Sample records for working memory representations

  1. Selective attention on representations in working memory: cognitive and neural mechanisms.

    PubMed

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  2. Selective attention on representations in working memory: cognitive and neural mechanisms

    PubMed Central

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245

  3. Where do we store the memory representations that guide attention?

    PubMed Central

    Woodman, Geoffrey F.; Carlisle, Nancy B.; Reinhart, Robert M. G.

    2013-01-01

    During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item in working memory. Here we summarize the work indicating that the relationship between what representations are maintained in working memory and what perceptual inputs are selected is not so simple. First, it appears that attentional selection is also determined by high-level task goals that mediate the relationship between working memory storage and attentional selection. Second, much of the recent work from our laboratory has focused on the role of long-term memory in controlling attentional selection. We review recent evidence supporting the proposal that working memory representations are critical during the initial configuration of attentional control settings, but that after those settings are established long-term memory representations play an important role in controlling which perceptual inputs are selected by mechanisms of attention. PMID:23444390

  4. The Role of Semantic Representations in Verbal Working Memory

    ERIC Educational Resources Information Center

    Loaiza, Vanessa M.; Camos, Valérie

    2018-01-01

    Two main mechanisms, articulatory rehearsal and attentional refreshing, are argued to be involved in the maintenance of verbal information in working memory (WM). Whereas converging research has suggested that rehearsal promotes the phonological representations of memoranda in working memory, little is known about the representations that…

  5. Interactions between visual working memory representations.

    PubMed

    Bae, Gi-Yeul; Luck, Steven J

    2017-11-01

    We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.

  6. Object representations in visual memory: evidence from visual illusions.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  7. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    PubMed Central

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2014-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants’ event-related potentials (ERPs) to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1–3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants’ goal involved attending to memory-matching items that these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  8. A review of visual memory capacity: Beyond individual items and towards structured representations

    PubMed Central

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2012-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025

  9. The benefit of forgetting.

    PubMed

    Williams, Melonie; Hong, Sang W; Kang, Min-Suk; Carlisle, Nancy B; Woodman, Geoffrey F

    2013-04-01

    Recent research using change-detection tasks has shown that a directed-forgetting cue, indicating that a subset of the information stored in memory can be forgotten, significantly benefits the other information stored in visual working memory. How do these directed-forgetting cues aid the memory representations that are retained? We addressed this question in the present study by using a recall paradigm to measure the nature of the retained memory representations. Our results demonstrated that a directed-forgetting cue leads to higher-fidelity representations of the remaining items and a lower probability of dropping these representations from memory. Next, we showed that this is made possible by the to-be-forgotten item being expelled from visual working memory following the cue, allowing maintenance mechanisms to be focused on only the items that remain in visual working memory. Thus, the present findings show that cues to forget benefit the remaining information in visual working memory by fundamentally improving their quality relative to conditions in which just as many items are encoded but no cue is provided.

  10. Visual long-term memory has the same limit on fidelity as visual working memory.

    PubMed

    Brady, Timothy F; Konkle, Talia; Gill, Jonathan; Oliva, Aude; Alvarez, George A

    2013-06-01

    Visual long-term memory can store thousands of objects with surprising visual detail, but just how detailed are these representations, and how can one quantify this fidelity? Using the property of color as a case study, we estimated the precision of visual information in long-term memory, and compared this with the precision of the same information in working memory. Observers were shown real-world objects in random colors and were asked to recall the colors after a delay. We quantified two parameters of performance: the variability of internal representations of color (fidelity) and the probability of forgetting an object's color altogether. Surprisingly, the fidelity of color information in long-term memory was comparable to the asymptotic precision of working memory. These results suggest that long-term memory and working memory may be constrained by a common limit, such as a bound on the fidelity required to retrieve a memory representation.

  11. The role of memory representation in the vigilance decrement.

    PubMed

    Caggiano, Daniel M; Parasuraman, Raja

    2004-10-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.

  12. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  13. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  14. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    PubMed Central

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  15. The role of memory representation in the vigilance decrement

    PubMed Central

    CAGGIANO, DANIEL M.; PARASURAMAN, RAJA

    2005-01-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706

  16. The Influence of Similarity on Visual Working Memory Representations

    PubMed Central

    Lin, Po-Han; Luck, Steven J.

    2007-01-01

    In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536

  17. On the contribution of motor planning to the retroactive cuing benefit in working memory: Evidence by mu and beta oscillatory activity in the EEG.

    PubMed

    Schneider, Daniel; Barth, Anna; Wascher, Edmund

    2017-11-15

    Attention can be allocated toward mental representations in working memory also after the initial encoding of information has been completed. It was shown that focusing on only one item within working memory transfers this representation into a protected state, reducing its susceptibility to interference by incoming signals. The present study investigated the nature of this retroactive cue (retro-cue) benefit by means of oscillatory activity in the EEG. In a working memory task with a retro-cue indicating one, two or three memory representations as relevant and a block-wise distractor display presented after the retro-cue, participants had to remember the orientation of a colored bar. On behavioral level, we found that the interfering effect of the distractor display on memory performance could be prevented when a retro-cue reduced the number of attended representations in working memory. However, only the one-item retro-cue led to an overall increase in task performance compared to a condition without a retro-cue. The neural basis of this special representational status was investigated by means of oscillatory parameters in the EEG and a clustering approach on level of the independent components (ICs) in the signal. The retroactive reduction of attended working memory representations was reflected in a suppression of alpha power over right parietal and parieto-occipital sites. In addition, we found that an IC cluster representing oscillatory activity in the mu/beta range (10-12 Hz and 20-24 Hz) with a source in sensorimotor cortex revealed a power suppression already prior to the memory probe following the one-item retro-cue. This suggests that the retro-cue benefit results in large parts from the possibility to focus attention on one particular item in working memory and initiate motor planning processes already ahead of the probe stimulus indicating the respective response. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Working memory consolidation: insights from studies on attention and working memory.

    PubMed

    Ricker, Timothy J; Nieuwenstein, Mark R; Bayliss, Donna M; Barrouillet, Pierre

    2018-04-10

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: consolidation, refreshing, and removal. Here, we discuss in detail the theoretical construct of working memory consolidation, a process critical to the creation of a stable working memory representation. We present a brief overview of the research that indicated the need for a construct such as working memory consolidation and the subsequent research that has helped to define the parameters of the construct. We then move on to explicitly state the points of agreement as to what processes are involved in working memory consolidation. © 2018 New York Academy of Sciences.

  19. Modulation of working memory updating: Does long-term memory lexical association matter?

    PubMed

    Artuso, Caterina; Palladino, Paola

    2016-02-01

    The aim of the present study was to investigate how working memory updating for verbal material is modulated by enduring properties of long-term memory. Two coexisting perspectives that account for the relation between long-term representation and short-term performance were addressed. First, evidence suggests that performance is more closely linked to lexical properties, that is, co-occurrences within the language. Conversely, other evidence suggests that performance is linked more to long-term representations which do not entail lexical/linguistic representations. Our aim was to investigate how these two kinds of long-term memory associations (i.e., lexical or nonlexical) modulate ongoing working memory activity. Therefore, we manipulated (between participants) the strength of the association in letters based on either frequency of co-occurrences (lexical) or contiguity along the sequence of the alphabet (nonlexical). Results showed a cost in working memory updating for strongly lexically associated stimuli only. Our findings advance knowledge of how lexical long-term memory associations between consonants affect working memory updating and, in turn, contribute to the study of factors which impact the updating process across memory systems.

  20. Object-based benefits without object-based representations.

    PubMed

    Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A

    2013-08-01

    Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance.

    PubMed

    Starc, Martina; Anticevic, Alan; Repovš, Grega

    2017-05-01

    Pupillometry provides an accessible option to track working memory processes with high temporal resolution. Several studies showed that pupil size increases with the number of items held in working memory; however, no study has explored whether pupil size also reflects the quality of working memory representations. To address this question, we used a spatial working memory task to investigate the relationship of pupil size with spatial precision of responses and indicators of reliance on generalized spatial categories. We asked 30 participants (15 female, aged 19-31) to remember the position of targets presented at various locations along a hidden radial grid. After a delay, participants indicated the remembered location with a high-precision joystick providing a parametric measure of trial-to-trial accuracy. We recorded participants' pupil dilations continuously during task performance. Results showed a significant relation between pupil dilation during preparation/early encoding and the precision of responses, possibly reflecting the attentional resources devoted to memory encoding. In contrast, pupil dilation at late maintenance and response predicted larger shifts of responses toward prototypical locations, possibly reflecting larger reliance on categorical representation. On an intraindividual level, smaller pupil dilations during encoding predicted larger dilations during late maintenance and response. On an interindividual level, participants relying more on categorical representation also produced larger precision errors. The results confirm the link between pupil size and the quality of spatial working memory representation. They suggest compensatory strategies of spatial working memory performance-loss of precise spatial representation likely increases reliance on generalized spatial categories. © 2017 Society for Psychophysiological Research.

  2. Automatic and strategic effects in the guidance of attention by working memory representations

    PubMed Central

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2010-01-01

    Theories of visual attention suggest that working memory representations automatically guide attention toward memory-matching objects. Some empirical tests of this prediction have produced results consistent with working memory automatically guiding attention. However, others have shown that individuals can strategically control whether working memory representations guide visual attention. Previous studies have not independently measured automatic and strategic contributions to the interactions between working memory and attention. In this study, we used a classic manipulation of the probability of valid, neutral, and invalid cues to tease apart the nature of such interactions. This framework utilizes measures of reaction time (RT) to quantify the costs and benefits of attending to memory-matching items and infer the relative magnitudes of automatic and strategic effects. We found both costs and benefits even when the memory-matching item was no more likely to be the target than other items, indicating an automatic component of attentional guidance. However, the costs and benefits essentially doubled as the probability of a trial with a valid cue increased from 20% to 80%, demonstrating a potent strategic effect. We also show that the instructions given to participants led to a significant change in guidance distinct from the actual probability of events during the experiment. Together, these findings demonstrate that the influence of working memory representations on attention is driven by both automatic and strategic interactions. PMID:20643386

  3. Automatic and strategic effects in the guidance of attention by working memory representations.

    PubMed

    Carlisle, Nancy B; Woodman, Geoffrey F

    2011-06-01

    Theories of visual attention suggest that working memory representations automatically guide attention toward memory-matching objects. Some empirical tests of this prediction have produced results consistent with working memory automatically guiding attention. However, others have shown that individuals can strategically control whether working memory representations guide visual attention. Previous studies have not independently measured automatic and strategic contributions to the interactions between working memory and attention. In this study, we used a classic manipulation of the probability of valid, neutral, and invalid cues to tease apart the nature of such interactions. This framework utilizes measures of reaction time (RT) to quantify the costs and benefits of attending to memory-matching items and infer the relative magnitudes of automatic and strategic effects. We found both costs and benefits even when the memory-matching item was no more likely to be the target than other items, indicating an automatic component of attentional guidance. However, the costs and benefits essentially doubled as the probability of a trial with a valid cue increased from 20% to 80%, demonstrating a potent strategic effect. We also show that the instructions given to participants led to a significant change in guidance distinct from the actual probability of events during the experiment. Together, these findings demonstrate that the influence of working memory representations on attention is driven by both automatic and strategic interactions. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. No functional role of attention-based rehearsal in maintenance of spatial working memory representations.

    PubMed

    Belopolsky, Artem V; Theeuwes, Jan

    2009-10-01

    The present study systematically examined the role of attention in maintenance of spatial representations in working memory as proposed by the attention-based rehearsal hypothesis [Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology--Human Perception and Performance, 24(3), 780-790]. Three main issues were examined. First, Experiments 1-3 demonstrated that inhibition and not facilitation of visual processing is often observed at the memorized location during the retention interval. This inhibition was caused by keeping a location in memory and not by the exogenous nature of the memory cue. Second, Experiment 4 showed that inhibition of the memorized location does not lead to any significant impairment in memory accuracy. Finally, Experiment 5 connected current results to the previous findings and demonstrated facilitation of processing at the memorized location. Importantly, facilitation of processing did not lead to more accurate memory performance. The present results challenge the functional role of attention in maintenance of spatial working memory representations.

  5. Searching while loaded: Visual working memory does not interfere with hybrid search efficiency but hybrid search uses working memory capacity.

    PubMed

    Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M

    2016-02-01

    In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.

  6. Shifting Attention within Memory Representations Involves Early Visual Areas

    PubMed Central

    Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan

    2012-01-01

    Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165

  7. Categorical Working Memory Representations are used in Delayed Estimation of Continuous Colors

    PubMed Central

    Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J

    2016-01-01

    In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In two experiments we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. PMID:27797548

  8. Categorical working memory representations are used in delayed estimation of continuous colors.

    PubMed

    Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J

    2017-01-01

    In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember, and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work, we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In 2 experiments, we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    PubMed

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  10. Does learning to read shape verbal working memory?

    PubMed

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.

  11. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆

    PubMed Central

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692

  12. Analogous Mechanisms of Selection and Updating in Declarative and Procedural Working Memory: Experiments and a Computational Model

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam

    2013-01-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…

  13. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working memory, it remains unclear how these representations persist through subsequent input. Here, we used quantitative model-based fMRI analyses to reconstruct the contents of working memory and examine the effects of distracting input. Although representations in the early visual areas were systematically biased by distractors, those in the intraparietal sulcus appeared distractor-resistant. In contrast, early visual representations were most reliable in the absence of distraction. These results demonstrate the dynamic, adaptive nature of visual working memory processes, and provide quantitative insight into the ways in which representations can be affected by interference. Further, they suggest that current models of working memory should be revised to incorporate this flexibility. Copyright © 2018 the authors 0270-6474/18/385267-10$15.00/0.

  14. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    PubMed Central

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  15. When this means that: the role of working memory and inhibitory control in children's understanding of representations.

    PubMed

    Astle, Andrea; Kamawar, Deepthi; Vendetti, Corrie; Podjarny, Gal

    2013-10-01

    We investigated cognitive skills that contribute to 4-year-olds' understanding of representations. In our main task, children used representations on a perspective line drawing to find stickers hidden in a model room. To compare the contributions made by various cognitive skills with children's understanding of different types of representations, we manipulated the resemblance between the representations and their referents. Our results indicate that when representations are iconic (i.e., look like their referents), children have very little difficulty with the task. Controlling for performance on this baseline version of the task, we found that specific cognitive skills are differentially predictive of performance when using arbitrary and conflicting representations (i.e., symbols). When the representation was arbitrarily linked to the sticker, performance was related to phonological and visuospatial working memory. When the representation matched the color of an alternate sticker (thereby conflicting with the desired sticker), performance was related to phonological working memory and inhibitory control. We discuss the role that different cognitive skills play in representational understanding as a function of the nature of the representation-referent relation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Working Memory Compensates for Hearing Related Phonological Processing Deficit

    ERIC Educational Resources Information Center

    Classon, Elisabet; Rudner, Mary; Ronnberg, Jerker

    2013-01-01

    Acquired hearing impairment is associated with gradually declining phonological representations. According to the Ease of Language Understanding (ELU) model, poorly defined representations lead to mismatch in phonologically challenging tasks. To resolve the mismatch, reliance on working memory capacity (WMC) increases. This study investigated…

  17. The Focus of Attention in Visual Working Memory: Protection of Focused Representations and Its Individual Variation.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-01-01

    Visual working memory can be modulated according to changes in the cued task relevance of maintained items. Here, we investigated the mechanisms underlying this modulation. In particular, we studied the consequences of attentional selection for selected and unselected items, and the role of individual differences in the efficiency with which attention is deployed. To this end, performance in a visual working memory task as well as the CDA/SPCN and the N2pc, ERP components associated with visual working memory and attentional processes, were analysed. Selection during the maintenance stage was manipulated by means of two successively presented retrocues providing spatial information as to which items were most likely to be tested. Results show that attentional selection serves to robustly protect relevant representations in the focus of attention while unselected representations which may become relevant again still remain available. Individuals with larger retrocueing benefits showed higher efficiency of attentional selection, as indicated by the N2pc, and showed stronger maintenance-associated activity (CDA/SPCN). The findings add to converging evidence that focused representations are protected, and highlight the flexibility of visual working memory, in which information can be weighted according its relevance.

  18. Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.

    PubMed

    Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence

    2013-01-01

    Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Retrieval from long-term memory reduces working memory representations for visual features and their bindings.

    PubMed

    van Lamsweerde, Amanda E; Beck, Melissa R; Elliott, Emily M

    2015-02-01

    The ability to remember feature bindings is an important measure of the ability to maintain objects in working memory (WM). In this study, we investigated whether both object- and feature-based representations are maintained in WM. Specifically, we tested the hypotheses that retaining a greater number of feature representations (i.e., both as individual features and bound representations) results in a more robust representation of individual features than of feature bindings, and that retrieving information from long-term memory (LTM) into WM would cause a greater disruption to feature bindings. In four experiments, we examined the effects of retrieving a word from LTM on shape and color-shape binding change detection performance. We found that binding changes were more difficult to detect than individual-feature changes overall, but that the cost of retrieving a word from LTM was the same for both individual-feature and binding changes.

  20. Non-Attended Representations are Perceptual Rather than Unconscious in Nature

    PubMed Central

    Fahrenfort, Johannes J.; Ambroziak, Klaudia B.; Lamme, Victor A. F.

    2012-01-01

    Introspectively we experience a phenomenally rich world. In stark contrast, many studies show that we can only report on the few items that we happen to attend to. So what happens to the unattended objects? Are these consciously processed as our first person perspective would have us believe, or are they – in fact – entirely unconscious? Here, we attempt to resolve this question by investigating the perceptual characteristics of visual sensory memory. Sensory memory is a fleeting, high-capacity form of memory that precedes attentional selection and working memory. We found that memory capacity benefits from figural information induced by the Kanizsa illusion. Importantly, this benefit was larger for sensory memory than for working memory and depended critically on the illusion, not on the stimulus configuration. This shows that pre-attentive sensory memory contains representations that have a genuinely perceptual nature, suggesting that non-attended representations are phenomenally experienced rather than unconscious. PMID:23209639

  1. Detailed sensory memory, sloppy working memory.

    PubMed

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.

  2. Enhancing long-term memory with stimulation tunes visual attention in one trial.

    PubMed

    Reinhart, Robert M G; Woodman, Geoffrey F

    2015-01-13

    Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.

  3. The Focus of Spatial Attention Determines the Number and Precision of Face Representations in Working Memory.

    PubMed

    Towler, John; Kelly, Maria; Eimer, Martin

    2016-06-01

    The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Representation in Memory.

    ERIC Educational Resources Information Center

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  5. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  6. Underpinnings of the Costs of Flexibility in Preschool Children: The Roles of Inhibition and Working Memory

    PubMed Central

    Chevalier, Nicolas; Sheffield, Tiffany D.; Nelson, Jennifer Mize; Clark, Caron A. C.; Wiebe, Sandra A.; Espy, Kimberly Andrews

    2012-01-01

    This study addressed the respective contributions of inhibition and working memory to two underlying components of flexibility, goal representation (as assessed by mixing costs) and switch implementation (as assessed by local costs), across the preschool period. By later preschool age (4 years 6 months and 5 years 3 months), both inhibition and working-memory performance were associated with mixing costs, but not with local costs, whereas no relation was observed earlier (3 years, 9 months). The relations of inhibition and working memory to flexibility appear to emerge late in the preschool period and are mainly driven by goal representation. PMID:22339225

  7. Reconciling conflicting electrophysiological findings on the guidance of attention by working memory.

    PubMed

    Carlisle, Nancy B; Woodman, Geoffrey F

    2013-10-01

    Maintaining a representation in working memory has been proposed to be sufficient for the execution of top-down attentional control. Two recent electrophysiological studies that recorded event-related potentials (ERPs) during similar paradigms have tested this proposal, but have reported contradictory findings. The goal of the present study was to reconcile these previous reports. To this end, we used the stimuli from one study (Kumar, Soto, & Humphreys, 2009) combined with the task manipulations from the other (Carlisle & Woodman, 2011b). We found that when an item matching a working memory representation was presented in a visual search array, we could use ERPs to quantify the size of the covert attention effect. When the working memory matches were consistently task-irrelevant, we observed a weak attentional bias to these items. However, when the same item indicated the location of the search target, we found that the covert attention effect was approximately four times larger. This shows that simply maintaining a representation in working memory is not equivalent to having a top-down attentional set for that item. Our findings indicate that high-level goals mediate the relationship between the contents of working memory and perceptual attention.

  8. Taxonomy development and knowledge representation of nurses' personal cognitive artifacts.

    PubMed

    McLane, Sharon; Turley, James P

    2009-11-14

    Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.

  9. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort.

    PubMed

    Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D

    2018-05-15

    Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Words, shape, visual search and visual working memory in 3-year-old children.

    PubMed

    Vales, Catarina; Smith, Linda B

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the target. The targets and distractors were pictures of instances of basic-level known categories and the labels were the common name for the target category. We predicted that the label would enhance the visual working memory representation of the target object, guiding attention to objects that better matched the target representation. Experiments 1 and 2 used conjunctive search tasks, and Experiment 3 varied shape discriminability between targets and distractors. Experiment 4 compared the effects of labels to repeated presentations of the visual target, which should also influence the working memory representation of the target. The overall pattern fits contemporary theories of how the contents of visual working memory interact with visual search and attention, and shows that even in very young children heard words affect the processing of visual information. © 2014 John Wiley & Sons Ltd.

  11. Object selection costs in visual working memory: A diffusion model analysis of the focus of attention.

    PubMed

    Sewell, David K; Lilburn, Simon D; Smith, Philip L

    2016-11-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  13. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials.

    PubMed

    Bae, Gi-Yeul; Luck, Steven J

    2018-01-10

    In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.

  14. Negative affect improves the quality of memories: trading capacity for precision in sensory and working memory.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2014-08-01

    Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Effects of verbal and nonverbal interference on spatial and object visual working memory.

    PubMed

    Postle, Bradley R; Desposito, Mark; Corkin, Suzanne

    2005-03-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.

  16. Effects of verbal and nonverbal interference on spatial and object visual working memory

    PubMed Central

    POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE

    2005-01-01

    We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575

  17. Working memory resources are shared across sensory modalities.

    PubMed

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  18. Dynamic interactions between visual working memory and saccade target selection

    PubMed Central

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  19. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection.

    PubMed

    Hollingworth, Andrew; Hwang, Seongmin

    2013-10-19

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection.

  20. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    PubMed Central

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  1. Item-location binding in working memory: is it hippocampus-dependent?

    PubMed

    Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D

    2014-07-01

    A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  3. Acute effects of alcohol on intrusive memory development and viewpoint dependence in spatial memory support a dual representation model.

    PubMed

    Bisby, James A; King, John A; Brewin, Chris R; Burgess, Neil; Curran, H Valerie

    2010-08-01

    A dual representation model of intrusive memory proposes that personally experienced events give rise to two types of representation: an image-based, egocentric representation based on sensory-perceptual features; and a more abstract, allocentric representation that incorporates spatiotemporal context. The model proposes that intrusions reflect involuntary reactivation of egocentric representations in the absence of a corresponding allocentric representation. We tested the model by investigating the effect of alcohol on intrusive memories and, concurrently, on egocentric and allocentric spatial memory. With a double-blind independent group design participants were administered alcohol (.4 or .8 g/kg) or placebo. A virtual environment was used to present objects and test recognition memory from the same viewpoint as presentation (tapping egocentric memory) or a shifted viewpoint (tapping allocentric memory). Participants were also exposed to a trauma video and required to detail intrusive memories for 7 days, after which explicit memory was assessed. There was a selective impairment of shifted-view recognition after the low dose of alcohol, whereas the high dose induced a global impairment in same-view and shifted-view conditions. Alcohol showed a dose-dependent inverted "U"-shaped effect on intrusions, with only the low dose increasing the number of intrusions, replicating previous work. When same-view recognition was intact, decrements in shifted-view recognition were associated with increases in intrusions. The differential effect of alcohol on intrusive memories and on same/shifted-view recognition support a dual representation model in which intrusions might reflect an imbalance between two types of memory representation. These findings highlight important clinical implications, given alcohol's involvement in real-life trauma. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. "The Memory of Beauty" Survives Alzheimer's Disease (but Cannot Help Memory).

    PubMed

    Silveri, Maria Caterina; Ferrante, Ilaria; Brita, Anna Clelia; Rossi, Paola; Liperoti, Rosa; Mammarella, Federica; Bernabei, Roberto; Marini Chiarelli, Maria Vittoria; De Luca, Martina

    2015-01-01

    The aesthetic experience, in particular the experience of beauty in the visual arts, should have neural correlates in the human brain. Neuroesthetics is principally implemented by functional studies in normal subjects, but the neuropsychology of the aesthetic experience, that is, the impact of brain damage on the appreciation of works of art, is a neglected field. Here, 16 mild to moderate Alzheimer's disease patients and 15 caregivers expressed their preference on 16 works of art (eight representational and eight abstract) during programmed visits to an art gallery. A week later, all subjects expressed a preference rate on reproductions of the same works presented in the gallery. Both patients and caregivers were consistent in assigning preference ratings, and in patients consistency was independent of the ability to recognize the works on which the preference rate had been given in an explicit memory task. Caregivers performed at ceiling in the memory task. Both patients and caregivers assigned higher preference ratings for representational than for abstract works and preference consistency was comparable in representational and abstract works. Furthermore, in the memory task, patients did not recognize better artworks they had assigned higher preference ratings to, suggesting that emotional stimuli (as presumably visual works of art are) cannot enhance declarative memory in this pathology. Our data, which were gathered in an ecological context and with real-world stimuli, confirm previous findings on the stability of aesthetic preference in patients with Alzheimer's disease and on the independence of aesthetic preference from cognitive abilities such as memory.

  5. Reward acts on the pFC to enhance distractor resistance of working memory representations.

    PubMed

    Fallon, Sean James; Cools, Roshan

    2014-12-01

    Working memory and reward processing are often thought to be separate, unrelated processes. However, most daily activities involve integrating these two types of information, and the two processes rarely, if ever, occur in isolation. Here, we show that working memory and reward interact in a task-dependent manner and that this task-dependent interaction involves modulation of the pFC by the ventral striatum. Specifically, BOLD signal during gains relative to losses in the ventral striatum and pFC was associated not only with enhanced distractor resistance but also with impairment in the ability to update working memory representations. Furthermore, the effect of reward on working memory was accompanied by differential coupling between the ventral striatum and ignore-related regions in the pFC. Together, these data demonstrate that reward-related signals modulate the balance between cognitive stability and cognitive flexibility by altering functional coupling between the ventral striatum and the pFC.

  6. Similarity-based interference in a working memory numerical updating task: age-related differences between younger and older adults.

    PubMed

    Pelegrina, Santiago; Borella, Erika; Carretti, Barbara; Lechuga, M Teresa

    2012-01-01

    Similarity among representations held simultaneously in working memory (WM) is a factor which increases interference and hinders performance. The aim of the current study was to investigate age-related differences between younger and older adults in a working memory numerical updating task, in which the similarity between information held in WM was manipulated. Results showed a higher susceptibility of older adults to similarity-based interference when accuracy, and not response times, was considered. It was concluded that older adults' WM difficulties appear to be due to the availability of stored information, which, in turn, might be related to the ability to generate distinctive representations and to the process of binding such representations to their context when similar information has to be processed in WM.

  7. A Probabilistic Model of Visual Working Memory: Incorporating Higher Order Regularities into Working Memory Capacity Estimates

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Tenenbaum, Joshua B.

    2013-01-01

    When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…

  8. Looking sharp: Becoming a search template boosts precision and stability in visual working memory.

    PubMed

    Rajsic, Jason; Ouslis, Natasha E; Wilson, Daryl E; Pratt, Jay

    2017-08-01

    Visual working memory (VWM) plays a central role in visual cognition, and current work suggests that there is a special state in VWM for items that are the goal of visual searches. However, whether the quality of memory for target templates differs from memory for other items in VWM is currently unknown. In this study, we measured the precision and stability of memory for search templates and accessory items to determine whether search templates receive representational priority in VWM. Memory for search templates exhibited increased precision and probability of recall, whereas accessory items were remembered less often. Additionally, while memory for Templates showed benefits when instances of the Template appeared in search, this benefit was not consistently observed for Accessory items when they appeared in search. Our results show that becoming a search template can substantially affect the quality of a representation in VWM.

  9. Attention to memory: orienting attention to sound object representations.

    PubMed

    Backer, Kristina C; Alain, Claude

    2014-01-01

    Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

  10. The nature of short-term consolidation in visual working memory.

    PubMed

    Ricker, Timothy J; Hardman, Kyle O

    2017-11-01

    Short-term consolidation is the process by which stable working memory representations are created. This process is fundamental to cognition yet poorly understood. The present work examines short-term consolidation using a Bayesian hierarchical model of visual working memory recall to determine the underlying processes at work. Our results show that consolidation functions largely through changing the proportion of memory items successfully maintained until test. Although there was some evidence that consolidation affects representational precision, this change was modest and could not account for the bulk of the consolidation effect on memory performance. The time course of the consolidation function and selective influence of consolidation on specific serial positions strongly indicates that short-term consolidation induces an attentional blink. The blink leads to deficits in memory for the immediately following item when time pressure is introduced. Temporal distinctiveness accounts of the consolidation process are tested and ruled out. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Retro-cue benefits in working memory without sustained focal attention.

    PubMed

    Rerko, Laura; Souza, Alessandra S; Oberauer, Klaus

    2014-07-01

    In working memory (WM) tasks, performance can be boosted by directing attention to one memory object: When a retro-cue in the retention interval indicates which object will be tested, responding is faster and more accurate (the retro-cue benefit). We tested whether the retro-cue benefit in WM depends on sustained attention to the cued object by inserting an attention-demanding interruption task between the retro-cue and the memory test. In the first experiment, the interruption task required participants to shift their visual attention away from the cued representation and to a visual classification task on colors. In the second and third experiments, the interruption task required participants to shift their focal attention within WM: Attention was directed away from the cued representation by probing another representation from the memory array prior to probing the cued object. The retro-cue benefit was not attenuated by shifts of perceptual attention or by shifts of attention within WM. We concluded that sustained attention is not needed to maintain the cued representation in a state of heightened accessibility.

  12. The Interaction of Concreteness and Phonological Similarity in Verbal Working Memory

    ERIC Educational Resources Information Center

    Acheson, Daniel J.; Postle, Bradley R.; MacDonald, Maryellen C.

    2010-01-01

    Although phonological representations have been a primary focus of verbal working memory research, lexical-semantic manipulations also influence performance. In the present study, the authors investigated whether a classic phenomenon in verbal working memory, the phonological similarity effect (PSE), is modulated by a lexical-semantic variable,…

  13. Presentation Media, Information Complexity, and Learning Outcomes

    ERIC Educational Resources Information Center

    Andres, Hayward P.; Petersen, Candice

    2002-01-01

    Cognitive processing limitations restrict the number of complex information items held and processed in human working memory. To overcome such limitations, a verbal working memory channel is used to construct an if-then proposition representation of facts and a visual working memory channel is used to construct a visual imagery of geometric…

  14. No Evidence for a Fixed Object Limit in Working Memory: Spatial Ensemble Representations Inflate Estimates of Working Memory Capacity for Complex Objects

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Alvarez, George A.

    2015-01-01

    A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…

  15. Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex

    PubMed Central

    Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.

    2017-01-01

    Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID:28559375

  16. An attention-gating recurrent working memory architecture for emergent speech representation

    NASA Astrophysics Data System (ADS)

    Elshaw, Mark; Moore, Roger K.; Klein, Michael

    2010-06-01

    This paper describes an attention-gating recurrent self-organising map approach for emergent speech representation. Inspired by evidence from human cognitive processing, the architecture combines two main neural components. The first component, the attention-gating mechanism, uses actor-critic learning to perform selective attention towards speech. Through this selective attention approach, the attention-gating mechanism controls access to working memory processing. The second component, the recurrent self-organising map memory, develops a temporal-distributed representation of speech using phone-like structures. Representing speech in terms of phonetic features in an emergent self-organised fashion, according to research on child cognitive development, recreates the approach found in infants. Using this representational approach, in a fashion similar to infants, should improve the performance of automatic recognition systems through aiding speech segmentation and fast word learning.

  17. A Brain System for Auditory Working Memory.

    PubMed

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  18. [Effect of concreteness of target words on verbal working memory: an evaluation using Japanese version of reading span test].

    PubMed

    Kondo, H; Osaka, N

    2000-04-01

    Effects of concreteness and representation mode (kanji/hiragana) of target words on working memory during reading was tested using Japanese version of reading span test (RST), developed by Osaka and Osaka (1994). Concreteness and familiarity of target words and difficulty of sentences were carefully controlled. The words with high concreteness resulted in significantly higher RST scores, which suggests the high efficiency of working memory in processing these words. The results suggest that high concrete noun-words associated with visual clues consume less working memory capacity during reading. The effect of representation mode is different between subjects with high-RST and low-RST scores. Characteristic of the high concrete words that may be responsible for the effectiveness of processing are discussed.

  19. The Contributions of Working Memory and Executive Functioning to Problem Representation and Solution Generation in Algebraic Word Problems

    ERIC Educational Resources Information Center

    Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong

    2009-01-01

    Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…

  20. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection

    PubMed Central

    Hollingworth, Andrew; Hwang, Seongmin

    2013-01-01

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection. PMID:24018723

  1. Feature-based attentional weighting and spreading in visual working memory

    PubMed Central

    Niklaus, Marcel; Nobre, Anna C.; van Ede, Freek

    2017-01-01

    Attention can be directed at features and feature dimensions to facilitate perception. Here, we investigated whether feature-based-attention (FBA) can also dynamically weight feature-specific representations within multi-feature objects held in visual working memory (VWM). Across three experiments, participants retained coloured arrows in working memory and, during the delay, were cued to either the colour or the orientation dimension. We show that directing attention towards a feature dimension (1) improves the performance in the cued feature dimension at the expense of the uncued dimension, (2) is more efficient if directed to the same rather than to different dimensions for different objects, and (3) at least for colour, automatically spreads to the colour representation of non-attended objects in VWM. We conclude that FBA also continues to operate on VWM representations (with similar principles that govern FBA in the perceptual domain) and challenge the classical view that VWM representations are stored solely as integrated objects. PMID:28233830

  2. The Role of Aging in Intra-Item and Item-Context Binding Processes in Visual Working Memory

    ERIC Educational Resources Information Center

    Peterson, Dwight J.; Naveh-Benjamin, Moshe

    2016-01-01

    Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory…

  3. Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm

    ERIC Educational Resources Information Center

    Saiki, Jun; Miyatsuji, Hirofumi

    2007-01-01

    Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…

  4. Feature-based memory-driven attentional capture: visual working memory content affects visual attention.

    PubMed

    Olivers, Christian N L; Meijer, Frank; Theeuwes, Jan

    2006-10-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by an additional memory task. Singleton distractors interfered even more when they were identical or related to the object held in memory, but only when it was difficult to verbalize the memory content. Furthermore, this content-specific interaction occurred for features that were relevant to the memory task but not for irrelevant features of the same object or for once-remembered objects that could be forgotten. Finally, memory-related distractors attracted more eye movements but did not result in longer fixations. The results demonstrate memory-driven attentional capture on the basis of content-specific representations. Copyright 2006 APA.

