:21480748
Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.
Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas
2017-04-01
Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.
Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.
2011-01-01
Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients’ memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. PMID:21345344
Berryhill, Marian E; Chein, Jason; Olson, Ingrid R
2011-04-01
Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients' memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. Copyright © 2011 Elsevier Ltd. All rights reserved.
Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J
2016-01-01
High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.
The role of executive functioning in memory performance in pediatric focal epilepsy.
Sepeta, Leigh N; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D; Berl, Madison M
2017-02-01
Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (Wechsler Abbreviated Scale of Intelligence [WASI]/Differential Ability Scales [DAS]), as well as visual Children's Memory Scale (CMS Dot Locations) and verbal episodic memory (Wide Range Assessment of Memory and Learning [WRAML] Story Memory and California Verbal Learning Test for Children [CVLT-C]). Executive functioning was measured directly (WISC-IV Digit Span Backward; Clinical Evaluation of Language Fundamentals, Fourth Edition (CELF-IV) Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function [BRIEF]). Children with focal epilepsy had lower delayed free-recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η 2 = 0.12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η 2 = 0.03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η 2 = 0.08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9-19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9-10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extratemporal, frontal vs. extrafrontal). Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization. Executive functioning accounted for significant variance in memory performance, suggesting that poor executive control negatively influences memory retrieval. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Verburgh, Lot; Scherder, Erik J A; Van Lange, Paul A M; Oosterlaan, Jaap
2016-01-01
Research suggested a positive association between physical fitness and neurocognitive functioning in children. Aim of the present study is to investigate possible dose-response relationships between diverse daily physical activities and a broad range of neurocognitive functions in preadolescent children. Furthermore, the relationship between several sedentary behaviours, including TV-watching, gaming and computer time, and neurocognitive functioning will be investigated in this group of children. A total of 168 preadolescent boys, aged 8 to 12 years, were recruited from various locations, including primary schools, an amateur soccer club, and a professional soccer club, to increase variability in the amount of participation in sports. All children performed neurocognitive tasks measuring inhibition, short term memory, working memory, attention and information processing speed. Regression analyses examined the predictive power of a broad range of physical activities, including sports, active transport to school, physical education (PE), outdoor play, and sedentary behaviour such as TV-watching and gaming, for neurocognitive functioning. Time spent in sports significantly accounted for the variance in inhibition, short term memory, working memory and lapses of attention, where more time spent in sports was associated with better performance. Outdoor play was also positively associated with working memory. In contrast, time spent on the computer was negatively associated with inhibition. Results of the current study suggest a positive relationship between participation in sports and several important neurocognitive functions. Interventions are recommended to increase sports participation and to reduce sedentary behaviour in preadolescent children.
Cognitive mechanisms associated with auditory sensory gating
Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.
2016-01-01
Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891
Principe, Gabrielle F.; Schindewolf, Erica
2012-01-01
Research on factors that can affect the accuracy of children’s autobiographical remembering has important implications for understanding the abilities of young witnesses to provide legal testimony. In this article, we review our own recent research on one factor that has much potential to induce errors in children’s event recall, namely natural memory sharing conversations with peers and parents. Our studies provide compelling evidence that not only can the content of conversations about the past intrude into later memory but that such exchanges can prompt the generation of entirely false narratives that are more detailed than true accounts of experienced events. Further, our work show that deeper and more creative participation in memory sharing dialogues can boost the damaging effects of conversationally conveyed misinformation. Implications of this collection of findings for children’s testimony are discussed. PMID:23129880
The Role of Memory Consolidation in Generalisation of New Linguistic Information
ERIC Educational Resources Information Center
Tamminen, Jakke; Davis, Matthew H.; Merkx, Marjolein; Rastle, Kathleen
2012-01-01
Accounts of memory that postulate complementary learning systems (CLS) have become increasingly influential in the field of language learning. These accounts predict that generalisation of newly learnt linguistic information to untrained contexts requires offline memory consolidation. Such generalisation should not be observed immediately after…
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.
2018-05-01
A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.
Mindful maths: reducing the impact of stereotype threat through a mindfulness exercise.
Weger, Ulrich W; Hooper, Nic; Meier, Brian P; Hopthrow, Tim
2012-03-01
Individuals who experience stereotype threat - the pressure resulting from social comparisons that are perceived as unfavourable - show performance decrements across a wide range of tasks. One account of this effect is that the cognitive pressure triggered by such threat drains the same cognitive (or working-memory) resources that are implicated in the respective task. The present study investigates whether mindfulness can be used to moderate stereotype threat, as mindfulness has previously been shown to alleviate working-memory load. Our results show that performance decrements that typically occur under stereotype threat can indeed be reversed when the individual engages in a brief (5 min) mindfulness task. The theoretical implications of our findings are discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Nash, Robert A; Wade, Kimberley A; Garry, Maryanne; Adelman, James S
2017-08-01
People depend on various sources of information when trying to verify their autobiographical memories. Yet recent research shows that people prefer to use cheap-and-easy verification strategies, even when these strategies are not reliable. We examined the robustness of this cheap strategy bias, with scenarios designed to encourage greater emphasis on source reliability. In three experiments, subjects described real (Experiments 1 and 2) or hypothetical (Experiment 3) autobiographical events, and proposed strategies they might use to verify their memories of those events. Subjects also rated the reliability, cost, and the likelihood that they would use each strategy. In line with previous work, we found that the preference for cheap information held when people described how they would verify childhood or recent memories (Experiment 1), personally important or trivial memories (Experiment 2), and even when the consequences of relying on incorrect information could be significant (Experiment 3). Taken together, our findings fit with an account of source monitoring in which the tendency to trust one's own autobiographical memories can discourage people from systematically testing or accepting strong disconfirmatory evidence.
NASA Astrophysics Data System (ADS)
Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang
2016-04-01
In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.
Decay uncovered in nonverbal short-term memory.
Mercer, Tom; McKeown, Denis
2014-02-01
Decay theory posits that memory traces gradually fade away over the passage of time unless they are actively rehearsed. Much recent work exploring verbal short-term memory has challenged this theory, but there does appear to be evidence for trace decay in nonverbal auditory short-term memory. Numerous discrimination studies have reported a performance decline as the interval separating two tones is increased, consistent with a decay process. However, most of this tone comparison research can be explained in other ways, without reference to decay, and these alternative accounts were tested in the present study. In Experiment 1, signals were employed toward the end of extended retention intervals to ensure that listeners were alert to the presence and frequency content of the memoranda. In Experiment 2, a mask stimulus was employed in an attempt to distinguish between a highly detailed sensory trace and a longer-lasting short-term memory, and the distinctiveness of the stimuli was varied. Despite these precautions, slow-acting trace decay was observed. It therefore appears that the mere passage of time can lead to forgetting in some forms of short-term memory.
Nosofsky, Robert M; Cox, Gregory E; Cao, Rui; Shiffrin, Richard M
2014-11-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across diverse conditions that manipulated relations between targets and foils across trials. Subjects saw lists of from 1 to 16 items followed by a single item recognition probe. In a varied-mapping condition, targets and foils could switch roles across trials; in a consistent-mapping condition, targets and foils never switched roles; and in an all-new condition, on each trial a completely new set of items formed the memory set. In the varied-mapping and all-new conditions, mean correct response times (RTs) and error proportions were curvilinear increasing functions of memory set size, with the RT results closely resembling ones from hybrid visual-memory search experiments reported by Wolfe (2012). In the consistent-mapping condition, new-probe RTs were invariant with set size, whereas old-probe RTs increased slightly with increasing study-test lag. With appropriate choice of psychologically interpretable free parameters, the model accounted well for the complete set of results. The work provides support for the hypothesis that a common set of processes involving exemplar-based familiarity may govern long-term and short-term probe recognition across wide varieties of memory- search conditions. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Dense Neighborhoods and Mechanisms of Learning: Evidence from Children with Phonological Delay
ERIC Educational Resources Information Center
Gierut, Judith A.; Morrisette, Michele L.
2015-01-01
There is a noted advantage of dense neighborhoods in language acquisition, but the learning mechanism that drives the effect is not well understood. Two hypotheses--long-term auditory word priming and phonological working memory--have been advanced in the literature as viable accounts. These were evaluated in two treatment studies enrolling twelve…
Two retrievals from a single cue: A bottleneck persists across episodic and semantic memory.
Orscheschek, Franziska; Strobach, Tilo; Schubert, Torsten; Rickard, Timothy
2018-05-01
There is evidence in the literature that two retrievals from long-term memory cannot occur in parallel. To date, however, that work has explored only the case of two retrievals from newly acquired episodic memory. These studies demonstrated a retrieval bottleneck even after dual-retrieval practice. That retrieval bottleneck may be a global property of long-term memory retrieval, or it may apply only to the case of two retrievals from episodic memory. In the current experiments, we explored whether that apparent dual-retrieval bottleneck applies to the case of one retrieval from episodic memory and one retrieval from highly overlearned semantic memory. Across three experiments, subjects learned to retrieve a left or right keypress response form a set of 14 unique word cues (e.g., black-right keypress). In addition, they learned a verbal response which involved retrieving the antonym of the presented cue (e.g., black-"white"). In the dual-retrieval condition, subjects had to retrieve both the keypress response and the antonym word. The results suggest that the retrieval bottleneck is superordinate to specific long-term memory systems and holds across different memory components. In addition, the results support the assumption of a cue-level response chunking account of learned retrieval parallelism.
Pehlivanoglu, Didem; Jain, Shivangi; Ariel, Robert; Verhaeghen, Paul
2014-01-01
In the present study, we investigated age-related differences in the processing of emotional stimuli. Specifically, we were interested in whether older adults would show deficits in unbinding emotional expression (i.e., either no emotion, happiness, anger, or disgust) from bound stimuli (i.e., photographs of faces expressing these emotions), as a hyper-binding account of age-related differences in working memory would predict. Younger and older adults completed different N-Back tasks (side-by-side 0-Back, 1-Back, 2-Back) under three conditions: match/mismatch judgments based on either the identity of the face (identity condition), the face’s emotional expression (expression condition), or both identity and expression of the face (both condition). The two age groups performed more slowly and with lower accuracy in the expression condition than in the both condition, indicating the presence of an unbinding process. This unbinding effect was more pronounced in older adults than in younger adults, but only in the 2-Back task. Thus, older adults seemed to have a specific deficit in unbinding in working memory. Additionally, no age-related differences were found in accuracy in the 0-Back task, but such differences emerged in the 1-Back task, and were further magnified in the 2-Back task, indicating independent age-related differences in attention/STM and working memory. Pupil dilation data confirmed that the attention/STM version of the task (1-Back) is more effortful for older adults than younger adults. PMID:24795660
Pehlivanoglu, Didem; Jain, Shivangi; Ariel, Robert; Verhaeghen, Paul
2014-01-01
In the present study, we investigated age-related differences in the processing of emotional stimuli. Specifically, we were interested in whether older adults would show deficits in unbinding emotional expression (i.e., either no emotion, happiness, anger, or disgust) from bound stimuli (i.e., photographs of faces expressing these emotions), as a hyper-binding account of age-related differences in working memory would predict. Younger and older adults completed different N-Back tasks (side-by-side 0-Back, 1-Back, 2-Back) under three conditions: match/mismatch judgments based on either the identity of the face (identity condition), the face's emotional expression (expression condition), or both identity and expression of the face (both condition). The two age groups performed more slowly and with lower accuracy in the expression condition than in the both condition, indicating the presence of an unbinding process. This unbinding effect was more pronounced in older adults than in younger adults, but only in the 2-Back task. Thus, older adults seemed to have a specific deficit in unbinding in working memory. Additionally, no age-related differences were found in accuracy in the 0-Back task, but such differences emerged in the 1-Back task, and were further magnified in the 2-Back task, indicating independent age-related differences in attention/STM and working memory. Pupil dilation data confirmed that the attention/STM version of the task (1-Back) is more effortful for older adults than younger adults.
Working memory contributions to reinforcement learning impairments in schizophrenia.
Collins, Anne G E; Brown, Jaime K; Gold, James M; Waltz, James A; Frank, Michael J
2014-10-08
Previous research has shown that patients with schizophrenia are impaired in reinforcement learning tasks. However, behavioral learning curves in such tasks originate from the interaction of multiple neural processes, including the basal ganglia- and dopamine-dependent reinforcement learning (RL) system, but also prefrontal cortex-dependent cognitive strategies involving working memory (WM). Thus, it is unclear which specific system induces impairments in schizophrenia. We recently developed a task and computational model allowing us to separately assess the roles of RL (slow, cumulative learning) mechanisms versus WM (fast but capacity-limited) mechanisms in healthy adult human subjects. Here, we used this task to assess patients' specific sources of impairments in learning. In 15 separate blocks, subjects learned to pick one of three actions for stimuli. The number of stimuli to learn in each block varied from two to six, allowing us to separate influences of capacity-limited WM from the incremental RL system. As expected, both patients (n = 49) and healthy controls (n = 36) showed effects of set size and delay between stimulus repetitions, confirming the presence of working memory effects. Patients performed significantly worse than controls overall, but computational model fits and behavioral analyses indicate that these deficits could be entirely accounted for by changes in WM parameters (capacity and reliability), whereas RL processes were spared. These results suggest that the working memory system contributes strongly to learning impairments in schizophrenia. Copyright © 2014 the authors 0270-6474/14/3413747-10$15.00/0.
