Sample records for world soil database

  1. S-World: A high resolution global soil database for simulation modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property at a particular location given a specific soil type. The soil properties are predicted for each grid cell based on the soil type, the corresponding ranges of soil properties, and the co-variables. Step 4: Standard depth profiles are developed for each of the soil types using the diagnostic criteria of the soil types and soil profile information from the ISRIC-WISE database. The standard soil profiles are combined with the the predicted values for the topsoil and subsoil yielding unique soil profiles at each location. Step 5: In a final step, additional soil properties are added to the database using averages for the soil types and pedo-transfer functions. The methodology, denominated S-World (Soils of the World), results in readily available global maps with quantitative pedon data for modelling purposes. It forms the basis for the Global Gridded Crop Model Intercomparison carried out within AgMIP.

  2. Global distribution of soil organic carbon, based on the Harmonized World Soil Database - Part 1: Masses and frequency distribution of SOC stocks for the tropics, permafrost regions, wetlands, and the world

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Hiederer, R.; Freibauer, A.

    2014-09-01

    The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

  3. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  4. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    NASA Astrophysics Data System (ADS)

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  5. Global distribution of soil organic carbon - Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Hiederer, R.; Freibauer, A.

    2015-04-01

    The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

  6. Toward Soil Spatial Information Systems (SSIS) for global modeling and ecosystem management

    NASA Technical Reports Server (NTRS)

    Baumgardner, Marion F.

    1995-01-01

    The general objective is to conduct research to contribute toward the realization of a world soils and terrain (SOTER) database, which can stand alone or be incorporated into a more complete and comprehensive natural resources digital information system. The following specific objectives are focussed on: (1) to conduct research related to (a) translation and correlation of different soil classification systems to the SOTER database legend and (b) the inferfacing of disparate data sets in support of the SOTER Project; (2) to examine the potential use of AVHRR (Advanced Very High Resolution Radiometer) data for delineating meaningful soils and terrain boundaries for small scale soil survey (range of scale: 1:250,000 to 1:1,000,000) and terrestrial ecosystem assessment and monitoring; and (3) to determine the potential use of high dimensional spectral data (220 reflectance bands with 10 m spatial resolution) for delineating meaningful soils boundaries and conditions for the purpose of detailed soil survey and land management.

  7. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.

    2012-10-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.

  8. The Unified North American Soil Map and its implication on the soil organic carbon stock in North America

    NASA Astrophysics Data System (ADS)

    Liu, S.; Wei, Y.; Post, W. M.; Cook, R. B.; Schaefer, K.; Thornton, M. M.

    2013-05-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data will provide a resource for use in terrestrial ecosystem modeling both for input of soil characteristics and for benchmarking model output.

  9. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  10. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shishi; Wei, Yaxing; Post, Wilfred M

    2013-01-01

    The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art U.S. STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0-30 cm) and the sub soil layer (30-100 cm) respectively,more » of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.« less

  11. The Unified North American Soil Map and Its Implication on the Soil Organic Carbon Stock in North America

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Liu, S.; Huntzinger, D. N.; Michalak, A. M.; Post, W. M.; Cook, R. B.; Schaefer, K. M.; Thornton, M.

    2014-12-01

    The Unified North American Soil Map (UNASM) was developed by Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm), respectively, of the spatial resolution of 0.25 degrees in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 365.96 Pg, of which 23.1% is under trees, 14.1% is in shrubland, and 4.6% is in grassland and cropland. This UNASM data has been provided as a resource for use in terrestrial ecosystem modeling of MsTMIP both for input of soil characteristics and for benchmarking model output.

  12. Pedoinformatics Approach to Soil Text Analytics

    NASA Astrophysics Data System (ADS)

    Furey, J.; Seiter, J.; Davis, A.

    2017-12-01

    The several extant schema for the classification of soils rely on differing criteria, but the major soil science taxonomies, including the United States Department of Agriculture (USDA) and the international harmonized World Reference Base for Soil Resources systems, are based principally on inferred pedogenic properties. These taxonomies largely result from compiled individual observations of soil morphologies within soil profiles, and the vast majority of this pedologic information is contained in qualitative text descriptions. We present text mining analyses of hundreds of gigabytes of parsed text and other data in the digitally available USDA soil taxonomy documentation, the Soil Survey Geographic (SSURGO) database, and the National Cooperative Soil Survey (NCSS) soil characterization database. These analyses implemented iPython calls to Gensim modules for topic modelling, with latent semantic indexing completed down to the lowest taxon level (soil series) paragraphs. Via a custom extension of the Natural Language Toolkit (NLTK), approximately one percent of the USDA soil series descriptions were used to train a classifier for the remainder of the documents, essentially by treating soil science words as comprising a novel language. While location-specific descriptors at the soil series level are amenable to geomatics methods, unsupervised clustering of the occurrence of other soil science words did not closely follow the usual hierarchy of soil taxa. We present preliminary phrasal analyses that may account for some of these effects.

  13. Development of Databases with Iodine in Foods and Dietary Supplements

    USDA-ARS?s Scientific Manuscript database

    Iodine is an essential micronutrient required for normal growth and development, thus an adequate intake of iodine is particularly important in pregnant and lactating women, and throughout childhood. Low levels of iodine in the soil and groundwater are common in many parts of the world, often leadi...

  14. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils

    NASA Astrophysics Data System (ADS)

    Hou, Enqing; Chen, Chengrong; Kuang, Yuanwen; Zhang, Yuguang; Heenan, Marijke; Wen, Dazhi

    2016-09-01

    Understanding the soil phosphorus (P) cycle is a prerequisite for predicting how environmental changes may influence the dynamics and availability of P in soil. We compiled a database of P fractions sequentially extracted by the Hedley procedure and its modification in 626 unfertilized and uncultivated soils worldwide. With this database, we applied structural equation modeling to test hypothetical soil P transformation models and to quantify the importance of different soil P pools and P transformation pathways in shaping soil P availability at a global scale. Our models revealed that soluble inorganic P (Pi, a readily available P pool) was positively and directly influenced by labile Pi, labile organic P (Po), and primary mineral P and negatively and directly influenced by secondary mineral P; soluble Pi was not directly influenced by moderately labile Po or occluded P. The overall effect on soluble Pi was greatest for labile Pi followed by the organic P pools, occluded P, and then primary mineral P; the overall influence from secondary mineral P was small. Labile Pi was directly linked to all other soil P pools and was more strongly linked than soluble Pi to labile Po and primary mineral P. Our study highlights the important roles of labile Pi in mediating P transformations and in determining overall P availability in soils throughout the world.

  15. Using a Relational Database to Index Infectious Disease Information

    PubMed Central

    Brown, Jay A.

    2010-01-01

    Mapping medical knowledge into a relational database became possible with the availability of personal computers and user-friendly database software in the early 1990s. To create a database of medical knowledge, the domain expert works like a mapmaker to first outline the domain and then add the details, starting with the most prominent features. The resulting “intelligent database” can support the decisions of healthcare professionals. The intelligent database described in this article contains profiles of 275 infectious diseases. Users can query the database for all diseases matching one or more specific criteria (symptom, endemic region of the world, or epidemiological factor). Epidemiological factors include sources (patients, water, soil, or animals), routes of entry, and insect vectors. Medical and public health professionals could use such a database as a decision-support software tool. PMID:20623018

  16. Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries

    NASA Astrophysics Data System (ADS)

    Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline

    2017-04-01

    The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt and Wallonia) and Luxembourg. The three local libraries only consist of spectral data (199 samples) acquired using the same protocol as the one used for the LUCAS database. SOC was estimated with a good accuracy both within each local library (RMSE: 1.2 ÷ 5.4 g kg-1; RPD: 1.41 ÷ 2.06) and for the samples of the three libraries together (RMSE: 3.9 g kg-1; RPD: 2.47). The proposed approach could allow to estimate SOC everywhere in Europe only collecting spectra, without the need for chemical laboratory analyses, exploiting the potentiality of the LUCAS database and specific PLSR models.

  17. Development of a station based climate database for SWAT and APEX assessments in the U.S.

    USDA-ARS?s Scientific Manuscript database

    Water quality simulation models such as the Soil and Water Assessment Tool (SWAT) and Agricultural Policy EXtender (APEX) are widely used in the U.S. These models require large amounts of spatial and tabular data to simulate the natural world. Accurate and seamless daily climatic data are critical...

  18. Soil Organic Carbon for Global Benefits - assessing potential SOC increase under SLM technologies worldwide and evaluating tradeoffs and gains of upscaling SLM technologies

    NASA Astrophysics Data System (ADS)

    Wolfgramm, Bettina; Hurni, Hans; Liniger, Hanspeter; Ruppen, Sebastian; Milne, Eleanor; Bader, Hans-Peter; Scheidegger, Ruth; Amare, Tadele; Yitaferu, Birru; Nazarmavloev, Farrukh; Conder, Malgorzata; Ebneter, Laura; Qadamov, Aslam; Shokirov, Qobiljon; Hergarten, Christian; Schwilch, Gudrun

    2013-04-01

    There is a fundamental mutual interest between enhancing soil organic carbon (SOC) in the world's soils and the objectives of the major global environmental conventions (UNFCCC, UNCBD, UNCCD). While there is evidence at the case study level that sustainable land management (SLM) technologies increase SOC stocks and SOC related benefits, there is no quantitative data available on the potential for increasing SOC benefits from different SLM technologies and especially from case studies in the developing countries, and a clear understanding of the trade-offs related to SLM up-scaling is missing. This study aims at assessing the potential increase of SOC under SLM technologies worldwide, evaluating tradeoffs and gains in up-scaling SLM for case studies in Tajikistan, Ethiopia and Switzerland. It makes use of the SLM technologies documented in the online database of the World Overview of Conservation Approaches and Technologies (WOCAT). The study consists of three components: 1) Identifying SOC benefits contributing to the major global environmental issues for SLM technologies worldwide as documented in the WOCAT global database 2) Validation of SOC storage potentials and SOC benefit predictions for SLM technologies from the WOCAT database using results from existing comparative case studies at the plot level, using soil spectral libraries and standardized documentations of ecosystem service from the WOCAT database. 3) Understanding trade-offs and win-win scenarios of up-scaling SLM technologies from the plot to the household and landscape level using material flow analysis. This study builds on the premise that the most promising way to increase benefits from land management is to consider already existing sustainable strategies. Such SLM technologies from all over the world documented are accessible in a standardized way in the WOCAT online database. The study thus evaluates SLM technologies from the WOCAT database by calculating the potential SOC storage increase and related benefits by comparing SOC estimates before-and-after establishment of the SLM technology. These results are validated using comparative case studies of plots with-and-without SLM technologies (existing SLM systems versus surrounding, degrading systems). In view of upscaling SLM technologies, it is crucial to understand tradeoffs and gains supporting or hindering the further spread. Systemic biomass management analysis using material flow analysis allows quantifying organic carbon flows and storages for different land management options at the household, but also at landscape level. The study shows results relevant for science, policy and practice for accounting, monitoring and evaluating SOC related ecosystem services: - A comprehensive methodology for SLM impact assessments allowing quantification of SOC storage and SOC related benefits under different SLM technologies, and - Improved understanding of upscaling options for SLM technologies and tradeoffs as well as win-win opportunities for biomass management, SOC content increase, and ecosystem services improvement at the plot and household level.