  5. A Common Neural Substrate for Language Production and Verbal Working Memory

    ERIC Educational Resources Information Center

    Acheson, Daniel J.; Hamidi, Massihullah; Binder, Jeffrey R.; Postle, Bradley R.

    2011-01-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. "Working memory, thought, and action." New York, NY: Oxford University Press,…

  6. Neural mechanisms of interference control in working memory capacity.

    PubMed

    Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N

    2018-02-01

    The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.

  7. Nature and origins of mathematics difficulties in very preterm children: a different etiology than developmental dyscalculia.

    PubMed

    Simms, Victoria; Gilmore, Camilla; Cragg, Lucy; Clayton, Sarah; Marlow, Neil; Johnson, Samantha

    2015-02-01

    Children born very preterm (<32 wk) are at high risk for mathematics learning difficulties that are out of proportion to other academic and cognitive deficits. However, the etiology of mathematics difficulties in very preterm children is unknown. We sought to identify the nature and origins of preterm children's mathematics difficulties. One hundred and fifteen very preterm children aged 8-10 y were assessed in school with a control group of 77 term-born classmates. Achievement in mathematics, working memory, visuospatial processing, inhibition, and processing speed were assessed using standardized tests. Numerical representations and specific mathematics skills were assessed using experimental tests. Very preterm children had significantly poorer mathematics achievement, working memory, and visuospatial skills than term-born controls. Although preterm children had poorer performance in specific mathematics skills, there was no evidence of imprecise numerical representations. Difficulties in mathematics were associated with deficits in visuospatial processing and working memory. Mathematics difficulties in very preterm children are associated with deficits in working memory and visuospatial processing not numerical representations. Thus, very preterm children's mathematics difficulties are different in nature from those of children with developmental dyscalculia. Interventions targeting general cognitive problems, rather than numerical representations, may improve very preterm children's mathematics achievement.

  8. Working memory constraints on the processing of syntactic ambiguity.

    PubMed

    MacDonald, M C; Just, M A; Carpenter, P A

    1992-01-01

    We propose a model that explains how the working-memory capacity of a comprehender can constrain syntactic parsing and thereby affect the processing of syntactic ambiguities. The model's predictions are examined in four experiments that measure the reading times for two constructions that contain a temporary syntactic ambiguity. An example of the syntactic ambiguity is The soldiers warned about the dangers . . . ; the verb warned may either be the main verb, in which case soldiers is the agent; or the verb warned may introduce a relative clause, in which case soldiers is the patient of warned rather than the agent, as in The soldiers warned about the dangers conducted the midnight raid. The model proposes that both alternative interpretations of warned are initially activated. However, the duration for which both interpretations are maintained depends, in part, on the reader's working-memory capacity, which can be assessed by the Reading Span task (Daneman & Carpenter, 1980). The word-by-word reading times indicate that all subjects do additional processing after encountering an ambiguity, suggesting that they generate both representations. Furthermore, readers with larger working-memory capacities maintain both representations for some period of time (several words), whereas readers with smaller working-memory capacities revert to maintaining only the more likely representation.

  9. Changing concepts of working memory

    PubMed Central

    Ma, Wei Ji; Husain, Masud; Bays, Paul M

    2014-01-01

    Working memory is widely considered to be limited in capacity, holding a fixed, small number of items, such as Miller's ‘magical number’ seven or Cowan's four. It has recently been proposed that working memory might better be conceptualized as a limited resource that is distributed flexibly among all items to be maintained in memory. According to this view, the quality rather than the quantity of working memory representations determines performance. Here we consider behavioral and emerging neural evidence for this proposal. PMID:24569831

  10. Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles

    NASA Astrophysics Data System (ADS)

    Cook, Michelle Patrick

    2006-11-01

    Visual representations are essential for communicating ideas in the science classroom; however, the design of such representations is not always beneficial for learners. This paper presents instructional design considerations providing empirical evidence and integrating theoretical concepts related to cognitive load. Learners have a limited working memory, and instructional representations should be designed with the goal of reducing unnecessary cognitive load. However, cognitive architecture alone is not the only factor to be considered; individual differences, especially prior knowledge, are critical in determining what impact a visual representation will have on learners' cognitive structures and processes. Prior knowledge can determine the ease with which learners can perceive and interpret visual representations in working memory. Although a long tradition of research has compared experts and novices, more research is necessary to fully explore the expert-novice continuum and maximize the potential of visual representations.

  11. Neurocognitive architecture of working memory

    PubMed Central

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  12. False Belief vs. False Photographs: A Test of Theory of Mind or Working Memory?

    PubMed

    Callejas, Alicia; Shulman, Gordon L; Corbetta, Maurizio

    2011-01-01

    Theory of mind (ToM), the ability to reason about other people's thoughts and beliefs, has been traditionally studied in behavioral and neuroimaging experiments by comparing performance in "false belief" and "false photograph" (control) stories. However, some evidence suggests that these stories are not matched in difficulty, complicating the interpretation of results. Here, we more fully evaluated the relative difficulty of comprehending these stories and drawing inferences from them. Subjects read false belief and false photograph stories followed by comprehension questions that probed true ("reality" questions) or false beliefs ("representation" questions) appropriate to the stories. Stories and comprehension questions were read and answered, respectively, more slowly in the false photograph than false belief conditions, indicating their greater difficulty. Interestingly, accuracy on representation questions for false photograph stories was significantly lower than for all other conditions and correlated positively with participants' working memory span scores. These results suggest that drawing representational inferences from false photo stories is particularly difficult and places heavy demands on working memory. Extensive naturalistic practice with ToM reasoning may enable a more flexible and efficient mental representation of false belief stories, resulting in lower memory load requirements. An important implication of these results is that the differential modulation of right temporal-parietal junction (RTPJ) during ToM and "false photo" control conditions may reflect the documented negative correlation of RTPJ activity with working memory load rather than a specialized involvement in ToM processes.

  13. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    ERIC Educational Resources Information Center

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  14. Remembered but Unused: The Accessory Items in Working Memory that Do Not Guide Attention

    ERIC Educational Resources Information Center

    Peters, Judith C.; Goebel, Rainer; Roelfsema, Pieter R.

    2009-01-01

    If we search for an item, a representation of this item in our working memory guides attention to matching items in the visual scene. We can hold multiple items in working memory. Do all these items guide attention in parallel? We asked participants to detect a target object in a stream of objects while they maintained a second item in memory for…

  15. Rapid Forgetting Results From Competition Over Time Between Items in Visual Working Memory

    PubMed Central

    2016-01-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other’s representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. PMID:27668485

  16. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  17. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    PubMed

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural architecture in sensory cortex that encodes stimuli. We investigated this claim by manipulating the spacing in visual cortex between sequentially presented memoranda such that some items shared cortical representations more than others while preventing perceptual interference between stimuli. We found clear evidence that short-term memory is independent of the intracortical spacing of memoranda, revealing a dissociation between perceptual and memory representations. Our data indicate that working memory relies on different neural mechanisms from sensory perception. Copyright © 2018 Harrison and Bays.

  18. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children With SLI

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2016-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that verbal memory capacity and long-term linguistic knowledge may not be distinct constructs. It has been suggested that linguistic representations in SLI are weak in ways that result in a breakdown in language processing on tasks that require manipulation of unfamiliar material. In this study, the effects of word frequency, long-term linguistic knowledge, and serial order position on recall performance in the competing language processing task (CLPT) were investigated in 10 children with SLI and 10 age-matched peers (age 8 years 6 months to 12 years 4 months). The children with SLI recalled significantly fewer target words on the CLPT as compared with their age-matched controls. The SLI group did not differ, however, in their ability to recall target words having high word frequency but were significantly poorer in their ability to recall words on the CLPT having low word frequency. Differences in receptive and expressive language abilities also appeared closely related to performance on the CLPT, suggesting that working memory capacity is not distinct from language knowledge and that degraded linguistic representations may have an effect on performance on verbal working memory span tasks in children with SLI. PMID:16378481

  19. Object Selection Costs in Visual Working Memory: A Diffusion Model Analysis of the Focus of Attention

    ERIC Educational Resources Information Center

    Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.

    2016-01-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…

  20. Rehearsal of To-Be-Remembered Items Is Unnecessary to Perform Directed Forgetting within Working Memory: Support for an Active Control Mechanism

    ERIC Educational Resources Information Center

    Festini, Sara B.; Reuter-Lorenz, Patricia A.

    2017-01-01

    Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and…

  1. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children with SLI

    ERIC Educational Resources Information Center

    Mainela-Arnold, Elina; Evans, Julia L.

    2005-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…

  2. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  3. Method Matters: Systematic Effects of Testing Procedure on Visual Working Memory Sensitivity

    ERIC Educational Resources Information Center

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This article presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the…

  4. The Dynamics of Access to Groups in Working Memory

    ERIC Educational Resources Information Center

    Farrell, Simon; Lelievre, Anna

    2012-01-01

    The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…

  5. Hyperfocusing in Schizophrenia: Evidence from Interactions Between Working Memory and Eye Movements

    PubMed Central

    Luck, Steven J.; McClenon, Clara; Beck, Valerie M.; Hollingworth, Andrew; Leonard, Carly J.; Hahn, Britta; Robinson, Benjamin M.; Gold, James M.

    2014-01-01

    Recent research suggests that processing resources are focused more narrowly but more intensely in people with schizophrenia (PSZ) than in healthy control subjects (HCS), possibly reflecting local cortical circuit abnormalities. This hyperfocusing hypothesis leads to the counterintuitive prediction that, although PSZ cannot store as much information in working memory as HCS, the working memory representations that are present in PSZ may be more intense than those in HCS. To test this hypothesis, we used a task in which participants make a saccadic eye movement to a peripheral target and avoid a parafoveal nontarget while they are holding a color in working memory. Previous research with this task has shown that the parafoveal nontarget is more distracting when it matches the color being held in working memory. This effect should be enhanced in PSZ if their working memory representations are more intense. Consistent with this prediction, we found that the effect of a match between the distractor color and the memory color was larger in PSZ than in HCS. We also observed evidence that PSZ hyperfocused spatially on the region surrounding the fixation point. These results provide further evidence that some aspects of cognitive dysfunction in schizophrenia may be a result of a narrower and more intense focusing of processing resources. PMID:25089655

  6. Hyperfocusing in schizophrenia: Evidence from interactions between working memory and eye movements.

    PubMed

    Luck, Steven J; McClenon, Clara; Beck, Valerie M; Hollingworth, Andrew; Leonard, Carly J; Hahn, Britta; Robinson, Benjamin M; Gold, James M

    2014-11-01

    Recent research suggests that processing resources are focused more narrowly but more intensely in people with schizophrenia (PSZ) than in healthy control subjects (HCS), possibly reflecting local cortical circuit abnormalities. This hyperfocusing hypothesis leads to the counterintuitive prediction that, although PSZ cannot store as much information in working memory as HCS, the working memory representations that are present in PSZ may be more intense than those in HCS. To test this hypothesis, we used a task in which participants make a saccadic eye movement to a peripheral target and avoid a parafoveal nontarget while they are holding a color in working memory. Previous research with this task has shown that the parafoveal nontarget is more distracting when it matches the color being held in working memory. This effect should be enhanced in PSZ if their working memory representations are more intense. Consistent with this prediction, we found that the effect of a match between the distractor color and the memory color was larger in PSZ than in HCS. We also observed evidence that PSZ hyperfocused spatially on the region surrounding the fixation point. These results provide further evidence that some aspects of cognitive dysfunction in schizophrenia may be a result of a narrower and more intense focusing of processing resources.

  7. Role of prefrontal cortex and the midbrain dopamine system in working memory updating

    PubMed Central

    D’Ardenne, Kimberlee; Eshel, Neir; Luka, Joseph; Lenartowicz, Agatha; Nystrom, Leigh E.; Cohen, Jonathan D.

    2012-01-01

    Humans are adept at switching between goal-directed behaviors quickly and effectively. The prefrontal cortex (PFC) is thought to play a critical role by encoding, updating, and maintaining internal representations of task context in working memory. It has also been hypothesized that the encoding of context representations in PFC is regulated by phasic dopamine gating signals. Here we use multimodal methods to test these hypotheses. First we used functional MRI (fMRI) to identify regions of PFC associated with the representation of context in a working memory task. Next we used single-pulse transcranial magnetic stimulation (TMS), guided spatially by our fMRI findings and temporally by previous event-related EEG recordings, to disrupt context encoding while participants performed the same working memory task. We found that TMS pulses to the right dorsolateral PFC (DLPFC) immediately after context presentation, and well in advance of the response, adversely impacted context-dependent relative to context-independent responses. This finding causally implicates right DLPFC function in context encoding. Finally, using the same paradigm, we conducted high-resolution fMRI measurements in brainstem dopaminergic nuclei (ventral tegmental area and substantia nigra) and found phasic responses after presentation of context stimuli relative to other stimuli, consistent with the timing of a gating signal that regulates the encoding of representations in PFC. Furthermore, these responses were positively correlated with behavior, as well as with responses in the same region of right DLPFC targeted in the TMS experiment, lending support to the hypothesis that dopamine phasic signals regulate encoding, and thereby the updating, of context representations in PFC. PMID:23086162

  8. The lasting memory enhancements of retrospective attention

    PubMed Central

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-01-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756

  9. Negative emotion boosts quality of visual working memory representation.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2016-08-01

    Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Time limits during visual foraging reveal flexible working memory templates.

    PubMed

    Kristjánsson, Tómas; Thornton, Ian M; Kristjánsson, Árni

    2018-06-01

    During difficult foraging tasks, humans rarely switch between target categories, but switch frequently during easier foraging. Does this reflect fundamental limits on visual working memory (VWM) capacity or simply strategic choice due to effort? Our participants performed time-limited or unlimited foraging tasks where they tapped stimuli from 2 target categories while avoiding items from 2 distractor categories. These time limits should have no effect if capacity imposes limits on VWM representations but more flexible VWM could allow observers to use VWM according to task demands in each case. We found that with time limits, participants switched more frequently and switch-costs became much smaller than during unlimited foraging. Observers can therefore switch between complex (conjunction) target categories when needed. We propose that while maintaining many complex templates in working memory is effortful and observers avoid this, they can do so if this fits task demands, showing the flexibility of working memory representations used for visual exploration. This is in contrast with recent proposals, and we discuss the implications of these findings for theoretical accounts of working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Prioritizing Information during Working Memory: Beyond Sustained Internal Attention.

    PubMed

    Myers, Nicholas E; Stokes, Mark G; Nobre, Anna C

    2017-06-01

    Working memory (WM) has limited capacity. This leaves attention with the important role of allowing into storage only the most relevant information. It is increasingly evident that attention is equally crucial for prioritizing representations within WM as the importance of individual items changes. Retrospective prioritization has been proposed to result from a focus of internal attention highlighting one of several representations. Here, we suggest an updated model, in which prioritization acts in multiple steps: first orienting towards and selecting a memory, and then reconfiguring its representational state in the service of upcoming task demands. Reconfiguration sets up an optimized perception-action mapping, obviating the need for sustained attention. This view is consistent with recent literature, makes testable predictions, and links WM with task switching and action preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Attention, working memory, and phenomenal experience of WM content: memory levels determined by different types of top-down modulation.

    PubMed

    Jacob, Jane; Jacobs, Christianne; Silvanto, Juha

    2015-01-01

    What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.

  13. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    PubMed

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  14. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.

  15. Fine-Grained, Local Maps and Coarse, Global Representations Support Human Spatial Working Memory

    PubMed Central

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  16. Compression in Visual Working Memory: Using Statistical Regularities to Form More Efficient Memory Representations

    ERIC Educational Resources Information Center

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2009-01-01

    The information that individuals can hold in working memory is quite limited, but researchers have typically studied this capacity using simple objects or letter strings with no associations between them. However, in the real world there are strong associations and regularities in the input. In an information theoretic sense, regularities…

  17. Automatic Guidance of Visual Attention from Verbal Working Memory

    ERIC Educational Resources Information Center

    Soto, David; Humphreys, Glyn W.

    2007-01-01

    Previous studies have shown that visual attention can be captured by stimuli matching the contents of working memory (WM). Here, the authors assessed the nature of the representation that mediates the guidance of visual attention from WM. Observers were presented with either verbal or visual primes (to hold in memory, Experiment 1; to verbalize,…

  18. Tone series and the nature of working memory capacity development.

    PubMed

    Clark, Katherine M; Hardman, Kyle O; Schachtman, Todd R; Saults, J Scott; Glass, Bret A; Cowan, Nelson

    2018-04-01

    Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the number of objects retained, from the precision of the object representations. We adapt the technique to sequences of nonmusical tones, in an investigation including children (6-13 years, N = 84) and adults (26-50 years, N = 31). For each series of 1 to 4 tones, the participant responded by using an 80-choice scale to try to reproduce the tone at a queried serial position. Despite the much longer-lasting usefulness of sensory memory for tones compared with visual objects, the observed tone capacity was similar to previous findings for visual capacity. The results also constrain theories of childhood working memory development, indicating increases with age in both the capacity and the precision of the tone representations, similar to the visual studies, rather than age differences in time-based memory decay. The findings, including patterns of correlations between capacity, precision, and some auxiliary tasks and questionnaires, establish capacity and precision as dissociable processes and place important constraints on various hypotheses of working memory development. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Compression in visual working memory: using statistical regularities to form more efficient memory representations.

    PubMed

    Brady, Timothy F; Konkle, Talia; Alvarez, George A

    2009-11-01

    The information that individuals can hold in working memory is quite limited, but researchers have typically studied this capacity using simple objects or letter strings with no associations between them. However, in the real world there are strong associations and regularities in the input. In an information theoretic sense, regularities introduce redundancies that make the input more compressible. The current study shows that observers can take advantage of these redundancies, enabling them to remember more items in working memory. In 2 experiments, covariance was introduced between colors in a display so that over trials some color pairs were more likely to appear than other color pairs. Observers remembered more items from these displays than from displays where the colors were paired randomly. The improved memory performance cannot be explained by simply guessing the high-probability color pair, suggesting that observers formed more efficient representations to remember more items. Further, as observers learned the regularities, their working memory performance improved in a way that is quantitatively predicted by a Bayesian learning model and optimal encoding scheme. These results suggest that the underlying capacity of the individuals' working memory is unchanged, but the information they have to remember can be encoded in a more compressed fashion. Copyright 2009 APA

  20. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    PubMed

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Rapid forgetting results from competition over time between items in visual working memory.

    PubMed

    Pertzov, Yoni; Manohar, Sanjay; Husain, Masud

    2017-04-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other's representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Why some colors appear more memorable than others: A model combining categories and particulars in color working memory.

    PubMed

    Bae, Gi-Yeul; Olkkonen, Maria; Allred, Sarah R; Flombaum, Jonathan I

    2015-08-01

    Categorization with basic color terms is an intuitive and universal aspect of color perception. Yet research on visual working memory capacity has largely assumed that only continuous estimates within color space are relevant to memory. As a result, the influence of color categories on working memory remains unknown. We propose a dual content model of color representation in which color matches to objects that are either present (perception) or absent (memory) integrate category representations along with estimates of specific values on a continuous scale ("particulars"). We develop and test the model through 4 experiments. In a first experiment pair, participants reproduce a color target, both with and without a delay, using a recently influential estimation paradigm. In a second experiment pair, we use standard methods in color perception to identify boundary and focal colors in the stimulus set. The main results are that responses drawn from working memory are significantly biased away from category boundaries and toward category centers. Importantly, the same pattern of results is present without a memory delay. The proposed dual content model parsimoniously explains these results, and it should replace prevailing single content models in studies of visual working memory. More broadly, the model and the results demonstrate how the main consequence of visual working memory maintenance is the amplification of category related biases and stimulus-specific variability that originate in perception. (c) 2015 APA, all rights reserved).

  3. Ageing and feature binding in visual working memory: The role of presentation time.

    PubMed

    Rhodes, Stephen; Parra, Mario A; Logie, Robert H

    2016-01-01

    A large body of research has clearly demonstrated that healthy ageing is accompanied by an associative memory deficit. Older adults exhibit disproportionately poor performance on memory tasks requiring the retention of associations between items (e.g., pairs of unrelated words). In contrast to this robust deficit, older adults' ability to form and temporarily hold bound representations of an object's surface features, such as colour and shape, appears to be relatively well preserved. However, the findings of one set of experiments suggest that older adults may struggle to form temporary bound representations in visual working memory when given more time to study objects. However, these findings were based on between-participant comparisons across experimental paradigms. The present study directly assesses the role of presentation time in the ability of younger and older adults to bind shape and colour in visual working memory using a within-participant design. We report new evidence that giving older adults longer to study memory objects does not differentially affect their immediate memory for feature combinations relative to individual features. This is in line with a growing body of research suggesting that there is no age-related impairment in immediate memory for colour-shape binding.

  4. Iconic Decay in Schizophrenia

    PubMed Central

    Hahn, Britta; Kappenman, Emily S.; Robinson, Benjamin M.; Fuller, Rebecca L.; Luck, Steven J.; Gold, James M.

    2011-01-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0–1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia. PMID:20053864

  5. Iconic decay in schizophrenia.

    PubMed

    Hahn, Britta; Kappenman, Emily S; Robinson, Benjamin M; Fuller, Rebecca L; Luck, Steven J; Gold, James M

    2011-09-01

    Working memory impairment is considered a core deficit in schizophrenia, but the precise nature of this deficit has not been determined. Multiple lines of evidence implicate deficits at the encoding stage. During encoding, information is held in a precategorical sensory store termed iconic memory, a literal image of the stimulus with high capacity but rapid decay. Pathologically increased iconic decay could reduce the number of items that can be transferred into working memory before the information is lost and could thus contribute to the working memory deficit seen in the illness. The current study used a partial report procedure to test the hypothesis that patients with schizophrenia (n = 37) display faster iconic memory decay than matched healthy control participants (n = 28). Six letters, arranged in a circle, were presented for 50 ms. Following a variable delay of 0-1000 ms, a central arrow cue indicated the item to be reported. In both patients and control subjects, recall accuracy decreased with increasing cue delay, reflecting decay of the iconic representation of the stimulus array. Patients displayed impaired memory performance across all cue delays, consistent with an impairment in working memory, but the rate of iconic memory decay did not differ between patients and controls. This provides clear evidence against faster loss of iconic memory representations in schizophrenia, ruling out iconic decay as an underlying source of the working memory impairment in this population. Thus, iconic decay rate can be added to a growing list of unimpaired cognitive building blocks in schizophrenia.

  6. Refreshing memory traces: thinking of an item improves retrieval from visual working memory.

    PubMed

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2015-03-01

    This article provides evidence that refreshing, a hypothetical attention-based process operating in working memory (WM), improves the accessibility of visual representations for recall. "Thinking of", one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition. © 2014 New York Academy of Sciences.

  7. A Core Knowledge Architecture of Visual Working Memory

    ERIC Educational Resources Information Center

    Wood, Justin N.

    2011-01-01

    Visual working memory (VWM) is widely thought to contain specialized buffers for retaining spatial and object information: a "spatial-object architecture." However, studies of adults, infants, and nonhuman animals show that visual cognition builds on core knowledge systems that retain more specialized representations: (1) spatiotemporal…

  8. Working memory predicts children's analogical reasoning.

    PubMed

    Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E

    2018-02-01

    Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  10. The lasting memory enhancements of retrospective attention.

    PubMed

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-07-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A multisensory perspective of working memory

    PubMed Central

    Quak, Michel; London, Raquel Elea; Talsma, Durk

    2015-01-01

    Although our sensory experience is mostly multisensory in nature, research on working memory representations has focused mainly on examining the senses in isolation. Results from the multisensory processing literature make it clear that the senses interact on a more intimate manner than previously assumed. These interactions raise questions regarding the manner in which multisensory information is maintained in working memory. We discuss the current status of research on multisensory processing and the implications of these findings on our theoretical understanding of working memory. To do so, we focus on reviewing working memory research conducted from a multisensory perspective, and discuss the relation between working memory, attention, and multisensory processing in the context of the predictive coding framework. We argue that a multisensory approach to the study of working memory is indispensable to achieve a realistic understanding of how working memory processes maintain and manipulate information. PMID:25954176

  12. The contents of visual working memory reduce uncertainty during visual search.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2011-05-01

    Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.

  13. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades.

    PubMed

    Boon, Paul J; Belopolsky, Artem V; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location.

  14. Domain-Specific Control of Selective Attention

    PubMed Central

    Lin, Szu-Hung; Yeh, Yei-Yu

    2014-01-01

    Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977

  15. Do the Contents of Visual Working Memory Automatically Influence Attentional Selection During Visual Search?

    PubMed Central

    Woodman, Geoffrey F.; Luck, Steven J.

    2007-01-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing. PMID:17469973

  16. Do the contents of visual working memory automatically influence attentional selection during visual search?

    PubMed

    Woodman, Geoffrey F; Luck, Steven J

    2007-04-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing.

  17. BMS symmetry, soft particles and memory

    NASA Astrophysics Data System (ADS)

    Chatterjee, Atreya; Lowe, David A.

    2018-05-01

    In this work, we revisit unitary irreducible representations of the Bondi–Metzner–Sachs (BMS) group discovered by McCarthy. Representations are labelled by an infinite number of supermomenta in addition to 4-momentum. Tensor products of these irreducible representations lead to particle-like states dressed by soft gravitational modes. Conservation of 4-momentum and supermomentum in the scattering of such states leads to a memory effect encoded in the outgoing soft modes. We note there exist irreducible representations corresponding to soft states with strictly vanishing 4-momentum, which may nevertheless be produced by scattering of particle-like states. This fact has interesting implications for the S-matrix in gravitational theories.

  18. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    PubMed

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  19. Neural basis for dynamic updating of object representation in visual working memory.

    PubMed

    Takahama, Sachiko; Miyauchi, Satoru; Saiki, Jun

    2010-02-15

    In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called "frontoparietal network", and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested. Copyright 2009 Elsevier Inc. All rights reserved.

  20. The short- and long-term fates of memory items retained outside the focus of attention

    PubMed Central

    Eichenbaum, Adam S.; Starrett, Michael J.; Rose, Nathan S.; Emrich, Stephen M.; Postle, Bradley R.

    2015-01-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items. PMID:25472902

  1. The short- and long-term fates of memory items retained outside the focus of attention.

    PubMed

    LaRocque, Joshua J; Eichenbaum, Adam S; Starrett, Michael J; Rose, Nathan S; Emrich, Stephen M; Postle, Bradley R

    2015-04-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items.

  2. Selection within working memory based on a color retro-cue modulates alpha oscillations.

    PubMed

    Poch, Claudia; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo

    2017-11-01

    Working Memory (WM) maintains flexible representations. Retrospective cueing studies indicate that selective attention can be directed to memory representations in WM improving performance. While most of the work has explored the neural substrates of orienting attention based on a spatial retro-cue, behavioral studies show that a feature other than location can also improve WM performance. In the present work we explored the oscillatory underpinnings of orienting attention to a relevant representation held in WM guided by a feature value. We recorded EEG data in a group of 36 healthy human subjects (20 females) performing a WM task in which they had to memorize the orientation of four rectangles of different colors. After a maintenance period, a cue was presented indicating the color of the relevant item. We showed that directing attention to a memory item based on its color resulted in a modulation of posterior alpha activity, which appears as more desynchronization in the contralateral than in the ipsilateral hemisphere. Alpha lateralization is considered a neurophysiological marker of external and internal spatial attention. We propose that current findings support the idea that selection of a memory item based on a non-location feature could be accomplished by a spatial attentional mechanism. Moreover, using a centrally presented color retro-cue allowed us to surpass the confounds inherent to the use of spatial retro-cues, supporting that the observed lateralized alpha results from an endogenous attentional mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spatial Working Memory Is Necessary for Actions to Guide Thought

    ERIC Educational Resources Information Center

    Thomas, Laura E.

    2013-01-01

    Directed actions can play a causal role in cognition, shaping thought processes. What drives this cross-talk between action and thought? I investigated the hypothesis that representations in spatial working memory mediate interactions between directed actions and problem solving. Participants attempted to solve an insight problem while…

  4. Development of Working Memory for Verbal-Spatial Associations

    ERIC Educational Resources Information Center

    Cowan, Nelson; Saults, J. Scott; Morey, Candice C.

    2006-01-01

    Verbal-to-spatial associations in working memory may index a core capacity for abstract information limited in the amount concurrently retained. However, what look like associative, abstract representations could instead reflect verbal and spatial codes held separately and then used in parallel. We investigated this issue in two experiments on…

  5. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  6. Infants Hierarchically Organize Memory Representations

    ERIC Educational Resources Information Center

    Rosenberg, Rebecca D.; Feigenson, Lisa

    2013-01-01

    Throughout development, working memory is subject to capacity limits that severely constrain short-term storage. However, adults can massively expand the total amount of remembered information by grouping items into "chunks". Although infants also have been shown to chunk objects in memory, little is known regarding the limits of this…

  7. The role of the episodic buffer in working memory for language processing.

    PubMed

    Rudner, Mary; Rönnberg, Jerker

    2008-03-01

    A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.

  8. Working memory operates over the same representations as attention

    PubMed Central

    Xie, Jiushu; Xia, Tiansheng; Mo, Lei

    2017-01-01

    A recent study observed a working memory (WM) Stroop effect with a magnitude equivalent to that of the classic Stroop effect, indicating that WM operates over the same representations as attention. However, more research is needed to examine this proposal. One unanswered question is whether the WM Stroop effect occurs when the WM item and the perceptual task do not have an overlapping response set. We addressed this question in Experiment 1 by conducting an attentional word-color task and a WM word-color task. The results showed that a WM Stroop effect also occurred in that condition, as a word that only indirectly evoked a color representation could interfere with the color judgement in both the attentional task and WM task. In Experiment 2, we used a classic Simon task and a WM Simon task to examine whether holding visuo-spatial information rather than verbal information in WM could interfere with perceptual judgment as well. We observed a WM Simon effect of equivalent magnitude to that of the classic Simon effect. The well-known stimulus-response compatibility effect also existed in the WM domain. The two experiments together demonstrated that WM operates over the same representations as attention, which sheds new light on the hypothesis that working memory is internally directed attention. PMID:28604840

  9. Working memory operates over the same representations as attention.

    PubMed

    Chen, Ke; Ye, Yanyan; Xie, Jiushu; Xia, Tiansheng; Mo, Lei

    2017-01-01

    A recent study observed a working memory (WM) Stroop effect with a magnitude equivalent to that of the classic Stroop effect, indicating that WM operates over the same representations as attention. However, more research is needed to examine this proposal. One unanswered question is whether the WM Stroop effect occurs when the WM item and the perceptual task do not have an overlapping response set. We addressed this question in Experiment 1 by conducting an attentional word-color task and a WM word-color task. The results showed that a WM Stroop effect also occurred in that condition, as a word that only indirectly evoked a color representation could interfere with the color judgement in both the attentional task and WM task. In Experiment 2, we used a classic Simon task and a WM Simon task to examine whether holding visuo-spatial information rather than verbal information in WM could interfere with perceptual judgment as well. We observed a WM Simon effect of equivalent magnitude to that of the classic Simon effect. The well-known stimulus-response compatibility effect also existed in the WM domain. The two experiments together demonstrated that WM operates over the same representations as attention, which sheds new light on the hypothesis that working memory is internally directed attention.

  10. Visual working memory capacity for color is independent of representation resolution.

    PubMed

    Ye, Chaoxiong; Zhang, Lingcong; Liu, Taosheng; Li, Hong; Liu, Qiang

    2014-01-01

    The relationship between visual working memory (VWM) capacity and resolution of representation have been extensively investigated. Several recent ERP studies using orientation (or arrow) stimuli suggest that there is an inverse relationship between VWM capacity and representation resolution. However, different results have been obtained in studies using color stimuli. This could be due to important differences in the experimental paradigms used in previous studies. We examined whether the same relationship between capacity and resolution holds for color information. Participants performed a color change detection task while their electroencephalography was recorded. We manipulated representation resolution by asking participants to detect either a salient change (low-resolution) or a subtle change (high-resolution) in color. We used an ERP component known as contralateral delay activity (CDA) to index the amount of information maintained in VWM. The result demonstrated the same pattern for both low- and high-resolution conditions, with no difference between conditions. This result suggests that VWM always represents a fixed number of approximately 3-4 colors regardless of the resolution of representation.

  11. Role of working memory in transformation of visual and motor representations for use in mental simulation.

    PubMed

    Gabbard, Carl; Lee, Jihye; Caçola, Priscila

    2013-01-01

    This study examined the role of visual working memory when transforming visual representations to motor representations in the context of motor imagery. Participants viewed randomized number sequences of three, four, and five digits, and then reproduced the sequence by finger tapping using motor imagery or actually executing the movements; movement duration was recorded. One group viewed the stimulus for three seconds and responded immediately, while the second group had a three-second view followed by a three-second blank screen delay before responding. As expected, delay group times were longer with each condition and digit load. Whereas correlations between imagined and executed actions (temporal congruency) were significant in a positive direction for both groups, interestingly, the delay group's values were significantly stronger. That outcome prompts speculation that delay influenced the congruency between motor representation and actual execution.

  12. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  13. Working memory load and the retro-cue effect: A diffusion model account.

    PubMed

    Shepherdson, Peter; Oberauer, Klaus; Souza, Alessandra S

    2018-02-01

    Retro-cues (i.e., cues presented between the offset of a memory array and the onset of a probe) have consistently been found to enhance performance in working memory tasks, sometimes ameliorating the deleterious effects of increased memory load. However, the mechanism by which retro-cues exert their influence remains a matter of debate. To inform this debate, we applied a hierarchical diffusion model to data from 4 change detection experiments using single item, location-specific probes (i.e., a local recognition task) with either visual or verbal memory stimuli. Results showed that retro-cues enhanced the quality of information entering the decision process-especially for visual stimuli-and decreased the time spent on nondecisional processes. Further, cues interacted with memory load primarily on nondecision time, decreasing or abolishing load effects. To explain these findings, we propose an account whereby retro-cues act primarily to reduce the time taken to access the relevant representation in memory upon probe presentation, and in addition protect cued representations from visual interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Decision theory, motor planning, and visual memory: deciding where to reach when memory errors are costly.

    PubMed

    Lerch, Rachel A; Sims, Chris R

    2016-06-01

    Limitations in visual working memory (VWM) have been extensively studied in psychophysical tasks, but not well understood in terms of how these memory limits translate to performance in more natural domains. For example, in reaching to grasp an object based on a spatial memory representation, overshooting the intended target may be more costly than undershooting, such as when reaching for a cup of hot coffee. The current body of literature lacks a detailed account of how the costs or consequences of memory error influence what we encode in visual memory and how we act on the basis of remembered information. Here, we study how externally imposed monetary costs influence behavior in a motor decision task that involves reach planning based on recalled information from VWM. We approach this from a decision theoretic perspective, viewing decisions of where to aim in relation to the utility of their outcomes given the uncertainty of memory representations. Our results indicate that subjects accounted for the uncertainty in their visual memory, showing a significant difference in their reach planning when monetary costs were imposed for memory errors. However, our findings indicate that subjects memory representations per se were not biased by the imposed costs, but rather subjects adopted a near-optimal post-mnemonic decision strategy in their motor planning.

