Sample records for world fusion program

  1. Development of Electron Beam Pumped KrF Lasers for Fusion Energy

    DTIC Science & Technology

    2008-01-01

    Direct drive with krypton fluoride (KrF) lasers is an attractive approach to inertial fusion energy (IFE): KrF lasers have outstanding beam spatial...attractive power plant [3]. In view of these advances, several world-wide programs are underway to develop KrF lasers for fusion energy . These include

  2. Preliminary Evaluation of the Adequacy of Lithium Resources of the World and China for D-T Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Ni, Muyi; Jiang, Jieqiong; Wu, Yican; FDS-Team

    2012-07-01

    This paper studied the adequacy of the World and China lithium resources, considering the most promising uses in the future, involving nuclear fusion and electric-vehicles. The lithium recycle model for D-T fusion power plant and electric-vehicles, and the logistic growth prediction model of the primary energy for the World and China were constructed. Based on these models, preliminary evaluation of lithium resources adequacy of the World and China for D-T fusion reactors was presented under certain assumptions. Results show that: a. The world terrestrial reserves of lithium seems too limited to support a significant D-T power program, but the lithium reserves of China are relatively abundant, compared with the world case. b. The lithium resources contained in the oceans can be called the “permanent" energy. c. The change in 6Li enrichment has no obvious effect on the availability period of the lithium resources using FDS-II (Liquid Pb-17Li breeder blanket) type of reactors, but it has a stronger effect when PPCS-B (Solid Li4 SiO4 ceramics breeder blanket) is used.

  3. Radar E-O image fusion

    NASA Technical Reports Server (NTRS)

    Oneil, William F.

    1993-01-01

    The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.

  4. A U.S. Strategy for Timely Fusion Energy Development

    NASA Astrophysics Data System (ADS)

    Wade, Mickey

    2017-10-01

    Worldwide energy demand is expected to explode in the latter half of this century. In anticipation of this demand, the U.S. DOE recently asked the National Academy of Science to provide guidance on a long-term strategic plan assuming that ``economical fusion energy within the next several decades is a U.S. strategic interest. ``Delivering on such a plan will require an R&D program that delivers key data and understanding on the building blocks of a) burning plasma physics, b) optimization of the coupled core-edge solution, and c) fusion nuclear science to inform the design of a cost-attractive DEMO reactor in this time frame. Such a program should leverage existing facilities in the U.S. program including ITER, provide substantive motivation for an expanding R&D scope (and funding), and enable timely redirection of resources within the program as appropriate (and endorsed by DOE and the fusion community). This paper will outline a potential strategy that provides world-leading opportunities for the research community in a range of areas while delivering on key milestones required for timely fusion energy development. Supported by General Atomics internal funding.

  5. Status of fusion research and implications for D/He-3 systems

    NASA Technical Reports Server (NTRS)

    Miley, George H.

    1988-01-01

    World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.

  6. An accelerated fusion power development plan

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.; Baker, Charles C.; Cohn, Daniel R.; Kinkead, Susan D.

    1991-06-01

    Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested 8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.

  7. Revitalizing Fusion via Fission Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  8. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.

  9. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  10. The next large helical devices

    NASA Astrophysics Data System (ADS)

    Iiyoshi, Atsuo; Yamazaki, Kozo

    1995-06-01

    Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.

  11. An Extension to Deng's Entropy in the Open World Assumption with an Application in Sensor Data Fusion.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Chan, Felix T S

    2018-06-11

    Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty.

  12. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikroo, Abbas; Czechowicz, Don

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  13. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE PAGES

    Nikroo, Abbas; Czechowicz, Don

    2017-04-21

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  14. ICF quarterly report January - March 1997 volume 7, number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J

    The National Ignition Facility Project The mission of the National Ignition Facility (NIF) is to produce ignition and modest energy gain in inertial confinement fusion (ICF) targets. Achieving these goals will maintain U.S. world leadership in ICF and will directly benefit the U.S. Department of Energy (DOE) missions in national security, science and technology, energy resources, and industrial competitiveness. Development and operation of the NIF are consistent with DOE goals for environmental quality, openness to the community, and nuclear nonproliferation and arms control. Although the primary mission of inertial fusion is for defense applications, inertial fusion research will provide criticalmore » information for the development of inertial fusion energy. The NIF, under construction at Lawrence Livermore National Laboratory (LLNL), is a cornerstone of the DOE's science-based Stockpile Stewardship Program for addressing high-energy-density physics issues in the absence of nuclear weapons testing. In pursuit of this mission, the DOE's Defense Programs has developed a state-of-the-art capability with the NIF to investigate high-energy-density physics in the laboratory with a microfusion capability for defense and energy applications. As a Strategic System Acquisition, the NIF Project has a separate and disciplined reporting chain to DOE as shown below.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive actionmore » plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'« less

  16. ECH Technology Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated themore » options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.« less

  17. Educational Outreach at the M.I.T. Plasma Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.

    1996-11-01

    Educational outreach at the MIT Plasma Fusion Center consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a new and improved C-MOD Jr, a confinement video game which helps students to discover how computers manipulate magnetic pulses to keep a plasma confined for as long as possible. Also on display will be an educational toy created by the Cambridge Physics Outlet, a PFC spin-off company. The PFC maintains a Home Page on the World Wide Web, which can be reached at http://cmod2.pfc.mit.edu/.

  18. The value of materials R&D in the fast track development of fusion power

    NASA Astrophysics Data System (ADS)

    Ward, D. J.; Taylor, N. P.; Cook, I.

    2007-08-01

    The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.

  19. Education Outreach at M.I.T. Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Rivenberg, P.; Censabella, V.

    2000-10-01

    At the MIT PSFC student and staff volunteers work together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, including Middle and High School Outreach Days and the Mr. Magnet program. During the past year, in collaboration with the MIT Museum, the PSFC reprogrammed their C-Mod, Jr Video Game to be operated via the keyboard instead of joysticks. The game will eventually be available on the web and on disc. The PSFC maintains a Home Page on the World Wide Web, which can be reached at http://www.psfc.mit.edu.

  20. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less

  1. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  2. Variable temporo-insular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas

    PubMed Central

    Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.

    2013-01-01

    In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630

  3. Comparative evaluation of solar, fission, fusion, and fossil energy resources, part 3

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Reupke, W. A.

    1974-01-01

    The role of nuclear fission reactors in becoming an important power source in the world is discussed. The supply of fissile nuclear fuel will be severely depleted by the year 2000. With breeder reactors the world supply of uranium could last thousands of years. However, breeder reactors have problems of a large radioactive inventory and an accident potential which could present an unacceptable hazard. Although breeder reactors afford a possible solution to the energy shortage, their ultimate role will depend on demonstrated safety and acceptable risks and environmental effects. Fusion power would also be a long range, essentially permanent, solution to the world's energy problem. Fusion appears to compare favorably with breeders in safety and environmental effects. Research comparing a controlled fusion reactor with the breeder reactor in solving our long range energy needs is discussed.

  4. Ontological Issues in Higher Levels of Information Fusion: User Refinement of the Fusion Process

    DTIC Science & Technology

    2003-01-01

    fusion question, the thing that is separates the Greek We explore the higher-level purpose offusion systems by philosophical questions and modem day...the The Greeks focused on both data fusion and the Fusion02 conference there are common fusion questions philosophical questions of an ontology - the...data World of Visible Things Belief (pistis) fusion - user refinement. The rest of the paper is as Appearances follows: Section 2 details the Greek

  5. Developing a Blueprint for Successful Private Partnership Programs in Small Fusion Centers: Key Program Components and Smart Practices

    DTIC Science & Technology

    2013-03-01

    The Baseline Capabilities for State and Major Urban Area Fusion Centers required fusion centers to establish programs to interact with the private...sector. These programs took the form of Public and Private Sector outreach programs. This requirement had a profound budgetary and operational impact on...fusion centers, but agencies received very little guidance about how to plan, organize, and sustain these programs. The goal of this thesis was to

  6. Advancing Pre-college Science and Mathematics Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rick

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less

  7. Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the pastmore » decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.« less

  8. Laser Programs, the first 25 years, 1972-1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, E.M.

    1998-03-04

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Lasermore » Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.« less

  9. Fusion Safety Program annual report, fiscal year 1994

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  10. Energy requirements for HE-3 mining operations on the Moon

    NASA Technical Reports Server (NTRS)

    Kulcinski, Gerald L.

    1988-01-01

    At the present rate of world energy consumption (10 TW-y/y) and allowing for an equilibrium consumption of 20 to 30 TW-y/y in mid 21st century, we will exhaust economically recoverable fossil fuels in the next 50 to 60 years. We will then have to rely on nuclear (fission and fusion) and renewable energy to feed, warm, and protect the world's population. Fusion energy is expected to play an important role in the 21st century and there a 2 billion dollar per year research program to commercialize that energy resource. A serious problem with this is its reliance on the D-T fuel cycle which releases 80 percent of its energy in the form of neutrons. These neutrons cause significant radiation damage and induce large amounts of radioactivity. There is another fusion fuel cycle involving the isotopes of Deuterium and Helium-3 which, if configured properly, releases 1 percent or less of its energy in neutrons. Obviously, such a fuel would be preferred, but there is no large source of He-3 known to satisfy world energy needs. Fortunately, a very large source of He-3 was found on the Moon, implanted over the past 4 billion years by the solar wind. Recent analysis of Apollo and Luna data reveals that over a million tons of He-3 sit on the Moon's surface. The potential energy in this He-3 fuel is 10 times that contained in all the coal, oil, and natural gas on the Earth. The purpose of this paper is to examine the energy required to extract the He-3 from the lunar regolith.

  11. More than wishful thinking

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.

    2009-05-01

    The great vision of fusion power - harnessing the energy source of the stars for the good of people on Earth - is and has always been a highly attractive one. The history of fusion research is full of interesting tales, from its discovery to the recent completion of the US National Ignition Facility (NIF), now the world's largest laser (see Physics World March p7). Unfortunately, a new popular account of this history, Sun in a Bottle, mostly retells old stories of notable fusion failures, from mysterious early devices in Argentina through the cold-fusion debacle of the late 1980s. As a scientist who has devoted his career to plasma physics and fusion, I am - at least according to author Charles Seife - part of a community of researchers "unable to rid themselves of their intemperate self-deception". Having read it, I appear to be faced with a choice: am I a fraud or an incompetent?

  12. Review of the magnetic fusion program by the 1986 ERAB Fusion Panel

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.

    1987-09-01

    The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.

  13. Steady State Advanced Tokamak (SSAT): The mission and the machine

    NASA Astrophysics Data System (ADS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of currentmore » scientific excellence and recommendations for future goals and balance within the Program was requested.« less

  15. The National Ignition Facility: The world's largest optical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2007-10-15

    The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less

  16. The Fight for Fusion: A Modern Nuclear War.

    ERIC Educational Resources Information Center

    Rogers, Adam; Sereda, David

    1992-01-01

    Describes the work of Bogdan Maglich with helium-based fusion and barriers to its development resulting from lack of government support, competition for funding, and political pet projects. Compares tritium-based to helium-based fusion and the potential for nonradioactive nuclear power to supply the world's energy requirements with no negative…

  17. Fusion breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less

  18. Fusion breeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outlinemore » specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.« less

  19. Two Strategic Decisions Facing Fusion

    NASA Astrophysics Data System (ADS)

    Baldwin, D. E.

    1998-06-01

    Two strategic decisions facing the U.S. fusion program are described. The first decision deals with the role and rationale of the tokamak within the U. S. fusion program, and it underlies the debate over our continuing role in the evolving ITER collaboration (mid-1998). The second decision concerns how to include Inertial Fusion Energy (IFE) as a viable part of the national effort to harness fusion energy.

  20. Tropical cloud buoyancy is the same in a world with or without ice

    NASA Astrophysics Data System (ADS)

    Seeley, Jacob T.; Romps, David M.

    2016-04-01

    When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.

  1. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  2. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Levine; V.L. Finley

    1998-03-01

    The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less

  3. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  4. Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.

    1994-05-01

    The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.

  5. 3D reconstruction from multi-view VHR-satellite images in MicMac

    NASA Astrophysics Data System (ADS)

    Rupnik, Ewelina; Pierrot-Deseilligny, Marc; Delorme, Arthur

    2018-05-01

    This work addresses the generation of high quality digital surface models by fusing multiple depths maps calculated with the dense image matching method. The algorithm is adapted to very high resolution multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach. No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good performance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.

  6. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Prioritiesmore » and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.« less

  7. Scientist in the Classroom: Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Lee, R. L.

    2000-10-01

    The General Atomics education program ``Scientist in the Classroom'' now in its third year, uses scientists and engineers to present ``Plasma the fourth state of matter,'' to students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate a plasma discharge using magnets, observe its spectral properties and observe the plasma in a fluorescent tube. In addition, they observe physical properties of liquid nitrogen, and use an infrared camera to observe radiant heat energy. Several program benefits are; it costs less than facility tours, is more flexible in scheduling, and is adaptable for grades 2--adult. The program has doubled in coverage since last year, with over 2200 students at 20 schools visited by 8 scientists. Increased participation by the DIII-D staff in this program has been achieved by enlisting them to bring the program to their children's school.

  8. ITER Fusion Energy

    ScienceCinema

    Holtkamp, Norbert

    2018-01-09

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  9. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  10. Fusion energy for space: Feasibility demonstration. A proposal to NASA

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.

  11. Synchronized fusion development considering physics, materials and heat transfer

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Liu, Y.; Duan, X. R.; Xu, M.; Li, Q.; Feng, K. M.; Zheng, G. Y.; Li, Z. X.; Wang, X. Y.; Li, B.; Zhang, G. S.

    2017-12-01

    Significant achievements have been made in the last 60 years in the development of fusion energy with the tokamak configuration. Based on the accumulated knowledge, the world is embarking on the construction and operation of ITER (International Thermonuclear Experimental Reactor) with a production of 500 MWf fusion power and the demonstration of physics Q  =  10. ITER will demonstrate D-T burn physics for a duration of a few hundred seconds to prepare for the next long-burn or steady state nuclear testing tokamak operating at much higher neutron fluence. With the evolution into a steady state nuclear device, such as the China Fusion Engineering Test Reactor (CFETR), it is necessary to examine the boundary conditions imposed by the combined development of tokamak physics, fusion materials and fusion technology for a reactor. The development of ferritic steel alloys as the structural material suitable for use at high neutron fluence leads to the use of helium as the most likely reactor coolant. This points to the fundamental technology limitation on the removal of chamber wall maximum heat flux at around 1 MW m-2 and an average heat flux of 0.1 MW m-2 for the next test reactor. Future reactor performance will then depend on the control of spatial and temporal edge heat flux peaking in order to increase the average heat flux to the chamber wall. With these severe material and technological limitations, system studies were used to scope out a few robust steady state synchronized fusion reactor (SFR) designs. As an example, a low fusion power design at 131.6 MWf, which can satisfy steady state design requirements, would have a major radius of 5.5 m and minor radius of 1.6 m. Such a design with even more advanced structural materials like W f/W composite could allow higher performance and provide a net electrical production of 62 MWe. These can be incorporated into the CFETR program.

  12. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less

  13. Creating a Star: The Science of Fusion--Fusion Power Would Not Contribute to Global Warming, Acid Rain, or Other Forms of Air Pollution, nor Would It Create Long-Lived Radioactive Waste

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Fusion is the process that powers the sun and the stars. Since the 1950s, scientists and engineers in the United States and around the world have been conducting fusion research in pursuit of the creation of a new energy source for our planet and to further our understanding and control of plasma, the fourth state of matter that dominates the…

  14. Remote sensing fusion based on guided image filtering

    NASA Astrophysics Data System (ADS)

    Zhao, Wenfei; Dai, Qinling; Wang, Leiguang

    2015-12-01

    In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.

  15. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less

  16. ICF Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The continuing objective of Lawrence Livermore National Laboratory's (LLNL's) Inertial Confinement Fusion (ICF) Program is the demonstration of thermonuclear fusion ignition and energy gain in the laboratory and to support the nuclear weapons program in its use of ICF facilities. The underlying theme of all ICF activities as a science research and development program is the Department of Energy's (DOE's) Defense Programs (DP) science-based Stockpile Stewardship Program (SSP). The mission of the US Inertial Fusion Program is twofold: (1) to address high-energy-density physics issues for the SSP and (2) to develop a laboratory microfusion capability for defense and energy applications.more » In pursuit of this mission, the ICF Program has developed a state-of-the-art capability to investigate high-energy-density physics in the laboratory. The near-term goals pursued by the ICF Program in support of its mission are demonstrating fusion ignition in the laboratory and expanding the Program's capabilities in high-energy-density science. The National Ignition Facility (NIF) project is a cornerstone of this effort.« less

  17. The status of the federal magnetic fusion program, or fusion in transition: from science to technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J.S.

    1983-06-01

    The current status of magnetic fusion is summarized. The science is in place; the application must be made. Government will have to underwrite the risk of the program, but the private sector must manage it. Government officials must be convinced fusion is in the interest of the taxpayer, private sector decision makers that it is commercial. Questions concerning reliability, availability, first cost, safety, environment, and sociology must be asked. Fusion energy is essentially inexhaustible, appears environmentally acceptable, and is one of a very short list of alternatives.

  18. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  19. Visualize Your Data with Google Fusion Tables

    NASA Astrophysics Data System (ADS)

    Brisbin, K. E.

    2011-12-01

    Google Fusion Tables is a modern data management platform that makes it easy to host, manage, collaborate on, visualize, and publish tabular data online. Fusion Tables allows users to upload their own data to the Google cloud, which they can then use to create compelling and interactive visualizations with the data. Users can view data on a Google Map, plot data in a line chart, or display data along a timeline. Users can share these visualizations with others to explore and discover interesting trends about various types of data, including scientific data such as invasive species or global trends in disease. Fusion Tables has been used by many organizations to visualize a variety of scientific data. One example is the California Redistricting Map created by the LA Times: http://goo.gl/gwZt5 The Pacific Institute and Circle of Blue have used Fusion Tables to map the quality of water around the world: http://goo.gl/T4SX8 The World Resources Institute mapped the threat level of coral reefs using Fusion Tables: http://goo.gl/cdqe8 What attendees will learn in this session: This session will cover all the steps necessary to use Fusion Tables to create a variety of interactive visualizations. Attendees will begin by learning about the various options for uploading data into Fusion Tables, including Shapefile, KML file, and CSV file import. Attendees will then learn how to use Fusion Tables to manage their data by merging it with other data and controlling the permissions of the data. Finally, the session will cover how to create a customized visualization from the data, and share that visualization with others using both Fusion Tables and the Google Maps API.

  20. Fusion energy division annual progress report, period ending December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The ORNL Program encompasses most aspects of magnetic fusion research including research on two magnetic confinement programs (tokamaks and ELMO bumpy tori); the development of the essential technologies for plasma heating, fueling, superconducting magnets, and materials; the development of diagnostics; the development of atomic physics and radiation effect data bases; the assessment of the environmental impact of magnetic fusion; the physics and engineering of present-generation devices; and the design of future devices. The integration of all of these activities into one program is a major factor in the success of each activity. An excellent example of this integration is themore » extremely successful application of neutral injection heating systems developed at ORNL to tokamaks both in the Fusion Energy Division and at Princeton Plasma Physics Laboratory (PPPL). The goal of the ORNL Fusion Program is to maintain this balance between plasma confinement, technology, and engineering activities.« less

  1. Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

    PubMed Central

    Messina, Emily L.; York, Joanne

    2012-01-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition. PMID:22438561

  2. Scientist in the Classroom: The First Year Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Danielson, C. A.; Lee, R. L.; Winter, P. S.; Valentine, J. R.

    1999-11-01

    The General Atomics education program ``Scientist in the Classroom'' uses scientists, engineers, and technicians to discuss plasma physics with students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma physics plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate plasma discharges using magnetic fields and observe their spectral properties. Students also observe physical properties of liquid nitrogen, infrared waves, and radioactive particles. The benefit of this program, relative to facility tours, is that it optimizes cost and scheduling between the scientific staff and students. This program and its equipment are receiving accolades as an adjunct teaching option available to schools at no cost. This year we have presented to over 1000 students at 11 schools. Student exit interviews reflect strong positive comments regarding their hands-on learning experience and science appreciation.

  3. Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger

    2007-12-01

    Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.

  4. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-09-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  5. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Technical Reports Server (NTRS)

    Dean, Stephen O.

    1988-01-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  6. Laser program annual report, 1977. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, C.F.; Jarman, B.D.

    1978-07-01

    An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)

  7. A Burning Plasma Experiment: the role of international collaboration

    NASA Astrophysics Data System (ADS)

    Prager, Stewart

    2003-04-01

    The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, N.R.

    This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less

  9. The Third Nuclear Age: How I Learned to Start Worrying about the Clean Bomb

    DTIC Science & Technology

    2013-02-14

    Fourth generation fusion nuclear weapons (FGNW) represent a significant improvement in nuclear weapons technology and suggest the potential for...future challenges that the United States and its Air Force may face twenty-five years from now. This paper does not answer whether the fusion technology...is possible and assumes it as an inevitable technological advancement. Instead, this study predicts a world in which low yield, clean fusion

  10. Pansharpening via coupled triple factorization dictionary learning

    DOE PAGES

    Skau, Erik; Wohlberg, Brendt; Krim, Hamid; ...

    2016-03-01

    Data fusion is the operation of integrating data from different modalities to construct a single consistent representation. Here, this paper proposes variations of coupled dictionary learning through an additional factorization. One variation of this model is applicable to the pansharpening data fusion problem. Real world pansharpening data was applied to train and test our proposed formulation. The results demonstrate that the data fusion model can successfully be applied to the pan-sharpening problem.

  11. Mission of ITER and Challenges for the Young

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2009-02-01

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.

  12. Mission of ITER and Challenges for the Young

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Kaname

    2009-02-19

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People'smore » Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L. and Levine, J.D.

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7more » million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 10 20 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an adjacent area to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less

  14. Recent Accomplishments and Future Directions in US Fusion Safety & Environmental Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Petti; Brad J. Merrill; Phillip Sharpe

    2006-07-01

    The US fusion program has long recognized that the safety and environmental (S&E) potential of fusion can be attained by prudent materials selection, judicious design choices, and integration of safety requirements into the design of the facility. To achieve this goal, S&E research is focused on understanding the behavior of the largest sources of radioactive and hazardous materials in a fusion facility, understanding how energy sources in a fusion facility could mobilize those materials, developing integrated state of the art S&E computer codes and risk tools for safety assessment, and evaluating S&E issues associated with current fusion designs. In thismore » paper, recent accomplishments are reviewed and future directions outlined.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hutch

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan,more » aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)« less

  16. Multisensor fusion with non-optimal decision rules: the challenges of open world sensing

    NASA Astrophysics Data System (ADS)

    Minor, Christian; Johnson, Kevin

    2014-05-01

    In this work, simple, generic models of chemical sensing are used to simulate sensor array data and to illustrate the impact on overall system performance that specific design choices impart. The ability of multisensor systems to perform multianalyte detection (i.e., distinguish multiple targets) is explored by examining the distinction between fundamental design-related limitations stemming from mismatching of mixture composition to fused sensor measurement spaces, and limitations that arise from measurement uncertainty. Insight on the limits and potential of sensor fusion to robustly address detection tasks in realistic field conditions can be gained through an examination of a) the underlying geometry of both the composition space of sources one hopes to elucidate and the measurement space a fused sensor system is capable of generating, and b) the informational impact of uncertainty on both of these spaces. For instance, what is the potential impact on sensor fusion in an open world scenario where unknown interferants may contaminate target signals? Under complex and dynamic backgrounds, decision rules may implicitly become non-optimal and adding sensors may increase the amount of conflicting information observed. This suggests that the manner in which a decision rule handles sensor conflict can be critical in leveraging sensor fusion for effective open world sensing, and becomes exponentially more important as more sensors are added. Results and design considerations for handling conflicting evidence in Bayes and Dempster-Shafer fusion frameworks are presented. Bayesian decision theory is used to provide an upper limit on detector performance of simulated sensor systems.

  17. Inertial-confinement fusion with lasers

    DOE PAGES

    Betti, R.; Hurricane, O. A.

    2016-05-03

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  18. Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving

    PubMed Central

    Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice

    2016-01-01

    The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture. PMID:27727171

  19. Inertial-confinement fusion with lasers

    NASA Astrophysics Data System (ADS)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  20. Fusion programs in applied plasma physics

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.

  1. Two heretical thoughts on fusion and climate

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2016-10-01

    This presents and explores 2 heretical thoughts regarding controlled fusion and climate. First, the only way that fusion can contribute to midcentury power is by switching its goal from pure fusion, to fusion breeding. Fusion breeding makes many fewer demands on the fusion device than does pure fusion. Fusion breeding could lead to a sustainable, carbon free, environmentally and economically viable, midcentury infrastructure, with little or no proliferation risk, which could provide terawatts of power for the world. The second involves climate. We are all inundated by media warnings, not only of warming from CO2 in the atmosphere, but all sorts of other environmental disasters. For instance there will be more intense storms, rising sea levels, wild fires, retreating glaciers, droughts, loss of agricultural productivity... These assertions are very easy to check out. Such a search shows that we are nowhere near any sort of environmental crisis. The timing could be serendipitous; the time necessary to develop fusion breeding could well match up to the time when it is needed so as to avoid harm to the earth's climate and/or depletion of finite energy resources.

  2. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  3. U. S. fusion programs: Struggling to stay in the game

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, M.

    Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less

  4. Constitutively active IRF7/IRF3 fusion protein completely protects swine against Foot-and-Mouth Disease

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...

  5. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.

  6. Presentation Stations of the General Atomics Fusion Educational Program

    NASA Astrophysics Data System (ADS)

    Lee, R. L.; Fusion Group Education Outreach Team

    1996-11-01

    The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.

  7. The kinetic stabilizer: a route to simpler tandem mirror systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F

    2001-02-02

    As we enter the new millennium there is a growing urgency to address the issue of finding long-range solutions to the world's energy needs. Fusion offers such a solution, provided economically viable means can be found to extract useful energy from fusion reactions. While the magnetic confinement approach to fusion has a long and productive history, to date the mainline approaches to magnetic confinement, namely closed systems such as the tokamak, appear to many as being too large and complex to be acceptable economically, despite the impressive progress that has made toward the achievement of fusion-relevant confinement parameters. Thus theremore » is a growing feeling that it is imperative to search for new and simpler approaches to magnetic fusion, ones that might lead to smaller and more economically attractive fusion power plants.« less

  8. On Fusing Recursive Traversals of K-d Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less

  9. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Astrophysics Data System (ADS)

    Dean, Stephen O.

    1988-03-01

    Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.

  10. Fusion plasma theory project summaries

    NASA Astrophysics Data System (ADS)

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at U.S. government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the U.S. Fusion Energy Program.

  11. Robotics and local fusion

    NASA Astrophysics Data System (ADS)

    Emmerman, Philip J.

    2005-05-01

    Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.

  12. Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State

    PubMed Central

    Helming, Laura; Tomasello, Elena; Kyriakides, Themis R.; Martinez, Fernando O.; Takai, Toshiyuki; Gordon, Siamon; Vivier, Eric

    2009-01-01

    Multinucleated giant cells, formed by fusion of macrophages, are a hallmark of granulomatous inflammation. With a genetic approach, we show that signaling through the adaptor protein DAP12 (DNAX activating protein of 12 kD), its associated receptor triggering receptor expressed by myeloid cells 2 (TREM-2), and the downstream protein tyrosine kinase Syk is required for the cytokine-induced formation of giant cells and that overexpression of DAP12 potentiates macrophage fusion. We also present evidence that DAP12 is a general macrophage fusion regulator and is involved in modulating the expression of several macrophage-associated genes, including those encoding known mediators of macrophage fusion, such as DC-STAMP and Cadherin 1. Thus, DAP12 is involved in programming of macrophages through the regulation of gene and protein expression to induce a fusion-competent state. PMID:18957693

  13. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  14. Fusion policy advisory committee named

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.

  15. Phylogenetic ecology at world scale, a new fusion between ecology and evolution.

    PubMed

    Westoby, Mark

    2006-07-01

    One fusion between ecology and evolution is well established, under the title of population biology. The years 2006-2020 will see a new fusion, likely to prove equally creative. Inputs from ecology to this second fusion will be worldwide data sets for ecological traits across many species. Inputs from evolution will be phylogenetic trees with well-resolved topology and with increasingly tight geological dates for each branch point. There will be unification of two aims: first to explain the spread of different ways of making a living, across the range of present-day species; and second, to narrate the evolutionary history that has led up to present-day ecology.

  16. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  17. TUNABLE IRRADIATION TESTBED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootan, David W.; Casella, Andrew M.; Asner, David M.

    PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less

  18. Fusion Simulation Program Definition. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, John R.

    2012-09-05

    We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.

  19. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  20. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  1. In Defense of the National Labs and Big-Budget Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tappedmore » in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider (LHC) at CERN, and the International Tokamak Experimental Reactor (ITER) in Cadarache, France, a magnetic-confinement fusion research project. The postWWII histories of particle and fusion physics contain remarkable examples of both international competition, with an emphasis on secrecy, and international cooperation, with an emphasis on shared knowledge and resources. Initiatives to share sometimes came from surprising directions. Most large-scale scientific projects have potential defense applications. NIF certainly does; it is primarily designed to create small-scale fusion explosions. Blue Gene/L operates in part in service to NIF, and in part to various defense projects. The most important defense projects include stewardship of the national nuclear weapons stockpile, and the proposed redesign and replacement of those weapons with fewer, safer, more reliable, longer-lived, and less apocalyptic warheads. Many well-meaning people will consider the optimal lifetime of a nuclear weapon to be zero, but most thoughtful people, when asked how much longer they think this nation will require them, will ask for some time to think. NIF is also designed to create exothermic small-scale fusion explosions. The malapropos 'exothermic' here is a convenience to cover a profusion of complexities, but the basic idea is that the explosions will create more recoverable energy than was used to create them. One can hope that the primary future benefits of success for NIF will be in cost-effective generation of electrical power through controlled small-scale fusion reactions, rather than in improved large-scale fusion explosions. Blue Gene/L also services climate research, genomic research, materials research, and a myriad of other computational problems that become more feasible, reliable, and precise the larger the number of computational nodes employed. Blue Gene/L has to be sited within a security complex for obvious reasons, but its value extends to the nation and the world. There is a duality here between large-scale scientific research machines and the supercomputers used to model them. An astounding example is illustrated in a graph released by EFDAJET, at Oxfordshire, UK, presently the largest operating magnetic-confinement fusion experiment. The graph shows plasma confinement times (an essential performance parameter) for all the major tokamaks in the international fusion program, over their existing lifetimes. The remarkable thing about the data is not so much confinement-time versus date or scale, but the fact that the data are given for both the computer model predictions and the actual experimental measurements, and the two are in phenomenal agreement over the extended range of scales. Supercomputer models, sometimes operating with the intricacy of Schroedinger's equation at quantum physical scales, have become a costly but enormously cost-saving tool.« less

  2. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  3. Cluster-impact fusion, or beam-contaminant fusion? (abstract)a),b)

    NASA Astrophysics Data System (ADS)

    Lo, Daniel H.; Petrasso, Richard D.; Wenzel, Kevin W.

    1992-10-01

    Beuhler, Friedlander, and Friedman (BFF) reported anomalously huge D-D fusion rates while bombarding deuterated targets with (D2O)N+ clusters (N˜25-1000) accelerated to ≊325 keV [R. J. Beuhler et al., Phys. Rev. Lett. 63, 1292 (1989); R. J. Beuhler et al., J. Phys. Chem. 94, 7665 (1990)] [i.e., ≊0.3 keV lab energy for D in (D2O)100+]. However, from our analysis of BFF's fusion product spectra, we conclude that their D lab energy was ˜50 keV. Therefore, no gross anomalies exist. Also, from our analysis of the BFF beam-ranging experiments through 500 μg/cm2 of Au, we conclude that light-ion-beam contaminants (e.g., D+ of order 100 keV) have not been ruled out, and are the probable cause of their fusion reactions. This work was supported by LLNL Subcontract B116798, Department of Energy (DOE) Grant No. DE-FG02-91ER54109, DOE Magnetic Fusion Energy Technology Fellowship Program (D. H. Lo), and DOE Fusion Energy Postdoctoral Research Program (Kevin W. Wenzel).