  19. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE PAGES

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; ...

    2017-09-28

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  20. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng

    2017-10-01

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.

  1. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  2. Plant mycorrhizal traits and carbon fates from plot to globe

    NASA Astrophysics Data System (ADS)

    Soudzilovskaia, N.; Cornelissen, H. H. C.

    2016-12-01

    Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and (thereby) atmospheric carbon.

  3. Hazards to wildlife from soil-borne cadmium reconsidered

    USGS Publications Warehouse

    Beyer, W.N.

    2000-01-01

    Cadmium is a toxic element that should be included in environmental risk assessments of contaminated soils. This paper argues, however, that hazards to wildlife from cadmium have often been overstated. The literature contains only meager evidence that wild animals have been seriously harmed by cadmium, even at severely contaminated sites. Although some researchers have reported that wildlife have accumulated concentrations of cadmium in their kidneys that were above suggested injury thresholds, the thresholds may be disputed, since they were well below the World Health Organization criterion of 200 mg/kg (wet weight) of cadmium in the renal cortex for protecting human health. Recent risk assessments have concluded that soil cadmium concentrations less than 1 mg/kg are toxic to soil organisms and wildlife, which implies that background concentrations of cadmium naturally found in soils are hazardous. An examination of the databases used to support these assessments suggested that the toxicity of cadmium has been exaggerated.

  4. [Effects of soil data and map scale on assessment of total phosphorus storage in upland soils.

    PubMed

    Li, Heng Rong; Zhang, Li Ming; Li, Xiao di; Yu, Dong Sheng; Shi, Xue Zheng; Xing, Shi He; Chen, Han Yue

    2016-06-01

    Accurate assessment of total phosphorus storage in farmland soils is of great significance to sustainable agricultural and non-point source pollution control. However, previous studies haven't considered the estimation errors from mapping scales and various databases with different sources of soil profile data. In this study, a total of 393×10 4 hm 2 of upland in the 29 counties (or cities) of North Jiangsu was cited as a case for study. Analysis was performed of how the four sources of soil profile data, namely, "Soils of County", "Soils of Prefecture", "Soils of Province" and "Soils of China", and the six scales, i.e. 1:50000, 1:250000, 1:500000, 1:1000000, 1:4000000 and1:10000000, used in the 24 soil databases established for the four soil journals, affected assessment of soil total phosphorus. Compared with the most detailed 1:50000 soil database established with 983 upland soil profiles, relative deviation of the estimates of soil total phosphorus density (STPD) and soil total phosphorus storage (STPS) from the other soil databases varied from 4.8% to 48.9% and from 1.6% to 48.4%, respectively. The estimated STPD and STPS based on the 1:50000 database of "Soils of County" and most of the estimates based on the databases of each scale in "Soils of County" and "Soils of Prefecture" were different, with the significance levels of P<0.001 or P<0.05. Extremely significant differences (P<0.001) existed between the estimates based on the 1:50000 database of "Soils of County" and the estimates based on the databases of each scale in "Soils of Province" and "Soils of China". This study demonstrated the significance of appropriate soil data sources and appropriate mapping scales in estimating STPS.

  5. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. Citations and the h index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar

    PubMed Central

    Hartemink, Alfred E.; McBratney, Alex; Jang, Ho-Jun

    2013-01-01

    Citation metrics and h indices differ using different bibliometric databases. We compiled the number of publications, number of citations, h index and year since the first publication from 340 soil researchers from all over the world. On average, Google Scholar has the highest h index, number of publications and citations per researcher, and the Web of Science the lowest. The number of papers in Google Scholar is on average 2.3 times higher and the number of citations is 1.9 times higher compared to the data in the Web of Science. Scopus metrics are slightly higher than that of the Web of Science. The h index in Google Scholar is on average 1.4 times larger than Web of Science, and the h index in Scopus is on average 1.1 times larger than Web of Science. Over time, the metrics increase in all three databases but fastest in Google Scholar. The h index of an individual soil scientist is about 0.7 times the number of years since his/her first publication. There is a large difference between the number of citations, number of publications and the h index using the three databases. From this analysis it can be concluded that the choice of the database affects widely-used citation and evaluation metrics but that bibliometric transfer functions exist to relate the metrics from these three databases. We also investigated the relationship between journal’s impact factor and Google Scholar’s h5-index. The h5-index is a better measure of a journal’s citation than the 2 or 5 year window impact factor. PMID:24167778

  7. Citations and the h index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar.

    PubMed

    Minasny, Budiman; Hartemink, Alfred E; McBratney, Alex; Jang, Ho-Jun

    2013-01-01

    Citation metrics and h indices differ using different bibliometric databases. We compiled the number of publications, number of citations, h index and year since the first publication from 340 soil researchers from all over the world. On average, Google Scholar has the highest h index, number of publications and citations per researcher, and the Web of Science the lowest. The number of papers in Google Scholar is on average 2.3 times higher and the number of citations is 1.9 times higher compared to the data in the Web of Science. Scopus metrics are slightly higher than that of the Web of Science. The h index in Google Scholar is on average 1.4 times larger than Web of Science, and the h index in Scopus is on average 1.1 times larger than Web of Science. Over time, the metrics increase in all three databases but fastest in Google Scholar. The h index of an individual soil scientist is about 0.7 times the number of years since his/her first publication. There is a large difference between the number of citations, number of publications and the h index using the three databases. From this analysis it can be concluded that the choice of the database affects widely-used citation and evaluation metrics but that bibliometric transfer functions exist to relate the metrics from these three databases. We also investigated the relationship between journal's impact factor and Google Scholar's h5-index. The h5-index is a better measure of a journal's citation than the 2 or 5 year window impact factor.

  8. 77 FR 12234 - Changes in Hydric Soils Database Selection Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Conservation Service [Docket No. NRCS-2011-0026] Changes in Hydric Soils Database Selection Criteria AGENCY... Changes to the National Soil Information System (NASIS) Database Selection Criteria for Hydric Soils of the United States. SUMMARY: The National Technical Committee for Hydric Soils (NTCHS) has updated the...

  9. Soil organic carbon sequestration potential and gap of the sub-tropical region

    NASA Astrophysics Data System (ADS)

    Chiti, T.; Santini, M.; Valentini, R.

    2012-04-01

    A database of soil organic carbon (SOC) stocks was created for the sub-tropical belt using existing global SOC databases (WISE3; various SOTER) and new data from an ongoing project (ERC Africa-GHG) specific for the tropical forests of the African continent. The intent of this database is to evaluate the sequestration potential of a critical area of the world where most of the primary rainforests are located, and actually show undoubtedly high SOC losses associated with deforestation. About 4100 profiles, quite well distributed over the entire sub-tropical belt, were used to calculate the actual SOC stock for the 0-30 cm and 30-100 cm depths of mineral soil. First, this actual SOC stock has been related to the current Land Use Systems; successively, it has been interpolated taking into account Homogeneous Land Units (HLUs) in terms of soil type, climate zone and land use. Then, relying on consistent projections, of both climate and land use changes, for the years 2050 and 2100 under extremes IPCC-SRES emission scenarios such as the B1 and the A2, potential SOC stocks for these time frames has been calculated. Soil carbon sequestration gap is calculated by the difference of the actual SOC stock and the future projections. When subtracting potential from the actual SOC stocks, negative values represent a gap in terms of possible SOC losses and so reduced carbon sequestration. The soil carbon gap indicates locations where there will be low soil-carbon levels associated with medium-to-high actual SOC stocks, and medium soil-carbon levels associated with high actual SOC stocks, depending on soil type, climate and land use conditions. On the long term, 2076-2100, a SOC gap is observed under all scenarios in South America, just below the Amazonia basin, where are located open and fragmented forests. However, in the Amazonia basin deforestation decrease since no sensible SOC losses were observed. An important gap is observed also in the Congo basin and West Africa, but the gap is more fragmented in small spots than that observed in South America. Forests of Asia seems to be less interested from SOC losses and the projections show almost no gaps under both scenarios. The soil organic carbon sequestration potential database is intended to provide an indication at the regional level of the potential for policy makers to provide environmental services and drive specific policy to increase sustainable land management.

  10. Classification problems of Mount Kenya soils

    NASA Astrophysics Data System (ADS)

    Mutuma, Evans; Csorba, Ádám; Wawire, Amos; Dobos, Endre; Michéli, Erika

    2017-04-01

    Soil sampling on the agricultural lands covering 1200 square kilometers in the Eastern part of Mount Kenya was carried out to assess the status of soil organic carbon (SOC) as a soil fertility indicator, and to create an up-to-date soil classification map. The geology of the area consists of volcanic rocks and recent superficial deposits. The volcanic rocks are related to the Pliocene time; mainly: lahars, phonolites, tuffs, basalt and ashes. A total of 28 open profiles and 49 augered profiles with 269 samples were collected. The samples were analyzed for total carbon, organic carbon, particle size distribution, percent bases, cation exchange capacity and pH among other parameters. The objective of the study was to evaluate the variability of SOC in different Reference Soil Groups (RGS) and to compare the determined classification units with the KENSOTER database. Soil classification was performed based on the World Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and environmental setting, Nitisols were expected to be the dominant soils of the sampled area. However, this was not the case. The major differences to earlier survey data (KENSOTER database) are the presence of high activity clays (CEC value range 27.6 cmol/kg - 70 cmol/kg), high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) keeping these soils out of the Nitisols RSG. There was good accordance in the morphological features with the earlier survey but failed the silt/clay ratio criteria for Nitisols. This observation calls attention to set new classification criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to avoid difficulties in interpretation. To address the classification problem, this paper further discusses the taxonomic relationships between the studied soils. On the contrary most of the diagnostic elements (like the presence Umbric horizon, Vitric and Andic properties) and the some qualifiers (Humic, Dystric, Clayic, Skeletic, Leptic, etc) represent useful information for land use and management in the area.

  11. Evaluating Land-Atmosphere Interactions with the North American Soil Moisture Database

    NASA Astrophysics Data System (ADS)

    Giles, S. M.; Quiring, S. M.; Ford, T.; Chavez, N.; Galvan, J.

    2015-12-01

    The North American Soil Moisture Database (NASMD) is a high-quality observational soil moisture database that was developed to study land-atmosphere interactions. It includes over 1,800 monitoring stations the United States, Canada and Mexico. Soil moisture data are collected from multiple sources, quality controlled and integrated into an online database (soilmoisture.tamu.edu). The period of record varies substantially and only a few of these stations have an observation record extending back into the 1990s. Daily soil moisture observations have been quality controlled using the North American Soil Moisture Database QAQC algorithm. The database is designed to facilitate observationally-driven investigations of land-atmosphere interactions, validation of the accuracy of soil moisture simulations in global land surface models, satellite calibration/validation for SMOS and SMAP, and an improved understanding of how soil moisture influences climate on seasonal to interannual timescales. This paper provides some examples of how the NASMD has been utilized to enhance understanding of land-atmosphere interactions in the U.S. Great Plains.

  12. Specification of parameters for development of a spatial database for drought monitoring and famine early warning in the African Sahel

    NASA Technical Reports Server (NTRS)

    Rochon, Gilbert L.