  15. Effects of motor congruence on visual working memory.

    PubMed

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  16. The Effect of Visual-Chunking-Representation Accommodation on Geometry Testing for Students with Math Disabilities

    ERIC Educational Resources Information Center

    Zhang, Dake; Ding, Yi; Stegall, Joanna; Mo, Lei

    2012-01-01

    Students who struggle with learning mathematics often have difficulties with geometry problem solving, which requires strong visual imagery skills. These difficulties have been correlated with deficiencies in visual working memory. Cognitive psychology has shown that chunking of visual items accommodates students' working memory deficits. This…

  17. Working Memory Impairment in People with Williams Syndrome: Effects of Delay, Task and Stimuli

    ERIC Educational Resources Information Center

    O'Hearn, Kirsten; Courtney, Susan; Street, Whitney; Landau, Barbara

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with impaired visuospatial representations subserved by the dorsal stream and relatively strong object recognition abilities subserved by the ventral stream. There is conflicting evidence on whether this uneven pattern in WS extends to working memory (WM). The present studies…

  18. The Role of Metarepresentation in the Production and Resolution of Referring Expressions.

    PubMed

    Horton, William S; Brennan, Susan E

    2016-01-01

    In this paper we consider the potential role of metarepresentation-the representation of another representation, or as commonly considered within cognitive science, the mental representation of another individual's knowledge and beliefs-in mediating definite reference and common ground in conversation. Using dialogues from a referential communication study in which speakers conversed in succession with two different addressees, we highlight ways in which interlocutors work together to successfully refer to objects, and achieve shared conceptualizations. We briefly review accounts of how such shared conceptualizations could be represented in memory, from simple associations between label and referent, to "triple co-presence" representations that track interlocutors in an episode of referring, to more elaborate metarepresentations that invoke theory of mind, mutual knowledge, or a model of a conversational partner. We consider how some forms of metarepresentation, once created and activated, could account for definite reference in conversation by appealing to ordinary processes in memory. We conclude that any representations that capture information about others' perspectives are likely to be relatively simple and subject to the same kinds of constraints on attention and memory that influence other kinds of cognitive representations.

  19. A theory of working memory without consciousness or sustained activity

    PubMed Central

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  20. Count on dopamine: influences of COMT polymorphisms on numerical cognition

    PubMed Central

    Júlio-Costa, Annelise; Antunes, Andressa M.; Lopes-Silva, Júlia B.; Moreira, Bárbara C.; Vianna, Gabrielle S.; Wood, Guilherme; Carvalho, Maria R. S.; Haase, Vitor G.

    2013-01-01

    Catechol-O-methyltransferase (COMT) is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory, and numerical cognition. Elementary school children from 2th to 6th grades were divided into two groups according to their COMT val158met polymorphism [homozygous for valine allele (n = 61) vs. heterozygous plus methionine homozygous children or met+ group (n = 94)]. Both groups were matched for age and intelligence. Working memory was assessed through digit span and Corsi blocks. Symbolic numerical processing was assessed through transcoding and single-digit word problem tasks. Non-symbolic magnitude comparison and estimation tasks were used to assess number sense. Between-group differences were found in symbolic and non-symbolic numerical tasks, but not in working memory tasks. Children in the met+ group showed better performance in all numerical tasks while val homozygous children presented slower development of non-symbolic magnitude representations. These results suggest COMT-related dopaminergic modulation may be related not only to working memory, as found in previous studies, but also to the development of magnitude processing and magnitude representations. PMID:23966969

  1. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    PubMed

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory paradigm and using model-based electroencephalography analyses in humans, we thus bridge this gap and reveal behavioral and neural signatures of increased, attention-mediated working memory precision. We further show that the extent of alpha power modulation predicts the degree to which individuals' memory performance benefits from selective attention. Copyright © 2015 the authors 0270-6474/15/3516094-11$15.00/0.

  2. Clients' Representations of Childhood Emotional Bonds with Parents, Social Support, and Formation of the Working Alliance.

    ERIC Educational Resources Information Center

    Mallinckrodt, Brent

    1991-01-01

    Collected survey data from 102 client-counselor dyads with regard to client and counselor third-session working alliance ratings, quality of clients' current social relationships, and clients' representations of care and overprotection in memories of childhood emotional bonds with parents. Social support was significant predictor of client-rated…

  3. Flexibility within working memory and the focus of attention for sequential verbal information does not depend on active maintenance.

    PubMed

    Sandry, Joshua; Schwark, Jeremy D; MacDonald, Justin

    2014-10-01

    The focus of attention seems to be a static element within working memory when verbal information is serially presented, unless additional time is available for processing or active maintenance. Experiment 1 manipulated the reward associated with early and medial list positions in a probe recognition paradigm and found evidence that these nonterminal list positions could be retrieved faster and more accurately if participants were appropriately motivated-without additional time for processing or active maintenance. Experiment 2 used articulatory suppression and demonstrated that the underlying maintenance mechanism cannot be attributed to rehearsal, leaving attentional refreshing as the more likely mechanism. These findings suggest that the focus of attention within working memory can flexibly maintain nonterminal early and medial list representations at the expense of other list representations even when there is not additional time for processing or active maintenance. Maintenance seems to be accomplished through an attentional refreshing mechanism.

  4. Configural Representations in Spatial Working Memory: Modulation by Perceptual Segregation and Voluntary Attention

    PubMed Central

    Gmeindl, Leon; Nelson, James K.; Wiggin, Timothy; Reuter-Lorenz, Patricia A.

    2011-01-01

    In what form are multiple spatial locations represented in working memory? The current study revealed that people often maintain the configural properties (inter-item relationships) of visuospatial stimuli even when this information is explicitly task-irrelevant. However, results also indicate that the voluntary allocation of selective attention prior to stimulus presentation, as well as feature-based perceptual segregation of relevant from irrelevant stimuli, can eliminate the influences of stimulus configuration on location change detection performance. In contrast, voluntary attention cued to the relevant target location following presentation of the stimulus array failed to attenuate these influences. Thus, whereas voluntary selective attention can isolate or prevent the encoding of irrelevant stimulus locations and configural properties, people, perhaps due to limitations in attentional resources, reliably fail to isolate or suppress configural representations that have been encoded into working memory. PMID:21761373

  5. About sleep's role in memory.

    PubMed

    Rasch, Björn; Born, Jan

    2013-04-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

  6. Working Memory: Maintenance, Updating, and the Realization of Intentions

    PubMed Central

    Nyberg, Lars; Eriksson, Johan

    2016-01-01

    “Working memory” refers to a vast set of mnemonic processes and associated brain networks, relates to basic intellectual abilities, and underlies many real-world functions. Working-memory maintenance involves frontoparietal regions and distributed representational areas, and can be based on persistent activity in reentrant loops, synchronous oscillations, or changes in synaptic strength. Manipulation of content of working memory depends on the dorsofrontal cortex, and updating is realized by a frontostriatal ‘“gating” function. Goals and intentions are represented as cognitive and motivational contexts in the rostrofrontal cortex. Different working-memory networks are linked via associative reinforcement-learning mechanisms into a self-organizing system. Normal capacity variation, as well as working-memory deficits, can largely be accounted for by the effectiveness and integrity of the basal ganglia and dopaminergic neurotransmission. PMID:26637287

  7. Biologically-inspired robust and adaptive multi-sensor fusion and active control

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    In this paper, we describe a method and system for robust and efficient goal-oriented active control of a machine (e.g., robot) based on processing, hierarchical spatial understanding, representation and memory of multimodal sensory inputs. This work assumes that a high-level plan or goal is known a priori or is provided by an operator interface, which translates into an overall perceptual processing strategy for the machine. Its analogy to the human brain is the download of plans and decisions from the pre-frontal cortex into various perceptual working memories as a perceptual plan that then guides the sensory data collection and processing. For example, a goal might be to look for specific colored objects in a scene while also looking for specific sound sources. This paper combines three key ideas and methods into a single closed-loop active control system. (1) Use high-level plan or goal to determine and prioritize spatial locations or waypoints (targets) in multimodal sensory space; (2) collect/store information about these spatial locations at the appropriate hierarchy and representation in a spatial working memory. This includes invariant learning of these spatial representations and how to convert between them; and (3) execute actions based on ordered retrieval of these spatial locations from hierarchical spatial working memory and using the "right" level of representation that can efficiently translate into motor actions. In its most specific form, the active control is described for a vision system (such as a pantilt- zoom camera system mounted on a robotic head and neck unit) which finds and then fixates on high saliency visual objects. We also describe the approach where the goal is to turn towards and sequentially foveate on salient multimodal cues that include both visual and auditory inputs.

  8. Reconstructions of information in visual spatial working memory degrade with memory load.

    PubMed

    Sprague, Thomas C; Ester, Edward F; Serences, John T

    2014-09-22

    Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).

  10. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    PubMed Central

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  11. Disruption of Attention by Irrelevant Stimuli in Serial Recall

    ERIC Educational Resources Information Center

    Lange, Elke B.

    2005-01-01

    In four experiments the behavioral consequences of an involuntary attentional distraction concerning memory performance was investigated. The working memory model of Cowan (1995) predicts a performance deficit for memory representations that are held in an active state when the focus of attention is distracted by a change in physical properties.…

  12. Semantic Memory and Verbal Working Memory Correlates of N400 to Subordinate Homographs

    ERIC Educational Resources Information Center

    Salisbury, Dean F.

    2004-01-01

    N400 is an event-related brain potential that indexes operations in semantic memory conceptual space, whether elicited by language or some other representation (e.g., drawings). Language models typically propose three stages: lexical access or orthographic- and phonological-level analysis; lexical selection or word-level meaning and associate…

  13. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    PubMed

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.

  14. The role of similarity in updating numerical information in working memory: decomposing the numerical distance effect.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2014-01-01

    The present study investigates the process of updating representations in working memory (WM) and how similarity between the information involved influences this process. In WM updating tasks, the similarity in terms of numerical distance between the number to be substituted and the new one facilitates the updating process. We aimed to disentangle the possible effect of two dimensions of similarity that may contribute to this numerical effect: numerical distance itself and common digits shared between the numbers involved. Three experiments were conducted in which different ranges of distances and the coincidence between the digits of the two numbers involved in updating were manipulated. Results showed that the two dimensions of similarity had an effect on updating times. The greater the similarity between the information maintained in memory and the new information that substituted it, the faster the updating. This is consistent both with the idea of distributed representations based on features, and with a selective updating process based on a feature overwriting mechanism. Thus, updating in WM can be understood as a selective substitution process influenced by similarity in which only certain parts of the representation stored in memory are changed.

  15. The Effect of Non-Visual Working Memory Load on Top-Down Modulation of Visual Processing

    ERIC Educational Resources Information Center

    Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark

    2009-01-01

    While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of…

  16. The Role of the Oculomotor System in Updating Visual-Spatial Working Memory across Saccades

    PubMed Central

    Boon, Paul J.; Belopolsky, Artem V.; Theeuwes, Jan

    2016-01-01

    Visual-spatial working memory (VSWM) helps us to maintain and manipulate visual information in the absence of sensory input. It has been proposed that VSWM is an emergent property of the oculomotor system. In the present study we investigated the role of the oculomotor system in updating of spatial working memory representations across saccades. Participants had to maintain a location in memory while making a saccade to a different location. During the saccade the target was displaced, which went unnoticed by the participants. After executing the saccade, participants had to indicate the memorized location. If memory updating fully relies on cancellation driven by extraretinal oculomotor signals, the displacement should have no effect on the perceived location of the memorized stimulus. However, if postsaccadic retinal information about the location of the saccade target is used, the perceived location will be shifted according to the target displacement. As it has been suggested that maintenance of accurate spatial representations across saccades is especially important for action control, we used different ways of reporting the location held in memory; a match-to-sample task, a mouse click or by making another saccade. The results showed a small systematic target displacement bias in all response modalities. Parametric manipulation of the distance between the to-be-memorized stimulus and saccade target revealed that target displacement bias increased over time and changed its spatial profile from being initially centered on locations around the saccade target to becoming spatially global. Taken together results suggest that we neither rely exclusively on extraretinal nor on retinal information in updating working memory representations across saccades. The relative contribution of retinal signals is not fixed but depends on both the time available to integrate these signals as well as the distance between the saccade target and the remembered location. PMID:27631767

  17. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    PubMed

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  18. The different oscillation patterns of alpha band in the early and later stages of working memory maintenance.

    PubMed

    Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min

    2016-10-28

    A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Attentional priority determines working memory precision.

    PubMed

    Klyszejko, Zuzanna; Rahmati, Masih; Curtis, Clayton E

    2014-12-01

    Visual working memory is a system used to hold information actively in mind for a limited time. The number of items and the precision with which we can store information has limits that define its capacity. How much control do we have over the precision with which we store information when faced with these severe capacity limitations? Here, we tested the hypothesis that rank-ordered attentional priority determines the precision of multiple working memory representations. We conducted two psychophysical experiments that manipulated the priority of multiple items in a two-alternative forced choice task (2AFC) with distance discrimination. In Experiment 1, we varied the probabilities with which memorized items were likely to be tested. To generalize the effects of priority beyond simple cueing, in Experiment 2, we manipulated priority by varying monetary incentives contingent upon successful memory for items tested. Moreover, we illustrate our hypothesis using a simple model that distributed attentional resources across items with rank-ordered priorities. Indeed, we found evidence in both experiments that priority affects the precision of working memory in a monotonic fashion. Our results demonstrate that representations of priority may provide a mechanism by which resources can be allocated to increase the precision with which we encode and briefly store information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Precision of working memory for speech sounds.

    PubMed

    Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud

    2015-01-01

    Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.

  1. Associations among false belief understanding, counterfactual reasoning, and executive function.

    PubMed

    Guajardo, Nicole R; Parker, Jessica; Turley-Ames, Kandi

    2009-09-01

    The primary purposes of the present study were to clarify previous work on the association between counterfactual thinking and false belief performance to determine (1) whether these two variables are related and (2) if so, whether executive function skills mediate the relationship. A total of 92 3-, 4-, and 5-year-olds completed false belief, counterfactual, working memory, representational flexibility, and language measures. Counterfactual reasoning accounted for limited unique variance in false belief. Both working memory and representational flexibility partially mediated the relationship between counterfactual and false belief. Children, like adults, also generated various types of counterfactual statements to differing degrees. Results demonstrated the importance of language and executive function for both counterfactual and false belief. Implications are discussed.

  2. Unimodal and crossmodal working memory representations of visual and kinesthetic movement trajectories.

    PubMed

    Seemüller, Anna; Fiehler, Katja; Rösler, Frank

    2011-01-01

    The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Structurally Integrated Versus Structurally Segregated Memory Representations: Implications for the Design of Instructional Materials.

    ERIC Educational Resources Information Center

    Hayes-Roth, Barbara

    Two kinds of memory organization are distinguished: segregrated versus integrated. In segregated memory organizations, related learned propositions have separate memory representations. In integrated memory organizations, memory representations of related propositions share common subrepresentations. Segregated memory organizations facilitate…

  4. Age differences in working memory updating: the role of interference, focus switching and substituting information.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2015-05-01

    Working memory updating (WMU) tasks require different elements in working memory (WM) to be maintained simultaneously, accessing one of these elements, and substituting its content. This study examined possible developmental changes from childhood to adulthood both in focus switching and substituting information in WM. In addition, possible age-related changes in interference due to representational overlap between the different elements simultaneously held in these tasks were examined. Children (8- and 11-year-olds), adolescents (14-year-olds) and younger adults (mean age=22 years) were administered a numerical updating memory task, in which updating and focus switching were manipulated. As expected, response times decreased and recall performance increased with age. More importantly, the time needed for focus switching was longer in children than in adolescents and younger adults. On the other hand, substitution of information and interference due to representational overlap were not affected by age. These results suggest that age-related changes in focus switching might mediate developmental changes in WMU performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    ERIC Educational Resources Information Center

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  6. What Drives Memory-Driven Attentional Capture? The Effects of Memory Type, Display Type, and Search Type

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.

    2009-01-01

    An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered more strongly with a visual search task when they…

  7. Quantity not quality: The relationship between fluid intelligence and working memory capacity

    PubMed Central

    Fukuda, Keisuke; Vogel, Edward; Mayr, Ulrich; Awh, Edward

    2010-01-01

    A key motivation for understanding capacity in working memory (WM) is its relationship with fluid intelligence. Recent evidence has suggested a 2-factor model that distinguishes between the number of representations that can be maintained in WM and the resolution of those representations. To determine how these factors relate to fluid intelligence, we conducted an exploratory factor analysis on multiple number-limited and resolution-limited measures of WM ability. The results strongly supported the 2-factor model, with fully orthogonal factors accounting for performance in the number-limited and resolution-limited conditions. Furthermore, the reliable relationship between WM capacity and fluid intelligence was exclusively supported by the number factor (r = .66), while the resolution factor made no reliable contribution (r = −.05). Thus, the relationship between WM capacity and standard measures of fluid intelligence is mediated by the number of representations that can be simultaneously maintained in WM rather than by the precision of those representations. PMID:21037165

  8. How Lexical is the Lexicon? Evidence for Integrated Auditory Memory Representations

    PubMed Central

    Pufahl, April; Samuel, Arthur G.

    2014-01-01

    Previous research has shown that lexical representations must include not only linguistic information (what word was said), but also indexical information (how it was said, and by whom). The present work demonstrates that even this expansion is not sufficient. Seemingly irrelevant information, such as an unattended background sound, is retained in memory and can facilitate subsequent speech perception. We presented participants with spoken words paired with environmental sounds (e.g., a phone ringing), and had them make an “animate/inanimate” decision for each word. Later performance identifying filtered versions of the words was impaired to a similar degree if the voice changed or if the environmental sound changed. Moreover, when quite dissimilar words were used at exposure and test, we observed the same result when we reversed the roles of the words and the environmental sounds. The experiments also demonstrated limits to these effects, with no benefit from repetition. Theoretically, our results support two alternative possibilities: 1) Lexical representations are memory representations, and are not walled off from those for other sounds. Indexical effects reflect simply one type of co-occurrence that is incorporated into such representations. 2) The existing literature on indexical effects does not actually bear on lexical representations – voice changes, like environmental sounds heard with a word, produce implicit memory effects that are not tied to the lexicon. We discuss the evidence and implications of these two theoretical alternatives. PMID:24480453

  9. Cognitive-behavioral and electrophysiological evidence of the affective consequences of ignoring stimulus representations in working memory.

    PubMed

    De Vito, David; Ferrey, Anne E; Fenske, Mark J; Al-Aidroos, Naseem

    2018-06-01

    Ignoring visual stimuli in the external environment leads to decreased liking of those items, a phenomenon attributed to the affective consequences of attentional inhibition. Here we investigated the generality of this "distractor devaluation" phenomenon by asking whether ignoring stimuli represented internally within visual working memory has the same affective consequences. In two experiments we presented participants with two or three visual stimuli and then, after the stimuli were no longer visible, provided an attentional cue indicating which item in memory was the target they would have to later recall, and which were task-irrelevant distractors. Participants subsequently judged how much they liked these stimuli. Previously-ignored distractors were consistently rated less favorably than targets, replicating prior findings of distractor devaluation. To gain converging evidence, in Experiment 2, we also examined the electrophysiological processes associated with devaluation by measuring individual differences in attention (N2pc) and working memory (CDA) event-related potentials following the attention cue. Larger amplitude of an N2pc-like component was associated with greater devaluation, suggesting that individuals displaying more effective selection of memory targets-an act aided by distractor inhibition-displayed greater levels of distractor devaluation. Individuals showing a larger post-cue CDA amplitude (but not pre-cue CDA amplitude) also showed greater distractor devaluation, supporting prior evidence that visual working-memory resources have a functional role in effecting devaluation. Together, these findings demonstrate that ignoring working-memory representations has affective consequences, and adds to the growing evidence that the contribution of selective-attention mechanisms to a wide range of human thoughts and behaviors leads to devaluation.

  10. Skill Acquisition: Compilation of Weak-Method Problem Solutions.

    DTIC Science & Technology

    1985-08-12

    difference largely disappears by the fourth day when they are still working - with Perverse EMACS. Compared to Day 1 on EMACS. there is large postive ...This reinforces the idea that production representation captures significant features of our procedural knowledge and that differences between...memory load is certainly consistent with the working memory plus production system hypothesis. Immediate Feedback The importance of immediate

  11. Individual differences in simultaneous color constancy are related to working memory.

    PubMed

    Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K

    2012-02-01

    Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011)], the current study examined the relation between simultaneous color constancy and working memory-the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability. © 2012 Optical Society of America

  12. Looking inward and back: Real-time monitoring of visual working memories.

    PubMed

    Suchow, Jordan W; Fougnie, Daryl; Alvarez, George A

    2017-04-01

    Confidence in our memories is influenced by many factors, including beliefs about the perceptibility or memorability of certain kinds of objects and events, as well as knowledge about our skill sets, habits, and experiences. Notoriously, our knowledge and beliefs about memory can lead us astray, causing us to be overly confident in eyewitness testimony or to overestimate the frequency of recent experiences. Here, using visual working memory as a case study, we stripped away all these potentially misleading cues, requiring observers to make confidence judgments by directly assessing the quality of their memory representations. We show that individuals can monitor the status of information in working memory as it degrades over time. Our findings suggest that people have access to information reflecting the existence and quality of their working memories, and furthermore, that they can use this information to guide their behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Restoration of fMRI Decodability Does Not Imply Latent Working Memory States

    PubMed Central

    Schneegans, Sebastian; Bays, Paul M.

    2018-01-01

    Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674

  14. About Sleep's Role in Memory

    PubMed Central

    2013-01-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of “sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. PMID:23589831

  15. Enhanced accessibility of ignored neutral and negative items in nonclinical dissociative individuals.

    PubMed

    Chiu, Chui-De

    2018-01-01

    While clinical studies showed paradoxical memory phenomena, including the intrusion and amnesia of stressful experiences that are features of dissociation, the results of laboratory studies on dissociative individuals' forgetting of experimental stimuli through cognitive control varied. Some studies demonstrated ineffective inhibition, and others found that dissociative individuals could remember fewer trauma words in a divided-attention context. Dissociative individuals may utilize superior cognitive disengagement to forget the representations. This hypothesis was tested in nonclinical individuals with high, medium, and low dissociation proneness. In the study phase, the participants learned several lists of experimental words and kept updating working memory by remembering the last four items on a list (target) and ignoring those non-target items. A recognition test was then conducted. The high dissociation group performed better on updating working memory. However, the accessibility of the representations of neutral and negative non-target items was elevated. Dissociative individuals disengaged attention effectively from items they intended to ignore, and the representations of the ignored items were more accessible when cues were available. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    PubMed Central

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  17. Method matters: Systematic effects of testing procedure on visual working memory sensitivity

    PubMed Central

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011

  18. Multiple-object permanence tracking: limitation in maintenance and transformation of perceptual objects.

    PubMed

    Saiki, Jun

    2002-01-01

    Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.

  19. Cognitive predictors of copying and drawing from memory of the Rey-Osterrieth complex figure in 7- to 10-year-old children.

    PubMed

    Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano

    2015-01-01

    Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.

  20. A working memory account of the interaction between numbers and spatial attention.

    PubMed

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Acar, Freya; Ketels, Boris; Fias, Wim

    2014-01-01

    Rather than reflecting the long-term memory construct of a mental number line, it has been proposed that the relation between numbers and space is of a more temporary nature and constructed in working memory during task execution. In three experiments we further explored the viability of this working memory account. Participants performed a speeded dot detection task with dots appearing left or right, while maintaining digits or letters in working memory. Just before presentation of the dot, these digits or letters were used as central cues. These experiments show that the "attentional SNARC-effect" (where SNARC is the spatial-numerical association of response codes) is not observed when only the lastly perceived number cue--and no serially ordered sequence of cues--is maintained in working memory (Experiment 1). It is only when multiple items (numbers in Experiment 2; letters in Experiment 3) are stored in working memory in a serially organized way that the attentional cueing effect is observed as a function of serial working memory position. These observations suggest that the "attentional SNARC-effect" is strongly working memory based. Implications for theories on the mental representation of numbers are discussed.

  1. Shared processing in multiple object tracking and visual working memory in the absence of response order and task order confounds

    PubMed Central

    Howe, Piers D. L.

    2017-01-01

    To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources. PMID:28410383

  2. Shared processing in multiple object tracking and visual working memory in the absence of response order and task order confounds.

    PubMed

    Lapierre, Mark D; Cropper, Simon J; Howe, Piers D L

    2017-01-01

    To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources.

  3. The formation of novel social category conjunctions in working memory: A possible role for the episodic buffer?

    PubMed

    Hutter, Russell R C; Allen, Richard J; Wood, Chantelle

    2016-01-01

    Recent research (e.g., Hutter, Crisp, Humphreys, Waters, & Moffit; Siebler) has confirmed that combining novel social categories involves two stages (e.g., Hampton; Hastie, Schroeder, & Weber). Furthermore, it is also evident that following stage 1 (constituent additivity), the second stage in these models involves cognitively effortful complex reasoning. However, while current theory and research has addressed how category conjunctions are initially represented to some degree, it is not clear precisely where we first combine or bind existing social constituent categories. For example, how and where do we compose and temporarily store a coherent representation of an individual who shares membership of "female" and "blacksmith" categories? In this article, we consider how the revised multi-component model of working memory (Baddeley) can assist in resolving the representational limitations in the extant two-stage theoretical models. This is a new approach to understanding how novel conjunctions form new bound "composite" representations.

  4. Working Memory Units Are All in Your Head: Factors That Influence Whether Features or Objects Are the Favored Units

    ERIC Educational Resources Information Center

    Vergauwe, Evie; Cowan, Nelson

    2015-01-01

    We compared two contrasting hypotheses of how multifeatured objects are stored in visual working memory (vWM); as integrated objects or as independent features. A new procedure was devised to examine vWM representations of several concurrently held objects and their features and our main measure was reaction time (RT), allowing an examination of…

  5. Neural Substrates for Verbal Working Memory in Deaf Signers: fMRI Study and Lesion Case Report

    ERIC Educational Resources Information Center

    Buchsbaum, Bradley; Pickell, Bert; Love, Tracy; Hatrak, Marla; Bellugi, Ursula; Hickok, Gregory

    2005-01-01

    The nature of the representations maintained in verbal working memory is a topic of debate. Some authors argue for a modality-dependent code, tied to particular sensory or motor systems. Others argue for a modality-neutral code. Sign language affords a unique perspective because it factors out the effects of modality. In an fMRI experiment, deaf…

  6. Cortical Substrate of Haptic Representation

    DTIC Science & Technology

    1993-08-24

    experience and data from primates , we have developed computational models of short-term active memory. Such models may have technological interest...neurobiological work on primate memory. It is on that empirical work that our current theoretical efforts are 5 founded. Our future physiological research...Academy of Sciences, New York, vol. 608, pp. 318-329, 1990. J.M. Fuster - Behavioral electrophysiology of the prefrontal cortex of the primate . Progress

  7. N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.

    PubMed

    Yaple, Zachary; Arsalidou, Marie

    2018-05-07

    The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.

  8. The relationship between masking and short-term consolidation during recall from visual working memory.

    PubMed

    Ricker, Timothy J; Sandry, Joshua

    2018-04-10

    The presentation of a similar but irrelevant stimulus immediately following presentation of a memory item is called masking. Masking is known to reduce performance on working memory tests. This is the type of memory used to hold information in mind for brief periods of time for use in ongoing cognition. Two approaches to understanding masking effects have been proposed in different literatures. Working memory researchers often assume that the reduction in working memory performance after masking is because masking interferes with a transient sensory representation that is needed to complete consolidation into a working memory state. Researchers focused on the attentional blink, a finding that attention cannot be directed to new stimuli during working memory consolidation, have an alternative theory. Attentional blink researchers assume that masking slows the short-term consolidation process, thereby extending the length of the attentional blink. In two experiments, we contrast these two approaches to explaining masking effects and investigate the validity of both hypotheses. Some aspects of both approaches are validated, but neither theoretical perspective alone sufficiently explains the entire pattern of results. © 2018 New York Academy of Sciences.

  9. Protein Kinase C Overactivity Impairs Prefrontal Cortical Regulation of Working Memory

    NASA Astrophysics Data System (ADS)

    Birnbaum, S. G.; Yuan, P. X.; Wang, M.; Vijayraghavan, S.; Bloom, A. K.; Davis, D. J.; Gobeske, K. T.; Sweatt, J. D.; Manji, H. K.; Arnsten, A. F. T.

    2004-10-01

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  10. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory.

    PubMed

    Birnbaum, S G; Yuan, P X; Wang, M; Vijayraghavan, S; Bloom, A K; Davis, D J; Gobeske, K T; Sweatt, J D; Manji, H K; Arnsten, A F T

    2004-10-29

    The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.

  11. Using electrophysiology to demonstrate that cuing affects long-term memory storage over the short term

    PubMed Central

    Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772

  12. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term.

    PubMed

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-10-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

  13. The working memory stroop effect: when internal representations clash with external stimuli.

    PubMed

    Kiyonaga, Anastasia; Egner, Tobias

    2014-08-01

    Working memory (WM) has recently been described as internally directed attention, which implies that WM content should affect behavior exactly like an externally perceived and attended stimulus. We tested whether holding a color word in WM, rather than attending to it in the external environment, can produce interference in a color-discrimination task, which would mimic the classic Stroop effect. Over three experiments, the WM Stroop effect recapitulated core properties of the classic attentional Stroop effect, displaying equivalent congruency effects, additive contributions from stimulus- and response-level congruency, and susceptibility to modulation by the percentage of congruent and incongruent trials. Moreover, WM maintenance was inversely related to attentional demands during the WM delay between stimulus presentation and recall, with poorer memory performance following incongruent than congruent trials. Together, these results suggest that WM and attention rely on the same resources and operate over the same representations. © The Author(s) 2014.

  14. Beyond capacity limitations II: Effects of lexical processes on word recall in verbal working memory tasks in children with and without specific language impairment

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.; Coady, Jeffry

    2010-01-01

    Purpose This study investigated the impact of lexical processes on target word recall in sentence span tasks in children with and without specific language impairment (SLI). Method Participants were 42 children (ages 8;2–12;3), 21 with SLI and 21 typically developing peers matched on age and nonverbal IQ. Children completed a sentence span task where target words to be recalled varied in word frequency and neighborhood density. Two measures of lexical processes were examined, the number of non-target competitor words activated during a gating task (lexical cohort competition) and word definitions. Results Neighborhood density had no effect on word recall for either group. However, both groups recalled significantly more high than low frequency words. Lexical cohort competition and specificity of semantic representations accounted for unique variance in the number of target word recalled in the SLI and CA groups combined. Conclusions Performance on verbal working memory span tasks for both SLI and CA children is influenced by word frequency, lexical cohorts, and semantic representations. Future studies need to examine the extent to which verbal working memory capacity is a cognitive construct independent of extant language knowledge representations. PMID:20705747

  15. Visual working memory for global, object, and part-based information.

    PubMed

    Patterson, Michael D; Bly, Benjamin Martin; Porcelli, Anthony J; Rypma, Bart

    2007-06-01

    We investigated visual working memory for novel objects and parts of novel objects. After a delay period, participants showed strikingly more accurate performance recognizing a single whole object than the parts of that object. This bias to remember whole objects, rather than parts, persisted even when the division between parts was clearly defined and the parts were disconnected from each other so that, in order to remember the single whole object, the participants needed to mentally combine the parts. In addition, the bias was confirmed when the parts were divided by color. These experiments indicated that holistic perceptual-grouping biases are automatically used to organize storage in visual working memory. In addition, our results suggested that the bias was impervious to top-down consciously directed control, because when task demands were manipulated through instruction and catch trials, the participants still recognized whole objects more quickly and more accurately than their parts. This bias persisted even when the whole objects were novel and the parts were familiar. We propose that visual working memory representations depend primarily on the global configural properties of whole objects, rather than part-based representations, even when the parts themselves can be clearly perceived as individual objects. This global configural bias beneficially reduces memory load on a capacity-limited system operating in a complex visual environment, because fewer distinct items must be remembered.

  16. Evidence for Working Memory Storage Operations in Perceptual Cortex

    PubMed Central

    Sreenivasan, Kartik K.; Gratton, Caterina; Vytlacil, Jason; D’Esposito, Mark

    2014-01-01

    Isolating the short-term storage component of working memory (WM) from the myriad of associated executive processes has been an enduring challenge. Recent efforts have identified patterns of activity in visual regions that contain information about items being held in WM. However, it remains unclear (i) whether these representations withstand intervening sensory input and (ii) how communication between multimodal association cortex and unimodal perceptual regions supporting WM representations is involved in WM storage. We present evidence that the features of a face held in WM are stored within face processing regions, that these representations persist across subsequent sensory input, and that information about the match between sensory input and memory representation is relayed forward from perceptual to prefrontal regions. Participants were presented with a series of probe faces and indicated whether each probe matched a Target face held in WM. We parametrically varied the feature similarity between probe and Target faces. Activity within face processing regions scaled linearly with the degree of feature similarity between the probe face and the features of the Target face, suggesting that the features of the Target face were stored in these regions. Furthermore, directed connectivity measures revealed that the direction of information flow that was optimal for performance was from sensory regions that stored the features of the Target face to dorsal prefrontal regions, supporting the notion that sensory input is compared to representations stored within perceptual regions and relayed forward. Together, these findings indicate that WM storage operations are carried out within perceptual cortex. PMID:24436009

  17. A Cross-Modal Perspective on the Relationships between Imagery and Working Memory

    PubMed Central

    Likova, Lora T.