  4. Effect of Custom Orthosis and Rehabilitation Program on Outcomes Following Ankle and Subtalar Fusions.

    PubMed

    Sheean, Andrew J; Tennent, David J; Owens, Johnny G; Wilken, Jason M; Hsu, Joseph R; Stinner, Daniel J

    2016-11-01

    Fractures of the distal tibia, ankle, and foot sustained through a high-energy mechanism can be extremely debilitating, and ankle and/or subtalar fusion may be indicated if the limb is deemed salvageable. Functional outcomes among this population are often poor. The purposes of this study were to evaluate the effect of an advanced rehabilitation program combined with the use of a custom ankle-foot orthosis for patients with ankle or subtalar fusion on selected physical performance measures and patient-derived outcome measures and to determine if the response to treatment was predicated upon the type of fusion. We conducted a prospective, longitudinal, observational, cohort study composed of 23 active duty Service Members treated for lower extremity trauma. Patients were separated into 2 groups: group 1 was composed of 12 patients who underwent isolated ankle fusion or ankle fusion combined with ipsilateral subtalar fusion, group 2 was composed of 11 patients who underwent subtalar fusion only. Patient-reported outcome (PRO) measures and physical performance measures were recorded at baseline and at the conclusion of the rehabilitation program. Significant improvements in both groups were seen in each of the 4 physical performance measures. Only group 2 showed significant improvements in all domains of the Veteran's Rand 12-Item Health Survey (VR-12) and Short Musculoskeletal Function Assessment (SMFA) at all points during the course of rehabilitation. Among a subset of patients treated for severe lower extremity trauma with ankle and/or subtalar fusion, an integrated orthotic and rehabilitation initiative improved physical performance and PRO measures over an 8-week course. Level III, prospective comparative series. © The Author(s) 2016.

  5. Preface to the Special Issue: Strategic Opportunities for Fusion Energy

    DOE PAGES

    Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.; ...

    2016-01-23

    Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.

  6. Proposal for a possible use of fusion power for hydrogen production within this century

    NASA Astrophysics Data System (ADS)

    Seifritz, W.

    Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.

  7. Multisensor data fusion for IED threat detection

    NASA Astrophysics Data System (ADS)

    Mees, Wim; Heremans, Roel

    2012-10-01

    In this paper we present the multi-sensor registration and fusion algorithms that were developed for a force protection research project in order to detect threats against military patrol vehicles. The fusion is performed at object level, using a hierarchical evidence aggregation approach. It first uses expert domain knowledge about the features used to characterize the detected threats, that is implemented in the form of a fuzzy expert system. The next level consists in fusing intra-sensor and inter-sensor information. Here an ordered weighted averaging operator is used. The object level fusion between candidate threats that are detected asynchronously on a moving vehicle by sensors with different imaging geometries, requires an accurate sensor to world coordinate transformation. This image registration will also be discussed in this paper.

  8. Panel summary of cyber-physical systems (CPS) and Internet of Things (IoT) opportunities with information fusion

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Kadar, Ivan; Grewe, Lynne L.; Brooks, Richard; Yu, Wei; Kwasinski, Andres; Thomopoulos, Stelios; Salerno, John; Qi, Hairong

    2017-05-01

    During the 2016 SPIE DSS conference, nine panelists were invited to highlight the trends and opportunities in cyber-physical systems (CPS) and Internet of Things (IoT) with information fusion. The world will be ubiquitously outfitted with many sensors to support our daily living thorough the Internet of Things (IoT), manage infrastructure developments with cyber-physical systems (CPS), as well as provide communication through networked information fusion technology over the internet (NIFTI). This paper summarizes the panel discussions on opportunities of information fusion to the growing trends in CPS and IoT. The summary includes the concepts and areas where information supports these CPS/IoT which includes situation awareness, transportation, and smart grids.

  9. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  10. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  11. The National Ignition Facility: the path to a carbon-free energy future.

    PubMed

    Stolz, Christopher J

    2012-08-28

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  12. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately.« less

  13. A local approach for focussed Bayesian fusion

    NASA Astrophysics Data System (ADS)

    Sander, Jennifer; Heizmann, Michael; Goussev, Igor; Beyerer, Jürgen

    2009-04-01

    Local Bayesian fusion approaches aim to reduce high storage and computational costs of Bayesian fusion which is separated from fixed modeling assumptions. Using the small world formalism, we argue why this proceeding is conform with Bayesian theory. Then, we concentrate on the realization of local Bayesian fusion by focussing the fusion process solely on local regions that are task relevant with a high probability. The resulting local models correspond then to restricted versions of the original one. In a previous publication, we used bounds for the probability of misleading evidence to show the validity of the pre-evaluation of task specific knowledge and prior information which we perform to build local models. In this paper, we prove the validity of this proceeding using information theoretic arguments. For additional efficiency, local Bayesian fusion can be realized in a distributed manner. Here, several local Bayesian fusion tasks are evaluated and unified after the actual fusion process. For the practical realization of distributed local Bayesian fusion, software agents are predestinated. There is a natural analogy between the resulting agent based architecture and criminal investigations in real life. We show how this analogy can be used to improve the efficiency of distributed local Bayesian fusion additionally. Using a landscape model, we present an experimental study of distributed local Bayesian fusion in the field of reconnaissance, which highlights its high potential.

  14. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017.

    PubMed

    Jin, Xue-Bo; Sun, Shuli; Wei, Hong; Yang, Feng-Bao

    2018-04-11

    The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.

  15. Plasma Physics Network Newsletter, no. 5

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  16. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    NASA Astrophysics Data System (ADS)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2 concentration constraint, but not selected under the BAU case and 650 ppmv CO2 concentration constraint, and (3) the share of electricity in 2100 produced by the presently designed tokamak-type nuclear fusion reactors (introduced after 2060) is well below 30%. It should be noted that these conclusions are based upon varieties of uncertainties in scenarios and data assumptions on nuclear fusion as well as technological options.

  17. Dynamic Information Collection and Fusion

    DTIC Science & Technology

    2015-12-02

    AFRL-AFOSR-VA-TR-2016-0069 DYNAMIC INFORMATION COLLECTION AND FUSION Venugopal Veeravalli UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 12/02/2015...TITLE AND SUBTITLE Dynamic Information Collection and Fusion 5a. CONTRACT NUMBER FA9550-10-1-0458 5b. GRANT NUMBER AF FA9550-10-1-0458 5c. PROGRAM...information collection, fusion , and inference from diverse modalities Our research has been organized under three inter-related thrusts. The first thrust

  18. Report of the Fusion Energy Sciences Advisory Committee Panel on Priorities and Balance

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Davidson, Ronald; Dean, Stephen; Freidberg, Jeffrey; Sheffield, John

    1999-06-01

    This report presents the results and recommendations of the deliberations of the DOE Fusion Energy Sciences Advisory Committee (FESAC) Panel on Priorities and Balance, which met in Knoxville, TN, 18-21 August 1999. The Panel identified the achievement of a more integrated national program in magnetic fusion energy (MFE) and inertial fusion energy (IFE) as a major programmatic and policy goal for the years ahead.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.

    Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.

  20. Will fusion be ready to meet the energy challenge for the 21st century?

    NASA Astrophysics Data System (ADS)

    Bréchet, Yves; Massard, Thierry

    2016-05-01

    Finite amount of fossil fuel, global warming, increasing demand of energies in emerging countries tend to promote new sources of energies to meet the needs of the coming centuries. Despite their attractiveness, renewable energies will not be sufficient both because of intermittency but also because of the pressure they would put on conventional materials. Thus nuclear energy with both fission and fusion reactors remain the main potential source of clean energy for the coming centuries. France has made a strong commitment to fusion reactor through ITER program. But following and sharing Euratom vision on fusion, France supports the academic program on Inertial Fusion Confinement with direct drive and especially the shock ignition scheme which is heavily studied among the French academic community. LMJ a defense facility for nuclear deterrence is also open to academic community along with a unique PW class laser PETAL. Research on fusion at LMJ-PETAL is one of the designated topics for experiments on the facility. Pairing with other smaller European facilities such as Orion, PALS or LULI2000, LMJ-PETAL will bring new and exciting results and contribution in fusion science in the coming years.

  1. Tell Me What I Need to Know: What Mayors and Governors Want From Their Fusion Center

    DTIC Science & Technology

    2009-09-01

    jurisdictions where daily risks and threats emerge from the complexities of an integrated world. Paradoxically, as will be outlined through this...environment for their jurisdictions where daily risks and threats emerge from the complexities of an integrated world. Paradoxically, as will be outlined...their jurisdictions where daily risks and threats emerge from the complexities of an integrated world. This setting, where the confluence of

  2. Materials Studies for Magnetic Fusion Energy Applications at Low Temperatures - 6.

    DTIC Science & Technology

    1983-05-01

    structures for the superconducting magnets of magnetic fusion energy power plants and prototypes. The program was conceived and developed jointly by the...staffs of the National Bureau of Standards and the Office of Fusion Energy of the Department of Energy; it is managed by NBS and sponsored by DoE

  3. Shock Ignition Target Design for Inertial Fusion Energy

    DTIC Science & Technology

    2010-01-01

    Shock ignition target design for inertial fusion energy Andrew J. Schmitt,1, a) Jason W. Bates,1 Steven P. Obenschain,1 Steven T. Zalesak,2 and David...2010 to 00-00-2010 4. TITLE AND SUBTITLE Shock ignition target design for inertial fusion energy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  4. America COMPETES Act and the FY2010 Budget

    DTIC Science & Technology

    2009-06-29

    Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early Career...the Fusion Energy Sciences Graduate Fellowships.2 If members of Congress agree with this contention, these America COMPETES Act programs were...Physics Outstanding Junior Investigator, Fusion Energy Sciences Plasma Physics Junior Faculty Development; Advanced Scientific Computing Research Early

  5. Controlling fusion yield in tokamaks with spin polarized fuel, and feasibility studies on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Lanctot, M. J.; Jackson, G. L.; ...

    2015-09-21

    The march towards electricity production through tokamaks requires the construction of new facilities and the inevitable replacement of the previous generation. There are, however, research topics that are better suited to the existing tokamaks, areas of great potential that are not sufficiently mature for implementation in high power machines, and these provide strong support for a balanced policy that includes the redirection of existing programs. Spin polarized fusion, in which the nuclei of tokamak fuel particles are spin-aligned and favorably change both the fusion cross-section and the distribution of initial velocity vectors of charged fusion products, is described here asmore » an example of a technological and physics topic that is ripe for development in a machine such as the DIII-D tokamak. In this study, such research and development experiments may not be efficient at the ITER-scale, while the plasma performance, diagnostic access, and collaborative personnel available within the United States’ magnetic fusion research program, and at the DIII-D facility in particular, provide a unique opportunity to further fusion progress.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart Zweben; Samuel Cohen; Hantao Ji

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  7. Fusion materials semiannual progress report for the period ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  9. Fusion Imaging: A Novel Staging Modality in Testis Cancer

    DTIC Science & Technology

    2010-01-01

    the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion...imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with...incidence of testis cancer has been increasing at an annual rate of 3%, leading to a doubling in cases world-wide over the last 40 years. With the advent

  10. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and magnetic field line displacement during precursor oscillations associated with the sawtooth crash, a disruptive instability observed both in tokamak plasmas with high core current and in the magnetized plasmas of solar flares and other interstellar plasmas. Understanding both of these phenomena is essential for the future of magnetic fusion energy, and important new observations described herein underscore the advantages of imaging techniques in experimental physics.

  11. Fusing Philosophy and Fieldwork in a Study of Being a Person in the World: An Interim Commentary

    ERIC Educational Resources Information Center

    Hansen, David T.; Wozniak, Jason Thomas; Galindo Diego, Ana Cecilia

    2015-01-01

    In this article, we describe a longitudinal inquiry into what it means to be a person in our contemporary world. Our method constitutes a dynamic, non-objectifying fusion of empirical and philosophical anthropology. Field-based anthropology examines actualities: how people lead their lives and talk about them. Philosophical anthropology addresses…

  12. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  13. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  14. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  15. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    NASA Astrophysics Data System (ADS)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  16. Rubella virus: first calcium-requiring viral fusion protein.

    PubMed

    Dubé, Mathieu; Rey, Felix A; Kielian, Margaret

    2014-12-01

    Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca(2+) during virus entry. Other tested cations did not substitute. Ca(2+) was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca(2+) was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca(2+)-dependent viral fusion protein and has a unique membrane interaction mechanism.

  17. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Anne

    The tokamak is a type of toroidal device used to confine a fusion plasma using large magnetic fields. Tokamaks and stellarators the leading devices for confining plasmas for fusion, and the capability to predict performance in these magnetically confined plasmas is essential for developing a sustainable fusion energy source. The magnetic configuration of tokamaks and stellarators does not exist in Nature, yet, the fundamental processes governing transport in fusion plasmas are universal – turbulence and instabilities, driven by inhomogeneity and asymmetry in the plasma, conspire to transport heat and particles across magnetic field lines and can play critical roles inmore » impurity confinement and generation of intrinsic rotation. Turbulence exists in all plasmas, and in neutral fluids as well. The study of turbulence is essential to developing a fundamental understanding of the nature of the fourth state of matter, plasmas. Experimental studies of turbulence in tokamaks date back to early scattering observations from the late 1970s. Since that time, great advances in turbulence diagnostics have been made, all of which have significantly enhanced our knowledge and understanding of turbulence in tokamaks. Through comparisons with advanced gyrokinetic theory and turbulent-transport models a great deal of evidence exists to implicate turbulent-driven transport as an important mechanism determining transport in all channels: heat, particle and momentum However, prediction and control of turbulent-driven transport remains elusive. Key to development of predictive transport models for magnetically confined fusion plasmas is validation of the nonlinear gyrokinetic transport model, which describes transport due to turbulence. Validation of gyrokinetic codes must include detailed and quantitative comparisons with measured turbulence characteristics, in addition to comparisons with inferred transport levels and equilibrium profiles. For this reason, advanced plasma diagnostics for studying core turbulence are needed in order to assess the accuracy of gyrokinetic models for turbulent-driven particle, heat and momentum transport. New core turbulence diagnostics at the world-class tokamaks Alcator C-Mod at MIT and ASDEX Upgrade at the Max Planck Institute for Plasma Physics have been designed, developed, and operated over the course of this project. These new instruments are capable of measuring electron temperature fluctuations and the phase angle between density and temperature fluctuations locally and quantitatively. These new data sets from Alcator C-Mod and ASDEX Upgrade are being used to fill key gaps in our understanding of turbulent transport in tokamaks. In particular, this project has results in new results on the topics of the Transport Shortfall, the role of ETG turbulence in tokamak plasmas, profile stiffness, the LOC/SOC transition, and intrinsic rotation reversals. These data are used in a rigorous process of “Transport model validation”, and this group is a world-leader on using turbulence models to design new hardware and new experiments at tokamaks. A correlation electron cyclotron emission (CECE) diagnostic is an instrument used to measure micro-scale fluctuations (mm-scale, compared to the machine size of meters) of electron temperature in magnetically confined fusion plasmas, such as those in tokamaks and stellarators. These micro-scale fluctuations are associated with drift-wave type turbulence, which leads to enhanced cooling and mixing of particles in fusion plasmas and limits achieving the required temperatures and densities for self-sustained fusion reactions. A CECE system can also be coupled with a reflectometer system that measured micro-scale density fluctuations, and from these simultaneous measurements, one can extract the phase between the density (n) and temperature (T) fluctuations, creating an nT phase diagnostic. Measurements of the fluctuations and the phase angle between them are extremely useful for testing and validating predictive models for the transport of heat and particles in fusion plasmas due to turbulence. Once validated, the models are used to predict performance in ITER and other burning plasmas, such as the MIT ARC design. Most recently, data from the newly developed, so-called “CECE diagnostic” [Cima 1995, White 2008] and “nT phase angle measurements” [Haese 1999, White 2010] ]will be combined with data from density fluctuation diagnostics at ASDEX Upgrade to support a long-term program of physics research in turbulence and transport that will allow for more stringent testing and validation of gyrokinetic turbulent-transport codes. This work directly impacts the development of predictive transport models in the U.S. FES program, such as TGLF, developed by General Atomics, which are used to predict performance in ITER and other burning plasma devices as part of advancing the development of fusion energy sciences.« less

  18. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000,more » renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.« less

  19. EDITORIAL: Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics Invited papers from the 15th International Congress on Plasma Physics combined with the 13th Latin American Workshop on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo

    2011-07-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010) both agreed to hold this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, considering the celebration of the Bicentennial of Chilean Independence. ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of its official program, within the framework of the Chilean Bicentennial activities. This event was also a scientific and academic activity of the project `Center for Research and Applications in Plasma Physics and Pulsed Power, P4', supported by the National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya in 1980, and was followed by: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006) and Fukuoka (2008). The purpose of the Congress is to discuss recent progress and outlooks in plasma science, covering fundamental plasma physics, fusion plasmas, astrophysical plasmas, plasma applications, etc. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005) and Caracas (2007). The purpose of the Latin American Workshop on Plasma Physics is to provide a forum in which the achievements of the Latin American plasma physics communities can be displayed, as well as to foster collaboration between plasma scientists within the region and elsewhere. The Program of ICPP-LAWPP-2010 included, amongst others, the following topics: fundamentals of plasma physics, fusion plasmas, plasmas in astrophysics and space physics, plasma applications and technologies, complex plasmas, high energy density plasmas, quantum plasmas and laser-plasma interaction. A total of 180 delegates from 34 different countries took part in ICPP-LAWPP-2010, and 60 delegates received financial assistance from the Local Organizing Committee, thanks to the support granted by the International Union for Pure and Applied Physics (IUPAP) and by CCHEN. The ICPP-LAWPP-2010 Program was established by the following Program Committee: • Carlos Alejaldre, ITER • Maria Virginia Alves, Brazil • Julio Herrera, Mexico • Günter Mank, IAEA • George Morales, USA • Padma Kant Shukla, Germany • Guido Van Oost, Belgium • Leopoldo Soto, Chile (Chairman) This Program Committee was formed of selected members from the International Advisory Committee of the ICPP and from the International Advisory Committee of the LAWPP (http://www.icpp-lawpp-2010.cl/page/committees.php). In particular, plenary lectures and invited topical lectures were selected by the Program Committee from a list of nominated lectures presented by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was established by the Program Committee. The Congress included 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. Most of the plenary and topical lectures are published in this special issue of Plasma Physics and Controlled Fusion. The papers were refereed according to the usual standards of the journal. Prior to ICPP-LAWPP 2010, an important activity usually associated with the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from all over the world, providing basic training to students and young researchers. The School was attended by 44 participants and 7 lecturers from 11 different countries. All participants received financial assistance from the Local Organizing Committee. The topics covered by the School were: a general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of ICPP-LAWPP-2010 are grateful to the lecturers of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso and Leopoldo Soto (Chile). On 27 February 2010, Chile suffered a major earthquake, one of the worst in the recorded history of the world up to that time. Although Santiago was little affected, the region located 200 km to the south was seriously damaged. After this event, the Local Organizing Committee received many messages from members of the plasma physics community around the world expressing their concern. The Local Organizing Committee greatly appreciates the support of the participants from all over the world who decided to come to Chile to attend the Conference. Their solidarity is highly appreciated. The Chairman of ICPP-LAWPP-2010 is grateful to the members of the Local Organizing Committee for the conference: Karla Cubillos, José Moreno, Cristian Pavez, Felipe Veloso, Marcelo Zambra, Luis Huerta and Fabian Reyes, and to the members of the Program Committee for their work and commitment. The Guest Editor of this special issue is grateful to the Publishers, in particular to Caroline Wilkinson, for their excellent work and cooperation.

  20. 1.5 MW RF Load for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Marsden, David; Collins, George

    Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less

  1. 15th International Congress on Plasma Physics & 13th Latin American Workshop on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo

    2014-05-01

    The International Advisory Committee of the 15th International Congress on Plasma Physics (ICPP 2010) and the International Advisory Committee of the 13th Latin American Workshop on Plasma Physics (LAWPP 2010), together agreed to carry out this combined meeting ICPP-LAWPP-2010 in Santiago de Chile, 8-13 August 2010, on occasion of the Bicentennial of Chilean Independence. The ICPP-LAWPP-2010 was organized by the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission (CCHEN) as part of the official program within the framework of the Chilean Bicentennial. The event was also a scientific and academic activity of the project ''Center for Research and Applications in Plasma Physics and Pulsed Power, P4'', supported by National Scientific and Technological Commission, CONICYT-Chile, under grant ACT-26. The International Congress on Plasma Physics was first held in Nagoya, in 1980, and followed by the Congresses: Gothenburg (1982), Lausanne (1984), Kiev (1987), New Delhi (1989), Innsbruck (1992), Foz do Iguacu (1994), Nagoya (1996), Prague (1998), Quebec City (2000), Sydney (2002), Nice (2004), Kiev (2006), and Fukuoka (2008). The purpose of the Congress is to discuss the recent progress and future views in plasma science, including fundamental plasma physics, fusion plasmas, astrophysical plasmas, and plasma applications, and so forth. The Latin American Workshop on Plasma Physics was first held in 1982 in Cambuquira, Brazil, followed by the Workshops: Medellín (1985), Santiago (1988), Buenos Aires (1990), Mexico City (1992), Foz do Iguacu (1994, also combined with ICPP), Caracas (1997), Tandil (1998), La Serena (2000), Sao Pedro (2003), Mexico City (2005), and Caracas (2007). The Latin American Workshop on Plasma Physics is a communication forum of the achievements of the plasma-physics regional community, fostering collaboration between plasma scientists within the region and elsewhere. The program of the ICPP-LAWPP-2010 included the topics: Fundamentals of Plasma Physics, Fusion Plasmas, Plasmas in Astrophysics and Space Physics, Plasma Applications and Technologies, Complex Plasmas, High Energy Density Plasmas, Quantum Plasmas, Laser-Plasma Interaction and among others. A total of 180 delegates from 34 different countries took part in the ICPP-LAWPP-2010. Sixty delegates received economical assistance from the local organized committee, thanks to the support of the International Union for Pure and Applied Physics (IUPAP) and the Chilean Nuclear Energy Commission (CCHEN). The ICPP-LAWPP-2010 Program was elaborated by the following Program Committee: Carlos Alejaldre, ITER Maria Virginia Alves, Brazil Julio Herrera, Mexico Günter Mank, IAEA George Morales, USA Padma Kant Shukla, Germany Guido Van Oost, Belgium Leopoldo Soto, Chile (Chairman) This Program Committee was formed by selected members from the International Advisory Committee of the ICPP and by selected members from the International Advisory Committee of the LAWPP. In particular, Plenary Lectures and Invited Topical Lectures were selected by the Program Committee from a list of nominated presentations by the International Advisory Committees of both ICPP and LAWPP. Also, the classification of oral and poster presentations was elaborated by the Program Committee. The congress included: 15 invited plenary talks, 33 invited topical talks, 45 oral contributions, and 160 poster contributions. A major part of the plenary and topical lectures were published in a special issue of the Plasma Physics and Controlled Fusion, IOP Publishing (Plasma Phys. Control Fusion Volume 53, Number 7, July 2011: http://iopscience.iop.org/0741-3335/53/7). The papers were refereed according to the standards of the journal Plasma Physics and Controlled Fusion. An large number of the participants sent their contributions articles to this volume of Journal of Physics: Conference Series, IOP Publishing. The articles received were reviewed by the local organizing committee and by invited peers. The criteria for review focused on the demand for a consistent research and the clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, we would like to express our appreciation to the authors. Previous to the ICPP-LAWPP 2010, an important activity associated to the Latin American Workshop on Plasma Physics took place. This activity was the LAWPP School on Plasma Physics, which was open to participants from over the world, providing basic training to students and young researchers. The School was attended by 44 participants and 6 lecturers from 11 different countries. All participants received economical assistance from the local organizing committee. The topics covered by the school were: general description of plasmas, space and astrophysical plasmas, plasma diagnostic techniques, high temperature and fusion plasmas, and low temperature and industrial plasmas. The organizers of the ICPP-LAWPP-2010 are grateful to the lectures of the LAWPP Plasma Physics School: Luis Felipe Delgado-Aparicio (USA), Homero Maciel (Brazil), and Marina Stepanova, J Alejandro Valdivia, Victor Muñoz, Felipe Veloso, Leopoldo Soto from Chile. On 27 February, 2010, one of the worst earthquakes in the recorded history of the world struck Chile. Although Santiago was affected little, the region located 200 km South of Santiago was seriously damaged. After this event, the local organizing committee received many messages from members of the plasma physics community around the world expressing their concern. The local organizing committee greatly appreciates the support of the participants from the entire world that decided to come to Chile and attend the Conference. Their solidarity is highly appreciated. During the celebration of the ICPP-LAWPP in Chile the two pioneers of plasma physics in Chile were affected by grave illness. Albeit that, Dr Hernán Chuaqui, pioneer of experimental plasma physics in Chile participated in the meeting. Alas, Dr Luis Gomberoff, pioneer of the theoretical plasma physics in Chile could not attend. Sadly, Professor Gomberoff died in September 2010 and Professor Chuaqui in July 2012. We would like to remember them with admiration. The Chairman of the ICPP-LAWPP-2010 is grateful to the members of the Local Organizing Committee of the conference: Karla Cubillos, José Moreno, Cristian Pavez, Felipe Veloso, Marcelo Zambra, Luis Huerta, and Fabian Reyes and to the members of the Program Committee for their work and commitment. Finally, my personal apology is in order regarding the delay in publishing these proceedings due to an unfortunate sequence of personal and professional circumstances. I would like to thank the Journal of Physics: Conference Series for the fast publication of the proceedings, in particular to Ms Sarah Toms for her excellent work and cooperation. Leopoldo Soto Chairman of the ICPP-LAWPP-2010 Chilean Nuclear Energy Commission, Chile Conference photograph Details of the committees are available in the PDF

  2. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  3. New High Gain Target Design for a Laser Fusion Power Plant

    DTIC Science & Technology

    2000-06-07

    target with a minimum energy gain, about 100. Demonstration of ignition or low gain is only important for fusion energy if it leads into a target concept...nonlinear saturation of these instabilities. Our approach is to try to avoid them. 4. A Development Path to Fusion Energy The laser and target concept...on the exact date required to develop fusion energy , it would be worthwhile for a power plant development program to provide enough time and funds

  4. Should the US abandon efforts to develop commercial fusion power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, W.D.; Kinter, E.E.

    1993-01-22

    This article presents viewpoints and rationale for continuing and disbanding the US efforts to develop commercial fusion power. The views of W.D. Kay, an assistant professor of political science at Northeastern University, are presented regarding - yes, abandon efforts. Meanwhile, the views of Edwin Keutes, former director of the Magnetic Fusion Program for DOE, are presented for continued development.

  5. Current status and future R&D for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.

    1998-10-01

    International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.

  6. PLATYPUS: A code for reaction dynamics of weakly-bound nuclei at near-barrier energies within a classical dynamical model

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis

    2011-04-01

    A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The program is suited for a weakly-bound two-body projectile colliding with a stable target. The initial orientation of the segment joining the two breakup fragments is considered to be isotropic. Additional comments: Several source routines from Numerical Recipies, and the Mersenne Twister random number generator package are included to enable independent compilation. Running time: About 75 minutes for input provided, using a PC with 1.5 GHz processor.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia L. Finley

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd waste water monitoring. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stencel, J.R.; Finley, V.L.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less

  9. Information Fusion of Conflicting Input Data.

    PubMed

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-10-29

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μ BalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  10. Information Fusion of Conflicting Input Data

    PubMed Central

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-01-01

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible. PMID:27801874

  11. Characterization of a Novel Fusion Protein from IpaB and IpaD of Shigella spp. and Its Potential as a Pan-Shigella Vaccine

    PubMed Central

    Martinez-Becerra, Francisco J.; Chen, Xiaotong; Dickenson, Nicholas E.; Choudhari, Shyamal P.; Harrison, Kelly; Clements, John D.; Picking, William D.; Van De Verg, Lillian L.; Walker, Richard I.

    2013-01-01

    Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion. PMID:24060976

  12. Laser Program Annual Report - 1979 Unclassified Excerpts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindl, J D

    The objective of the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) program is to demonstrate the scientific feasibility of ICF for military applications (to develop and utilize the capability to study nuclear weapons physics in support of the weapons program) and for energy-directed uses in the civilian sector. The demonstration of scientific feasibility for both military and civilian objectives will require achieving gains on the order of 10 to 100 in fusion microexplosions. Our major near-term milestones include the attainment of high compression, one-hundred to one-thousand times (100 to 1000X) liquid D-T density in the thermonuclear fuel andmore » ignition of thermonuclear burn. In 1979, our laser fusion experiments and analysis programs focused on two important areas related to achieving this goal: conducting x-ray-driven implosions of a variety of D-T-filled fuel capsule's to unprecedented high densities ({approx}> 50X liquid D-T density) and the determination of the scaling of hot electrons and thermal radiation in hohlraums.« less

  13. PREFACE: The fifth International Conference on Inertial Fusion Sciences and Applications (IFSA2007)

    NASA Astrophysics Data System (ADS)

    Azechi, Hiroshi; Hammel, Bruce; Gauthier, Jean-Claude

    2008-06-01

    The Fifth International Conference on Inertial Fusion Sciences and Applications (IFSA 2007) was held on 9-14 September 2007 at Kobe International Conference Center in Kobe, Japan. The host organizations for this conference were Osaka University and the Institute of Laser Engineering (ILE) at Osaka University; and co-organized by the Institute Lasers and Plasmas (ILP) in France, the Commissariatá l'Energie Atomique (CEA), Lawrence Livermore National Laboratory (LLNL), National Institute for Fusion Science (NIFS) in Japan, and Kansai Photon Science Institute (KPSI), Japan Atomic Energy Agency (JAEA). The conference objective was to review the state of the art of research in inertial fusion sciences and applications since the last conference held in Biarritz, France, in 2005. 470 abstracts were accepted, and 448 persons from 18 countries attended the conference. These Proceedings contain 287 of the papers presented at IFSA 2007. This collection of papers represents the manuscripts submitted to and passing the peer review process. The program was organized with some specific features: The reviews of influential programs appeared both at the very beginning and at the very end of the Conference to attract attendance throughout the Conference. Each poster session had the same time period as a single oral session, thereby avoiding overlap with oral talks. The everyday program was structured to be as similar as possible so the attendees could easily recognize the program. With a goal of achieving inertial fusion ignition and burn propagation in the laboratory, researchers presented the exciting advances in both traditional hot spot ignition and fast ignition approach, including status report of USA's National Ignition Facility (NIF), French Laser Magajoule (LMJ), Japanese Fast Ignition Realization Experiment (FIREX), and European High Power laser Energy Research (HiPER). A particular emphasis of the meeting was that the `physics of inertial fusion' category was dominated by fast-ignition and related ultra-intense laser interaction. Progress in direct drive over the past few years resulted in the achievement of high-density cryogenic implosions at OMEGA. Continuous progresses in hohlraum physics gave confidence in the achievement of ignition at NIF and LMJ. Advances in Z-pinch included double-hohlraum irradiation symmetry and the PW laser beam for the Z-facility. Progress of laser material development for IFE driver was a very interesting topic of inertial fusion energy drivers, including KrF and DPSSL lasers and particle beams. Of special interest, a future session was focused on strategy of inertial fusion energy development. Laboratory tours were held in the middle of the Conference. The Laser for Fusion EXperiments (LFEX), a new high-energy petawatt laser at ILE, was one of the key attractions of IFSA 2007. 83 participants toured LFEX and GEKKO XII lasers, and 35 joined a tour of KPSA-JAEA. In parallel to the tour, the `Symposium on Academics-Industries Cooperation for Applications of High-Power Lasers' was held with more than 90 participants mostly from the industrial community. These Proceedings start with special chapters on the keynote and focus speeches and the Teller lectures. The keynotes and focus give an overview of progress in inertial fusion in Asia, North America, and Europe. The Teller lectures show the contributions of this year's two winners: Brian Thomas of AWE, UK and Kunioki Mima of ILE. The remainder of the Proceedings is divided into three parts. Part A covers the physics of inertial fusion; Part B covers laser, particle beams, and fusion technology including IFE reactors and target fabrication; and Part C covers science and technology applications such as laboratory astrophysics, laser particle acceleration, x-ray and EUV sources, and new applications of intense lasers. These parts are further divided into chapters covering specific areas of science or technology. Within each chapter the talks relevant to that subject are gathered. The IFSA International Organizing Committee and Scientific Advisory Board appreciate the efforts of inertial fusion researchers worldwide in making IFSA 2007 an extremely successful conference. The proceedings were published with the support of Dr Y Sakawa, Dr H Homma, Ms S Karasuyama, Ms M Odagiri, and Ms I Kobatake. Kunioki Mima Co-chair Hiroshi Azechi Technical Program Committee Co-chair John Lindl Co-chair Bruce Hammel Technical Program Committee Co-chair Christine Labaune Co-chair Jean-Claude Gauthier Technical Program Committee Co-chair

  14. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  15. “The Marshall Rosenbluth International Summer School – 2007: Plasma Thermonuclear Fusion and Plasma Astrophysics – 2007”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan, Vladislav Alexander

    Contents: H. Berk: Frequency Sweeping Due to Phase Space Structure Formation in Plasmas M. Campbell : The Legacy of Marshall Rosenbluth in the Development of the Laser Fusion Program in the United States J. Candy: Gyrokinetic Simulations of Fusion Plasmas P. Diamond: The Legacy of Marshall Rosenbluth in Magnetic Confinement Theory G-Y. Fu: Nonlinear Hybrid Simulations of Multiple Energetic Particle Driven Alfven Modes in Toroidal Plasmas O. Gurcan: Theory of Intrinsic Rotation and Momentum Transport V. L. Jacobs: Kinetic and Spectral Descriptions for Atomic Processes in Astrophysical and Laboratory Plasmas C. F. Kennel: Marshall Rosenbluth and Roald Sagdeev in Trieste:Themore » Birth of Modern Space Plasma N. A. Krall: The Contribution of Marshall Rosenbluth in the Development of Plasma Drift Wave and Universal Instability Theories C. S. Liu: The Legacy of Marshall Rosenbluth in Laser-Plasma Interaction Research N. Rostoker: Plasma Physics Research With Marshall Rosenbluth - My Teacher R. Z. Sagdeev: The Legacy of Marshall Rosenbluth in Plasma Physics V. Alexander Stefan A Note on the Rosenbluth Paper: Phys. Rev. Letters, 29, 565 (1972), and the Research in Parametric Plasma Theory Thereupon J. W. Van Dam: The Role of Marshall Rosenbluth in the Development of the Thermonuclear Fusion Program in the U.S.A. E. P. Velikhov: Problems in Plasma Astrophysics R. White: The Role of Marshall Rosenbluth in the Development of the Particle and MHD Interaction in Plasmas X. Xu: Edge Gyrokinetic Theory and Continuum Simulations Marshall Nicholas ROSENBLUTH (A Brief Biography) b. February 5,1927 - Albany, New York. d. September 28, 2003 - San Diego, California. M. N. Rosenbluth, a world-acclaimed scientist, is one of the ultimate authorities in plasma and thermonuclear fusion research, often indicated by the sobriquet the "Pope of Plasma Physics." His theoretical contributions have been central to the development of controlled thermonuclear fusion. In the 1950s his pioneering work in plasma instabilities, together with pioneering works of A. Sakharov, I. Tamm, L. Spitzer, Jr., L. A. Artsimovich, and others, led to the design of the TOKAMAK, the principal configuration used for contemporary magnetic fusion experiments. In addition to his research achievements, he has made significant administrative contributions as a scientific advisor in the fields of energy policy and national defense. He is the founder and the first director of The Institute for Fusion Studies at Austin, Texas. M. N. Rosenbluth has been the recipient of the E. O. Lawrence Memorial Award (1964),the Albert Einstein Award (1967),the James Clerk Maxwell prize in Plasma Physics(1976),and the Enrico Fermi Award (1986). M. N. Rosenbluth had been Science Advisor for the INSTITUTE for ADVANCED PHYSICS STUDIES (presently a division of The Stefan University) since 1989. He is the editor-in-chief of the FSRC, (Frontier Science Research Conferences) Book: "NEW IDEAS in TOKAMAK CONFINEMENT" Published by the American Institute of Physics (August 1994) in the Research Trends in Physics Series founded and edited by V. Alexander Stefan in 1989. M. N. Rosenbluth was a member of the American Academy of Arts and Sciences and the National Academy of Sciences of the USA, a Professor Emeritus at the University of California, San Diego, and a Senior Scientist at General Atomics, San Diego.« less

  16. Fusion/Astrophysics Teacher Research Academy

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2005-10-01

    In order to engage California high school science teachers in the area of plasma physics and fusion research, LLNL's Fusion Energy Program has partnered with the UC Davis Edward Teller Education Center, ETEC (http://etec.ucdavis.edu), the Stanford University Solar Center (http://solar-center.stanford.edu) and LLNL's Science / Technology Education Program, STEP (http://education.llnl.gov). A four-level ``Fusion & Astrophysics Research Academy'' has been designed to give teachers experience in conducting research using spectroscopy with their students. Spectroscopy, and its relationship to atomic physics and electromagnetism, provides for an ideal plasma `bridge' to the CA Science Education Standards (http://www.cde.ca.gov/be/st/ss/scphysics.asp). Teachers attend multiple-day professional development workshops to explore new research activities for use in the high school science classroom. A Level I, 3-day program consists of two days where teachers learn how plasma researchers use spectrometers followed by instructions on how to use a research grade spectrometer for their own investigations. A 3rd day includes touring LLNL's SSPX (http://www.mfescience.org/sspx/) facility to see spectrometry being used to measure plasma properties. Spectrometry classroom kits are made available for loaning to participating teachers. Level I workshop results (http://education.llnl.gov/fusion&_slash;astro/) will be presented along with plans being developed for Level II (one week advanced SKA's), Level III (pre-internship), and Level IV (summer internship) research academies.