    1989-01-01

    Parameters were described for spatial database to facilitate drought monitoring and famine early warning in the African Sahel. The proposed system, referred to as the African Drought and Famine Information System (ADFIS) is ultimately recommended for implementation with the NASA/FEMA Spatial Analysis and Modeling System (SAMS), a GIS/Dymanic Modeling software package, currently under development. SAMS is derived from FEMA'S Integration Emergency Management Information System (IEMIS) and the Pacific Northwest Laborotory's/Engineering Topographic Laboratory's Airland Battlefield Environment (ALBE) GIS. SAMS is primarily intended for disaster planning and resource management applications with the developing countries. Sources of data for the system would include the Developing Economics Branch of the U.S. Dept. of Agriculture, the World Bank, Tulane University School of Public Health and Tropical Medicine's Famine Early Warning Systems (FEWS) Project, the USAID's Foreign Disaster Assistance Section, the World Resources Institute, the World Meterological Institute, the USGS, the UNFAO, UNICEF, and the United Nations Disaster Relief Organization (UNDRO). Satellite imagery would include decadal AVHRR imagery and Normalized Difference Vegetation Index (NDVI) values from 1981 to the present for the African continent and selected Landsat scenes for the Sudan pilot study. The system is initially conceived for the MicroVAX 2/GPX, running VMS. To facilitate comparative analysis, a global time-series database (1950 to 1987) is included for a basic set of 125 socio-economic variables per country per year. A more detailed database for the Sahelian countries includes soil type, water resources, agricultural production, agricultural import and export, food aid, and consumption. A pilot dataset for the Sudan with over 2,500 variables from the World Bank's ANDREX system, also includes epidemiological data on incidence of kwashiorkor, marasmus, other nutritional deficiencies, and synergistically-related infectious diseases.

  13. [Review of digital ground object spectral library].

    PubMed

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  14. Effects of Soil Data and Simulation Unit Resolution on Quantifying Changes of Soil Organic Carbon at Regional Scale with a Biogeochemical Process Model

    PubMed Central

    Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong

    2014-01-01

    Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1∶50,000 (P5), a county-based database of 1∶50,000 (C5) and county-based database of 1∶14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1∶50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1∶14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0–30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, −3.99 Tg C and −15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922

  15. Construction of an Yucatec Maya soil classification and comparison with the WRB framework

    PubMed Central

    2010-01-01

    Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Methods Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. Results On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. Conclusions The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols. PMID:20152047

  16. Construction of an Yucatec Maya soil classification and comparison with the WRB framework.

    PubMed

    Bautista, Francisco; Zinck, J Alfred

    2010-02-13

    Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.

  17. Effects of Long-term Soil and Crop Management on Soil Hydraulic Properties for Claypan Soils

    USDA-ARS?s Scientific Manuscript database

    Regional and national soil maps and associated databases of soil properties have been developed to help land managers make decisions based on soil characteristics. Hydrologic modelers also utilize soil hydraulic properties provided in these databases, in which soil characterization is based on avera...

  18. Soils Diversity in the Southwest of Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz; Fernández-Pozo, Luis; Cabezas, José; Alexandre Castanho, Rui; Loures, Luís

    2017-04-01

    Back in 1960 the Seventh International Congress of Soil Science has proposed to develop a World Soil Mapping at a scale of 1: 1000000, with a purpose of getting a systematic inventory of soils, and also to allow a transfer of experiences between different countries and institutions. The mapping process has been coordinated by the European Soil Bureau (ESBN) and the European Commission, along with the participation of the European Environment Agency (EEA) and the Food and Agriculture Organization of the United Nations (FAO), based on the classification proposed by the "World Reference Base for Soil Resource" (WRB, FAO, 1998). Throughout this mapping and helped by the European Soil Database (v2.0), a mapping of soils and their diversity, in the area under analysis on the present paper - EUROACE (Alentejo-Centro-Extremadura) in the Southwest of Iberian Peninsula - has been developed and assessed using Geographic Information Systems (GIS) and algorithms of diversity. The obtained results have shown that in this particularly territory it is possible to identify 12 Reference Soil Groups (RSG) at first level, and 26 at second level, predominating Regosols and Dystrict Regosols respectively, whereas in the Mediterranean Region (Biogeographical Regions of Europe, BGRE) are 22 and 71 correspondingly with predominant for Cambisols and Calcaric Cambisols. By the analysis and assessment of soil diversity, the Shannon Index (H') is lower in EUROACE (1,67 vs 2,42 and 2,52 vs 3,35 to first and second levels); the evenness (E) shows a more equal distribution in RSG at first level in the Mediterranean Region (0,70 vs 0,67) and lower at the second level (0,67 vs 0,77 in EUROACE). These results will enable the development of a more complete pedodiversity inventory in several other regions, and also as tools to the study of soil susceptibility which will allow not only to protect a very important part of European natural heritage, but also to take specific measures to increase a better land use and management, which leads to sustainability.

  19. Strategies to improve reference databases for soil microbiomes

    DOE PAGES

    Choi, Jinlyung; Yang, Fan; Stepanauskas, Ramunas; ...

    2016-12-09

    A database of curated genomes is needed to better assess soil microbial communities and their processes associated with differing land management and environmental impacts. Interpreting soil metagenomic datasets with existing sequence databases is challenging because these datasets are biased towards medical and biotechnology research and can result in misleading annotations. We have curated a database of 928 genomes of soil-associated organisms (888 bacteria, 34 archaea, and 6 fungi). Using this database as a representation of the current state of knowledge of soil microbes that are well-characterized, we evaluated its composition and compared it to broader microbial databases, specifically NCBI’s RefSeq,more » as well as 3,035 publicly available soil amplicon datasets. These comparisons identified phyla and functions that are enriched in soils as well as those that may be underrepresented in RefSoil. For example, RefSoil was observed to have increased representation of Firmicutes despite its low abundance in soil environments and also lacked representation of Acidobacteria and Verrucomicrobia, which are abundant in soils. Our comparison of RefSoil to soil amplicon datasets allowed us to identify targets that if cultured or sequenced would significantly increase the biodiversity represented within RefSoil. To demonstrate the opportunities to access these underrepresented targets, we employed single cell genomics in a pilot experiment to recover 14 genomes from the "most wanted" list, which improved RefSoil's representation of EMP sequences by 7% by abundance. This effort demonstrates the value of RefSoil in the guidance of future research efforts and the capability of single cell genomics as a practical means to fill the existing genomic data gaps.« less

  20. Strategies to improve reference databases for soil microbiomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jinlyung; Yang, Fan; Stepanauskas, Ramunas

    A database of curated genomes is needed to better assess soil microbial communities and their processes associated with differing land management and environmental impacts. Interpreting soil metagenomic datasets with existing sequence databases is challenging because these datasets are biased towards medical and biotechnology research and can result in misleading annotations. We have curated a database of 928 genomes of soil-associated organisms (888 bacteria, 34 archaea, and 6 fungi). Using this database as a representation of the current state of knowledge of soil microbes that are well-characterized, we evaluated its composition and compared it to broader microbial databases, specifically NCBI’s RefSeq,more » as well as 3,035 publicly available soil amplicon datasets. These comparisons identified phyla and functions that are enriched in soils as well as those that may be underrepresented in RefSoil. For example, RefSoil was observed to have increased representation of Firmicutes despite its low abundance in soil environments and also lacked representation of Acidobacteria and Verrucomicrobia, which are abundant in soils. Our comparison of RefSoil to soil amplicon datasets allowed us to identify targets that if cultured or sequenced would significantly increase the biodiversity represented within RefSoil. To demonstrate the opportunities to access these underrepresented targets, we employed single cell genomics in a pilot experiment to recover 14 genomes from the "most wanted" list, which improved RefSoil's representation of EMP sequences by 7% by abundance. This effort demonstrates the value of RefSoil in the guidance of future research efforts and the capability of single cell genomics as a practical means to fill the existing genomic data gaps.« less

  1. Effects of soil water holding capacity on evapotranspiration and irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    The USDA Natural Resources Conservation Service (NRCS), through the National Cooperative Soil Survey, developed three soil geographic databases that are appropriate for acquiring soil information at the national, regional, and local scales. These relational databases include the National Soil Geogra...

  2. World Reference Base | FAO SOILS PORTAL | Food and Agriculture

    Science.gov Websites

    > Soil classification > World Reference Base FAO SOILS PORTAL Survey Assessment Biodiversity Management Degradation/Restoration Policies/Governance Publications Soil properties Soil classification World Reference Base FAO legend USDA soil taxonomy Universal soil classification National Systems Numerical

  3. The World Soil Museum: education and advocacy on soils of the world

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Land, Hiske

    2013-04-01

    The World Soil Museum (WSM) in Wageningen, is part of ISRIC World Soil Information and was founded in 1966 on request of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Soil Science Society. The World Soil Museum has a collection of over 1100 soil profiles from more than 70 countries. This soil profiles are vertical sections and show the composition, layering and structure of the soil. The collection is unique in the world and includes a significant number of soil profiles from the Netherlands. The Dutch soil collection is important for serving broader visitor groups, as some visitors, such as secondary school classes, are specifically interested in the Dutch landscape and soils. Broadly speaking, the World Soil Museum has five functions: (i) education and courses, (ii) research, (iii) information and edutainment, (iv) social function, and (v) a real museum function (Art). The World Soil Museum (World Soil Museum) is well known in national and international circles soil and the English name has almost 1,000 references on the Internet. The World Soil Museum is visited by about 1000 people a year, mainly university and college students from Western Europe. Other visitor groups that have found their way to the museum are students from disciplines broader then soil science, such as geography and rural development. Secondary school classes visit the museum for geography classes. The uniqueness and the value of the collection of soil profiles (soil monoliths) and associated collections, such as soil samples, hand pieces, thin sections, slides, is emphasized by the fact ISRIC is the only World Data Centre for Soils (WDC-Soils) within the World Data System of the International Council of Science (ICSU). The collection provides an insight in and overview of the diversity of soils in the world, their properties and their limitations and possibilities for use. A new building is under construction for the WSM, which is expected to be ready mid-2013. The location is appropriately placed on the Wageningen University Campus, close to the students and research centres of the University. The new exposition space will provide new opportunities for serving different visitor groups. The selection of about 80 soil monoliths representing the world's soils will be maintained in the new exposition. In addition, interactive displays will support education. A circular, interactive map of the world will be placed centrally in the exposition and will serve as a portal to the soil information. The map data refer to the monoliths on the walls and vice versa. Around the central map six theme stations communicate current topics that show the relevance of soil in different fields. For the general public it will explain the principles of soil formation and it will show the relevance to actual issues like food production and climate change. High school students in their final years can come here for work assignments and orientation days. Academic students and scientists, from both the Netherlands and other (mainly) northern European countries can continue to come to the WSM for education, study and research.

  4. International Soil Carbon Network (ISCN) Database v3-1

    DOE Data Explorer

    Nave, Luke [University of Michigan] (ORCID:0000000182588335); Johnson, Kris [USDA-Forest Service; van Ingen, Catharine [Microsoft Research; Agarwal, Deborah [Lawrence Berkeley National Laboratory] (ORCID:0000000150452396); Humphrey, Marty [University of Virginia; Beekwilder, Norman [University of Virginia

    2016-01-01

    The ISCN is an international scientific community devoted to the advancement of soil carbon research. The ISCN manages an open-access, community-driven soil carbon database. This is version 3-1 of the ISCN Database, released in December 2015. It gathers 38 separate dataset contributions, totalling 67,112 sites with data from 71,198 soil profiles and 431,324 soil layers. For more information about the ISCN, its scientific community and resources, data policies and partner networks visit: http://iscn.fluxdata.org/.