Karalunas, Sarah L; Gustafsson, Hanna C; Dieckmann, Nathan F; Tipsord, Jessica; Mitchell, Suzanne H; Nigg, Joel T
2017-08-01
The role of cognitive mechanisms in the clinical course of neurodevelopmental disorders is poorly understood. Attention Deficit Hyperactivity Disorder (ADHD) is emblematic in that numerous alterations in cognitive development are apparent, yet how they relate to changes in symptom expression with age is unclear. To resolve the role of cognitive mechanisms in ADHD, a developmental perspective that takes into account expected within-group heterogeneity is needed. The current study uses an accelerated longitudinal design and latent trajectory growth mixture models in a sample of children ages 7-13 years carefully characterized as with (n = 437) and without (n = 297) ADHD to (a) identify heterogeneous developmental trajectories for response inhibition, visual spatial working memory maintenance, and delayed reward discounting and (b) to assess the relationships between these cognitive trajectories and ADHD symptom change. Best-fitting models indicated multiple trajectory classes in both the ADHD and typically developing samples, as well as distinct relationships between each cognitive process and ADHD symptom change. Developmental change in response inhibition and delayed reward discounting were unrelated to ADHD symptom change, while individual differences in the rate of visual spatial working memory maintenance improvement predicted symptom remission in ADHD. Characterizing heterogeneity in cognitive development will be crucial for clarifying mechanisms of symptom persistence and recovery. Results here suggest working memory maintenance may be uniquely related to ADHD symptom improvement. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M
2014-06-30
Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe dysfunction between ALS and aMCI patients, and support temporal lobe dysfunction as a mechanism underlying the distinct cognitive impairments observed in ALS.
Memory complaints in epilepsy: An examination of the role of mood and illness perceptions.
Tinson, Deborah; Crockford, Christopher; Gharooni, Sara; Russell, Helen; Zoeller, Sophie; Leavy, Yvonne; Lloyd, Rachel; Duncan, Susan
2018-03-01
The study examined the role of mood and illness perceptions in explaining the variance in the memory complaints of patients with epilepsy. Forty-four patients from an outpatient tertiary care center and 43 volunteer controls completed a formal assessment of memory and a verbal fluency test, as well as validated self-report questionnaires on memory complaints, mood, and illness perceptions. In hierarchical multiple regression analyses, objective memory test performance and verbal fluency did not contribute significantly to the variance in memory complaints for either patients or controls. In patients, illness perceptions and mood were highly correlated. Illness perceptions correlated more highly with memory complaints than mood and were therefore added to the multiple regression analysis. This accounted for an additional 25% of the variance, after controlling for objective memory test performance and verbal fluency, and the model was significant (model B). In order to compare with other studies, mood was added to a second model, instead of illness perceptions. This accounted for an additional 24% of the variance, which was again significant (model C). In controls, low mood accounted for 11% of the variance in memory complaints (model C2). A measure of illness perceptions was more highly correlated with the memory complaints of patients with epilepsy than with a measure of mood. In a hierarchical multiple regression model, illness perceptions accounted for 25% of the variance in memory complaints. Illness perceptions could provide useful information in a clinical investigation into the self-reported memory complaints of patients with epilepsy, alongside the assessment of mood and formal memory testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Katus, Tobias; Eimer, Martin
2015-04-29
The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.
Bor, Daniel; Seth, Anil K.
2012-01-01
Consciousness has of late become a “hot topic” in neuroscience. Empirical work has centered on identifying potential neural correlates of consciousness (NCCs), with a converging view that the prefrontal parietal network (PPN) is closely associated with this process. Theoretical work has primarily sought to explain how informational properties of this cortical network could account for phenomenal properties of consciousness. However, both empirical and theoretical research has given less focus to the psychological features that may account for the NCCs. The PPN has also been heavily linked with cognitive processes, such as attention. We describe how this literature is under-appreciated in consciousness science, in part due to the increasingly entrenched assumption of a strong dissociation between attention and consciousness. We argue instead that there is more common ground between attention and consciousness than is usually emphasized: although objects can under certain circumstances be attended to in the absence of conscious access, attention as a content selection and boosting mechanism is an important and necessary aspect of consciousness. Like attention, working memory and executive control involve the interlinking of multiple mental objects and have also been closely associated with the PPN. We propose that this set of cognitive functions, in concert with attention, make up the core psychological components of consciousness. One related process, chunking, exploits logical or mnemonic redundancies in a dataset so that it can be recoded and a given task optimized. Chunking has been shown to activate PPN particularly robustly, even compared with other cognitively demanding tasks, such as working memory or mental arithmetic. It is therefore possible that chunking, as a tool to detect useful patterns within an integrated set of intensely processed (attended) information, has a central role to play in consciousness. Following on from this, we suggest that a key evolutionary purpose of consciousness may be to provide innovative solutions to complex or novel problems. PMID:22416238
Semantic and Syntactic Interference in Sentence Comprehension: A Comparison of Working Memory Models
Tan, Yingying; Martin, Randi C.; Van Dyke, Julie A.
2017-01-01
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. PMID:28261133
The influence of activation level on belief bias in relational reasoning.
Banks, Adrian P
2013-04-01
A novel explanation of belief bias in relational reasoning is presented based on the role of working memory and retrieval in deductive reasoning, and the influence of prior knowledge on this process. It is proposed that belief bias is caused by the believability of a conclusion in working memory which influences its activation level, determining its likelihood of retrieval and therefore its effect on the reasoning process. This theory explores two main influences of belief on the activation levels of these conclusions. First, believable conclusions have higher activation levels and so are more likely to be recalled during the evaluation of reasoning problems than unbelievable conclusions, and therefore, they have a greater influence on the reasoning process. Secondly, prior beliefs about the conclusion have a base level of activation and may be retrieved when logically irrelevant, influencing the evaluation of the problem. The theory of activation and memory is derived from the Atomic Components of Thought-Rational (ACT-R) cognitive architecture and so this account is formalized in an ACT-R cognitive model. Two experiments were conducted to test predictions of this model. Experiment 1 tested strength of belief and Experiment 2 tested the impact of a concurrent working memory load. Both of these manipulations increased the main effect of belief overall and in particular raised belief-based responding in indeterminately invalid problems. These effects support the idea that the activation level of conclusions formed during reasoning influences belief bias. This theory adds to current explanations of belief bias by providing a detailed specification of the role of working memory and how it is influenced by prior knowledge. Copyright © 2012 Cognitive Science Society, Inc.
Generation and context memory.
Mulligan, Neil W; Lozito, Jeffrey P; Rosner, Zachary A
2006-07-01
Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget aspects of context (location and background color). Second, nonvisual generation tasks with either semantic or nonsemantic generation rules (antonym and rhyme generation, respectively) produced the same pattern of results. In contrast, a visual (or data-driven) generation task (letter transposition) did not disrupt context memory for color. Third, generating nonwords produced no effect on item memory but persisted in producing a negative effect on context memory for target attributes, implying that (a) the negative generation effect in context memory is not mediated by semantic encoding, and (b) the negative effect on context memory can be dissociated from the positive effect on item memory. The results are interpreted in terms of the processing account of generation. The original, perceptual-conceptual version of this account is too narrow, but a modified processing account, based on a more generic visual versus nonvisual processing distinction, accommodates the results. Copyright 2006 APA, all rights reserved.
Visual perception as retrospective Bayesian decoding from high- to low-level features.
Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning
2017-10-24
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.
On remembering: the notion of memory without recollection.
Botella, César
2014-10-01
The author begins by attempting to evaluate the notions of memory and remembering, taking into account their evolution in Freud's work and the current debates on their relative importance in conducting an analytic treatment. This leads the author to develop an extension of the theory which none the less remains Freudian, by introducing a series of notions (the main ones being the work of figurability, regredience, state of session, negative of trauma, and memory without recollection), and arguing in favour of a principle of convergence-coherence governing mental life. His thesis is the following: analytic practice contains a dimension of an archaeological order, as Freud described it, as well as - thanks to the contribution of contemporary practice denouncing its insufficiency - the complementary need for the analyst to work in a particular way in the session - that is to say, one that involves what he calls a regredience of his or her thought processes, allowing him or her to gain access to early psychic zones beyond the zone of represented memories. This is what he calls transformational psychoanalysis, complementary to archeological psychoanalysis. The author's theoretical and practical developments are backed up by a personal schema of mental functioning, an extension of Freud's schema in 1900, and the detailed description of an analytic treatment, in particular, the central session which played a crucial role in the success of this analysis. Copyright © 2014 Institute of Psychoanalysis.
Older adults do not notice their names: a new twist to a classic attention task.
Naveh-Benjamin, Moshe; Kilb, Angela; Maddox, Geoffrey B; Thomas, Jenna; Fine, Hope C; Chen, Tina; Cowan, Nelson
2014-11-01
Although working memory spans are, on average, lower for older adults than young adults, we demonstrate in 5 experiments a way in which older adults paradoxically resemble higher capacity young adults. Specifically, in a selective-listening task, older adults almost always failed to notice their names presented in an unattended channel. This is an exaggeration of what high-span young adults show and the opposite of what low-span young adults show. This striking finding in older adults remained significant after controlling for working memory span and for noticing their names in an attended channel. The findings were replicated when presentation rate was slowed and when the ear in which the unattended name was presented was controlled. These results point to an account of older adults' performance involving not only an inhibition factor, which allows high-span young adults to suppress the channel to be ignored, but also an attentional capacity factor, with more unallocated capacity. This capacity allows low-span young adults to notice their names much more often than older adults with comparably low working memory spans do. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Brown, Louise A; Brockmole, James R; Gow, Alan J; Deary, Ian J
2012-01-01
BACKGROUND/STUDY CONTEXT: Visual working memory (VWM) has been shown to be particularly age sensitive. Determining which measures share variance with this cognitive ability in older adults may help to elucidate the key factors underlying the effects of aging. Predictors of VWM (measured by a modified Visual Patterns Test) were investigated in a subsample (N = 44, mean age = 73) of older adults from the Lothian Birth Cohort 1936 (LBC1936; Deary et al., 2007 , BMC Geriatrics, 7, 28). Childhood intelligence (Moray House Test) and contemporaneous measures of processing speed (four-choice reaction time), executive function (verbal fluency; block design), and spatial working memory (backward spatial span), were assessed as potential predictors. All contemporaneous measures except verbal fluency were significantly associated with VWM, and processing speed had the largest effect size (r = -.53, p < .001). In linear regression analysis, even after adjusting for childhood intelligence, processing speed and the executive measure associated with visuospatial organization accounted for 35% of the variance in VWM. Processing speed may affect VWM performance in older adults via speed of encoding and/or rate of rehearsal, while executive resources specifically associated with visuospatial material are also important.
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Kuijper, Sanne J. M.; Hartman, Catharina A.; Hendriks, Petra
2015-01-01
During conversation, speakers constantly make choices about how specific they wish to be in their use of referring expressions. In the present study we investigate whether speakers take the listener into account or whether they base their referential choices solely on their own representation of the discourse. We do this by examining the cognitive mechanisms that underlie the choice of referring expression at different discourse moments. Furthermore, we provide insights into how children with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) use referring expressions and whether their use differs from that of typically developing (TD) children. Children between 6 and 12 years old (ASD: n=46; ADHD: n=37; TD: n=38) were tested on their production of referring expressions and on Theory of Mind, response inhibition and working memory. We found support for the view that speakers take the listener into account when choosing a referring expression: Theory of Mind was related to referential choice only at those moments when speakers could not solely base their choice on their own discourse representation to be understood. Working memory appeared to be involved in keeping track of the different referents in the discourse. Furthermore, we found that TD children as well as children with ASD and children with ADHD took the listener into account in their choice of referring expression. In addition, children with ADHD were less specific than TD children in contexts with more than one referent. The previously observed problems with referential choice in children with ASD may lie in difficulties in keeping track of longer and more complex discourses, rather than in problems with taking into account the listener. PMID:26147200
Sleep and Cognitive Function in Multiple Sclerosis.