  17. Final report on the Magnetized Target Fusion Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Slough

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less

  18. Distributed data fusion across multiple hard and soft mobile sensor platforms

    NASA Astrophysics Data System (ADS)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in order to track a car that could be driving normally or erratically. The second simulation adds the extra complication of classifying the type of target to the simulation. The third simulation uses multiple hard and soft sensors, with a limited field of view, to track a moving target and classify it as a friend, foe, or neutral. The final chapter builds on the work done in previous chapters by performing a field test of the algorithms for hard and soft sensor data fusion. The test utilizes an unmanned aerial vehicle, an unmanned ground vehicle, and a human observer with a laptop. The test is designed to mimic a collaborative human and robot search and rescue problem. This test makes some of the most important practical contributions of the thesis by showing that the algorithms that have been developed for hard and soft sensor data fusion are capable of running in real time on relatively simple hardware.

  19. Selected Tracking and Fusion Applications for the Defence and Security Domain

    DTIC Science & Technology

    2010-05-01

    SUBTITLE Selected Tracking and Fusion Applications for the Defence and Security Domain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...characterized, for example, by sensor ranges from less than a meter to hundreds of kilometers, by time scales ranging from less than second to a few...been carried out within the framework of a multinational technology program called MAJIIC (Multi-Sensor Aerospace-Ground Joint ISR Interoperability

  20. FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery

    PubMed Central

    Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo

    2012-01-01

    Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2–ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data. PMID:22570408

  1. FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery.

    PubMed

    Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo

    2012-09-01

    Gene fusions are common driver events in leukaemias and solid tumours; here we present FusionAnalyser, a tool dedicated to the identification of driver fusion rearrangements in human cancer through the analysis of paired-end high-throughput transcriptome sequencing data. We initially tested FusionAnalyser by using a set of in silico randomly generated sequencing data from 20 known human translocations occurring in cancer and subsequently using transcriptome data from three chronic and three acute myeloid leukaemia samples. in all the cases our tool was invariably able to detect the presence of the correct driver fusion event(s) with high specificity. In one of the acute myeloid leukaemia samples, FusionAnalyser identified a novel, cryptic, in-frame ETS2-ERG fusion. A fully event-driven graphical interface and a flexible filtering system allow complex analyses to be run in the absence of any a priori programming or scripting knowledge. Therefore, we propose FusionAnalyser as an efficient and robust graphical tool for the identification of functional rearrangements in the context of high-throughput transcriptome sequencing data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia Finley

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program ismore » to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of non-radiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the presence of low levels of volatile organic compounds in an area adjacent to PPPL. Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report.« less

  3. Energy and the Options for Mankind.

    ERIC Educational Resources Information Center

    Mikkelsen, Tom

    1979-01-01

    Examined are the world energy problem; the problems associated with coal, fission, and other energy sources; and the feasibility of solar energy and nuclear fusion. Suggested changes for the improvement of mankind's future are provided. (BT)

  4. Issues and challenges in resource management and its interaction with levels 2/3 fusion with applications to real-world problems: an annotated perspective

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Kadar, Ivan; Hintz, Kenneth; Biermann, Joachim; Chong, Chee-Yee; Salerno, John; Das, Subrata

    2007-04-01

    Resource management (or process refinement) is critical for information fusion operations in that users, sensors, and platforms need to be informed, based on mission needs, on how to collect, process, and exploit data. To meet these growing concerns, a panel session was conducted at the International Society of Information Fusion Conference in 2006 to discuss the various issues surrounding the interaction of Resource Management with Level 2/3 Situation and Threat Assessment. This paper briefly consolidates the discussion of the invited panel panelists. The common themes include: (1) Addressing the user in system management, sensor control, and knowledge based information collection (2) Determining a standard set of fusion metrics for optimization and evaluation based on the application (3) Allowing dynamic and adaptive updating to deliver timely information needs and information rates (4) Optimizing the joint objective functions at all information fusion levels based on decision-theoretic analysis (5) Providing constraints from distributed resource mission planning and scheduling; and (6) Defining L2/3 situation entity definitions for knowledge discovery, modeling, and information projection

  5. SEAL Studies of Variant Blanket Concepts and Materials

    NASA Astrophysics Data System (ADS)

    Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.

    1997-09-01

    Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.

  6. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  7. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  8. An Overview of INEL Fusion Safety R&D Facilities

    NASA Astrophysics Data System (ADS)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  9. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.

    PubMed

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-07-23

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.

  10. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems

    PubMed Central

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-01-01

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation inmore » predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.« less

  12. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less

  13. Space fusion energy conversion using a field reversed configuration reactor: A new technical approach for space propulsion and power

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Miley, George H.; Santarius, John F.

    1991-01-01

    The fusion energy conversion design approach, the Field Reversed Configuration (FRC) - when burning deuterium and helium-3, offers a new method and concept for space transportation with high energy demanding programs, like the Manned Mars Mission and planetary science outpost missions require. FRC's will increase safety, reduce costs, and enable new missions by providing a high specific power propulsion system from a high performance fusion engine system that can be optimally designed. By using spacecraft powered by FRC's the space program can fulfill High Energy Space Missions (HESM) in a manner not otherwise possible. FRC's can potentially enable the attainment of high payload mass fractions while doing so within shorter flight times.

  14. Vegetation structure from quantitative fusion of hyperspectral optical and radar interferometric remote sensing

    NASA Technical Reports Server (NTRS)

    Asner, G. P.; Treuhaft, R. N.; Law, B. E.

    2000-01-01

    One of today's principle objecdtives of remote sensing is carbon accounting in the world's forests via biomass monitoring. Determining carbon sequestration by forest ecosystems requires understanding the carbon budgets of these ecosystems.

  15. Tracking by Identification Using Computer Vision and Radio

    PubMed Central

    Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez

    2013-01-01

    We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearinger, J P

    This month's issue has the following articles: (1) Leveraging the National Ignition Facility to Meet the Climate-Energy Challenge--Commentary by George H. Miller; (2) The Journey into a New Era of Scientific Discoveries--The world's largest laser is dedicated on May 29, 2009; (3) Safe and Sustainable Energy with LIFE--A revolutionary technology to generate electricity, modeled after the National Ignition Facility, could either be a pure fusion energy source or combine the best of fusion and fission energy; (4) A Simulated Rehearsal for Battle--Livermore's Joint Conflict and Tactical Simulation is the most widely used tactical model in the world; (5) Improving Catalysismore » with a 'Noble' Material--By infusing carbon aerogels with platinum, researchers have produced a more affordable and efficient catalytic material; and (6) A Time Machine for Fast Neutrons--A new, robust time-projection chamber that provides directional detection of fast neutrons could greatly improve search methods for nuclear materials.« less

  17. Effects of Strontium Ranelate on Spinal Interbody Fusion Surgery in an Osteoporotic Rat Model

    PubMed Central

    Tsai, Tsung-Ting; Ho, Natalie Yi-Ju; Lai, Po-Liang; Fu, Tsai-Sheng; Niu, Chi-Chien; Chen, Lih-Huei; Chen, Wen-Jer

    2017-01-01

    Osteoporosis is a bone disease that afflicts millions of people around the world, and a variety of spinal integrity issues, such as degenerative spinal stenosis and spondylolisthesis, are frequently concomitant with osteoporosis and are sometimes treated with spinal interbody fusion surgery. Previous studies have demonstrated the efficacy of strontium ranelate (SrR) treatment of osteoporosis in improving bone strength, promoting bone remodeling, and reducing the risk of fractures, but its effects on interbody fusion surgery have not been adequately investigated. SrR-treated rats subjected to interbody fusion surgery exhibited significantly higher lumbar vertebral bone mineral density after 12 weeks of treatment than rats subjected to the same surgery but not treated with SrR. Furthermore, histological and radiographic assessments showed that a greater amount of newly formed bone tissue was present and that better fusion union occurred in the SrR-treated rats than in the untreated rats. Taken together, these results show significant differences in bone mineral density, PINP level, histological score, SrR content and mechanical testing, which demonstrate a relatively moderate effect of SrR treatment on bone strength and remodeling in the specific context of recovery after an interbody fusion surgery, and suggest the potential of SrR treatment as an effective adjunct to spinal interbody fusion surgery for human patients. PMID:28052066

  18. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    DOE PAGES

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; ...

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  19. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  20. A Summary of the NASA Fusion Propulsion Workshop 2000

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)

    2001-01-01

    A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.

  1. Multi-Sensor Systems and Data Fusion for Telecommunications, Remote Sensing and Radar (les Systemes multi-senseurs et le fusionnement des donnees pour les telecommunications, la teledetection et les radars)

    DTIC Science & Technology

    1998-04-01

    The result of the project is a demonstration of the fusion process, the sensors management and the real-time capabilities using simulated sensors...demonstrator (TAD) is a system that demonstrates the core ele- ment of a battlefield ground surveillance system by simulation in near real-time. The core...Management and Sensor/Platform simulation . The surveillance system observes the real world through a non-collocated heterogene- ous multisensory system

  2. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rule, K.; Scott, J.; Larson, S.

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methodsmore » for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.« less

  3. The Quest for Fusion at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hartouni, Edward

    2017-01-01

    Arthur Eddington speculated in 1920 on the internal constitution of stars and described the possibility of nuclear fusion based on the then new results from special relativity and measurements of light nuclei masses. By 1929 Atkinson and Houtermans worked out the calculations for nuclear fusion in stars and initiating nuclear astrophysics. All of these sciences were pressed into service during the World War II, and the applications developed, particularly under the auspices of the Manhattan Project provided both weapons with which to wage and win that conflict, but also the possibilities to harness these applications of the nuclear processes of fission and fusion for peaceful purposes. 32 years after Eddington's speculation the United States demonstrated the application of fusion in a famous nuclear weapons test. In the following years many ideas for producing ``controlled'' fusion through inertial confinement were pursued. The invention of the laser opened up new avenues which have culminated in the National Ignition Facility, NIF. I will attempt to cover the ground between Eddington, through the Manhattan Project and provide a current status of this quest at NIF. LLNL-ABS-704367-DRAFT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Multimodal biometric system using rank-level fusion approach.

    PubMed

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  5. Summary of human social, cultural, behavioral (HSCB) modeling for information fusion panel discussion

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Salerno, John; Kadar, Ivan; Yang, Shanchieh J.; Fenstermacher, Laurie; Endsley, Mica; Grewe, Lynne

    2013-05-01

    During the SPIE 2012 conference, panelists convened to discuss "Real world issues and challenges in Human Social/Cultural/Behavioral modeling with Applications to Information Fusion." Each panelist presented their current trends and issues. The panel had agreement on advanced situation modeling, working with users for situation awareness and sense-making, and HSCB context modeling in focusing research activities. Each panelist added different perspectives based on the domain of interest such as physical, cyber, and social attacks from which estimates and projections can be forecasted. Also, additional techniques were addressed such as interest graphs, network modeling, and variable length Markov Models. This paper summarizes the panelists discussions to highlight the common themes and the related contrasting approaches to the domains in which HSCB applies to information fusion applications.

  6. Low Frequency of the ERG Oncogene Alterations in Prostate Cancer Patients from India.

    PubMed

    Rawal, Sudhir; Young, Denise; Williams, Molly; Colombo, Monica; Krishnappa, Raghunath; Petrovics, Gyorgy; McLeod, David G; Srivastava, Shiv; Sesterhenn, Isabell A

    2013-01-01

    ERG oncogene fusions (predominantly TMPRSS2-ERG) represent the most common (50-70% frequency) and validated prostate cancer (CaP) genome alteration in the Western countries. A common TMPRSS2-ERG fusion type leads to the androgen dependent tumor cell specific expression of the TMPRSS2-ERG fusion transcript and amino terminally truncated ERG oncoprotein. CaP prevalence and aggressiveness, as well as genomic alterations vary in different geographic locations in the world. Recent studies from our group highlighted significantly lower frequency of ERG alterations in prostate index tumors of African American men (~30%) in comparison to Caucasian Americans (~60%). Further, much lower frequencies (10 -25%) of ERG alterations have been reported in studies from China and Japan. There is no study on ERG alterations in CaP patients from India, representing a significant portion of the world male population. This study focuses on the frequency of ERG oncoprotein expression in CaP patients from India. De-identified formalin-fixed paraffin-embedded (FFPE) specimens from radical prostatectomy (RP) specimens of 51 patients from the Rajiv Gandhi Cancer Institute and Research Centre (RGCI), New Delhi, India, were analyzed for ERG alterations. The ERG oncoprotein expression as a surrogate of ERG gene fusions was analyzed by using a highly specific ERG monoclonal antibody (9FY). TMPRSS2-ERG fusion was assessed by fluorescent in situ hybridization (FISH) assays using the break-apart ERG probes. Specimens reflecting prior hormonal treatment, or lacking any tumor content, were excluded from the analyses. Of the thirty evaluable specimens, ERG positive tumors were present in 8 cases (27%) and one tumor specimen exhibited rare ERG positive cells. None of the benign glands were positive for ERG supporting previous studies showing complete specificity of the ERG oncoprotein for detection of tumors cells in prostate. Frequency of ERG oncoprotein expression is much lower in CaP patients from India in comparison to higher frequency of ERG alterations noted in Western countries. ERG frequency in Indian CaP is similar to observations from Japan and China. Since ERG oncogenic activation is a promising biomarker and therapeutic target for CaP, careful evaluation of ERG is needed in CaP patients from different parts of the world.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeper, Ramon J.

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  8. Nuclear power in the 21st century: Challenges and possibilities.

    PubMed

    Horvath, Akos; Rachlew, Elisabeth

    2016-01-01

    The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.

  9. Be Bold : An Alternative Plan for Fusion Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, Glen Anthony

    Government sponsored magnetic fusion energy research in the USA has been on downward trajectory since the early 1990’s. The present path is unsustainable. Indeed, our research community and national research facilities are withering from old-age and lack of investment. The present product (tokamak-centric production of electricity) does not yet work, will not be economic, and is clearly not valued or needed by our society. Even if a prototype existed at any cost, DT-based fusion energy would come too late to significantly impact the reduction of CO 2 emissions in this century. This white paper outlines what “being bold” could meanmore » with respect to the invention and application of nuclear fusion technologies, and how the USA could once again set a visionary example for the world. I present the discussion in two parts, reflecting on the NAS panel two-part assignment of a plan “with” and “without” ITER.« less

  10. Constancy and diversity in the flavivirus fusion peptide.

    PubMed

    Seligman, Stephen J

    2008-02-14

    Flaviviruses include the mosquito-borne dengue, Japanese encephalitis, yellow fever and West Nile and the tick-borne encephalitis viruses. They are responsible for considerable world-wide morbidity and mortality. Viral entry is mediated by a conserved fusion peptide containing 16 amino acids located in domain II of the envelope protein E. Highly orchestrated conformational changes initiated by exposure to acidic pH accompany the fusion process and are important factors limiting amino acid changes in the fusion peptide that still permit fusion with host cell membranes in both arthropod and vertebrate hosts. The cell-fusing related agents, growing only in mosquitoes or insect cell lines, possess a different homologous peptide. Analysis of 46 named flaviviruses deposited in the Entrez Nucleotides database extended the constancy in the canonical fusion peptide sequences of mosquito-borne, tick-borne and viruses with no known vector to include more recently-sequenced viruses. The mosquito-borne signature amino acid, G104, was also found in flaviviruses with no known vector and with the cell-fusion related viruses. Despite the constancy in the canonical sequences in pathogenic flaviviruses, mutations were surprisingly frequent with a 27% prevalence of nonsynonymous mutations in yellow fever virus fusion peptide sequences, and 0 to 7.4% prevalence in the others. Six of seven yellow fever patients whose virus had fusion peptide mutations died. In the cell-fusing related agents, not enough sequences have been deposited to estimate reliably the prevalence of fusion peptide mutations. However, the canonical sequences homologous to the fusion peptide and the pattern of disulfide linkages in protein E differed significantly from the other flaviviruses. The constancy of the canonical fusion peptide sequences in the arthropod-borne flaviviruses contrasts with the high prevalence of mutations in most individual viruses. The discrepancy may be the result of a survival advantage accompanying sequence diversity (quasispecies) involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell.

  11. Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion

    PubMed Central

    Kleinfelter, Lara M.; Jangra, Rohit K.; Jae, Lucas T.; Herbert, Andrew S.; Mittler, Eva; Stiles, Katie M.; Wirchnianski, Ariel S.; Kielian, Margaret; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. PMID:26126854

  12. An under-active or over-active internal world? An exploration of parallel dynamics within psyche and soma, and the difficulty of internal regulation, in patients with Chronic Fatigue Syndrome and Myalgic Encephalomyelitis.

    PubMed

    Driver, Christine

    2005-04-01

    This paper explores the dynamics brought into analytic work when there is a symmetric fusion between psyche and soma within the patient. It will consider how such a fusion may emerge from reverberations between physical constitution and a lack of maternal attunement, containment and reflective function. I will describe the work with a patient, Jane, who was diagnosed with Myalgic Encephalomyelitis (ME) during the course of her analysis. The dynamic of her physical symptoms within the analytic work, and the impact of her internal affects and internal 'objects' within the transference and countertransference, indicated a difficulty in finding an homeostatic balance resulting in overactivity and underactivity at both somatic and psychological levels. Using the clinical work with Jane this paper will also examine the interrelationship between mother-infant attachment, an inadequate internalized maternal reflective function, affect dysregulation, unconscious fusion, the lack of psyche-soma differentiation and the impact of the latter in relation to internal regulation systems, or lack of, in patients with Chronic Fatigue Syndrome (CFS) and Myalgic Encephalomyelitis (ME). I will draw on similar work carried out by Holland (1997), Simpson (1997) and Simpson et al. (1997). The paper will also employ the concept of the reflective function (Fonagy 2001; Knox 2003), and consider Matte-Blanco's (1999) concepts of generalization and unconscious symmetry in relation to the patient's internal world. I go on to consider how analysis provides a point outside the 'fusion' that can enable the 'deadlock' to be broken.

  13. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction withmore » the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.« less

  14. Fusion materials semiannual progress report for the period ending December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reportedmore » separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.« less

  15. Comparison of the resulting error in data fusion techniques when used with remote sensing, earth observation, and in-situ data sets for water quality applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Alexander; El Serafy, Ghada

    2016-04-01

    Ecological modeling and water quality investigations are complex processes which can require a high level of parameterization and a multitude of varying data sets in order to properly execute the model in question. Since models are generally complex, their calibration and validation can benefit from the application of data and information fusion techniques. The data applied to ecological models comes from a wide range of sources such as remote sensing, earth observation, and in-situ measurements, resulting in a high variability in the temporal and spatial resolution of the various data sets available to water quality investigators. It is proposed that effective fusion into a comprehensive singular set will provide a more complete and robust data resource with which models can be calibrated, validated, and driven by. Each individual product contains a unique valuation of error resulting from the method of measurement and application of pre-processing techniques. The uncertainty and error is further compounded when the data being fused is of varying temporal and spatial resolution. In order to have a reliable fusion based model and data set, the uncertainty of the results and confidence interval of the data being reported must be effectively communicated to those who would utilize the data product or model outputs in a decision making process[2]. Here we review an array of data fusion techniques applied to various remote sensing, earth observation, and in-situ data sets whose domains' are varied in spatial and temporal resolution. The data sets examined are combined in a manner so that the various classifications, complementary, redundant, and cooperative, of data are all assessed to determine classification's impact on the propagation and compounding of error. In order to assess the error of the fused data products, a comparison is conducted with data sets containing a known confidence interval and quality rating. We conclude with a quantification of the performance of the data fusion techniques and a recommendation on the feasibility of applying of the fused products in operating forecast systems and modeling scenarios. The error bands and confidence intervals derived can be used in order to clarify the error and confidence of water quality variables produced by prediction and forecasting models. References [1] F. Castanedo, "A Review of Data Fusion Techniques", The Scientific World Journal, vol. 2013, pp. 1-19, 2013. [2] T. Keenan, M. Carbone, M. Reichstein and A. Richardson, "The model-data fusion pitfall: assuming certainty in an uncertain world", Oecologia, vol. 167, no. 3, pp. 587-597, 2011.

  16. ACDF Graft Selection by Surgeons: Survey of AOSpine Members.

    PubMed

    Yoon, S Tim; Konopka, Jeffrey A; Wang, Jeffrey C; Youssef, Jim A; Meisel, Hans Joerg; Brodke, Darrel S; Park, Jong-Beom

    2017-08-01

    Cross-sectional survey study. To determine what are the most commonly used graft materials in anterior cervical discectomy and fusion and whether the choice of graft is affected by surgeon's training, years in practice, geographic location, practice setting, or surgeon's perceived difficulty in achieving fusion. A 23-question survey was sent out to 5334 surgeons using the Global AO Spine database. Response data was then stratified into surgeon training, years of practice, practice type, and global region. Overall, surgeons believe that graft selection affects fusion rates (89.3% of surgeons) and affects time to fusion (86.0% of surgeons). The use of a cage is currently the most common structural graft component used worldwide at 64.1%. Of surgeons that use cages, the PEEK Cage makes up 84%. North American surgeons differ from this global trend and use composite allograft more commonly. The choice to add a nonstructural graft component was reported at 74%. This result was similar for performing multilevel fusions at 72.8%. The selection of nonstructural graft material depends on whether the type of surgery is considered simple or complex. Most surgeons are not satisfied with available literature comparing effectiveness of grafts but believed that there was sufficient evidence to support the use of their chosen graft. Almost all surgeons believe that fusion is important to anterior cervical discectomy and fusion surgery outcomes and that most surgeons believe graft choice affects fusion. However, this survey indicates that there is great variability in the type of graft material used by spine surgeons across the world.

  17. Heating Efficiency of Beat Wave Excitation in a Density Gradient,

    DTIC Science & Technology

    1988-02-01

    and Technology, January 1988. PPG-1124 񓟣 Research Highlights in The Pisces Program," R.V. Conn, et al, January 1988. PPG-1125 "Magnetic Fusion ... Energy , vol. 5. Technical Assessement of Critical Issues in the Steady State Operation of Fusion Confinement Devices," D. M. Goebel, Assessment Chairman

  18. Simulated disparity and peripheral blur interact during binocular fusion.

    PubMed

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2014-07-17

    We have developed a low-cost, practical gaze-contingent display in which natural images are presented to the observer with dioptric blur and stereoscopic disparity that are dependent on the three-dimensional structure of natural scenes. Our system simulates a distribution of retinal blur and depth similar to that experienced in real-world viewing conditions by emmetropic observers. We implemented the system using light-field photographs taken with a plenoptic camera which supports digital refocusing anywhere in the images. We coupled this capability with an eye-tracking system and stereoscopic rendering. With this display, we examine how the time course of binocular fusion depends on depth cues from blur and stereoscopic disparity in naturalistic images. Our results show that disparity and peripheral blur interact to modify eye-movement behavior and facilitate binocular fusion, and the greatest benefit was gained by observers who struggled most to achieve fusion. Even though plenoptic images do not replicate an individual’s aberrations, the results demonstrate that a naturalistic distribution of depth-dependent blur may improve 3-D virtual reality, and that interruptions of this pattern (e.g., with intraocular lenses) which flatten the distribution of retinal blur may adversely affect binocular fusion. © 2014 ARVO.

  19. Simulated disparity and peripheral blur interact during binocular fusion

    PubMed Central

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2014-01-01

    We have developed a low-cost, practical gaze-contingent display in which natural images are presented to the observer with dioptric blur and stereoscopic disparity that are dependent on the three-dimensional structure of natural scenes. Our system simulates a distribution of retinal blur and depth similar to that experienced in real-world viewing conditions by emmetropic observers. We implemented the system using light-field photographs taken with a plenoptic camera which supports digital refocusing anywhere in the images. We coupled this capability with an eye-tracking system and stereoscopic rendering. With this display, we examine how the time course of binocular fusion depends on depth cues from blur and stereoscopic disparity in naturalistic images. Our results show that disparity and peripheral blur interact to modify eye-movement behavior and facilitate binocular fusion, and the greatest benefit was gained by observers who struggled most to achieve fusion. Even though plenoptic images do not replicate an individual's aberrations, the results demonstrate that a naturalistic distribution of depth-dependent blur may improve 3-D virtual reality, and that interruptions of this pattern (e.g., with intraocular lenses) which flatten the distribution of retinal blur may adversely affect binocular fusion. PMID:25034260

  20. Towards a programme of testing and qualification for structural and plasma-facing materials in ‘fusion neutron’ environments

    NASA Astrophysics Data System (ADS)

    Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.

    2017-09-01

    Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia L. Finley

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practicalmore » reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents). Monitoring revealed the low levels of volatile organic compounds in an area adjacent to PPPL. In 2001, PPPL was in compliance with its permit limits for surface and sanitary discharges and had no reportable releases. Additionally, as part of DOE's program for the purchase of recycled content and other environmentally preferred products, PPPL has ranked in the excellent category of 80 to 90% of the goal.« less

  2. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Experimental plasma research project summaries

    NASA Astrophysics Data System (ADS)

    1992-06-01

    This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.

  4. "[N]ot subject to our sense” : Margaret Cavendish's fusion of Renaissance science, magic and fairy lore.

    PubMed

    Walters, Lisa

    2010-01-01

    This article explores Margaret Cavendish's depictions of alchemy, witchcraft and fairy lore in her scientific treatise Philosophical Letters and in fictional texts from Natures Pictures and Poems and Fancies. Though Cavendish was a dedicated materialist, she appropriates theories of magic from early modern science and folklore into her materialist epistemology. As Cavendish draws upon a fusion of early modern conceptions of magic, she creates a radical theory of matter which not only challenges patriarchy and binary oppositions, but also explores the plurality and mystery that can exist within an infinitely complex material world.

  5. Scientist to appeal misconduct charge

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-08-01

    Lawyers for the "bubble-fusion" researcher Rusi Taleyarkhan have told Physics World that he will appeal over the findings of a panel that last month found him guilty of two charges of scientific misconduct. Taleyarkhan, a nuclear engineer at Purdue University in the US, was charged by a sixmember internal committee, which concluded that he had cited a paper by researchers in his own lab as if it were an independent confirmation of his alleged discovery of bubble fusion in 2002. The committee also found him guilty of adding the name of a student who had not contributed to that paper as an author.

  6. Science & Technology Review September 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    2005-07-19

    This month's issue has the following articles: (1) The Pursuit of Fusion Energy--Commentary by William H. Goldstein; (2) A Dynamo of a Plasma--The self-organizing magnetized plasmas in a Livermore fusion energy experiment are akin to solar flares and galactic jets; (3) How One Equation Changed the World--A three-page paper by Albert Einstein revolutionized physics by linking mass and energy; (4) Recycled Equations Help Verify Livermore Codes--New analytic solutions for imploding spherical shells give scientists additional tools for verifying codes; and (5) Dust That.s Worth Keeping--Scientists have solved the mystery of an astronomical spectral feature in interplanetary dust particles.

  7. Visiting Scholars Program

    DTIC Science & Technology

    2016-09-01

    other associated grants. 15. SUBJECT TERMS SUNY Poly, STEM, Artificial Intelligence , Command and Control 16. SECURITY CLASSIFICATION OF: 17...neuromorphic system has the potential to be widely used in a high-efficiency artificial intelligence system. Simulation results have indicated that the...novel multiresolution fusion and advanced fusion performance evaluation tool for an Artificial Intelligence based natural language annotation engine for

  8. Critical Fusion--Technology and Equity in Secondary Education

    ERIC Educational Resources Information Center

    Magolda, Peter

    2006-01-01

    This manuscript reports on the first year of a formative, external program evaluation of the Critical Fusion Initiative (CFI), which involved a higher education institution, a public high school, a corporation, and two nonprofit organizations. The initiative fused technology and education to address the issue of equity by assisting 16 high school…

  9. PBFA II, a 100 TW Pulsed Power Driver for the Inertial Confinement Fusion Program

    DTIC Science & Technology

    1985-06-01

    providing a 30 MV, 15 ns output pulse,which accelerates lithium ions. The ions will focus onto a pellet containing deuterium-tritium, producing fusion ... energy . Several research areas will be reviewed: low jitter, highly reliable 370 kJ Marx generators; highly synchronized gas switching at 5 MV; efficient

  10. Ar-Xe Laser: The Path to a Robust, All-Electric Shipboard Directed Energy Weapon

    DTIC Science & Technology

    2008-12-18

    Krypton Fluoride (KrF) laser for fusion energy and is sponsored by the Department of Energy’s (DOE) High Average Power Laser (HAPL) program. DOE...Electronics Conference, Arlington VA, October 2007. 9. “Electron Beam Pumped Lasers for Fusion Energy and Directed Energy Applications”, presented by

  11. Plasma Physics Network Newsletter, No. 3

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.

  12. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Taylor, P. L.; Lee, R. L.

    2000-10-01

    The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.