  5. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.

    PubMed

    Aksoy, Ece; Yigini, Yusuf; Montanarella, Luca

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they're collected from the "Land Use/Cover Area frame Statistical Survey" (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and "Soil Transformations in European Catchments" (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960-1990 and 2000-2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%.

  6. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe

    PubMed Central

    Aksoy, Ece

    2016-01-01

    Accuracy in assessing the distribution of soil organic carbon (SOC) is an important issue because of playing key roles in the functions of both natural ecosystems and agricultural systems. There are several studies in the literature with the aim of finding the best method to assess and map the distribution of SOC content for Europe. Therefore this study aims searching for another aspect of this issue by looking to the performances of using aggregated soil samples coming from different studies and land-uses. The total number of the soil samples in this study was 23,835 and they’re collected from the “Land Use/Cover Area frame Statistical Survey” (LUCAS) Project (samples from agricultural soil), BioSoil Project (samples from forest soil), and “Soil Transformations in European Catchments” (SoilTrEC) Project (samples from local soil data coming from six different critical zone observatories (CZOs) in Europe). Moreover, 15 spatial indicators (slope, aspect, elevation, compound topographic index (CTI), CORINE land-cover classification, parent material, texture, world reference base (WRB) soil classification, geological formations, annual average temperature, min-max temperature, total precipitation and average precipitation (for years 1960–1990 and 2000–2010)) were used as auxiliary variables in this prediction. One of the most popular geostatistical techniques, Regression-Kriging (RK), was applied to build the model and assess the distribution of SOC. This study showed that, even though RK method was appropriate for successful SOC mapping, using combined databases was not helpful to increase the statistical significance of the method results for assessing the SOC distribution. According to our results; SOC variation was mainly affected by elevation, slope, CTI, average temperature, average and total precipitation, texture, WRB and CORINE variables for Europe scale in our model. Moreover, the highest average SOC contents were found in the wetland areas; agricultural areas have much lower soil organic carbon content than forest and semi natural areas; Ireland, Sweden and Finland has the highest SOC, on the contrary, Portugal, Poland, Hungary, Spain, Italy have the lowest values with the average 3%. PMID:27011357

  7. Ecosystem services provided by agricultural terraces in semi-arid climates.

    NASA Astrophysics Data System (ADS)

    Romero-Díaz, Asunción; Díaz-Pereira, Elvira; Boix-Fayos, Carolina; de Vente, Joris

    2016-04-01

    Since ancient times, agricultural terraces are common features throughout the world, especially on steep slope gradients. Nowadays many terraces have been abandoned or removed and few new terraces are build due to increased mechanisation and intensification of agriculture. However, terraces are amongst the most effective soil conservation practices, reducing the slope gradient and slope length, as well as runoff rate and soil erosion, and without terraces, it would be impossible to cultivate on many hillslopes. Moreover, their scenic interest is undeniable, as in some cases, terraced slopes have even become part of UNESCO World Heritage. In order to highlight the potential benefits, requirements and limitations of terraces, we reviewed different types of sustainable land management practices related to terraces and characterised their implications for provisioning, regulating, supporting, and cultural ecosystem services. We centred our review on terraces in semi-arid environments worldwide, as were documented in the WOCAT (World Overview of Conservation Approaches and Technologies) database. Our results show that the most important ecosystem services provided by terraces relate to regulation of the on-site and off-site effects of runoff and erosion, and maintenance of soil fertility and vegetation cover. The presence of terraces also favours the provision of food, fiber, and clean water. In short, our results stress the crucial environmental, geomorphological and hydrological functions of terraces that directly relate to improving the quality of life of the people that use them. These results highlight the need for renewed recognition of the value of terraces for society, their preservation and maintenance.

  8. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    NASA Astrophysics Data System (ADS)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  9. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  10. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  11. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  12. Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database (NDP-017) (2001 version of original 1985 data)

    DOE Data Explorer

    Olsen, Jerry S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watts, Julia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allison, Linda J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2001-01-01

    In 1980, this data base and the corresponding map were completed after more than 20 years of field investigations, consultations, and analyses of published literature. They characterize the use and vegetative cover of the Earth's land surface with a 0.5° × 0.5° grid. This world-ecosystem-complex data set and the accompanying map provide a current reference base for interpreting the role of vegetation in the global cycling of CO2 and other gases and a basis for improved estimates of vegetation and soil carbon, of natural exchanges of CO2, and of net historic shifts of carbon between the biosphere and the atmosphere.

  13. Advancement of a soil parameters geodatabase for the modeling assessment of conservation practice outcomes in the United States

    USDA-ARS?s Scientific Manuscript database

    US-ModSoilParms-TEMPLE is a database composed of a set of geographic databases functionally storing soil-spatial units and soil hydraulic, physical, and chemical parameters for three agriculture management simulation models, SWAT, APEX, and ALMANAC. This paper introduces the updated US-ModSoilParms-...

  14. Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product (NDP-017b, a 2006 update of the original 1985 and 2001 data file))

    DOE Data Explorer

    Gibbs, Holly K. [Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI (United States)

    2006-01-01

    In the 1980s, Olson et al. developed a data base and corresponding map following more than 20 years of field investigations, consultations, and analyses of published literature. The original data characterize the use and vegetative cover of the Earth's land surface with a 0.5° by 0.5° grid. The purpose of these world-ecosystem-complex data and the accompanying map were to provide a current reference base for interpreting the role of vegetation in the global cycling of CO2 and other gases and a basis for improved estimates of vegetation and soil carbon, of natural exchanges of CO2, and of net historic shifts of carbon between the biosphere and the atmosphere. These data were widely used and cited in carbon cycle research. This updated database extends the methodology of Olson et al. to more contemporary land cover conditions of the Global Land Cover Database (GLC2000). The GLC2000 data were developed using remotely sensed imagery acquired in 2000. The updated data are presented in a GIS format and include estimates of mean and maximum carbon density values.

  15. Extent and status of mires, peatlands, and organic soils in Europe

    NASA Astrophysics Data System (ADS)

    Tanneberger, Franziska; Barthelmes, Alexandra; Tegetmeyer, Cosima; Busse, Stephan; Joosten, Hans

    2016-04-01

    Key words: peatland distribution, peatland drainage, GIS, Global Peatland Database, European Mires Book The relevance of drained peatlands to climate change due to emission of huge amounts of greenhouse gases has recently been recognised e.g. by IPCC, FAO, and the European Union. Oppositely, natural and restored peatlands provide ecosystem services like enhancing biodiversity, nutrient retention, groundwater storage, flood mitigation, and cooling. To evaluate the drainage status of peatlands and organic soils and to develop specific restoration strategies comprehensive and exact geospatial data are needed. The Global Peatland Database (GPD) is hosted at Greifswald Mire Centre (http://tiny.cc/globalpeat). Currently, it provides estimates on location, extent, and drainage status of peatlands and organic soils for 268 countries and regions of the world. Due to the large diversity of definitions and terms for peatlands and organic soils, this mapping follows the broad definition of organic soils from IPCC that gives a minimum soil organic carbon threshold of 12% and considers any depth of the organic layer larger than 10 cm. GIS datasets are continuously collected, specific terms and definitions analysed and the completeness and accuracy of the datasets evaluated. Currently, the GPD contains geospatial data on peatlands and organic soils for all European countries (except Moldova). Recent information on status, distribution, and conservation of mires and peatlands in Europe is summarised in the European Mires Book. It includes descriptions from 49 countries and other geographic entities in Europe. All country chapters follow a generic structure and include also extensive descriptions of national terminology (also in national languages and script) and typologies as well as up to date area statistics and maps. They are complemented by integrative chapters presenting mire classification, mire regionality, peatland use, and mire conservation in Europe. The European Mires Book is a project of the International Mire Conservation Group (IMCG) started in 1990. The volume contains contributions of 130 mire scientists from all over Europe and is published in 2016.

  16. Development of an Engineering Soil Database

    DTIC Science & Technology

    2017-12-27

    systems such as agricultural and geological soil classifications and soil parameters. Tier 3 Data were converted into equivalent USCS classification...14 2.7 U.S. Department of Agriculture (USDA) textural soil classification ............................ 16 2.7.1 Properties of USDA textural...Defense ERDC U.S. Army Engineer Research and Development Center ESDB European Soil Database FAO Food and Agriculture Organization (of the United

  17. Development of Databases on Iodine in Foods and Dietary Supplements

    PubMed Central

    Ershow, Abby G.; Skeaff, Sheila A.; Merkel, Joyce M.; Pehrsson, Pamela R.

    2018-01-01

    Iodine is an essential micronutrient required for normal growth and neurodevelopment; thus, an adequate intake of iodine is particularly important for pregnant and lactating women, and throughout childhood. Low levels of iodine in the soil and groundwater are common in many parts of the world, often leading to diets that are low in iodine. Widespread salt iodization has eradicated severe iodine deficiency, but mild-to-moderate deficiency is still prevalent even in many developed countries. To understand patterns of iodine intake and to develop strategies for improving intake, it is important to characterize all sources of dietary iodine, and national databases on the iodine content of major dietary contributors (including foods, beverages, water, salts, and supplements) provide a key information resource. This paper discusses the importance of well-constructed databases on the iodine content of foods, beverages, and dietary supplements; the availability of iodine databases worldwide; and factors related to variability in iodine content that should be considered when developing such databases. We also describe current efforts in iodine database development in the United States, the use of iodine composition data to develop food fortification policies in New Zealand, and how iodine content databases might be used when considering the iodine intake and status of individuals and populations. PMID:29342090

  18. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  19. Development of a Dynamic Visco-elastic Vehicle-Soil Interaction Model for Rut Depth, and Power Determinations

    DTIC Science & Technology

    2011-09-06

    Presentation Outline A) Review of Soil Model governing equations B) Development of pedo -transfer functions (terrain database to engineering properties) C...lateral earth pressure) UNCLASSIFIED B) Development of pedo -transfer functions Engineering parameters needed by soil model - compression index - rebound...inches, RCI for fine- grained soils, CI for coarse-grained soils. UNCLASSIFIED Pedo -transfer function • Need to transfer existing terrain database

  20. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    USGS Publications Warehouse

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are proposed for Cascadia and Japan. The results of this study differ significantly from previous analyses based on more limited data and have important implications for seismic-hazard analysis. The ground-motion relations predict that a great megathrust earthquake (M ???8) at a fault distance of about 100 km would produce pseudoacceleration (PSA), 5% damped, horizontal component on soil sites of about 110 cm/sec2 at 0.5 Hz, 660 cm/sec2 at 2.5 Hz, and 410 cm/sec2 at 5 Hz, with a peak ground acceleration of about 180 cm/ sec2 . These damaging levels of motion would be experienced over a very large area, corresponding to a rectangular area about 300 km wide by 500 km long. Large in-slab events (M 7.5) would produce even higher PSA values within 100 km of the fault, but the in-slab motions attenuate much more rapidly with distance. Thus the hazard posed by moderate to large in-slab events such as the 2001 Nisqually earthquake is modest compared to that of a Cascadia megathrust earthquake of M ???8, in terms of the area that would experience damaging levels of ground motion.