Braley, Tiffany J; Kratz, Anna L; Kaplish, Neeraj; Chervin, Ronald D
2016-08-01
To examine associations between cognitive performance and polysomnographic measures of obstructive sleep apnea in patients with multiple sclerosis (MS). Participants underwent a comprehensive MS-specific cognitive testing battery (the Minimal Assessment of Cognitive Function in MS, or MACFIMS) and in-laboratory overnight PSG. In adjusted linear regression models, the oxygen desaturation index (ODI) and minimum oxygen saturation (MinO2) were significantly associated with performance on multiple MACFIMS measures, including the Paced Auditory Serial Addition Test (PASAT; 2-sec and 3-sec versions), which assesses working memory, processing speed, and attention, and on the Brief Visuospatial Memory Test-Revised, a test of delayed visual memory. The respiratory disturbance index (RDI) was also significantly associated with PASAT-3 scores as well as the California Verbal Learning Test-II (CVLT-II) Discriminability Index, a test of verbal memory and response inhibition. Among these associations, apnea severity measures accounted for between 12% and 23% of the variance in cognitive test performance. Polysomnographic measures of sleep fragmentation (as reflected by the total arousal index) and total sleep time also showed significant associations with a component of the CVLT-II that assesses response inhibition, explaining 18% and 27% of the variance in performance. Among patients with MS, obstructive sleep apnea and sleep disturbance are significantly associated with diminished visual memory, verbal memory, executive function (as reflected by response inhibition), attention, processing speed, and working memory. If sleep disorders degrade these cognitive functions, effective treatment could offer new opportunities to improve cognitive functioning in patients with MS. A commentary on this article appears in this issue on page 1489. © 2016 Associated Professional Sleep Societies, LLC.
Discrete-Slots Models of Visual Working-Memory Response Times
Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.
2014-01-01
Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956
A Pilot Study on Factors Involved with Work Participation in the Early Stages of Multiple Sclerosis
Van der Hiele, Karin; Middelkoop, Huub A. M.; Ruimschotel, Rob; Kamminga, Noëlle G. A.; Visser, Leo H.
2014-01-01
Background Up to 30% of recently diagnosed MS patients lose their jobs in the first four years after diagnosis. Taking into account the personal and socio-economic importance of sustaining employment, it is of the utmost importance to examine factors involved with work participation. Objective To investigate differences in self-reported functioning in recently diagnosed MS patients with and without a paid job. Methods Self-reports of physical and cognitive functioning, depression, anxiety and fatigue were gathered from 44 relapsing-remitting MS patients diagnosed within 3 years. Results Patients with a paid job (57%) reported better physical functioning (p<0.001), better memory functioning (p = 0.01) and a lower physical impact of fatigue (p = 0.018) than patients without a paid job. Physical functioning was the main predictor of employment status in a logistic regression model. In those with a paid job better memory functioning (r = 0.54, p = 0.005) and a lower social impact of fatigue (r = −0.46, p = 0.029) correlated with an increased number of working hours. Conclusion Better physical functioning is the primary factor involved with increased work participation in early MS. Better self-reported memory functioning and less social fatigue were associated with increased working hours. These findings highlight the importance of battling these symptoms in the early stages of MS. PMID:25153710
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
Rodriguez, Guillaume; Sarazin, Matthieu; Clemente, Alexandra; Holden, Stephanie; Paz, Jeanne T; Delord, Bruno
2018-04-30
Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust, generic and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the sub-threshold input it requires and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory. SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property, i.e. conditional bistability. We show that, thanks of its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability 1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that 2) it accounts for essential neurodynamical features for the organisation and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models. Copyright © 2018 the authors.
Models of verbal working memory capacity: what does it take to make them work?
Cowan, Nelson; Rouder, Jeffrey N; Blume, Christopher L; Saults, J Scott
2012-07-01
Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in understanding verbal materials, especially when words are mentally combined to form multiword units or chunks. Toward a more comprehensive theory of capacity limits, we examined models of forced-choice recognition of words within printed lists, using materials designed to produce multiword chunks in memory (e.g., leather brief case). Several simple models were tested against data from a variety of list lengths and potential chunk sizes, with test conditions that only imperfectly elicited the interword associations. According to the most successful model, participants retained about 3 chunks on average in a capacity-limited region of WM, with some chunks being only subsets of the presented associative information (e.g., leather brief case retained with leather as one chunk and brief case as another). The addition to the model of an activated long-term memory component unlimited in capacity was needed. A fixed-capacity limit appears critical to account for immediate verbal recognition and other forms of WM. We advance a model-based approach that allows capacity to be assessed despite other important processing contributions. Starting with a psychological-process model of WM capacity developed to understand visual arrays, we arrive at a more unified and complete model. Copyright 2012 APA, all rights reserved.
Models of Verbal Working Memory Capacity: What Does It Take to Make Them Work?
Cowan, Nelson; Rouder, Jeffrey N.; Blume, Christopher L.; Saults, J. Scott
2013-01-01
Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in understanding verbal materials, especially when words are mentally combined to form multi-word units or chunks. Toward a more comprehensive theory of capacity limits, we examine models of forced-choice recognition of words within printed lists, using materials designed to produce multi-word chunks in memory (e.g., leather brief case). Several simple models were tested against data from a variety of list lengths and potential chunk sizes, with test conditions that only imperfectly elicited the inter-word associations. According to the most successful model, participants retained about 3 chunks on average in a capacity-limited region of WM, with some chunks being only subsets of the presented associative information (e.g., leather brief case retained with leather as one chunk and brief case as another). The addition to the model of an activated long-term memory (LTM) component unlimited in capacity was needed. A fixed capacity limit appears critical to account for immediate verbal recognition and other forms of WM. We advance a model-based approach that allows capacity to be assessed despite other important processing contributions. Starting with a psychological-process model of WM capacity developed to understand visual arrays, we arrive at a more unified and complete model. PMID:22486726
Are Stimulus-Response Rules Represented Phonologically for Task-Set Preparation and Maintenance?
ERIC Educational Resources Information Center
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-01-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting…
ERIC Educational Resources Information Center
Barber, Sarah J.; Harris, Celia B.; Rajaram, Suparna
2015-01-01
Although a group of people working together remembers more than any one individual, they recall less than their predicted potential. This finding is known as collaborative inhibition and is generally thought to arise due to retrieval disruption. However, there is growing evidence that is inconsistent with the retrieval disruption account,…
The Locked Box in the Attic: Ghosts and Memories
ERIC Educational Resources Information Center
Gatti, Patrizia
2011-01-01
The author discusses the technical difficulties encountered in clinical work with children who have suffered an early trauma, as is often the case for fostered and adopted children. An account of the first five years of psychotherapy with a nine-year-old boy, who was removed from his birth family at an early age, will be elaborated in some detail…
ERIC Educational Resources Information Center
Stevenson, Claire E.
2017-01-01
This study contrasted the effects of tutoring, multiple try and no feedback on children's progression in analogy solving and examined individual differences herein. Feedback that includes additional hints or explanations leads to the greatest learning gains in adults. However, children process feedback differently from adults and effective…
ERIC Educational Resources Information Center
Florit, Elena; Roch, Maja; Levorato, M. Chiara
2013-01-01
Two studies explored the relation between listening comprehension of text and listening comprehension of sentences in preschoolers aged 4 to 5 years, 11 months. The first study analyzed this relationship taking into account the role of lower level components, namely, word knowledge and verbal working memory, as possible mediators. These components…
Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N
2014-04-10
Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Jones, Danielle; Drew, Paul; Elsey, Christopher; Blackburn, Daniel; Wakefield, Sarah; Harkness, Kirsty; Reuber, Markus
2016-01-01
In the UK dementia is under-diagnosed, there is limited access to specialist memory clinics, and many of the patients referred to such clinics are ultimately found to have functional (non-progressive) memory disorders (FMD), rather than a neurodegenerative disorder. Government initiatives on 'timely diagnosis' aim to improve the rate and quality of diagnosis for those with dementia. This study seeks to improve the screening and diagnostic process by analysing communication between clinicians and patients during initial specialist clinic visits. Establishing differential conversational profiles could help the timely differential diagnosis of memory complaints. This study is based on video- and audio recordings of 25 initial consultations between neurologists and patients referred to a UK memory clinic. Conversation analysis was used to explore recurrent communicative practices associated with each diagnostic group. Two discrete conversational profiles began to emerge, to help differentiate between patients with dementia and functional memory complaints, based on (1) whether the patient is able to answer questions about personal information; (2) whether they can display working memory in interaction; (3) whether they are able to respond to compound questions; (4) the time taken to respond to questions; and (5) the level of detail they offer when providing an account of their memory failure experiences. The distinctive conversational profiles observed in patients with functional memory complaints on the one hand and neurodegenerative memory conditions on the other suggest that conversational profiling can support the differential diagnosis of functional and neurodegenerative memory disorders.
The Role of Working Memory Capacity and Interference Resolution Mechanisms in Task Switching
Pettigrew, Corinne; Martin, Randi C.
2015-01-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching. PMID:26594895
The role of working memory capacity and interference resolution mechanisms in task switching.
Pettigrew, Corinne; Martin, Randi C
2016-12-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. A total of 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores, which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching.
Shape and color conjunction stimuli are represented as bound objects in visual working memory.
Luria, Roy; Vogel, Edward K
2011-05-01
The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a "weak" object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Nanfang; Qi, Shengli; Tian, Guofeng; Wang, Xiaodong; Wu, Dezhen
2017-04-01
For producing polymer based electronics with good memory behavior, a series of functional copolyimides were designed and synthesized in this work by copolymerizing 3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) with (9,9'-bis(4-aminophenyl)fluorene) (BAPF) and N, N-bis(4-aminophenyl) aminopyrene (DAPAP) diamines. The synthesized copolyimides DSDA/(DAPAP/BAPF) were denoted as coPI-DAPAP x ( x = 100, 50, 20, 10, 5, 1, 0), where x% represents the molar fraction of the DAPAP unit in the diamines. Characterization results indicate that the coPI-DAPAP x exhibits tunable electrical switching behaviors from write once read many times (WORM, nonvolatile, coPI-DAPAP100, coPI-DAPAP50, coPI-DAPAP20, coPI-DAPAP10) to the static random access memory (SRAM, volatile, coPI-DAPAP5, coPI-DAPAP1) with the variation of the DAPAP content. Optical and electrochemical characterization show gradually decreasing highest occupied molecular orbital levels and enlarged energy gap with the decrease of the DAPAP moiety, suggesting decreasing charge-transfer effect in the copolyimides, which can account for the observed WORM-SRAM memory conversion. Meanwhile, the charge transfer process was elucidated by quantum chemical calculation at B3LYP/6-31G(d) theory level. This work shows the effect of electron donor content on the memory behavior of polymer electronic materials.
Martin, April; Bagdasarov, Zhanna; Connelly, Shane
2015-04-01
Although various models of ethical decision making (EDM) have implicitly called upon constructs governed by working memory capacity (WMC), a study examining this relationship specifically has not been conducted. Using a sense making framework of EDM, we examined the relationship between WMC and various sensemaking processes contributing to EDM. Participants completed an online assessment comprised of a demographic survey, intelligence test, various EDM measures, and the Automated Operation Span task to determine WMC. Results indicated that WMC accounted for unique variance above and beyond ethics education, exposure to ethical issues, and intelligence in several sensemaking processes. Additionally, a marginally significant effect of WMC was also found with reference to EDM. Individual differences in WMC appear likely to play an important role in the ethical decision-making process, and future researchers may wish to consider their potential influences.
A biased competition account of attention and memory in Alzheimer's disease
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-01-01
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD. PMID:24018724
A biased competition account of attention and memory in Alzheimer's disease.
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-10-19
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.
Hayes, Scott M; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto
2011-12-01
Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength process (strength theory). To investigate these issues, the current fMRI study measured activity during retrieval of memories that differed quantitatively in terms of strength (high vs. low-confidence trials) and qualitatively in terms of recollection versus familiarity (source vs. item memory tasks). Support for each theory varied depending on which node of the episodic memory network was considered. Results from MTL best fit a dual-process account, as a dissociation was found between a right hippocampal region showing high-confidence activity during the source memory task and bilateral rhinal regions showing high-confidence activity during the item memory task. Within PFC, several left-lateralized regions showed greater activity for source than item memory, consistent with recollective orienting, whereas a right-lateralized ventrolateral area showed low-confidence activity in both tasks, consistent with monitoring processes. Parietal findings were generally consistent with strength theory, with dorsal areas showing low-confidence activity and ventral areas showing high-confidence activity in both tasks. This dissociation fits with an attentional account of parietal functions during episodic retrieval. The results suggest that both dual-process and strength theories are partly correct, highlighting the need for an integrated model that links to more general cognitive theories to account for observed neural activity during episodic memory retrieval.