  13. Technique for writing of fiber Bragg gratings over or near preliminary formed macro-structure defects in silica optical fibers

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kazakov, Vadim S.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents method for performing precision macro-structure defects "tapers" and "up-tapers" written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their "the best" combination. Also experimental statistical researches concerned with "taper" and "up-taper" diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.

  14. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  15. Inertial Confinement Fusion Annual Report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correll, D

    The ICF Annual Report provides documentation of the achievements of the LLNL ICF Program during the fiscal year by the use of two formats: (1) an Overview that is a narrative summary of important results for the fiscal year and (2) a compilation of the articles that previously appeared in the ICF Quarterly Report that year. Both the Overview and Quarterly Report are also on the Web at http://lasers.llnl.gov/lasers/pubs/icfq.html. Beginning in Fiscal Year 1997, the fourth quarter issue of the ICF Quarterly was no longer printed as a separate document but rather included in the ICF Annual. This change providedmore » a more efficient process of documenting our accomplishments with-out unnecessary duplication of printing. In addition we introduced a new document, the ICF Program Monthly Highlights. Starting with the September 1997 issue and each month following, the Monthly Highlights will provide a brief description of noteworthy activities of interest to our DOE sponsors and our stakeholders. The underlying theme for LLNL's ICF Program research continues to be defined within DOE's Defense Programs missions and goals. In support of these missions and goals, the ICF Program advances research and technology development in major interrelated areas that include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology. While in pursuit of its goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application of inertial fusion energy for civilian power production. ICF technologies continue to have spin-off applications for additional government and industrial use. In addition to these topics, the ICF Annual Report covers non-ICF funded, but related, laser research and development and associated applications. We also provide a short summary of the quarterly activities within Nova laser operations, Beamlet laser operations, and National Ignition Facility laser design. LLNL's ICF Program falls within DOE's national ICF program, which includes the Nova and Beamlet (LLNL), OMEGA (University of Rochester Laboratory for Laser Energetics), Nike (Naval Research Laboratory), and Trident (Los Alamos National Laboratory) laser facilities. The Particle Beam Fusion Accelerator (Z) and Saturn pulsed-power facilities are at Sandia National Laboratories. General Atomics, Inc., develops and provides many of the targets for the above experimental facilities. Many of the ICF Annual Report articles are co-authored with our colleagues from these other ICF institutions.« less

  16. 2016 Annual Site Environmental Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Virginia

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory’s (PPPL) operations. The results of the 2016 environmental surveillance and monitoring program for PPPL’s are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2016. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality – a clean,more » alternative energy source. 2016 marked the eighteenth year of National Spherical Torus Experiment and the first year of NSTX-U (Upgrade) operations. The NSTX-U Project is a collaboration among national laboratories, universities, and national and international research institutions and is a major element in the US Fusion Energy Sciences Program. Its design tests the physics principles of spherical torus (ST) plasmas, playing an important role in the development of smaller, more economical fusion reactors. NSTX-U began operations after its first upgrade that installed the new center stack magnets and second neutral beam, which would allow for hotter plasmas and greater field strength to maintain the fusion reaction longer. Due to operational issues with a poloidal coil, NSTX-U operated briefly in 2016. In 2016, PPPL’s radiological environmental monitoring program measured tritium in the air at the NSTX-U Stack and at on -site sampling stations. Using highly sensitive monitors, PPPL is capable of detecting small changes in the ambient levels of tritium. The operation of an in- stack monitor located on D-site is used to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations. Also included in PPPL’s radiological environmental monitoring program, are water monitoring – ground and surface, and waste waters. PPPL’s radiological monitoring program characterized the background levels of tritium in the environment; the data are presented in this report. Ground water monitoring continued under the New Jersey Department of Environmental Protection’s Site Remediation Program. PPPL monitored for non-radiological contaminants, mainly volatile organic compounds (components of chlorinated degreasing solvents). In 2016, PPPL was in compliance with its permit limits for surface and sanitary discharges, excepting two elevated chlorine-produced oxidant concentration. PPPL was honored with awards for its waste reduction and recycling program, and its “EPEAT” electronics purchasing for the third consecutive year.« less

  17. Fast Multiscale Algorithms for Information Representation and Fusion

    DTIC Science & Technology

    2011-07-01

    We are also developing convenient command-line invocation tools in addition to the previously developed APIs . Various real-world data sets...This knowledge is important in geolocation applications where knowing whether a received signal is line-of-sight or not is necessary for the

  18. Novel gene fusion of PRCC-MITF defines a new member of MiT family translocation renal cell carcinoma: clinicopathological analysis and detection of the gene fusion by RNA sequencing and FISH.

    PubMed

    Xia, Qiu-Yuan; Wang, Xiao-Tong; Ye, Sheng-Bing; Wang, Xuan; Li, Rui; Shi, Shan-Shan; Fang, Ru; Zhang, Ru-Song; Ma, Heng-Hui; Lu, Zhen-Feng; Shen, Qin; Bao, Wei; Zhou, Xiao-Jun; Rao, Qiu

    2018-04-01

    MITF, TFE3, TFEB and TFEC belong to the same microphthalmia-associated transcription factor family (MiT). Two transcription factors in this family have been identified in two unusual types of renal cell carcinoma (RCC): Xp11 translocation RCC harbouring TFE3 gene fusions and t(6;11) RCC harbouring a MALAT1-TFEB gene fusion. The 2016 World Health Organisation classification of renal neoplasia grouped these two neoplasms together under the category of MiT family translocation RCC. RCCs associated with the other two MiT family members, MITF and TFEC, have rarely been reported. Herein, we identify a case of MITF translocation RCC with the novel PRCC-MITF gene fusion by RNA sequencing. Histological examination of the present tumour showed typical features of MiT family translocation RCCs, overlapping with Xp11 translocation RCC and t(6;11) RCC. However, this tumour showed negative results in TFE3 and TFEB immunochemistry and split fluorescence in-situ hybridisation (FISH) assays. The other MiT family members, MITF and TFEC, were tested further immunochemically and also showed negative results. RNA sequencing and reverse transcription-polymerase chain reaction confirmed the presence of a PRCC-MITF gene fusion: a fusion of PRCC exon 5 to MITF exon 4. We then developed FISH assays covering MITF break-apart probes and PRCC-MITF fusion probes to detect the MITF gene rearrangement. This study both proves the recurring existence of MITF translocation RCC and expands the genotype spectrum of MiT family translocation RCCs. © 2017 John Wiley & Sons Ltd.

  19. Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players.

    PubMed

    George, John; Nagendran, Jayaselvi; Azmi, Khairul

    2012-03-01

    MRI of distal radius fusion is currently being used in the U17 World Cup to exclude overaged players. Developing countries that cannot afford to perform MRI on their players are using plain radiographs based on the same MRI criteria of fusion. The aim of this study is to compare the grade of fusion of the left wrist distal radial growth plate between MRI and plain radiographs. 150 healthy male football players were grouped into five age groups ranging from 15 to 19 years old. Each participant had coronal T1-weighted MRI and plain radiograph of the left wrist. The degree of distal radius fusion was rated randomly by three radiologists using a six-stage grading system proposed by the FIFA Research Centre. MRI assessment of distal radial growth plate fusion has good correlation with plain radiograph fusion (r=0.949). The mean of x-ray grading is higher than the MRI grading in the 15, 16, 17, 18 and 19 years old age groups with p=0.443, 0.001, 0.009, <0.001 and 0.003, respectively, using Wilcoxon signed ranked test. Intraobserver and interobserver correlations were high (r=0.9). T1 MRI correlation with chronological age (r=0.771) was close to plain radiographs (r=0.821) with p value of <0.001. This article is of major importance as it is the first to show that x-rays significantly overrate the grading of fusion in this age group and therefore should not be used to exclude overaged players as is occurring now to the distress of many genuinely eligible players.

  20. Laser program annual report 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, C.D.; Rufer, M.L.; Murphy, P.W.

    1984-06-01

    In the 1983 Laser Program Annual Report we present the accomplishments and unclassified activities of the Laser Program at Lawrence Livermore National laboratory (LLNL) for the year 1983. It should be noted that the report, of necessity, is a summary, and more detailed expositions of the research can be found in the many publications and reports authored by staff members in the Laser Program. The purpose of this report is to present our work in a brief form, but with sufficient depth to provide an overview of the analytical and experimental aspects of the LLNL Inertial-Confinement Fusion (ICF) Program. Themore » format of this report is basically the same as that of previous years. Section 1 is an overview and highlights the important accomplishments and directions of the Program. Sections 2 through 7 provide the detailed information on the various major parts of the Program: Laser Systems and Operations, Target Design, Target Fabrication, Fusion Experiments, Laser Research and Development, and Energy Applications.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L.; Wiezcorek, M.A.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less

  2. Developmental validation of the PowerPlex(®) Fusion 6C System.

    PubMed

    Ensenberger, Martin G; Lenz, Kristy A; Matthies, Learden K; Hadinoto, Gregory M; Schienman, John E; Przech, Angela J; Morganti, Michael W; Renstrom, Daniel T; Baker, Victoria M; Gawrys, Kori M; Hoogendoorn, Marlijn; Steffen, Carolyn R; Martín, Pablo; Alonso, Antonio; Olson, Hope R; Sprecher, Cynthia J; Storts, Douglas R

    2016-03-01

    The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options

    NASA Astrophysics Data System (ADS)

    Zucchetti, Massimo; Sugiyama, Linda E.

    2006-05-01

    Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.

  4. Making of the NSTX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Neumeyer; M. Ono; S.M. Kaye

    1999-11-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.

  5. The Genetic Programming of Industrial Microorganisms.

    ERIC Educational Resources Information Center

    Hopwood, David A.

    1981-01-01

    Traces the development of the field of industrial microbial genetics, describing a range of techniques for genetic programing. Includes a discussion of site-directed mutagenesis, protoplast fusion, and recombinant DNA manipulations. (CS)

  6. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

    PubMed Central

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera

    2015-01-01

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell–cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast–myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell–cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process. PMID:26459604

  7. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    PubMed Central

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636

  8. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    PubMed

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-12-13

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  9. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  10. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  11. A hybrid neural learning algorithm using evolutionary learning and derivative free local search method.

    PubMed

    Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil

    2006-06-01

    In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.

  12. Socioeconomic and regional differences in the treatment of cervical spondylotic myelopathy

    PubMed Central

    Palejwala, Sheri K.; Rughani, Anand I.; Lemole, G. Michael; Dumont, Travis M.

    2017-01-01

    Background: Cervical spondylotic myelopathy (CSM) is the leading cause of spinal cord dysfunction in the world. Surgical treatment is both medically and economically advantageous, and can be achieved through multiple approaches, with or without fusion. We used the Nationwide Inpatient Sample (NIS) database to better elucidate regional and socioeconomic variances in the treatment of CSM. Methods: The NIS database was queried for elective admissions with a primary diagnosis of CSM (ICD-9 721.1). This was evaluated for patients who also carried a diagnosis of anterior (ICD-9 81.02) or posterior cervical fusion (ICD-9 81.03), posterior cervical laminectomy (ICD 03.09), or a combination. We then investigated variances including regional trends and disparities according to hospital and insurance types. Results: During 2002–2012, 50605 patients were electively admitted with a diagnosis of CSM. Anterior fusions were more common in Midwestern states and in nonteaching hospitals. Fusion procedures were used more frequently than other treatments in private hospitals and with private insurance. Median hospital charges were also expectedly higher for fusion procedures and combined surgical approaches. Combined approaches were found to be significantly greater in patients with concurrent diagnoses of ossification of the posterior longitudinal ligament (OPLL) and CSM. Ultimately, there has been an increased utilization of fusion procedures versus nonfusion treatments, over the past decade, for patients with cervical myelopathy. Conclusions: Fusion surgery is being increasingly used for the treatment of CSM. Expensive procedures are being performed more frequently in both private hospitals and for those with private insurance, whereas the most economical procedure, posterior cervical laminectomy, was underutilized. PMID:28607826

  13. Fusing Panchromatic and SWIR Bands Based on Cnn - a Preliminary Study Over WORLDVIEW-3 Datasets

    NASA Astrophysics Data System (ADS)

    Guo, M.; Ma, H.; Bao, Y.; Wang, L.

    2018-04-01

    The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpening method for the fusion of PAN and SWIR (short-wave infrared) bands, whose spectral coverages are not overlapping. This problem is addressed with a convolutional neural network (CNN), which is trained by WorldView-3 dataset. CNN can learn the complex relationship among bands, and thus alleviate spectral distortion. Consequently, in our network, we use the simple three-layer basic architecture with 16 × 16 kernels to conduct the experiment. Every layer use different receptive field. The first two layers compute 512 feature maps by using the 16 × 16 and 1 × 1 receptive field respectively and the third layer with a 8 × 8 receptive field. The fusion results are optimized by continuous training. As for assessment, four evaluation indexes including Entropy, CC, SAM and UIQI are selected built on subjective visual effect and quantitative evaluation. The preliminary experimental results demonstrate that the fusion algorithms can effectively enhance the spatial information. Unfortunately, the fusion image has spectral distortion, it cannot maintain the spectral information of the SWIR image.

  14. Extension of an iterative closest point algorithm for simultaneous localization and mapping in corridor environments

    NASA Astrophysics Data System (ADS)

    Yue, Haosong; Chen, Weihai; Wu, Xingming; Wang, Jianhua

    2016-03-01

    Three-dimensional (3-D) simultaneous localization and mapping (SLAM) is a crucial technique for intelligent robots to navigate autonomously and execute complex tasks. It can also be applied to shape measurement, reverse engineering, and many other scientific or engineering fields. A widespread SLAM algorithm, named KinectFusion, performs well in environments with complex shapes. However, it cannot handle translation uncertainties well in highly structured scenes. This paper improves the KinectFusion algorithm and makes it competent in both structured and unstructured environments. 3-D line features are first extracted according to both color and depth data captured by Kinect sensor. Then the lines in the current data frame are matched with the lines extracted from the entire constructed world model. Finally, we fuse the distance errors of these line-pairs into the standard KinectFusion framework and estimate sensor poses using an iterative closest point-based algorithm. Comparative experiments with the KinectFusion algorithm and one state-of-the-art method in a corridor scene have been done. The experimental results demonstrate that after our improvement, the KinectFusion algorithm can also be applied to structured environments and has higher accuracy. Experiments on two open access datasets further validated our improvements.

  15. Staggered scheduling of sensor estimation and fusion for tracking over long-haul links

    DOE PAGES

    Liu, Qiang; Rao, Nageswara S. V.; Wang, Xin

    2016-08-01

    Networked sensing can be found in a multitude of real-world applications. Here, we focus on the communication-and computation-constrained long-haul sensor networks, where sensors are remotely deployed over a vast geographical area to perform certain tasks. Of special interest is a class of such networks where sensors take measurements of one or more dynamic targets and send their state estimates to a remote fusion center via long-haul satellite links. The severe loss and delay over such links can easily reduce the amount of sensor data received by the fusion center, thereby limiting the potential information fusion gain and resulting in suboptimalmore » tracking performance. In this paper, starting with the temporal-domain staggered estimation for an individual sensor, we explore the impact of the so-called intra-state prediction and retrodiction on estimation errors. We then investigate the effect of such estimation scheduling across different sensors on the spatial-domain fusion performance, where the sensing time epochs across sensors are scheduled in an asynchronous and staggered manner. In particular, the impact of communication delay and loss as well as sensor bias on such scheduling is explored by means of numerical and simulation studies that demonstrate the validity of our analysis.« less

  16. Current status and recent research achievements in SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  17. Helping Teachers Teach Plasma Physics

    NASA Astrophysics Data System (ADS)

    Correll, Donald

    2008-11-01

    Lawrence Livermore National Laboratory's E/O program in Fusion Science and Plasma Physics now includes both `pre-service' as well as `in-service' high school science teacher professional development activities. Teachers are instructed and mentored by `master teachers' and LLNL plasma researchers working in concert. The Fusion/Plasma E/O program exploits a unique science education partnership that exists between LLNL's Science Education Program and the UC Davis Edward Teller Education Center. For `in-service' teachers, the Fusion & Astrophysics Teacher Research Academy (TRA) has four levels of workshops that are designed to give in-service high school science teachers experience in promoting and conducting research, most notably in the filed of plasma spectroscopy. Participating teachers in all four TRA levels may earn up to ten units of graduate credit from Cal-State University East Bay, and may apply these units toward a Masters of Science in Education. For `pre-service' teachers, the Science Teacher and Researcher (STAR) program, as a partnership with the California State University System, includes attracting undergraduate science majors to teaching careers by allowing them to pursue professional identities as both a research scientist as well as a science teacher. Participating `pre-service' STAR students are provided research internships at LLNL and work closely with the `in-service' TRA teachers. Results from the continuum `pre-service' to `in-service' science teacher professional development programs will be presented.

  18. Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?

    NASA Astrophysics Data System (ADS)

    Strelkov, V. S.

    2017-12-01

    This paper summarizes results of more than half a century of research of high-temperature plasmas heated to a temperature of more than 100 million degrees (104 eV) and magnetically insulated from the walls. The energy of light-element fusion can be used for electric power generation or as a source of fissionable fuel production (development of a fusion neutron source—FNS). The main results of studies of tokamak plasmas which were obtained in the Soviet Union with the greatest degree of thermal plasma isolation among all other types of devices are presented. As a result, research programs of other countries were redirected to tokamaks. Later, on the basis of the analysis of numerous experiments, the international fusion community gradually came to an opinion that it is possible to build a tokamak (ITER) with Q > 1 (where Q is the ratio of the fusion power to the external power injected into the plasma). The ITER program objective is to achieve Q = 1-10 for a discharge time of up to 1000 s. The implementation of this goal does not solve the problem of a steadystate operation. The solution to this problem is a reliable first wall and current generation. This is a task of the next fusion power plant construction stage, called DEMO. Comparison of DEMO and FNS parameters shows that, at this development stage, the operating parameters and conditions of these devices are identical.

  19. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour.

    PubMed

    Lee, Jen-Chieh; Jeng, Yung-Ming; Su, Sheng-Yao; Wu, Chen-Tu; Tsai, Keh-Sung; Lee, Cheng-Han; Lin, Chung-Yen; Carter, Jodi M; Huang, Jenq-Wen; Chen, Shu-Hwa; Shih, Shyang-Rong; Mariño-Enríquez, Adrián; Chen, Chih-Chi; Folpe, Andrew L; Chang, Yih-Leong; Liang, Cher-Wei

    2015-03-01

    Phosphaturic mesenchymal tumours (PMTs) are uncommon soft tissue and bone tumours that typically cause hypophosphataemia and tumour-induced osteomalacia (TIO) through secretion of phosphatonins including fibroblast growth factor 23 (FGF23). PMT has recently been accepted by the World Health Organization as a formal tumour entity. The genetic basis and oncogenic pathways underlying its tumourigenesis remain obscure. In this study, we identified a novel FN1-FGFR1 fusion gene in three out of four PMTs by next-generation RNA sequencing. The fusion transcripts and proteins were subsequently confirmed with RT-PCR and western blotting. Fluorescence in situ hybridization analysis showed six cases with FN1-FGFR1 fusion out of an additional 11 PMTs. Overall, nine out of 15 PMTs (60%) harboured this fusion. The FN1 gene possibly provides its constitutively active promoter and the encoded protein's oligomerization domains to overexpress and facilitate the activation of the FGFR1 kinase domain. Interestingly, unlike the prototypical leukaemia-inducing FGFR1 fusion genes, which are ligand-independent, the FN1-FGFR1 chimeric protein was predicted to preserve its ligand-binding domains, suggesting an advantage of the presence of its ligands (such as FGF23 secreted at high levels by the tumour) in the activation of the chimeric receptor tyrosine kinase, thus effecting an autocrine or a paracrine mechanism of tumourigenesis. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Disruption of epithelial cell migration as a potential mechanism of cleft palate induction

    EPA Science Inventory

    Cleft palate occurs in about one in seven hundred births per year, making it the most prevalent craniofacial birth defect in the world. During embryonic development, tissue fusion is a critical step in the formation of the palate, cornea, urethra, and neural tube. Epithelial cell...

  1. Global Atmosphere Watch Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD)

    EPA Science Inventory

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...

  2. Inertial Fusion and High-Energy-Density Science in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarter, C B

    2001-09-06

    Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, V.L.; Wieczorek, M.A.

    This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physicsmore » Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.« less

  4. Epidural Abscess: A Propensity Analysis of Surgical Treatment Strategies.

    PubMed

    Chaker, Anisse N; Bhimani, Abhiraj D; Esfahani, Darian R; Rosinski, Clayton L; Geever, Brett W; Patel, Akash S; Hobbs, Jonathan G; Burch, Taylor G; Patel, Saavan; Mehta, Ankit I

    2018-06-18

    Observational analysis of retrospectively collected data. A retrospective study was performed in order to compare the surgical profile of risk factors and perioperative complications for laminectomy and laminectomy with fusion procedures in the treatment of SEA. Spinal epidural abscess (SEA) is a highly morbid condition typically presenting with back pain, fever, and neurologic deficits. Posterior fusion has been used to supplement traditional laminectomy of SEA to improve spinal stability. At present, the ideal surgical strategy - laminectomy with or without fusion - remains elusive. 30-day outcomes such as reoperation and readmission following laminectomy and laminectomy with fusion in patients with SEA were investigated utilizing the American College of Surgeons National Quality Improvement Program database. Demographics and clinical risk factors were collected, and propensity matching was performed to account for differences in risk profiles between the groups. 738 patients were studied (608 laminectomy alone, 130 fusion). The fusion population was in worse health. The fusion population experienced significantly greater rate of return to the operating room (odds ratio (OR) 1.892), with the difference primarily accounted for by cervical spine operations. Additionally, fusion patients had significantly greater rates of blood transfusion. Infection was the most common reason for reoperation in both populations. Both laminectomy and laminectomy with fusion effectively treat SEA, but addition of fusion is associated with significantly higher rates of transfusion and perioperative return to the operating room. In operative situations where either procedure is reasonable, surgeons should consider that fusion nearly doubles the odds of reoperation in the short-term, and weigh this risk against the benefit of added stability. 3.

  5. A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body.

    PubMed

    Lindmo, Karine; Simonsen, Anne; Brech, Andreas; Finley, Kim; Rusten, Tor Erik; Stenmark, Harald

    2006-07-01

    Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing has also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.

  6. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.

  7. Earth Observation Satellites and Chinese Applications

    NASA Astrophysics Data System (ADS)

    Li, D.

    In this talk existing and future Earth observation satellites are briefly described These satellites include meteorological satellites ocean satellites land resources satellites cartographic satellites and gravimetric satellites The Chinese government has paid and will pay more attention to and put more effort into enhancing Chinese earth observation satellite programs in the next fifteen years The utilization of these satellites will effectively help human beings to solve problems it faces in areas such as population natural resources and environment and natural hazards The author will emphasize the originality of the scientific and application aspects of the Chinese program in the field of Earth observations The main applications include early warning and prevention of forest fires flooding and drought disaster water and ocean ice disasters monitoring of landslides and urban subsidence investigation of land cover change and urban expansion as well as urban and rural planning The author introduces the most up-to-date technology used by Chinese scientists including fusion and integration of multi-sensor multi-platform optical and SAR data of remote sensing Most applications in China have obtained much support from related international organizations and universities around the world These applications in China are helpful for economic construction and the efficient improvement of living quality

  8. Second program on energy research and technologies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The second major energy research and development program is described. Renewable and nonrenewable energy resources are presented which include nuclear technology and future energy sources, like fusion. The current status and outlook for future progress are given.

  9. 10 CFR 605.5 - The Office of Energy Research Financial Assistance Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... appendix A of this part. (b) The Program areas are: (1) Basic Energy Sciences (2) Field Operations Management (3) Fusion Energy (4) Health and Environmental Research (5) High Energy and Nuclear Physics (6...

  10. Superconducting magnet development for tokamaks and mirrors: a technical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laverick, C.; Jacobs, R. B.; Boom, R. W.

    1977-11-01

    The role of superconducting magnets in Magnetic Fusion Energy Research and Development is assessed from a consideration of program plans and schedules, the present status of the programs and the research and development suggestions arising from recent studies and workshops. A principal conclusion is that the large superconducting magnet systems needed for commercial magnetic fusion reactors can be constructed. However such magnets working under severe conditions, with increasingly stringent reliability, safety and cost restrictions can never be built unless experience is first gained in a number of important installations designed to prove physics and technology steps on the way tomore » commercial power demonstration. The immediate problem is to design a technology program in the absence of definite device needs and specifications, giving a priority weighting to the multiplicity of good, high quality development program suggestions when all proposals cannot be supported.« less

  11. The Terra Data Fusion Project: An Update

    NASA Astrophysics Data System (ADS)

    Di Girolamo, L.; Bansal, S.; Butler, M.; Fu, D.; Gao, Y.; Lee, H. J.; Liu, Y.; Lo, Y. L.; Raila, D.; Turner, K.; Towns, J.; Wang, S. W.; Yang, K.; Zhao, G.

    2017-12-01

    Terra is the flagship of NASA's Earth Observing System. Launched in 1999, Terra's five instruments continue to gather data that enable scientists to address fundamental Earth science questions. By design, the strength of the Terra mission has always been rooted in its five instruments and the ability to fuse the instrument data together for obtaining greater quality of information for Earth Science compared to individual instruments alone. As the data volume grows and the central Earth Science questions move towards problems requiring decadal-scale data records, the need for data fusion and the ability for scientists to perform large-scale analytics with long records have never been greater. The challenge is particularly acute for Terra, given its growing volume of data (> 1 petabyte), the storage of different instrument data at different archive centers, the different file formats and projection systems employed for different instrument data, and the inadequate cyberinfrastructure for scientists to access and process whole-mission fusion data (including Level 1 data). Sharing newly derived Terra products with the rest of the world also poses challenges. As such, the Terra Data Fusion Project aims to resolve two long-standing problems: 1) How do we efficiently generate and deliver Terra data fusion products? 2) How do we facilitate the use of Terra data fusion products by the community in generating new products and knowledge through national computing facilities, and disseminate these new products and knowledge through national data sharing services? Here, we will provide an update on significant progress made in addressing these problems by working with NASA and leveraging national facilities managed by the National Center for Supercomputing Applications (NCSA). The problems that we faced in deriving and delivering Terra L1B2 basic, reprojected and cloud-element fusion products, such as data transfer, data fusion, processing on different computer architectures, science, and sharing, will be presented with quantitative specifics. Results from several science-specific drivers for Terra fusion products will also be presented. We demonstrate that the Terra Data Fusion Project itself provides an excellent use-case for the community addressing Big Data and cyberinfrastructure problems.

  12. Nuclear Fusion prize laudation Nuclear Fusion prize laudation

    NASA Astrophysics Data System (ADS)

    Burkart, W.

    2011-01-01

    Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna, Austria References [1] Sabbagh S. et al 2006 Nucl. Fusion 46 635-44 [2] Rice J.E. et al 2007 Nucl. Fusion 47 1618-24

  13. Measles Virus Fusion Protein: Structure, Function and Inhibition

    PubMed Central

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C.

    2016-01-01

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options. PMID:27110811

  14. Measles Virus Fusion Protein: Structure, Function and Inhibition.

    PubMed

    Plattet, Philippe; Alves, Lisa; Herren, Michael; Aguilar, Hector C

    2016-04-21

    Measles virus (MeV), a highly contagious member of the Paramyxoviridae family, causes measles in humans. The Paramyxoviridae family of negative single-stranded enveloped viruses includes several important human and animal pathogens, with MeV causing approximately 120,000 deaths annually. MeV and canine distemper virus (CDV)-mediated diseases can be prevented by vaccination. However, sub-optimal vaccine delivery continues to foster MeV outbreaks. Post-exposure prophylaxis with antivirals has been proposed as a novel strategy to complement vaccination programs by filling herd immunity gaps. Recent research has shown that membrane fusion induced by the morbillivirus glycoproteins is the first critical step for viral entry and infection, and determines cell pathology and disease outcome. Our molecular understanding of morbillivirus-associated membrane fusion has greatly progressed towards the feasibility to control this process by treating the fusion glycoprotein with inhibitory molecules. Current approaches to develop anti-membrane fusion drugs and our knowledge on drug resistance mechanisms strongly suggest that combined therapies will be a prerequisite. Thus, discovery of additional anti-fusion and/or anti-attachment protein small-molecule compounds may eventually translate into realistic therapeutic options.

  15. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui

    2017-12-01

    Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

  16. Three-Dimensional Road Network by Fusion of Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Gamba, P.; Houshmand, B.

    1998-01-01

    In this paper a fuzzy classification procedure is applied to polarimetric radar measurements, and street pixels are detected. These data are successively grouped into consistent roads by means of a dynamic programming approach based on the fuzzy membership function values. Further fusion of the 2D road network extracted and 3D TOPSAR measurements provides a powerful way to analyze urban infrastructures.

  17. Joint Data Management for MOVINT Data-to-Decision Making

    DTIC Science & Technology

    2011-07-01

    flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion

  18. SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework.

    PubMed

    Chen, Chen; Li, Yeqing; Liu, Wei; Huang, Junzhou

    2015-11-01

    In this paper, we propose a novel method for image fusion with a high-resolution panchromatic image and a low-resolution multispectral (Ms) image at the same geographical location. The fusion is formulated as a convex optimization problem which minimizes a linear combination of a least-squares fitting term and a dynamic gradient sparsity regularizer. The former is to preserve accurate spectral information of the Ms image, while the latter is to keep sharp edges of the high-resolution panchromatic image. We further propose to simultaneously register the two images during the fusing process, which is naturally achieved by virtue of the dynamic gradient sparsity property. An efficient algorithm is then devised to solve the optimization problem, accomplishing a linear computational complexity in the size of the output image in each iteration. We compare our method against six state-of-the-art image fusion methods on Ms image data sets from four satellites. Extensive experimental results demonstrate that the proposed method substantially outperforms the others in terms of both spatial and spectral qualities. We also show that our method can provide high-quality products from coarsely registered real-world IKONOS data sets. Finally, a MATLAB implementation is provided to facilitate future research.

  19. Magnetized Target Fusion Collaboration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less

  20. Perception as Abduction: Turning Sensor Data into Meaningful Representation

    ERIC Educational Resources Information Center

    Shanahan, Murray

    2005-01-01

    This article presents a formal theory of robot perception as a form of abduction. The theory pins down the process whereby low-level sensor data is transformed into a symbolic representation of the external world, drawing together aspects such as incompleteness, top-down information flow, active perception, attention, and sensor fusion in a…

  1. Liberation Theology in Central America. Liberation Theology and the Marxist Sociology of Religion. CLIC Papers

    DTIC Science & Technology

    1989-06-01

    Roman stoic philosopher Seneca . He deduced that because Philon had made the fusion between the Hebrew tradition and the rationalist Greek philosophy...the Third World or in the industrial capitalist societies. The ultimate tragedy of the social movement that follows liberation theology has been the

  2. The Web-Database Connection Tools for Sharing Information on the Campus Intranet.

    ERIC Educational Resources Information Center

    Thibeault, Nancy E.

    This paper evaluates four tools for creating World Wide Web pages that interface with Microsoft Access databases: DB Gateway, Internet Database Assistant (IDBA), Microsoft Internet Database Connector (IDC), and Cold Fusion. The system requirements and features of each tool are discussed. A sample application, "The Virtual Help Desk"…

  3. Inertial Confinement Fusion Annual Report 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, Robert L.

    The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3ωmore » light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy density science in DOE's Stockpile Stewardship Program (SSP). In 1997, one beam of Nova was converted to a short pulsed beam producing a petawatt of power in subpicosecond pulses. The petawatt beam was used for pioneering research in short-pulse laser-matter interactions relevant to fast ignitor ICF and short pulsed x-ray, electron, and particle production for use as probes. Nova is being disassembled and the space is being used to support NIF construction. Nova components are being distributed to a number of other laser laboratories around the world for reuse as determined by DOE. This report summarizes the research performed by the ICF Program in FY1999. The report is divided into five sections corresponding to the major areas of program activities. These are sections on (1) ignition target physics experiments theory and modeling, (2) high energy density experimental science, (3) target development, fabrication, and handling, (4) NIF laser development, and (5) optics technology development.« less

  4. The "grep" command but not FusionMap, FusionFinder or ChimeraScan captures the CIC-DUX4 fusion gene from whole transcriptome sequencing data on a small round cell tumor with t(4;19)(q35;q13).

    PubMed

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre

    2014-01-01

    Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.