  1. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.

  2. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    NASA Astrophysics Data System (ADS)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based on analyses done in Rwanda, but can be complemented with ongoing research results or prospects for Burundi.

  3. The Metaproteome of "Park Grass" soil - a reference for EU soil science

    NASA Astrophysics Data System (ADS)

    Quinn, Gerry; Dudley, Ed; Doerr, Stefan; Matthews, Peter; Halen, Ingrid; Walley, Richard; Ashton, Rhys; Delmont, Tom; Francis, Lewis; Gazze, Salvatore Andrea; Van Keulen, Geertje

    2016-04-01

    Soil metaproteomics, the systemic extraction and identification of proteins from a soil, is key to understanding the biological and physical processes that occur within the soil at a molecular level. Until recently, direct extraction of proteins from complex soils have yielded only dozens of protein identifications due to interfering substances, such as humic acids and clay, which co-extract and/or strongly adsorb protein, often causing problems in downstream processing, e.g. mass spectrometry. Furthermore, the current most successful, direct, proteomic extraction protocol favours larger molecular weight and/or heat-stable proteins due to its extraction protocol. We have now developed a novel, faster, direct soil protein extraction protocol which also addressed the problem of interfering substances, while only requiring less than 1 gram of material per extraction. We extracted protein from the 'Genomic Observatory' Park Grass at Rothamsted Research (UK), an ideally suited geographic site as it is the longest (>150 years) continually studied experiment on ungrazed permanent grassland in the world, for which a rich history of environmental/ecological data has been collected, including high quality publically available metagenome DNA sequences. Using this improved methodology, in conjunction with the creation of high quality, curated metagenomic sequence databases, we have been able to significantly improve protein identifications from one soil due to extracting a similar number of proteins that were >90% different when compared to the best current direct protocol. This optimised metaproteomics protocol has now enabled identification of thousands of proteins from one soil, leading therefore to a deeper insight of soil system processes at the molecular scale.

  4. Soil Forming Factors

    Science.gov Websites

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils << 1 Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  5. High Resolution Soil Water from Regional Databases and Satellite Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskly, Vadim N.; Coughlin, Joseph; Dungan, Jennifer; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the ways in which plant growth can be inferred from satellite data and can then be used to infer soil water. There are several steps in this process, the first of which is the acquisition of data from satellite observations and relevant information databases such as the State Soil Geographic Database (STATSGO). Then probabilistic analysis and inversion with the Bayes' theorem reveals sources of uncertainty. The Markov chain Monte Carlo method is also used.

  6. A novel representation of chalk hydrology in a land surface model

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2016-04-01

    Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.

  7. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  8. Adaptability of laser diffraction measurement technique in soil physics methodology

    NASA Astrophysics Data System (ADS)

    Barna, Gyöngyi; Szabó, József; Rajkai, Kálmán; Bakacsi, Zsófia; Koós, Sándor; László, Péter; Hauk, Gabriella; Makó, András

    2016-04-01

    There are intentions all around the world to harmonize soils' particle size distribution (PSD) data by the laser diffractometer measurements (LDM) to that of the sedimentation techniques (pipette or hydrometer methods). Unfortunately, up to the applied methodology (e. g. type of pre-treatments, kind of dispersant etc.), PSDs of the sedimentation methods (due to different standards) are dissimilar and could be hardly harmonized with each other, as well. A need was arisen therefore to build up a database, containing PSD values measured by the pipette method according to the Hungarian standard (MSZ-08. 0205: 1978) and the LDM according to a widespread and widely used procedure. In our current publication the first results of statistical analysis of the new and growing PSD database are presented: 204 soil samples measured with pipette method and LDM (Malvern Mastersizer 2000, HydroG dispersion unit) were compared. Applying usual size limits at the LDM, clay fraction was highly under- and silt fraction was overestimated compared to the pipette method. Subsequently soil texture classes determined from the LDM measurements significantly differ from results of the pipette method. According to previous surveys and relating to each other the two dataset to optimizing, the clay/silt boundary at LDM was changed. Comparing the results of PSDs by pipette method to that of the LDM, in case of clay and silt fractions the modified size limits gave higher similarities. Extension of upper size limit of clay fraction from 0.002 to 0.0066 mm, and so change the lower size limit of silt fractions causes more easy comparability of pipette method and LDM. Higher correlations were found between clay content and water vapor adsorption, specific surface area in case of modified limit, as well. Texture classes were also found less dissimilar. The difference between the results of the two kind of PSD measurement methods could be further reduced knowing other routinely analyzed soil parameters (e.g. pH(H2O), organic carbon and calcium carbonate content).

  9. Retrieval of BRDF/Albedo by the Angular and Spectral Kernel Driven Model with Global Soil and Leaf Optical Database

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, J.; Xiao, Q.; You, D.

    2016-12-01

    Operational algorithms for land surface BRDF/Albedo products are mainly developed from kernel-driven model, combining atmospherically corrected, multidate, multiband surface reflectance to extract BRDF parameters. The Angular and Spectral Kernel Driven model (ASK model), which incorporates the component spectra as a priori knowledge, provides a potential way to make full use of the multi-sensor data with multispectral information and accumulated observations. However, the ASK model is still not feasible for global BRDF/Albedo inversions due to the lack of sufficient field measurements of component spectra at the large scale. This research outlines a parameterization scheme on the component spectra for global scale BRDF/Albedo inversions in the frame of ASK. The parameter γ(λ) can be derived from the ratio of the leaf reflectance and soil reflectance, supported by globally distributed soil spectral library, ANGERS and LOPEX leaf optical properties database. To consider the intrinsic variability in both the land cover and spectral dimension, the mean and standard deviation of γ(λ) for 28 soil units and 4 leaf types in seven MODIS bands were calculated, with a world soil map used for global BRDF/Albedo products retrieval. Compared to the retrievals from BRF datasets simulated by the PROSAIL model, ASK model shows an acceptable accuracy on the parameterization strategy, with the RMSE 0.007 higher at most than inversion by true component spectra. The results indicate that the classification on ratio contributed to capture the spectral characteristics in BBRDF/Albedo retrieval, whereas the ratio range should be controlled within 8% in each band. Ground-based measurements in Heihe river basin were used to validate the accuracy of the improved ASK model, and the generated broadband albedo products shows good agreement with in situ data, which suggests that the improvement of the component spectra on the ASK model has potential for global scale BRDF/Albedo inversions.

  10. Accessibility, searchability, transparency and engagement of soil carbon data: The International Soil Carbon Network

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Hugelius, Gustaf; Koven, Charlie; Sulman, Ben; O'Donnell, Jon; He, Yujie

    2016-04-01

    Soils are capacitors for carbon and water entering and exiting through land-atmosphere exchange. Capturing the spatiotemporal variations in soil C exchange through monitoring and modeling is difficult in part because data are reported unevenly across spatial, temporal, and management scales and in part because the unit of measure generally involves destructive harvest or non-recurrent measurements. In order to improve our fundamental basis for understanding soil C exchange, a multi-user, open source, searchable database and network of scientists has been formed. The International Soil Carbon Network (ISCN) is a self-chartered, member-based and member-owned network of scientists dedicated to soil carbon science. Attributes of the ISCN include 1) Targeted ISCN Action Groups which represent teams of motivated researchers that propose and pursue specific soil C research questions with the aim of synthesizing seminal articles regarding soil C fate. 2) Datasets to date contributed by institutions and individuals to a comprehensive, searchable open-access database that currently includes over 70,000 geolocated profiles for which soil C and other soil properties. 3) Derivative products resulting from the database, including depth attenuation attributes for C concentration and storage; C storage maps; and model-based assessments of emission/sequestration for future climate scenarios. Several examples illustrate the power of such a database and its engagement with the science community. First, a simplified, data-constrained global ecosystem model estimated a global sensitivity of permafrost soil carbon to climate change (g sensitivity) of -14 to -19 Pg C °C-1 of warming on a 100 years time scale. Second, using mathematical characterizations of depth profiles for organic carbon storage, C at the soil surface reflects Net Primary Production (NPP) and its allotment as moss or litter, while e-folding depths are correlated to rooting depth. Third, storage of deep C is highly correlated with bulk density and porosity of the rock/sediment matrix. Thus C storage is most stable at depth, yet is susceptible to changes in tillage, rooting depths, and erosion/sedimentation. Fourth, current ESMs likely overestimate the turnover time of soil organic carbon and subsequently overestimate soil carbon sequestration, thus datasets combined with other soil properties will help constrain the ESM predictions. Last, analysis of soil horizon and carbon data showed that soils with a history of tillage had significantly lower carbon concentrations in both near-surface and deep layers, and that the effect persisted even in reforested areas. In addition to the opportunities for empirical science using a large database, the database has great promise for evaluation of biogeochemical and earth system models. The preservation of individual soil core measurements avoids issues with spatial averaging while facilitating evaluation of advanced model processes such as depth distributions of soil carbon, land use impacts, and spatial heterogeneity.

  11. Geo-statistical model of Rainfall erosivity by using high temporal resolution precipitation data in Europe

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2015-04-01

    Rainfall erosivity (R-factor) is among the 6 input factors in estimating soil erosion risk by using the empirical Revised Universal Soil Loss Equation (RUSLE). R-factor is a driving force for soil erosion modelling and potentially can be used in flood risk assessments, landslides susceptibility, post-fire damage assessment, application of agricultural management practices and climate change modelling. The rainfall erosivity is extremely difficult to model at large scale (national, European) due to lack of high temporal resolution precipitation data which cover long-time series. In most cases, R-factor is estimated based on empirical equations which take into account precipitation volume. The Rainfall Erosivity Database on the European Scale (REDES) is the output of an extensive data collection of high resolution precipitation data in the 28 Member States of the European Union plus Switzerland taking place during 2013-2014 in collaboration with national meteorological/environmental services. Due to different temporal resolutions of the data (5, 10, 15, 30, 60 minutes), conversion equations have been applied in order to homogenise the database at 30-minutes interval. The 1,541 stations included in REDES have been interpolated using the Gaussian Process Regression (GPR) model using as covariates the climatic data (monthly precipitation, monthly temperature, wettest/driest month) from WorldClim Database, Digital Elevation Model and latitude/longitude. GPR has been selected among other candidate models (GAM, Regression Kriging) due the best performance both in cross validation (R2=0.63) and in fitting dataset (R2=0.72). The highest uncertainty has been noticed in North-western Scotland, North Sweden and Finland due to limited number of stations in REDES. Also, in highlands such as Alpine arch and Pyrenees the diversity of environmental features forced relatively high uncertainty. The rainfall erosivity map of Europe available at 500m resolution plus the standard error and the erosivity density (Rainfall erosivity per mm of precipitation) are available in the European Soil Data Centre (ESDAC). The highest erosivity has been found in the mediterrean countries (Italy, Western Greece, Spain, Northern Portugal), South Austria, Slovenia, Croatia and Western United Kingdom.

  12. Drought monitoring with soil moisture active passive (SMAP) measurements

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an agricultural drought index, SMAP_SWDI has potential to capture short term moisture information similar to AWD and related drought indices.

  13. Global Soil Respiration: Interaction with Environmental Variables and Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Jian, J.; Steele, M.