Hayes, Scott M.; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto
2012-01-01
Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength process (strength theory). To investigate these issues, the current fMRI study measured activity during retrieval of memories that differed quantitatively in terms of strength (high vs. low-confidence trials) and qualitatively in terms of recollection versus familiarity (source vs. item memory tasks). Support for each theory varied depending on which node of the episodic memory network was considered. Results from MTL best fit a dual-process account, as a dissociation was found between a right hippocampal region showing high-confidence activity during the source memory task and bilateral rhinal regions showing high-confidence activity during the item memory task. Within PFC, several left-lateralized regions showed greater activity for source than item memory, consistent with recollective orienting, whereas a right-lateralized ventrolateral area showed low-confidence activity in both tasks, consistent with monitoring processes. Parietal findings were generally consistent with strength theory, with dorsal areas showing low-confidence activity and ventral areas showing high-confidence activity in both tasks. This dissociation fits with an attentional account of parietal functions during episodic retrieval. The results suggest that both dual-process and strength theories are partly correct, highlighting the need for an integrated model that links to more general cognitive theories to account for observed neural activity during episodic memory retrieval. PMID:21736454
Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.
Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui
2015-09-01
Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
Fiebig, Florian; Lansner, Anders
2017-01-04
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation
Fiebig, Florian
2017-01-01
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032
The sounds of silence: language, cognition, and anxiety in selective mutism.
Manassis, Katharina; Tannock, Rosemary; Garland, E Jane; Minde, Klaus; McInnes, Alison; Clark, Sandra
2007-09-01
To determine whether oral language, working memory, and social anxiety differentiate children with selective mutism (SM), children with anxiety disorders (ANX), and normal controls (NCs) and explore predictors of mutism severity. Children ages 6 to 10 years with SM (n = 44) were compared with children with ANX (n = 28) and NCs (n = 19) of similar age on standardized measures of language, nonverbal working memory, and social anxiety. Variables correlating with mutism severity were entered in stepwise regressions to determine predictors of mute behavior in SM. Children with SM scored significantly lower on standardized language measures than children with ANX and NCs and showed greater visual memory deficits and social anxiety relative to these two groups. Age and receptive grammar ability predicted less severe mutism, whereas social anxiety predicted more severe mutism. These factors accounted for 38% of the variance in mutism severity. Social anxiety and language deficits are evident in SM, may predict mutism severity, and should be evaluated in clinical assessment. Replication is indicated, as are further studies of cognition and of intervention in SM, using large, diverse samples.
Cognitive control, cognitive reserve, and memory in the aging bilingual brain
Grant, Angela; Dennis, Nancy A.; Li, Ping
2014-01-01
In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explore the relationship between executive control and cognitive reserve. We argue that this focus will enhance our understanding of the functional and structural neural mechanisms underlying bilingualism-induced cognitive effects. With this perspective we discuss and integrate recent cognitive and neuroimaging work on bilingual advantage, and suggest an account that links cognitive control, cognitive reserve, and brain reserve in bilingual aging and memory. PMID:25520695
Alesi, Marianna; Rappo, Gaetano; Pepi, Annamaria
2016-01-01
One of the most significant current discussions has led to the hypothesis that domain-specific training programs alone are not enough to improve reading achievement or working memory abilities. Incremental or Entity personal conceptions of intelligence may be assumed to be an important prognostic factor to overcome domain-specific deficits. Specifically, incremental students tend to be more oriented toward change and autonomy and are able to adopt more efficacious strategies. This study aims at examining the effect of personal conceptions of intelligence to strengthen the efficacy of a multidimensional intervention program in order to improve decoding abilities and working memory. Participants included two children (M age = 10 years) with developmental dyslexia and different conceptions of intelligence. The children were tested on a whole battery of reading and spelling tests commonly used in the assessment of reading disabilities in Italy. Afterwards, they were given a multimedia test to measure motivational factors such as conceptions of intelligence and achievement goals. The children took part in the T.I.R.D. Multimedia Training for the Rehabilitation of Dyslexia (Rappo and Pepi, 2010) reinforced by specific units to improve verbal working memory for 3 months. This training consisted of specific tasks to rehabilitate both visual and phonological strategies (sound blending, word segmentation, alliteration test and rhyme test, letter recognition, digraph recognition, trigraph recognition, and word recognition as samples of visual tasks) and verbal working memory (rapid words and non-words recognition). Posttest evaluations showed that the child holding the incremental theory of intelligence improved more than the child holding a static representation. On the whole this study highlights the importance of treatment programs in which both specificity of deficits and motivational factors are both taken into account. There is a need to plan multifaceted intervention programs based on a transverse approach, considering both cognitive and motivational factors. PMID:26779069
The Uncertainty Principle in the Presence of Quantum Memory
NASA Astrophysics Data System (ADS)
Renes, Joseph M.; Berta, Mario; Christandl, Matthias; Colbeck, Roger; Renner, Renato
2010-03-01
One consequence of Heisenberg's uncertainty principle is that no observer can predict the outcomes of two incompatible measurements performed on a system to arbitrary precision. However, this implication is invalid if the the observer possesses a quantum memory, a distinct possibility in light of recent technological advances. Entanglement between the system and the memory is responsible for the breakdown of the uncertainty principle, as illustrated by the EPR paradox. In this work we present an improved uncertainty principle which takes this entanglement into account. By quantifying uncertainty using entropy, we show that the sum of the entropies associated with incompatible measurements must exceed a quantity which depends on the degree of incompatibility and the amount of entanglement between system and memory. Apart from its foundational significance, the uncertainty principle motivated the first proposals for quantum cryptography, though the possibility of an eavesdropper having a quantum memory rules out using the original version to argue that these proposals are secure. The uncertainty relation introduced here alleviates this problem and paves the way for its widespread use in quantum cryptography.
Visual short-term memory for oriented, colored objects.
Shin, Hongsup; Ma, Wei Ji
2017-08-01
A central question in the study of visual short-term memory (VSTM) has been whether its basic units are objects or features. Most studies addressing this question have used change detection tasks in which the feature value before the change is highly discriminable from the feature value after the change. This approach assumes that memory noise is negligible, which recent work has shown not to be the case. Here, we investigate VSTM for orientation and color within a noisy-memory framework, using change localization with a variable magnitude of change. A specific consequence of the noise is that it is necessary to model the inference (decision) stage. We find that (a) orientation and color have independent pools of memory resource (consistent with classic results); (b) an irrelevant feature dimension is either encoded but ignored during decision-making, or encoded with low precision and taken into account during decision-making; and (c) total resource available in a given feature dimension is lower in the presence of task-relevant stimuli that are neutral in that feature dimension. We propose a framework in which feature resource comes both in packaged and in targeted form.
Effect of emotion on memory for words and their context.
Riegel, Monika; Wierzba, Małgorzata; Grabowska, Anna; Jednoróg, Katarzyna; Marchewka, Artur
2016-06-01
Emotion influences various cognitive processes, such as memory. This beneficial or detrimental effect can be studied with verbal material, yet in this case a broad term of context has to be taken into account. The present work reviews recent literature and proposes that traditional differentiation between semantic and environmental context should be replaced with a novel conceptualization of hippocampus-dependent relational memory and item memory (related to the activations of cuneus and left amygdala). Additionally, instead of list-learning paradigms, words should be memorized in the context of sentences or stories for better control over their meaning. The recent evidence suggests that of particular importance for ecological validity in research paradigms is the presence of communicative and social context of verbal material related to such processes as theory of mind and brain activations in temporoparietal junction, posterior cingulate cortex, and dorsal medial prefrontal cortex. We propose that studying memory of verbal material within context gives a better understanding of enhancing and impairing effects of emotion as well as of the underlying brain mechanisms. © 2015 Wiley Periodicals, Inc.
Manipulating the reported age in earliest memories.
Wessel, Ineke; Schweig, Theresa; Huntjens, Rafaële J C
2017-11-02
Previous work suggests that the estimated age in adults' earliest autobiographical memories depends on age information implied by the experimental context [e.g., Kingo, O. S., Bohn, A., & Krøjgaard, P. (2013). Warm-up questions on early childhood memories affect the reported age of earliest memories in late adolescence. Memory, 21(2), 280-284. doi: 10.1080/09658211.2012.729598 ] and that the age in decontextualised snippets of memory is younger than in more complete accounts (i.e., event memories [Bruce, D., Wilcox-O'Hearn, L. A., Robinson, J. A., Phillips-Grant, K., Francis, L., & Smith, M. C. (2005). Fragment memories mark the end of childhood amnesia. Memory & Cognition, 33(4), 567-576. doi: 10.3758/BF03195324 ]). We examined the malleability of the estimated age in undergraduates' earliest memories and its relation with memory quality. In Study 1 (n = 141), vignettes referring to events happening at age 2 rendered earlier reported ages than examples referring to age 6. Exploratory analyses suggested that event memories were more sensitive to the age manipulation than memories representing a single, isolated scene (i.e., snapshots). In Study 2 (n = 162), asking self-relevant and public-event knowledge questions about participants' preschool years prior to retrieval yielded comparable average estimated ages. Both types of semantic knowledge questions rendered earlier memories than a no-age control task. Overall, the reported age in snapshots was younger than in event memories. However, age-differences between memory types across conditions were not statistically significant. Together, the results add to the growing literature indicating that the average age in earliest memories is not as fixed as previously thought.
Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent
2015-02-28
In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
MacKay, Donald G; James, Lori E
2009-10-01
Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."
Memory for child sexual abuse information: simulated memory error and individual differences.
McWilliams, Kelly; Goodman, Gail S; Lyons, Kristen E; Newton, Jeremy; Avila-Mora, Elizabeth
2014-01-01
Building on the simulated-amnesia work of Christianson and Bylin (Applied Cognitive Psychology, 13, 495-511, 1999), the present research introduces a new paradigm for the scientific study of memory of childhood sexual abuse information. In Session 1, participants mentally took the part of an abuse victim as they read an account of the sexual assault of a 7-year-old. After reading the narrative, participants were randomly assigned to one of four experimental conditions: They (1) rehearsed the story truthfully (truth group), (2) left out the abuse details of the story (omission group), (3) lied about the abuse details to indicate that no abuse had occurred (commission group), or (4) did not recall the story during Session 1 (no-rehearsal group). One week later, participants returned for Session 2 and were asked to truthfully recall the narrative. The results indicated that, relative to truthful recall, untruthful recall or no rehearsal at Session 1 adversely affected memory performance at Session 2. However, untruthful recall resulted in better memory than did no rehearsal. Moreover, gender, PTSD symptoms, depression, adult attachment, and sexual abuse history significantly predicted memory for the childhood sexual abuse scenario. Implications for theory and application are discussed.
Memory binding and white matter integrity in familial Alzheimer’s disease
Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-01-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer’s disease. PMID:25762465
Memory binding and white matter integrity in familial Alzheimer's disease.
Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-05-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Consciousness and working memory: Current trends and research perspectives.
Velichkovsky, Boris B
2017-10-01
Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Working Memory From the Psychological and Neurosciences Perspectives: A Review.
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2007-01-01
Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…
Collins, Barbara; Paquet, Lise; Dominelli, Rachelle; White, Amanda; MacKenzie, Joyce
2017-01-01
The purpose of this study was to determine if a deficit in metamemory could account for the disparity between subjective and objective measures of memory function commonly observed in patients with breast cancer (BC). Metamemory refers to the awareness and management of one's own memory function. It is considered an aspect of executive functioning, one of the most common areas of cognitive compromise associated with BC and its treatment. Fifty-four women with early stage BC who had recently completed chemotherapy were compared with 54 healthy women matched on age and education. Cognitive function was objectively assessed with a neuropsychological test battery and subjectively assessed with the Functional Assessment of Cancer Therapy Cognitive Scale. Metamemory was assessed with a Feeling of Knowing (FOK) paradigm. The patients with BC scored significantly lower than the controls on both the objective and subjective cognitive measures, as well as on free recall and recognition conditions of the FOK, suggesting some decline in primary memory functions such as working memory, encoding, and retrieval. The discrepancy between the objective and subjective measures was larger in the patients with BC than in the controls, but there was no difference between the groups on the FOK metamemory index. Discrepancy in objective and subjective measures of cognition in patients with BC cannot be accounted for in terms of a deficit in meta-cognition. Objective and subjective measures are complementary, and a comprehensive cognitive assessment in patients with BC requires both. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Attention mediates the flexible allocation of visual working memory resources.
Emrich, Stephen M; Lockhart, Holly A; Al-Aidroos, Naseem
2017-07-01
Though it is clear that it is impossible to store an unlimited amount of information in visual working memory (VWM), the limiting mechanisms remain elusive. While several models of VWM limitations exist, these typically characterize changes in performance as a function of the number of to-be-remembered items. Here, we examine whether changes in spatial attention could better account for VWM performance, independent of load. Across 2 experiments, performance was better predicted by the prioritization of memory items (i.e., attention) than by the number of items to be remembered (i.e., memory load). This relationship followed a power law, and held regardless of whether performance was assessed based on overall precision or any of 3 measures in a mixture model. Moreover, at large set sizes, even minimally attended items could receive a small proportion of resources, without any evidence for a discrete-capacity on the number of items that could be maintained in VWM. Finally, the observed data were best fit by a variable-precision model in which response error was related to the proportion of resources allocated to each item, consistent with a model of VWM in which performance is determined by the continuous allocation of attentional resources during encoding. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The dynamics of access to groups in working memory.