  5. The Physics of Advanced High-Gain Targets for Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Perkins, L. John

    2010-11-01

    In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, Brian; Dart, Eli; Tierney, Brian

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In March 2008, ESnet and the Fusion Energy Sciences (FES) Program Office of themore » DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the FES Program Office. Most sites that conduct data-intensive activities (the Tokamaks at GA and MIT, the supercomputer centers at NERSC and ORNL) show a need for on the order of 10 Gbps of network bandwidth for FES-related work within 5 years. PPPL reported a need for 8 times that (80 Gbps) in that time frame. Estimates for the 5-10 year time period are up to 160 Mbps for large simulations. Bandwidth requirements for ITER range from 10 to 80 Gbps. In terms of science process and collaboration structure, it is clear that the proposed Fusion Simulation Project (FSP) has the potential to significantly impact the data movement patterns and therefore the network requirements for U.S. fusion science. As the FSP is defined over the next two years, these changes will become clearer. Also, there is a clear and present unmet need for better network connectivity between U.S. FES sites and two Asian fusion experiments--the EAST Tokamak in China and the KSTAR Tokamak in South Korea. In addition to achieving its goal of collecting and characterizing the network requirements of the science endeavors funded by the FES Program Office, the workshop emphasized that there is a need for research into better ways of conducting remote collaboration with the control room of a Tokamak running an experiment. This is especially important since the current plans for ITER assume that this problem will be solved.« less

  7. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkenny, J.; Richau, G.; Sangster, C.

    A major goal of the Stockpile Stewardship Program (SSP) is to deliver validated numerical models, benchmarked against experiments that address relevant and important issues and provide data that stress the codes and our understanding. DOENNSA has made significant investments in major facilities and high-performance computing to successfully execute the SSP. The more information obtained about the physical state of the plasmas produced, the more stringent the test of theories, models, and codes can be, leading to increased confidence in our predictive capability. To fully exploit the world-leading capabilities of the ICF program, a multi-year program to develop and deploy advancedmore » diagnostics has been developed by the expert scientific community. To formalize these activities NNSA’s Acting Director for the Inertial Confinement Fusion Program directed the formation and duties of the National Diagnostics Working Group (NDWG) in a Memorandum 11/3/16 (Appendix A). The NDWG identified eight transformational diagnostics, shown in Table 1, that will provide unprecedented information from experiments in support of the SSP at NIF, Z and OMEGA. Table 1 shows how the missions of the SSP experiments including materials, complex hydrodynamics, radiation flow and effects and thermo-nuclear burn and boost will produce new observables, which will be measured using a variety of largely new diagnostic technologies used in the eight transformational diagnostics. The data provided by these diagnostics will validate and improve the physics contained within the SSP’s simulations and both uncover and quantify important phenomena that lie beyond our present understanding.« less

  9. Characterization of inertial confinement fusion (ICF) targets using PIXE, RBS, and STIM analysis.

    PubMed

    Li, Yongqiang; Liu, Xue; Li, Xinyi; Liu, Yiyang; Zheng, Yi; Wang, Min; Shen, Hao

    2013-08-01

    Quality control of the inertial confinement fusion (ICF) target in the laser fusion program is vital to ensure that energy deposition from the lasers results in uniform compression and minimization of Rayleigh-Taylor instabilities. The technique of nuclear microscopy with ion beam analysis is a powerful method to provide characterization of ICF targets. Distribution of elements, depth profile, and density image of ICF targets can be identified by particle-induced X-ray emission, Rutherford backscattering spectrometry, and scanning transmission ion microscopy. We present examples of ICF target characterization by nuclear microscopy at Fudan University in order to demonstrate their potential impact in assessing target fabrication processes.

  10. The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)

    NASA Astrophysics Data System (ADS)

    Velarde, Guillermo

    2016-10-01

    In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...

  11. ITER-FEAT operation

    NASA Astrophysics Data System (ADS)

    Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.

  12. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using pointmore » mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.« less

  13. A Simulation Environment for Benchmarking Sensor Fusion-Based Pose Estimators.

    PubMed

    Ligorio, Gabriele; Sabatini, Angelo Maria

    2015-12-19

    In-depth analysis and performance evaluation of sensor fusion-based estimators may be critical when performed using real-world sensor data. For this reason, simulation is widely recognized as one of the most powerful tools for algorithm benchmarking. In this paper, we present a simulation framework suitable for assessing the performance of sensor fusion-based pose estimators. The systems used for implementing the framework were magnetic/inertial measurement units (MIMUs) and a camera, although the addition of further sensing modalities is straightforward. Typical nuisance factors were also included for each sensor. The proposed simulation environment was validated using real-life sensor data employed for motion tracking. The higher mismatch between real and simulated sensors was about 5% of the measured quantity (for the camera simulation), whereas a lower correlation was found for an axis of the gyroscope (0.90). In addition, a real benchmarking example of an extended Kalman filter for pose estimation from MIMU and camera data is presented.

  14. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  15. Crema

    DTIC Science & Technology

    2015-08-01

    Crema FizzBuzz Program .................................................. 8 Figure 4: Hello World program written in C...11 Figure 5: Hello World program written in Crema...KLEE Coverage for " Hello , World" Program ................................................................ 14 Table 2: Qmail State-space Explosion

  16. High Performance Regimes in Alcator C-Mod at High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Marmar, E. S.; Alcator C-Mod Team

    2017-10-01

    Alcator is the only divertor tokamak in the world capable of operating at magnetic fields up to 8 T, equaling and exceeding that planned for ITER. Using RF and microwave tools for auxiliary heating and current drive, C-Mod accesses high pressure, high density, reactor-relevant regimes with no external torque and equilibrated electrons and ions, with exclusive use of high-Z metal plasma-facing components. The 2016 experimental campaign focused on naturally ELM-suppressed, enhanced energy confinement regimes (including I-mode and EDA H-mode, and approaches to super-H-mode), with emphasis on operation at the highest fields (52 atm.) was achieved. Taken together, combined with previous results from C-Mod and the world tokamak database, these results form a strong foundation for the high field, compact approach to achieving fusion energy production. New advances in high temperature, high field superconductors open the possibilities for practical development of this path for commercial fusion. Supported by USDOE.

  17. A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration

    DTIC Science & Technology

    2004-09-01

    NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha

  18. Cell biology. ER-to-Golgi traffic--this bud's for you.

    PubMed

    Brittle, E E; Waters, M G

    2000-07-21

    How do protein-transporting vesicles, which bud from the endoplasmic reticulum (ER), specifically dock to, and fuse with, the Golgi apparatus? In their Perspective, Brittle and Waters discuss new work (Allan et al.) suggesting that some vesicle-associated docking and fusion proteins are "programmed" during vesicle budding from the ER and direct downstream events that occur during fusion of these transport vesicles with the membranes of the Golgi.

  19. A Comprehensive Fusion Liaison Officer Program: The Arizona Model

    DTIC Science & Technology

    2015-03-01

    Office of Intelligence and Analysis, Office of Intelligence and Analysis Strategic Plan Fiscal Year 2011–Fiscal Year 2018 (Washington, DC: U.S...needs. The second chapter will provide a historical perspective to the reader on the creation of the post 9/11 city of Phoenix’s Liaison Officer...fusion centers’ benefit to address baseline capabilities and further benefit their home agencies. Chapter VI provides the reader recommendations and

  20. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  1. Segment fusion of ToF-SIMS images.

    PubMed

    Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A

    2016-06-08

    The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.

  2. A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindmo, Karine; Simonsen, Anne; Brech, Andreas

    2006-07-01

    Lysosomal degradation of cytoplasm by way of autophagy is essential for cellular amino acid homeostasis and for tissue remodeling. In insects such as Drosophila, autophagy is developmentally upregulated in the larval fat body prior to metamorphosis. Here, autophagy is induced by the hormone ecdysone through down-regulation of the autophagy-suppressive phosphoinositide 3-kinase (PI3K) signaling pathway. In yeast, Vps18 and other members of the HOPS complex have been found essential for autophagic degradation. In Drosophila, the Vps18 homologue Deep orange (Dor) has previously been shown to mediate fusion of multivesicular endosomes with lysosomes. A requirement of Dor for ecdysone-mediated chromosome puffing hasmore » also been reported. In the present report, we have tested the hypothesis that Dor may control programmed autophagy at the level of ecdysone signaling as well as by mediating autophagosome-to-lysosome fusion. We show that dor mutants are defective in programmed autophagy and provide evidence that autophagy is blocked at two levels. First, PI3K activity was not down-regulated correctly in dor larvae, which correlated with a decrease in ecdysone reporter activity. The down-regulation of PI3K activity was restored by feeding ecdysone to the mutant larvae. Second, neither exogenous ecdysone nor overexpression of PTEN, a silencer of PI3K signaling, restored fusion of autophagosomes with lysosomes in the fat body of dor mutants. These results indicate that Dor controls autophagy indirectly, via ecdysone signaling, as well as directly, via autolysosomal fusion.« less

  3. Classification Accuracy Increase Using Multisensor Data Fusion

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.

  4. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and engineering capabilities have been demonstrated for a fusion reactor gain (Q) of the order of unity (TFTR: 0.25, JET: 0.65, JT-60: Q(sub eq) approx. 1.25). These technological advances made it compelling for considering fusion for propulsion.

  5. "Picture Bride" as a Definition of "Third World" Poetry.

    ERIC Educational Resources Information Center

    Fujita, Gayle K.

    This conference paper describes how the phrase "picture bride" is used as a metaphor in ethnic poetry. It is used in poems which concern female creativity in the areas of art and housekeeping. The phrase represents the fusion of concepts and ideas which are usually thought of in juxtaposition with each other. These concepts and ideas are…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Cadwallader

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less

  7. Fusion energy for space missions in the 21st century: Executive summary

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1991-01-01

    Future space missions were hypothesized and analyzed, and the energy source of their accomplishment investigated. The missions included manned Mars, scientific outposts to and robotic sample return missions from the outer planets and asteroids, as well as fly-by and rendezvous missions with the Oort Cloud and the nearest star, Alpha Centauri. Space system parametric requirements and operational features were established. The energy means for accomplishing missions where delta v requirements range from 90 km/sec to 30,000 km/sec (High Energy Space Mission) were investigated. The need to develop a power space of this magnitude is a key issue to address if the U.S. civil space program is to continue to advance as mandated by the National Space Policy. Potential energy options which could provide the propulsion and electrical power system and operational requirements were reviewed and evaluated. Fusion energy was considered to be the preferred option and was analyzed in depth. Candidate fusion fuels were evaluated based upon the energy output and neutron flux. Additionally, fusion energy can offer significant safety, environmental, economic, and operational advantages. Reactors exhibiting a highly efficient use of magnetic fields for space use while at the same time offering efficient coupling to an exhaust propellant or to a direct energy convertor for efficient electrical production were examined. Near term approaches were identified. A strategy that will produce fusion powered vehicles as part of the space transportation infrastructure was developed. Space program resources must be directed toward this issue as a matter of the top policy priority.

  8. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  9. Fundamental Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels

    DTIC Science & Technology

    2017-07-31

    Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels Sb. GRANT NUMBER N00014-12-1-0475 Sc. PROGRAM...naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...Steel, Phase Transformations 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER a. REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES u u

  10. Evaluation of Stakeholder-Driven Groundwater Management through Integrated Modeling and Remote Sensing in the US High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Deines, J. M.; Kendall, A. D.; Butler, J. J., Jr.; Hyndman, D. W.

    2017-12-01

    Irrigation greatly enhances agricultural yields and stabilizes farmer incomes, but overexploitation of water resources has depleted groundwater aquifers around the globe. In much of the High Plains Aquifer (HPA) in the United States, water-level declines threaten the continued viability of agricultural operations reliant on irrigation. Policy and management institutions to address this sustainability challenge differ widely across the HPA and the world. In Kansas, grassroots-driven legislation in 2012 allowed local stakeholder groups to establish Local Enhanced Management Areas (LEMAs) and work with state officials to generate enforceable and monitored water use reduction programs. The pioneering LEMA was formed in 2013, following a popular vote by farmers within a 256 km2 region in northwestern Kansas. The group sought to reduce groundwater pumping by 20% through 2017 in order to stabilize water levels while minimally reducing crop productivity. Initial statistical estimates indicate the LEMA has been successful; planning is underway to extend it for five years (2018-2022) and to implement additional LEMAs in the wider groundwater management district. Here, we assess the efficacy of this first LEMA with coupled crop-hydrology models to quantify water budget impacts and any associated trade-offs in crop productivity. We drive these models with a novel data fusion of water use data and our recent remotely sensed Annual Irrigation Maps (AIM) dataset, allowing detailed tracking of irrigation water in space and time. Results from these process-based models provide detailed insights into changes in the physical system resulting from the LEMA program that can inform future stakeholder-driven management in Kansas and in stressed aquifers around the world.

  11. A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Bennett, Kristin

    2004-03-01

    As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.

  12. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  13. Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.

    PubMed

    Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang

    2017-01-01

    Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.

  14. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  15. Enhancing vector shoreline data using a data fusion approach

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark; DeMichele, David

    2017-05-01

    Vector shoreline (VSL) data is potentially useful in ATR systems that distinguish between objects on land or water. Unfortunately available data such as the NOAA 1:250,000 World Vector Shoreline and NGA Prototype Global Shoreline data cannot be used by themselves to make a land/water determination because of the manner in which the data are compiled. We describe a data fusion approach for creating labeled VSL data using test points from Global 30 Arc-Second Elevation (GTOPO30) data to determine the direction of vector segments; i.e., whether they are in clockwise or counterclockwise order. We show consistently labeled VSL data be used to easily determine whether a point is on land or water using a vector cross product test.

  16. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Amy; Callis, Richard; Efthimion, Philip

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality.more » However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density laboratory plasmas and inertial fusion energy; Particle accelerator technology; Fusion nuclear science; and Magnetically confined plasmas. Individual sections within the report summarize applications associated with each of these areas. These sections were also informed by a survey that went out to the community, and the subcommittee wishes to thank those who responded, as well as to the national labs and universities that contributed photographs.« less

  17. General software design for multisensor data fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Junliang; Zhao, Yuming

    1999-03-01

    In this paper a general method of software design for multisensor data fusion is discussed in detail, which adopts object-oriented technology under UNIX operation system. The software for multisensor data fusion is divided into six functional modules: data collection, database management, GIS, target display and alarming data simulation etc. Furthermore, the primary function, the components and some realization methods of each modular is given. The interfaces among these functional modular relations are discussed. The data exchange among each functional modular is performed by interprocess communication IPC, including message queue, semaphore and shared memory. Thus, each functional modular is executed independently, which reduces the dependence among functional modules and helps software programing and testing. This software for multisensor data fusion is designed as hierarchical structure by the inheritance character of classes. Each functional modular is abstracted and encapsulated through class structure, which avoids software redundancy and enhances readability.

  18. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  19. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  20. An acceleration system for Laplacian image fusion based on SoC

    NASA Astrophysics Data System (ADS)

    Gao, Liwen; Zhao, Hongtu; Qu, Xiujie; Wei, Tianbo; Du, Peng

    2018-04-01

    Based on the analysis of Laplacian image fusion algorithm, this paper proposes a partial pipelining and modular processing architecture, and a SoC based acceleration system is implemented accordingly. Full pipelining method is used for the design of each module, and modules in series form the partial pipelining with unified data formation, which is easy for management and reuse. Integrated with ARM processor, DMA and embedded bare-mental program, this system achieves 4 layers of Laplacian pyramid on the Zynq-7000 board. Experiments show that, with small resources consumption, a couple of 256×256 images can be fused within 1ms, maintaining a fine fusion effect at the same time.

  1. Relevance of advanced nuclear fusion research: Breakthroughs and obstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppi, Bruno, E-mail: coppi@mit.edu

    2016-03-25

    An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burningmore » plasma regimes near ignition for the first time.« less

  2. Overview of FAR-TECH's magnetic fusion energy research

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  3. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the underlying principles involved in MTF. Magnetized Target Fusion is an attempt to combine MCF (magnetic confinement fusion) for energy confinement and ICF (inertial confinement fusion) for efficient compression heating and wall free containment of the fusing plasma. It also seeks to combine the best features to these two main commonplace approaches to fusion.

  4. Physics of Fission and Fusion for the Diagnostics and Monitoring of the Deadliest Illness of Mankind

    NASA Astrophysics Data System (ADS)

    Saxena, Arjun

    2015-03-01

    The physics of fission and fusion has been well known for the past several decades. It has been used primarily for destructive purposes (e. g., nuclear armaments) with both processes. However for peaceful purposes, e. g., generation of energy, only fission has been used, but not yet fusion. It is also well known that the deadliest illness of mankind is the group of illnesses called mental illnesses. A large segment of the world population is afflicted by them causing more loss of human lives, destruction of families, businesses and overall economy than all the other illnesses combined. Despite outstanding advancements in medical research and huge investments, unfortunately no diagnostic techniques have yet been found which can characterize the patient's mental illness. Consequently, no quantitative monitoring techniques are available to evaluate the efficacy of the various medicines used to treat the patients, and to develop them in the pharmaceutical labs. The purpose of this paper is to apply the constructive aspects of fission and fusion to identify the missing links in the diagnosis and treatment of mental illnesses. Each patient is a unique human being, not a disease or a group of symptoms. This makes it even more difficult to treat the patients suffering from mental illnes

  5. Theory of impossible worlds: Toward a physics of information.

    PubMed

    Buscema, Paolo Massimo; Sacco, Pier Luigi; Della Torre, Francesca; Massini, Giulia; Breda, Marco; Ferilli, Guido

    2018-05-01

    In this paper, we introduce an innovative approach to the fusion between datasets in terms of attributes and observations, even when they are not related at all. With our technique, starting from datasets representing independent worlds, it is possible to analyze a single global dataset, and transferring each dataset onto the others is always possible. This procedure allows a deeper perspective in the study of a problem, by offering the chance of looking into it from other, independent points of view. Even unrelated datasets create a metaphoric representation of the problem, useful in terms of speed of convergence and predictive results, preserving the fundamental relationships in the data. In order to extract such knowledge, we propose a new learning rule named double backpropagation, by which an auto-encoder concurrently codifies all the different worlds. We test our methodology on different datasets and different issues, to underline the power and flexibility of the Theory of Impossible Worlds.

  6. Theory of impossible worlds: Toward a physics of information

    NASA Astrophysics Data System (ADS)

    Buscema, Paolo Massimo; Sacco, Pier Luigi; Della Torre, Francesca; Massini, Giulia; Breda, Marco; Ferilli, Guido

    2018-05-01

    In this paper, we introduce an innovative approach to the fusion between datasets in terms of attributes and observations, even when they are not related at all. With our technique, starting from datasets representing independent worlds, it is possible to analyze a single global dataset, and transferring each dataset onto the others is always possible. This procedure allows a deeper perspective in the study of a problem, by offering the chance of looking into it from other, independent points of view. Even unrelated datasets create a metaphoric representation of the problem, useful in terms of speed of convergence and predictive results, preserving the fundamental relationships in the data. In order to extract such knowledge, we propose a new learning rule named double backpropagation, by which an auto-encoder concurrently codifies all the different worlds. We test our methodology on different datasets and different issues, to underline the power and flexibility of the Theory of Impossible Worlds.

  7. 76 FR 27648 - World Trade Center (WTC) Health Program Scientific/Technical Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention World Trade... Prevention (CDC), announces the establishment of the World Trade Center (WTC) Health Program Scientific..., Designated Federal Officer, World Trade Center Health Program Scientific/Technical Advisory Committee...

  8. FY14 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Fournier, K. B.; Baker, K.

    In FY14, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 324 target shots in FY14, with 246 shots using just the OMEGA laser system, 62 shots using just the EP laser system, and 16 Joint shots using Omega and EP together. Approximately 31% of the total number of shots (62 OMEGA shots, 42 EP shots) shots supported the Indirect Drive Inertial Confinement Fusion Campaign (ICF-ID).more » The remaining 69% (200 OMEGA shots and 36 EP shots, including the 16 Joint shots) were dedicated to experiments for High- Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  9. Fusion Energy Sciences Network Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dart, Eli; Tierney, Brian

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Officemore » of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.« less

  10. FY15 LLNL OMEGA Experimental Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Baker, K. L.; Barrios, M. A.

    In FY15, LLNL’s High-Energy-Density Physics (HED) and Indirect Drive Inertial Confinement Fusion (ICF-ID) programs conducted several campaigns on the OMEGA laser system and on the EP laser system, as well as campaigns that used the OMEGA and EP beams jointly. Overall these LLNL programs led 468 target shots in FY15, with 315 shots using just the OMEGA laser system, 145 shots using just the EP laser system, and 8 Joint shots using Omega and EP together. Approximately 25% of the total number of shots (56 OMEGA shots and 67 EP shots, including the 8 Joint shots) supported the Indirect Drivemore » Inertial Confinement Fusion Campaign (ICF-ID). The remaining 75% (267 OMEGA shots and 86 EP shots) were dedicated to experiments for High-Energy-Density Physics (HED). Highlights of the various HED and ICF campaigns are summarized in the following reports.« less

  11. An Overview of Research and Design Activities at CTFusion

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Jarboe, T. R.; Hossack, A. C.

    2016-10-01

    CTFusion, a newly formed company dedicated to the development of compact, toroidal fusion energy, is a spin-off from the University of Washington that will build upon the successes of the HIT-SI research program. The mission of the company to develop net-gain fusion power cores that will serve as the heart of economical fusion power plants or radioactive-waste destroying burner reactors. The overarching vision and development plan of the company will be presented, along with a detailed justification and design for our next device, the HIT-TD (Technology Demonstration) prototype. By externally driving the edge current and imposing non-axisymmetric magnetic perturbations, HIT-TD should demonstrate the sustainment of stable spheromak configurations with Imposed-Dynamo Current Drive (IDCD), as was accomplished in the HIT-SI device, with higher current gains and temperatures than previously possible. HIT-TD, if successful, will be an instrumental step along this path to economical fusion energy, and will serve as the stepping stone to our Proof-Of-Principle device (HIT-PoP). Beyond the implications of higher performance, sustained spheromaks for fusion applications, the HIT-TD platform will provide a unique system to observe plasma self-organizational phenomena of interest for other fusion devices, and astrophysical systems as well. Lastly, preliminary nuclear engineering design simulations with the MCNP6 code of the HIT-FNSF (Fusion Nuclear Science Facility) device will be presented.

  12. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis.

    PubMed

    Cutler, J A; Tahir, R; Sreenivasamurthy, S K; Mitchell, C; Renuse, S; Nirujogi, R S; Patil, A H; Heydarian, M; Wong, X; Wu, X; Huang, T-C; Kim, M-S; Reddy, K L; Pandey, A

    2017-07-01

    Two major types of leukemogenic BCR-ABL fusion proteins are p190 BCR-ABL and p210 BCR-ABL . Although the two fusion proteins are closely related, they can lead to different clinical outcomes. A thorough understanding of the signaling programs employed by these two fusion proteins is necessary to explain these clinical differences. We took an integrated approach by coupling protein-protein interaction analysis using biotinylation identification with global phosphorylation analysis to investigate the differences in signaling between these two fusion proteins. Our findings suggest that p190 BCR-ABL and p210 BCR-ABL differentially activate important signaling pathways, such as JAK-STAT, and engage with molecules that indicate interaction with different subcellular compartments. In the case of p210 BCR-ABL , we observed an increased engagement of molecules active proximal to the membrane and in the case of p190 BCR-ABL , an engagement of molecules of the cytoskeleton. These differences in signaling could underlie the distinct leukemogenic process induced by these two protein variants.

  13. Fusion technologies for Laser Inertial Fusion Energy (LIFE)

    NASA Astrophysics Data System (ADS)

    Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.

    2013-11-01

    The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion.

    PubMed

    Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios

    2011-10-05

    Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.

    PubMed

    Hodor, P G; Ettensohn, C A

    1998-07-01

    Cell-cell fusion occurs in a wide variety of developmental contexts, yet the mechanisms involved are just beginning to be elucidated. In the sea urchin embryo, primary mesenchyme cells (PMCs) fuse to form syncytial filopodial cables within which skeletal spicules are deposited. Taking advantage of the optical transparency and ease of micromanipulation of sea urchin embryos, we have developed methods for directly observing the dynamics of PMC fusion in vivo. A fraction of the PMCs was labeled with fluorescent dextran and transfer of the dye to unlabeled PMCs was followed by time-lapse, fluorescence microscopy. Fusion was first detected about 2 h after PMCs began to migrate within the blastocoel. Fusion proceeded in parallel with the assembly of the PMC ring pattern and was complete by the early gastrula stage. The formation of a single, extensive PMC syncytium was confirmed by DiI labeling of fixed embryos. When single micromeres were isolated and cultured in unsupplemented seawater, they divided and their progeny underwent fusion. This shows that the capacity to fuse is autonomously programmed in the micromere-PMC lineage by the 16-cell stage. PMC transplantations at late embryonic stages revealed that these cells remain fusion-competent long after their fusion is complete. At late stages, other mesenchyme cells (blastocoelar cells) are also present within the blastocoel and are migrating and fusing with one another. Fusion-competent blastocoelar cells and PMCs come into contact but do not fuse with one another, indicating that these two cell types fuse by distinct mechanisms. When secondary mesenchyme cells convert to a skeletogenic fate they alter their fusogenic properties and join the PMC syncytium, as shown by transfer of fluorescent dextran. Our analysis has provided a detailed picture of the cellular basis and regulation of mesodermal cell fusion and has important implications regarding molecular mechanisms that underlie fusion.

  16. The Nova Upgrade Facility for ICF ignition and gain

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Campbell, E. M.; Hunt, J. T.; Murray, J. R.; Storm, E.; Tobin, M. T.; Trenholme, J. B.

    1992-01-01

    Research on Inertial Confinement Fusion (ICF) is motivated by its potential defense and civilian applications, including ultimately the generation of electric power. The U.S. ICF Program was reviewed recently by the National Academy of Science (NAS) and the Fusion Policy Advisory Committee (FPAC). Both committees issued final reports in 1991 which recommended that first priority in the ICF program be placed on demonstrating fusion ignition and modest gain (G less than 10). The U.S. Department of Energy and Lawrence Livermore National Laboratory (LLNL) have proposed an upgrade of the existing Nova Laser Facility at LLNL to accomplish these goals. Both the NAS and FPAC have endorsed the upgrade of Nova as the optimal path to achieving ignition and gain. Results from Nova Upgrade Experiments will be used to define requirements for driver and target technology both for future high-yield military applications, such as the Laboratory Microfusion Facility (LMF) proposed by the Department of Energy, and for high-gain energy applications leading to an ICF engineering test facility. The central role and modifications which Nova Upgrade would play in the national ICF strategy are described.

  17. Plasma Physics/Fusion Energy Education at the Liberty Science Center

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff

    2007-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.

  18. FUSION ENERGY SCIENCES WORKSHOP ON PLASMA MATERIALS INTERACTIONS: Report on Science Challenges and Research Opportunities in Plasma Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maingi, Rajesh; Zinkle, Steven J.; Foster, Mark S.

    2015-05-01

    The realization of controlled thermonuclear fusion as an energy source would transform society, providing a nearly limitless energy source with renewable fuel. Under the auspices of the U.S. Department of Energy, the Fusion Energy Sciences (FES) program management recently launched a series of technical workshops to “seek community engagement and input for future program planning activities” in the targeted areas of (1) Integrated Simulation for Magnetic Fusion Energy Sciences, (2) Control of Transients, (3) Plasma Science Frontiers, and (4) Plasma-Materials Interactions aka Plasma-Materials Interface (PMI). Over the past decade, a number of strategic planning activities1-6 have highlighted PMI and plasmamore » facing components as a major knowledge gap, which should be a priority for fusion research towards ITER and future demonstration fusion energy systems. There is a strong international consensus that new PMI solutions are required in order for fusion to advance beyond ITER. The goal of the 2015 PMI community workshop was to review recent innovations and improvements in understanding the challenging PMI issues, identify high-priority scientific challenges in PMI, and to discuss potential options to address those challenges. The community response to the PMI research assessment was enthusiastic, with over 80 participants involved in the open workshop held at Princeton Plasma Physics Laboratory on May 4-7, 2015. The workshop provided a useful forum for the scientific community to review progress in scientific understanding achieved during the past decade, and to openly discuss high-priority unresolved research questions. One of the key outcomes of the workshop was a focused set of community-initiated Priority Research Directions (PRDs) for PMI. Five PRDs were identified, labeled A-E, which represent community consensus on the most urgent near-term PMI scientific issues. For each PRD, an assessment was made of the scientific challenges, as well as a set of actions to address those challenges. No prioritization was attempted amongst these five PRDs. We note that ITER, an international collaborative project to substantially extend fusion science and technology, is implicitly a driver and beneficiary of the research described in these PRDs; specific ITER issues are discussed in the background and PRD chapters. For succinctness, we describe these PRDs directly below; a brief introduction to magnetic fusion and the workshop process/timeline is given in Chapter I, and panelists are listed in the Appendix.« less

  19. Responsiveness and minimal clinically important changes for the Tampa Scale of Kinesiophobia after lumbar fusion during cognitive behavioral rehabilitation.

    PubMed

    Monticone, Marco; Ambrosini, Emilia; Rocca, Barbara; Foti, Calogero; Ferrante, Simona

    2017-06-01

    The Tampa Scale of Kinesiophobia (TSK) is a commonly-used measure for the assessment of fear of movement beliefs in chronic complaints, but its responsiveness in subjects after lumbar fusion has been never reported. Evaluating the responsiveness and minimal clinically important differences (MCIDs) for the TSK and its subscales after lumbar fusion. Population-based cohort study. Secondary care rehabilitation hospital. In-patients undergoing rehabilitation after lumbar fusion. At the beginning and end of a four-week motor and cognitive-behavioral rehabilitation program, 180 patients completed the TSK. After the intervention, the global perceived effect (GPE) was analyzed to produce a dichotomous outcome (improved vs. stable). Responsiveness for the TSK and its subscales were calculated by distribution (effect size [ES], standardized response mean [SRM]) and anchor-based methods (receiver operating characteristics (ROC) curves; correlations between change scores of the TSK and its subscales and GPE). ROC curves were also used to compute MCID values. The ES ranged from 1.63 to 1.77 and the SRM from 1.25 to 1.39 for TSK and its subscales. The ROC analyses revealed a value of area under the curve (0.999 [95% CI: 0.978; 1.000], 0.998 [95% CI: 0.975; 1.000], 0.990 [95% CI: 0.962; 0.999] for the TSK, Harm and Activity Avoidance subscales, respectively). MCID values greater than 6 (95% CI: >5; >6), 4 (95% CI: >3; >5), and 2 (95% CI: >2; >2) were achieved for the TSK, Harm and Activity Avoidance subscales, respectively. Correlations between change scores of the TSK and its subscales and GPE were high (0.786-0.830). The TSK and its subscales were sensitive in detecting clinical changes in subjects undergoing rehabilitation after lumbar fusion. The obtained MCID values will help in the design of future randomized controlled trials and in the interpretation of the clinical impact of a rehabilitation program after lumbar fusion.

  20. SuperIdentity: Fusion of Identity across Real and Cyber Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Sue; Creese, Sadie; Guest, Richard

    Under both benign and malign circumstances, people now manage a spectrum of identities across both real-world and cyber domains. Our belief, however, is that all these instances ultimately track back for an individual to reflect a single 'SuperIdentity'. This paper outlines the assumptions underpinning the SuperIdentity Project, describing the innovative use of data fusion to incorporate novel real-world and cyber cues into a rich framework appropriate for modern identity. The proposed combinatorial model will support a robust identification or authentication decision, with confidence indexed both by the level of trust in data provenance, and the diagnosticity of the identity factorsmore » being used. Additionally, the exploration of correlations between factors may underpin the more intelligent use of identity information so that known information may be used to predict previously hidden information. With modern living supporting the 'distribution of identity' across real and cyber domains, and with criminal elements operating in increasingly sophisticated ways in the hinterland between the two, this approach is suggested as a way forwards, and is discussed in terms of its impact on privacy, security, and the detection of threat.« less

  1. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for themore » Vehicle Technologies Program of the U.S. Department of Energy.« less

  2. Application of the aqueous self-cooled blanket concept to fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, L.; Steiner, D.; Embrechts, M.J.

    1986-01-01

    The development of a reliable, safe, and economically attractive tritium breeding blanket is an essential requirement in the path to commercial fusion power. The primary objective of the recently completed Blanket Comparison and Selection Study (BCSS) was to evaluate previously proposed concepts, and thereby identify a limited number of preferred options that would provide the focus for an R and D program. The water-cooled concepts in the BCSS scored relatively low. We consider it prudent that a promising water-cooled blanket concept be included in this program since nearly all power producing reactors currently rely on water technology. It is inmore » this context that we propose the novel water-cooled blanket concept described herein.« less

  3. 'A very valuable fusion of classes': British professional and volunteer nurses of the First World War.

    PubMed

    Hallett, Christine E

    2014-06-01

    Public perceptions of the work of nurses and VAD-volunteers in the First World War have been heavily influenced by a small number of VAD-writings. The work of trained, professional nurses in supporting and supervised the work of VADs has been largely overlooked. This paper examines several of the writings of both volunteers and professionals, and emphasises the overlooked supervisory, managerial and clinical work of trained nurses. In this centenary year of the First World War's opening months, the paper also explores the ways in which the British mass-media--notably the BBC--have chosen to cling to a romantic image of the untrained nurse, whilst at the same time acknowledging the significance of trained, professional nursing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Spider World: A Robot Language for Learning to Program. Assessing the Cognitive Consequences of Computer Environments for Learning (ACCCEL).