    2016-12-01

    Background, methods, objectivesTerrestrial ecosystems take up around 1.7 Pg C per year; however, the role of terrestrial ecosystems as a carbon sink may change to carbon source by 2050, as a result of positive feedback of soil respiration response to global warming. Nevertheless, limited evidence shows that soil carbon is decreasing and the role of terrestrial ecosystems is changing under warming. One possibility is the positive feedback may slow due to the acclimation of soil respiration as a result of decreasing temperature sensitivity (Q10) with warming. To verify and quantify the uncertainty in soil carbon cycling and feedbacks to climate change, we assembled soil respiration observations from 1961 to 2014 from 724 publications into a monthly global soil respiration database (MSRDB), which included 13482 soil respiration measurements together with 38 other ancillary measurements from 538 sites. Using this database we examined macroscale variation in the relationship between soil respiration and air temperature, precipitation, leaf area index and soil properties. We also quantified global soil respiration, the sources of uncertainty, and its feedback to warming based on climate region-oriented models with variant Q10function. Results and ConclusionsOur results showed substantial heterogeneity in the relationship between soil respiration and environmental factors across different climate regions. For example, soil respiration was strongly related to vegetation (via leaf area index) in colder regions, but not in tropical region. Only in tropical and arid regions did soil properties explain any variation in soil respiration. Global annual mean soil respiration from 1961 to 2014 was estimated to be 72.41 Pg C yr-1 based on monthly global soil respiration database, 25 Pg lower than estimated based on yearly soil respiration database. By using the variable Q10 models, we estimated that global soil respiration increased at a rate of 0.03 Pg C yr-1 from 1961 to 2014, smaller than previous studies ( 0.1 Pg C yr-1). The substantial variations in these relationships suggest that regional scales is important for understanding and prediction of global carbon cycling and how it response to climate change.

  14. Using a spatial and tabular database to generate statistics from terrain and spectral data for soil surveys

    USGS Publications Warehouse

    Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.

    1987-01-01

    A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular databases, such as the U.S. Department of Agriculture's SCS/S015 (Soil Survey Staff, 1983), to archive the large amounts of information that are collected in conjunction with mapping of natural resources in an easily retrievable manner.During the past 4 years the U.S. Geological Survey's EROS Data Center, in a cooperative effort with the Bureau of Land Management (BLM) and the Soil Conservation Service (SCS), developed a procedure that uses spatial and tabular databases to generate elevation, slope, aspect, and spectral map products that can be used during soil premapping. The procedure results in tabular data, residing in a database management system, that are indexed to the final soil delineations and help quantify soil map unit composition.The procedure was developed and tested on soil surveys on over 600 000 ha in Wyoming, Nevada, and Idaho. A transfer of technology from the EROS Data Center to the BLM will enable the Denver BLM Service Center to use this procedure in soil survey operations on BLM lands. Also underway is a cooperative effort between the EROS Data Center and SCS to define and evaluate maps that can be produced as derivatives of digital elevation data for 7.5-min quadrangle areas, such as those used during the premapping stage of the soil surveys mentioned above, the idea being to make such products routinely available.The procedure emphasizes the applications of digital elevation and spectral data to order-three soil surveys on rangelands, and will:Incorporate digital terrain and spectral data into a spatial database for soil surveys.Provide hardcopy products (that can be generated from digital elevation model and spectral data) that are useful during the soil pre-mapping process.Incorporate soil premaps into a spatial database that can be accessed during the soil survey process along with terrain and spectral data.Summarize useful quantitative information for soil mapping and for making interpretations for resource management.

  15. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2012-08-01

    High latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage has been linked to pedon data (n = 1647) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in Geographic Information Systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analyses procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data-portal with all the described GIS-datasets is available online at: http://dev1.geo.su.se/bbcc/dev/ncscd/.

  16. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage have been linked to pedon data (n = 1778) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in geographic information systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analytical procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data portal with all the described GIS-datasets is available online at: http://www.bbcc.su.se/data/ncscd/.

  17. Effects of long-term soil and crop management on soil hydraulic properties for claypan soils

    USDA-ARS?s Scientific Manuscript database

    Regional and national soil maps have been developed along with associated soil property databases to assist users in making land management decisions based on soil characteristics. These soil properties include average values from soil characterization for each soil series. In reality, these propert...

  18. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  19. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.

  20. Soil organic carbon stocks in Alaska estimated with spatial and pedon data

    USGS Publications Warehouse

    Bliss, Norman B.; Maursetter, J.

    2010-01-01

    Temperatures in high-latitude ecosystems are increasing faster than the average rate of global warming, which may lead to a positive feedback for climate change by increasing the respiration rates of soil organic C. If a positive feedback is confirmed, soil C will represent a source of greenhouse gases that is not currently considered in international protocols to regulate C emissions. We present new estimates of the stocks of soil organic C in Alaska, calculated by linking spatial and field data developed by the USDA NRCS. The spatial data are from the State Soil Geographic database (STATSGO), and the field and laboratory data are from the National Soil Characterization Database, also known as the pedon database. The new estimates range from 32 to 53 Pg of soil organic C for Alaska, formed by linking the spatial and field data using the attributes of Soil Taxonomy. For modelers, we recommend an estimation method based on taxonomic subgroups with interpolation for missing areas, which yields an estimate of 48 Pg. This is a substantial increase over a magnitude of 13 Pg estimated from only the STATSGO data as originally distributed in 1994, but the increase reflects different estimation methods and is not a measure of the change in C on the landscape. Pedon samples were collected between 1952 and 2002, so the results do not represent a single point in time. The linked databases provide an improved basis for modeling the impacts of climate change on net ecosystem exchange.

  1. Geochemical characterization of soils of the eastern coast of the Northern Sakhalin Lowland

    NASA Astrophysics Data System (ADS)

    Zharikova, E. A.

    2017-01-01

    Concentrations of heavy metals (HMs) were determined in soils of the eastern coast of the Northern Sakhalin Lowland. The total contents of HMs and their distribution in the studied soils differed from those in the world soils. Thus, barium and mercury concentrations exceeded clarke values for the world soils. The reserves of mobile forms of microelements were found to be low. Significant biogenic accumulation in organic soil horizons in the process of soil formation was found for copper, arsenic, and barium.

  2. Soil Erosion: Quiet Crisis in the World Economy. Worldwatch Paper 60.

    ERIC Educational Resources Information Center

    Brown, Lester R.; Wolf, Edward C.

    Although soil erosion is a natural process, it has increased to the point where it far exceeds the natural formation of new soil. However, with only occasional exceptions, national agricultural and population policies have failed to take soil depletion into account. Projections of world food production always incorporate estimates of future…

  3. Mapping soil texture classes and optimization of the result by accuracy assessment

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Takács, Katalin; Bakacsi, Zsófia; Szabó, József; Pásztor, László

    2014-05-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. The GlobalSoilMap.net (GSM) project aims to make a new digital soil map of the world using state-of-the-art and emerging technologies for soil mapping and predicting soil properties at fine resolution. Sand, silt and clay are among the mandatory GSM soil properties. Furthermore, soil texture class information is input data of significant agro-meteorological and hydrological models. Our present work aims to compare and evaluate different digital soil mapping methods and variables for producing the most accurate spatial prediction of texture classes in Hungary. In addition to the Hungarian Soil Information and Monitoring System as our basic data, digital elevation model and its derived components, geological database, and physical property maps of the Digital Kreybig Soil Information System have been applied as auxiliary elements. Two approaches have been applied for the mapping process. At first the sand, silt and clay rasters have been computed independently using regression kriging (RK). From these rasters, according to the USDA categories, we have compiled the texture class map. Different combinations of reference and training soil data and auxiliary covariables have resulted several different maps. However, these results consequentially include the uncertainty factor of the three kriged rasters. Therefore we have suited data mining methods as the other approach of digital soil mapping. By working out of classification trees and random forests we have got directly the texture class maps. In this way the various results can be compared to the RK maps. The performance of the different methods and data has been examined by testing the accuracy of the geostatistically computed and the directly classified results. We have used the GSM methodology to assess the most predictive and accurate way for getting the best among the several result maps. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).

  4. Toxicological database of soil and derived products (BDT).

    PubMed

    Uricchio, Vito Felice

    2008-01-01

    The Toxicological database of soil and derived products is a project firstly proposed by the Regional Environmental Authority of Apulia. Such a project aims to provide comprehensive and updated information on the regional environmental characteristics, on the pollution state of the regional soil, on the main pollutants and on the reclaim techniques to be used in case of both non-point (agricultural activities) and point (industrial activities) sources of pollution. The project's focus is on the soil pollution because of the fundamental role played by the soil in supporting the biological cycle. Furthermore, the reasons for the project are related both to the reduction of human health risks due to toxic substances ingestion (these substances are present in some ring of the eating chain), and to the recognition of the importance of the groundwater quality safety (primary source of fresh water in many Mediterranean Regions). The essential requirements of a data entry are the following: speed and simplicity of the data entry; reliability and stability of the database structures; speed, easiness and pliability of the queries. Free consultation of the database represents one of the most remarkable advantages coming from the use of an "open" system.

  5. What can we learn from national-scale geodata describing soil erosion?

    NASA Astrophysics Data System (ADS)

    Benaud, Pia; Anderson, Karen; Carvalho, Jason; Evans, Martin; Glendell, Miriam; James, Mike; Lark, Murray; Quine, Timothy; Quinton, John; Rawlins, Barry; Rickson, Jane; Truckell, Ian; Brazier, Richard

    2017-04-01

    The United Kingdom has a rich dataset of soil erosion observations, which have been collected using a wide range of methodologies, across various spatial and temporal scales. Yet, while observations of soil erosion have been carried out along-side agricultural development and intensification, understanding whether or not the UK has a soil erosion problem remains a question to be answered. Furthermore, although good reviews of existing soil erosion rates exist, there is no single resource that brings all of this work together. Therefore, the primary aim of this research was to build a picture of why attempts to quantify erosion rates across the UK empirically have fallen short, through: (1) Collating all available, UK-based and empirically-derived soil erosion datasets into a spatially explicit and open-access database, (2) Developing an understanding of observed magnitudes of erosion, in the UK, (3) Evaluating impact of non-environmental controls on erosion observations i.e. study methodologies, and (4) Exploring trends between environmental controls and erosion rates. To-date, the database holds over 1500 records, which include results from both experimental and natural conditions, across arable, grassland and upland environments. Of the studies contained in the database, erosion has been observed ca. 40% of instances, ranging from <0.01 t.ha-1.yr-1 to 143 t.ha-1.yr-1. However, preliminary analysis has highlighted that over 90% of the studies included in the database only quantify soil loss via visible erosion features, such as rills or gullies, through volumetric assessments. Furthermore, there has been an inherent bias in the UK towards quantifying soil erosion in locations with either a known history or high probability of erosion occurrence. As a consequence, we conclude that such databases, may not be used to make a statistically unbiased assessment of national-scale erosion rates, however, they can highlight maximum likely rates under a wide range of soil, topography and land use conditions. Finally, this work suggests there is a strong argument for a replicable and statistically robust national soil erosion monitoring program to be carried out along-side the proposed sustainable intensification of agriculture.