    2013-01-01

    Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action. Multicomponent WM models incorporate representational buffers, such as the visuo-spatial sketchpad, plus central executive functions. If there is a visuo-spatial “sketchpad” for WM, does imagery involve the same representational buffer? Alternatively, does WM employ an imagery-specific representational mechanism to occupy our awareness? Or do both constructs utilize a more generic “projection screen” of an amodal nature? To address these issues, in a cross-modal fMRI study, I introduce a novel Drawing-Based Memory Paradigm, and conceptualize drawing as a complex behavior that is readily adaptable from the visual to non-visual modalities (such as the tactile modality), which opens intriguing possibilities for investigating cross-modal learning and plasticity. Blindfolded participants were trained through our Cognitive-Kinesthetic Method (Likova, 2010a, 2012) to draw complex objects guided purely by the memory of felt tactile images. If this WM task had been mediated by transfer of the felt spatial configuration to the visual imagery mechanism, the response-profile in visual cortex would be predicted to have the “top-down” signature of propagation of the imagery signal downward through the visual hierarchy. Remarkably, the pattern of cross-modal occipital activation generated by the non-visual memory drawing was essentially the inverse of this typical imagery signature. The sole visual hierarchy activation was isolated to the primary visual area (V1), and accompanied by deactivation of the entire extrastriate cortex, thus ’cutting-off’ any signal propagation from/to V1 through the visual hierarchy. The implications of these findings for the debate on the interrelationships between the core cognitive constructs of WM and imagery and the nature of internal representations are evaluated. PMID:23346061

  18. Learning STEM through Integrative Visual Representations

    ERIC Educational Resources Information Center

    Virk, Satyugjit Singh

    2013-01-01

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with…

  19. Memory, Childhood and Exile: Self-Representation in Post-Colonial Writing.

    ERIC Educational Resources Information Center

    Sharrad, Paul

    1990-01-01

    Using the works of writers like Thomas Wolfe, Christopher Koch, Raja Rao, and Albert Wendt, it is demonstrated that memory is a central element in postcolonial narratives and is associated with two important domains of cognition--recall of childhood and awareness of exile. (57 references) (JL)

  20. The role of sleep in cognitive processing: focusing on memory consolidation.

    PubMed

    Chambers, Alexis M

    2017-05-01

    Research indicates that sleep promotes various cognitive functions, such as decision-making, language, categorization, and memory. Of these, most work has focused on the influence of sleep on memory, with ample work showing that sleep enhances memory consolidation, a process that stores new memories in the brain over time. Recent psychological and neurophysiological research has vastly increased understanding of this process. Such work not only suggests that consolidation relies on plasticity-related mechanisms that reactivate and stabilize memory representations, but also that this process may be experimentally manipulated by methods that target which memory traces are reactivated during sleep. Furthermore, aside from memory storage capabilities, memory consolidation also appears to reorganize and integrate memories with preexisting knowledge, which may facilitate the discovery of underlying rules and associations that benefit other cognitive functioning, including problem solving and creativity. WIREs Cogn Sci 2017, 8:e1433. doi: 10.1002/wcs.1433 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  1. Does constraining memory maintenance reduce visual search efficiency?

    PubMed

    Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R

    2018-03-01

    We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.

  2. Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.

    PubMed

    Holper, L; Van Brussel, L D; Schmidt, L; Schulthess, S; Burke, C J; Louie, K; Seifritz, E; Tobler, P N

    2017-01-01

    Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain's capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations.

  3. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks

    PubMed Central

    Rombouts, Jaldert O.; Bohte, Sander M.; Roelfsema, Pieter R.

    2015-01-01

    Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions. PMID:25742003

  4. Coarse-to-fine construction for high-resolution representation in visual working memory.

    PubMed

    Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende

    2013-01-01

    This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.

  5. [Visual representation of natural scenes in flicker changes].

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2010-08-01

    Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.

  6. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    PubMed Central

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  7. Assessing working memory and language comprehension in Alzheimer's disease.

    PubMed

    MacDonald, M C; Almor, A; Henderson, V W; Kempler, D; Andersen, E S

    2001-07-01

    Studies of language impairments in patients with Alzheimer's disease have often assumed that impairments in linguistic working memory underlie comprehension deficits. Assessment of this hypothesis has been hindered both by vagueness of key terms such as "working memory" and by limitations of available working memory tasks, in that many such tasks either seem to have little relationship to language comprehension or are too confusing or difficult for Alzheimer's patients. Four experiments investigated the usefulness of digit ordering, a new task assessing linguistic working memory and/or language processing skill, in normal adults and patients with probable Alzheimer's disease. The digit ordering task was shown to be strongly correlated with the degree of dementia in Alzheimer's patients. The task correlated with measures of language processing on which patients and normal controls performed differently. The results are interpreted as indicating that linguistic representations, linguistic processing, and linguistic working memory are intertwined, such that a deficit of one (e.g., working memory) cannot be said to "cause" a deficit in the other. The implications of this approach are explored in terms of task demands in comprehension and memory measures, and interpretation of previous results in the literature. Copyright 2001 Academic Press.

  8. Are There Multiple Visual Short-Term Memory Stores?

    PubMed Central

    Sligte, Ilja G.; Scholte, H. Steven; Lamme, Victor A. F.

    2008-01-01

    Background Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. Methodology/Principal Findings We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. Conclusions/Significance We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will. PMID:18301775

  9. Are there multiple visual short-term memory stores?

    PubMed

    Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F

    2008-02-27

    Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will.

  10. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.

    PubMed

    Balaban, Halely; Luria, Roy

    2017-02-01

    Visual working memory (VWM) guides behavior by holding a set of active representations and modifying them according to changes in the environment. This updating process relies on a unique mapping between each VWM representation and an actual object in the environment. Here, we destroyed this mapping by either presenting a coherent object but then breaking it into independent parts or presenting an object but then abruptly replacing it with a different object. This allowed us to introduce the neural marker and behavioral consequence of an online resetting process in humans' VWM. Across seven experiments, we demonstrate that this resetting process involves abandoning the old VWM contents because they no longer correspond to the objects in the environment. Then, VWM encodes the novel information and reestablishes the correspondence between the new representations and the objects. The resetting process was marked by a unique neural signature: a sharp drop in the amplitude of the electrophysiological index of VWM contents (the contralateral delay activity), presumably indicating the loss of the existent object-to-representation mappings. This marker was missing when an updating process occurred. Moreover, when tracking moving items, VWM failed to detect salient changes in the object's shape when these changes occurred during the resetting process. This happened despite the object being fully visible, presumably because the mapping between the object and a VWM representation was lost. Importantly, we show that resetting, its neural marker, and the behavioral cost it entails, are specific to situations that involve a destruction of the objects-to-representations correspondence. Visual working memory (VWM) maintains task-relevant information in an online state. Previous studies showed that VWM representations are accessed and modified after changes in the environment. Here, we show that this updating process critically depends on an ongoing mapping between the representations and the objects in the environment. When this mapping breaks, VWM cannot access the old representations and instead resets. The novel resetting process that we introduce removes the existing representations instead of modifying them and this process is accompanied by a unique neural marker. During the resetting process, VWM was blind to salient changes in the object's shape. The resetting process highlights the flexibility of our cognitive system in handling the dynamic environment by abruptly abandoning irrelevant schemas. Copyright © 2017 the authors 0270-6474/17/371225-15$15.00/0.

  11. How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain?

    PubMed

    Widhalm, Morgan L; Rose, Nathan S

    2018-06-27

    We present a focused review on the utility of transcranial magnetic stimulation (TMS) for modulating memory, with a particular focus on multimodal approaches in which TMS is paired with neuroimaging methods (electroencephalography and magnetic resonance imaging (MRI)) to manipulate and measure working memory processes. We contrast the utility of TMS for manipulating memory with other forms of noninvasive brain stimulation, as well as different forms of TMS including single-pulse, paired-pulse and repetitive TMS protocols. We discuss the potential for TMS to address fundamental cognitive neuroscience questions about the nature of memory processes and representations, while acknowledging the considerable variability of behavioral and neural outcomes in TMS studies. Also discussed are the limitations of this technology, current advancements that have helped to defray the impact of these limitations, and suggestions for future directions in research and methodology. This article is categorized under: Neuroscience > Clinical Neuroscience Neuroscience > Cognition Psychology > Memory. © 2018 Wiley Periodicals, Inc.

  12. Brain regions that retain the spatial layout of tactile stimuli during working memory - A 'tactospatial sketchpad'?

    PubMed

    Schmidt, Timo Torsten; Blankenburg, Felix

    2018-05-31

    Working memory (WM) studies have been essential for ascertaining how the brain flexibly handles mentally represented information in the absence of sensory stimulation. Most studies on the memory of sensory stimulus features have focused, however, on the visual domain. Here, we report a human WM study in the tactile modality where participants had to memorize the spatial layout of patterned Braille-like stimuli presented to the index finger. We used a whole-brain searchlight approach in combination with multi-voxel pattern analysis (MVPA) to investigate tactile WM representations without a priori assumptions about which brain regions code tactospatial information. Our analysis revealed that posterior and parietal cortices, as well as premotor regions, retained information across the twelve-second delay phase. Interestingly, parts of this brain network were previously shown to also contain information of visuospatial WM. Also, by specifically testing somatosensory regions for WM representations, we observed content-specific activation patterns in primary somatosensory cortex (SI). Our findings demonstrate that tactile WM depends on a distributed network of brain regions in analogy to the representation of visuospatial information. Copyright © 2018. Published by Elsevier Inc.

  13. Hierarchical Traces for Reduced NSM Memory Requirements

    NASA Astrophysics Data System (ADS)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  14. Working memory for conjunctions relies on the medial temporal lobe.

    PubMed

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  15. Working Memory for Conjunctions Relies on the Medial Temporal Lobe

    PubMed Central

    Olson, Ingrid R.; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-01-01

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays. PMID:16641239

  16. Articulatory rehearsal is more than refreshing memory traces.

    PubMed

    Nishiyama, Ryoji; Ukita, Jun

    2013-01-01

    This study examined whether additional articulatory rehearsal induced temporary durability of phonological representations, using a 10-s delayed nonword free recall task. Three experiments demonstrated that cumulative rehearsal between the offset of the last study item and the start of the filled delay (Experiments 1 and 3) and a fixed rehearsal of the immediate item during the subsequent interstimulus interval (Experiments 2 and 3) improved free recall performance. These results suggest that an additional rehearsal helps to stabilize phonological representations for a short period. Furthermore, the analyses of serial position curves suggested that the frequency of the articulation affected the durability of the phonological representation. The significance of these findings as clues of the mechanism maintaining verbal information (i.e., verbal working memory) is discussed.

  17. The aftermath of memory retrieval for recycling visual working memory representations.

    PubMed

    Park, Hyung-Bum; Zhang, Weiwei; Hyun, Joo-Seok

    2017-07-01

    We examined the aftermath of accessing and retrieving a subset of information stored in visual working memory (VWM)-namely, whether detection of a mismatch between memory and perception can impair the original memory of an item while triggering recognition-induced forgetting for the remaining, untested items. For this purpose, we devised a consecutive-change detection task wherein two successive testing probes were displayed after a single set of memory items. Across two experiments utilizing different memory-testing methods (whole vs. single probe), we observed a reliable pattern of poor performance in change detection for the second test when the first test had exhibited a color change. The impairment after a color change was evident even when the same memory item was repeatedly probed; this suggests that an attention-driven, salient visual change made it difficult to reinstate the previously remembered item. The second change detection, for memory items untested during the first change detection, was also found to be inaccurate, indicating that recognition-induced forgetting had occurred for the unprobed items in VWM. In a third experiment, we conducted a task that involved change detection plus continuous recall, wherein a memory recall task was presented after the change detection task. The analyses of the distributions of recall errors with a probabilistic mixture model revealed that the memory impairments from both visual changes and recognition-induced forgetting are explained better by the stochastic loss of memory items than by their degraded resolution. These results indicate that attention-driven visual change and recognition-induced forgetting jointly influence the "recycling" of VWM representations.

  18. Intrusive Images in Psychological Disorders

    PubMed Central

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969

  19. Dream actors in the theatre of memory: their role in the psychoanalytic process.

    PubMed

    Mancia, Mauro

    2003-08-01

    The author notes that neuropsychological research has discovered the existence of two long-term memory systems, namely declarative or explicit memory, which is conscious and autobiographical, and non-declarative or implicit memory, which is neither conscious nor verbalisable. It is suggested that pre-verbal and pre-symbolic experience in the child's primary relations is stored in implicit memory, where it constitutes an unconscious nucleus of the self which is not repressed and which influences the person's affective, emotional, cognitive and sexual life even as an adult. In the analytic relationship this unconscious part can emerge essentially through certain modes of communication (tone of voice, rhythm and prosody of the voice, and structure and tempo of speech), which could be called the 'musical dimension' of the transference, and through dream representations. Besides work on the transference, the critical component of the therapeutic action of psychoanalysis is stated to consist in work on dreams as pictographic and symbolic representations of implicit pre-symbolic and pre-verbal experiences. A case history is presented in which dream interpretation allowed some of a patient's early unconscious, non-repressed experiences to be emotionally reconstructed and made thinkable even though they were not actually remembered.

  20. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  1. Memory for Multiple Visual Ensembles in Infancy

    ERIC Educational Resources Information Center

    Zosh, Jennifer M.; Halberda, Justin; Feigenson, Lisa

    2011-01-01

    The number of individual items that can be maintained in working memory is limited. One solution to this problem is to store representations of ensembles that contain summary information about large numbers of items (e.g., the approximate number or cumulative area of a group of many items). Here we explored the developmental origins of ensemble…

  2. From Mimicry to Language: A Neuroanatomically Based Evolutionary Model of the Emergence of Vocal Language

    PubMed Central

    Poliva, Oren

    2016-01-01

    The auditory cortex communicates with the frontal lobe via the middle temporal gyrus (auditory ventral stream; AVS) or the inferior parietal lobule (auditory dorsal stream; ADS). Whereas the AVS is ascribed only with sound recognition, the ADS is ascribed with sound localization, voice detection, prosodic perception/production, lip-speech integration, phoneme discrimination, articulation, repetition, phonological long-term memory and working memory. Previously, I interpreted the juxtaposition of sound localization, voice detection, audio-visual integration and prosodic analysis, as evidence that the behavioral precursor to human speech is the exchange of contact calls in non-human primates. Herein, I interpret the remaining ADS functions as evidence of additional stages in language evolution. According to this model, the role of the ADS in vocal control enabled early Homo (Hominans) to name objects using monosyllabic calls, and allowed children to learn their parents' calls by imitating their lip movements. Initially, the calls were forgotten quickly but gradually were remembered for longer periods. Once the representations of the calls became permanent, mimicry was limited to infancy, and older individuals encoded in the ADS a lexicon for the names of objects (phonological lexicon). Consequently, sound recognition in the AVS was sufficient for activating the phonological representations in the ADS and mimicry became independent of lip-reading. Later, by developing inhibitory connections between acoustic-syllabic representations in the AVS and phonological representations of subsequent syllables in the ADS, Hominans became capable of concatenating the monosyllabic calls for repeating polysyllabic words (i.e., developed working memory). Finally, due to strengthening of connections between phonological representations in the ADS, Hominans became capable of encoding several syllables as a single representation (chunking). Consequently, Hominans began vocalizing and mimicking/rehearsing lists of words (sentences). PMID:27445676

  3. A common neural substrate for language production and verbal working memory.

    PubMed

    Acheson, Daniel J; Hamidi, Massihullah; Binder, Jeffrey R; Postle, Bradley R

    2011-06-01

    Verbal working memory (VWM), the ability to maintain and manipulate representations of speech sounds over short periods, is held by some influential models to be independent from the systems responsible for language production and comprehension [e.g., Baddeley, A. D. Working memory, thought, and action. New York, NY: Oxford University Press, 2007]. We explore the alternative hypothesis that maintenance in VWM is subserved by temporary activation of the language production system [Acheson, D. J., & MacDonald, M. C. Verbal working memory and language production: Common approaches to the serial ordering of verbal information. Psychological Bulletin, 135, 50-68, 2009b]. Specifically, we hypothesized that for stimuli lacking a semantic representation (e.g., nonwords such as mun), maintenance in VWM can be achieved by cycling information back and forth between the stages of phonological encoding and articulatory planning. First, fMRI was used to identify regions associated with two different stages of language production planning: the posterior superior temporal gyrus (pSTG) for phonological encoding (critical for VWM of nonwords) and the middle temporal gyrus (MTG) for lexical-semantic retrieval (not critical for VWM of nonwords). Next, in the same subjects, these regions were targeted with repetitive transcranial magnetic stimulation (rTMS) during language production and VWM task performance. Results showed that rTMS to the pSTG, but not the MTG, increased error rates on paced reading (a language production task) and on delayed serial recall of nonwords (a test of VWM). Performance on a lexical-semantic retrieval task (picture naming), in contrast, was significantly sensitive to rTMS of the MTG. Because rTMS was guided by language production-related activity, these results provide the first causal evidence that maintenance in VWM directly depends on the long-term representations and processes used in speech production.

  4. Memory-Based Attention Capture when Multiple Items Are Maintained in Visual Working Memory

    PubMed Central

    Hollingworth, Andrew; Beck, Valerie M.

    2016-01-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search—an index of VWM guidance—is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when two colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. PMID:27123681

  5. Working Memory for Linguistic and Non-linguistic Manual Gestures: Evidence, Theory, and Application.

    PubMed

    Rudner, Mary

    2018-01-01

    Linguistic manual gestures are the basis of sign languages used by deaf individuals. Working memory and language processing are intimately connected and thus when language is gesture-based, it is important to understand related working memory mechanisms. This article reviews work on working memory for linguistic and non-linguistic manual gestures and discusses theoretical and applied implications. Empirical evidence shows that there are effects of load and stimulus degradation on working memory for manual gestures. These effects are similar to those found for working memory for speech-based language. Further, there are effects of pre-existing linguistic representation that are partially similar across language modalities. But above all, deaf signers score higher than hearing non-signers on an n-back task with sign-based stimuli, irrespective of their semantic and phonological content, but not with non-linguistic manual actions. This pattern may be partially explained by recent findings relating to cross-modal plasticity in deaf individuals. It suggests that in linguistic gesture-based working memory, semantic aspects may outweigh phonological aspects when processing takes place under challenging conditions. The close association between working memory and language development should be taken into account in understanding and alleviating the challenges faced by deaf children growing up with cochlear implants as well as other clinical populations.

  6. Working Memory for Linguistic and Non-linguistic Manual Gestures: Evidence, Theory, and Application

    PubMed Central

    Rudner, Mary

    2018-01-01

    Linguistic manual gestures are the basis of sign languages used by deaf individuals. Working memory and language processing are intimately connected and thus when language is gesture-based, it is important to understand related working memory mechanisms. This article reviews work on working memory for linguistic and non-linguistic manual gestures and discusses theoretical and applied implications. Empirical evidence shows that there are effects of load and stimulus degradation on working memory for manual gestures. These effects are similar to those found for working memory for speech-based language. Further, there are effects of pre-existing linguistic representation that are partially similar across language modalities. But above all, deaf signers score higher than hearing non-signers on an n-back task with sign-based stimuli, irrespective of their semantic and phonological content, but not with non-linguistic manual actions. This pattern may be partially explained by recent findings relating to cross-modal plasticity in deaf individuals. It suggests that in linguistic gesture-based working memory, semantic aspects may outweigh phonological aspects when processing takes place under challenging conditions. The close association between working memory and language development should be taken into account in understanding and alleviating the challenges faced by deaf children growing up with cochlear implants as well as other clinical populations. PMID:29867655

  7. Competition between items in working memory leads to forgetting.

    PubMed

    Lewis-Peacock, Jarrod A; Norman, Kenneth A

    2014-12-18

    Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting.

  8. Competition between items in working memory leads to forgetting

    PubMed Central

    Lewis-Peacock, Jarrod A.; Norman, Kenneth A.

    2014-01-01

    Switching attention from one thought to the next propels our mental lives forward. However, it is unclear how this thought-juggling affects our ability to remember these thoughts. Here we show that competition between the neural representations of pictures in working memory can impair subsequent recognition of those pictures. We use pattern classifiers to decode functional magnetic resonance imaging (fMRI) data from a retro-cueing task where participants juggle two pictures in working memory. Trial-by-trial fluctuations in neural dynamics are predictive of performance on a surprise recognition memory test: trials that elicit similar levels of classifier evidence for both pictures (indicating close competition) are associated with worse memory performance than trials where participants switch decisively from thinking about one picture to the other. This result is consistent with the non-monotonic plasticity hypothesis, which predicts that close competition can trigger weakening of memories that lose the competition, leading to subsequent forgetting. PMID:25519874

  9. Diffusion theory of decision making in continuous report.

    PubMed

    Smith, Philip L

    2016-07-01

    I present a diffusion model for decision making in continuous report tasks, in which a continuous, circularly distributed, stimulus attribute in working memory is matched to a representation of the attribute in the stimulus display. Memory retrieval is modeled as a 2-dimensional diffusion process with vector-valued drift on a disk, whose bounding circle represents the decision criterion. The direction and magnitude of the drift vector describe the identity of the stimulus and the quality of its representation in memory, respectively. The point at which the diffusion exits the disk determines the reported value of the attribute and the time to exit the disk determines the decision time. Expressions for the joint distribution of decision times and report outcomes are obtained by means of the Girsanov change-of-measure theorem, which allows the properties of the nonzero-drift diffusion process to be characterized as a function of a Euclidian-distance Bessel process. Predicted report precision is equal to the product of the decision criterion and the drift magnitude and follows a von Mises distribution, in agreement with the treatment of precision in the working memory literature. Trial-to-trial variability in criterion and drift rate leads, respectively, to direct and inverse relationships between report accuracy and decision times, in agreement with, and generalizing, the standard diffusion model of 2-choice decisions. The 2-dimensional model provides a process account of working memory precision and its relationship with the diffusion model, and a new way to investigate the properties of working memory, via the distributions of decision times. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Dynamic search and working memory in social recall.

    PubMed

    Hills, Thomas T; Pachur, Thorsten

    2012-01-01

    What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to recall individuals from their personal social networks and measured each participant's working memory capacity. Additionally, participants provided social-category and contact-frequency information about the recalled individuals as well as information about the social proximity among the recalled individuals. On the basis of these data, we tested various computational models of memory search regarding their ability to account for the patterns in which participants recalled from social memory. Although recall patterns showed clustering based on social categories, models assuming dynamic transitions between representations cued by social proximity and frequency information predicted participants' recall patterns best-no additional explanatory power was gained from social-category information. Moreover, individual differences in the time between transitions were positively correlated with differences in working memory capacity. These results highlight the role of social proximity in structuring social memory and elucidate the role of working memory for maintaining search criteria during search within that structure.

  11. Electrophysiological evidence that top-down knowledge controls working memory processing for subsequent visual search.

    PubMed

    Kawashima, Tomoya; Matsumoto, Eriko

    2016-03-23

    Items in working memory guide visual attention toward a memory-matching object. Recent studies have shown that when searching for an object this attentional guidance can be modulated by knowing the probability that the target will match an item in working memory. Here, we recorded the P3 and contralateral delay activity to investigate how top-down knowledge controls the processing of working memory items. Participants performed memory task (recognition only) and memory-or-search task (recognition or visual search) in which they were asked to maintain two colored oriented bars in working memory. For visual search, we manipulated the probability that target had the same color as memorized items (0, 50, or 100%). Participants knew the probabilities before the task. Target detection in 100% match condition was faster than that in 50% match condition, indicating that participants used their knowledge of the probabilities. We found that the P3 amplitude in 100% condition was larger than in other conditions and that contralateral delay activity amplitude did not vary across conditions. These results suggest that more attention was allocated to the memory items when observers knew in advance that their color would likely match a target. This led to better search performance despite using qualitatively equal working memory representations.

  12. Differential involvement of knowledge representation and executive control in episodic memory performance in young and older adults.

    PubMed

    Bouazzaoui, Badiâa; Fay, Séverine; Taconnat, Laurence; Angel, Lucie; Vanneste, Sandrine; Isingrini, Michel

    2013-06-01

    Craik and Bialystok (2006, 2008) postulated that examining the evolution of knowledge representation and control processes across the life span could help in understanding age-related cognitive changes. The present study explored the hypothesis that knowledge representation and control processes are differentially involved in the episodic memory performance of young and older adults. Young and older adults were administered a cued-recall task and tests of crystallized knowledge and executive functioning to measure representation and control processes, respectively. Results replicate the classic finding that executive and cued-recall performance decline with age, but crystallized-knowledge performance does not. Factor analysis confirmed the independence of representation and control. Correlation analyses showed that the memory performance of younger adults was correlated with representation but not with control measures, whereas the memory performance of older adults was correlated with both representation and control measures. Regression analyses indicated that the control factor was the main predictor of episodic-memory performance for older adults, with the representation factor adding an independent contribution, but the representation factor was the sole predictor for young adults. This finding supports the view that factors sustaining episodic memory vary from young adulthood to old age; representation was shown to be important throughout adulthood, and control was also important for older adults. The results also indicated that control and representation modulate age-group-related variance in episodic memory.

  13. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    PubMed

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  14. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task

    PubMed Central

    Mochizuki, Kei

    2015-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. PMID:26490287

  15. Distinguishing discrete and gradient category structure in language: Insights from verb-particle constructions.

    PubMed

    Brehm, Laurel; Goldrick, Matthew

    2017-10-01

    The current work uses memory errors to examine the mental representation of verb-particle constructions (VPCs; e.g., make up the story, cut up the meat). Some evidence suggests that VPCs are represented by a cline in which the relationship between the VPC and its component elements ranges from highly transparent (cut up) to highly idiosyncratic (make up). Other evidence supports a multiple class representation, characterizing VPCs as belonging to discretely separated classes differing in semantic and syntactic structure. We outline a novel paradigm to investigate the representation of VPCs in which we elicit illusory conjunctions, or memory errors sensitive to syntactic structure. We then use a novel application of piecewise regression to demonstrate that the resulting error pattern follows a cline rather than discrete classes. A preregistered replication verifies these findings, and a final preregistered study verifies that these errors reflect syntactic structure. This provides evidence for gradient rather than discrete representations across levels of representation in language processing. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Reading Comprehension in Children with ADHD: Cognitive Underpinnings of the Centrality Deficit

    PubMed Central

    Miller, Amanda C.; Keenan, Janice M.; Betjemann, Rebecca S.; Willcutt, Erik; Pennington, Bruce F.; Olson, Richard K.

    2012-01-01

    We examined reading comprehension in children with ADHD by assessing their ability to build a coherent mental representation that allows them to recall central and peripheral information. We compared children with ADHD (mean age 9.78) to word reading-matched controls (mean age 9.89) on their ability to retell a passage. We found that even though children with ADHD recalled more central than peripheral information, they showed their greatest deficit, relative to controls, on central information – a centrality deficit (Miller & Keenan, 2009). We explored the cognitive underpinnings of this deficit using regressions to compare how well cognitive factors (working memory, inhibition, processing speed, and IQ) predicted the ability to recall central information, after controlling for word reading ability, and whether these cognitive factors interacted with ADHD symptoms. Working memory accounted for the most unique variance. Although previous evidence for reading comprehension difficulties in children with ADHD have been mixed, this study suggests that even when word reading ability is controlled, children with ADHD have difficulty building a coherent mental representation, and this difficulty is likely related to deficits in working memory. PMID:23054132

  17. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    PubMed

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Representational Consequences of Intentional Forgetting: Impairments to Both the Probability and Fidelity of Long-Term Memory

    PubMed Central

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1–E3). Memory was tested using an old–new (E1–E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2–E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more “old” or “remember” responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2–E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. PMID:26709589

  19. The representational consequences of intentional forgetting: Impairments to both the probability and fidelity of long-term memory.

    PubMed

    Fawcett, Jonathan M; Lawrence, Michael A; Taylor, Tracy L

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1-E3). Memory was tested using an old-new (E1-E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2-E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more "old" or "remember" responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2-E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. (c) 2015 APA, all rights reserved).

  20. Bilingualism Enriches the Poor: Enhanced Cognitive Control in Low-Income Minority Children

    PubMed Central

    Engel de Abreu, Pascale M. J.; Cruz-Santos, Anabela; Tourinho, Carlos J.; Martin, Romain; Bialystok, Ellen

    2014-01-01

    This study explores whether the cognitive advantage associated with bilingualism in executive functioning extends to young immigrant children challenged by poverty and, if it does, which specific processes are most affected. In the study reported here, 40 Portuguese-Luxembourgish bilingual children from low-income immigrant families in Luxembourg and 40 matched monolingual children from Portugal completed visuospatial tests of working memory, abstract reasoning, selective attention, and interference suppression. Two broad cognitive factors of executive functioning—representation (abstract reasoning and working memory) and control (selective attention and interference suppression)—emerged from principal component analysis. Whereas there were no group differences in representation, the bilinguals performed significantly better than did the monolinguals in control. These results demonstrate, first, that the bilingual advantage is neither confounded with nor limited by socioeconomic and cultural factors and, second, that separable aspects of executive functioning are differentially affected by bilingualism. The bilingual advantage lies in control but not in visuospatial representational processes. PMID:23044796

  1. Accuracy and confidence of visual short-term memory do not go hand-in-hand: behavioral and neural dissociations.

    PubMed

    Bona, Silvia; Silvanto, Juha

    2014-01-01

    Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue-target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation.

  2. Accuracy and Confidence of Visual Short-Term Memory Do Not Go Hand-In-Hand: Behavioral and Neural Dissociations

    PubMed Central

    Bona, Silvia; Silvanto, Juha

    2014-01-01

    Currently influential models of working memory posit that memory content is highly accessible to conscious inspection. These models predict that metacognition of memory performance should go hand-in-hand with the accuracy of the underlying memory representation. To test this view, we investigated how visual information presented during the maintenance period affects VSTM accuracy and confidence. We used a delayed cue–target orientation discrimination task in which participants were asked to hold in memory a grating, and during the maintenance period a second memory cue could be presented. VSTM accuracy of the first memory cue was impaired when the orientation of the second memory cue was sufficiently different. However, participants' response confidence was reduced whenever the second memory cue was presented; thus VSTM accuracy and confidence were dissociated. In a second experiment, we applied transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (DLPFC) to investigate the causal role of this region in VSTM metacognition. Relative to the sham condition, anodal tDCS induced a general reduction in confidence ratings but did not affect VSTM accuracy. Overall, these results indicate that our metacognition of memory performance is influenced by factors other than the accuracy of the underlying memory representation. PMID:24663094

  3. Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load

    PubMed Central

    Burke, C. J.; Seifritz, E.; Tobler, P. N.

    2017-01-01

    Abstract Adaptation facilitates neural representation of a wide range of diverse inputs, including reward values. Adaptive value coding typically relies on contextual information either obtained from the environment or retrieved from and maintained in memory. However, it is unknown whether having to retrieve and maintain context information modulates the brain’s capacity for value adaptation. To address this issue, we measured hemodynamic responses of the prefrontal cortex (PFC) in two studies on risky decision-making. In each trial, healthy human subjects chose between a risky and a safe alternative; half of the participants had to remember the risky alternatives, whereas for the other half they were presented visually. The value of safe alternatives varied across trials. PFC responses adapted to contextual risk information, with steeper coding of safe alternative value in lower-risk contexts. Importantly, this adaptation depended on working memory load, such that response functions relating PFC activity to safe values were steeper with presented versus remembered risk. An independent second study replicated the findings of the first study and showed that similar slope reductions also arose when memory maintenance demands were increased with a secondary working memory task. Formal model comparison showed that a divisive normalization model fitted effects of both risk context and working memory demands on PFC activity better than alternative models of value adaptation, and revealed that reduced suppression of background activity was the critical parameter impairing normalization with increased memory maintenance demand. Our findings suggest that mnemonic processes can constrain normalization of neural value representations. PMID:28462394

  4. Where to start? Bottom-up attention improves working memory by determining encoding order.

    PubMed

    Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot

    2016-12-01

    The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    PubMed

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  6. Working Memory in Students with Mathematical Difficulties

    NASA Astrophysics Data System (ADS)

    Nur, I. R. D.; Herman, T.; Ningsih, S.

    2018-04-01

    Learning process is the activities that has important role because this process is one of the all factors that establish students success in learning. oftentimes we find so many students get the difficulties when they study mathematics. This condition is not only because of the outside factor but also it comes from the inside. The purpose of this research is to analyze and give the representation how students working memory happened in physical education students for basic statistics subjects which have mathematical difficulties. The subjects are 4 students which have a mathematical difficulties. The research method is case study and when the describe about students working memory are explanated deeply with naturalistic observation. Based on this research, it was founded that 4 students have a working memory deficit in three components. The components are phonological loop, visuospatial sketchpad, dan episodic buffer.

  7. Magnitude Representation and Working Memory Updating in Children With Arithmetic and Reading Comprehension Disabilities.

    PubMed

    Pelegrina, Santiago; Capodieci, Agnese; Carretti, Barbara; Cornoldi, Cesare

    2015-01-01

    It has been argued that children with learning disabilities (LD) encounter severe problems in working memory (WM) tasks, especially when they need to update information stored in their WM. It is not clear, however, to what extent this is due to a generally poor updating ability or to a difficulty specific to the domain to be processed. To examine this issue, two groups of children with arithmetic or reading comprehension LD and a group of typically developing children (9 to 10 years old) were assessed using two updating tasks requiring to select the smallest numbers or objects presented. The results showed that children with an arithmetic disability failed in a number updating task, but not in the object updating task. The opposite was true for the group with poor reading comprehension, whose performance was worse in the object than in the number updating task. It may be concluded that the problem of WM updating in children with LD is also due to a poor representation of the material to be updated. In addition, our findings suggest that the mental representation of the size of objects relates to the semantic representation of the objects' properties and differs from the quantitative representation of numbers. © Hammill Institute on Disabilities 2014.

  8. Representing exact number visually using mental abacus.

    PubMed

    Frank, Michael C; Barner, David

    2012-02-01

    Mental abacus (MA) is a system for performing rapid and precise arithmetic by manipulating a mental representation of an abacus, a physical calculation device. Previous work has speculated that MA is based on visual imagery, suggesting that it might be a method of representing exact number nonlinguistically, but given the limitations on visual working memory, it is unknown how MA structures could be stored. We investigated the structure of the representations underlying MA in a group of children in India. Our results suggest that MA is represented in visual working memory by splitting the abacus into a series of columns, each of which is independently stored as a unit with its own detailed substructure. In addition, we show that the computations of practiced MA users (but not those of control participants) are relatively insensitive to verbal interference, consistent with the hypothesis that MA is a nonlinguistic format for exact numerical computation.

  9. What's the Problem? Familiarity Working Memory, and Transfer in a Problem-Solving Task.

    PubMed

    Kole, James A; Snyder, Hannah R; Brojde, Chandra L; Friend, Angela

    2015-01-01

    The contributions of familiarity and working memory to transfer were examined in the Tower of Hanoi task. Participants completed 3 different versions of the task: a standard 3-disk version, a clothing exchange task that included familiar semantic content, and a tea ceremony task that included unfamiliar semantic content. The constraints on moves were equivalent across tasks, and each could be solved with the same sequence of movements. Working memory demands were manipulated by the provision of a (static or dynamic) visual representation of the problem. Performance was equivalent for the standard Tower of Hanoi and clothing exchange tasks but worse for the tea ceremony task, and it decreased with increasing working memory demands. Furthermore, the standard Tower of Hanoi task and clothing exchange tasks independently, additively, and equivalently transferred to subsequent tasks, whereas the tea ceremony task did not. The results suggest that both familiarity and working memory demands determine overall level of performance, whereas familiarity influences transfer.

  10. Real-world spatial regularities affect visual working memory for objects.

    PubMed

    Kaiser, Daniel; Stein, Timo; Peelen, Marius V

    2015-12-01

    Traditional memory research has focused on measuring and modeling the capacity of visual working memory for simple stimuli such as geometric shapes or colored disks. Although these studies have provided important insights, it is unclear how their findings apply to memory for more naturalistic stimuli. An important aspect of real-world scenes is that they contain a high degree of regularity: For instance, lamps appear above tables, not below them. In the present study, we tested whether such real-world spatial regularities affect working memory capacity for individual objects. Using a delayed change-detection task with concurrent verbal suppression, we found enhanced visual working memory performance for objects positioned according to real-world regularities, as compared to irregularly positioned objects. This effect was specific to upright stimuli, indicating that it did not reflect low-level grouping, because low-level grouping would be expected to equally affect memory for upright and inverted displays. These results suggest that objects can be held in visual working memory more efficiently when they are positioned according to frequently experienced real-world regularities. We interpret this effect as the grouping of single objects into larger representational units.