    ERIC Educational Resources Information Center

    Dalbey, John; Linn, Marcia

    Spider World is an interactive program designed to help individuals with no previous computer experience to learn the fundamentals of programming. The program emphasizes cognitive tasks which are central to programming and provides significant problem-solving opportunities. In Spider World, the user commands a hypothetical robot (called the…

  5. A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2016-11-01

    In order to reduce the “salt and pepper” in pixel-based urban land cover classification and expand the application of fusion of multi-source data in the field of urban remote sensing, WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data were used to improve the classification of urban land cover. An approach of object- oriented hierarchical classification was proposed in our study. The processing of proposed method consisted of two hierarchies. (1) In the first hierarchy, LiDAR Normalized Digital Surface Model (nDSM) image was segmented to objects. The NDVI, Costal Blue and nDSM thresholds were set for extracting building objects. (2) In the second hierarchy, after removing building objects, WorldView-2 fused imagery was obtained by Haze-ratio-based (HR) fusion, and was segmented. A SVM classifier was applied to generate road/parking lot, vegetation and bare soil objects. (3) Trees and grasslands were split based on an nDSM threshold (2.4 meter). The results showed that compared with pixel-based and non-hierarchical object-oriented approach, proposed method provided a better performance of urban land cover classification, the overall accuracy (OA) and overall kappa (OK) improved up to 92.75% and 0.90. Furthermore, proposed method reduced “salt and pepper” in pixel-based classification, improved the extraction accuracy of buildings based on LiDAR nDSM image segmentation, and reduced the confusion between trees and grasslands through setting nDSM threshold.

  6. Prevalence of E/A wave fusion and A wave truncation in DDD pacemaker patients with complete AV block under nominal AV intervals.

    PubMed

    Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph

    2015-01-01

    Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.

  7. Performance testing of a prototype Pd-Ag diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, G. A.; Hodge, B. J.

    The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less

  8. Use of Biotechnological Devices in the Quantification of Psychophysiological Workload of Professional Chess Players.

    PubMed

    Fuentes, Juan P; Villafaina, Santos; Collado-Mateo, Daniel; de la Vega, Ricardo; Gusi, Narcis; Clemente-Suárez, Vicente Javier

    2018-01-19

    Psychophysiological requirements of chess players are poorly understood, and periodization of training is often made without any empirical basis. For this reason, the aim of the present study was to investigate the psychophysiological response and quantify the player internal load during, and after playing a chess game. The participant was an elite 33 year-old male chess player ranked among the 300 best chess players in the world. Thus, cortical arousal by critical flicker fusion threshold, electroencephalogram by the theta Fz/alpha Pz ratio and autonomic modulation by heart rate variability were analyzed. Data revealed that cortical arousal by critical flicker fusion threshold and theta Fz/alpha Pz ratio increased and heart rate variability decreased during chess game. All these changes indicated that internal load increased during the chess game. In addition, pre-activation was detected in pre-game measure, suggesting that the prefrontal cortex might be preparatory activated. For these reasons, electroencephalogram, critical flicker fusion threshold and heart rate variability analysis may be highly applicable tools to control and monitor workload in chess player.

  9. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature.

    PubMed

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-12-28

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC.

  10. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature

    PubMed Central

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-01-01

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC. PMID:21139932

  11. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-09-01

    The self-pumped limiter concept was the impurity control system for the reactor in the Tokamak Power Systems Study (TPSS). The use of a self-pumped limiter had a major impact on the design of the tritium systems of the TPSS fusion reactor. The self-pumped limiter functions by depositing the helium ash under a layer of metal (vanadium). The majority of the hydrogen species are recycled at the plasma edge; a small fraction permeates to the blanket/coolant which was lithium in TPSS. Use of the self-pumped limiter results in the elimination of the plasma processing system. Thus, the blanket tritium processing systemmore » becomes the major tritium system. The main advantages achieved for the tritium systems with a self-pumped limiter are a reduction in the capital cost of tritium processing equipment as well as a reduction in building space, a reduced tritium inventory for processing and for reserve storage, an increase in the inherent safety of the fusion plant and an improvement in economics for a fusion world economy.« less

  12. Status and improvement of CLAM for nuclear application

    NASA Astrophysics Data System (ADS)

    Huang, Qunying

    2017-08-01

    A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.

  13. 77 FR 24628 - World Trade Center Health Program Requirements for the Addition of New WTC-Related Health Conditions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... World Trade Center Health Program Requirements for the Addition of New WTC-Related Health Conditions...) to establish the World Trade Center (WTC) Health Program. Sections 3311, 3312, and 3321 of Title..., 2012. FOR FURTHER INFORMATION CONTACT: Roy M. Fleming, Sc.D., Senior Science Advisor, World Trade...

  14. Human Factors in Intelligence, Surveillance, and Reconnaissance: Gaps for Soldiers and Technology Recommendations

    DTIC Science & Technology

    2014-07-01

    technology work seeks to address gaps in the management, processing, and fusion of heterogeneous (i.e., soft and hard ) information to aid human decision...and bandwidth) to exploit the vast and growing amounts of data [16], [17]. There is also a broad research program on techniques for soft and hard ...Mott, G. de Mel, and T. Pham, “Integrating hard and soft information sources for D2D using controlled natural language,” in Proc. Information Fusion

  15. Tritium distribution in ground water around large underground fusion explosions

    USGS Publications Warehouse

    Stead, F.W.

    1963-01-01

    Tritium will be released in significant amounts from large underground nuclear fusion explosions in the Plowshare Program. The tritium could become highly concentrated in nearby ground waters, and could be of equal or more importance as a possible contaminant than other long-lived fission-product and induced radionuclides. Behavior of tritiated water in particular hydrologic and geologic environments, as illustrated by hypothetical explosions in dolomite and tuff, must be carefully evaluated to predict under what conditions high groundwater concentrations of tritium might occur.

  16. Intelligent Data Fusion for Wide-Area Assessment of UXO Contamination

    DTIC Science & Technology

    2008-02-29

    Development Program (SERDP). The authors thank the SERDP staff and team members for their assistance, particularly Dr. Herb Nelson and Dr. Dan Steinhurst...Fusion and Integration for Intelligent Systems, Taipei, Taiwan , R.O.C., Aug., 1999. 4. B.J. Johnson, T.G. Moore, B.J. Blejer, C.F. Lee, T.P. Opar, S...gene-expression data using Dempster-Shafer Theory of evidence to predict breast cancer tumors,” Bioinformation 1(5), 170-5, (2006) 21. Dr. Herb H. Nelson, personal communication (2007)

  17. Localization of Gunfire from Multiple Shooters (ARO Research Topic 5.2, Information Processing and Fusion; STIR Program)

    DTIC Science & Technology

    2016-03-03

    for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved

  18. Feasibility study of a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Moir, R. W.

    1986-12-01

    A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about 1.4 billion (1982 dollars) in either case. (The direct costs are estimated at 1.1 billion.) The production cost is calculated to be 22,000/g for tritium and 260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.

  19. COLA: Optimizing Stream Processing Applications via Graph Partitioning

    NASA Astrophysics Data System (ADS)

    Khandekar, Rohit; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wolf, Joel; Wu, Kun-Lung; Andrade, Henrique; Gedik, Buğra

    In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.

  20. An automatic fall detection framework using data fusion of Doppler radar and motion sensor network.

    PubMed

    Liu, Liang; Popescu, Mihail; Skubic, Marjorie; Rantz, Marilyn

    2014-01-01

    This paper describes the ongoing work of detecting falls in independent living senior apartments. We have developed a fall detection system with Doppler radar sensor and implemented ceiling radar in real senior apartments. However, the detection accuracy on real world data is affected by false alarms inherent in the real living environment, such as motions from visitors. To solve this issue, this paper proposes an improved framework by fusing the Doppler radar sensor result with a motion sensor network. As a result, performance is significantly improved after the data fusion by discarding the false alarms generated by visitors. The improvement of this new method is tested on one week of continuous data from an actual elderly person who frequently falls while living in her senior home.

  1. Lumbar spinal fusion. Outcome in relation to surgical methods, choice of implant and postoperative rehabilitation.

    PubMed

    Christensen, Finn Bjarke

    2004-10-01

    Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.

  2. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has been widely and expertly disseminated. We further acknowledge the efforts of the Chairman of the IFRC and of all authors and experts who contributed to this report on the present status of fusion research.

  3. Quad-polarized synthetic aperture radar and multispectral data classification using classification and regression tree and support vector machine-based data fusion system

    NASA Astrophysics Data System (ADS)

    Bigdeli, Behnaz; Pahlavani, Parham

    2017-01-01

    Interpretation of synthetic aperture radar (SAR) data processing is difficult because the geometry and spectral range of SAR are different from optical imagery. Consequently, SAR imaging can be a complementary data to multispectral (MS) optical remote sensing techniques because it does not depend on solar illumination and weather conditions. This study presents a multisensor fusion of SAR and MS data based on the use of classification and regression tree (CART) and support vector machine (SVM) through a decision fusion system. First, different feature extraction strategies were applied on SAR and MS data to produce more spectral and textural information. To overcome the redundancy and correlation between features, an intrinsic dimension estimation method based on noise-whitened Harsanyi, Farrand, and Chang determines the proper dimension of the features. Then, principal component analysis and independent component analysis were utilized on stacked feature space of two data. Afterward, SVM and CART classified each reduced feature space. Finally, a fusion strategy was utilized to fuse the classification results. To show the effectiveness of the proposed methodology, single classification on each data was compared to the obtained results. A coregistered Radarsat-2 and WorldView-2 data set from San Francisco, USA, was available to examine the effectiveness of the proposed method. The results show that combinations of SAR data with optical sensor based on the proposed methodology improve the classification results for most of the classes. The proposed fusion method provided approximately 93.24% and 95.44% for two different areas of the data.

  4. Aberrant chimeric RNA GOLM1-MAK10 encoding a secreted fusion protein as a molecular signature for human esophageal squamous cell carcinoma

    PubMed Central

    Zhang, Hao; Lin, Wan; Kannan, Kalpana; Luo, Liming; Li, Jing; Chao, Pei-Wen; Wang, Yan; Chen, Yu-Ping; Gu, Jiang; Yen, Laising

    2013-01-01

    It is increasingly recognized that chimeric RNAs may exert a novel layer of cellular complexity that contributes to oncogenesis and cancer progression, and could be utilized as molecular biomarkers and therapeutic targets. To date yet no fusion chimeric RNAs have been identified in esophageal cancer, the 6th most frequent cause of cancer death in the world. While analyzing the expression of 32 recurrent cancer chimeric RNAs in esophageal squamous cell carcinoma (ESCC) from patients and cancer cell lines, we identified GOLM1-MAK10, as a highly cancer-enriched chimeric RNA in ESCC. In situ hybridization revealed that the expression of the chimera is largely restricted to cancer cells in patient tumors, and nearly undetectable in non-neoplastic esophageal tissue from normal subjects. The aberrant chimera closely correlated with histologic differentiation and lymph node metastasis. Furthermore, we demonstrate that chimera GOLM1-MAK10 encodes a secreted fusion protein. Mechanistic studies reveal that GOLM1-MAK10 is likely derived from transcription read-through/splicing rather than being generated from a fusion gene. Collectively, these findings provide novel insights into the molecular mechanism involved in ESCC and provide a novel potential target for future therapies. The secreted fusion protein translated from GOLM1-MAK10 could also serve as a unique protein signature detectable by standard non-invasive assays. These observations are critical as there is no clinically useful molecular signature available for detecting this deadly disease or monitoring the treatment response. PMID:24243830

  5. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  6. Changing Social Imaginaries, Multiplicities and "One Sole World": Reading Scandinavian Environmental and Sustainability Education Research Papers with Badiou and Taylor at Hand

    ERIC Educational Resources Information Center

    Lotz-Sisitka, Heila

    2010-01-01

    Badiou's ontological work draws attention to multiplicities--the oneness of ontology, which he explains can only become ontologically differentiated into events or sites through political, artistic or amorous practices that philosophies can think and invent from. He also draws attention to the fusion of events and sites, and he explains that…

  7. A New Internet Tool for Automatic Evaluation in Control Systems and Programming

    ERIC Educational Resources Information Center

    Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.

    2012-01-01

    In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…

  8. Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, YK; Zhou, RJ; Hu, LQ; Chen, MW; Chao, Y.; EAST team

    2018-05-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11775263 and 11405219), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics, China (Grant No. 11261140328), and the National Magnetic Confnement Fusion Science Program of China (Grant No. 2015GB102004).

  9. Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening

    PubMed Central

    Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236

  10. Exploring lower-cost pathways to economical fusion power

    DOE PAGES

    Hsu, Scott C.

    2017-08-04

    This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less

  11. Exploring lower-cost pathways to economical fusion power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Scott C.

    This project, the Plasma Liner Experiment–ALPHA (PLX-α)5,is one of nine projects supported by the ALPHA Program6 of the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy (DOE). We use innovative, low-cost coaxial plasma guns (Fig. 1), developed and built by partner HyperV Technologies Corp.7, to launch a spherically converging array of supersonic plasma jets toward the middle of a large, spherical vacuum chamber (Fig. 2). A key near-term goal of PLX-α is to merge up to 60 plasma jets to form a spherically imploding plasma liner, as a low-cost, high-shot-rate driver for compressing magnetised target plasmas tomore » fusion conditions. Our approach is known as plasma-jet-driven MIF (or PJMIF)8. A new startup company HyperJet Fusion Corporation (which recently received seed funding from Strong Atomics, LLC, a new fusion venture fund) aims to develop PJMIF under continued public and private sponsorship.« less

  12. Optical design and Initial Results from The National Institute of Standards and Technology’s AMMT/TEMPS Facility

    PubMed Central

    Grantham, Steven; Lane, Brandon; Neira, Jorge; Mekhontsev, Sergey; Vlasea, Mihaela; Hanssen, Leonard

    2017-01-01

    The National Institute of Standards and Technology’s (NIST) Physical Measurement and Engineering Laboratories are jointly developing the Additive Manufacturing Measurement Testbed (AMMT)/ Temperature and Emittance of Melts, Powders and Solids (TEMPS) facilities. These facilities will be co-located on an open architecture laser-based powder bed fusion system allowing users full access to the system’s operation parameters. This will provide users with access to machine-independent monitoring and control of the powder bed fusion process. In this paper there will be emphasis on the AMMT, which incorporates in-line visible light collection optics for monitoring and feedback control of the powder bed fusion process. We shall present an overview of the AMMT/TEMPS program and its goals. The optical and mechanical design of the open architecture powder-bed fusion system and the AMMT will also be described. In addition, preliminary measurement results from the system along with the current status of the system will be described. PMID:28579666

  13. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    DTIC Science & Technology

    1987-10-01

    This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed

  14. Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  15. The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yan; Zhang, Heting; Deng, Xiaojiang; Liu, Jing; Chen, Huiping

    2017-01-01

    Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.

  16. Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes

    NASA Astrophysics Data System (ADS)

    Heller, William; Rai, Durgesh

    HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.

  17. University of Rochester, Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    1987-01-01

    In FY86 the Laboratory has produced a list of accomplishments in which it takes pride. LLE has met every laser-fusion program milestone to date in a program of research for direct-drive ultraviolet laser fusion originally formulated in 1981. LLE scientists authored or co-authored 135 scientific papers during 1985 to 1986. The collaborative experiments with NRL, LANL, and LLNL have led to a number of important ICF results. The cryogenic target system developed by KMS Fusion for LLE will be used in future high-density experiments on OMEGA to demonstrate the compression of thermonuclear fuel to 100 to 200 times that of solid (20 to 40 g/cm) in a test of the direct-drive concept, as noted in the National Academy of Sciences' report. The excellence of the advanced technology efforts at LLE is illustrated by the establishment of the Ultrafast Science Center by the Department of Defense through the Air Force Office of Scientific Research. Research in the Center will concentrate on bridging the gap between high-speed electronics and ultrafast optics by providing education, research, and development in areas critical to future communications and high-speed computer systems. The Laboratory for Laser Energetics continues its pioneering work on the interaction of intense radiation with matter. This includes inertial-fusion and advanced optical and optical electronics research; training people in the technology and applications of high-power, short-pulse lasers; and interacting with the scientific community, business, industry, and government to promote the growth of laser technology.

  18. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  19. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge with the International Fusion Materials Irradiation Facility (IFMIF) under discussion at the time. Worldwide technological efforts are maturing soundly and the time for a fusion-relevant neutron source has arrived according to world fusion roadmaps; if decisions are taken we could count the next decade with a powerful source of 14 MeV neutrons thanks to the expected significant results of the Engineering Validation and Engineering Design Activity (EVEDA) phase of the IFMIF project. The accelerator know-how has matured in all possible aspects since the times of FMIT conception in the 1970s; today, operating 125 mA deuteron beam at 40 MeV in CW with high availabilities seems feasible thanks to the understanding of the beam halo physics and the three main technological breakthroughs in accelerator technology: (1) the ECR ion source for light ions developed at Chalk River Laboratories in the early 1990s, (2) the RFQ operation of H+ in CW with 100 mA demonstrated by LEDA in LANL in the late 1990s, and (3) the growing maturity of superconducting resonators for light hadrons and low β beams achieved in recent years.

  20. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how doesmore » this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design.« less

  1. Infusing Plasma into the High School Curriculum through Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Merali, Aliya; Guilbert, Nicholas; Ortiz, Myrna; Zwicker, Andrew

    2013-10-01

    A 2004 report submitted by the Fusion Energy Sciences Advisory Committee noted a critical need for action to prevent a shortage of fusion researchers, specifically highlighting the need for more students to enter the field. In an effort to expose students to plasma physics early on, PPPL created a professional development program for teachers, which provides the resources for infusing plasma into high school curricula. Over the last 15 years, teachers from across the country have participated in a one-week Plasma Camp course including lectures, labs, tours, curriculum planning, and classroom equipment funding opportunities. A 2005 survey indicated that at least 75% of program alumni used material from the workshop annually, primarily in the form of demonstrations. In a 2013 survey, participants were asked to detail how they use the workshop information in their classrooms, how the program has altered their teaching methods, and what factors, if any, have hindered the implementation of a plasma curriculum. Results of the 2013 survey will be presented.

  2. Emerging Leaders: AED's Open World Program.

    ERIC Educational Resources Information Center

    McDonald, Sandra

    2003-01-01

    Describes the Open World Program, funded and administered by the Library of Congress, with support from private organizations such as the Academy for Educational Development (AED). Open World Program allows community colleges to participate by hosting delegations from other countries. Some themes include: environment, women as leaders, economic…

  3. Simulating Operation of a Complex Sensor Network

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Clare, Loren; Woo, Simon

    2008-01-01

    Simulation Tool for ASCTA Microsensor Network Architecture (STAMiNA) ["ASCTA" denotes the Advanced Sensors Collaborative Technology Alliance.] is a computer program for evaluating conceptual sensor networks deployed over terrain to provide military situational awareness. This or a similar program is needed because of the complexity of interactions among such diverse phenomena as sensing and communication portions of a network, deployment of sensor nodes, effects of terrain, data-fusion algorithms, and threat characteristics. STAMiNA is built upon a commercial network-simulator engine, with extensions to include both sensing and communication models in a discrete-event simulation environment. Users can define (1) a mission environment, including terrain features; (2) objects to be sensed; (3) placements and modalities of sensors, abilities of sensors to sense objects of various types, and sensor false alarm rates; (4) trajectories of threatening objects; (5) means of dissemination and fusion of data; and (6) various network configurations. By use of STAMiNA, one can simulate detection of targets through sensing, dissemination of information by various wireless communication subsystems under various scenarios, and fusion of information, incorporating such metrics as target-detection probabilities, false-alarm rates, and communication loads, and capturing effects of terrain and threat.

  4. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  5. 78 FR 38983 - World Trade Center Health Program Scientific/Technical Advisory Committee (WTCHP-STAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention World Trade Center Health Program Scientific/Technical Advisory Committee (WTCHP-STAC) Correction: This notice was... and Control, (BSC, NCIPC) and the name of the Committee should read World Trade Center Health Program...

  6. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission. A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 im kernel diameter operated with a fusion input power of 500 MW and a fission blanket gain of 4.0. LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.

  7. Dust charging and levitating in a sheath of plasma containing energetic particles

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Zhao, Xiao-Yun; Lin, Bin-Bin

    2018-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).

  8. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132.

    PubMed

    Brock, Kristy K; Mutic, Sasa; McNutt, Todd R; Li, Hua; Kessler, Marc L

    2017-07-01

    Image registration and fusion algorithms exist in almost every software system that creates or uses images in radiotherapy. Most treatment planning systems support some form of image registration and fusion to allow the use of multimodality and time-series image data and even anatomical atlases to assist in target volume and normal tissue delineation. Treatment delivery systems perform registration and fusion between the planning images and the in-room images acquired during the treatment to assist patient positioning. Advanced applications are beginning to support daily dose assessment and enable adaptive radiotherapy using image registration and fusion to propagate contours and accumulate dose between image data taken over the course of therapy to provide up-to-date estimates of anatomical changes and delivered dose. This information aids in the detection of anatomical and functional changes that might elicit changes in the treatment plan or prescription. As the output of the image registration process is always used as the input of another process for planning or delivery, it is important to understand and communicate the uncertainty associated with the software in general and the result of a specific registration. Unfortunately, there is no standard mathematical formalism to perform this for real-world situations where noise, distortion, and complex anatomical variations can occur. Validation of the software systems performance is also complicated by the lack of documentation available from commercial systems leading to use of these systems in undesirable 'black-box' fashion. In view of this situation and the central role that image registration and fusion play in treatment planning and delivery, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 132 to review current approaches and solutions for image registration (both rigid and deformable) in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. © 2017 American Association of Physicists in Medicine.

  9. WebScope: A New Tool for Fusion Data Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Dang, Ningning; Xiao, Bingjia

    2010-04-01

    A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.

  10. Toward an Understanding of the Cognitive Aspects of Data Fusion

    DTIC Science & Technology

    1998-12-14

    Models Static & Temporal Models Conscious Valuation & Teleological Models Subconscious Valuation Models (Gut Feelings) Judgement than a cause as is...evidence of the pictures of other people, biases them to interpret those wavy lines as a man with glasses. That is, they subconsciously value the...rat, people often experience discomfort (confusion) or sometimes laugh . What they experience “out there” in the world is no longer in congruity with

  11. Novel Methods for Detecting Buried Explosive Devices

    DTIC Science & Technology

    2007-04-10

    NQR ), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and...demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be...approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine

  12. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    PubMed

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  13. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying

    PubMed Central

    v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-01-01

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417

  14. Identification of Three Novel Fusion Oncogenes, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, in Thyroid Cancers of Young Patients in Fukushima.

    PubMed

    Iyama, Keita; Matsuse, Michiko; Mitsutake, Norisato; Rogounovitch, Tatiana; Saenko, Vladimir; Suzuki, Keiji; Ashizawa, Mai; Ookouchi, Chiyo; Suzuki, Satoshi; Mizunuma, Hiroshi; Fukushima, Toshihiko; Suzuki, Shinichi; Yamashita, Shunichi

    2017-06-01

    The BRAF V600E mutation is the most frequent genetic abnormality in adult papillary thyroid carcinomas (PTCs). On the other hand, various chromosomal rearrangements are more prevalent in childhood and adolescent PTCs. The aim of the present study was to identify novel rearrangements in PTCs from young patients. Among 63 postoperative specimens of childhood and adolescent PTCs, which had been discovered by the thyroid ultrasound screening program in Fukushima, nine samples without prevalent known oncogenes, BRAF V600E , RAS, RET/PTC1, RET/PTC3, and ETV6/NTRK3, were analyzed in the current study by quantitative real-time reverse transcription polymerase chain reaction to screen for novel fusion genes by comparing transcript expression between extracellular and kinase domains of ALK, NTRK1, NTRK3, and RET. Of the above nine samples, five samples were suspected to harbor a fusion, and using subsequent 5' rapid amplification of cDNA end (RACE), two already reported fusion oncogenes, STRN/ALK and TPR/NTRK1, and three novel fusions, SQSTM1/NTRK3, AFAP1L2/RET, and PPFIBP2/RET, were identified. Functional analyses of these three chimeric genes were performed, and their transforming abilities were confirmed through the activation of mitogen-activated protein kinase (MAPK). Three novel fusion oncogenes have been identified in young PTC patients in Fukushima, suggesting that rare fusions may be present among the cases negative for known oncogenes in this age group and that such rearrangements can play a significant role in thyroid carcinogenesis.

  15. Energy-resolved neutron imaging for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.

    2003-03-01

    The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.

  16. Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.

  17. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    DOE PAGES

    Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...

    2014-10-01

    An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less

  18. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.

  19. VMOMS — A computer code for finding moment solutions to the Grad-Shafranov equation

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Wieland, R. M.; Houlberg, W. A.; Hirshman, S. P.

    1982-08-01

    Title of program: VMOMS Catalogue number: ABSH Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (See application form in this issue) Computer: PDP-10/KL10; Installation: ORNL Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA Operating system: TOPS 10 Programming language used: FORTRAN High speed storage required: 9000 words No. of bits in a word: 36 Overlay structure: none Peripherals used: line printer, disk drive No. of cards in combined program and test deck: 2839 Card punching code: ASCII

  20. The role of inertial fusion energy in the energy marketplace of the 21st century and beyond

    NASA Astrophysics Data System (ADS)

    John Perkins, L.

    The viability of inertial fusion in the 21st century and beyond will be determined by its ultimate cost, complexity, and development path relative to other competing, long term, primary energy sources. We examine this potential marketplace in terms of projections for population growth, energy demands, competing fuel sources and environmental constraints (CO 2), and show that the two competitors for inertial fusion energy (IFE) in the medium and long term are methane gas hydrates and advanced, breeder fission; both have potential fuel reserves that will last for thousands of years. Relative to other classes of fusion concepts, we argue that the single largest advantage of the inertial route is the perception by future customers that the IFE fusion power core could achieve credible capacity factors, a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. In particular, we show that the size, cost and complexity of the IFE reactor chamber is little different to a fission reactor vessel of the same thermal power. Therefore, relative to fission, because of IFE's tangible advantages in safety, environment, waste disposal, fuel supply and proliferation, our research in advanced targets and innovative drivers can lead to a certain, reduced-size driver at which future utility executives will be indifferent to the choice of an advanced fission plant or an advanced IFE power plant; from this point on, we have a competitive commercial product. Finally, given that the major potential customer for energy in the next century is the present developing world, we put the case for future IFE "reservations" which could be viable propositions providing sufficient reliability and redundancy can be realized for each modular reactor unit.

  1. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  2. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)a)

    NASA Astrophysics Data System (ADS)

    Smith, Roger J.

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  3. Successful Family Planning Programs. Draper World Population Fund Report, No. 4, Summer 1977.

    ERIC Educational Resources Information Center

    Piotrow, Phyllis T., Ed.

    This publication describes successful family planning programs throughout the world. Discussed in detail are programs in Colombia, Mauritius, Maharashtra, the People's Republic of China, Sri Lanka, and the United States. Photographs illustrate the articles and, in some cases, family planning vital statistics are given. The Draper World Population…

  4. Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids

    PubMed Central

    Vasnier, Christelle; de Muyt, Arnaud; Zhang, Liangran; Tessé, Sophie; Kleckner, Nancy E.; Zickler, Denise; Espagne, Eric

    2014-01-01

    Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid–Sad1p, UNC-84–domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid “twin” nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly. PMID:25210014

  5. Novel methods for detecting buried explosive devices

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Burlage, Robert S.; Patek, David R.; Smith, Cyrus M.; Hibbs, Andrew D.; Rayner, Timothy J.

    1997-07-01

    Oak Ridge National Laboratory and Quantum Magnetics, Inc. are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, one has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  6. Pulmonary lymphoepithelioma-like carcinoma with echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene.

    PubMed

    Ose, Naoko; Kawai, Teruka; Ishida, Daisuke; Kobori, Yuko; Takeuchi, Yukiyasu; Senba, Hidetoshi

    2016-11-01

    A pulmonary lymphoepithelioma-like carcinoma (PLELC) is similar to a lymphoepithelioma, a subtype of nasopharyngeal carcinoma and commonly associated with Epstein-Barr virus infection which is a rare tumour and classified in the group of "other and unclassified carcinoma" in the latest 2015 World Health Organization (WHO) classification. Some reports of lymphoepithelioma-like carcinoma (LELC) have noted an epidermal growth factor receptor (EGFR) mutation, whereas none have noted a mutation of the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene. This is the first reported case of PLELC with ALK rearrangement. A 76-year-old woman underwent a right lower lobectomy and complicated partial resection of the upper lobe with lymph node dissection under complete thoracoscopic approach. A histopathological diagnosis of PLELC was made and the stage was classified as T1aN1(#12l) M0, pl0, G2, Ly1, V1. The results of both ALK immunohistochemistry and EML4-ALK fusion gene on fluorescence in situ hybridization (FISH) examinations were positive; however, EGFR mutational analysis results showed wild-type mutation.

  7. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia.

    PubMed

    Arber, Daniel A; Chang, Karen L; Lyda, Mark H; Bedell, Victoria; Spielberger, Ricardo; Slovak, Marilyn L

    2003-08-01

    Balanced translocations are rare in myelodysplasia (MDS) and acute myeloid leukemia (AML) with multilineage dysplasia; however, the t(3;5)(q25;q35) and insertion variant occur in a subset of patients. To evaluate the possible genes involved in this translocation, we studied 6 cases with a t(3;5) by fluorescence in situ hybridization with probes directed against the nucleophosmin (NPM), EVI1, and Ribophorin genes, as well as a newly developed myeloid leukemia factor 1 (MLF1) BAC clone. The histologic spectrum of the cases was variable, ranging from refractory cytopenia with multilineage dysplasia to AML with multilineage dysplasia in the World Health Organization classification. An NPM/MLF1 fusion was identified in 5 of 6 cases, whereas the EVI1 and Ribophorin genes were not involved in any of the cases. The NPM/MLF1-positive cases were predominantly young adult males (median age, 33 years) who responded well to hematopoietic stem cell transplantation. These findings suggest that an NPM/MLF1 fusion is the primary molecular abnormality in t(3;5) MDS and AML with multilineage dysplasia, and also that cases with NPM/MLF1 may be clinically distinct from other MDS-associated disease.

  8. Serial fusion of Eulerian and Lagrangian approaches for accurate heart-rate estimation using face videos.

    PubMed

    Gupta, Puneet; Bhowmick, Brojeshwar; Pal, Arpan

    2017-07-01

    Camera-equipped devices are ubiquitous and proliferating in the day-to-day life. Accurate heart rate (HR) estimation from the face videos acquired from the low cost cameras in a non-contact manner, can be used in many real-world scenarios and hence, require rigorous exploration. This paper has presented an accurate and near real-time HR estimation system using these face videos. It is based on the phenomenon that the color and motion variations in the face video are closely related to the heart beat. The variations also contain the noise due to facial expressions, respiration, eye blinking and environmental factors which are handled by the proposed system. Neither Eulerian nor Lagrangian temporal signals can provide accurate HR in all the cases. The cases where Eulerian temporal signals perform spuriously are determined using a novel poorness measure and then both the Eulerian and Lagrangian temporal signals are employed for better HR estimation. Such a fusion is referred as serial fusion. Experimental results reveal that the error introduced in the proposed algorithm is 1.8±3.6 which is significantly lower than the existing well known systems.

  9. Impact of physics and technology innovations on compact tokamak fusion pilot plants

    NASA Astrophysics Data System (ADS)

    Menard, Jonathan

    2016-10-01

    For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For missions including tritium breeding, high-thermal-efficiency liquid metal breeding blankets are attractive, and novel immersion blankets offer the potential for simplified fabrication and maintenance and reduced cost. Lastly, the optimal aspect ratio for a tokamak pilot plant is likely a function of the device mission and associated cost, with low aspect ratio favored for minimizing TF magnet mass and higher aspect ratio favored for minimizing blanket mass. The interplay between a range of physics and technology innovations for enabling compact pilot plants will be described. This work was supported by U.S. DOE Contract Number DE-AC02-09CH11466.

  10. Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)

    NASA Astrophysics Data System (ADS)

    Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.

    2017-12-01

    A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

  11. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  12. Design and implementation of a prototype micropositioning and fusion of optical fibers

    NASA Astrophysics Data System (ADS)

    Vega, Fabio; Torres, Cesar; Mattos, Lorenzo

    2011-09-01

    We developed an automated system in micro and optical fiber fusion, using stepper motors of 3.6 ° (1.8 ° Medium step) with a threaded system for displacements in the order of microns, a LM016 LCD for User message management, a PIC16F877A microcontroller to control the prototype. We also used internal modules: TMR0, EEPROM, PWM (pulse width modulation) control using a pulse opto-cupped the discharge circuit high voltage (20 to 35 kilovolt transformer for FLYBACK fusion) The USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial interface with the PC. The software platform developed under Visual Basic 6.0, which lets you manipulate the prototype from the PC. The entire program is optimized for microcontroller interrupt, macro-functions and is written in MPLAB 7.31. The prototype is now finished.