  6. A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model event erosion from bare fallow areas.

    PubMed

    Kinnell, P I A

    2017-10-15

    Traditionally, the Universal Soil Loss Equation (USLE) and the revised version of it (RUSLE) have been applied to predicting the long term average soil loss produced by rainfall erosion in many parts of the world. Overtime, it has been recognized that there is a need to predict soil losses over shorter time scales and this has led to the development of WEPP and RUSLE2 which can be used to predict soil losses generated by individual rainfall events. Data currently exists that enables the RUSLE2, WEPP and the USLE-M to estimate historic soil losses from bare fallow runoff and soil loss plots recorded in the USLE database. Comparisons of the abilities of the USLE-M and RUSLE2 to estimate event soil losses from bare fallow were undertaken under circumstances where both models produced the same total soil loss as observed for sets of erosion events on 4 different plots at 4 different locations. Likewise, comparisons of the abilities of the USLE-M and WEPP to model event soil loss from bare fallow were undertaken for sets of erosion events on 4 plots at 4 different locations. Despite being calibrated specifically for each plot, WEPP produced the worst estimates of event soil loss for all the 4 plots. Generally, the USLE-M using measured runoff to calculate the product of the runoff ratio, storm kinetic energy and the maximum 30-minute rainfall intensity produced the best estimates. As to be expected, ability of the USLE-M to estimate event soil loss was reduced when runoff predicted by either RUSLE2 or WEPP was used. Despite this, the USLE-M using runoff predicted by WEPP estimated event soil loss better than WEPP. RUSLE2 also outperformed WEPP. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Types, harms and improvement of saline soil in Songnen Plain

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  8. Scale effects of STATSGO and SSURGO databases on flow and water quality predictions

    USDA-ARS?s Scientific Manuscript database

    Soil information is one of the crucial inputs needed to assess the impacts of existing and alternative agricultural management practices on water quality. Therefore, it is important to understand the effects of spatial scale at which soil databases are developed on water quality evaluations. In the ...

  9. Using USDA's National Cooperative Soil Survey Soil Characterization Data to detect soil change: A cautionary tale

    USDA-ARS?s Scientific Manuscript database

    Recently, the USDA-NRCS National Cooperative Soil Survey Soil Characterization Database (NSCD) was reported to provide evidence that total nitrogen (TN) stocks of agricultural soils have increased across the Mississippi basin since 1985. Unfortunately, due to omission of metadata from the NSCD, hist...

  10. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-02-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status January 2011), the ISMN contains data of 16 networks and more than 500 stations located in the North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  12. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Dorigo, W. A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; Robock, A.; Jackson, T.

    2011-05-01

    In situ measurements of soil moisture are invaluable for calibrating and validating land surface models and satellite-based soil moisture retrievals. In addition, long-term time series of in situ soil moisture measurements themselves can reveal trends in the water cycle related to climate or land cover change. Nevertheless, on a worldwide basis the number of meteorological networks and stations measuring soil moisture, in particular on a continuous basis, is still limited and the data they provide lack standardization of technique and protocol. To overcome many of these limitations, the International Soil Moisture Network (ISMN; http://www.ipf.tuwien.ac.at/insitu) was initiated to serve as a centralized data hosting facility where globally available in situ soil moisture measurements from operational networks and validation campaigns are collected, harmonized, and made available to users. Data collecting networks share their soil moisture datasets with the ISMN on a voluntary and no-cost basis. Incoming soil moisture data are automatically transformed into common volumetric soil moisture units and checked for outliers and implausible values. Apart from soil water measurements from different depths, important metadata and meteorological variables (e.g., precipitation and soil temperature) are stored in the database. These will assist the user in correctly interpreting the soil moisture data. The database is queried through a graphical user interface while output of data selected for download is provided according to common standards for data and metadata. Currently (status May 2011), the ISMN contains data of 19 networks and more than 500 stations located in North America, Europe, Asia, and Australia. The time period spanned by the entire database runs from 1952 until the present, although most datasets have originated during the last decade. The database is rapidly expanding, which means that both the number of stations and the time period covered by the existing stations are still growing. Hence, it will become an increasingly important resource for validating and improving satellite-derived soil moisture products and studying climate related trends. As the ISMN is animated by the scientific community itself, we invite potential networks to enrich the collection by sharing their in situ soil moisture data.

  13. Some History and Accomplishments of the IUSS

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Hartemink, Alfred E.

    2013-04-01

    The International Society of Soil Science (ISSS) was founded in 1924 in Rome, Italy, by European agro-geologists who were interested in establishing standardized methods of soil analysis and soil classification. It was admitted as a Union member of the International Council for Science (ICSU) in 1993 and was restructured into the International Union of Soil Sciences (IUSS) in 1998. The objectives of the IUSS are to promote all branches of soil science, and to support all soil scientists across the world in the pursuit of their activities. The IUSS has encouraged international exchanges of ideas and collaborations through the organization of international congresses, known as the World Congress of Soil Science. A total of 19 international congresses have been organized, with eight of these congresses held in Europe, five in the Americas, three in Asia, two in Australia, and one in Africa. The 20th congress will be held in Korea in 2014. The IUSS maintains a website (www.iuss.org) since 2001 with a variety of information about soils, publishes twice per year a Bulletin (since 1952) and publishes a monthly electronic newsletter (IUSS Alert) since 2005. The IUSS initiated the Soil Map of the World, which was prepared in the 1960s and 1970s and a whole range of other scientific initiatives, publications and cooperating journals. Divisions, commissions, working groups and standing committees have been established to deal with all aspects of soil science and its applications. There are four divisions (Division 1 - Soil in Space and Time, Division 2 - Soil properties and processes, Division 3 - Soil Use and Management, and Division 4 - The Role of Soils in Sustaining Society and the Environment). Each division is further divided into five or six commissions. In addition, there are eight active working groups (Acid Sulphate Soils, Cryosols, Digital Soil Mapping, International Actions for the Sustainable Use of Soils, Land Degradation, World Reference Base, Forest soils, and Urban Soils) and three standing committees (Committee on awards and prizes, Committee on budget and finances, and Committee on statutes and byelaws). Membership in ISSS/IUSS increased from around 550 after WWII to over 60,000 today. The IUSS also provides Honorary Membership to soil scientists who have significant accomplishments in the field; to date 87 soil scientists have been so recognized from all over the globe. The IUSS is the most important global link to the world's leading soil science and soil scientists.

  14. A global map of mangrove forest soil carbon at 30 m spatial resolution

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  15. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.

    PubMed

    Yigini, Yusuf; Panagos, Panos

    2016-07-01

    Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. National Map Data Base On Landslide Prerequisites In Clay and Silt Areas - Development of Prototype

    NASA Astrophysics Data System (ADS)

    Viberg, Leif

    Swedish geotechnical institute, SGI, has in co-operation with Swedish geologic survey, Lantmateriet (land surveying) and Swedish Rescue Service developed a theme database on landslide prerequisites in clay and silt areas. The work is carried out on commission of the Swedish government. A report with suggestions for production of the database has been delivered to the government. The database is a prototype, which has been tested in an area in northern Sweden. Recommended presentation map scale is about 1:50 000. Distribution of the database via Internet is discussed. The aim of the database is to use it as a modern planning tool in combination with other databases, e g databases on flooding prognoses. The main use is supposed to be in early planning stages, e g for new building and infrastructure development and for risk analyses. The database can also be used in more acute cases, e g for risk analyses and rescue operations in connection with flooding over large areas. Users are supposed to be municipal and county planners and rescue services, infrastructure planners, consultants and assurance companies. The database is constructed by combination of two existing databases: Elevation data and soil map data. The investigation area is divided into three zones with different stability criteria: 1. Clay and silt in sloping ground or adjoining water. 2. Clay and silt in flat ground. 3. Rock and other soils than clay and silt. The geometrical and soil criteria for the zones are specified in an algoritm, that will do the job to sort out the different zones. The algoritm is thereby using data from the elevation and soil databases. The investigation area is divided into cells (raster format) with 5 x 5 m side length. Different algoritms had to be developed before reasonable calculation time was reached. The theme may be presented on screen or as a map plot. A prototype map has been produced for the test area. A description is accompanying the map. The database is suggested to be produced in landslide prone areas in Sweden and approximately 200-300 map sheets (25 x 25 km) are required.

  17. Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Vannier, Olivier; Braud, Isabelle; Anquetin, Sandrine

    2013-04-01

    The estimation of catchment-scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally done on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison of cumulated streamflow and precipitation to assess catchment-scale storage capacities. The DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber (Water Resources Research 13(3), 1977) to estimate water storage capacities and lateral saturated hydraulic conductivities of the non-documented deep horizons. The analysis is applied to a sample of twenty-three catchments (0.2 km² - 291 km²) located in the Cévennes-Vivarais region (south of France). In a regionalisation purpose, the obtained results are compared to the dominant catchments geology. This highlights a clear hierarchy between the different geologies present in the area. Hard crystalline rocks are found to be associated to the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be the less thick and the most conductive. Consequently, deep soil layers with thicknesses and hydraulic conductivities differing with the geology were added to a distributed hydrological model implemented over the Cévennes-Vivarais region. Preliminary simulations show a major improvement in terms of simulated discharge when compared to simulations done without deep soil layers. KEY WORDS: hydraulic soil properties, streamflow recession, deep soil horizons, soil databases, Boussinesq equation, storage capacity, regionalisation

  18. SOIL Geo-Wiki: A tool for improving soil information

    NASA Astrophysics Data System (ADS)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference soil classification system) and allow experts to upload and share scientifically rigorous soil data; and an application oriented towards the general public, which will be more focused on describing well observed, individual soil properties using simplified classification keys. The latter application will avoid the use of soil science related terminology and focus on the most useful soil parameters such as soil surface features, stone content, soil texture, soil plasticity, calcium carbonate presence, soil color, soil pH, soil repellency, and soil depth. Collection of soil and landscape pictures will also be supported in Soil Geo-Wiki to allow for comprehensive data collection while simultaneously allowing for quality checking by experts.

  19. The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses.

    PubMed

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2009-09-01

    Seed survival in the soil contributes to population persistence and community diversity, creating a need for reliable measures of soil seed bank persistence. Several methods estimate soil seed bank persistence, most of which count seedlings emerging from soil samples. Seasonality, depth distribution and presence (or absence) in vegetation are then used to classify a species' soil seed bank into persistent or transient, often synthesized into a longevity index. This study aims to determine if counts of seedlings from soil samples yield reliable seed bank persistence estimates and if this is correlated to seed production. Seeds of 38 annual weeds taken from arable fields were buried in the field and their viability tested by germination and tetrazolium tests at 6 month intervals for 2.5 years. This direct measure of soil seed survival was compared with indirect estimates from the literature, which use seedling emergence from soil samples to determine seed bank persistence. Published databases were used to explore the generality of the influence of reproductive capacity on seed bank persistence estimates from seedling emergence data. There was no relationship between a species' soil seed survival in the burial experiment and its seed bank persistence estimate from published data using seedling emergence from soil samples. The analysis of complementary data from published databases revealed that while seed bank persistence estimates based on seedling emergence from soil samples are generally correlated with seed production, estimates of seed banks from burial experiments are not. The results can be explained in terms of the seed size-seed number trade-off, which suggests that the higher number of smaller seeds is compensated after germination. Soil seed bank persistence estimates correlated to seed production are therefore not useful for studies on population persistence or community diversity. Confusion of soil seed survival and seed production can be avoided by separate use of soil seed abundance and experimental soil seed survival.