Farrell, Simon; Lelièvre, Anna
2012-11-01
The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the temporal pattern at input merely suggesting a basis for the pattern of output buffering. Three experiments are presented here that disentangle input structure from output buffering in serial recall. In Experiment 1, participants were asked to recall a subset of visually presented digits from a temporally grouped list in their original order, where either within-group position or group position was kept constant. In Experiment 2, participants performed more standard serial recall of spoken digits, and input and output position were dissociated by asking participants to initiate recall from a post-cued position in the list. In Experiment 3, participants were asked to serially recall temporally grouped lists of visually presented digits where the grouping structure was unpredictable, under either articulatory suppression or silent conditions. The 3 experiments point to a tight linkage between implied memorial structures (i.e., the pattern of grouping at encoding) and the output structure implied by retrieval times and call into question a purely motoric account of the dynamics of recall.
Slave systems in verbal short-term memory
Caplan, David; Waters, Gloria; Howard, David
2013-01-01
Background The model of performance in short-term memory (STM) tasks that has been most influential in cognitive neuropsychological work on deficits of STM is the “working memory” model mainly associated with the work of Alan Baddeley and his colleagues. Aim This paper reviews the model. We examine the development of this theory in studies that account for STM performances in normal (non-brain-damaged) individuals, and then review the application of this theory to neuropsychological cases and specifications, modifications, and extensions of the theory that have been suggested on the basis of these cases. Our approach is to identify the major phenomena that have been discussed and to examine selected papers dealing with those phenomena in some detail. Main Contribution The main contribution is a review of the WM model that includes both normative and neuropsychological data. Conclusions We conclude that the WM model has many inconsistencies and empirical inadequacies, and that cognitive neuropsychologists might benefit from considering other models when they attempt to describe and explain patients’ performances on STM tasks. PMID:24347786
Hardy, Amy; Young, Kerry; Holmes, Emily A
2009-11-01
A recent study indicated that 94.4% of reported sexual assault cases in the UK do not result in successful legal prosecution, also known as the rate of attrition (Kelly, Lovett, & Regan, 2005). Scant research has examined the role of trauma-related psychological processes in attrition. Victims of sexual assault (N =22) completed questions about peri-traumatic dissociation, trauma memory fragmentation, account incoherence during police interview, and likelihood of proceeding with legal cases. Higher levels of dissociation during sexual assault were associated with participants reporting more fragmented trauma memories. Memory fragmentation was associated with participants indicating that they provided more incoherent accounts of trauma during police interview. Importantly, people who viewed themselves as providing more incoherent accounts predicted that they would be less likely to proceed with their legal cases. The findings suggest trauma impacts on memory, and these trauma-related disruptions to memory may paradoxically contribute to attrition.
Montgomery, James W; Gillam, Ronald B; Evans, Julia L
2016-12-01
Compared with same-age typically developing peers, school-age children with specific language impairment (SLI) exhibit significant deficits in spoken sentence comprehension. They also demonstrate a range of memory limitations. Whether these 2 deficit areas are related is unclear. The present review article aims to (a) review 2 main theoretical accounts of SLI sentence comprehension and various studies supporting each and (b) offer a new, broader, more integrated memory-based framework to guide future SLI research, as we believe the available evidence favors a memory-based perspective of SLI comprehension limitations. We reviewed the literature on the sentence comprehension abilities of English-speaking children with SLI from 2 theoretical perspectives. The sentence comprehension limitations of children with SLI appear to be more fully captured by a memory-based perspective than by a syntax-specific deficit perspective. Although a memory-based view appears to be the better account of SLI sentence comprehension deficits, this view requires refinement and expansion. Current memory-based perspectives of adult sentence comprehension, with proper modification, offer SLI investigators new, more integrated memory frameworks within which to study and better understand the sentence comprehension abilities of children with SLI.
Gillam, Ronald B.; Evans, Julia L.
2016-01-01
Purpose Compared with same-age typically developing peers, school-age children with specific language impairment (SLI) exhibit significant deficits in spoken sentence comprehension. They also demonstrate a range of memory limitations. Whether these 2 deficit areas are related is unclear. The present review article aims to (a) review 2 main theoretical accounts of SLI sentence comprehension and various studies supporting each and (b) offer a new, broader, more integrated memory-based framework to guide future SLI research, as we believe the available evidence favors a memory-based perspective of SLI comprehension limitations. Method We reviewed the literature on the sentence comprehension abilities of English-speaking children with SLI from 2 theoretical perspectives. Results The sentence comprehension limitations of children with SLI appear to be more fully captured by a memory-based perspective than by a syntax-specific deficit perspective. Conclusions Although a memory-based view appears to be the better account of SLI sentence comprehension deficits, this view requires refinement and expansion. Current memory-based perspectives of adult sentence comprehension, with proper modification, offer SLI investigators new, more integrated memory frameworks within which to study and better understand the sentence comprehension abilities of children with SLI. PMID:27973643
The contributions of handedness and working memory to episodic memory.
Sahu, Aparna; Christman, Stephen D; Propper, Ruth E
2016-11-01
Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.
Working Memory From the Psychological and Neurosciences Perspectives: A Review
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects. PMID:29636715
ERIC Educational Resources Information Center
Hege, Amanda C. G.; Dodson, Chad S.
2004-01-01
Two accounts explain why studying pictures reduces false memories within the Deese-Roediger-McDermott paradigm (J. Deese, 1959; H. L. Roediger & K. B. McDermott, 1995). The impoverished relational-encoding account suggests that studying pictures interferes with the encoding of relational information, which is the primary basis for false memories…
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Elfman, Kane W; Aly, Mariam; Yonelinas, Andrew P
2014-12-01
Recent evidence suggests that the hippocampus, a region critical for long-term memory, also supports certain forms of high-level visual perception. A seemingly paradoxical finding is that, unlike the thresholded hippocampal signals associated with memory, the hippocampus produces graded, strength-based signals in perception. This article tests a neurocomputational model of the hippocampus, based on the complementary learning systems framework, to determine if the same model can account for both memory and perception, and whether it produces the appropriate thresholded and strength-based signals in these two types of tasks. The simulations showed that the hippocampus, and most prominently the CA1 subfield, produced graded signals when required to discriminate between highly similar stimuli in a perception task, but generated thresholded patterns of activity in recognition memory. A threshold was observed in recognition memory because pattern completion occurred for only some trials and completely failed to occur for others; conversely, in perception, pattern completion always occurred because of the high degree of item similarity. These results offer a neurocomputational account of the distinct hippocampal signals associated with perception and memory, and are broadly consistent with proposals that CA1 functions as a comparator of expected versus perceived events. We conclude that the hippocampal computations required for high-level perceptual discrimination are congruous with current neurocomputational models that account for recognition memory, and fit neatly into a broader description of the role of the hippocampus for the processing of complex relational information. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Hughes, Robert W.; Hurlstone, Mark J.; Marsh, John E.; Vachon, Francois; Jones, Dylan M.
2013-01-01
The influence of top-down cognitive control on 2 putatively distinct forms of distraction was investigated. Attentional capture by a task-irrelevant auditory deviation (e.g., a female-spoken token following a sequence of male-spoken tokens)--as indexed by its disruption of a visually presented recall task--was abolished when focal-task engagement…
ERIC Educational Resources Information Center
Al-Shehri, Saleh; Gitsaki, Christina
2010-01-01
Cognitive load theory has been utilized by second language acquisition (SLA) researchers to account for differences in learner performance with regards to different learning tasks. Certain instructional designs were shown to have an impact on cognitive load and working memory, and this impact was found to be accentuated in a multimedia environment…
ERIC Educational Resources Information Center
Kolata, Stefan; Light, Kenneth; Grossman, Henya C.; Hale, Gregory; Matzel, Louis D.
2007-01-01
A single factor (i.e., general intelligence) can account for much of an individuals' performance across a wide variety of cognitive tests. However, despite this factor's robustness, the underlying process is still a matter of debate. To address this question, we developed a novel battery of learning tasks to assess the general learning abilities…
Forrin, Noah D; MacLeod, Colin M
2016-06-01
Differences in memory for item order have been used to explain the absence of between-subjects (i.e., pure-list) effects in free recall for several encoding techniques, including the production effect, the finding that reading aloud benefits memory compared with reading silently. Notably, however, evidence in support of the item-order account (Nairne, Riegler, & Serra, 1991) has derived primarily from short-list paradigms. We provide novel evidence that the item-order account also applies when recalling long lists. In Experiment 1, participants studied and then free recalled 3 different long lists of words: pure aloud, pure silent, and mixed (half aloud, half silent). A Bayesian analysis supported a null pure-list production effect, and subsequent order analyses were largely consistent with the item-order account. These findings indicate that order information is retained in long-term memory and is useful in guiding subsequent free recall. In Experiment 2, a distractor task was inserted between the study and test phases, ensuring that only long-term memory processes were involved in recall: The pattern of results remained consistent with the item-order account. Order information can be retained in long-term memory for long lists, and is useful in guiding subsequent free recall, extending the domain of the item-order account. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
Contribution of neurocognition to 18-month employment outcomes in first-episode psychosis.
Karambelas, George J; Cotton, Sue M; Farhall, John; Killackey, Eóin; Allott, Kelly A
2017-10-27
To examine whether baseline neurocognition predicts vocational outcomes over 18 months in patients with first-episode psychosis enrolled in a randomized controlled trial of Individual Placement and Support or treatment as usual. One-hundred and thirty-four first-episode psychosis participants completed an extensive neurocognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying structure of the battery. Setwise (hierarchical) multiple linear and logistic regressions were used to examine predictors of (1) total hours employed over 18 months and (2) employment status, respectively. Neurocognition factors were entered in the models after accounting for age, gender, premorbid IQ, negative symptoms, treatment group allocation and employment status at baseline. Five neurocognitive factors were extracted: (1) processing speed, (2) verbal learning and memory, (3) knowledge and reasoning, (4) attention and working memory and (5) visual organization and memory. Employment status over 18 months was not significantly predicted by any of the predictors in the final model. Total hours employed over 18 months were significantly predicted by gender (P = .027), negative symptoms (P = .032) and verbal learning and memory (P = .040). Every step of the regression model was a significant predictor of total hours worked overall (final model: P = .013). Verbal learning and memory, negative symptoms and gender were implicated in duration of employment in first-episode psychosis. The other neurocognitive domains did not significantly contribute to the prediction of vocational outcomes over 18 months. Interventions targeting verbal memory may improve vocational outcomes in early psychosis. © 2017 John Wiley & Sons Australia, Ltd.
How the amygdala affects emotional memory by altering brain network properties.
Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno
2014-07-01
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.
Remote semantic memory for public figures in HIV infection, alcoholism, and their comorbidity.
Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Thompson, Megan A; Pfefferbaum, Adolf; Sullivan, Edith V
2011-02-01
Impairments in component processes of working and episodic memory mark both HIV infection and chronic alcoholism, with compounded deficits often observed in individuals comorbid for these conditions. Remote semantic memory processes, however, have only seldom been studied in these diagnostic groups. Examination of remote semantic memory could provide insight into the underlying processes associated with storage and retrieval of learned information over extended time periods while elucidating spared and impaired cognitive functions in these clinical groups. We examined component processes of remote semantic memory in HIV infection and chronic alcoholism in 4 subject groups (HIV, ALC, HIV + ALC, and age-matched healthy adults) using a modified version of the Presidents Test. Free recall, recognition, and sequencing of presidential candidates and election dates were assessed. In addition, component processes of working, episodic, and semantic memory were assessed with ancillary cognitive tests. The comorbid group (HIV + ALC) was significantly impaired on sequencing of remote semantic information compared with age-matched healthy adults. Free recall of remote semantic information was also modestly impaired in the HIV + ALC group, but normal performance for recognition of this information was observed. Few differences were observed between the single diagnosis groups (HIV, ALC) and healthy adults, although examination of the component processes underlying remote semantic memory scores elicited differences between the HIV and ALC groups. Selective remote memory processes were related to lifetime alcohol consumption in the ALC group and to viral load and depression level in the HIV group. Hepatitis C diagnosis was associated with lower remote semantic memory scores in all 3 clinical groups. Education level did not account for group differences reported. This study provides behavioral support for the existence of adverse effects associated with the comorbidity of HIV infection and chronic alcoholism on selective component processes of memory function, with untoward effects exacerbated by Hepatitis C infection. The pattern of remote semantic memory function in HIV + ALC is consistent with those observed in neurological conditions primarily affecting frontostriatal pathways and suggests that remote memory dysfunction in HIV + ALC may be a result of impaired retrieval processes rather than loss of remote semantic information per se. Copyright © 2010 by the Research Society on Alcoholism.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Hardy, Amy
2017-01-01
In recent years, empirical data and theoretical accounts relating to the relationship between childhood victimization and psychotic experiences have accumulated. Much of this work has focused on co-occurring Posttraumatic Stress Disorder or putative causal mechanisms in isolation from each other. The complexity of posttraumatic stress reactions experienced in psychosis remains poorly understood. This paper therefore attempts to synthesize the current evidence base into a theoretically informed, multifactorial model of posttraumatic stress in psychosis. Three trauma-related vulnerability factors are proposed to give rise to intrusions and to affect how people appraise and cope with them. First, understandable attempts to survive trauma become habitual ways of regulating emotion, manifesting in cognitive-affective, behavioral and interpersonal responses. Second, event memories, consisting of perceptual and episodic representations, are impacted by emotion experienced during trauma. Third, personal semantic memory, specifically appraisals of the self and others, are shaped by event memories. It is proposed these vulnerability factors have the potential to lead to two types of intrusions. The first type is anomalous experiences arising from emotion regulation and/or the generation of novel images derived from trauma memory. The second type is trauma memory intrusions reflecting, to varying degrees, the retrieval of perceptual, episodic and personal semantic representations. It is speculated trauma memory intrusions may be experienced on a continuum from contextualized to fragmented, depending on memory encoding and retrieval. Personal semantic memory will then impact on how intrusions are appraised, with habitual emotion regulation strategies influencing people’s coping responses to these. Three vignettes are outlined to illustrate how the model accounts for different pathways between victimization and psychosis, and implications for therapy are considered. The model is the first to propose how emotion regulation and autobiographical memory may lead to a range of intrusive experiences in psychosis, and therefore attempts to explain the different phenomenological associations observed between trauma and intrusions. However, it includes a number of novel hypotheses that require empirical testing, which may lead to further refinement. It is anticipated the model will assist research and practice, in the hope of supporting people to manage the impact of victimization on their lives. PMID:28588514
Memory systems interaction in the pigeon: working and reference memory.
Roberts, William A; Strang, Caroline; Macpherson, Krista
2015-04-01
Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Weng, Xiaoqian; Li, Guangze; Li, Rongbao
2016-08-01
This study examined the mediating role of working memory (WM) in the relation between rapid automatized naming (RAN) and Chinese reading comprehension. Three tasks assessing differentially visual and verbal components of WM were programmed by E-prime 2.0. Data collected from 55 Chinese college students were analyzed using correlations and hierarchical regression methods to determine the connection among RAN, reading comprehension, and WM components. Results showed that WM played a significant mediating role in the RAN-reading relation and that auditory WM made stronger contributions than visual WM. Taking into account of the multi-component nature of WM and the specificity of Chinese reading processing, this study discussed the mediating powers of the WM components, particularly auditory WM, further clarifying the possible components involved in the RAN-reading relation and thus providing some insight into the complicated Chinese reading process.
Individual Differences in Recovery Time From Attentional Capture
Fukuda, Keisuke; Vogel, Edward K.
2015-01-01
Working memory capacity reflects a core ability of the individual that affects performance on many cognitive tasks. Recent work has suggested that an important covariate of memory capacity is attentional control, and specifically that low-capacity individuals are more susceptible to attentional capture by distractors than high-capacity individuals are, with the latter being able to resist capture. Here, we tested an alternative account according to which all individuals are equally susceptible to attentional capture, but high-capacity individuals recover more quickly than low-capacity individuals. Using psychophysical and electrophysiological methods, we measured recovery time from attentional capture. In two experiments, we found that high- and low-capacity individuals showed equivalent attentional capture effects in the initial moments following capture, but that low-capacity individuals took much longer to recover than high-capacity individuals did. These results suggest that the poor attentional control associated with low capacity is due to slow disengagement from distractors. PMID:21310945
How the bimodal format of presentation affects working memory: an overview.
Mastroberardino, Serena; Santangelo, Valerio; Botta, Fabiano; Marucci, Francesco S; Olivetti Belardinelli, Marta
2008-03-01
The best format in which information that has to be recalled is presented has been investigated in several studies, which focused on the impact of bimodal stimulation on working memory performance. An enhancement of participant's performance in terms of correct recall has been repeatedly found, when bimodal formats of presentation (i.e., audiovisual) were compared to unimodal formats (i.e, either visual or auditory), in providing implications for multimedial learning. Several theoretical frameworks have been suggested in order to account for the bimodal advantage, ranging from those emphasizing early stages of processing (such as automatic alerting effects or multisensory integration processes) to those centred on late stages of processing (as postulated by the dual coding theory). The aim of this paper is to review previous contributions to this topic, providing a comprehensive theoretical framework, which is updated by the latest empirical studies.
Effect of cognitive load on working memory forgetting in aging.
Baumans, Christine; Adam, Stephane; Seron, Xavier
2012-01-01
Functional approaches to working memory (WM) have been proposed recently to better investigate "maintenance" and "processing" mechanisms. The cognitive load (CL) hypothesis presented in the "Time-Based Resource-Sharing" model (Barrouillet & Camos, 2007) suggests that forgetting from WM (maintenance) can be investigated by varying the presentation rate and processing speed (processing). In this study, young and elderly participants were compared on WM tasks in which the difference in processing speed was controlled by CL manipulations. Two main results were found. First, when time constraints (CL) were matched for the two groups, no aging effect was observed. Second, whereas a large variation in CL affected WM performance, a small CL manipulation had no effect on the elderly. This suggests that WM forgetting cannot be completely accounted for by the CL hypothesis. Rather, it highlights the need to explore restoration times in particular, and the nature of the refreshment mechanisms within maintenance.
A constitutive theory for shape memory polymers: coupling of small and large deformation
NASA Astrophysics Data System (ADS)
Tan, Qiao; Liu, Liwu; Liu, Yanju; Leng, Jinsong; Yan, Xiangqiao; Wang, Haifang
2013-04-01
At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP's thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke's laws.
Rakhlin, Natalia; Kornilov, Sergey A.; Kornilova, Tatiana V.
2016-01-01
We investigated relative clause (RC) comprehension in 44 Russian-speaking children with typical language (TD) and developmental language disorder (DLD); M age = 10.67, SD = 2.84, and 22 adults. Flexible word order and morphological case in Russian allowed us to isolate factors that are obscured in English, helping us to identify sources of syntactic complexity and evaluate their roles in RC comprehension by children with typical language and their peers with DLD. We administered a working memory and an RC comprehension (picture-choice) task, which contained subject- and object-gap center-embedded and right branching RCs. The TD group, but not adults, demonstrated the effects of gap, embedding, and case. Their lower accuracy relative to adults was not fully attributable to differences in working memory. The DLD group displayed lower than TD children overall accuracy, accounted for by their lower working memory scores. While the effect of gap and embedding on their performance was not different from what was found for the TD group, children with DLD exhibited a diminished effect of case, suggesting reduced sensitivity to morphological case markers as processing cues. The implications of these results to theories of syntactic complexity and core deficits in DLD are discussed. PMID:28626347
Eichorn, Naomi; Marton, Klara; Schwartz, Richard G; Melara, Robert D; Pirutinsky, Steven
2016-06-01
The present study examined whether engaging working memory in a secondary task benefits speech fluency. Effects of dual-task conditions on speech fluency, rate, and errors were examined with respect to predictions derived from three related theoretical accounts of disfluencies. Nineteen adults who stutter and twenty adults who do not stutter participated in the study. All participants completed 2 baseline tasks: a continuous-speaking task and a working-memory (WM) task involving manipulations of domain, load, and interstimulus interval. In the dual-task portion of the experiment, participants simultaneously performed the speaking task with each unique combination of WM conditions. All speakers showed similar fluency benefits and decrements in WM accuracy as a result of dual-task conditions. Fluency effects were specific to atypical forms of disfluency and were comparable across WM-task manipulations. Changes in fluency were accompanied by reductions in speaking rate but not by corresponding changes in overt errors. Findings suggest that WM contributes to disfluencies regardless of stuttering status and that engaging WM resources while speaking enhances fluency. Further research is needed to verify the cognitive mechanism involved in this effect and to determine how these findings can best inform clinical intervention.
Koelewijn, Thomas; Zekveld, Adriana A; Festen, Joost M; Kramer, Sophia E
2014-03-01
A recent pupillometry study on adults with normal hearing indicates that the pupil response during speech perception (cognitive processing load) is strongly affected by the type of speech masker. The current study extends these results by recording the pupil response in 32 participants with hearing impairment (mean age 59 yr) while they were listening to sentences masked by fluctuating noise or a single-talker. Efforts were made to improve audibility of all sounds by means of spectral shaping. Additionally, participants performed tests measuring verbal working memory capacity, inhibition of interfering information in working memory, and linguistic closure. The results showed worse speech reception thresholds for speech masked by single-talker speech compared to fluctuating noise. In line with previous results for participants with normal hearing, the pupil response was larger when listening to speech masked by a single-talker compared to fluctuating noise. Regression analysis revealed that larger working memory capacity and better inhibition of interfering information related to better speech reception thresholds, but these variables did not account for inter-individual differences in the pupil response. In conclusion, people with hearing impairment show more cognitive load during speech processing when there is interfering speech compared to fluctuating noise.
Mainela-Arnold, Elina; Evans, Julia L.; Coady, Jeffry
2010-01-01
Purpose This study investigated the impact of lexical processes on target word recall in sentence span tasks in children with and without specific language impairment (SLI). Method Participants were 42 children (ages 8;2–12;3), 21 with SLI and 21 typically developing peers matched on age and nonverbal IQ. Children completed a sentence span task where target words to be recalled varied in word frequency and neighborhood density. Two measures of lexical processes were examined, the number of non-target competitor words activated during a gating task (lexical cohort competition) and word definitions. Results Neighborhood density had no effect on word recall for either group. However, both groups recalled significantly more high than low frequency words. Lexical cohort competition and specificity of semantic representations accounted for unique variance in the number of target word recalled in the SLI and CA groups combined. Conclusions Performance on verbal working memory span tasks for both SLI and CA children is influenced by word frequency, lexical cohorts, and semantic representations. Future studies need to examine the extent to which verbal working memory capacity is a cognitive construct independent of extant language knowledge representations. PMID:20705747
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Are stimulus-response rules represented phonologically for task-set preparation and maintenance?
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-09-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting participants to switch between 2 sets of arbitrary S-R rules and manipulating the articulatory duration (Experiment 1) or phonological similarity (Experiments 2 and 3) of the names of the stimulus terms. The task cue specified which of 2 objects (Experiment 1) or consonants (Experiment 2) in a display to identify with a key press. In Experiment 3, participants switched between identifying an object/consonant and its color/visual texture. After practice, neither the duration nor the similarity of the stimulus terms had detectable effects on overall performance, task-switch cost, or its reduction with preparation. Only in the initial single-task training blocks was phonological similarity a significant handicap. Hence, beyond a very transient role, there is no evidence that (declarative) phonological working memory makes a functional contribution to representing S-R rules for task-set control, arguably because once learned, they are represented in nonlinguistic procedural working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
A cognitive neuroscience account of posttraumatic stress disorder and its treatment.
Brewin, C R
2001-04-01
Recent research in the areas of animal conditioning, the neural systems underlying emotion and memory, and the effect of fear on these systems is reviewed. This evidence points to an important distinction between hippocampally-dependent and non-hippocampally-dependent forms of memory that are differentially affected by extreme stress. The cognitive science perspective is related to a recent model of posttraumatic stress disorder, dual representation theory, that also posits separate memory systems underlying vivid reexperiencing versus ordinary autobiographical memories of trauma. This view is compared with other accounts in the literature of traumatic memory processes in PTSD, and the contrasting implications for therapy are discussed.
JEFFERSON, ANGELA L.; BARAKAT, LAMIA P.; GIOVANNETTI, TANIA; PAUL, ROBERT H.; GLOSSER, GUILA
2009-01-01
This study examined the contribution of object perception and spatial localization to functional dependence among Alzheimer's disease (AD) patients. Forty patients with probable AD completed measures assessing verbal recognition memory, working memory, object perception, spatial localization, semantic knowledge, and global cognition. Primary caregivers completed a measure of activities of daily living (ADLs) that included instrumental and basic self-care subscales (i.e., IADLs and BADLs, respectively). Stepwise multiple regressions revealed that global cognition accounted for significant portions of variance among the ADL total, IADL, and BADL scores. However, when global cognition was removed from the model, object perception was the only significant cognitive predictor of the ADL total and IADL subscale scores, accounting for 18.5% and 19.3% of the variance, respectively. When considering multiple cognitive components simultaneously, object perception and the integrity of the inferotemporal cortex is important in the completion of functional abilities in general and IADLs in particular among AD patients. PMID:16822730
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Working-memory performance is related to spatial breadth of attention.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2015-11-01
Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.