  13. Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)

    NASA Astrophysics Data System (ADS)

    Knott, M. J.

    1982-08-01

    As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.

  14. Burning plasma regime for Fussion-Fission Research Facility

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  15. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    NASA Astrophysics Data System (ADS)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  16. The first IEC fusion industrial neutron generator and developments

    NASA Astrophysics Data System (ADS)

    Sved, John

    1999-06-01

    Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 107 D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 1010 by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.

  17. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  18. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  19. Is adaptation to perceived interocular differences in height explained by vertical fusional eye movements?

    PubMed

    Maier, Felix M; Schaeffel, Frank

    2013-07-24

    To find out whether adaptation to a vertical prism involves more than fusional vertical eye movements. Adaptation to a vertical base-up 3 prism diopter prism was measured in a custom-programmed Maddox test in nine visually normal emmetropic subjects (mean age 27.0 ± 2.8 years). Vertical eye movements were binocularly measured in six of the subjects with a custom-programmed binocular video eye tracker. In the Maddox test, some subjects adjusted the perceived height as expected from the power of the prism while others appeared to ignore the prism. After 15 minutes of adaptation, the interocular difference in perceived height was reduced by on average 51% (from 0.86°-0.44°). The larger the initially perceived difference in height in a subject, the larger the amplitude of adaptation was. Eye tracking showed that the prism generated divergent vertical eye movements of 1.2° on average, which was less than expected from its power. Differences in eye elevation were maintained as long as the prism was in place. Small angles of lateral head tilt generated large interocular differences in eye elevation, much larger than the effects introduced by the prism. Vertical differences in retinal image height were compensated by vertical fusional eye movements but some subjects responded poorly to a vertical prism in both experiments; fusional eye movements were generally too small to realign both foveae with the fixation target; and the prism adaptation in the Maddox test was fully explained by the changes in vertical eye position, suggesting that no further adaptational mechanism may be involved.

  20. Adults' Perceptions of Knowledge Construction as Participants in Nonformal World Affairs Programs: An Interpretive Study

    ERIC Educational Resources Information Center

    Yelich Biniecki, Susan M.

    2015-01-01

    The purpose of this interpretive research study was to explore how adult learners perceive they construct knowledge in connection to their participation in nonformal world affairs programs. The study context involved the exploration of 12 adult learners' perceptions of their knowledge construction as participants in world affairs programs held in…

  1. 78 FR 42795 - Submission for OMB review; 30-Day Comment Request: Evaluation of the Brain Disorders in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ...; 30-Day Comment Request: Evaluation of the Brain Disorders in the Developing World Program of the John... Collection: Evaluation of the Brain Disorders in the Developing World Program of the John E. Fogarty... outcomes of the Brain Disorders in the Developing World extramural research program administered by the...

  2. A DNA-based semantic fusion model for remote sensing data.

    PubMed

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  3. A DNA-Based Semantic Fusion Model for Remote Sensing Data

    PubMed Central

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207

  4. Numerical Solution of the Electron Heat Transport Equation and Physics-Constrained Modeling of the Thermal Conductivity via Sequential Quadratic Programming Optimization in Nuclear Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Paloma, Cynthia S.

    The plasma electron temperature (Te) plays a critical role in a tokamak nu- clear fusion reactor since temperatures on the order of 108K are required to achieve fusion conditions. Many plasma properties in a tokamak nuclear fusion reactor are modeled by partial differential equations (PDE's) because they depend not only on time but also on space. In particular, the dynamics of the electron temperature is governed by a PDE referred to as the Electron Heat Transport Equation (EHTE). In this work, a numerical method is developed to solve the EHTE based on a custom finite-difference technique. The solution of the EHTE is compared to temperature profiles obtained by using TRANSP, a sophisticated plasma transport code, for specific discharges from the DIII-D tokamak, located at the DIII-D National Fusion Facility in San Diego, CA. The thermal conductivity (also called thermal diffusivity) of the electrons (Xe) is a plasma parameter that plays a critical role in the EHTE since it indicates how the electron temperature diffusion varies across the minor effective radius of the tokamak. TRANSP approximates Xe through a curve-fitting technique to match experimentally measured electron temperature profiles. While complex physics-based model have been proposed for Xe, there is a lack of a simple mathematical model for the thermal diffusivity that could be used for control design. In this work, a model for Xe is proposed based on a scaling law involving key plasma variables such as the electron temperature (Te), the electron density (ne), and the safety factor (q). An optimization algorithm is developed based on the Sequential Quadratic Programming (SQP) technique to optimize the scaling factors appearing in the proposed model so that the predicted electron temperature and magnetic flux profiles match predefined target profiles in the best possible way. A simulation study summarizing the outcomes of the optimization procedure is presented to illustrate the potential of the proposed modeling method.

  5. John von Neumann and Klaus Fuchs: an Unlikely Collaboration

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    2010-03-01

    I discuss the origin of the idea of making a fusion (hydrogen) bomb and the physics involved in it, and then turn to the design proposed for one by the unlikely collaborators John von Neumann and Klaus Fuchs in a patent application they filed at Los Alamos in May 1946, which Fuchs passed on to the Russians in March 1948, and which with substantial modifications was tested on the island of Eberiru on the Eniwetok atoll in the South Pacific on May 8, 1951. This test showed that the fusion of deuterium and tritium nuclei could be ignited, but that the ignition would not propagate because the heat produced was rapidly radiated away. Meanwhile, Stanislaw Ulam and C.J. Everett had shown that Edward Teller’s Classical Super could not work, and at the end of December 1950, Ulam had conceived the idea of super compression, using the energy of a fission bomb to compress the fusion fuel to such a high density that it would be opaque to the radiation produced. Once Teller understood this, he invented a greatly improved, new method of compression using radiation, which then became the heart of the Ulam-Teller bomb design, which was tested, also in the South Pacific, on November 1, 1952. The Russians have freely acknowledged that Fuchs gave them the fission bomb, but they have insisted that no one gave them the fusion bomb, which grew out of design involving a fission bomb surrounded by alternating layers of fusion and fission fuels, and which they tested on November 22, 1955. Part of the irony of this story is that neither the American nor the Russian hydrogen-bomb programs made any use of the brilliant design that von Neumann and Fuchs had conceived as early as 1946, which could have changed the entire course of development of both programs.

  6. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE PAGES

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.; ...

    2017-09-25

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  7. Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program [Development of a cryogenically-cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awe, T. J.; Shelton, K. P.; Sefkow, A. B.

    A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ~2 kJ laser that must pass through a ~1.5-3.5-μm-thick polyimide “window” at the target’s laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel,more » initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility’s cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. Here, the MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.« less

  8. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    PubMed

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Toroidal rotation induced by 4.6 GHz lower hybrid current drive on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, Xiang-Hui; Chen, Jun; Hu, Rui-Ji; Li, Ying-Ying; Wang, Fu-Di; Fu, Jia; Ding, Bo-Jiang; Wang, Mao; Liu, Fu-Kun; Zang, Qing; Shi, Yue-Jiang; Lyu, Bo; Wan, Bao-Nian; EAST Team

    2017-10-01

    Not Available Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2013GB112004 and 2015GB103002), the National Natural Science Foundation of China (Grant Nos. 11405212 and 11261140328), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology China (Grant No. 2016FXZY008).

  10. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  11. Integrating Sensor-Collected Intelligence

    DTIC Science & Technology

    2008-11-01

    collecting, processing, data storage and fusion, and the dissemination of information collected by Intelligence, Surveillance, and Reconnaissance (ISR...Grid – Bandwidth Expansion (GIG-BE) program) to provide the capability to transfer data from sensors to accessible storage and satellite and airborne...based ISR is much more fragile. There was a purposeful drawdown of these systems following the Cold War and modernization programs were planned to

  12. Fusion of Positive Energy Representations of LSpin(2n)

    NASA Astrophysics Data System (ADS)

    Toledano-Laredo, V.

    2004-09-01

    Building upon the Jones-Wassermann program of studying Conformal Field Theory using operator algebraic tools, and the work of A. Wassermann on the loop group of LSU(n) (Invent. Math. 133 (1998), 467-538), we give a solution to the problem of fusion for the loop group of Spin(2n). Our approach relies on the use of A. Connes' tensor product of bimodules over a von Neumann algebra to define a multiplicative operation (Connes fusion) on the (integrable) positive energy representations of a given level. The notion of bimodules arises by restricting these representations to loops with support contained in an interval I of the circle or its complement. We study the corresponding Grothendieck ring and show that fusion with the vector representation is given by the Verlinde rules. The computation rests on 1) the solution of a 6-parameter family of Knizhnik-Zamolodchikhov equations and the determination of its monodromy, 2) the explicit construction of the primary fields of the theory, which allows to prove that they define operator-valued distributions and 3) the algebraic theory of superselection sectors developed by Doplicher-Haag-Roberts.

  13. Novel design strategy for checkpoint kinase 2 inhibitors using pharmacophore modeling, combinatorial fusion, and virtual screening.

    PubMed

    Lin, Chun-Yuan; Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the Best(train)Best(test) and Fast(train)Fast(test) prediction results. The potential inhibitors were selected from NCI database by screening according to Best(train)Best(test) + Fast(train)Fast(test) prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study.

  14. Multi-model data fusion to improve an early warning system for hypo-/hyperglycemic events.

    PubMed

    Botwey, Ransford Henry; Daskalaki, Elena; Diem, Peter; Mougiakakou, Stavroula G

    2014-01-01

    Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gales, S.

    The exploration of unknown region of the nuclear mass chart, in particular, the neutron rich side, raised new and challenging physics issues in the understanding of nuclei far from stability. The physics of weakly bound systems, the appearance of shell quenching, the interface with astrophysical problems prompted the study of new generation of ''Rad ioactive Beam Facilities'' with high luminosity and the development of associated new experimental tools.GANIL presently offers unique opportunities in nuclear physics and many other fields. With the construction of SPIRAL2 over the next few years, GANIL is in a good position to retain its world-leading capabilitymore » even though it faces strong competition from new and upgraded ISOL and fragmentation facilities. As selected by the ESFRI committee, the next generation of ISOL facility in Europe is represented by the SPIRAL2 project to be built at GANIL (Caen, France). SPIRAL2 is based on a high power, CW, superconducting LINAC, delivering 5 mA of deuteron beams at 40 MeV (200 KW) directed on a C converter+ Uranium target and producing therefore more 10{sup 13} fissions/s. The expected radioactive beams intensities in the mass range from A = 60 to A = 140, will surpass by two order of magnitude any existing facilities in the world. These unstable atoms will be available at energies between few KeV/n to 15 MeV/n. The same driver will accelerate high intensity (100* A to 1 mA), heavier ions (Ar up to Xe) at maximum energy of 14 MeV/n.In applied areas SPIRAL2 is considered as a powerful variable energy neutron source. The Neutrons For Science collaboration (NFS) is proposing a physics program on fission induced by fast neutrons as well as fusion studies on materials.Under the 7FP program of European Union called 'Preparatory phase', the SPIRAL2 project has been granted a budget of about 4 MEuro to build up an international consortium around this new venture. Regarding the future physics program a call for Letter of intents has been launched in Oct 2006 and 8 large International collaborations has been built up around new instruments for SPIRAL2. The status of the construction of SPIRAL2 accelerator and technical R and D programs for physics instrumentation (detectors, spectrometers) in collaboration with EU and International partners will be presented.« less

  16. US Department of Energy High School Student Supercomputing Honors Program: A follow-up assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The US DOE High School Student Supercomputing Honors Program was designed to recognize high school students with superior skills in mathematics and computer science and to provide them with formal training and experience with advanced computer equipment. This document reports on the participants who attended the first such program, which was held at the National Magnetic Fusion Energy Computer Center at the Lawrence Livermore National Laboratory (LLNL) during August 1985.

  17. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  18. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  19. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  20. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jaemin, E-mail: jmj1103@kirams.re.kr; Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul; Conboy, Irina M., E-mail: iconboy@berkeley.edu

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generallymore » but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.« less

  1. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The four-page texts of the contributed papers are presented as a CD, `ICPP 2006. Contributed Papers' which was distributed among the delegates. They are also available at the Congress website http://icpp2006.kiev.ua. A major part of the review and topical lectures is published in this special issue which has been sent to the Congress delegates. The papers were refereed to the usual high standard of the journal Plasma Physics and Controlled Fusion. The Guest Editors of the special issue are grateful to the Publishers for their cooperation. Recognizing the role of Professor Alexej Sitenko (12 February 1927 11 February 2002) in the initiation and organization of the International (Kiev) Conferences on Plasma Theory which, after having been combined with the International Congresses on Waves and Instabilities in Plasma in 1980, created the series of International Congresses on Plasma Physics, and taking into account the contribution of Professor Sitenko to the progress of plasma theory, the Program Committee decided to open ICPP 2006 with the Sitenko memorial lecture. This memorial lecture is available as supplementary data (PDF) at stacks.iop.org/PPCF/49/i=5A.

  2. Some Lasting Consequences of US Psychology Programs in World Wars I and II

    ERIC Educational Resources Information Center

    Jones, Lyle V.

    2007-01-01

    Applied research in psychology not only has contributed directly to societal advances but often has fostered basic research as well. Prominent examples are the programs directed by Yerkes in World War I to develop the Army Alpha test and several programs in World War II, including "The American Soldier" that assessed soldiers' attitudes during the…

  3. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtainmore » their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.« less

  4. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less

  5. An adaptive structure data acquisition system using a graphical-based programming language

    NASA Technical Reports Server (NTRS)

    Baroth, Edmund C.; Clark, Douglas J.; Losey, Robert W.

    1992-01-01

    An example of the implementation of data fusion using a PC and a graphical programming language is discussed. A schematic of the data acquisition system and user interface panel for an adaptive structure test are presented. The computer programs (a series of icons 'wired' together) are also discussed. The way in which using graphical-based programming software to control a data acquisition system can simplify analysis of data, promote multidisciplinary interaction, and provide users a more visual key to understanding their data are shown.

  6. The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.

    2001-03-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  7. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; C. P. C. Wong; M. Abdou

    2014-10-01

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less

  8. ECO-ITS : Intelligent Transportation System Applications to Improve Environmental Performance

    DOT National Transportation Integrated Search

    2012-05-01

    This report describes recent research supported by the US DOTs AERIS program, building upon existing work through developing and improving data collection methods, developing new data fusion techniques to improve estimates, and applying appropriat...

  9. Inertial Confinement Fusion Quarterly Report: April--June 1993. Volume 3, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B.J.; Kotowski, M.; Schleich, D.

    1993-11-01

    This issue of the ICF Quarterly contains six articles describing recent advances in Lawrence Livermore National Laboratory`s inertial confinement fusion (ICF) program. The current emphasis of the ICF program is in support of DOE`s National Ignition Facility (NIF) initiative for demonstrating ignition and gain with a 1-2 MJ glass laser. The articles describe recent Nova experiments and investigations tailored towards enhancing understanding of the key physics and technological issues for the NIF. Titles of the articles are: development of large-aperture KDP crystals; inner-shell photo-ionized X-ray lasers; X-ray radiographic measurements of radiation-driven shock and interface motion in solid density materials; themore » role of nodule defects in laser-induced damage of multilayer optical coatings; techniques for Mbar to near-Gbar equation-of-state measurements with the Nova laser; parametric instabilities and laser-beam smoothing.« less

  10. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  11. Computer modeling and simulation in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less

  12. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGES

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  13. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  14. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  15. Data Fusion Based on Optical Technology for Observation of Human Manipulation

    NASA Astrophysics Data System (ADS)

    Falco, Pietro; De Maria, Giuseppe; Natale, Ciro; Pirozzi, Salvatore

    2012-01-01

    The adoption of human observation is becoming more and more frequent within imitation learning and programming by demonstration approaches (PbD) to robot programming. For robotic systems equipped with anthropomorphic hands, the observation phase is very challenging and no ultimate solution exists. This work proposes a novel mechatronic approach to the observation of human hand motion during manipulation tasks. The strategy is based on the combined use of an optical motion capture system and a low-cost data glove equipped with novel joint angle sensors, based on optoelectronic technology. The combination of the two information sources is obtained through a sensor fusion algorithm based on the extended Kalman filter (EKF) suitably modified to tackle the problem of marker occlusions, typical of optical motion capture systems. This approach requires a kinematic model of the human hand. Another key contribution of this work is a new method to calibrate this model.

  16. Development of advanced blanket performance under irradiation and system integration through JUPITER-II project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru

    This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

  17. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  18. A Survey and Analysis of Frameworks and Framework Issues for Information Fusion Applications

    NASA Astrophysics Data System (ADS)

    Llinas, James

    This paper was stimulated by the proposed project for the Santander Bank-sponsored "Chairs of Excellence" program in Spain, of which the author is a recipient. That project involves research on characterizing a robust, problem-domain-agnostic framework in which Information Fusion (IF) processes of all description, to include artificial intelligence processes and techniques could be developed. The paper describes the IF process and its requirements, a literature survey on IF frameworks, and a new proposed framework that will be implemented and evaluated at Universidad Carlos III de Madrid, Colmenarejo Campus.

  19. Global Visions. Teaching Suggestions and Activity Masters for Unit 2: World Competitiveness.

    ERIC Educational Resources Information Center

    Procter and Gamble Educational Services, Cincinnati, OH.

    This is a classroom-ready program to help students explore the economic forces that are shaping their world and their future. This program is designed to supplement social studies courses in economics, government, U.S. and world history, world cultures, and geography. The unit contains a newsletter for students in grades 9-12, four reproducible…

  20. UCLA Tokamak Program Close Out Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robert John

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reachingmore » a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.« less

  1. OBITUARY: Dorianna Twersky (1922-2010) Dorianna Twersky (1922-2010)

    NASA Astrophysics Data System (ADS)

    Thomas, P.

    2010-03-01

    Dorianna Twersky, Editor Emerita of Nuclear Fusion, passed away on 22 January 2010. Dorianna was Editor of Nuclear Fusion for nearly two decades, from 1967 to 1985. During her tenure, the journal underwent an impressive development. In 1967 Nuclear Fusion was a quarterly with 300 pages published each year, by 1978 it had become a monthly journal. Reflecting the developments in the field, it had evolved from a general plasma physics journal to one that was far more fusion relevant. Dorianna ensured that Nuclear Fusion had a strong peer review system and that effective journal policies were developed and adhered to. Dorianna drove the success of the journal. Her dynamic personality and commitment to the international fusion community underpinned that success. She had a well deserved reputation for toughness and for critical and intuitive thinking. Perhaps her most valuable trait was her persuasiveness and ability to motivate people to help with the journal and contribute to its development. She was able to inspire a sense of dedication and enthusiasm in the people she worked with and was highly respected. Dorianna Twersky will be greatly missed. Four of the prominent scientists who served on the Nuclear Fusion Board of Editors during Dorianna's Editorship have written a few lines in her memory: Professor Dmitri Ryutov, Professor Folker Engelmann, Professor Jim Callen and Professor Karl Lackner. "Dorianna Twersky was one of the best journal editors who I have met during my half-century in physics and plasma physics. An author and a referee would immediately sense that she was a friendly and open-minded person who would always try to resolve conflicts in a constructive way. That was the time well before the emergence of the Internet, and the paper correspondence added a personal touch to the journal business. Sometimes she would add a handwritten joke, or a small cartoon at the corner of her letter. Dorianna spoke perfect Russian. That was of significant help to a large group of authors from the Soviet Union, quite a few of whom didn't know English at all. She helped them at all the stages of the editorial process. Dorianna served as an Editor at the time that can be called The Golden Age of plasma physics, with a continuous influx of new ideas and exciting experimental results. There was a general sense of fast progress towards controlled fusion. At the end of her tenure, the biggest world tokamaks started producing the first plasmas. For those who knew her, her name will remain inseparable from the times of great accomplishment and fast progress in fusion." Dmitri Ryutov "Dorianna Twersky was an extraordinary personality. She combined intuition for taking right decisions in complex matters outside her personal experience with an inexhaustible energy to push things forward and the capability to impose her view, once taken, on people irrespective of their standing without hurting them. Because of these abilities, Dorianna really was Nuclear Fusion for many years. It was a great privilege for me to have known her as an author first, and also to have been able to work with her later on as a referee and member of the Board of Editors of the journal." Folker Engelmann "Dorianna Twersky was a very remarkable woman who somehow was able to establish Nuclear Fusion as one of the first truly international journals and the most successful scientific journal within the IAEA and she kept it moving forward for three decades through all the trials and tribulations of the Cold War era. She made excellent use of her Board of Editors, on which I was privileged to serve. Her passing marks the end of the era during which fusion grew to become a mature international research program, with considerable help from her outstanding editorship of Nuclear Fusion during the critical early growth period." Jim Callen "It is difficult to do justice to Dorianna in a few sentences, she was truly a larger-than-life personality and most things one would like to write are in danger of being misunderstood. I honestly believe that authors and referees were keeping to promised deadlines, because they would have been afraid of a disapproving glance from her. The fact that the journal was blossoming under her leadership is true, but this would be said of course in nearly any obituary. If I try nevertheless to distil my admiration for her into an objective-sounding statement, I would point to the fact that she consistently made technically correct decisions regarding matters in which she had no direct personal know-how. The way she worked this miracle was based on an extraordinary capability to judge people: she knew exactly whom to trust to what percentage." Karl Lackner

  2. Importance of the back-café concept to rehabilitation after lumbar spinal fusion: a randomized clinical study with a 2-year follow-up.

    PubMed

    Christensen, Finn B; Laurberg, Ida; Bünger, Cody E

    2003-12-01

    A prospective, randomized, clinical study with a 2-year follow-up. To analyze the effect of three different rehabilitation strategies for lumbar spinal fusion patients. Fifteen percent to 40% of lumbar spinal fusion patients are not expected to improve significantly over a 2-year period. Optimization of present forms of rehabilitation could possibly further improve the outcome. Between 1996 and 1999, 90 patients who had undergone lumbar spinal fusion were 3 months after surgery randomized to one of three different rehabilitation groups. Video group participants watched a video of exercises for training and were subsequently and only once provided instruction regarding their use. The back-café group was provided the same program as the video group, but as a supplement met with a back-café with other fusion-operated patients three times over an 8-week period. The training group was provided physical therapy training twice weekly for 8 weeks. Functional outcome was evaluated at 6, 12, and 24 months after surgery by use of the low back pain rating scale and a questionnaire covering daily functions, work status, and a patient's contact with the primary sector. By 2-year follow-up, the back-café and video groups had less pain compared with the training group (P < 0.03). The back-café group was better at performing daily functions such as carrying bags of market items (P < 0.01), getting up from a chair (P < 0.01), and ascending staircases (P < 0.01) compared with the video and training groups. More in the back-café group resumed working after surgery compared with the two other groups (P < 0.04). The video group had significantly more contacts with general practitioners, physical therapists, and so on compared with the back-café and training groups (P < 0.001). The patients in the back-café group were significantly better at accomplishing a succession of daily tasks compared with the video and training groups 2 years after lumbar spinal fusion. At the 2-year follow-up the training group had a significant pain problem compared with the video and back-café groups. The video group had significantly more treatment demands outside the hospital system. This study demonstrates the relevance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.

  3. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  4. Suprathermal Ion Populations in ICF Plasmas - Implications for Diagnostics and Ignition

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Schmit, Paul; Sinars, Daniel

    2013-10-01

    We report on investigations into the effects of suprathermal ion populations on neutron production in Inertial Confinement and Magneto-Inertial Fusion plasmas. In a recent article we showed that a suprathermal population taking the form of a power-law in energy will significantly modify the shape and width of the neutron spectrum and can dramatically increase the fusion reactivity compared to the Maxwellian case. Specific diagnostic signatures are discussed in detail. We build on this work to include the effect of an applied magnetic field on the neutron spectra, isotropy and production rate. Finally, the impact that these modifications have on the ability to reach high fusion yields and ignition is discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  5. Improved Controls for Fusion RF Systems. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Jeffrey A.

    2011-11-08

    We have addressed the specific requirements for the integrated systems controlling an array of klystrons used for Lower Hybrid Current Drive (LHCD). The immediate goal for our design was to modernize the transmitter protection system (TPS) for LHCD on the Alcator C-Mod tokamak at the MIT Plasma Science and Fusion Center (MIT-PSFC). Working with the Alcator C-Mod team, we have upgraded the design of these controls to retrofit for improvements in performance and safety, as well as to facilitate the upcoming expansion from 12 to 16 klystrons. The longer range goals to generalize the designs in such a way thatmore » they will be of benefit to other programs within the international fusion effort was met by designing a system which was flexible enough to address all the MIT system requirements, and modular enough to adapt to a large variety of other requirements with minimal reconfiguration.« less

  6. Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.

    2011-10-01

    Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.

  7. Hierarchical High Level Information Fusion (H2LIFT)

    DTIC Science & Technology

    2008-09-15

    platform increases, human decision makers are being overwhelmed with data. In this research, the CUBRC proposed a cost effective two-year program of...8 5.1.1.3.5 Geodetic vs. Geocentric Latitude ....................................................................... 9 5.1.1.3.6...are being overwhelmed with data. In this research, the CUBRC proposed a cost effective two-year program of a novel approach in the near "real-time

  8. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    PubMed

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  9. Stability of concentration-related self-interstitial atoms in fusion material tungsten

    NASA Astrophysics Data System (ADS)

    Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen

    2016-05-01

    Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the <110> and <111> formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, <110> SIAs are more likely to exist, <111> SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).

  10. The Dynamic between National Identity and Foreign Policy in Turkey

    DTIC Science & Technology

    2009-12-01

    became evermore powerful. But it wasn’t until after the Ottoman Empire’s defeat in World War I that the Allied Powers of France and Britain exerted...This process is quite typical of nation-building as seen throughout 19th to early 20th century Western Europe. For example, “Union with France ...was suffered, not accepted. The fusion with France was accomplished slowly and against the will.”83 The experiences in the market, schools, and

  11. Energetic particle instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA

    2013-10-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  12. Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: Tumors of the Salivary Gland.

    PubMed

    Seethala, Raja R; Stenman, Göran

    2017-03-01

    The salivary gland section in the 4th edition of the World Health Organization classification of head and neck tumors features the description and inclusion of several entities, the most significant of which is represented by (mammary analogue) secretory carcinoma. This entity was extracted mainly from acinic cell carcinoma based on recapitulation of breast secretory carcinoma and a shared ETV6-NTRK3 gene fusion. Also new is the subsection of "Other epithelial lesions," for which key entities include sclerosing polycystic adenosis and intercalated duct hyperplasia. Many entities have been compressed into their broader categories given clinical and morphologic similarities, or transitioned to a different grouping as was the case with low-grade cribriform cystadenocarcinoma reclassified as intraductal carcinoma (with the applied qualifier of low-grade). Specific grade has been removed from the names of the salivary gland entities such as polymorphous adenocarcinoma, providing pathologists flexibility in assigning grade and allowing for recognition of a broader spectrum within an entity. Cribriform adenocarcinoma of (minor) salivary gland origin continues to be divisive in terms of whether it should be recognized as a distinct category. This chapter also features new key concepts such as high-grade transformation. The new paradigm of translocations and gene fusions being common in salivary gland tumors is featured heavily in this chapter.

  13. "A disease of frozen feelings": ethically working on emotional worlds in a Russian Orthodox Church drug rehabilitation program.

    PubMed

    Zigon, Jarrett

    2010-09-01

    In a Russian Orthodox Church drug rehabilitation program in St. Petersburg, drug addiction was often described as a disease of frozen feelings. This image suggests that rehabilitation is a process of thawing emotional worlds and, thus, allows the emotions to flow once again. In this article I argue that "frozen feelings" is better understood as the unsocial emotional worlds many drug users experience, and that rehabilitation in this church-run program particularly focuses on the cultivation of an emotional world that supports sociality. This is done, I argue, by means of ethically training rehabilitants to learn how to control and manage their emotional worlds, and in so doing, rehabilitants become new moral persons better able to live in the social world.

  14. The challenge of developing structural materials for fusion power systems

    NASA Astrophysics Data System (ADS)

    Bloom, Everett E.

    1998-10-01

    Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).

  15. Overview of the US Fusion Materials Sciences Program

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven

    2004-11-01

    The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.

  16. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization.

    PubMed

    Neuspiel, Margaret; Zunino, Rodolfo; Gangaraju, Sandhya; Rippstein, Peter; McBride, Heidi

    2005-07-01

    Mitochondrial fusion in higher eukaryotes requires at least two essential GTPases, Mitofusin 1 and Mitofusin 2 (Mfn2). We have created an activated mutant of Mfn2, which shows increased rates of nucleotide exchange and decreased rates of hydrolysis relative to wild type Mfn2. Mitochondrial fusion is stimulated dramatically within heterokaryons expressing this mutant, demonstrating that hydrolysis is not requisite for the fusion event, and supporting a role for Mfn2 as a signaling GTPase. Although steady-state mitochondrial fusion required the conserved intermembrane space tryptophan residue, this requirement was overcome within the context of the hydrolysis-deficient mutant. Furthermore, the punctate localization of Mfn2 is lost in the dominant active mutants, indicating that these sites are functionally controlled by changes in the nucleotide state of Mfn2. Upon staurosporine-stimulated cell death, activated Bax is recruited to the Mfn2-containing puncta; however, Bax activation and cytochrome c release are inhibited in the presence of the dominant active mutants of Mfn2. The dominant active form of Mfn2 also protected the mitochondria against free radical-induced permeability transition. In contrast to staurosporine-induced outer membrane permeability transition, pore opening induced through the introduction of free radicals was dependent upon the conserved intermembrane space residue. This is the first evidence that Mfn2 is a signaling GTPase regulating mitochondrial fusion and that the nucleotide-dependent activation of Mfn2 concomitantly protects the organelle from permeability transition. The data provide new insights into the critical relationship between mitochondrial membrane dynamics and programmed cell death.

  17. The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion

    NASA Astrophysics Data System (ADS)

    Miller, J. D.

    1986-11-01

    One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.

  18. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review.

    PubMed

    Howarth, Peter A

    2011-03-01

    The visual stimulus provided by a 3-D stereoscopic display differs from that of the real world because the image provided to each eye is produced on a flat surface. The distance from the screen to the eye remains fixed, providing a single focal distance, but the introduction of disparity between the images allows objects to be located geometrically in front of, or behind, the screen. Unlike in the real world, the stimulus to accommodation and the stimulus to convergence do not match. Although this mismatch is used positively in some forms of Orthoptic treatment, a number of authors have suggested that it could negatively lead to the development of asthenopic symptoms. From knowledge of the zone of clear, comfortable, single binocular vision one can predict that, for people with normal binocular vision, adverse symptoms will not be present if the discrepancy is small, but are likely if it is large, and that what constitutes 'large' and 'small' are idiosyncratic to the individual. The accommodation-convergence mismatch is not, however, the only difference between the natural and the artificial stimuli. In the former case, an object located in front of, or behind, a fixated object will not only be perceived as double if the images fall outside Panum's fusional areas, but it will also be defocused and blurred. In the latter case, however, it is usual for the producers of cinema, TV or computer game content to provide an image that is in focus over the whole of the display, and as a consequence diplopic images will be sharply in focus. The size of Panum's fusional area is spatial frequency-dependent, and because of this the high spatial frequencies present in the diplopic 3-D image will provide a different stimulus to the fusion system from that found naturally. © 2011 The College of Optometrists.

  19. Investigation of Transmission Warming Technologies at Various Ambient Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jehlik, Forrest; Iliev, Simeon; Wood, Eric

    This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a 2011 Ford Fusion. The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the Fusion was tested cold and with the transmission pre-heated prior to completing themore » test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions. For the Taurus, the fuel consumption variability within one standard deviation was shown to be under 0.5% for eight repeat Urban Dynamometer Driving Cycles (UDDS). These results were valid with the transmission warming system active or passive. Using the transmission warming system under 22 degrees C ambient temperature, fuel consumption reduction was shown to be 1.4%. For the Fusion, pre-warming the transmission reduced fuel consumption 2.5% for an urban drive cycle at -7 degrees C ambient temperature, with 1.5% of the 2.5% gain associated with the transmission, while consumption for the US06 test was shown to be reduced by 7% with 5.5% of the 7% gain associated with the transmission. It was found that engine warming due to conduction between the pre-heated transmission and the engine resulted in the remainder of the benefit. For +22 degrees C ambient tests, the pre-heated transmission was shown to reduce fuel consumption approximately 1% on an urban cycle, while no benefit was seen for the US06 cycle. The simplified modeling results showed gains in efficiency ranging from 0-1.5% depending on the ambient temperature and drive cycle.« less

  20. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    DOE PAGES

    Gates, David A.; Anderson, David; Anderson, S.; ...

    2018-02-19

    This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  1. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, David A.; Anderson, David; Anderson, S.