  11. Cognitive control of familiarity: directed forgetting reduces proactive interference in working memory.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2014-03-01

    Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.

  12. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.

    PubMed

    Johnson, Jeffrey S; Spencer, John P

    2016-05-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay.

  13. Global neural pattern similarity as a common basis for categorization and recognition memory.

    PubMed

    Davis, Tyler; Xue, Gui; Love, Bradley C; Preston, Alison R; Poldrack, Russell A

    2014-05-28

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. Copyright © 2014 the authors 0270-6474/14/347472-13$15.00/0.

  14. Representational Constraints on the Development of Memory and Metamemory: A Developmental-Representational Theory

    ERIC Educational Resources Information Center

    Ceci, Stephen J.; Fitneva, Stanka A.; Williams, Wendy M.

    2010-01-01

    Traditional accounts of memory development suggest that maturation of prefrontal cortex (PFC) enables efficient metamemory, which enhances memory. An alternative theory is described, in which changes in early memory and metamemory are mediated by representational changes, independent of PFC maturation. In a pilot study and Experiment 1, younger…

  15. [The fragmentation of representational space in schizophrenia].

    PubMed

    Plagnol, A; Oïta, M; Montreuil, M; Granger, B; Lubart, T

    2003-01-01

    Existent neurocognitive models of schizophrenia converge towards a core of impairments involving working memory, context processing, action planning, controlled and intentional processing. However, the emergence of this core remains itself difficult to explain and more specific hypotheses do not explain the heterogeneity of schizophrenia. To overcome these limits, we propose a new paradigm based on representational theory from cognitive science. Some recent developments of this theory enable us to describe a subjective universe as a representational space which is displayed from memory. We outline a conceptual framework to construct such a representational space from analogical -representations that can be activated in working memory and are connected to a network of symbolic structures. These connections are notably made through an analytic process of the analogical fragments, which involves the attentional focus. This framework allows us to define rigorously some defense processes in response to traumatic tensions that are expressed on the representational space. The fragmentation of representational space is a consequence of a defensive denial based on an impairment of the analytic process. The fragmentation forms some parasitic areas in memory which are excluded from the main part of the representational space and disturb information processing. The key clinical concepts of paranoid syndromes can be defined in this conceptual framework: mental automatism, delusional intuition, acute destructuration, psychotic dissociation, and autistic withdrawal. We show that these syndromes imply each other, which in return increases the fragmentation of the representational space. Some new concepts emerge naturally in this framework, such as the concept of "suture" which is defined as a link between a parasitic area and the main representational space. Schizophrenia appears as a borderline case of fragmentation of the representational space. This conceptual framework is compatible with numerous etiological factors. Multiple clinical forms can be differentiated in accordance with the persistence of parasitic areas, the degree of fragmentation, and the formation of sutures. We use this approach to account for an empirical study concerning the analysis of analogical representations in schizophrenia. We used the Parallel Visual Information Processing Test (PVIPT) which assesses the analysis of interfering visual information. Subjects were asked to connect several small geometric figures printed on a transparency. The transparency was displayed above four photographs which were the interfering material. Then, subjects completed three tasks concerning the photographs: a recognition task, a recall task, and an affective qualification task. Using a case-by-case study, this test allows us to access the defense processes of the subjects, which is not possible with the usual methods in cognitive psychopathology. Twelve clinically-stable schizophrenic subjects participated in the study which also included a self-assessment of alexithymia by the Toronto Alexithymia Scale. We obtained 2 main results: (a) creation of items in recall or false recognition by 8 subjects, and (b) lack of the usual -negative correlations between the alexithymia score and the recall, recognition and affective qualification scores in the PVIPT. These 2 results contrast with what has been previously observed for alexithymia using the same methodology. The result (a) confirms an interfering activation in schizophrenic memory, which can be interpreted in our framework as indicative of parasitic areas. The creation of items suggests the formation of sutures between the semantic content of photographs and some delusional fragments. The result (b) suggests that the apparent alexithymia in schizophrenia is a defense against interfering activation in parasitic areas. We underline the interest of individual protocols to exhibit the dynamic interplay between an interfering activity in memory and a defensive flattening of affects.

  16. Long-term semantic representations moderate the effect of attentional refreshing on episodic memory.

    PubMed

    Loaiza, Vanessa M; Duperreault, Kayla A; Rhodes, Matthew G; McCabe, David P

    2015-02-01

    The McCabe effect (McCabe, Journal of Memory and Language 58:480-494, 2008) refers to an advantage in episodic memory (EM) retrieval for memoranda studied in complex span versus simple span tasks, particularly for memoranda presented in earlier serial positions. This finding has been attributed to the necessity to refresh memoranda during complex span tasks that, in turn, promotes content-context binding in working memory (WM). Several frameworks have conceptualized WM as being embedded in long-term memory. Thus, refreshing may be less efficient when memoranda are not well-established in long-term semantic memory (SM). To investigate this, we presented words and nonwords in simple and complex span trials in order to manipulate the long-term semantic representations of the memoranda with the requirement to refresh the memoranda during WM. A recognition test was administered that required participants to make a remember-know decision for each memorandum recognized as old. The results replicated the McCabe effect, but only for words, and the beneficial effect of refreshing opportunities was exclusive to recollection. These results extend previous research by indicating that the predictive relationship between WM refreshing and long-term EM is specific to recollection and, furthermore, moderated by representations in long-term SM. This supports the predictions of WM frameworks that espouse the importance of refreshing in content-context binding, but also those that view WM as being an activated subset of and, therefore, constrained by the contents of long-term memory.

  17. Maintaining the ties that bind: the role of an intermediate visual memory store in the persistence of awareness.

    PubMed

    Ferber, Susanne; Emrich, Stephen M

    2007-03-01

    Segregation and feature binding are essential to the perception and awareness of objects in a visual scene. When a fragmented line-drawing of an object moves relative to a background of randomly oriented lines, the previously hidden object is segregated from the background and consequently enters awareness. Interestingly, in such shape-from-motion displays, the percept of the object persists briefly when the motion stops, suggesting that the segregated and bound representation of the object is maintained in awareness. Here, we tested whether this persistence effect is mediated by capacity-limited working-memory processes, or by the amount of object-related information available. The experiments demonstrate that persistence is affected mainly by the proportion of object information available and is independent of working-memory limits. We suggest that this persistence effect can be seen as evidence for an intermediate, form-based memory store mediating between sensory and working memory.

  18. Developmental improvements in the resolution and capacity of visual working memory share a common source

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.

    2016-01-01

    The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children’s performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264

  19. Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children.

    PubMed

    Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En

    2015-05-01

    The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The special role of item-context associations in the direct-access region of working memory.

    PubMed

    Campoy, Guillermo

    2017-09-01

    The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.

  1. Representational constraints on the development of memory and metamemory: a developmental-representational theory.

    PubMed

    Ceci, Stephen J; Fitneva, Stanka A; Williams, Wendy M

    2010-04-01

    Traditional accounts of memory development suggest that maturation of prefrontal cortex (PFC) enables efficient metamemory, which enhances memory. An alternative theory is described, in which changes in early memory and metamemory are mediated by representational changes, independent of PFC maturation. In a pilot study and Experiment 1, younger children failed to recognize previously presented pictures, yet the children could identify the context in which they occurred, suggesting these failures resulted from inefficient metamemory. Older children seldom exhibited such failure. Experiment 2 established that this was not due to retrieval-time recoding. Experiment 3 suggested that young children's representation of a picture's attributes explained their metamemory failure. Experiment 4 demonstrated that metamemory is age-invariant when representational quality is controlled: When stimuli were equivalently represented, age differences in memory and metamemory declined. These findings do not support the traditional view that as children develop, neural maturation permits more efficient monitoring, which leads to improved memory. These findings support a theory based on developmental-representational synthesis, in which constraints on metamemory are independent of neurological development; representational features drive early memory to a greater extent than previously acknowledged, suggesting that neural maturation has been overimputed as a source of early metamemory and memory failure. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  2. A Probabilistic Palimpsest Model of Visual Short-term Memory

    PubMed Central

    Matthey, Loic; Bays, Paul M.; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204

  3. A probabilistic palimpsest model of visual short-term memory.

    PubMed

    Matthey, Loic; Bays, Paul M; Dayan, Peter

    2015-01-01

    Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.

  4. Memory-based attention capture when multiple items are maintained in visual working memory.

    PubMed

    Hollingworth, Andrew; Beck, Valerie M

    2016-07-01

    Efficient visual search requires that attention is guided strategically to relevant objects, and most theories of visual search implement this function by means of a target template maintained in visual working memory (VWM). However, there is currently debate over the architecture of VWM-based attentional guidance. We contrasted a single-item-template hypothesis with a multiple-item-template hypothesis, which differ in their claims about structural limits on the interaction between VWM representations and perceptual selection. Recent evidence from van Moorselaar, Theeuwes, and Olivers (2014) indicated that memory-based capture during search, an index of VWM guidance, is not observed when memory set size is increased beyond a single item, suggesting that multiple items in VWM do not guide attention. In the present study, we maximized the overlap between multiple colors held in VWM and the colors of distractors in a search array. Reliable capture was observed when 2 colors were held in VWM and both colors were present as distractors, using both the original van Moorselaar et al. singleton-shape search task and a search task that required focal attention to array elements (gap location in outline square stimuli). In the latter task, memory-based capture was consistent with the simultaneous guidance of attention by multiple VWM representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of emotional stimuli on working memory processes in male criminal offenders with borderline and antisocial personality disorder.

    PubMed

    Prehn, Kristin; Schulze, Lars; Rossmann, Sabine; Berger, Christoph; Vohs, Knut; Fleischer, Monika; Hauenstein, Karlheinz; Keiper, Peter; Domes, Gregor; Herpertz, Sabine C

    2013-02-01

    OBJECTIVE. In the present study, we aimed to investigate the influence of concurrently presented emotional stimuli on cognitive task processing in violent criminal offenders primarily characterized by affective instability. METHODS. Fifteen male criminal offenders with antisocial and borderline personality disorder (ASPD and BPD) and 17 healthy controls underwent functional magnetic resonance imaging (fMRI) while performing a working memory task with low and high working memory load. In a second experimental run, to investigate the interaction of emotion and cognition, we presented emotionally neutral, low, or high salient social scenes in the background of the task. RESULTS. During the memory task without pictures, both groups did not differ in general task performance and neural representation of working memory processes. During the memory task with emotional background pictures, however, ASPD-BPD subjects compared to healthy controls showed delayed responses and enhanced activation of the left amygdala in the presence of emotionally high salient pictures independent of working memory load. CONCLUSIONS. These results illustrate an interaction of emotion and cognition in affective instable individuals with enhanced reactivity to emotionally salient stimuli which might be an important factor regarding the understanding of aggressive and violent behaviour in these individuals.

  7. Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Rabinovich, Mikhail I.

    2009-11-01

    The capacity of working memory (WM), a short-term buffer for information in the brain, is limited. We suggest a model for sequential WM that is based upon winnerless competition amongst representations of available informational items. Analytical results for the underlying mathematical model relate WM capacity and relative lateral inhibition in the corresponding neural network. This implies an upper bound for WM capacity, which is, under reasonable neurobiological assumptions, close to the “magical number seven.”

  8. Neural correlates of working memory development in adolescent primates

    PubMed Central

    Zhou, Xin; Zhu, Dantong; Qi, Xue-Lian; Li, Sihai; King, Samson G.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos

    2016-01-01

    Working memory ability matures after puberty, in parallel with structural changes in the prefrontal cortex, but little is known about how changes in prefrontal neuronal activity mediate this cognitive improvement in primates. To address this issue, we compare behavioural performance and neurophysiological activity in monkeys as they transitioned from puberty into adulthood. Here we report that monkeys perform working memory tasks reliably during puberty and show modest improvement in adulthood. The adult prefrontal cortex is characterized by increased activity during the delay period of the task but no change in the representation of stimuli. Activity evoked by distracting stimuli also decreases in the adult prefrontal cortex. The increase in delay period activity relative to the baseline activity of prefrontal neurons is the best correlate of maturation and is not merely a consequence of improved performance. Our results reveal neural correlates of the working memory improvement typical of primate adolescence. PMID:27827365

  9. Remembering Complex Objects in Visual Working Memory: Do Capacity Limits Restrict Objects or Features?

    PubMed Central

    Hardman, Kyle; Cowan, Nelson

    2014-01-01

    Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739

  10. Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task.

    PubMed

    Mochizuki, Kei; Funahashi, Shintaro

    2016-01-01

    While neurons in the lateral prefrontal cortex (PFC) encode spatial information during the performance of working memory tasks, they are also known to participate in subjective behavior such as spatial attention and action selection. In the present study, we analyzed the activity of primate PFC neurons during the performance of a free choice memory-guided saccade task in which the monkeys needed to choose a saccade direction by themselves. In trials when the receptive field location was subsequently chosen by the animal, PFC neurons with spatially selective visual response started to show greater activation before cue onset. This result suggests that the fluctuation of firing before cue presentation prematurely biased the representation of a certain spatial location and eventually encouraged the subsequent choice of that location. In addition, modulation of the activity by the animal's choice was observed only in neurons with high sustainability of activation and was also dependent on the spatial configuration of the visual cues. These findings were consistent with known characteristics of PFC neurons in information maintenance in spatial working memory function. These results suggest that precue fluctuation of spatial representation was shared and enhanced through the working memory network in the PFC and could finally influence the animal's free choice of saccade direction. The present study revealed that the PFC plays an important role in decision making in a free choice condition and that the dynamics of decision making are constrained by the network architecture embedded in this cortical area. Copyright © 2016 the American Physiological Society.

  11. Developmental origins of recoding and decoding in memory.

    PubMed

    Kibbe, Melissa M; Feigenson, Lisa

    2014-12-01

    Working memory is severely limited in both adults and children, but one way that adults can overcome this limit is through the process of recoding. Recoding happens when representations of individual items are chunked together into a higher order representation, and the chunk is assigned a label. That label can then be decoded to retrieve the individual items from long-term memory. Whereas this ability has been extensively studied in adults (as, for example, in classic studies of memory in chess), little is known about recoding's developmental origins. Here we asked whether 2- to 3-year-old children also can recode-that is, can they restructure representations of individual objects into a higher order chunk, assign this new representation a verbal label, and then later decode the label to retrieve the represented individuals from memory. In Experiments 1 and 2, we showed children identical blocks that could be connected to make tools. Children learned a novel name for a tool that could be built from two blocks, and for a tool that could be built from three blocks. Later we told children that one of the tools was hidden in a box, with no visual information provided. Children were allowed to search the box and retrieve varying numbers of blocks. Critically, the retrieved blocks were identical and unconnected, so the only way children could know whether any blocks remained was by using the verbal label to recall how many objects comprised each tool (or chunk). We found that even children who could not yet count adjusted their searching of the box depending on the label they had heard. This suggests that they had recoded representations of individual blocks into higher-order chunks, attached labels to the chunks, and then later decoded the labels to infer how many blocks were hidden. In Experiments 3 and 4 we asked whether recoding also can expand the number of individual objects children could remember, as in the classic studies with adults. We found that when no information was provided to support recoding, children showed the standard failure to remember more than three hidden objects at once. But when provided recoding information, children successfully represented up to five individual objects in the box, thereby overcoming typical working memory limits. These results are the first demonstration of recoding by young children; we close by discussing their implications for understanding the structure of memory throughout the lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Prolonged focal attention without binding: Tracking a ball for half a minute without remembering its color.

    PubMed

    Chen, Hui; Swan, Garrett; Wyble, Brad

    2016-02-01

    Conventional theories of cognition focus on attention as the primary determinant of working memory contents. However, here we show that about one third of observers could not report the color of a ball that they had just been specifically attending for 5-59 s. This counterintuitive result was obtained when observers repeatedly counted the passes of one of two different colored balls among actors in a video and were then unexpectedly asked to report the color of the ball that they had just tracked. Control trials demonstrated that observers' color report performance increased dramatically once they had an expectation to do so. Critically, most of the incorrect color responses were the distractor ball color, which suggested memory storage without binding. Therefore, these results, together with other recent findings argued against two opposing theories: object-based encoding and feature-based encoding. Instead, we propose a new hypothesis by suggesting that the failure to report color is because participants might only activate the color representation in long-term memory without binding it to object representation in working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Interaction between Semantic Representation and Episodic Memory.

    PubMed

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  14. A neural network model of semantic memory linking feature-based object representation and words.

    PubMed

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  15. Working memory capacity and controlled serial memory search.

    PubMed

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Processing statistics: an examination of focused and distributed attention using event related potentials.

    PubMed

    Baijal, Shruti; Nakatani, Chie; van Leeuwen, Cees; Srinivasan, Narayanan

    2013-06-07

    Human observers show remarkable efficiency in statistical estimation; they are able, for instance, to estimate the mean size of visual objects, even if their number exceeds the capacity limits of focused attention. This ability has been understood as the result of a distinct mode of attention, i.e. distributed attention. Compared to the focused attention mode, working memory representations under distributed attention are proposed to be more compressed, leading to reduced working memory loads. An alternate proposal is that distributed attention uses less structured, feature-level representations. These would fill up working memory (WM) more, even when target set size is low. Using event-related potentials, we compared WM loading in a typical distributed attention task (mean size estimation) to that in a corresponding focused attention task (object recognition), using a measure called contralateral delay activity (CDA). Participants performed both tasks on 2, 4, or 8 different-sized target disks. In the recognition task, CDA amplitude increased with set size; notably, however, in the mean estimation task the CDA amplitude was high regardless of set size. In particular for set-size 2, the amplitude was higher in the mean estimation task than in the recognition task. The result showed that the task involves full WM loading even with a low target set size. This suggests that in the distributed attention mode, representations are not compressed, but rather less structured than under focused attention conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Place Cells, Grid Cells, and Memory

    PubMed Central

    Moser, May-Britt; Rowland, David C.; Moser, Edvard I.

    2015-01-01

    The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382

  18. Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers

    ERIC Educational Resources Information Center

    Thompson, Clarissa A.; Siegler, Robert S.

    2010-01-01

    We investigated the relation between children's numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children's magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and…

  19. Vision and the representation of the surroundings in spatial memory

    PubMed Central

    Tatler, Benjamin W.; Land, Michael F.

    2011-01-01

    One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience. PMID:21242146

  20. Explaining lexical-semantic deficits in specific language impairment: the role of phonological similarity, phonological working memory, and lexical competition.

    PubMed

    Mainela-Arnold, Elina; Evans, Julia L; Coady, Jeffry A

    2010-12-01

    In this study, the authors investigated potential explanations for sparse lexical-semantic representations in children with specific language impairment (SLI) and typically developing peers. The role of auditory perception, phonological working memory, and lexical competition were investigated. Participants included 32 children (ages 8;5-12;3 [years;months]): Sixteen children with SLI and 16 typically developing age- and nonverbal IQ-matched peers (CA). Children's word definitions were investigated. The words to be defined were manipulated for phonological neighborhood density. Nonword repetition and two lexical competition measures were tested as predictors of word definition abilities. Children with SLI gave word definitions with fewer content details than children in the CA group. Compared with the CA group, the definitions of children in the SLI group were not disproportionately impacted by phonological neighborhood density. Lexical competition was a significant unique predictor of children's word definitions, but nonword repetition was not. Individual differences in richness of lexical semantic representations as well as differences between children with SLI and typically developing peers may-at least, in part-be explained by processes of competition. However, difficulty with auditory perception or phonological working memory does not fully explain difficulties in lexical semantics.

  1. Sensory processing patterns predict the integration of information held in visual working memory.

    PubMed

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Activation and binding in verbal working memory: a dual-process model for the recognition of nonwords.

    PubMed

    Oberauer, Klaus; Lange, Elke B

    2009-02-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.

  3. Visuospatial bootstrapping: implicit binding of verbal working memory to visuospatial representations in children and adults.

    PubMed

    Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J

    2014-03-01

    When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Low working memory capacity is only spuriously related to poor reading comprehension.

    PubMed

    Van Dyke, Julie A; Johns, Clinton L; Kukona, Anuenue

    2014-06-01

    Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Post-encoding control of working memory enhances processing of relevant information in rhesus monkeys (Macaca mulatta).

    PubMed

    Brady, Ryan J; Hampton, Robert R

    2018-06-01

    Working memory is a system by which a limited amount of information can be kept available for processing after the cessation of sensory input. Because working memory resources are limited, it is adaptive to focus processing on the most relevant information. We used a retro-cue paradigm to determine the extent to which monkey working memory possesses control mechanisms that focus processing on the most relevant representations. Monkeys saw a sample array of images, and shortly after the array disappeared, they were visually cued to a location that had been occupied by one of the sample images. The cue indicated which image should be remembered for the upcoming recognition test. By determining whether the monkeys were more accurate and quicker to respond to cued images compared to un-cued images, we tested the hypothesis that monkey working memory focuses processing on relevant information. We found a memory benefit for the cued image in terms of accuracy and retrieval speed with a memory load of two images. With a memory load of three images, we found a benefit in retrieval speed but only after shortening the onset latency of the retro-cue. Our results demonstrate previously unknown flexibility in the cognitive control of memory in monkeys, suggesting that control mechanisms in working memory likely evolved in a common ancestor of humans and monkeys more than 32 million years ago. Future work should be aimed at understanding the interaction between memory load and the ability to control memory resources, and the role of working memory control in generating differences in cognitive capacity among primates. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Unstable Memories Create a High-Level Representation that Enables Learning Transfer.

    PubMed

    Mosha, Neechi; Robertson, Edwin M

    2016-01-11

    A memory is unstable, making it susceptible to interference and disruption, after its acquisition [1-4]. The function or possible benefit of a memory being unstable at its acquisition is not well understood. Potentially, instability may be critical for the communication between recently acquired memories, which would allow learning in one task to be transferred to the other subsequent task [1, 5]. Learning may be transferred between any memories that are unstable, even between different types of memory. Here, we test the link between a memory being unstable and the transfer of learning to a different type of memory task. We measured how learning in one task transferred to and thus improved learning in a subsequent task. There was transfer from a motor skill to a word list task and, vice versa, from a word list to a motor skill task. What was transferred was a high-level relationship between elements, rather than knowledge of the individual elements themselves. Memory instability was correlated with subsequent transfer, suggesting that transfer was related to the instability of the memory. Using different methods, we stabilized the initial memory, preventing it from being susceptible to interference, and found that these methods consistently prevented transfer to the subsequent memory task. This suggests that the transfer of learning across diverse tasks is due to a high-level representation that can only be formed when a memory is unstable. Our work has identified an important function of memory instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    PubMed

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The removal of information from working memory.

    PubMed

    Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus

    2018-05-09

    What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.

  9. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  10. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  11. Arithmetic Memory Is Modality Specific.

    PubMed

    Myers, Timothy; Szücs, Dénes

    2015-01-01

    In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1-9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant's task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation.

  12. Arithmetic Memory Is Modality Specific

    PubMed Central

    Myers, Timothy; Szücs, Dénes

    2015-01-01

    In regards to numerical cognition and working memory, it is an open question as to whether numbers are stored into and retrieved from a central abstract representation or from separate notation-specific representations. This study seeks to help answer this by utilizing the numeral modality effect (NME) in three experiments to explore how numbers are processed by the human brain. The participants were presented with numbers (1–9) as either Arabic digits or written number words (Arabic digits and dot matrices in Experiment 2) at the first (S1) and second (S2) stimuli. The participant’s task was to add the first two stimuli together and verify whether the answer (S3), presented simultaneously with S2, was correct. We hypothesized that if reaction time (RT) at S2/S3 depends on the modality of S1 then numbers are retrieved from modality specific memory stores. Indeed, RT depended on the modality of S1 whenever S2 was an Arabic digit which argues against the concept of numbers being stored and retrieved from a central, abstract representation. PMID:26716692

  13. On Productive Knowledge and Levels of Questions.

    ERIC Educational Resources Information Center

    Andre, Thomas

    A model is proposed for memory that stresses a distinction between episodic memory for encoded personal experience and semantic memory for abstractors and generalizations. Basically, the model holds that questions influence the nature of memory representations formed during instruction, and that memory representation controls the way in which…

  14. Within-Category Decoding of Information in Different Attentional States in Short-Term Memory.

    PubMed

    LaRocque, Joshua J; Riggall, Adam C; Emrich, Stephen M; Postle, Bradley R

    2017-10-01

    A long-standing assumption of cognitive neuroscience has been that working memory (WM) is accomplished by sustained, elevated neural activity. More recently, theories of WM have expanded this view by describing different attentional states in WM with differing activation levels. Several studies have used multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data to study neural activity corresponding to these WM states. Intriguingly, no evidence was found for active neural representations for information held in WM outside the focus of attention ("unattended memory items," UMIs), suggesting that only attended memory items (AMIs) are accompanied by an active trace. However, these results depended on category-level decoding, which lacks sensitivity to neural representations of individual items. Therefore, we employed a WM task in which subjects remembered the directions of motion of two dot arrays, with a retrocue indicating which was relevant for an imminent memory probe (the AMI). This design allowed MVPA decoding of delay-period fMRI signal at the stimulus-item level, affording a more sensitive test of the neural representation of UMIs. Whereas evidence for the AMI was reliably high, evidence for the UMI dropped to baseline, consistent with the notion that different WM attentional states may have qualitatively different mechanisms of retention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Working Memory and Hearing Aid Processing: Literature Findings, Future Directions, and Clinical Applications

    PubMed Central

    Souza, Pamela; Arehart, Kathryn; Neher, Tobias

    2015-01-01

    Working memory—the ability to process and store information—has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This “mismatch” is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how) working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with “low alteration” processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges) in translating information on individual working memory into clinical treatment, including clinically feasible measures of working memory. PMID:26733899

  16. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  17. Gaze movements and spatial working memory in collision avoidance: a traffic intersection task

    PubMed Central

    Hardiess, Gregor; Hansmann-Roth, Sabrina; Mallot, Hanspeter A.

    2013-01-01

    Street crossing under traffic is an everyday activity including collision detection as well as avoidance of objects in the path of motion. Such tasks demand extraction and representation of spatio-temporal information about relevant obstacles in an optimized format. Relevant task information is extracted visually by the use of gaze movements and represented in spatial working memory. In a virtual reality traffic intersection task, subjects are confronted with a two-lane intersection where cars are appearing with different frequencies, corresponding to high and low traffic densities. Under free observation and exploration of the scenery (using unrestricted eye and head movements) the overall task for the subjects was to predict the potential-of-collision (POC) of the cars or to adjust an adequate driving speed in order to cross the intersection without collision (i.e., to find the free space for crossing). In a series of experiments, gaze movement parameters, task performance, and the representation of car positions within working memory at distinct time points were assessed in normal subjects as well as in neurological patients suffering from homonymous hemianopia. In the following, we review the findings of these experiments together with other studies and provide a new perspective of the role of gaze behavior and spatial memory in collision detection and avoidance, focusing on the following questions: (1) which sensory variables can be identified supporting adequate collision detection? (2) How do gaze movements and working memory contribute to collision avoidance when multiple moving objects are present and (3) how do they correlate with task performance? (4) How do patients with homonymous visual field defects (HVFDs) use gaze movements and working memory to compensate for visual field loss? In conclusion, we extend the theory of collision detection and avoidance in the case of multiple moving objects and provide a new perspective on the combined operation of external (bottom-up) and internal (top-down) cues in a traffic intersection task. PMID:23760667

  18. Sustained maintenance of somatotopic information in brain regions recruited by tactile working memory.

    PubMed

    Katus, Tobias; Müller, Matthias M; Eimer, Martin

    2015-01-28

    To adaptively guide ongoing behavior, representations in working memory (WM) often have to be modified in line with changing task demands. We used event-related potentials (ERPs) to demonstrate that tactile WM representations are stored in modality-specific cortical regions, that the goal-directed modulation of these representations is mediated through hemispheric-specific activation of somatosensory areas, and that the rehearsal of somatotopic coordinates in memory is accomplished by modality-specific spatial attention mechanisms. Participants encoded two tactile sample stimuli presented simultaneously to the left and right hands, before visual retro-cues indicated which of these stimuli had to be retained to be matched with a subsequent test stimulus on the same hand. Retro-cues triggered a sustained tactile contralateral delay activity component with a scalp topography over somatosensory cortex contralateral to the cued hand. Early somatosensory ERP components to task-irrelevant probe stimuli (that were presented after the retro-cues) and to subsequent test stimuli were enhanced when these stimuli appeared at the currently memorized location relative to other locations on the cued hand, demonstrating that a precise focus of spatial attention was established during the selective maintenance of tactile events in WM. These effects were observed regardless of whether participants performed the matching task with uncrossed or crossed hands, indicating that WM representations in this task were based on somatotopic rather than allocentric spatial coordinates. In conclusion, spatial rehearsal in tactile WM operates within somatotopically organized sensory brain areas that have been recruited for information storage. Copyright © 2015 Katus et al.

  19. The relationship between eye movements and subsequent recognition: Evidence from individual differences and amnesia.

    PubMed

    Olsen, Rosanna K; Sebanayagam, Vinoja; Lee, Yunjo; Moscovitch, Morris; Grady, Cheryl L; Rosenbaum, R Shayna; Ryan, Jennifer D

    2016-12-01

    There is consistent agreement regarding the positive relationship between cumulative eye movement sampling and subsequent recognition, but the role of the hippocampus in this sampling behavior is currently unknown. It is also unclear whether the eye movement repetition effect, i.e., fewer fixations to repeated, compared to novel, stimuli, depends on explicit recognition and/or an intact hippocampal system. We investigated the relationship between cumulative sampling, the eye movement repetition effect, subsequent memory, and the hippocampal system. Eye movements were monitored in a developmental amnesic case (H.C.), whose hippocampal system is compromised, and in a group of typically developing participants while they studied single faces across multiple blocks. The faces were studied from the same viewpoint or different viewpoints and were subsequently tested with the same or different viewpoint. Our previous work suggested that hippocampal representations support explicit recognition for information that changes viewpoint across repetitions (Olsen et al., 2015). Here, examination of eye movements during encoding indicated that greater cumulative sampling was associated with better memory among controls. Increased sampling, however, was not associated with better explicit memory in H.C., suggesting that increased sampling only improves memory when the hippocampal system is intact. The magnitude of the repetition effect was not correlated with cumulative sampling, nor was it related reliably to subsequent recognition. These findings indicate that eye movements collect information that can be used to strengthen memory representations that are later available for conscious remembering, whereas eye movement repetition effects reflect a processing change due to experience that does not necessarily reflect a memory representation that is available for conscious appraisal. Lastly, H.C. demonstrated a repetition effect for fixed viewpoint faces but not for variable viewpoint faces, which suggests that repetition effects are differentially supported by neocortical and hippocampal systems, depending upon the representational nature of the underlying memory trace. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Affect influences feature binding in memory: Trading between richness and strength of memory representations.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2016-10-01

    Research has shown that long-term memory representations of objects are formed as a natural product of perception even without any intentional memorization. It is not known, however, how rich these representations are in terms of the number of bound object features. In particular, because feature binding rests on resource-limited processes, there may be a context-dependent trade-off between the quantity of stored features and their memory strength. The authors examined whether affective state may bring about such a trade-off. Participants incidentally encoded pictures of real-world objects while experiencing positive or negative affect, and the authors later measured memory for 2 features. Results showed that participants traded between richness and strength of memory representations as a function of affect, with positive affect tuning memory formation toward richness and negative affect tuning memory formation toward strength. These findings demonstrate that memory binding is a flexible process that is modulated by affective state. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Low working memory capacity is only spuriously related to poor reading comprehension

    PubMed Central

    Van Dyke, Julie A.; Johns, Clinton L.; Kukona, Anuenue

    2014-01-01

    Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order—but not simple verbal memory or working memory—were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. PMID:24657820

  2. Does scene context always facilitate retrieval of visual object representations?

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2011-04-01

    An object-to-scene binding hypothesis maintains that visual object representations are stored as part of a larger scene representation or scene context, and that scene context facilitates retrieval of object representations (see, e.g., Hollingworth, Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 58-69, 2006). Support for this hypothesis comes from data using an intentional memory task. In the present study, we examined whether scene context always facilitates retrieval of visual object representations. In two experiments, we investigated whether the scene context facilitates retrieval of object representations, using a new paradigm in which a memory task is appended to a repeated-flicker change detection task. Results indicated that in normal scene viewing, in which many simultaneous objects appear, scene context facilitation of the retrieval of object representations-henceforth termed object-to-scene binding-occurred only when the observer was required to retain much information for a task (i.e., an intentional memory task).

  3. Effects of Working Memory Demand on Neural Mechanisms of Motor Response Selection and Control

    PubMed Central

    Barber, Anita D.; Caffo, Brian S.; Pekar, James J.; Mostofsky, Stewart H.

    2013-01-01

    Inhibitory control commonly recruits a number of frontal regions: pre-supplementary motor area (pre-SMA), frontal eye fields (FEFs), and right-lateralized posterior inferior frontal gyrus (IFG), dorsal anterior insula (DAI), dorsolateral prefrontal cortex (DLPFC), and inferior frontal junction (IFJ). These regions may directly implement inhibitory motor control or may be more generally involved in executive control functions. Two go/no-go tasks were used to distinguish regions specifically recruited for inhibition from those that additionally show increased activity with working memory demand. The pre-SMA and IFG were recruited for inhibition in both tasks and did not have greater activation for working memory demand on no-go trials, consistent with a role in inhibitory control. Activation in pre-SMA also responded to response selection demand and was increased with working memory on go trials specifically. The bilateral FEF and right DAI were commonly active for no-go trials. The FEF was also recruited to a greater degree with working memory demand on go trials and may bias top–down information when stimulus–response mappings change. The DAI, additionally responded to increased working memory demand on both go and no-go trials and may be involved in accessing sustained task information, alerting, or autonomic changes when cognitive demands increase. DLPFC activation was consistent with a role in working memory retrieval on both go and no-go trials. The inferior frontal junction, on the other hand, had greater activation with working memory specifically for no-go trials and may detect salient stimuli when the task requires frequent updating of working memory representations. PMID:23530923

  4. Action Anticipation and Interference: A Test of Prospective Gaze

    PubMed Central

    Cannon, Erin N.; Woodward, Amanda L.

    2013-01-01

    In the current study we investigate the proposal that one aspect of social perception, action anticipation, involves the recruitment of representations for self-produced action. An eye tracking paradigm was implemented to measure prospective gaze to a goal while performing either a motor or working memory task. Results indicate an effect of the motor task, suggesting the interference of a shared motor and action perception representation. PMID:25285317

  5. In search of the focus of attention in working memory: 13 years of the retro-cue effect.

    PubMed

    Souza, Alessandra S; Oberauer, Klaus

    2016-10-01

    The concept of attention has a prominent place in cognitive psychology. Attention can be directed not only to perceptual information, but also to information in working memory (WM). Evidence for an internal focus of attention has come from the retro-cue effect: Performance in tests of visual WM is improved when attention is guided to the test-relevant contents of WM ahead of testing them. The retro-cue paradigm has served as a test bed to empirically investigate the functions and limits of the focus of attention in WM. In this article, we review the growing body of (behavioral) studies on the retro-cue effect. We evaluate the degrees of experimental support for six hypotheses about what causes the retro-cue effect: (1) Attention protects representations from decay, (2) attention prioritizes the selected WM contents for comparison with a probe display, (3) attended representations are strengthened in WM, (4) not-attended representations are removed from WM, (5) a retro-cue to the retrieval target provides a head start for its retrieval before decision making, and (6) attention protects the selected representation from perceptual interference. The extant evidence provides support for the last four of these hypotheses.