Statistical Computations Underlying the Dynamics of Memory Updating
Gershman, Samuel J.; Radulescu, Angela; Norman, Kenneth A.; Niv, Yael
2014-01-01
Psychophysical and neurophysiological studies have suggested that memory is not simply a carbon copy of our experience: Memories are modified or new memories are formed depending on the dynamic structure of our experience, and specifically, on how gradually or abruptly the world changes. We present a statistical theory of memory formation in a dynamic environment, based on a nonparametric generalization of the switching Kalman filter. We show that this theory can qualitatively account for several psychophysical and neural phenomena, and present results of a new visual memory experiment aimed at testing the theory directly. Our experimental findings suggest that humans can use temporal discontinuities in the structure of the environment to determine when to form new memory traces. The statistical perspective we offer provides a coherent account of the conditions under which new experience is integrated into an old memory versus forming a new memory, and shows that memory formation depends on inferences about the underlying structure of our experience. PMID:25375816
Closing-in behavior: Compensation or attraction?
Ambron, Elisabetta; Beschin, Nicoletta; Cerrone, Chiara; Della Sala, Sergio
2018-03-01
Closing-in behavior (CIB) defines the abnormal misplacement of the copy performance, positioned very closed to or on the top of the model. This symptom is observed in graphic copying by patients suffering from different neurological diseases, most commonly dementia. The cognitive origins of this behavior are still a matter of investigation, and research of the last 10 years has been focused on exploring 2 main accounts of CIB, the compensation and the attraction hypotheses, providing evidence in both directions. While the first account defines CIB as a compensatory strategy to overcome visuospatial and/or working memory deficits during copying tasks, the attraction hypothesis looks at CIB as primitive default behavior in which attention and action are closely coupled and movements are performed toward the focus of attention. We explored these 2 hypotheses in a sample of patients with and without CIB, and controls in 5 experiments: Experiments 1 and 2 tested the attraction hypothesis and, respectively, the prediction that CIB can be elicited in a noncopying dual task condition loading upon attentional resources or by irrelevant attentional grabbing stimuli. The other experiments investigated the compensation hypothesis manipulating the distance between model and copying space (Experiment 3), the task demand (single or dual task loading on verbal working memory; Experiment 4), the task requirements (copying and tracing) and visual demand (visual copy and memory; Experiment 5). The results support the attraction hypothesis of CIB. CIB reflects an impairment of the attention and action system, rather than a compensatory strategy. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Working Memory in the Classroom: An Inside Look at the Central Executive.
Barker, Lauren A
2016-01-01
This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.
Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A
2015-12-01
A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering. (c) 2015 APA, all rights reserved).
On the measurement of criterion noise in signal detection theory: the case of recognition memory.
Kellen, David; Klauer, Karl Christoph; Singmann, Henrik
2012-07-01
Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966), especially in the field of recognition memory, assume that the positioning of response criteria is not a noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has challenged this assumption, arguing not only for the existence of criterion noise but also for its large magnitude and substantive contribution to individuals' performance. A review of these recent approaches for the measurement of criterion noise in SDT identifies several shortcomings and confoundings. A reanalysis of Benjamin et al.'s (2009) data sets as well as the results from a new experimental method indicate that the different forms of criterion noise proposed in the recognition memory literature are of very low magnitudes, and they do not provide a significant improvement over the account already given by traditional SDT without criterion noise. Copyright 2012 APA, all rights reserved.
Cognitive predictors of adaptive functioning in children with symptomatic epilepsy.
Kerr, Elizabeth N; Fayed, Nora
2017-10-01
The current study sought to understand the contribution of the attention and working memory challenges experienced by children with active epilepsy without an intellectual disability to adaptive functioning (AF) while taking into account intellectual ability, co-occurring brain-based psychosocial diagnoses, and epilepsy-related variables. The relationship of attention and working memory with AF was examined in 76 children with active epilepsy with intellectual ability above the 2nd percentile recruited from a tertiary care center. AF was measured using the Scales of Independent Behavior-Revised (SIB-R) and compared with norm-referenced data. Standardized clinical assessments of attention span, sustained attention, as well as basic and more complex working memory were administered to children. Commonality analysis was used to investigate the importance of the variables with respect to the prediction of AF and to construct parsimonious models to elucidate the factors most important in explaining AF. Seventy-one percent of parents reported that their child experienced mild to severe difficulties with overall AF. Similar proportions of children displayed limitations in domain-specific areas of AF (Motor, Social/Communication, Person Living, and Community Living). The reduced models for Broad and domain-specific AF produced a maximum of seven predictor variables, with little loss in overall explained variance compared to the full models. Intellectual ability was a powerful predictor of Broad and domain-specific AF. Complex working memory was the only other cognitive predictor retained in each of the parsimonious models of AF. Sustained attention and complex working memory explained a large amount of the total variance in Motor AF. Children with a previously diagnosed comorbidity displayed lower Social/Communication, Personal Living, and Broad AF than those without a diagnosis. At least one epilepsy-related variable appeared in each of the reduced models, with age of seizure onset and seizure type (generalized or partial) being the main predictors. Intellectual ability was the most powerful predictor of AF in children with epilepsy whose intellectual functioning was above the 2nd percentile. Co-occurring brain-based cognitive and psychosocial issues experienced by children with living epilepsy, particularly complex working memory and diagnosed comorbidities, contribute to AF and may be amenable to intervention. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Visuospatial and verbal memory in mental arithmetic.
Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes
2017-09-01
Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.
Transfer after Working Memory Updating Training
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319
Transfer after Working Memory Updating Training.
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.
ERIC Educational Resources Information Center
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…
Han, S Duke; Boyle, Patricia A; James, Bryan D; Yu, Lei; Bennett, David A
2015-04-01
To test the hypothesis that mild cognitive impairment (MCI) is associated with poorer financial and healthcare decision-making. Community-based epidemiological cohort study. Communities throughout northeastern Illinois. Older persons without dementia from the Rush Memory and Aging Project (N = 730). All participants underwent a detailed clinical evaluation and decision-making assessment using a measure that closely approximates materials used in real-world financial and healthcare settings. This allowed for measurement of total decision-making and financial and healthcare decision-making. Regression models were used to examine whether MCI was associated with a lower level of decision-making. In subsequent analyses, the relationship between specific cognitive systems (episodic memory, semantic memory, working memory, perceptual speed, visuospatial ability) and decision-making was explored in participants with MCI. MCI was associated with lower total, financial, and healthcare decision-making scores after accounting for the effects of age, education, and sex. The effect of MCI on total decision-making was equivalent to the effect of more than 10 additional years of age. Additional models showed that, when considering multiple cognitive systems, perceptual speed accounted for the most variance in decision-making in participants with MCI. Persons with MCI may have poorer financial and healthcare decision-making in real-world situations, and perceptual speed may be an important contributor to poorer decision-making in persons with MCI. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.
NASA Astrophysics Data System (ADS)
Comlekoglu, T.; Weinberg, S. H.
2017-09-01
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus
2018-03-19
Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.
Sleep and memory in the making. Are current concepts sufficient in children?
Peigneux, P
2014-01-01
Memory consolidation is an active process wired in brain plasticity. How plasticity mechanisms develop and are modulated after learning is at the core of current models of sleep-dependent memory consolidation. Nowadays, two main classes of sleep-related memory consolidation theories are proposed, namely system consolidation and synaptic homeostasis. However, novel models of consolidation emerge, that might better account for the highly dynamic and interactive processes of encoding and memory consolidation. Processing steps can take place at various temporal phases and be modulated by interactions with prior experiences and ongoing events. In this perspective, sleep might support (or not) memory consolidation processes under specific neurophysiological and environmental circumstances leading to enduring representations in long-term memory stores. We outline here a discussion about how current and emergent models account for the complexity and apparent inconsistency of empirical data. Additionally, models aimed at understanding neurophysiological and/or cognitive processes should not only provide a satisfactory explanation for the phenomena at stake, but also account for their ontogeny and the conditions that disrupt their organisation. Looking at the available literature, this developmental condition appears to remain unfulfilled when trying to understand the relationships between sleep, learning and memory consolidation processes, both in healthy children and in children with pathological conditions.
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
Milton, Amy L; Everitt, Barry J
2010-06-01
Memory reconsolidation is the process by which memories, destabilised at retrieval, require restabilisation to persist in the brain. It has been demonstrated that even old, well-established memories require reconsolidation following retrieval; therefore, memory reconsolidation could potentially be exploited to disrupt, or even erase, aberrant memories that underlie psychiatric disorders, thereby providing a novel therapeutic target. Drug addiction is one such disorder; it is both chronic and relapsing, and one prominent risk factor for a relapse episode is the presentation of environmental cues that have previously been associated with drugs of abuse. This 'cue-induced relapse' can be accounted for in psychological terms by reinforcing memories of the pavlovian association between the cue and the drug, which can thus influence behaviour through at least three psychologically and neurobiologically dissociable mechanisms: conditioned reinforcement, conditioned approach and conditioned motivation. As each of these psychological processes could contribute to the resumption of drug-seeking following abstinence, it is important to develop treatments that can reduce drug-seeking re-established via influences on each or all of these pavlovian processes, in order to minimise the risk of a subsequent relapse. Investigation of the memory reconsolidation mechanisms of the memories underlying conditioned reinforcement, conditioned approach and conditioned motivation indicate that they depend upon different neurochemical systems, including the glutamatergic and adrenergic systems within limbic corticostriatal circuitry. We also discuss here the subsequent translation to the clinic of this preclinical work.
Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective
ERIC Educational Resources Information Center
Richmond, Jenny; Nelson, Charles A.
2007-01-01
The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…
Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E
2016-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.
Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain
Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.
2015-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567
Lane, Richard D.; Alkozei, Anna; Bao, Jennifer; Smith, Courtney; Sanova, Anna; Nettles, Matthew; Killgore, William D. S.
2017-01-01
Abstract The maintenance of social/emotional information in working memory (SWM/EWM) has recently been the topic of multiple neuroimaging studies. However, some studies find that SWM/EWM involves a medial frontal-parietal network while others instead find lateral frontal-parietal activations similar to studies of verbal and visuospatial WM. In this study, we asked 26 healthy volunteers to complete an EWM task designed to examine whether different cognitive strategies— maintaining emotional images, words, or feelings— might account for these discrepant results. We also examined whether differences in EWM performance were related to general intelligence (IQ), emotional intelligence (EI), and emotional awareness (EA). We found that maintaining emotional feelings, even when accounting for neural activation attributable to maintaining emotional images/words, still activated a left lateral frontal-parietal network (including the anterior insula and posterior dorsomedial frontal cortex). We also found that individual differences in the ability to maintain feelings were positively associated with IQ and EA, but not with EI. These results suggest that maintaining the feelings of others (at least when perceived exteroceptively) involves similar frontal-parietal control networks to exteroceptive WM, and that it is similarly linked to IQ, but that it also may be an important component of EA. PMID:28158779
Working, declarative and procedural memory in specific language impairment
Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.
2012-01-01
According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923
Executive Functioning Heterogeneity in Pediatric ADHD.
Kofler, Michael J; Irwin, Lauren N; Soto, Elia F; Groves, Nicole B; Harmon, Sherelle L; Sarver, Dustin E
2018-04-28
Neurocognitive heterogeneity is increasingly recognized as a valid phenomenon in ADHD, with most estimates suggesting that executive dysfunction is present in only about 33%-50% of these children. However, recent critiques question the veracity of these estimates because our understanding of executive functioning in ADHD is based, in large part, on data from single tasks developed to detect gross neurological impairment rather than the specific executive processes hypothesized to underlie the ADHD phenotype. The current study is the first to comprehensively assess heterogeneity in all three primary executive functions in ADHD using a criterion battery that includes multiple tests per construct (working memory, inhibitory control, set shifting). Children ages 8-13 (M = 10.37, SD = 1.39) with and without ADHD (N = 136; 64 girls; 62% Caucasian/Non-Hispanic) completed a counterbalanced series of executive function tests. Accounting for task unreliability, results indicated significantly improved sensitivity and specificity relative to prior estimates, with 89% of children with ADHD demonstrating objectively-defined impairment on at least one executive function (62% impaired working memory, 27% impaired inhibitory control, 38% impaired set shifting; 54% impaired on one executive function, 35% impaired on two or all three executive functions). Children with working memory deficits showed higher parent- and teacher-reported ADHD inattentive and hyperactive/impulsive symptoms (BF 10 = 5.23 × 10 4 ), and were slightly younger (BF 10 = 11.35) than children without working memory deficits. Children with vs. without set shifting or inhibitory control deficits did not differ on ADHD symptoms, age, gender, IQ, SES, or medication status. Taken together, these findings confirm that ADHD is characterized by neurocognitive heterogeneity, while suggesting that contemporary, cognitively-informed criteria may provide improved precision for identifying a smaller number of neuropsychologically-impaired subtypes than previously described.