    This paper is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015–2025)” [1]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. Finally, this report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations—Next-generation research capabilities”, and “Burning Plasma Science: Long pulse—Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  2. Study of Tungsten effect on CFETR performance

    NASA Astrophysics Data System (ADS)

    Shi, Shengyu; Xiang Gao Collaboration; Guoqiang Li Collaboration; Nan Shi Collaboration; Vincent Chan Collaboration; Xiang Jian Collaboration

    2017-10-01

    An integrated modeling workflow using OMFIT/TGYRO is constructed to evaluate W impurity effects on China Fusion Engineering Test Reactor (CFETR) performance. Self-consistent modeling of tungsten(W) core density profile, accounting for turbulence and neoclassical transport, is performed based on the CFETR steady-state scenario developed by D.Zhao (ZhaoDeng, APS, 2016). It's found that the fusion performance degraded in a limited level with increasing W concentration. The main challenge arises in sustainment of H-mode with significant W radiation. Assuming the power threshold of H-L back transition is approximately the same as that of L-H transition, using the scaling law of Takizuka (Takizuka etc, Plasma Phys. Control. Fusion, 2004), it is found that the fractional W concentration should not exceed 3e-5 to stay in H-mode for CFETR phase I. A future step is to connect this requirement to W wall erosion modeling. We are grateful to Dr. Emiliano Fable and Dr. Thomas Pütterich and Ms. Emily Belli for very helpful discussions and comments. We also would like to express our thanks to all the members of the CFETR Physics Group, and we appreciate the General Atomic Theory Group for permission to use the OMFIT framework and GA code suite, and for their valuable technical support. Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences. This work was mainly supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2014GB110001, 2014GB110002, 2014GB110003) and supported in part by the National ITER Plans Program of China (Grant Nos. 2013GB106001, 2013GB111002, 2015GB110001).

  3. Stellarator Research Opportunities: A Report of the National Stellarator Coordinating Committee

    NASA Astrophysics Data System (ADS)

    Gates, D. A.; Anderson, D.; Anderson, S.; Zarnstorff, M.; Spong, D. A.; Weitzner, H.; Neilson, G. H.; Ruzic, D.; Andruczyk, D.; Harris, J. H.; Mynick, H.; Hegna, C. C.; Schmitz, O.; Talmadge, J. N.; Curreli, D.; Maurer, D.; Boozer, A. H.; Knowlton, S.; Allain, J. P.; Ennis, D.; Wurden, G.; Reiman, A.; Lore, J. D.; Landreman, M.; Freidberg, J. P.; Hudson, S. R.; Porkolab, M.; Demers, D.; Terry, J.; Edlund, E.; Lazerson, S. A.; Pablant, N.; Fonck, R.; Volpe, F.; Canik, J.; Granetz, R.; Ware, A.; Hanson, J. D.; Kumar, S.; Deng, C.; Likin, K.; Cerfon, A.; Ram, A.; Hassam, A.; Prager, S.; Paz-Soldan, C.; Pueschel, M. J.; Joseph, I.; Glasser, A. H.

    2018-02-01

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generate a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in "Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)" [1]. The natural disruption immunity of the stellarator directly addresses "Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices" an area of critical importance for the US fusion energy sciences enterprise over the next decade. Another critical area of research "Strengthening our partnerships with international research facilities," is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; "Burning Plasma Science: Foundations - Next-generation research capabilities", and "Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria" are proposed.

  4. Stellarator Research Opportunities: A report of the National Stellarator Coordinating Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, David A.; Anderson, David

    This document is the product of a stellarator community workshop, organized by the National Stellarator Coordinating Committee and referred to as Stellcon, that was held in Cambridge, Massachusetts in February 2016, hosted by MIT. The workshop was widely advertised, and was attended by 40 scientists from 12 different institutions including national labs, universities and private industry, as well as a representative from the Department of Energy. The final section of this document describes areas of community wide consensus that were developed as a result of the discussions held at that workshop. Areas where further study would be helpful to generatemore » a consensus path forward for the US stellarator program are also discussed. The program outlined in this document is directly responsive to many of the strategic priorities of FES as articulated in “Fusion Energy Sciences: A Ten-Year Perspective (2015-2025)” [2]. The natural disruption immunity of the stellarator directly addresses “Elimination of transient events that can be deleterious to toroidal fusion plasma confinement devices” an area of critical importance for the U.S. fusion energy sciences enterprise over the next decade. Another critical area of research “Strengthening our partnerships with international research facilities,” is being significantly advanced on the W7-X stellarator in Germany and serves as a test-bed for development of successful international collaboration on ITER. This report also outlines how materials science as it relates to plasma and fusion sciences, another critical research area, can be carried out effectively in a stellarator. Additionally, significant advances along two of the Research Directions outlined in the report; “Burning Plasma Science: Foundations - Next-generation research capabilities”, and “Burning Plasma Science: Long pulse - Sustainment of Long-Pulse Plasma Equilibria” are proposed.« less

  5. Development of a 3D co-culture model using human stem ...

    EPA Pesticide Factsheets

    Morphogenetic tissue fusion is a critical and complex event in embryonic development and failure of this event leads to birth defects, such as cleft palate. Palatal fusion requires adhesion and subsequent dissolution of the medial epithelial layer of the mesenchymal palatal shelves, and is regulated by the growth factors EGF and TGFβ, and others, although the complete regulatory mechanism is not understood. Three dimensional (3D) organotypic models allow us to mimic the native architecture of human tissue to facilitate the study of tissue dynamics and their responses to developmental toxicants. Our goal was to develop and characterize a spheroidal model of palatal fusion to investigate the mechanisms regulating fusion with exposure to growth factors and chemicals in the ToxCast program known to disrupt this event. We present a spheroidal model using human umbilical-derived mesenchymal stem cells (hMSC) spheroid cores cultured for 13 days and then coated with MaxGel™ basement membrane and a layer of human progenitor epithelial keratinocytes (hPEK) (hMSC+hPEK spheroids). We characterized the growth, differentiation, proliferation and fusion activity of the model. Spheroid diameter was dependent on hMSC seeding density, size of the seeding wells, time in culture, and type of medium. hMSC spheroid growth was enhanced with osteogenic differentiation medium. Alkaline phosphatase activity in the hMSC spheroid, indicating osteogenic differentiation, increased in inte

  6. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    NASA Astrophysics Data System (ADS)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  7. Information fusion for diabetic retinopathy CAD in digital color fundus photographs.

    PubMed

    Niemeijer, Meindert; Abramoff, Michael D; van Ginneken, Bram

    2009-05-01

    The purpose of computer-aided detection or diagnosis (CAD) technology has so far been to serve as a second reader. If, however, all relevant lesions in an image can be detected by CAD algorithms, use of CAD for automatic reading or prescreening may become feasible. This work addresses the question how to fuse information from multiple CAD algorithms, operating on multiple images that comprise an exam, to determine a likelihood that the exam is normal and would not require further inspection by human operators. We focus on retinal image screening for diabetic retinopathy, a common complication of diabetes. Current CAD systems are not designed to automatically evaluate complete exams consisting of multiple images for which several detection algorithm output sets are available. Information fusion will potentially play a crucial role in enabling the application of CAD technology to the automatic screening problem. Several different fusion methods are proposed and their effect on the performance of a complete comprehensive automatic diabetic retinopathy screening system is evaluated. Experiments show that the choice of fusion method can have a large impact on system performance. The complete system was evaluated on a set of 15,000 exams (60,000 images). The best performing fusion method obtained an area under the receiver operator characteristic curve of 0.881. This indicates that automated prescreening could be applied in diabetic retinopathy screening programs.

  8. Decision Making of Graduation in Patients With Early-Onset Scoliosis at the End of Distraction-Based Programs: Risks and Benefits of Definitive Fusion.

    PubMed

    Pizones, Javier; Martín-Buitrago, Mar Pérez; Sánchez Márquez, José Miguel; Fernández-Baíllo, Nicomedes; Baldan-Martin, Montserrat; Sánchez Pérez-Grueso, Francisco Javier

    Retrospective comparative analysis. Study early-onset scoliosis (EOS) graduated patients to establish founded criteria for graduation decision making and determine the risks and benefits of definitive fusion. EOS is treated by growth-friendly techniques until skeletal maturity. Afterwards, patients can be "graduated," either by definitive fusion (posterior spinal fusion [PSF]) or by retaining the previous implants (Observation) with no additional surgery. Criteria for this decision making and the outcomes of definitive fusion are still underexplored. We analyzed a consecutive cohort of "graduated" patients after a distraction-based lengthening program. We gathered demographic, radiographic, and surgical data. The results of the two final treatment options were compared after 2 years' follow-up. A total of 32 patients were included. Four patients had incomplete records. Thirteen underwent PSF, and 15 were observed. The mean age at initial treatment was 8 ± 3 years, with a mean follow-up of 8.3 ± 2.9 years. Both groups had similar preoperative and final radiographic parameters (p > .05). The criteria for undergoing PSF were as follows: implant-related complications, main curve magnitude (PSF = 63.2° ± 9° vs. OBS = 47.9° ± 15°; p = .008), curve progression >10°, and sagittal misalignment (SVA). During PSF 12/13 patients underwent multiple osteotomies, one vertebrectomy, and 3 costoplasties. Surgical time was 291.5 ± 58 minutes; blood loss was 946 ± 375 mL; and the number of levels fused was 13.7. Coronal deformity was corrected 31%, T1-S1 length gained was 31 ± 19.6 mm and T1-T12 length gained was 9.3 ± 39 mm; kyphosis was reduced by 22%. However, coronal balance worsened by 2.3 ± 30.8 mm. No major complications were encountered in these patients. Graduation by PSF depended on unacceptable or progressive major curve deformity, sagittal misalignment, or complications with previous implants. Observation depended on curve stabilization, Cobb <50°, and coronal misalignment <20 mm. Definitive fusion effectively corrected coronal and sagittal deformity and increased trunk height. However, it exposed patients to a very demanding surgery without improvement in coronal balance. Level III, therapeutic. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  9. Perspectives on Lunar Helium-3

    NASA Astrophysics Data System (ADS)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential return on investment, access to capital markets for a lunar 3He and terrestrial fusion power business will require a near-term return on investment, based on early applications of IEC fusion technology (10).

  10. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept (affordable, robust, compact) (Sorbom et al 2015 Fusion Eng. Des. submitted (arXiv:1409.3540)) that makes use of high-temperature superconductor technology—a high-field (9.25 T) tokamak the size of the Joint European Torus that produces 270 MW of net electricity.

  11. Estimating rice yield from MODIS-Landsat fusion data in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.

    2017-12-01

    Rice production monitoring with remote sensing is an important activity in Taiwan due to official initiatives. Yield estimation is a challenge in Taiwan because rice fields are small and fragmental. High spatiotemporal satellite data providing phenological information of rice crops is thus required for this monitoring purpose. This research aims to develop data fusion approaches to integrate daily Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat data for rice yield estimation in Taiwan. In this study, the low-resolution MODIS LST and emissivity data are used as reference data sources to obtain the high-resolution LST from Landsat data using the mixed-pixel analysis technique, and the time-series EVI data were derived the fusion of MODIS and Landsat spectral band data using STARFM method. The LST and EVI simulated results showed the close agreement between the LST and EVI obtained by the proposed methods with the reference data. The rice-yield model was established using EVI and LST data based on information of rice crop phenology collected from 371 ground survey sites across the country in 2014. The results achieved from the fusion datasets compared with the reference data indicated the close relationship between the two datasets with the correlation coefficient (R2) of 0.75 and root mean square error (RMSE) of 338.7 kgs, which were more accurate than those using the coarse-resolution MODIS LST data (R2 = 0.71 and RMSE = 623.82 kgs). For the comparison of total production, 64 towns located in the west part of Taiwan were used. The results also confirmed that the model using fusion datasets produced more accurate results (R2 = 0.95 and RMSE = 1,243 tons) than that using the course-resolution MODIS data (R2 = 0.91 and RMSE = 1,749 tons). This study demonstrates the application of MODIS-Landsat fusion data for rice yield estimation at the township level in Taiwan. The results obtained from the methods used in this study could be useful to policymakers; and thus, the methods can be transferable to other regions in the world for rice yield estimation.

  12. The Joint European Torus (JET)

    NASA Astrophysics Data System (ADS)

    Rebut, Paul-Henri

    2017-02-01

    This paper addresses the history of JET, the Tokamak that reached the highest performances and the experiment that so far came closest to the eventual goal of a fusion reactor. The reader must be warned, however, that this document is not a comprehensive study of controlled thermonuclear fusion or even of JET. The next step on this road, the ITER project, is an experimental reactor. Actually, several prototypes will be required before a commercial reactor can be built. The fusion history is far from been finalised. JET is still in operation some 32 years after the first plasma and still has to provide answers to many questions before ITER takes the lead on research. Some physical interpretations of the observed phenomena, although coherent, are still under discussion. This paper also recalls some basic physics concepts necessary to the understanding of confinement: a knowledgeable reader can ignore these background sections. This fascinating story, comprising successes and failures, is imbedded in the complexities of twentieth and the early twenty-first centuries at a time when world globalization is evolving and the future seems loaded with questions. The views here expressed on plasma confinement are solely those of the author. This is especially the case for magnetic turbulence, for which other scientists may have different views.

  13. A protein chimera including PspA in fusion with PotD is protective against invasive pneumococcal infection and reduces nasopharyngeal colonization in mice.

    PubMed

    Converso, T R; Goulart, C; Darrieux, M; Leite, L C C

    2017-09-12

    Despite the success of the available polysaccharide-based vaccines against Streptococcus pneumoniae in preventing invasive diseases, this bacterium remains a major cause of death in many parts of the world. New vaccine strategies are needed in order to increase protection. Thus, the utilization of fusion proteins is being investigated as an alternative to the current formulations. In the present work, we demonstrate that a chimeric protein, composed of PspA and PotD in fusion is able to maintain the protective characteristics of both parental proteins, providing protection against systemic infection while reducing nasal colonization. The hybrid was not able to improve the response against invasive disease elicited by PspA alone, but the inclusion of PotD was able to reduce colonization, an effect never observed using subcutaneous immunization with PspA. The mechanisms underlying the protective efficacy of the rPspA-PotD hybrid protein were investigated, revealing the production of antibodies with an increased binding capacity to pneumococcal strains of diverse serotypes and genetic backgrounds, enhanced opsonophagocytosis, and secretion of IL-17 by splenocytes. These findings reinforce the use of chimeric proteins based on surface antigens as an effective strategy against pneumococcal infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Antimatter propulsion, status and prospects

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Hynes, Michael V.

    1986-01-01

    The use of advanced propulsion techniques must be considered if the currently envisioned launch date of the manned Mars mission were delayed until 2020 or later. Within the next thirty years, technological advances may allow such methods as beaming power to the ship, inertial-confinement fusion, or mass-conversion of antiprotons to become feasible. A propulsion system with an ISP of around 5000 s would allow the currently envisioned mission module to fly to Mars in 3 months and would require about one million pounds to be assembled in Earth orbit. Of the possible methods to achieve this, the antiproton mass-conversion reaction offers the highest potential, the greatest problems, and the most fascination. Increasing the production rates of antiprotons is a high priority task at facilities around the world. The application of antiprotons to propulsion requires the coupling of the energy released in the mass-conversion reaction to thrust-producing mechanisms. Recent proposals entail using the antiprotons to produce inertial confinement fusion or to produce negative muons which can catalyze fusion. By increasing the energy released per antiproton, the effective cost, (dollars/joule) can be reduced. These proposals and other areas of research can be investigated now. These short term results will be important in assessing the long range feasibility of an antiproton powered engine.

  15. Global Atmosphere Watch Workshop on Measurement-Model ...

    EPA Pesticide Factsheets

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  16. Intranasal immunization with fusion protein MrpH·FimH and MPL adjuvant confers protection against urinary tract infections caused by uropathogenic Escherichia coli and Proteus mirabilis.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Shokrgozar, Mohammad Ali; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-04-01

    Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) and Proteus mirabilis are among the most common infections in the world. Currently there are no vaccines available to confer protection against UTI in humans. In this study, the immune responses and protection of FimH of UPEC with MrpH antigen of P. mirabilis in different vaccine formulations with and without MPL adjuvant were assessed. Mice intranasally immunized with the novel fusion protein MrpH·FimH induced a significant increase in IgG and IgA in serum, nasal wash, vaginal wash, and urine samples. Mice immunized with fusion MrpH·FimH also showed a significant boost in cellular immunity. Addition of MPL as the adjuvant enhanced FimH and MrpH specific humoral and cellular responses in both systemic and mucosal samples. Vaccination with MrpH·FimH alone or in combination with MPL showed the highest efficiency in clearing bladder and kidney infections in mice challenged with UPEC and P. mirabilis. These findings may indicate that the protection observed correlates with the systemic, mucosal and cellular immune responses induced by vaccination with these preparations. Our data suggest MrpH·FimH fusion protein with or without MPL as adjuvant could be potential vaccine candidates for elimination of UPEC and P. mirabilis. These data altogether are promising and these formulations are good candidates for elimination of UPEC and P. mirabilis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports.

    PubMed

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V; Schafer, Kim

    2016-10-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc.

  18. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix

    PubMed Central

    Allen, Robert S.; Tilbrook, Kimberley; Warden, Andrew C.; Campbell, Peter C.; Rolland, Vivien; Singh, Surinder P.; Wood, Craig C.

    2017-01-01

    The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia. PMID:28316608

  19. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports

    PubMed Central

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V.; Schafer, Kim

    2016-01-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc. PMID:27116081

  20. Training School Personnel to Implement a Universal School-Based Prevention of Depression Program under Real-World Conditions

    ERIC Educational Resources Information Center

    Harnett, P.H.; Dadds, M.R.

    2004-01-01

    The present study evaluated the impact of a universal prevention of depression program [the Resourceful Adolescent Program (RAP)] when implemented under real-world conditions in a school setting. Prior research has found the RAP program to be beneficial for high-school students when the program was implemented by university staff selected,…

  1. Towards an understanding of an outdoor education program: Listening to participants' stories

    NASA Astrophysics Data System (ADS)

    Shanely, Shannon Dee

    Today, human beings spend more than 90% of their lives indoors (Evans, 2003). Not long ago, both urban and rural children grew up mostly outdoors, and had direct experiences with plants, animals, and the ways in which the necessities of daily life were grown, made, and used. When they were not helping with household work, children spent much of their time exploring the outdoor environment, relatively free from adult interference. The lives of children today are much different. Children now have fewer opportunities for unstructured play and regular contact with the natural world. Outdoor education programs are one tool that can provide children with continued access to the natural world. This study was conducted to determine how outdoor education program participants interpret their experiences in the natural world, how participant engagement with an outdoor education program shapes their perception of the natural world, and how participant interpretation of an outdoor education program shapes their actions for caring for the natural world when they return home. Using qualitative research methods, my study was conducted with four sixth-grade students participating in a four-day residential outdoor education program. The participants, two females and two males, were given cameras to document the most important aspects of their outdoor education experience. The pictures were used to stimulate conversation and encourage reflection during the interview process. Data sources consisted of a pre-program interview with each student, daily interviews with students while they were participating in the outdoor education program, and a post-program interview conducted one week after the program ended. Critical incident technique analysis was used to delineate the most critical elements of each participant's outdoor education experience. My study found that participants interpreted their outdoor education program as a positive experience. Classes that were challenging and gave independence from adults were perceived as most important by study participants. Friends were considered an important part of the outdoor education program by all of the participants, but the natural world became more important as the week progressed. All four participants reported being more comfortable in the outdoors at the conclusion of the program, but their actions indicated otherwise. All four participants also viewed the natural world as something far removed and very different from their home life. Finally, after completing the outdoor education program, all four participants perceived their parents as being barriers to spending more time outside and they all had adopted one new action to care for the natural world once they returned home.

  2. Multisensor configurations for early sniper detection

    NASA Astrophysics Data System (ADS)

    Lindgren, D.; Bank, D.; Carlsson, L.; Dulski, R.; Duval, Y.; Fournier, G.; Grasser, R.; Habberstad, H.; Jacquelard, C.; Kastek, M.; Otterlei, R.; Piau, G.-P.; Pierre, F.; Renhorn, I.; Sjöqvist, L.; Steinvall, O.; Trzaskawka, P.

    2011-11-01

    This contribution reports some of the fusion results from the EDA SNIPOD project, where different multisensor configurations for sniper detection and localization have been studied. A project aim has been to cover the whole time line from sniper transport and establishment to shot. To do so, different optical sensors with and without laser illumination have been tested, as well as acoustic arrays and solid state projectile radar. A sensor fusion node collects detections and background statistics from all sensors and employs hypothesis testing and multisensor estimation programs to produce unified and reliable sniper alarms and accurate sniper localizations. Operator interfaces that connect to the fusion node should be able to support both sniper countermeasures and the guidance of personnel to safety. Although the integrated platform has not been actually built, sensors have been evaluated at common field trials with military ammunitions in the caliber range 5.56 to 12.7 mm, and at sniper distances up to 900 m. It is concluded that integrating complementary sensors for pre- and postshot sniper detection in a common system with automatic detection and fusion will give superior performance, compared to stand alone sensors. A practical system is most likely designed with a cost effective subset of available complementary sensors.

  3. Phenomenological analysis of Higgs boson production through gluon fusion in association with jets

    DOE PAGES

    Greiner, Nicolas; Hoeche, Stefan; Luisoni, Gionata; ...

    2016-01-27

    In this study, we present a detailed phenomenological analysis of the production of a Standard Model Higgs boson in association with up to three jets. We consider the gluon fusion channel using an effective theory in the large top-quark mass limit. Higgs boson production in gluon fusion constitutes an irreducible background to the vector boson fusion (VBF) process; hence the precise knowledge of its characteristics is a prerequisite for any measurement in the VBF channel. The calculation is carried out at next-to-leading order (NLO) in QCD in a fully automated way by combining the two programs GoSam and Sherpa. Wemore » present numerical results for a large variety of observables for both standard cuts and VBF selection cuts. We find that for all jet multiplicities the NLO corrections are sizeable. This is particularly true in the presence of kinematic selections enhancing the VBF topology, which are based on vetoing additional jet activity. In this case, precise predictions for the background can be made using our calculation by taking the difference between the inclusive H+2 jets and the inclusive H+3 jets result.« less

  4. Refined Calculations of Secondary Nuclear Reactions in Magneto-Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Schmit, Paul; Knapp, Patrick; Hansen, Stephanie; Gomez, Matthew; Hahn, Kelly; Sinars, Daniel; Peterson, Kyle; Slutz, Stephen; Sefkow, Adam; Awe, Thomas; Harding, Eric; Jennings, Christopher

    2014-10-01

    Diagnosing the degree of magnetic flux compression at stagnation in magneto-inertial fusion (MIF) is critical for charting the performance of any MIF concept. In pure deuterium plasma, the transport of high-energy tritons produced by the aneutronic DD fusion reaction depends strongly on the magnetic field. The tritons probe and occasionally react with the fuel, emitting secondary DT neutrons. We show that the DT/DD neutron yield ratio and the secondary DT neutron spectra can be used to infer the magnetic field-radius product (BR), the critical confinement parameter for MIF. The amount of fuel-pusher mix also can be constrained by secondary reactions. We discuss the sensitivity to plasma inhomogeneities of the calculations and outline methods to relate secondary yields to alpha particle energy deposition in ignition-relevant experiments employing DT fuel. We compare our calculations to recent tests of the Magnetized Liner Inertial Fusion (MagLIF) concept on the Z Pulsed Power Facility. Supported in part by the SNL Truman Fellowship, which is part of the LDRD Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of SNL under its U.S. DoE Contract No. DE-AC04-94AL85000.

  5. Nonlinear Burn Control and Operating Point Optimization in ITER

    NASA Astrophysics Data System (ADS)

    Boyer, Mark; Schuster, Eugenio

    2013-10-01

    Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).

  6. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extendsmore » its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.« less

  7. NASA Celebrates the World Year of Physics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2005-01-01

    Celebrating the World Year of Physics presents NASA with an opportunity to inform educators of the importance of physics in our everyday lives. indeed, almost all NASA programs fake advantage of physical concepts in some fashion. Special programs throughout the year, affiliated with the World Year of Physics, are identifed to inform and inspire educators, students, and the general public. We will discuss these programs in detail and outline how educators may become more involved.

  8. The Ministry of Commerce and Industry

    Science.gov Websites

    Commerce Minister Participates In The Celebration Of The World Intellectual Property Day Program Deputy Commerce Minister Participates In The Celebration Of The World Intellectual Property Day Program Hon the World Trade Organization at the e-Commerce Week Commerce Minister meets with the Director-General

  9. Perspectives on Transportation. Teacher's Guide. Preparing for Tomorrow's World.

    ERIC Educational Resources Information Center

    Iozzi, Louis A.; And Others

    "Perspectives on Transportation" is one of the "Preparing for Tomorrow's World" (PTW) program modules. PTW is an interdisciplinary, future-oriented program which incorporates information from the sciences and social sciences and addresses societal concerns which interface science/technology/society. The program promotes…

  10. People counting and re-identification using fusion of video camera and laser scanner

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Olivera, Santiago; Wagley, Raj

    2016-05-01

    We present a system for people counting and re-identification. It can be used by transit and homeland security agencies. Under FTA SBIR program, we have developed a preliminary system for transit passenger counting and re-identification using a laser scanner and video camera. The laser scanner is used to identify the locations of passenger's head and shoulder in an image, a challenging task in crowed environment. It can also estimate the passenger height without prior calibration. Various color models have been applied to form color signatures. Finally, using a statistical fusion and classification scheme, passengers are counted and re-identified.

  11. Study on reaction mechanism by analysis of kinetic energy spectra of light particles and formation of final products

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-05-01

    The sensitivity of reaction mechanism in the formation of compound nucleus (CN) by the analysis of kinetic energy spectra of light particles and of reaction products are shown. The dependence of the P CN fusion probability of reactants and W sur survival probability of CN against fission at its deexcitation on the mass and charge symmetries in the entrance channel of heavy-ion collisions, as well as on the neutron numbers is discussed. The possibility of conducting a complex program of investigations of the complete fusion by reliable ways depends on the detailed and refined methods of experimental and theoretical analyses.

  12. Functional and evolutionary insight from the crystal structure of rubella virus protein E1.

    PubMed

    DuBois, Rebecca M; Vaney, Marie-Christine; Tortorici, M Alejandra; Kurdi, Rana Al; Barba-Spaeth, Giovanna; Krey, Thomas; Rey, Félix A

    2013-01-24

    Little is known about the three-dimensional organization of rubella virus, which causes a relatively mild measles-like disease in children but leads to serious congenital health problems when contracted in utero. Although rubella virus belongs to the same family as the mosquito-borne alphaviruses, in many respects it is more similar to other aerosol-transmitted human viruses such as the agents of measles and mumps. Although the use of the triple MMR (measles, mumps and rubella) live vaccine has limited its incidence in western countries, congenital rubella syndrome remains an important health problem in the developing world. Here we report the 1.8 Å resolution crystal structure of envelope glycoprotein E1, the main antigen and sole target of neutralizing antibodies against rubella virus. E1 is the main player during entry into target cells owing to its receptor-binding and membrane-fusion functions. The structure reveals the epitope and the neutralization mechanism of an important category of protecting antibodies against rubella infection. It also shows that rubella virus E1 is a class II fusion protein, which had hitherto only been structurally characterized for the arthropod-borne alphaviruses and flaviviruses. In addition, rubella virus E1 has an extensive membrane-fusion surface that includes a metal site, reminiscent of the T-cell immunoglobulin and mucin family of cellular proteins that bind phosphatidylserine lipids at the plasma membrane of cells undergoing apoptosis. Such features have not been seen in any fusion protein crystallized so far. Structural comparisons show that the class II fusion proteins from alphaviruses and flaviviruses, despite belonging to different virus families, are closer to each other than they are to rubella virus E1. This suggests that the constraints on arboviruses imposed by alternating cycles between vertebrates and arthropods resulted in more conservative evolution. By contrast, in the absence of this constraint, the strictly human rubella virus seems to have drifted considerably into a unique niche as sole member of the Rubivirus genus.

  13. A structural perspective of the flavivirus life cycle.

    PubMed

    Mukhopadhyay, Suchetana; Kuhn, Richard J; Rossmann, Michael G

    2005-01-01

    Dengue, Japanese encephalitis, West Nile and yellow fever belong to the Flavivirus genus, which is a member of the Flaviviridae family. They are human pathogens that cause large epidemics and tens of thousands of deaths annually in many parts of the world. The structural organization of these viruses and their associated structural proteins has provided insight into the molecular transitions that occur during the viral life cycle, such as assembly, budding, maturation and fusion. This review focuses mainly on structural studies of dengue virus.

  14. Requirements and Architecture Specification of the Joint Multi-Role (JMR) Joint Common Architecture (JCA) Demonstration System

    DTIC Science & Technology

    2015-12-01

    response time re- quirements and in additional calibration requirements for DCFM that may create unexpected la - tency and latency jitter that can...manage the flight path of the aircraft. For more information about sensor correlation and fusion processes, the Air University New World Vistas ...request/reply actions. We specify its la - tency as a minimum and maximum of 300 ms.  SADataServiceProtocol: an abstraction of the SA data service as a

  15. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Tuccillo, Angelo A.; Phillips, Cynthia K.; Ceccuzzi, Silvio

    2014-06-01

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion "burn" may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to "demo" and "fusion power plant." A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of power to the plasma while minimizing the interaction between the plasma and launching structures. These potentially harmful interactions between the plasma and the vessel and launching structures are challenging: (i) significant and variable loss of power in the edge regions of confined plasmas and surrounding vessel structures adversely affect the core plasma performance and lifetime of a device; (ii) the launcher design is partly "trial and error," with the consequence that launchers may have to be reconfigured after initial tests in a given device, at an additional cost. Over the broader frequency range, another serious gap is a quantitative lack of understanding of the combined effects of nonlinear wave-plasma processes, energetic particle interactions and non-axisymmetric equilibrium effects on determining the overall efficiency of plasma equilibrium and stability profile control techniques using RF waves. This is complicated by a corresponding lack of predictive understanding of the time evolution of transport and stability processes in fusion plasmas.

  16. Sensing Attribute Weights: A Novel Basic Belief Assignment Method

    PubMed Central

    Jiang, Wen; Zhuang, Miaoyan; Xie, Chunhe; Wu, Jun

    2017-01-01

    Dempster–Shafer evidence theory is widely used in many soft sensors data fusion systems on account of its good performance for handling the uncertainty information of soft sensors. However, how to determine basic belief assignment (BBA) is still an open issue. The existing methods to determine BBA do not consider the reliability of each attribute; at the same time, they cannot effectively determine BBA in the open world. In this paper, based on attribute weights, a novel method to determine BBA is proposed not only in the closed world, but also in the open world. The Gaussian model of each attribute is built using the training samples firstly. Second, the similarity between the test sample and the attribute model is measured based on the Gaussian membership functions. Then, the attribute weights are generated using the overlap degree among the classes. Finally, BBA is determined according to the sensed attribute weights. Several examples with small datasets show the validity of the proposed method. PMID:28358325

  17. Sensing Attribute Weights: A Novel Basic Belief Assignment Method.

    PubMed

    Jiang, Wen; Zhuang, Miaoyan; Xie, Chunhe; Wu, Jun

    2017-03-30

    Dempster-Shafer evidence theory is widely used in many soft sensors data fusion systems on account of its good performance for handling the uncertainty information of soft sensors. However, how to determine basic belief assignment (BBA) is still an open issue. The existing methods to determine BBA do not consider the reliability of each attribute; at the same time, they cannot effectively determine BBA in the open world. In this paper, based on attribute weights, a novel method to determine BBA is proposed not only in the closed world, but also in the open world. The Gaussian model of each attribute is built using the training samples firstly. Second, the similarity between the test sample and the attribute model is measured based on the Gaussian membership functions. Then, the attribute weights are generated using the overlap degree among the classes. Finally, BBA is determined according to the sensed attribute weights. Several examples with small datasets show the validity of the proposed method.

  18. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  19. User's guide to the Residual Gas Analyzer (RGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artman, S.A.

    1988-08-04

    The Residual Gas Analyzer (RGA), a Model 100C UTI quadrupole mass spectrometer, measures the concentrations of selected masses in the Fusion Energy Division's (FED) Advanced Toroidal Facility (ATF). The RGA software is a VAX FORTRAN computer program which controls the experimental apparatus, records the raw data, performs data reduction, and plots the data. The RGA program allows data to be collected from an RGA on ATF or from either of two RGAs in the laboratory. In the laboratory, the RGA diagnostic plays an important role in outgassing studied on various candidate materials for fusion experiments. One such material, graphite, ismore » being used more often in fusion experiments due to its ability to withstand high power loads. One of the functions of the RGA diagnostic is aid in the determination of the best grade of graphite to be used in these experiments and to study the procedures used to condition it. A procedure of particular interest involves baking the graphite sample in order to remove impurities that may be present in it. These impurities can be studied while in the ATF plasma or while being baked and outgassed in the laboratory. The Residual Gas Analyzer is a quadrupole mass spectrometer capable of scanning masses ranging in size from 1 atomic mass unit (amu) to 300 amu while under computer control. The procedure for collecting data for a particular mass is outlined.« less

  20. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

Top