  6. An accurate, compact and computationally efficient representation of orbitals for quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke

    Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.

  7. Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations.

    PubMed

    Beck, Valerie M; Hollingworth, Andrew

    2017-02-01

    The content of visual working memory (VWM) guides attention, but whether this interaction is limited to a single VWM representation or functional for multiple VWM representations is under debate. To test this issue, we developed a gaze-contingent search paradigm to directly manipulate selection history and examine the competition between multiple cue-matching saccade target objects. Participants first saw a dual-color cue followed by two pairs of colored objects presented sequentially. For each pair, participants selectively fixated an object that matched one of the cued colors. Critically, for the second pair, the cued color from the first pair was presented either with a new distractor color or with the second cued color. In the latter case, if two cued colors in VWM interact with selection simultaneously, we expected the second cued color object to generate substantial competition for selection, even though the first cued color was used to guide attention in the immediately previous pair. Indeed, in the second pair, selection probability of the first cued color was substantially reduced in the presence of the second cued color. This competition between cue-matching objects provides strong evidence that both VWM representations interacted simultaneously with selection. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Gestalt Effects in Visual Working Memory.

    PubMed

    Kałamała, Patrycja; Sadowska, Aleksandra; Ordziniak, Wawrzyniec; Chuderski, Adam

    2017-01-01

    Four experiments investigated whether conforming to Gestalt principles, well known to drive visual perception, also facilitates the active maintenance of information in visual working memory (VWM). We used the change detection task, which required the memorization of visual patterns composed of several shapes. We observed no effects of symmetry of visual patterns on VWM performance. However, there was a moderate positive effect when a particular shape that was probed matched the shape of the whole pattern (the whole-part similarity effect). Data support the models assuming that VWM encodes not only particular objects of the perceptual scene but also the spatial relations between them (the ensemble representation). The ensemble representation may prime objects similar to its shape and thereby boost access to them. In contrast, the null effect of symmetry relates the fact that this very feature of an ensemble does not yield any useful additional information for VWM.

  9. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  10. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    PubMed

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  11. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline.

    PubMed

    McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2016-12-14

    Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.

  12. Behavioral decoding of working memory items inside and outside the focus of attention.

    PubMed

    Mallett, Remington; Lewis-Peacock, Jarrod A

    2018-03-31

    How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority. © 2018 New York Academy of Sciences.

  13. Retrieval-Induced Inhibition in Short-Term Memory.

    PubMed

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  14. Saying what’s on your mind: Working memory effects on sentence production

    PubMed Central

    Slevc, L. Robert

    2011-01-01

    The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058

  15. Short-Term and Working Memory Impairments in Early-Implanted, Long-Term Cochlear Implant Users Are Independent of Audibility and Speech Production

    PubMed Central

    AuBuchon, Angela M.; Pisoni, David B.; Kronenberger, William G.

    2015-01-01

    OBJECTIVES Determine if early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. DESIGN Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions which differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). RESULTS Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. CONCLUSIONS Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory utilizing phonological and linguistic strategies during memory tasks. PMID:26496666

  16. Short-Term and Working Memory Impairments in Early-Implanted, Long-Term Cochlear Implant Users Are Independent of Audibility and Speech Production.

    PubMed

    AuBuchon, Angela M; Pisoni, David B; Kronenberger, William G

    2015-01-01

    To determine whether early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions that differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory using phonological and linguistic strategies during memory tasks.

  17. An Ideal Observer Analysis of Visual Working Memory

    PubMed Central

    Sims, Chris R.; Jacobs, Robert A.; Knill, David C.

    2013-01-01

    Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744

  18. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  19. The Representation of Knowledge in Image Understanding.

    DTIC Science & Technology

    1985-03-01

    for memory traces? It’s been quite a few years since Lashley wrote his famous paper "Search for the Engram ." That paper pinpointed the fundamental...34 engram hunters," mostly empirical neurobiologists guided by their own often powerful working hypotheses, ensued and has continued that search with...progress. What is an Engram ? (Some Informal Considerations) Memory, viewed as traces of experience, is necessarily massively . distributed. As an example

  20. Introduction to the Special Issue on Visual Working Memory

    PubMed Central

    Wolfe, Jeremy M

    2014-01-01

    Objects are not represented individually in visual working memory (VWM), but in relation to the contextual information provided by other memorized objects. We studied whether the contextual information provided by the spatial configuration of all memorized objects is viewpoint-dependent. We ran two experiments asking participants to detect changes in locations between memory and probe for one object highlighted in the probe image. We manipulated the changes in viewpoint between memory and probe (Exp. 1: 0°, 30°, 60°; Exp. 2: 0°, 60°), as well as the spatial configuration visible in the probe image (Exp. 1: full configuration, partial configuration; Exp. 2: full configuration, no configuration). Location change detection was higher with the full spatial configuration than with the partial configuration or with no spatial configuration at viewpoint changes of 0°, thus replicating previous findings on the nonindependent representations of individual objects in VWM. Most importantly, the effect of spatial configurations decreased with increasing viewpoint changes, suggesting a viewpoint-dependent representation of contextual information in VWM. We discuss these findings within the context of this special issue, in particular whether research performed within the slots-versus-resources debate and research on the effects of contextual information might focus on two different storage systems within VWM. PMID:25341647

  1. The importance of context: evidence that contextual representations increase intrusive memories.

    PubMed

    Pearson, David G; Ross, Fiona D C; Webster, Victoria L

    2012-03-01

    Intrusive memories appear to enter consciousness via involuntary rather than deliberate recollection. Some clinical accounts of PTSD seek to explain this phenomenon by making a clear distinction between the encoding of sensory-based and contextual representations. Contextual representations have been claimed to actively reduce intrusions by anchoring encoded perceptual data for an event in memory. The current analogue trauma study examined this hypothesis by manipulating contextual information independently from encoded sensory-perceptual information. Participants' viewed images selected from the International Affective Picture System that depicted scenes of violence and bodily injury. Images were viewed either under neutral conditions or paired with contextual information. Two experiments revealed a significant increase in memory intrusions for images paired with contextual information in comparison to the same images viewed under neutral conditions. In contrast to the observed increase in intrusion frequency there was no effect of contextual representations on voluntary memory for the images. The vividness and emotionality of memory intrusions were also unaffected. The analogue trauma paradigm may fail to replicate the effect of extreme stress on encoding postulated to occur during PTSD. These findings question the assertion that intrusive memories develop from a lack of integration between sensory-based and contextual representations in memory. Instead it is argued contextual representations play a causal role in increasing the frequency of intrusions by increasing the sensitivity of memory to involuntary retrieval by associated internal and external cues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Updating working memory in aircraft noise and speech noise causes different fMRI activations

    PubMed Central

    Sætrevik, Bjørn; Sörqvist, Patrik

    2015-01-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319

  3. Remembering complex objects in visual working memory: do capacity limits restrict objects or features?

    PubMed

    Hardman, Kyle O; Cowan, Nelson

    2015-03-01

    Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  4. Opposite effects of capacity load and resolution load on distractor processing.

    PubMed

    Zhang, Weiwei; Luck, Steven J

    2015-02-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.

  5. Opposite Effects of Capacity Load and Resolution Load on Distractor Processing

    PubMed Central

    Zhang, Weiwei; Luck, Steven J.

    2014-01-01

    According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573

  6. Cross-modal working memory binding and word recognition skills: how specific is the link?

    PubMed

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  7. Seven-month-old infants chunk items in memory

    PubMed Central

    Moher, Mariko; Tuerk, Arin S.; Feigenson, Lisa

    2012-01-01

    Although working memory has a highly constrained capacity limit of 3 to 4 items, both adults and toddlers can increase the total amount of stored information by chunking object representations in memory. To examine the developmental origins of chunking, we used a violation-of-expectation procedure to ask whether 7-month-old infants, whose working memory capacity is still maturing, also can chunk items in memory. In Experiment 1 we found that in the absence of chunking cues, infants failed to remember 3 identical hidden objects. In Experiments 2 and 3 we found that infants successfully remembered 3 hidden objects when provided with overlapping spatial and featural chunking cues. In Experiment 4 we found that infants did not chunk when provided with either spatial or featural chunking cues alone. Finally, in Experiment 5 we found that infants also failed to chunk when spatial and featural cues specified different chunks (i.e., were pitted against each other). Taken together, these results suggest that chunking is available before working memory capacity has matured, but still may undergo important development over the first year of life. PMID:22575845

  8. Incidental learning of probability information is differentially affected by the type of visual working memory representation.

    PubMed

    van Lamsweerde, Amanda E; Beck, Melissa R

    2015-12-01

    In this study, we investigated whether the ability to learn probability information is affected by the type of representation held in visual working memory. Across 4 experiments, participants detected changes to displays of coloured shapes. While participants detected changes in 1 dimension (e.g., colour), a feature from a second, nonchanging dimension (e.g., shape) predicted which object was most likely to change. In Experiments 1 and 3, items could be grouped by similarity in the changing dimension across items (e.g., colours and shapes were repeated in the display), while in Experiments 2 and 4 items could not be grouped by similarity (all features were unique). Probability information from the predictive dimension was learned and used to increase performance, but only when all of the features within a display were unique (Experiments 2 and 4). When it was possible to group by feature similarity in the changing dimension (e.g., 2 blue objects appeared within an array), participants were unable to learn probability information and use it to improve performance (Experiments 1 and 3). The results suggest that probability information can be learned in a dimension that is not explicitly task-relevant, but only when the probability information is represented with the changing dimension in visual working memory. (c) 2015 APA, all rights reserved).

  9. Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory

    PubMed Central

    Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.

    2013-01-01

    Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112

  10. A Tale of Two Representations: The Misinformation Effect and Children's Developing Theory of Mind.

    ERIC Educational Resources Information Center

    Templeton, Leslie M.; Wilcox, Sharon A.

    2000-01-01

    Investigated children's representational ability as a cognitive factor underlying the suggestibility of their eyewitness memory. Found that the eyewitness memory of children lacking multirepresentational abilities or sufficient general memory abilities (most 3- and 4-year-olds) was less accurate than eyewitness memory of those with…

  11. Remembering the past and imagining the future

    PubMed Central

    Byrne, Patrick; Becker, Suzanna; Burgess, Neil

    2009-01-01

    The neural mechanisms underlying spatial cognition are modelled, integrating neuronal, systems and behavioural data, and addressing the relationships between long-term memory, short-term memory and imagery, and between egocentric and allocentric and visual and idiothetic representations. Long-term spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and short-term memory as egocentric parietal representations driven by perception, retrieval and imagery, and modulated by directed attention. Both encoding and retrieval/ imagery require translation between egocentric and allocentric representations, mediated by posterior parietal and retrosplenial areas and utilizing head direction representations in Papez’s circuit. Thus hippocampus effectively indexes information by real or imagined location, while Papez’s circuit translates to imagery or from perception according to the direction of view. Modulation of this translation by motor efference allows “spatial updating” of representations, while prefrontal simulated motor efference allows mental exploration. The alternating temporo-parietal flows of information are organized by the theta rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect in memory, and the effects on hippocampal place cell firing of lesioned head direction representations and of conflicting visual and ideothetic inputs. PMID:17500630

  12. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    PubMed

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.

  13. Modulation of the semantic system by word imageability.

    PubMed

    Sabsevitz, D S; Medler, D A; Seidenberg, M; Binder, J R

    2005-08-01

    A prevailing neurobiological theory of semantic memory proposes that part of our knowledge about concrete, highly imageable concepts is stored in the form of sensory-motor representations. While this theory predicts differential activation of the semantic system by concrete and abstract words, previous functional imaging studies employing this contrast have provided relatively little supporting evidence. We acquired event-related functional magnetic resonance imaging (fMRI) data while participants performed a semantic similarity judgment task on a large number of concrete and abstract noun triads. Task difficulty was manipulated by varying the degree to which the words in the triad were similar in meaning. Concrete nouns, relative to abstract nouns, produced greater activation in a bilateral network of multimodal and heteromodal association areas, including ventral and medial temporal, posterior-inferior parietal, dorsal prefrontal, and posterior cingulate cortex. In contrast, abstract nouns produced greater activation almost exclusively in the left hemisphere in superior temporal and inferior frontal cortex. Increasing task difficulty modulated activation mainly in attention, working memory, and response monitoring systems, with almost no effect on areas that were modulated by imageability. These data provide critical support for the hypothesis that concrete, imageable concepts activate perceptually based representations not available to abstract concepts. In contrast, processing abstract concepts makes greater demands on left perisylvian phonological and lexical retrieval systems. The findings are compatible with dual coding theory and less consistent with single-code models of conceptual representation. The lack of overlap between imageability and task difficulty effects suggests that once the neural representation of a concept is activated, further maintenance and manipulation of that information in working memory does not further increase neural activation in the conceptual store.

  14. Usage of semantic representations in recognition memory.

    PubMed

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  15. Topological Schemas of Memory Spaces.

    PubMed

    Babichev, Andrey; Dabaghian, Yuri A

    2018-01-01

    Hippocampal cognitive map-a neuronal representation of the spatial environment-is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework-the memory space-that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as "networks of interconnections among the representations of events," have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature-a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure.

  16. Topological Schemas of Memory Spaces

    PubMed Central

    Babichev, Andrey; Dabaghian, Yuri A.

    2018-01-01

    Hippocampal cognitive map—a neuronal representation of the spatial environment—is widely discussed in the computational neuroscience literature for decades. However, more recent studies point out that hippocampus plays a major role in producing yet another cognitive framework—the memory space—that incorporates not only spatial, but also non-spatial memories. Unlike the cognitive maps, the memory spaces, broadly understood as “networks of interconnections among the representations of events,” have not yet been studied from a theoretical perspective. Here we propose a mathematical approach that allows modeling memory spaces constructively, as epiphenomena of neuronal spiking activity and thus to interlink several important notions of cognitive neurophysiology. First, we suggest that memory spaces have a topological nature—a hypothesis that allows treating both spatial and non-spatial aspects of hippocampal function on equal footing. We then model the hippocampal memory spaces in different environments and demonstrate that the resulting constructions naturally incorporate the corresponding cognitive maps and provide a wider context for interpreting spatial information. Lastly, we propose a formal description of the memory consolidation process that connects memory spaces to the Morris' cognitive schemas-heuristic representations of the acquired memories, used to explain the dynamics of learning and memory consolidation in a given environment. The proposed approach allows evaluating these constructs as the most compact representations of the memory space's structure. PMID:29740306

  17. Visual memory, the long and the short of it: A review of visual working memory and long-term memory.

    PubMed

    Schurgin, Mark W

    2018-04-23

    The majority of research on visual memory has taken a compartmentalized approach, focusing exclusively on memory over shorter or longer durations, that is, visual working memory (VWM) or visual episodic long-term memory (VLTM), respectively. This tutorial provides a review spanning the two areas, with readers in mind who may only be familiar with one or the other. The review is divided into six sections. It starts by distinguishing VWM and VLTM from one another, in terms of how they are generally defined and their relative functions. This is followed by a review of the major theories and methods guiding VLTM and VWM research. The final section is devoted toward identifying points of overlap and distinction across the two literatures to provide a synthesis that will inform future research in both fields. By more intimately relating methods and theories from VWM and VLTM to one another, new advances can be made that may shed light on the kinds of representational content and structure supporting human visual memory.

  18. The relational luring effect: Retrieval of relational information during associative recognition.

    PubMed

    Popov, Vencislav; Hristova, Penka; Anders, Royce

    2017-05-01

    Here we argue that semantic relations (e.g., works in: nurse-hospital) have abstract independent representations in long-term memory (LTM) and that the same representation is accessed by all exemplars of a specific relation. We present evidence from 2 associative recognition experiments that uncovered a novel relational luring effect (RLE) in recognition memory. Participants studied word pairs, and then discriminated between intact (old) pairs and recombined lures. In the first experiment participants responded more slowly to lures that were relationally similar (table-cloth) to studied pairs (floor-carpet), in contrast to relationally dissimilar lures (pipe-water). Experiment 2 extended the RLE by showing a continuous effect of relational lure strength on recognition times (RTs), false alarms, and hits. It used a continuous pair recognition task, where each recombined lure or target could be preceded by 0, 1, 2, 3 or 4 different exemplars of the same relation. RTs and false alarms increased linearly with the number of different previously seen relationally similar pairs. Moreover, more typical exemplars of a given relation lead to a stronger RLE. Finally, hits for intact pairs also rose with the number of previously studied different relational instances. These results suggest that semantic relations exist as independent representations in LTM and that during associative recognition these representations can be a spurious source of familiarity. We discuss the implications of the RLE for current models of semantic and episodic memory, unitization in associative recognition, analogical reasoning and retrieval, as well as constructive memory research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Human learning and memory.

    PubMed

    Johnson, M K; Hasher, L

    1987-01-01

    There have been several notable recent trends in the area of learning and memory. Problems with the episodic/semantic distinction have become more apparent, and new efforts have been made (exemplar models, distributed-memory models) to represent general knowledge without assuming a separate semantic system. Less emphasis is being placed on stable, prestored prototypes and more emphasis on a flexible memory system that provides the basis for a multitude of categories or frames of reference, derived on the spot as tasks demand. There is increasing acceptance of the idea that mental models are constructed and stored in memory in addition to, rather than instead of, memorial representations that are more closely tied to perceptions. This gives rise to questions concerning the conditions that permit inferences to be drawn and mental models to be constructed, and to questions concerning the similarities and differences in the nature of the representations in memory of perceived and generated information and in their functions. There has also been a swing from interest in deliberate strategies to interest in automatic, unconscious (even mechanistic!) processes, reflecting an appreciation that certain situations (e.g. recognition, frequency judgements, savings in indirect tasks, aspects of skill acquisition, etc) seem not to depend much on the products of strategic, effortful or reflective processes. There is a lively interest in relations among memory measures and attempts to characterize memory representations and/or processes that could give rise to dissociations among measures. Whether the pattern of results reflects the operation of functional subsystems of memory and, if so, what the "modules" are is far from clear. This issue has been fueled by work with amnesics and has contributed to a revival of interaction between researchers studying learning and memory in humans and those studying learning and memory in animals. Thus, neuroscience rivals computer science as a source of interdisciplinary stimulation. Research on topics such as memory for spatial location, the relation between memory and affect, and autobiographical memory reminds us that general theories of memory based on studies of verbal materials alone are limited. Investigating how people remember complex natural events should provide us with a larger set of memory phenomena to explain and consequently insight into a wider range of memory principles or a deeper understanding of the ones we already accept (e.g. the role of repetition, encoding specificity), including their functional significance for human behavior.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Do the anterior and lateral thalamic nuclei make distinct contributions to spatial representation and memory?

    PubMed

    Clark, Benjamin J; Harvey, Ryan E

    2016-09-01

    The anterior and lateral thalamus has long been considered to play an important role in spatial and mnemonic cognitive functions; however, it remains unclear whether each region makes a unique contribution to spatial information processing. We begin by reviewing evidence from anatomical studies and electrophysiological recordings which suggest that at least one of the functions of the anterior thalamus is to guide spatial orientation in relation to a global or distal spatial framework, while the lateral thalamus serves to guide behavior in relation to a local or proximal framework. We conclude by reviewing experimental work using targeted manipulations (lesion or neuronal silencing) of thalamic nuclei during spatial behavior and single-unit recordings from neuronal representations of space. Our summary of this literature suggests that although the evidence strongly supports a working model of spatial information processing involving the anterior thalamus, research regarding the role of the lateral thalamus is limited and requires further attention. We therefore identify a number of major gaps in this research and suggest avenues of future study that could potentially solidify our understanding of the relative roles of anterior and lateral thalamic regions in spatial representation and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation

    PubMed Central

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-01-01

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. PMID:24639586

  2. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-05-05

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation.

  3. Evidence for modality-independent order coding in working memory.

    PubMed

    Depoorter, Ann; Vandierendonck, André

    2009-03-01

    The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.

  4. fMRI characterization of visual working memory recognition.

    PubMed

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Non-word repetition in children with specific language impairment: a deficit in phonological working memory or in long-term verbal knowledge?

    PubMed

    Casalini, Claudia; Brizzolara, Daniela; Chilosi, Anna; Cipriani, Paola; Marcolini, Stefania; Pecini, Chiara; Roncoli, Silvia; Burani, Cristina

    2007-08-01

    In this study we investigated the effects of long-term memory (LTM) verbal knowledge on short-term memory (STM) verbal recall in a sample of Italian children affected by different subtypes of specific language impairment (SLI). The aim of the study was to evaluate if phonological working memory (PWM) abilities of SLI children can be supported by LTM linguistic representations and if PWM performances can be differently affected in the various subtypes of SLI. We tested a sample of 54 children affected by Mixed Receptive-Expressive (RE), Expressive (Ex) and Phonological (Ph) SLI (DSM-IV - American Psychiatric Association, 1994) by means of a repetition task of words (W) and non-words (NW) differing in morphemic structure [morphological non-words (MNW), consisting of combinations of roots and affixes - and simple non-words - with no morphological constituency]. We evaluated the effects of lexical and morpho-lexical LTM representations on STM recall by comparing the repetition accuracy across the three types of stimuli. Results indicated that although SLI children, as a group, showed lower repetition scores than controls, their performance was affected similarly to controls by the type of stimulus and the experimental manipulation of the non-words (better repetition of W than MNW and NW, and of MNW than NW), confirming the recourse to LTM verbal representations to support STM recall. The influence of LTM verbal knowledge on STM recall in SLI improved with age and did not differ among the three types of SLI. However, the three types of SLI differed in the accuracy of their repetition performances (PMW abilities), with the Phonological group showing the best scores. The implications for SLI theory and practice are discussed.

  6. Testing a Dynamic Field Account of Interactions between Spatial Attention and Spatial Working Memory

    PubMed Central

    Johnson, Jeffrey S.; Spencer, John P.

    2016-01-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay. PMID:26810574

  7. Hippocampal declarative memory supports gesture production: Evidence from amnesia

    PubMed Central

    Hilliard, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2016-01-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action – supported by motor areas of the brain – is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. PMID:27810497

  8. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.

    PubMed

    Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-05-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.

  9. Different effects of color-based and location-based selection on visual working memory.

    PubMed

    Li, Qi; Saiki, Jun

    2015-02-01

    In the present study, we investigated how feature- and location-based selection influences visual working memory (VWM) encoding and maintenance. In Experiment 1, cue type (color, location) and cue timing (precue, retro-cue) were manipulated in a change detection task. The stimuli were color-location conjunction objects, and binding memory was tested. We found a significantly greater effect for color precues than for either color retro-cues or location precues, but no difference between location pre- and retro-cues, consistent with previous studies (e.g., Griffin & Nobre in Journal of Cognitive Neuroscience, 15, 1176-1194, 2003). We also found no difference between location and color retro-cues. Experiment 2 replicated the color precue advantage with more complex color-shape-location conjunction objects. Only one retro-cue effect was different from that in Experiment 1: Color retro-cues were significantly less effective than location retro-cues in Experiment 2, which may relate to a structural property of multidimensional VWM representations. In Experiment 3, a visual search task was used, and the result of a greater location than color precue effect suggests that the color precue advantage in a memory task is related to the modulation of VWM encoding rather than of sensation and perception. Experiment 4, using a task that required only memory for individual features but not for feature bindings, further confirmed that the color precue advantage is specific to binding memory. Together, these findings reveal new aspects of the interaction between attention and VWM and provide potentially important implications for the structural properties of VWM representations.

  10. Associative memory - An optimum binary neuron representation

    NASA Technical Reports Server (NTRS)

    Awwal, A. A.; Karim, M. A.; Liu, H. K.

    1989-01-01

    Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.

  11. Phonological similarity in working memory span tasks.

    PubMed

    Chow, Michael; Macnamara, Brooke N; Conway, Andrew R A

    2016-08-01

    In a series of four experiments, we explored what conditions are sufficient to produce a phonological similarity facilitation effect in working memory span tasks. By using the same set of memoranda, but differing the secondary-task requirements across experiments, we showed that a phonological similarity facilitation effect is dependent upon the semantic relationship between the memoranda and the secondary-task stimuli, and is robust to changes in the representation, ordering, and pool size of the secondary-task stimuli. These findings are consistent with interference accounts of memory (Brown, Neath, & Chater, Psychological Review, 114, 539-576, 2007; Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves, Psychonomic Bulletin & Review, 19, 779-819, 2012), whereby rhyming stimuli provide a form of categorical similarity that allows distractors to be excluded from retrieval at recall.

  12. Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences

    PubMed Central

    Luck, Steven J.; Vogel, Edward K.

    2013-01-01

    Visual working memory capacity is of great interest because it is strongly correlated with overall cognitive ability, can be understood at the level of neural circuits, and is easily measured. Recent studies have shown that capacity influences tasks ranging from saccade targeting to analogical reasoning. A debate has arisen over whether capacity is constrained by a limited number of discrete representations or by an infinitely divisible resource, but the empirical evidence and neural network models currently favor a discrete item limit. Capacity differs markedly across individuals and groups, and recent research indicates that some of these differences reflect true differences in storage capacity whereas others reflect variations in the ability to use memory capacity efficiently. PMID:23850263

  13. The cognitive nature of action - functional links between cognitive psychology, movement science, and robotics.

    PubMed

    Schack, Thomas; Ritter, Helge

    2009-01-01

    This paper examines the cognitive architecture of human action, showing how it is organized over several levels and how it is built up. Basic action concepts (BACs) are identified as major building blocks on a representation level. These BACs are cognitive tools for mastering the functional demands of movement tasks. Results from different lines of research showed that not only the structure formation of mental representations in long-term memory but also chunk formation in working memory are built up on BACs and relate systematically to movement structures. It is concluded that such movement representations might provide the basis for action implementation and action control in skilled voluntary movements in the form of cognitive reference structures. To simulate action implementation we discuss challenges and issues that arise when we try to replicate complex movement abilities in robots. Among the key issues to be addressed is the question how structured representations can arise during skill acquisition and how the underlying processes can be understood sufficiently succinctly to replicate them on robot platforms. Working towards this goal, we translate our findings in studies of motor control in humans into models that can guide the implementation of cognitive robot architectures. Focusing on the issue of manual action control, we illustrate some results in the context of grasping with a five-fingered anthropomorphic robot hand.

  14. Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force.

    PubMed

    Hubbard, T L

    1995-09-01

    Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers' expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.

  15. Emotional consciousness: a neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience.

    PubMed

    Thagard, Paul; Aubie, Brandon

    2008-09-01

    This paper proposes a theory of how conscious emotional experience is produced by the brain as the result of many interacting brain areas coordinated in working memory. These brain areas integrate perceptions of bodily states of an organism with cognitive appraisals of its current situation. Emotions are neural processes that represent the overall cognitive and somatic state of the organism. Conscious experience arises when neural representations achieve high activation as part of working memory. This theory explains numerous phenomena concerning emotional consciousness, including differentiation, integration, intensity, valence, and change.

  16. Lesser Neural Pattern Similarity across Repeated Tests Is Associated with Better Long-Term Memory Retention.

    PubMed

    Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2015-07-01

    Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.

  17. Episodic representations support early semantic learning: evidence from midazolam induced amnesia.

    PubMed

    Merritt, Paul; Hirshman, Elliot; Zamani, Shane; Hsu, John; Berrigan, Michael

    2006-07-01

    Current controversy exists regarding the role of episodic representations in the formation of long-term semantic memories. Using the drug midazolam to induce temporary amnesia we tested participants' memories for newly learned facts in a semantic cue condition or an episodic and semantic cue condition. Following midazolam administration, memory performance was superior in the episodic and semantic condition, suggesting early semantic learning is supported by episodic representations.

  18. The Neural Representations Underlying Human Episodic Memory.

    PubMed

    Xue, Gui

    2018-06-01

    A fundamental question of human episodic memory concerns the cognitive and neural representations and processes that give rise to the neural signals of memory. By integrating behavioral tests, formal computational models, and neural measures of brain activity patterns, recent studies suggest that memory signals not only depend on the neural processes and representations during encoding and retrieval, but also on the interaction between encoding and retrieval (e.g., transfer-appropriate processing), as well as on the interaction between the tested events and all other events in the episodic memory space (e.g., global matching). In addition, memory signals are also influenced by the compatibility of the event with the existing long-term knowledge (e.g., schema matching). These studies highlight the interactive nature of human episodic memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.

    PubMed

    Schneegans, Sebastian; Bays, Paul M

    2018-05-23

    Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. SIGNIFICANCE STATEMENT Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage. Copyright © 2018 Schneegans and Bays.

  20. Forgetting the Once-Seen Face: Estimating the Strength of an Eyewitness's Memory Representation

    ERIC Educational Resources Information Center

    Deffenbacher, Kenneth A.; Bornstein, Brian H.; McGorty, E. Kiernan; Penrod, Steven D.

    2008-01-01

    The fidelity of an eyewitness's memory representation is an issue of paramount forensic concern. Psychological science has been unable to offer more than vague generalities concerning the relation of retention interval to memory trace strength for the once-seen face. A meta-analysis of 53 facial memory studies produced a highly reliable…

  1. Working memory: a developmental study of phonological recoding.

    PubMed

    Palmer, S

    2000-05-01

    A cross-sectional study using children aged 3 to 7 years and a cross-sequential study using children aged between 5 and 8 years showed that the development of phonological recoding in working memory was more complex than the simple dichotomous picture portrayed in the current literature. It appears that initially children use no strategy in recall, which is proposed to represent the level of automatic activation of representations in long-term memory and the storage capacity of the central executive. This is followed by a period in which a visual strategy prevails, followed by a period of dual visual-verbal coding before the adult-like strategy of verbal coding finally emerges. The results are discussed in terms of three working memory models (Baddeley, 1990; Engle, 1996; Logie, 1996) where strategy use is seen as the development of attentional processes and phonological recoding as the development of inhibitory mechanisms in the central executive to suppress the habitual response set of visual coding.

  2. Imagining the Truth. Discussion of Prince's "The Self in Pain: The Paradox of Memory. The Paradox of Testimony".

    PubMed

    Tylim, Isaac

    2009-12-01

    The discussion highlights the significant role played by imagination in representing the horrors that resist representation. It is Dr. Tylim's position that imagination assists patient and analyst in overcoming the limitations of memory. Imagination is the gateway to truth. In working with survivors, the therapeutic encounter may become a stage where unspeakable experiences attain presence in their absence. The silence or the gaps are then the victim's testimony.

  3. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies

    PubMed Central

    Karylowski, Jerzy J.; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed. PMID:28473793

  4. Time Frame Affects Vantage Point in Episodic and Semantic Autobiographical Memory: Evidence from Response Latencies.

    PubMed

    Karylowski, Jerzy J; Mrozinski, Blazej

    2017-01-01

    Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.

  5. Spatial coding of ordinal information in short- and long-term memory.

    PubMed

    Ginsburg, Véronique; Gevers, Wim

    2015-01-01

    The processing of numerical information induces a spatial response bias: Faster responses to small numbers with the left hand and faster responses to large numbers with the right hand. Most theories agree that long-term representations underlie this so called SNARC effect (Spatial Numerical Association of Response Codes; Dehaene et al., 1993). However, a spatial response bias was also observed with the activation of temporary position-space associations in working memory (ordinal position effect; van Dijck and Fias, 2011). Items belonging to the beginning of a memorized sequence are responded to faster with the left hand side while items at the end of the sequence are responded to faster with the right hand side. The theoretical possibility was put forward that the SNARC effect is an instance of the ordinal position effect, with the empirical consequence that the SNARC effect and the ordinal position effect cannot be observed simultaneously. In two experiments we falsify this claim by demonstrating that the SNARC effect and the ordinal position effect are not mutually exclusive. Consequently, this suggests that the SNARC effect and the ordinal position effect result from the activation of different representations. We conclude that spatial response biases can result from the activation of both pre-existing positions in long-term memory and from temporary space associations in working memory at the same time.

  6. Semantic representations in the temporal pole predict false memories

    PubMed Central

    Chadwick, Martin J.; Anjum, Raeesa S.; Kumaran, Dharshan; Schacter, Daniel L.; Spiers, Hugo J.; Hassabis, Demis

    2016-01-01

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the “semantic hub” of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories. PMID:27551087

  7. Semantic representations in the temporal pole predict false memories.

    PubMed

    Chadwick, Martin J; Anjum, Raeesa S; Kumaran, Dharshan; Schacter, Daniel L; Spiers, Hugo J; Hassabis, Demis

    2016-09-06

    Recent advances in neuroscience have given us unprecedented insight into the neural mechanisms of false memory, showing that artificial memories can be inserted into the memory cells of the hippocampus in a way that is indistinguishable from true memories. However, this alone is not enough to explain how false memories can arise naturally in the course of our daily lives. Cognitive psychology has demonstrated that many instances of false memory, both in the laboratory and the real world, can be attributed to semantic interference. Whereas previous studies have found that a diverse set of regions show some involvement in semantic false memory, none have revealed the nature of the semantic representations underpinning the phenomenon. Here we use fMRI with representational similarity analysis to search for a neural code consistent with semantic false memory. We find clear evidence that false memories emerge from a similarity-based neural code in the temporal pole, a region that has been called the "semantic hub" of the brain. We further show that each individual has a partially unique semantic code within the temporal pole, and this unique code can predict idiosyncratic patterns of memory errors. Finally, we show that the same neural code can also predict variation in true-memory performance, consistent with an adaptive perspective on false memory. Taken together, our findings reveal the underlying structure of neural representations of semantic knowledge, and how this semantic structure can both enhance and distort our memories.

  8. Updating working memory in aircraft noise and speech noise causes different fMRI activations.

    PubMed

    Saetrevik, Bjørn; Sörqvist, Patrik

    2015-02-01

    The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  9. Why it's easier to remember seeing a face we already know than one we don't: preexisting memory representations facilitate memory formation.

    PubMed

    Reder, Lynne M; Victoria, Lindsay W; Manelis, Anna; Oates, Joyce M; Dutcher, Janine M; Bates, Jordan T; Cook, Shaun; Aizenstein, Howard J; Quinlan, Joseph; Gyulai, Ferenc

    2013-03-01

    In two experiments, we provided support for the hypothesis that stimuli with preexisting memory representations (e.g., famous faces) are easier to associate to their encoding context than are stimuli that lack long-term memory representations (e.g., unknown faces). Subjects viewed faces superimposed on different backgrounds (e.g., the Eiffel Tower). Face recognition on a surprise memory test was better when the encoding background was reinstated than when it was swapped with a different background; however, the reinstatement advantage was modulated by how many faces had been seen with a given background, and reinstatement did not improve recognition for unknown faces. The follow-up experiment added a drug intervention that inhibited the ability to form new associations. Context reinstatement did not improve recognition for famous or unknown faces under the influence of the drug. The results suggest that it is easier to associate context to faces that have a preexisting long-term memory representation than to faces that do not.