A heuristic model for working memory deficit in schizophrenia.
Qi, Zhen; Yu, Gina P; Tretter, Felix; Pogarell, Oliver; Grace, Anthony A; Voit, Eberhard O
2016-11-01
The life of schizophrenia patients is severely affected by deficits in working memory. In various brain regions, the reciprocal interactions between excitatory glutamatergic neurons and inhibitory GABAergic neurons are crucial. Other neurotransmitters, in particular dopamine, serotonin, acetylcholine, and norepinephrine, modulate the local balance between glutamate and GABA and therefore regulate the function of brain regions. Persistent alterations in the balances between the neurotransmitters can result in working memory deficits. Here we present a heuristic computational model that accounts for interactions among neurotransmitters across various brain regions. The model is based on the concept of a neurochemical interaction matrix at the biochemical level and combines this matrix with a mobile model representing physiological dynamic balances among neurotransmitter systems associated with working memory. The comparison of clinical and simulation results demonstrates that the model output is qualitatively very consistent with the available data. In addition, the model captured how perturbations migrated through different neurotransmitters and brain regions. Results showed that chronic administration of ketamine can cause a variety of imbalances, and application of an antagonist of the D2 receptor in PFC can also induce imbalances but in a very different manner. The heuristic computational model permits a variety of assessments of genetic, biochemical, and pharmacological perturbations and serves as an intuitive tool for explaining clinical and biological observations. The heuristic model is more intuitive than biophysically detailed models. It can serve as an important tool for interdisciplinary communication and even for psychiatric education of patients and relatives. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.
Koo, Daniel; Crain, Kelly; LaSasso, Carol; Eden, Guinevere F
2008-12-01
Previous work in deaf populations on phonological coding and working memory, two skills thought to play an important role in the acquisition of written language skills, have focused primarily on signers or did not clearly identify the subjects' native language and communication mode. In the present study, we examined the effect of sensory experience, early language experience, and communication mode on the phonological awareness skills and serial recall of linguistic items in deaf and hearing individuals of different communicative and linguistic backgrounds: hearing nonsigning controls, hearing users of ASL, deaf users of ASL, deaf oral users of English, and deaf users of cued speech. Since many current measures of phonological awareness skills are inappropriate for deaf populations on account of the verbal demands in the stimuli or response, we devised a nonverbal phonological measure that addresses this limitation. The Phoneme Detection Test revealed that deaf cuers and oral users, but not deaf signers, performed as well as their hearing peers when detecting phonemes not transparent in the orthography. The second focus of the study examined short-term memory skills and found that in response to the traditional digit span as well as an experimental visual version, digit-span performance was similar across the three deaf groups, yet deaf subjects' retrieval was lower than that of hearing subjects. Our results support the claim (Bavelier et al., 2006) that lexical items processed in the visual-spatial modality are not as well retained as information processed in the auditory channel. Together these findings show that the relationship between working memory, phonological coding, and reading may not be as tightly interwoven in deaf students as would have been predicted from work conducted in hearing students.
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Working memory involvement in stuttering: exploring the evidence and research implications.
Bajaj, Amit
2007-01-01
Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.
Nicolaou, E; Quach, J; Lum, J; Roberts, G; Spencer-Smith, M; Gathercole, S; Anderson, P J; Mensah, F K; Wake, M
2018-05-01
Adaptive working memory training is being implemented without an adequate understanding of developmental trajectories of working memory. We aimed to quantify from Grade 1 to Grade 3 of primary school (1) changes in verbal and visuospatial working memory and (2) whether low verbal and visuospatial working memory in Grade 1 predicts low working memory in Grade 3. The study design includes a population-based longitudinal study of 1,802 children (66% uptake from all 2,747 Grade 1 students) at 44 randomly selected primary schools in Melbourne, Australia. Backwards Digit Recall (verbal working memory) and Mister X (visuospatial working memory) screening measures from the Automated Working Memory Assessment (M = 100; SD = 15) were used to assess Grades 1 and 3 (ages 6-7 and 8-9 years) students. Low working memory was defined as ≥1 standard deviation below the standard score mean. Descriptive statistics addressed Aim 1, and predictive parameters addressed Aim 2. One thousand seventy (59%) of 1802 Grade 1 participants were reassessed in Grade 3. As expected for typically developing children, group mean standard scores were similar in Grades 1 and 3 for verbal, visuospatial, and overall working memory, but group mean raw scores increased markedly. Compared to "not low" children, those classified as having low working memory in Grade 1 showed much larger increases in both standard and raw scores across verbal, visuospatial, and overall working memory. Sensitivity was very low for Grade 1 low working memory predicting Grade 3 low classifications. Although mean changes in working memory standard scores between Grades 1 and 3 were minimal, we found that individual development varied widely, with marked natural resolution by Grade 3 in children who initially had low working memory. This may render brain-training interventions ineffective in the early school year ages, particularly if (as population-based programmes usually mandate) selection occurs within a screening paradigm. © 2017 John Wiley & Sons Ltd.
Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing
2014-01-01
To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.
ERIC Educational Resources Information Center
Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.
2013-01-01
Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…
Working-memory training improves developmental dyslexia in Chinese children.
Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu
2013-02-15
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
ERIC Educational Resources Information Center
Rovee-Collier, Carolyn; Cuevas, Kimberly
2009-01-01
How the memory of adults evolves from the memory abilities of infants is a central problem in cognitive development. The popular solution holds that the multiple memory systems of adults mature at different rates during infancy. The "early-maturing system" (implicit or nondeclarative memory) functions automatically from birth, whereas the…
Amnesia, rehearsal, and temporal distinctiveness models of recall.
Brown, Gordon D A; Della Sala, Sergio; Foster, Jonathan K; Vousden, Janet I
2007-04-01
Classical amnesia involves selective memory impairment for temporally distant items in free recall (impaired primacy) together with relative preservation of memory for recency items. This abnormal serial position curve is traditionally taken as evidence for a distinction between different memory processes, with amnesia being associated with selectively impaired long-term memory. However recent accounts of normal serial position curves have emphasized the importance of rehearsal processes in giving rise to primacy effects and have suggested that a single temporal distinctiveness mechanism can account for both primacy and recency effects when rehearsal is considered. Here we explore the pattern of strategic rehearsal in a patient with very severe amnesia. When the patient's rehearsal pattern is taken into account, a temporal distinctiveness model can account for the serial position curve in both amnesic and control free recall. The results are taken as consistent with temporal distinctiveness models of free recall, and they motivate an emphasis on rehearsal patterns in understanding amnesic deficits in free recall.
Schendan, Haune E; Kutas, Malra
2007-08-01
Transfer appropriate processing (TAP) accounts propose that memory is a function of the degree to which the same neural processes transfer appropriately from the study experience to the memory test. However, in prior research, study and test stimuli were often similar physically. In two experiments, event-related brain potentials (ERPs) were recorded to fragmented objects during an indirect memory test to isolate transfer of a specific perceptual process from overlap of physical features between experiences. An occipitotemporoparietal P2(00) at 200 msec showed implicit memory effects only when similar perceptual grouping processes of good continuation were repeatedly engaged-despite physical feature differences--as TAP accounts hypothesize. This result provides direct neurophysiological evidence for the critical role of process transfer across experiences for memory.
Can Interactive Working Memory Training Improve Learning?
ERIC Educational Resources Information Center
Alloway, Tracy
2012-01-01
Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Spatial attention interacts with serial-order retrieval from verbal working memory.
van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim
2013-09-01
The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.
Working Memory Underpins Cognitive Development, Learning, and Education
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585
Working Memory Differences Between Children Living in Rural and Urban Poverty
Tine, Michele
2014-01-01
This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities. PMID:25554726
Working Memory Differences Between Children Living in Rural and Urban Poverty.
Tine, Michele
2014-10-02
This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities.
Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu
2018-03-01
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Distortions in memory for visual displays
NASA Technical Reports Server (NTRS)
Tversky, Barbara
1989-01-01
Systematic errors in perception and memory present a challenge to theories of perception and memory and to applied psychologists interested in overcoming them as well. A number of systematic errors in memory for maps and graphs are reviewed, and they are accounted for by an analysis of the perceptual processing presumed to occur in comprehension of maps and graphs. Visual stimuli, like verbal stimuli, are organized in comprehension and memory. For visual stimuli, the organization is a consequence of perceptual processing, which is bottom-up or data-driven in its earlier stages, but top-down and affected by conceptual knowledge later on. Segregation of figure from ground is an early process, and figure recognition later; for both, symmetry is a rapidly detected and ecologically valid cue. Once isolated, figures are organized relative to one another and relative to a frame of reference. Both perceptual (e.g., salience) and conceptual factors (e.g., significance) seem likely to affect selection of a reference frame. Consistent with the analysis, subjects perceived and remembered curves in graphs and rivers in maps as more symmetric than they actually were. Symmetry, useful for detecting and recognizing figures, distorts map and graph figures alike. Top-down processes also seem to operate in that calling attention to the symmetry vs. asymmetry of a slightly asymmetric curve yielded memory errors in the direction of the description. Conceptual frame of reference effects were demonstrated in memory for lines embedded in graphs. In earlier work, the orientation of map figures was distorted in memory toward horizontal or vertical. In recent work, graph lines, but not map lines, were remembered as closer to an imaginary 45 deg line than they had been. Reference frames are determined by both perceptual and conceptual factors, leading to selection of the canonical axes as a reference frame in maps, but selection of the imaginary 45 deg as a reference frame in graphs.
The impact of early-onset cannabis use on functional brain correlates of working memory.
Becker, Benjamin; Wagner, Daniel; Gouzoulis-Mayfrank, Euphrosyne; Spuentrup, Elmar; Daumann, Jörg
2010-08-16
Cannabis is the most commonly used illicit drug. Prevalence rates are particularly high among adolescents. Neuropsychological studies have identified cannabis-associated memory deficits, particularly linked to an early onset of use. However, it remains unclear, whether the age of onset accounts for altered cortical activation patterns usually observed in cannabis users. Functional magnetic resonance imaging was used to examine cortical activation during verbal working memory challenge in (1) early-onset (onset before the age of sixteen; n=26) and (2) late-onset cannabis users (age at onset at least sixteen; n=17). Early-onset users showed increased activation in the left superior parietal lobe. Correlational analyses confirmed the association between an earlier start of use and increased activity. Contrariwise neither cumulative dose, frequency nor time since last use was significantly associated with cortical activity. Our findings suggest that an early start of cannabis use is associated with increased cortical activation in adult cannabis users, possibly reflecting suboptimal cortical efficiency during cognitive challenge. The maturing brain might be more vulnerable to the harmful effects of cannabis use. However, due to a lack of a non-using control group we cannot exclude alternative interpretations. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Conceptualizing and Measuring Working Memory and its Relationship to Aphasia
Wright, Heather Harris; Fergadiotis, Gerasimos
2011-01-01
Background General agreement exists in the literature that individuals with aphasia can exhibit a working memory deficit that contributes to their language processing impairments. Though conceptualized within different working memory frameworks, researchers have suggested that individuals with aphasia have limited working memory capacity, impaired attention-control processes as well as impaired inhibitory mechanisms. However, across studies investigating working memory ability in individuals with aphasia, different measures have been used to quantify their working memory ability and identify the relationship between working memory and language performance. Aims The primary objectives of this article are to (1) review current working memory theoretical frameworks, (2) review tasks used to measure working memory, and (3) discuss findings from studies that have investigated working memory as they relate to language processing in aphasia. Main Contribution Though findings have been consistent across studies investigating working memory ability in individuals with aphasia, discussion of how working memory is conceptualized and defined is often missing, as is discussion of results within a theoretical framework. This is critical, as working memory is conceptualized differently across the different theoretical frameworks. They differ in explaining what limits capacity and the source of individual differences as well as how information is encoded, maintained, and retrieved. When test methods are considered within a theoretical framework, specific hypotheses can be tested and stronger conclusions that are less susceptible to different interpretations can be made. Conclusions Working memory ability has been investigated in numerous studies with individuals with aphasia. To better understand the underlying cognitive constructs that contribute to the language deficits exhibited by individuals with aphasia, future investigations should operationally define the cognitive constructs of interest and discuss findings within theoretical frameworks. PMID:22639480
Changes in Brain Network Efficiency and Working Memory Performance in Aging
Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.
2015-01-01
Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001