  10. Computational Models of Relational Processes in Cognitive Development

    ERIC Educational Resources Information Center

    Halford, Graeme S.; Andrews, Glenda; Wilson, William H.; Phillips, Steven

    2012-01-01

    Acquisition of relational knowledge is a core process in cognitive development. Relational knowledge is dynamic and flexible, entails structure-consistent mappings between representations, has properties of compositionality and systematicity, and depends on binding in working memory. We review three types of computational models relevant to…

  11. Individual differences and emotional inferences during reading comprehension.

    PubMed

    Gillioz, Christelle; Gygax, Pascal; Tapiero, Isabelle

    2012-12-01

    This study investigated readers' representations of the main protagonist's emotional status in short narratives, as well as several mental factors that may affect these representations. General and visuospatial working memory, empathy, and simulation were investigated as potential individual differences in generating emotional inferences. Participants were confronted with narratives conveying information about the protagonist's emotional state. We manipulated each narrative's target sentence according to its content (emotional label vs. description of the behaviour associated to the emotion) and its congruence to the story (matching vs. mismatching). The results showed that globally the difference between reading times of congruent and incongruent target sentences was bigger in the behavioural than in the emotional condition. This pattern was accentuated for high visuospatial working memory participants when they were asked to simulate the stories. These results support the idea that mental models may be of a perceptual nature and may more likely include behavioural elements than emotion labels per se, as suggested earlier by Gygax et al. (2007). 2012 APA, all rights reserved

  12. a Voxel-Based Metadata Structure for Change Detection in Point Clouds of Large-Scale Urban Areas

    NASA Astrophysics Data System (ADS)

    Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.

    2018-05-01

    Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.

  13. Development of Number Line Representations in Children With Mathematical Learning Disability

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Byrd-Craven, Jennifer

    2015-01-01

    Children with a mathematical learning disability (MLD, n = 19) and low achieving (LA, n = 43) children were identified using mathematics achievement scores below the 11th percentile and between the 11th and 25th percentiles, respectively. A control group of typically achieving (TA, n = 50) children was also identified. Number line and speed of processing tasks were administered in 1st and 2nd grade and a working memory battery in 1st grade. In both grades, the MLD children were less accurate in their number line placements and more reliant on a natural number-magnitude representational system to make these placements than were TA children. The TA children were more reliant on the school-taught linear system in both grades. The performance of the LA children was similar to that of the MLD children in first grade and to the TA children in second. The central executive component of working memory contributed to across-grade improvements in number line performance and to group differences in this performance. PMID:18473200

  14. Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.

    PubMed

    Saiki, Jun; Miyatsuji, Hirofumi

    2009-03-23

    Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.

  15. Rehearsal of to-be-remembered items is unnecessary to perform directed forgetting within working memory: Support for an active control mechanism.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2017-01-01

    Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and attention-demanding secondary task, on directed forgetting efficacy, and by (b) assessing the ability of people to perform forgetting in the absence of to-be-remembered competitors to rehearse. In Experiment 1, articulatory suppression interfered with directed forgetting, increasing the proportion of false alarms to to-be-forgotten probes in the working memory phase and decreasing the magnitude of the directed forgetting effect as assessed by an incidental long-term memory recognition test. Experiment 2 replicated the effects of articulatory suppression and tested whether the simultaneous requirement to retain, and presumably rehearse, to-be-remembered items was necessary for successful forgetting. The long-term directed forgetting effect was equivalent whether or not participants had to-be-remembered items to rehearse during the working memory phase. Experiment 3 included an additional comparison condition and confirmed that articulatory suppression interfered with directed forgetting and that participants were as efficient at directed forgetting with and without competitors to remember. In combination, these experiments suggest that directed forgetting in working memory requires an active control process that is limited by articulatory suppression, and that the demand to remember a concurrent memory set is unnecessary for this control process to operate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Working memory as internal attention: toward an integrative account of internal and external selection processes.

    PubMed

    Kiyonaga, Anastasia; Egner, Tobias

    2013-04-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus, the precise relationship between WM and attention remains unclear, but it appears that they may bidirectionally impact one another, whether or not internal representations are consistent with the external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward either actively maintained internal representations (traditionally considered WM) or external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and influencing one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention.

  17. Working Memory as Internal Attention: Toward an Integrative Account of Internal and External Selection Processes

    PubMed Central

    Kiyonaga, Anastasia; Egner, Tobias

    2012-01-01

    Working memory (WM) and attention have been studied as separate cognitive constructs, although it has long been acknowledged that attention plays an important role in controlling the activation, maintenance, and manipulation of representations in WM. WM has, conversely, been thought of as a means of maintaining representations to voluntarily guide perceptual selective attention. It has more recently been observed, however, that the contents of WM can capture visual attention, even when such internally maintained representations are irrelevant, and often disruptive, to the immediate external task. Thus the precise relationship between WM and attention remains unclear, but it appears that they may bi-directionally impact one another, whether or not internal representations are consistent with external perceptual goals. This reciprocal relationship seems, further, to be constrained by limited cognitive resources to handle demands in either maintenance or selection. We propose here that the close relationship between WM and attention may be best described as a give-and-take interdependence between attention directed toward actively maintained internal representations (traditionally considered WM) versus external perceptual stimuli (traditionally considered selective attention), underpinned by their shared reliance on a common cognitive resource. Put simply, we argue that WM and attention should no longer be considered as separate systems or concepts, but as competing and impacting one another because they rely on the same limited resource. This framework can offer an explanation for the capture of visual attention by irrelevant WM contents, as well as a straightforward account of the underspecified relationship between WM and attention. PMID:23233157

  18. Functional segregation of the inferior frontal gyrus for syntactic processes: a functional magnetic-resonance imaging study.

    PubMed

    Uchiyama, Yuji; Toyoda, Hiroshi; Honda, Manabu; Yoshida, Haruyo; Kochiyama, Takanori; Ebe, Kazutoshi; Sadato, Norihiro

    2008-07-01

    We used functional magnetic resonance imaging in 18 normal volunteers to determine whether there is separate representation of syntactic, semantic, and verbal working memory processing in the left inferior frontal gyrus (GFi). We compared a sentence comprehension task with a short-term memory maintenance task to identify syntactic and semantic processing regions. To investigate the effects of syntactic and verbal working memory load while minimizing the differences in semantic processes, we used comprehension tasks with garden-path (GP) sentences, which require re-parsing, and non-garden-path (NGP) sentences. Compared with the short-term memory task, sentence comprehension activated the left GFi, including Brodmann areas (BAs) 44, 45, and 47, and the left superior temporal gyrus. In GP versus NGP sentences, there was greater activity in the left BAs 44, 45, and 46 extending to the left anterior insula, the pre-supplementary motor area, and the right cerebellum. In the left GFi, verbal working memory activity was located more dorsally (BA 44/45), semantic processing was located more ventrally (BA 47), and syntactic processing was located in between (BA 45). These findings indicate a close relationship between semantic and syntactic processes, and suggest that BA 45 might link verbal working memory and semantic processing via syntactic unification processes.

  19. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers

    PubMed Central

    Thompson, Clarissa A.; Opfer, John E.

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688

  20. Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.

    PubMed

    Thompson, Clarissa A; Opfer, John E

    2016-01-01

    Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  1. Individual differences in executive processing predict susceptibility to interference in verbal working memory.

    PubMed

    Hedden, Trey; Yoon, Carolyn

    2006-09-01

    Recent theories have suggested that resistance to interference is a unifying principle of executive function and that individual differences in interference may be explained by executive function (M. J. Kane & R. W. Engle, 2002). Measures of executive function, memory, and perceptual speed were obtained from 121 older adults (ages 63-82). We used structural equation modeling to investigate the relationships of these constructs with interference in a working memory task. Executive function was best described as two related subcomponent processes: shifting and updating goal-relevant representations and inhibition of proactive interference. These subcomponents were distinct from verbal and visual memory and speed. Individual differences in interference susceptibility and recollection were best predicted by shifting and updating and by resistance to proactive interference, and variability in familiarity was predicted by resistance to proactive interference and speed. ((c) 2006 APA, all rights reserved).

  2. Familiarity enhances visual working memory for faces.

    PubMed

    Jackson, Margaret C; Raymond, Jane E

    2008-06-01

    Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or inverted and a low- or high-load concurrent verbal WM task was administered to suppress contribution from verbal WM. Even with a high verbal memory load, visual WM performance was significantly better and capacity estimated as significantly greater for famous versus unfamiliar faces. Face inversion abolished this effect. Thus, neither strategic, explicit support from verbal WM nor low-level feature processing easily accounts for the observed benefit of high familiarity for visual WM. These results demonstrate that storage of items in visual WM can be enhanced if robust visual representations of them already exist in long-term memory.

  3. The recall of information from working memory. Insights from behavioural and chronometric perspectives.

    PubMed

    Towse, John N; Cowan, Nelson; Hitch, Graham J; Horton, Neil J

    2008-01-01

    We describe and evaluate a recall reconstruction hypothesis for working memory (WM), according to which items can be recovered from multiple memory representations. Across four experiments, participants recalled memoranda that were either integrated with or independent of the sentence content. We found consistently longer pauses accompanying the correct recall of integrated compared with independent words, supporting the argument that sentence memory could scaffold the access of target items. Integrated words were also more likely to be recalled correctly, dependent on the details of the task. Experiment 1 investigated the chronometry of spoken recall for word span and reading span, with participants completing an unfinished sentence in the latter case. Experiments 2 and 3 confirm recall time differences without using word generation requirements, while Experiment 4 used an item and order response choice paradigm with nonspoken responses. Data emphasise the value of recall timing in constraining theories of WM functioning.

  4. Differential engagement of attention and visual working memory in the representation and evaluation of the number of relevant targets and their spatial relations: Evidence from the N2pc and SPCN.

    PubMed

    Maheux, Manon; Jolicœur, Pierre

    2017-04-01

    We examined the role of attention and visual working memory in the evaluation of the number of target stimuli as well as their relative spatial position using the N2pc and the SPCN. Participants performed two tasks: a simple counting task in which they had to determine if a visual display contained one or two coloured items among grey fillers and one in which they had to identify a specific relation between two coloured items. The same stimuli were used for both tasks. Each task was designed to permit an easier evaluation of either the same-coloured or differently-coloured stimuli. We predicted a greater involvement of attention and visual working memory for more difficult stimulus-task pairings. The results confirmed these predictions and suggest that visuospatial configurations that require more time to evaluate induce a greater (and presumably longer) involvement of attention and visual working memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Linguistic representations and memory architectures: The devil is in the details.

    PubMed

    Chacón, Dustin Alfonso; Momma, Shota; Phillips, Colin

    2016-01-01

    Attempts to explain linguistic phenomena as consequences of memory constraints require detailed specification of linguistic representations and memory architectures alike. We discuss examples of supposed locality biases in language comprehension and production, and their link to memory constraints. Findings do not generally favor Christiansen & Chater's (C&C's) approach. We discuss connections to debates that stretch back to the nineteenth century.

  6. The hippocampus and related neocortical structures in memory transformation.

    PubMed

    Sekeres, Melanie J; Winocur, Gordon; Moscovitch, Morris

    2018-05-04

    Episodic memories are multifaceted and malleable, capable of being transformed with time and experience at both the neural level and psychological level. At the neural level, episodic memories are transformed from being dependent on the hippocampus to becoming represented in neocortical structures, such as the medial prefrontal cortex (mPFC), and back again, while at the psychological level, detailed, perceptually rich memories, are transformed to ones retaining only the gist of an experience or a schema related to it. Trace Transformation Theory (TTT) initially proposed that neural and psychological transformations are linked and proceed in tandem. Building on recent studies on the neurobiology of memory transformation in rodents and on the organization of the hippocampus and its functional cortical connectivity in humans, we present an updated version of TTT that is more precise and detailed with respect to the dynamic processes and structures implicated in memory transformation. At the heart of the updated TTT lies the long axis of the hippocampus whose functional differentiation and connectivity to neocortex make it a hub for memory formation and transformation. The posterior hippocampus, connected to perceptual and spatial representational systems in posterior neocortex, supports fine, perceptually rich, local details of memories; the anterior hippocampus, connected to conceptual systems in anterior neocortex, supports coarse, global representations that constitute the gist of a memory. Notable among the anterior structures is the medial prefrontal cortex which supports representation of schemas that code for common aspects of memories across different episodes. Linking the aHPC with mPFC is the entorhinal cortex (EC) which conveys information needed for the interaction/translation between gist and schemas. Thus, the long axis of the hippocampus, mPFC and EC provide the representational gradient, from fine to coarse and from perceptual to conceptual, that can implement processes implicated in memory transformation. Each of these representations of an episodic memory can co-exist with one another and be in dynamic flux as they interact with one another throughout the memory's lifetime, going from detailed to schematic and possibly back again, all mediated by corresponding changes in neural representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features.

    PubMed

    Gosseries, Olivia; Yu, Qing; LaRocque, Joshua J; Starrett, Michael J; Rose, Nathan S; Cowan, Nelson; Postle, Bradley R

    2018-05-02

    Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems. SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention. Copyright © 2018 the authors 0270-6474/18/384357-10$15.00/0.

  8. The Representation of Sentences in Memory. Technical Report No. 144.

    ERIC Educational Resources Information Center

    Goetz, Ernest T.; And Others

    Associative theory characterizes the memory's representation of a sentence as a collection of independently linked concepts. In contrast, Gestalt theory says that the representation underlying each proposition expressed in a sentence is an integral unit. A review of research indicates that previous results either have been equivocal or have…

  9. Evidence for two attentional components in visual working memory.

    PubMed

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2014-11-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Neural Differentiation of Incorrectly Predicted Memories.

    PubMed

    Kim, Ghootae; Norman, Kenneth A; Turk-Browne, Nicholas B

    2017-02-22

    When an item is predicted in a particular context but the prediction is violated, memory for that item is weakened (Kim et al., 2014). Here, we explore what happens when such previously mispredicted items are later reencountered. According to prior neural network simulations, this sequence of events-misprediction and subsequent restudy-should lead to differentiation of the item's neural representation from the previous context (on which the misprediction was based). Specifically, misprediction weakens connections in the representation to features shared with the previous context and restudy allows new features to be incorporated into the representation that are not shared with the previous context. This cycle of misprediction and restudy should have the net effect of moving the item's neural representation away from the neural representation of the previous context. We tested this hypothesis using human fMRI by tracking changes in item-specific BOLD activity patterns in the hippocampus, a key structure for representing memories and generating predictions. In left CA2/3/DG, we found greater neural differentiation for items that were repeatedly mispredicted and restudied compared with items from a control condition that was identical except without misprediction. We also measured prediction strength in a trial-by-trial fashion and found that greater misprediction for an item led to more differentiation, further supporting our hypothesis. Therefore, the consequences of prediction error go beyond memory weakening. If the mispredicted item is restudied, the brain adaptively differentiates its memory representation to improve the accuracy of subsequent predictions and to shield it from further weakening. SIGNIFICANCE STATEMENT Competition between overlapping memories leads to weakening of nontarget memories over time, making it easier to access target memories. However, a nontarget memory in one context might become a target memory in another context. How do such memories get restrengthened without increasing competition again? Computational models suggest that the brain handles this by reducing neural connections to the previous context and adding connections to new features that were not part of the previous context. The result is neural differentiation away from the previous context. Here, we provide support for this theory, using fMRI to track neural representations of individual memories in the hippocampus and how they change based on learning. Copyright © 2017 the authors 0270-6474/17/372022-10$15.00/0.

  11. To bind or not to bind, that's the wrong question: Features and objects coexist in visual short-term memory.

    PubMed

    Geigerman, Shriradha; Verhaeghen, Paul; Cerella, John

    2016-06-01

    In three experiments, we investigated whether features and whole-objects can be represented simultaneously in visual short-term memory (VSTM). Participants were presented with a memory set of colored shapes; we probed either for the constituent features or for the whole object, and analyzed retrieval dynamics (cumulative response time distributions). In our first experiment, we used whole-object probes that recombined features from the memory display; we found that subjects' data conformed to a kitchen-line model, showing that they used whole-object representations for the matching process. In the second experiment, we encouraged independent-feature representations by using probes that used features not present in the memory display; subjects' data conformed to the race-model inequality, showing that they used independent-feature representations for the matching process. In a final experiment, we used both types of probes; subjects now used both types of representations, depending on the nature of the probe. Combined, our three experiments suggest that both feature and whole-object representations can coexist in VSTM. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Representing time in language and memory: the role of similarity structure.

    PubMed

    Faber, Myrthe; Gennari, Silvia P

    2015-03-01

    Every day we read about or watch events in the world and can easily understand or remember how long they last. What aspects of an event are retained in memory? And how do we extract temporal information from our memory representations? These issues are central to human cognition, as they underlie a fundamental aspect of our mental life, namely our representation of time. This paper reviews previous language studies and reports a visual learning study indicating that properties of the events encoded in memory shape the representation of their duration. The evidence indicates that for a given event, the extent to which its associated properties or sub-components differ from one another modulates our representation of its duration. These properties include the similarity between sub-events and the similarity between the situational contexts in which an event occurs. We suggest that the diversity of representations that we associate with events in memory plays an important role in remembering and estimating the duration of experienced or described events. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Control of working memory: effects of attention training on target recognition and distractor salience in an auditory selection task.

    PubMed

    Melara, Robert D; Tong, Yunxia; Rao, Aparna

    2012-01-09

    Behavioral and electrophysiological measures of target and distractor processing were examined in an auditory selective attention task before and after three weeks of distractor suppression training. Behaviorally, training improved target recognition and led to less conservative and more rapid responding. Training also effectively shortened the temporal distance between distractors and targets needed to achieve a fixed level of target sensitivity. The effects of training on event-related potentials were restricted to the distracting stimulus: earlier N1 latency, enhanced P2 amplitude, and weakened P3 amplitude. Nevertheless, as distractor P2 amplitude increased, so too did target P3 amplitude, connecting experience-dependent changes in distractor processing with greater distinctiveness of targets in working memory. We consider the effects of attention training on the processing priorities, representational noise, and inhibitory processes operating in working memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Visual working memory gives up attentional control early in learning: ruling out interhemispheric cancellation.

    PubMed

    Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F

    2014-08-01

    Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.

  15. Executive control processes underlying multi-item working memory

    PubMed Central

    Lara, Antonio H.; Wallis, Jonathan D.

    2014-01-01

    A dominant view of prefrontal cortex (PFC) function is that it stores task-relevant information in working memory. To examine this and determine how it applies when multiple pieces of information must be stored, we trained two macaque monkeys to perform a multi-item color change-detection task and recorded activity of neurons in PFC. Few neurons encoded the color of the items. Instead, the predominant encoding was spatial: a static signal reflecting the item's position and a dynamic signal reflecting the animal's covert attention. These findings challenge the notion that PFC stores task-relevant information. Instead, we suggest that the contribution of PFC is in controlling the allocation of resources to support working memory. In support of this, we found that increased power in the alpha and theta bands of PFC local field potentials, which are thought to reflect long-range communication with other brain areas, was correlated with more precise color representations. PMID:24747574

  16. Prospective memory: A comparative perspective

    PubMed Central

    Crystal, Jonathon D.; Wilson, A. George

    2014-01-01

    Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562

  17. Automaticity of Basic-Level Categorization Accounts for Labeling Effects in Visual Recognition Memory

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.

    2011-01-01

    Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…

  18. Representational Complexity and Memory Retrieval in Language Comprehension

    ERIC Educational Resources Information Center

    Hofmeister, Philip

    2011-01-01

    Mental representations formed from words or phrases may vary considerably in their feature-based complexity. Modern theories of retrieval in sentence comprehension do not indicate how this variation and the role of encoding processes should influence memory performance. Here, memory retrieval in language comprehension is shown to be influenced by…

  19. Getting more from visual working memory: Retro-cues enhance retrieval and protect from visual interference.

    PubMed

    Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus

    2016-06-01

    Visual working memory (VWM) has a limited capacity. This limitation can be mitigated by the use of focused attention: if attention is drawn to the relevant working memory content before test, performance improves (the so-called retro-cue benefit). This study tests 2 explanations of the retro-cue benefit: (a) Focused attention protects memory representations from interference by visual input at test, and (b) focusing attention enhances retrieval. Across 6 experiments using color recognition and color reproduction tasks, we varied the amount of color interference at test, and the delay between a retrieval cue (i.e., the retro-cue) and the memory test. Retro-cue benefits were larger when the memory test introduced interfering visual stimuli, showing that the retro-cue effect is in part because of protection from visual interference. However, when visual interference was held constant, retro-cue benefits were still obtained whenever the retro-cue enabled retrieval of an object from VWM but delayed response selection. Our results show that accessible information in VWM might be lost in the processes of testing memory because of visual interference and incomplete retrieval. This is not an inevitable state of affairs, though: Focused attention can be used to get the most out of VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Working Memory Impairment in People with Williams Syndrome: Effects of Delay, Task and Stimuli

    PubMed Central

    O'Hearn, Kirsten; Courtney, Susan; Street, Whitney; Landau, Barbara

    2009-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with impaired visuospatial representations subserved by the dorsal stream and relatively strong object recognition abilities subserved by the ventral stream. There is conflicting evidence on whether this uneven pattern extends to working memory (WM) in WS. The present studies provide a new perspective, testing WM for a single stimulus using a delayed recognition paradigm in individuals with WS and typically developing children matched for mental age (MA matches). In three experiments, participants judged whether a second stimulus ‘matched’ an initial sample, either in location or identity. We first examined memory for faces, houses and locations using a 5 s delay (Experiment 1) and a 2 s delay (Experiment 2). We then tested memory for human faces, houses, cat faces, and shoes with a 2 s delay using a new set of stimuli that were better controlled for expression, hairline and orientation (Experiment 3). With the 5 s delay (Experiment 1), the WS group was impaired overall compared to MA matches. While participants with WS tended to perform more poorly than MA matches with the 2 s delay, they also exhibited an uneven profile compared to MA matches. Face recognition was relatively preserved in WS with friendly faces (Experiment 2) but not when the faces had a neutral expression and were less natural looking (Experiment 3). Experiment 3 indicated that memory for object identity was relatively stronger than memory for location in WS. These findings reveal an overall WM impairment in WS that can be overcome under some conditions. Abnormalities in the parietal lobe/dorsal stream in WS may damage not only the representation of spatial location but also may impact WM for visual stimuli more generally. PMID:19084315

  1. Working memory impairment in people with Williams syndrome: effects of delay, task and stimuli.

    PubMed

    O'Hearn, Kirsten; Courtney, Susan; Street, Whitney; Landau, Barbara

    2009-04-01

    Williams syndrome (WS) is a neurodevelopmental disorder associated with impaired visuospatial representations subserved by the dorsal stream and relatively strong object recognition abilities subserved by the ventral stream. There is conflicting evidence on whether this uneven pattern in WS extends to working memory (WM). The present studies provide a new perspective, testing WM for a single stimulus using a delayed recognition paradigm in individuals with WS and typically developing children matched for mental age (MA matches). In three experiments, participants judged whether a second stimulus 'matched' an initial sample, either in location or identity. We first examined memory for faces, houses and locations using a 5s delay (Experiment 1) and a 2s delay (Experiment 2). We then tested memory for human faces, houses, cat faces, and shoes with a 2s delay using a new set of stimuli that were better controlled for expression, hairline and orientation (Experiment 3). With the 5s delay (Experiment 1), the WS group was impaired overall compared to MA matches. While participants with WS tended to perform more poorly than MA matches with the 2s delay, they also exhibited an uneven profile compared to MA matches. Face recognition was relatively preserved in WS with friendly faces (Experiment 2) but not when the faces had a neutral expression and were less natural looking (Experiment 3). Experiment 3 indicated that memory for object identity was relatively stronger than memory for location in WS. These findings reveal an overall WM impairment in WS that can be overcome under some conditions. Abnormalities in the parietal lobe/dorsal stream in WS may damage not only the representation of spatial location but may also impact WM for visual stimuli more generally.

  2. V4 activity predicts the strength of visual short-term memory representations.

    PubMed

    Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F

    2009-06-10

    Recent studies have shown the existence of a form of visual memory that lies intermediate of iconic memory and visual short-term memory (VSTM), in terms of both capacity (up to 15 items) and the duration of the memory trace (up to 4 s). Because new visual objects readily overwrite this intermediate visual store, we believe that it reflects a weak form of VSTM with high capacity that exists alongside a strong but capacity-limited form of VSTM. In the present study, we isolated brain activity related to weak and strong VSTM representations using functional magnetic resonance imaging. We found that activity in visual cortical area V4 predicted the strength of VSTM representations; activity was low when there was no VSTM, medium when there was a weak VSTM representation regardless of whether this weak representation was available for report or not, and high when there was a strong VSTM representation. Altogether, this study suggests that the high capacity yet weak VSTM store is represented in visual parts of the brain. Allegedly, only some of these VSTM traces are amplified by parietal and frontal regions and as a consequence reside in traditional or strong VSTM. The additional weak VSTM representations remain available for conscious access and report when attention is redirected to them yet are overwritten as soon as new visual stimuli hit the eyes.

  3. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture.

    PubMed

    Silvis, Jeroen D; Belopolsky, Artem V; Murris, Jozua W I; Donk, Mieke

    2015-01-01

    Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection.

  4. The Effects of Feature-Based Priming and Visual Working Memory on Oculomotor Capture

    PubMed Central

    Silvis, Jeroen D.; Belopolsky, Artem V.; Murris, Jozua W. I.; Donk, Mieke

    2015-01-01

    Recently, it has been demonstrated that objects held in working memory can influence rapid oculomotor selection. This has been taken as evidence that perceptual salience can be modified by active working memory representations. The goal of the present study was to examine whether these results could also be caused by feature-based priming. In two experiments, participants were asked to saccade to a target line segment of a certain orientation that was presented together with a to-be-ignored distractor. Both objects were given a task-irrelevant color that varied per trial. In a secondary task, a color had to be memorized, and that color could either match the color of the target, match the color of the distractor, or it did not match the color of any of the objects in the search task. The memory task was completed either after the search task (Experiment 1), or before it (Experiment 2). The results showed that in both experiments the memorized color biased oculomotor selection. Eye movements were more frequently drawn towards objects that matched the memorized color, irrespective of whether the memory task was completed after (Experiment 1) or before (Experiment 2) the search task. This bias was particularly prevalent in short-latency saccades. The results show that early oculomotor selection performance is not only affected by properties that are actively maintained in working memory but also by those previously memorized. Both working memory and feature priming can cause early biases in oculomotor selection. PMID:26566137

  5. The role of aging in intra-item and item-context binding processes in visual working memory.

    PubMed

    Peterson, Dwight J; Naveh-Benjamin, Moshe

    2016-11-01

    Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. The association of personal semantic memory to identity representations: insight into higher-order networks of autobiographical contents.

    PubMed

    Grilli, Matthew D

    2017-11-01

    Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.

  7. Dyslexia Limits the Ability to Categorize Talker Dialect

    PubMed Central

    Long, Gayle Beam; Jacewicz, Ewa

    2016-01-01

    Purpose The purpose of this study was to determine whether the underlying phonological impairment in dyslexia is associated with a deficit in categorizing regional dialects. Method Twenty adults with dyslexia, 20 school-age children with dyslexia, and 40 corresponding control listeners with average reading ability listened to sentences produced by multiple talkers (both sexes) representing two dialects: Midland dialect in Ohio (same as listeners' dialect) and Southern dialect in Western North Carolina. Participants' responses were analyzed using signal detection theory. Results Listeners with dyslexia were less sensitive to talker dialect than listeners with average reading ability. Children were less sensitive to dialect than adults. Under stimulus uncertainty, listeners with average reading ability were biased toward Ohio dialect, whereas listeners with dyslexia were unbiased in their responses. Talker sex interacted with sensitivity and bias differently for listeners with dyslexia than for listeners with average reading ability. The correlations between dialect sensitivity and phonological memory scores were strongest for adults with dyslexia. Conclusions The results imply that the phonological deficit in dyslexia arises from impaired access to intact phonological representations rather than from poorly specified representations. It can be presumed that the impeded access to implicit long-term memory representations for indexical (dialect) information is due to less efficient operations in working memory, including deficiencies in utilizing talker normalization processes. PMID:27575597

  8. Distinct Gamma-Band Components Reflect the Short-Term Memory Maintenance of Different Sound Lateralization Angles

    PubMed Central

    Heidegger, Tonio; Wibral, Michael; Altmann, Christian F.; Lutzenberger, Werner

    2008-01-01

    Oscillatory activity in human electro- or magnetoencephalogram has been related to cortical stimulus representations and their modulation by cognitive processes. Whereas previous work has focused on gamma-band activity (GBA) during attention or maintenance of representations, there is little evidence for GBA reflecting individual stimulus representations. The present study aimed at identifying stimulus-specific GBA components during auditory spatial short-term memory. A total of 28 adults were assigned to 1 of 2 groups who were presented with only right- or left-lateralized sounds, respectively. In each group, 2 sample stimuli were used which differed in their lateralization angles (15° or 45°) with respect to the midsagittal plane. Statistical probability mapping served to identify spectral amplitude differences between 15° versus 45° stimuli. Distinct GBA components were found for each sample stimulus in different sensors over parieto-occipital cortex contralateral to the side of stimulation peaking during the middle 200–300 ms of the delay phase. The differentiation between “preferred” and “nonpreferred” stimuli during the final 100 ms of the delay phase correlated with task performance. These findings suggest that the observed GBA components reflect the activity of distinct networks tuned to spatial sound features which contribute to the maintenance of task-relevant information in short-term memory. PMID:18252742

  9. The role of the hippocampus in memory and mental construction.

    PubMed

    Sheldon, Signy; Levine, Brian

    2016-04-01

    Much has been learned about the processes that support the remembrance of past autobiographical episodes and their importance for a number of cognitive tasks. This work has focused on hippocampal contributions to constructing coherent mental representations of scenarios for these tasks, which has opened up new questions about the underlying hippocampal mechanisms. We propose a new framework to answer these questions, which incorporates task demands that prompt hippocampal contributions to mental construction, the online formation of such mental representations, and how these demands relate to the functional organization of the hippocampus. Synthesizing findings from autobiographical memory research, our framework suggests that the interaction of two task characteristics influences the recruitment of the hippocampus: (1) the degree of task open-endedness (quantified by the presence/absence of a retrieval framework) and (2) the degree to which the integration of perceptual details is required. These characteristics inform the relative weighting of anterior and posterior hippocampal involvement, following an organizational model in which the anterior and posterior hippocampus support constructions on the basis of conceptual and perceptual representations, respectively. The anticipated outcome of our framework is a refined understanding of hippocampal contributions to memory and to the host of related cognitive functions. © 2016 New York Academy of Sciences.

  10. Oculomotor selection underlies feature retention in visual working memory.

    PubMed

    Hanning, Nina M; Jonikaitis, Donatas; Deubel, Heiner; Szinte, Martin

    2016-02-01

    Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations. Copyright © 2016 the American Physiological Society.

  11. Is refreshing in working memory impaired in older age? Evidence from the retro-cue paradigm.

    PubMed

    Loaiza, Vanessa M; Souza, Alessandra S

    2018-04-10

    Impairments in refreshing have been suggested as one source of working memory (WM) deficits in older age. Retro-cues provide an important method of investigating this question: a retro-cue guides attention to one WM item, thereby arguably refreshing it and increasing its accessibility compared with a no-cue baseline. In contrast to the refreshing deficit hypothesis, intact retro-cue benefits have been found in older adults. Refreshing, however, is assumed to boost not one but several WM representations when sequentially applied to them. Hence, intact refreshing requires the flexible switching of attention among WM items. So far, it remains an open question whether older adults show this flexibility. Here, we investigated whether older adults can use multiple cues to sequentially refresh WM representations. Younger and older adults completed a continuous-color delayed-estimation task, in which the number of retro-cues (0, 1, or 2) presented during the retention interval was manipulated. The results showed a similar retro-cue benefit for younger and older adults, even in the two-cue condition in which participants had to switch attention between items to refresh representations in WM. These findings suggest that the capacity to use cues to refresh information in visual WM may be preserved with age. © 2018 New York Academy of Sciences.

  12. Object representations in visual working memory change according to the task context.

    PubMed

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The ERP old-new effect: A useful indicator in studying the effects of sleep on memory retrieval processes.

    PubMed

    Mograss, Melodee; Godbout, Roger; Guillem, F

    2006-11-01

    To verify that the classic "Old/New" memory effect can be detected after a long delay, and to investigate the differential influence of declarative memory processes after normal sleep and daytime wake. The protocol is a variation of a more traditional study-recognition test used in event-related potential (ERP) studies in which sleep or wake is inserted between the learning and recognition session in order to verify the existence of the Old/New effect (ie, positive shift that occurs when stimuli are repeated). ERPs were recorded during the recognition-test session. The protocol was based on early work that compared the effect of sleep on memory without recording sleep. Data collection occurred in the outpatient sleep laboratory. Results from 13 subjects (6 men) aged between 21 and 39 years. The subjects performed the recognition memory test after sleep and daytime wake periods. More-accurate performance for the old (studied) stimuli occurred after the sleep session. Analysis of variance on correctly answered reaction times revealed a significant effect of condition (old/new) with no difference across session. A repeated-measure analysis revealed differences in "Old/New" effect, whereby the amplitude difference between the old and new items was larger after sleep than after wake. This effect of sleep was found in early frontal and later posterior ERP components, processes that represent strategic, contextual processing and facilitation of episodic memory. Memory representation was not different across sessions. These findings suggest that sleep and wake facilitate 2 components of memory unequally, ie, episodic recognition and memory representation functioning.

  14. Memory for found targets interferes with subsequent performance in multiple-target visual search.

    PubMed

    Cain, Matthew S; Mitroff, Stephen R

    2013-10-01

    Multiple-target visual searches--when more than 1 target can appear in a given search display--are commonplace in radiology, airport security screening, and the military. Whereas 1 target is often found accurately, additional targets are more likely to be missed in multiple-target searches. To better understand this decrement in 2nd-target detection, here we examined 2 potential forms of interference that can arise from finding a 1st target: interference from the perceptual salience of the 1st target (a now highly relevant distractor in a known location) and interference from a newly created memory representation for the 1st target. Here, we found that removing found targets from the display or making them salient and easily segregated color singletons improved subsequent search accuracy. However, replacing found targets with random distractor items did not improve subsequent search accuracy. Removing and highlighting found targets likely reduced both a target's visual salience and its memory load, whereas replacing a target removed its visual salience but not its representation in memory. Collectively, the current experiments suggest that the working memory load of a found target has a larger effect on subsequent search accuracy than does its perceptual salience. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    PubMed

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mnemonic anosognosia in Alzheimer's disease is caused by a failure to transfer online evaluations of performance: Evidence from memory training programs.

    PubMed

    Silva, Ana Rita; Pinho, Maria Salomé; Macedo, Luís; Souchay, Céline; Moulin, Christopher

    2017-06-01

    There is a debate about the ability of patients with Alzheimer's disease to build an up-to-date representation of their memory function, which has been termed mnemonic anosognosia. This form of anosognosia is typified by accurate online evaluations of performance, but dysfunctional or outmoded representations of function more generally. We tested whether people with Alzheimer's disease could adapt or change their representations of memory performance across three different six-week memory training programs using global judgements of learning. We showed that whereas online assessments of performance were accurate, patients continued to make inaccurate overestimations of their memory performance. This was despite the fact that the magnitude of predictions shifted according to the memory training. That is, on some level patients showed an ability to change and retain a representation of performance over time, but it was a dysfunctional one. For the first time in the literature we were able to use an analysis using correlations to support this claim, based on a large heterogeneous sample of 51 patients with Alzheimer's disease. The results point not to a failure to retain online metamemory information, but rather that this information is never used or incorporated into longer term representations, supporting but refining the mnemonic anosognosia hypothesis.

  17. Toward High-Performance Communications Interfaces for Science Problem Solving

    ERIC Educational Resources Information Center

    Oviatt, Sharon L.; Cohen, Adrienne O.

    2010-01-01

    From a theoretical viewpoint, educational interfaces that facilitate communicative actions involving representations central to a domain can maximize students' effort associated with constructing new schemas. In addition, interfaces that minimize working memory demands due to the interface per se, for example by mimicking existing non-digital work…

  18. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials.

    PubMed

    Schupp, Harald T; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-06-20

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life.

  19. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    PubMed Central

    Schupp, Harald T.; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life. PMID:27321471

  20. How Does Using Object Names Influence Visual Recognition Memory?

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  1. Developmental differences in relations between parent-reported executive function and unitized and non-unitized memory representations during childhood

    PubMed Central

    Blankenship, Sarah L.; Riggins, Tracy

    2015-01-01

    Previous research has documented an association between executive functioning (EF) and memory for bound details. However, it is unknown if this relation varies as a function of the type of bound information (i.e., unitized versus non-unitized) and whether this association changes as a function of age during childhood, when both EF and memory undergo rapid development. The current study sought to address these gaps by examining whether relations between parent-reported EF differed for unitized versus non-unitized memory representations and if these relations differed between children who were 4, 6, or 8 years of age. Results revealed that EF was selectively associated with non-unitized associative memory in 8-year-old children; no significant relations between EF and either memory condition were evident in 4- or 6-year-olds. These results suggest relations between EF and memory may be specific to non-unitized representations and that this association may emerge across childhood as both EF and memory abilities develop. PMID:26347683

  2. Facilitation and Interference in Identification of Pictures and Words

    DTIC Science & Technology

    1994-10-05

    semantic activation and episodic memory encoding. Journal of Verbal Learning and Verbal Behavior, 22, 88-104. Becker, C. A. (1979). Semantic context...set of items, such as pictures of common objects or known words, which have representations in semantic memory . To test this, we compared the...activation model in particular because nonwords have no memorial representation in semantic memory and thus cannot interfere with ore another. 2. Long-term

  3. Multiple foci of spatial attention in multimodal working memory.

    PubMed

    Katus, Tobias; Eimer, Martin

    2016-11-15

    The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In the same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile/visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. Our results reveal distinct foci of tactile and visual spatial attention that were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are activated through modality-specific processes that can operate simultaneously and largely independently of each other. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Abstract memory representations in the ventromedial prefrontal cortex and hippocampus support concept generalization.

    PubMed

    Bowman, Caitlin R; Zeithamova, Dagmar

    2018-02-07

    Memory function involves both the ability to remember details of individual experiences and the ability to link information across events to create new knowledge. Prior research has identified the ventromedial prefrontal cortex (VMPFC) and the hippocampus as important for integrating across events in service of generalization in episodic memory. The degree to which these memory integration mechanisms contribute to other forms of generalization, such as concept learning, is unclear. The present study used a concept-learning task in humans (both sexes) coupled with model-based fMRI to test whether VMPFC and hippocampus contribute to concept generalization, and whether they do so by maintaining specific category exemplars or abstract category representations. Two formal categorization models were fit to individual subject data: a prototype model that posits abstract category representations and an exemplar model that posits category representations based on individual category members. Latent variables from each of these models were entered into neuroimaging analyses to determine whether VMPFC and the hippocampus track prototype or exemplar information during concept generalization. Behavioral model fits indicated that almost three quarters of the subjects relied on prototype information when making judgments about new category members. Paralleling prototype dominance in behavior, correlates of the prototype model were identified in VMPFC and the anterior hippocampus with no significant exemplar correlates. These results indicate that the VMPFC and portions of the hippocampus play a broad role in memory generalization and that they do so by representing abstract information integrated from multiple events. SIGNIFICANCE STATEMENT Whether people represent concepts as a set of individual category members or by deriving generalized concept representations abstracted across exemplars has been debated. In episodic memory, generalized memory representations have been shown to arise through integration across events supported by the ventromedial prefrontal cortex (VMPFC) and hippocampus. The current study combined formal categorization models with fMRI data analysis to show that the VMPFC and anterior hippocampus represent abstract prototype information during concept generalization, contributing novel evidence of generalized concept representations in the brain. Results indicate that VMPFC-hippocampal memory integration mechanisms contribute to knowledge generalization across multiple cognitive domains, with the degree of abstraction of memory representations varying along the long axis of the hippocampus. Copyright © 2018 the authors.

  5. Statistics and dynamics of attractor networks with inter-correlated patterns

    NASA Astrophysics Data System (ADS)

    Kropff, E.

    2007-02-01

    In an embodied feature representation view, the semantic memory represents concepts in the brain by the associated activation of the features that describe it, each one of them processed in a differentiated region of the cortex. This system has been modeled with a Potts attractor network. Several studies of feature representation show that the correlation between patterns plays a crucial role in semantic memory. The present work focuses on two aspects of the effect of correlations in attractor networks. In first place, it assesses how a Potts network can store a set of patterns with non-trivial correlations between them. This is done through a simple and biologically plausible modification to the classical learning rule. In second place, it studies the complexity of latching transitions between attractor states, and how this complexity can be controlled.

  6. The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory.

    PubMed

    Grubert, Anna; Carlisle, Nancy B; Eimer, Martin

    2016-12-01

    The question whether target selection in visual search can be effectively controlled by simultaneous attentional templates for multiple features is still under dispute. We investigated whether multiple-color attentional guidance is possible when target colors remain constant and can thus be represented in long-term memory but not when they change frequently and have to be held in working memory. Participants searched for one, two, or three possible target colors that were specified by cue displays at the start of each trial. In constant-color blocks, the same colors remained task-relevant throughout. In variable-color blocks, target colors changed between trials. The contralateral delay activity (CDA) to cue displays increased in amplitude as a function of color memory load in variable-color blocks, which indicates that cued target colors were held in working memory. In constant-color blocks, the CDA was much smaller, suggesting that color representations were primarily stored in long-term memory. N2pc components to targets were measured as a marker of attentional target selection. Target N2pcs were attenuated and delayed during multiple-color search, demonstrating less efficient attentional deployment to color-defined target objects relative to single-color search. Importantly, these costs were the same in constant-color and variable-color blocks. These results demonstrate that attentional guidance by multiple-feature as compared with single-feature templates is less efficient both when target features remain constant and can be represented in long-term memory and when they change across trials and therefore have to be maintained in working memory.

  7. Shared Representations in Language Processing and Verbal Short-Term Memory: The Case of Grammatical Gender

    ERIC Educational Resources Information Center

    Schweppe, Judith; Rummer, Ralf

    2007-01-01

    The general idea of language-based accounts of short-term memory is that retention of linguistic materials is based on representations within the language processing system. In the present sentence recall study, we address the question whether the assumption of shared representations holds for morphosyntactic information (here: grammatical gender…

  8. Emotional state and local versus global spatial memory.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A

    2009-02-01

    The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.

  9. Identity modulates short-term memory for facial emotion.

    PubMed

    Galster, Murray; Kahana, Michael J; Wilson, Hugh R; Sekuler, Robert

    2009-12-01

    For some time, the relationship between processing of facial expression and facial identity has been in dispute. Using realistic synthetic faces, we reexamined this relationship for both perception and short-term memory. In Experiment 1, subjects tried to identify whether the emotional expression on a probe stimulus face matched the emotional expression on either of two remembered faces that they had just seen. The results showed that identity strongly influenced recognition short-term memory for emotional expression. In Experiment 2, subjects' similarity/dissimilarity judgments were transformed by multidimensional scaling (MDS) into a 2-D description of the faces' perceptual representations. Distances among stimuli in the MDS representation, which showed a strong linkage of emotional expression and facial identity, were good predictors of correct and false recognitions obtained previously in Experiment 1. The convergence of the results from Experiments 1 and 2 suggests that the overall structure and configuration of faces' perceptual representations may parallel their representation in short-term memory and that facial identity modulates the representation of facial emotion, both in perception and in memory. The stimuli from this study may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.

  10. Identity modulates short-term memory for facial emotion

    PubMed Central

    Galster, Murray; Kahana, Michael J.; Wilson, Hugh R.; Sekuler, Robert

    2010-01-01

    For some time, the relationship between processing of facial expression and facial identity has been in dispute. Using realistic synthetic faces, we reexamined this relationship for both perception and short-term memory. In Experiment 1, subjects tried to identify whether the emotional expression on a probe stimulus face matched the emotional expression on either of two remembered faces that they had just seen. The results showed that identity strongly influenced recognition short-term memory for emotional expression. In Experiment 2, subjects’ similarity/dissimilarity judgments were transformed by multidimensional scaling (MDS) into a 2-D description of the faces’ perceptual representations. Distances among stimuli in the MDS representation, which showed a strong linkage of emotional expression and facial identity, were good predictors of correct and false recognitions obtained previously in Experiment 1. The convergence of the results from Experiments 1 and 2 suggests that the overall structure and configuration of faces’ perceptual representations may parallel their representation in short-term memory and that facial identity modulates the representation of facial emotion, both in perception and in memory. The stimuli from this study may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental. PMID:19897794

  11. Testing the exclusivity effect in location memory.

    PubMed

    Clark, Daniel P A; Dunn, Andrew K; Baguley, Thom

    2013-01-01

    There is growing literature exploring the possibility of parallel retrieval of location memories, although this literature focuses primarily on the speed of retrieval with little attention to the accuracy of location memory recall. Baguley, Lansdale, Lines, and Parkin (2006) found that when a person has two or more memories for an object's location, their recall accuracy suggests that only one representation can be retrieved at a time (exclusivity). This finding is counterintuitive given evidence of non-exclusive recall in the wider memory literature. The current experiment explored the exclusivity effect further and aimed to promote an alternative outcome (i.e., independence or superadditivity) by encouraging the participants to combine multiple representations of space at encoding or retrieval. This was encouraged by using anchor (points of reference) labels that could be combined to form a single strongly associated combination. It was hypothesised that the ability to combine the anchor labels would allow the two representations to be retrieved concurrently, generating higher levels of recall accuracy. The results demonstrate further support for the exclusivity hypothesis, showing no significant improvement in recall accuracy when there are multiple representations of a target object's location as compared to a single representation.

  12. Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?

    PubMed

    Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou

    2017-02-01

    Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. Temporal Expectations Guide Dynamic Prioritization in Visual Working Memory through Attenuated α Oscillations.

    PubMed

    van Ede, Freek; Niklaus, Marcel; Nobre, Anna C

    2017-01-11

    Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.

  14. A working memory "theory of relativity": elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition.

    PubMed

    Glassman, R B

    1999-03-15

    It is remarkable that working memory (WM) capacity for numbers of items remains modest, at approximately 7+/-2 (the so-called "magical number"), across a wide variety of kinds of material. Indeed, consideration of radial maze studies together with more traditional memory research shows that WM capacity remains fairly constant whether the items are verbal or visuospatial, and that this same capacity is true of other species as of humans. In contrast to their limited numerousness, WM items are extremely flexible in ways that are here brought under the heading of "dimensionality." Therefore, the physical items represented in WM, can vary widely in any quantitative characteristic and in the temporal pace at which they are encountered. Combinatorial considerations suggest that WM numerousness results from evolution of a middle ground between a sterile parsimony and an overwhelming excess, for organizing neurocognitive associations. Such natural selection seems likely to have worked opportunistically to yield diverse characteristics of neuronal tissue, from subcellular components to properties of ensembles, which converge on the required cognitive properties of WM. Priming and implicit memory may play supporting roles with WM. These intermediate-term memory phenomena allow certain kinds of background information to be accumulated at higher volume than seems possible from the textbook, "modal model" of memory. By expediting attentional focus on subsets of information already in long-term memory, priming may help WM chunks to emerge in limited number as appropriately scaled "figures" from the primed "ground." The larger neuronal dynamic patterns that embody these cognitive phenomena must regulate their microscopic component systems, automatically selecting those having parameters of temporal persistence, rhythm, and connectivity patterns that are pertinent to the current task. Relevant neural phenomena may include "Hebbian" associativity and persistence of firing patterns in prefrontal or hippocampal neurons. A conceivable basis for scaling and normalizing WM representations, along arbitrarily long or short ranges of any cognitive dimension, involves harmonic multiplier relationships among brain electrical rhythms and/or among topographical spatial periodic representations.

  15. Orienting attention to locations in internal representations.

    PubMed

    Griffin, Ivan C; Nobre, Anna C

    2003-11-15

    Three experiments investigated whether it is possible to orient selective spatial attention to internal representations held in working memory in a similar fashion to orienting to perceptual stimuli. In the first experiment, subjects were either cued to orient to a spatial location before a stimulus array was presented (pre-cue), cued to orient to a spatial location in working memory after the array was presented (retro-cue), or given no cueing information (neutral cue). The stimulus array consisted of four differently colored crosses, one in each quadrant. At the end of a trial, a colored cross (probe) was presented centrally, and subjects responded according to whether it had occurred in the array. There were equivalent patterns of behavioral costs and benefits of cueing for both pre-cues and retro-cues. A follow-up experiment used a peripheral probe stimulus requiring a decision about whether its color matched that of the item presented at the same location in the array. Replication of the behavioral costs and benefits of pre-cues and retro-cues in this experiment ruled out changes in response criteria as the only explanation for the effects. The third experiment used event-related potentials (ERPs) to compare the neural processes involved in orienting attention to a spatial location in an external versus an internal spatial representation. In this task, subjects responded according to whether a central probe stimulus occurred at the cued location in the array. There were both similarities and differences between ERPs to spatial cues toward a perception versus an internal spatial representation. Lateralized early posterior and later frontal negativities were observed for both pre- and retro-cues. Retro-cues also showed additional neural processes to be involved in orienting to an internal representation, including early effects over frontal electrodes.

  16. Different developmental trajectories across feature types support a dynamic field model of visual working memory development

    PubMed Central

    Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin

    2015-01-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253

  17. Exploring age differences in visual working memory capacity: is there a contribution of memory for configuration?

    PubMed

    Cowan, Nelson; Saults, J Scott; Clark, Katherine M

    2015-07-01

    Recent research has shown marked developmental increases in the apparent capacity of working memory. This recent research is based largely on performance on tasks in which a visual array is to be retained briefly for comparison with a subsequent probe display. Here we examined a possible theoretical alternative (or supplement) to a developmental increase in working memory in which children could improve in the ability to combine items in an array to form a coherent configuration. Elementary school children and adults received, on each trial, an array of colored spots to be remembered. On some trials, we provided structure in the probe display to facilitate the formation of a mental representation in which a coherent configuration is encoded. This stimulus structure in the probe display helped younger children, and thus reduced the developmental trend, but only on trials in which the participants were held responsible for the locations of items in the array. We conclude that, in addition to the development of the ability to form precise spatial configurations from items, the evidence is consistent with the existence of an actual developmental increase in working memory capacity for objects in an array. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    PubMed

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  19. A spatial paradigm, the allothetic place avoidance alternation task, for testing visuospatial working memory and skill learning in rats.

    PubMed

    Dockery, Colleen A; Wesierska, Malgorzata J

    2010-08-30

    We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.

    PubMed

    Kizilirmak, Jasmin M; Rösler, Frank; Bien, Siegfried; Khader, Patrick H

    2015-07-21

    The attention to memory theory (AtoM) proposes that the same brain regions might be involved in selective processing of perceived stimuli (selective attention) and memory representations (selective retrieval). Although this idea is compelling, given consistently found neural overlap between perceiving and remembering stimuli, recent comparisons brought evidence for overlap as well as considerable differences. Here, we present a paradigm that enables the investigation of the AtoM hypothesis from a novel perspective to gain further insight into the neural resources involved in AtoM. Selective attention in perception is often investigated as a control process that shows lingering effects on immediately following trials. Here, we employed a paradigm capable of modulating selective retrieval in a similarly dynamic manner as in such selective-attention paradigms by inducing trial-to-trial shifts between relevant and irrelevant memory representations as well as changes of the width of the internal focus on memory. We found evidence for an involvement of bilateral inferior parietal lobe and right inferior frontal gyrus in reorienting the attentional focus on previously accessed memory representations. Moreover, we could dissociate the right inferior from the parietal activation in separate contrasts, suggesting that the right inferior frontal gyrus plays a role in facilitating attentional reorienting to memory representations when competing representations have been activated in the preceding trial, potentially by resolving this competition. Our results support the AtoM theory, i.e. that ventral frontal and parietal regions are involved in automatic attentional reorienting in memory, and highlight the importance of further investigations of the overlap and differences between regions involved in internal (memory) and external (perceptual) attentional selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  2. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Developmental dyscalculia.

    PubMed

    Price, Gavin R; Ansari, Daniel

    2013-01-01

    Developmental dyscalculia (DD) is a learning disorder affecting the acquisition of school level arithmetic skills present in approximately 3-6% of the population. At the behavioral level DD is characterized by poor retrieval of arithmetic facts from memory, the use of immature calculation procedures and counting strategies, and the atypical representation and processing of numerical magnitude. At the neural level emerging evidence suggests DD is associated with atypical structure and function in brain regions associated with the representation of numerical magnitude. The current state of knowledge points to a core deficit in numerical magnitude representation in DD, but further work is required to elucidate causal mechanisms underlying the disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Understanding marital conflict 7 years later from prenatal representations of marriage.

    PubMed

    Curran, Melissa; Ogolsky, Brian; Hazen, Nancy; Bosch, Leslie

    2011-06-01

    We examine how representations of marriage, assessed prenatally, predict different types of marital conflict (cooperation, avoidance/capitulation, stonewalling, and child involvement in parental conflict) at 7 years postpartum (N=132 individuals). We assessed representations of marriage prenatally by interviewing spouses about their own parents' marriage, and then rated the content and insightfulness of their memories. Results show that marital representations characterized by higher insight predict higher cooperation and lower child involvement in parental conflict, whereas content of marital representations was not a significant predictor of marital conflict. Further, individuals who remember negative memories from their parents' marriage with high insight were lowest on child involvement in parental conflict, whereas those who remember negative memories with low insight were highest on child involvement in parental conflict. Finally, women who remember negative content with high insight report the highest cooperation, whereas women who remember negative content with low insight report the lowest cooperation. For men, however, marital representations were less effective in predicting later cooperation. We conclude that marital representations, even when assessed prenatally, influence certain types of marital conflict 7 years later. Using such findings, therapists could help spouses gain insight into how the memories of their parents' marriage relate to the use of specific conflict strategies in their marriage. 2011 © FPI, Inc.

  5. Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval.

    PubMed

    Xiao, Xiaoqian; Dong, Qi; Gao, Jiahong; Men, Weiwei; Poldrack, Russell A; Xue, Gui

    2017-03-15

    Contemporary models of episodic memory posit that remembering involves the reenactment of encoding processes. Although encoding-retrieval similarity has been consistently reported and linked to memory success, the nature of neural pattern reinstatement is poorly understood. Using high-resolution fMRI on human subjects, our results obtained clear evidence for item-specific pattern reinstatement in the frontoparietal cortex, even when the encoding-retrieval pairs shared no perceptual similarity. No item-specific pattern reinstatement was found in the ventral visual cortex. Importantly, the brain regions and voxels carrying item-specific representation differed significantly between encoding and retrieval, and the item specificity for encoding-retrieval similarity was smaller than that for encoding or retrieval, suggesting different nature of representations between encoding and retrieval. Moreover, cross-region representational similarity analysis suggests that the encoded representation in the ventral visual cortex was reinstated in the frontoparietal cortex during retrieval. Together, these results suggest that, in addition to reinstatement of the originally encoded pattern in the brain regions that perform encoding processes, retrieval may also involve the reinstatement of a transformed representation of the encoded information. These results emphasize the constructive nature of memory retrieval that helps to serve important adaptive functions. SIGNIFICANCE STATEMENT Episodic memory enables humans to vividly reexperience past events, yet how this is achieved at the neural level is barely understood. A long-standing hypothesis posits that memory retrieval involves the faithful reinstatement of encoding-related activity. We tested this hypothesis by comparing the neural representations during encoding and retrieval. We found strong pattern reinstatement in the frontoparietal cortex, but not in the ventral visual cortex, that represents visual details. Critically, even within the same brain regions, the nature of representation during retrieval was qualitatively different from that during encoding. These results suggest that memory retrieval is not a faithful replay of past event but rather involves additional constructive processes to serve adaptive functions. Copyright © 2017 the authors 0270-6474/17/372986-13$15.00/0.

  6. Simplified Interface to Complex Memory Hierarchies 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Michael; Ionkov, Latchesar; Williams, Sean

    2017-02-21

    Memory systems are expected to get evermore complicated in the coming years, and it isn't clear exactly what form that complexity will take. On the software side, a simple, flexible way of identifying and working with memory pools is needed. Additionally, most developers seek code portability and do not want to learn the intricacies of complex memory. Hence, we believe that a library for interacting with complex memory systems should expose two kinds of abstraction: First, a low-level, mechanism-based interface designed for the runtime or advanced user that wants complete control, with its focus on simplified representation but with allmore » decisions left to the caller. Second, a high-level, policy-based interface designed for ease of use for the application developer, in which we aim for best-practice decisions based on application intent. We have developed such a library, called SICM: Simplified Interface to Complex Memory.« less

  7. Modelling neural correlates of working memory: A coordinate-based meta-analysis

    PubMed Central

    Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.

    2011-01-01

    Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808

  8. Dynamic relation between working memory capacity and speech recognition in noise during the first 6 months of hearing aid use.

    PubMed

    Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker

    2014-11-23

    The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.

  9. Activation of the Basolateral Amygdala Induces Long-Term Enhancement of Specific Memory Representations in the Cerebral Cortex

    PubMed Central

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2013-01-01

    The basolateral amygdala (BLA) modulates memory, particularly for arousing or emotional events, during post-training periods of consolidation. It strengthens memories whose substrates in part or whole are stored remotely, in structures such as the hippocampus, striatum and cerebral cortex. However, the mechanisms by which the BLA influences distant memory traces are unknown, largely because of the need for identifiable target mnemonic representations. Associative tuning plasticity in the primary auditory cortex (A1) constitutes a well-characterized candidate specific memory substrate that is ubiquitous across species, tasks and motivational states. When tone predicts reinforcement, the tuning of cells in A1 shifts toward or to the signal frequency within its tonotopic map, producing an over-representation of behaviorally important sounds. Tuning shifts have the cardinal attributes of forms of memory, including associativity, specificity, rapid induction, consolidation and long-term retention and are therefore likely memory representations. We hypothesized that the BLA strengthens memories by increasing their cortical representations. We recorded multiple unit activity from A1 of rats that received a single discrimination training session in which two tones (2.0 s) separated by 1.25 octaves were either paired with brief electrical stimulation (400 ms) of the BLA (CS+) or not (CS−). Frequency response areas generated by presenting a matrix of test tones (0.5–53.82 kHz, 0–70 dB) were obtained before training and daily for three weeks post-training. Tuning both at threshold and above threshold shifted predominantly toward the CS+ beginning on Day 1. Tuning shifts were maintained for the entire three weeks. Absolute threshold and bandwidth decreased, producing less enduring increases in sensitivity and selectivity. BLA-induced tuning shifts were associative, highly specific and long-lasting. We propose that the BLA strengthens memory for important experiences by increasing the number of neurons that come to best represent that event. Traumatic, intrusive memories might reflect abnormally extensive representational networks due to hyper-activity of the BLA consequent to the release of excessive amounts of stress hormones. PMID:23266792

  10. Memory-guided force control in healthy younger and older adults.

    PubMed

    Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A

    2017-08-01

    Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.

  11. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination

    PubMed Central

    Muthukumaraswamy, Suresh D.; Hibbs, Carina S.; Shapiro, Kimron L.; Bracewell, R. Martyn; Singh, Krish D.; Linden, David E. J.

    2011-01-01

    The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination. PMID:21940605

  12. Neural basis for generalized quantifier comprehension.

    PubMed

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  13. Iconic memory requires attention

    PubMed Central

    Persuh, Marjan; Genzer, Boris; Melara, Robert D.

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389

  14. Iconic memory requires attention.

    PubMed

    Persuh, Marjan; Genzer, Boris; Melara, Robert D

    2012-01-01

    Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.

  15. Control of information in working memory: Encoding and removal of distractors in the complex-span paradigm.

    PubMed

    Oberauer, Klaus; Lewandowsky, Stephan

    2016-11-01

    The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. New perspectives on the auditory cortex: learning and memory.

    PubMed

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  17. The fate of object memory traces under change detection and change blindness.

    PubMed

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Task Demands Control Acquisition and Storage of Visual Information

    ERIC Educational Resources Information Center

    Droll, Jason A.; Hayhoe, Mary M.; Triesch, Jochen; Sullivan, Brian T.

    2005-01-01

    Attention and working memory limitations set strict limits on visual representations, yet researchers have little appreciation of how these limits constrain the acquisition of information in ongoing visually guided behavior. Subjects performed a brick sorting task in a virtual environment. A change was made to 1 of the features of the brick being…

  19. A Computational Account of Children's Analogical Reasoning: Balancing Inhibitory Control in Working Memory and Relational Representation

    ERIC Educational Resources Information Center

    Morrison, Robert G.; Doumas, Leonidas A. A.; Richland, Lindsey E.

    2011-01-01

    Theories accounting for the development of analogical reasoning tend to emphasize either the centrality of relational knowledge accretion or changes in information processing capability. Simulations in LISA (Hummel & Holyoak, 1997, 2003), a neurally inspired computer model of analogical reasoning, allow us to explore how these factors may…

  20. Phonological similarity effect in complex span task.

    PubMed

    Camos, Valérie; Mora, Gérôme; Barrouillet, Pierre

    2013-01-01

    The aim of our study was to test the hypothesis that two systems are involved in verbal working memory; one is specifically dedicated to the maintenance of phonological representations through verbal rehearsal while the other would maintain multimodal representations through attentional refreshing. This theoretical framework predicts that phonologically related phenomena such as the phonological similarity effect (PSE) should occur when the domain-specific system is involved in maintenance, but should disappear when concurrent articulation hinders its use. Impeding maintenance in the domain-general system by a concurrent attentional demand should impair recall performance without affecting PSE. In three experiments, we manipulated the concurrent articulation and the attentional demand induced by the processing component of complex span tasks in which participants had to maintain lists of either similar or dissimilar words. Confirming our predictions, PSE affected recall performance in complex span tasks. Although both the attentional demand and the articulatory requirement of the concurrent task impaired recall, only the induction of an articulatory suppression during maintenance made the PSE disappear. These results suggest a duality in the systems devoted to verbal maintenance in the short term, constraining models of working memory.

  1. Autobiographical memory functioning among abused, neglected, and nonmaltreated children: the overgeneral memory effect.

    PubMed

    Valentino, Kristin; Toth, Sheree L; Cicchetti, Dante

    2009-08-01

    This investigation addresses whether there are differences in the form and content of autobiographical memory recall as a function of maltreatment, and examines the roles of self-system functioning and psychopathology in autobiographical memory processes. Autobiographical memory for positive and negative nontraumatic events was evaluated among abused, neglected, and nonmaltreated school-aged children. Abused children's memories were more overgeneral and contained more negative self-representations than did those of the nonmaltreated children. Negative self-representations and depression were significantly related to overgeneral memory, but did not mediate the relation between abuse and overgeneral memory. The meaning of these findings for models of memory and for the development of overgenerality is emphasized. Moreover, the clinical implications of the current research are discussed.

  2. Are written and spoken recall of text equivalent?

    PubMed

    Kellogg, Ronald T

    2007-01-01

    Writing is less practiced than speaking, graphemic codes are activated only in writing, and the retrieved representations of the text must be maintained in working memory longer because handwritten output is slower than speech. These extra demands on working memory could result in less effort being given to retrieval during written compared with spoken text recall. To test this hypothesis, college students read or heard Bartlett's "War of the Ghosts" and then recalled the text in writing or speech. Spoken recall produced more accurately recalled propositions and more major distortions (e.g., inferences) than written recall. The results suggest that writing reduces the retrieval effort given to reconstructing the propositions of a text.

  3. Putting Short-Term Memory into Context: Reply to Usher, Davelaar, Haarmann, and Goshen-Gottstein (2008)

    ERIC Educational Resources Information Center

    Kahana, Michael J.; Sederberg, Per B.; Howard, Marc W.

    2008-01-01

    The temporal context model posits that search through episodic memory is driven by associations between the multiattribute representations of items and context. Context, in turn, is a recency weighted sum of previous experiences or memories. Because recently processed items are most similar to the current representation of context, M. Usher, E. J.…

  4. A Probabilistic Clustering Theory of the Organization of Visual Short-Term Memory

    ERIC Educational Resources Information Center

    Orhan, A. Emin; Jacobs, Robert A.

    2013-01-01

    Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a…

  5. Cues, context, and long-term memory: the role of the retrosplenial cortex in spatial cognition

    PubMed Central

    Miller, Adam M. P.; Vedder, Lindsey C.; Law, L. Matthew; Smith, David M.

    2014-01-01

    Spatial navigation requires memory representations of landmarks and other navigation cues. The retrosplenial cortex (RSC) is anatomically positioned between limbic areas important for memory formation, such as the hippocampus (HPC) and the anterior thalamus, and cortical regions along the dorsal stream known to contribute importantly to long-term spatial representation, such as the posterior parietal cortex. Damage to the RSC severely impairs allocentric representations of the environment, including the ability to derive navigational information from landmarks. The specific deficits seen in tests of human and rodent navigation suggest that the RSC supports allocentric representation by processing the stable features of the environment and the spatial relationships among them. In addition to spatial cognition, the RSC plays a key role in contextual and episodic memory. The RSC also contributes importantly to the acquisition and consolidation of long-term spatial and contextual memory through its interactions with the HPC. Within this framework, the RSC plays a dual role as part of the feedforward network providing sensory and mnemonic input to the HPC and as a target of the hippocampal-dependent systems consolidation of long-term memory. PMID:25140141

  6. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    PubMed

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Does visual working memory represent the predicted locations of future target objects? An event-related brain potential study.

    PubMed

    Grubert, Anna; Eimer, Martin

    2015-11-11

    During the maintenance of task-relevant objects in visual working memory, the contralateral delay activity (CDA) is elicited over the hemisphere opposite to the visual field where these objects are presented. The presence of this lateralised CDA component demonstrates the existence of position-dependent object representations in working memory. We employed a change detection task to investigate whether the represented object locations in visual working memory are shifted in preparation for the known location of upcoming comparison stimuli. On each trial, bilateral memory displays were followed after a delay period by bilateral test displays. Participants had to encode and maintain three visual objects on one side of the memory display, and to judge whether they were identical or different to three objects in the test display. Task-relevant memory and test stimuli were located in the same visual hemifield in the no-shift task, and on opposite sides in the horizontal shift task. CDA components of similar size were triggered contralateral to the memorized objects in both tasks. The absence of a polarity reversal of the CDA in the horizontal shift task demonstrated that there was no preparatory shift of memorized object location towards the side of the upcoming comparison stimuli. These results suggest that visual working memory represents the locations of visual objects during encoding, and that the matching of memorized and test objects at different locations is based on a comparison process that can bridge spatial translations between these objects. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Recognition-induced forgetting is not due to category-based set size.

    PubMed

    Maxcey, Ashleigh M

    2016-01-01

    What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.

  9. Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?

    PubMed

    Berggren, Nick; Eimer, Martin

    2016-12-01

    During the retention of visual information in working memory, event-related brain potentials show a sustained negativity over posterior visual regions contralateral to the side where memorized stimuli were presented. This contralateral delay activity (CDA) is generally believed to be a neural marker of working memory storage. In two experiments, we contrasted this storage account of the CDA with the alternative hypothesis that the CDA reflects the current focus of spatial attention on a subset of memorized items set up during the most recent encoding episode. We employed a sequential loading procedure where participants memorized four task-relevant items that were presented in two successive memory displays (M1 and M2). In both experiments, CDA components were initially elicited contralateral to task-relevant items in M1. Critically, the CDA switched polarity when M2 displays appeared on the opposite side. In line with the attentional activation account, these reversed CDA components exclusively reflected the number of items that were encoded from M2 displays, irrespective of how many M1 items were already held in working memory. On trials where M1 and M2 displays were presented on the same side and on trials where M2 displays appeared nonlaterally, CDA components elicited in the interval after M2 remained sensitive to a residual trace of M1 items, indicating that some activation of previously stored items was maintained across encoding episodes. These results challenge the hypothesis that CDA amplitudes directly reflect the total number of stored objects and suggest that the CDA is primarily sensitive to the activation of a subset of working memory representations within the current focus of spatial attention.

  10. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memorymore » task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.« less

  11. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  12. Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    PubMed Central

    Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101

  13. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communication issues connected with aircraft-based separation assurance.

  14. Cortical and Hippocampal Correlates of Deliberation during Model-Based Decisions for Rewards in Humans

    PubMed Central

    Bornstein, Aaron M.; Daw, Nathaniel D.

    2013-01-01

    How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation. PMID:24339770

  15. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of orientation in visual working memory.

  16. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    PubMed

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  17. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    NASA Astrophysics Data System (ADS)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  18. Performance assessment of a pre-partitioned adaptive chemistry approach in large-eddy simulation of turbulent flames

    NASA Astrophysics Data System (ADS)

    Pepiot, Perrine; Liang, Youwen; Newale, Ashish; Pope, Stephen

    2016-11-01

    A pre-partitioned adaptive chemistry (PPAC) approach recently developed and validated in the simplified framework of a partially-stirred reactor is applied to the simulation of turbulent flames using a LES/particle PDF framework. The PPAC approach was shown to simultaneously provide significant savings in CPU and memory requirements, two major limiting factors in LES/particle PDF. The savings are achieved by providing each particle in the PDF method with a specialized reduced representation and kinetic model adjusted to its changing composition. Both representation and model are identified efficiently from a pre-determined list using a low-dimensional binary-tree search algorithm, thereby keeping the run-time overhead associated with the adaptive strategy to a minimum. The Sandia D flame is used as benchmark to quantify the performance of the PPAC algorithm in a turbulent combustion setting. In particular, the CPU and memory benefits, the distribution of the various representations throughout the computational domain, and the relationship between the user-defined error tolerances used to derive the reduced representations and models and the actual errors observed in LES/PDF are characterized. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-90ER14128.

  19. Visual working memory is more tolerant than visual long-term memory.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2018-05-07

    Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Representation-Independent Iteration of Sparse Data Arrays

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.

Top