  20. Technologies and standards in the information systems of the soil-geographic database of Russia

    NASA Astrophysics Data System (ADS)

    Golozubov, O. M.; Rozhkov, V. A.; Alyabina, I. O.; Ivanov, A. V.; Kolesnikova, V. M.; Shoba, S. A.

    2015-01-01

    The achievements, problems, and challenges of the modern stage of the development of the Soil-Geographic Database of Russia (SGDBR) and the history of this project are outlined. The structure of the information system of the SGDBR as an internet-based resource to collect data on soil profiles and to integrate the geographic and attribute databases on the same platform is described. The pilot project in Rostov oblast illustrates the inclusion of regional information in the SGDBR and its application for solving practical problems. For the first time in Russia, the GeoRSS standard based on the structured hypertext representation of the geographic and attribute information has been applied in the state system for the agromonitoring of agricultural lands in Rostov oblast and information exchange through the internet.

  1. What did we do and what can we do with our global soil resources?

    NASA Astrophysics Data System (ADS)

    Stoorvogel, Jetse

    2017-04-01

    Our global soil resources increasingly meet the headlines: soil degradation leads to irreversible changes and a loss of the global production potential, soil resources play a key role to reach the sustainable development goals, and soils are seen as a potential solution to some of the climate change mitigation through carbon sequestration. However, global assessments of soil degradation, soil resources, and the potential of soils to provide ecosystem services are not very consistent. This study aims to contribute to the discussion by providing a realistic opportunity space on the options for our soil resources. First, the natural and current soil conditions are estimated using the S-World methodology. S-World has been developed to provide global maps of soil properties at a 30 arc-second resolution for environmental modelling. By running the S-world methodology for current but also for natural land cover, natural and current soil conditions are estimated. This analysis tells us what we did to our global soil resources. Subsequently, the same methodology is used to analyse a range of different scenarios for the future to explore the potential for soil restoration and carbon sequestration. Although the actual management interventions required are not analysed, the analysis does provide the opportunity space and thus what we can do with our soil resources in terms of realistic ranges. The results are interpreted in the context of the Sustainable Development Goals and the recent 4‰-initiative for climate change mitigation.

  2. Soil Carbon Data: long tail recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-07-25

    The software is intended to be part of an open source effort regarding soils data. The software provides customized data ingestion scripts for soil carbon related data sets and scripts for output databases that conform to common templates.

  3. Soil organic carbon pools in the northern circumpolar permafrost region

    Treesearch

    C. Tarnocai; J.G. Canadell; E.A.G. Schuur; P. Kuhry; G. Mazhitova; S. Zimov

    2009-01-01

    The Northern Circumpolar Soil Carbon Database was developed to determine carbon pools in soils of the northern circumpolar permafrost region. Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nisbet, A.F.; Woodman, R.F.M.

    A database of soil-to-plant transfer factors for radiocesium and radiostrontium has been compiled for arable crops from published and unpublished sources. The database is more extensive than previous compilations of data published by the International Union of Radioecologists, containing new information for Scandinavia and Greece in particular. It also contains ancillary data on important soil characteristics. The database is sub-divided into 28 soil-crop combinations, covering four soil types and seven crop groups. Statistical analyses showed that transfer factors for radiocesium could not generally be predicted as a function of climatic region, type of experiment, age of contamination, or silt characteristics.more » However, significant relationships accounting for more than 30% of the variability in transfer factor were identified between transfer factors for radiostrontium and soil pH/organic matter status for a few soil-crop combinations. Best estimate transfer factors for radiocesium and radiostrontium were calculated for 28 soil-crop combinations, based on their geometric means: only the edible parts were considered. To predict the likely value of future individual transfer factors, 95% confidence intervals were also derived. A comparison of best estimate transfer factors derived in this study with recommended values published by the International Union of Radioecologists in 1989 and 1992 was made for comparable soil-crop groupings. While there were no significant differences between the best estimate values derived in this study and the 1992 data, radiological assessments that still use 1989 data may be unnecessarily cautious.« less

  5. A strategy for the survey of urban garden soils

    NASA Astrophysics Data System (ADS)

    Schwartz, C.; Chenot, E. D.; Cortet, J.; Douay, F.; Dumat, C.; Pernin, C.; Pourrut, B.

    2012-04-01

    In France and all over the world, there is no systematic data available on the quality (fertility and contamination) of garden soils. Nevertheless, there is a growing need for a typology and for a method dedicated to national and international garden soil survey. This inventory is much needed in the context of environmental risk assessment, to predict the potential impact on human health of the direct contact with garden soils and of the consumption of vegetables from gardens. The state of the art on the international knowledge on garden soils, gardening practices and food production, shows that gardens remain poorly known and very complex ecological, economical and social systems. Their global quality is the result of a wide number of factors including environment, history, specific characteristics of the gardens, gardeners and their practices, plant and/or animal productions and socio-economic context. The aim is then to better know the determinism of the agronomic, environmental and sanitary properties of gardens as a function of gardening practices and their impact on the quality of soils and plants. We propose a definition of "garden" and more generally of all the field "garden". The system "garden" is represented by attributes (soil and plant characteristics) and factors with various impacts (e.g. environment > soil parent material > former land uses > age and sex of gardener > gardening practices > socio-professional group > type and proportion of productions > climate > age of the garden > size of the garden > education, information > cultural origin > functions of the garden > regulations). A typology of gardens including 7 selected factors and associated categories and a method for describing, sampling and characterizing a population of gardens representative (for a country) are proposed. Based on the statistical analysis on regional databases, we have determined and proposed an optimum size for the collected population of garden soils. The discussion of the results highlights the main indicators of soil quality and the method for a survey of garden soils is proposed. These results and the resulting approach might be validated and used on a worldwide scale to collect garden soil samples with the objective of agronomic, environmental and sanitary studies adapted to this type of urban agriculture.

  6. Four soil orders on a Vermont mountaintop-one-third of the world`s soil orders in a 2500-square-meter research plot

    Treesearch

    Thomas R. Villars; Scott W. Bailey; Donald S. Ross

    2015-01-01

    As part of the Vermont Long-Term Soil Monitoring Project, five 50 x 50 m plots were established on protected forestland across Vermont. In 2002, ten randomly selected subplots at each monitoring plot were sampled. The 10 pedons sampled at the high-elevation spruce-fir “Forehead” plot on Mount Mansfield were found to include soils of four taxonomic Orders: Entisols,...

  7. Global distribution of minerals in arid soils as lower boundary condition in dust models

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan

    2010-05-01

    Mineral dust eroded from arid soils affects the radiation budget of the Earth system, modifies ocean bioproductivity and influences human health. Dust aerosol is a complex mixture of minerals. Dust mineral composition has several potentially important impacts to environment and society. Iron and phosphorus embedded in mineral aerosol are essential for the primary marine productivity when dust deposits over the open ocean. Dust also acts as efficient agent for heterogeneous ice nucleation and this process is dependent on mineralogical structure of dust. Recent findings in medical geology indicate possible role of minerals to human health. In this study, a new 1-km global database was developed for several minerals (Illite, Kaolinite, Smectite, Calcite, Quartz, Feldspar, Hematite and Gypsum) embedded in clay and silt populations of arid soils. For the database generation, high-resolution data sets on soil textures, soil types and land cover was used. Tin addition to the selected minerals, phosphorus was also added whose geographical distribution was specified from compiled literature and data on soil types. The developed global database was used to specify sources of mineral fractions in the DREAM dust model and to simulate atmospheric paths of minerals and their potential impacts on marine biochemistry and tropospheric ice nucleation.

  8. Phoenix Lander's Thermal Evolved Gas Analyzer: Differential Scanning Calorimeter and Mass Spectrometer Database Development

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Lauer, H. V.; Golden, D. C.; Ming, D. W.; Boynton, W. V.

    2008-01-01

    The Mars Scout Phoenix lander will land in the north polar region of Mars in May, 2008. One objective of the Phoenix lander is to search for evidence of past life in the form of molecular organics that may be preserved in the subsurface soil. The Thermal Evolved Gas Analyzer (TEGA) was developed to detect these organics by coupling a simultaneous differential thermal analyzer (SDTA) with a mass spectrometer. Martian soil will be heated to approx.1000 C and potential organic decomposition products such as CO2, CH4 etc. will be examined for with the MS. TEGA s SDTA will also assess the presence of endothermic and exothermic reactions that are characteristic of soil organics and minerals as the soil is heated. The MS in addition to detecting organic decompositon products, will also assess the levels of soil inorganic volatiles such as H2O, SO2, and CO2. Organic detection has a high priority for this mission; however, TEGA has the ability to provide valuable insight into the mineralogical composition of the soil. The overall goal of this work is to develop a TEGA database of minerals that will serve as a reference for the interpretation of Phoenix-TEGA. Previous databases for the ill-fated Mars Polar Lander (MPL)-TEGA instrument only went to 725 C. Furthermore, the MPL-TEGA could only detect CO2 and H2O while the Phoenix-TEGA MS can examine up to 144 atomic mass units. The higher temperature Phoenix-TEGA SDTA coupled with the more capable MS indicates that a higher temperature database is required for TEGA interpretation. The overall goal of this work is to develop a differential scanning calorimeter (DSC) database of minerals along with corresponding MS data of evolved gases that can used to interpret TEGA data during and after mission operations. While SDTA and DSC measurement techniques are slightly different (SDTA does not use a reference pan), the results are fundamentally similar and thus DSC is a useful technique in providing comparative data for the TEGA database. The objectives of this work is to conduct DSC and MS analysis up to 1000 C of select minerals that may be found in the martian soil.

  9. Dynamic Terrin

    DTIC Science & Technology

    1991-12-30

    York, 1985. [ Serway 86]: Raymond Serway , Physics for Scientists and Engineers. 2nd Edition, Saunders College Publishing, Philadelphia, 1986. pp. 200... Physical Modeling System 3.4 Realtime Hydrology 3.5 Soil Dynamics and Kinematics 4. Database Issues 4.1 Goals 4.2 Object Oriented Databases 4.3 Distributed...Animation System F. Constraints and Physical Modeling G. The PM Physical Modeling System H. Realtime Hydrology I. A Simplified Model of Soil Slumping

  10. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    DOT National Transportation Integrated Search

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  11. Soil Carbon Variability and Change Detection in the Forest Inventory Analysis Database of the United States

    NASA Astrophysics Data System (ADS)

    Wu, A. M.; Nater, E. A.; Dalzell, B. J.; Perry, C. H.

    2014-12-01

    The USDA Forest Service's Forest Inventory Analysis (FIA) program is a national effort assessing current forest resources to ensure sustainable management practices, to assist planning activities, and to report critical status and trends. For example, estimates of carbon stocks and stock change in FIA are reported as the official United States submission to the United Nations Framework Convention on Climate Change. While the main effort in FIA has been focused on aboveground biomass, soil is a critical component of this system. FIA sampled forest soils in the early 2000s and has remeasurement now underway. However, soil sampling is repeated on a 10-year interval (or longer), and it is uncertain what magnitude of changes in soil organic carbon (SOC) may be detectable with the current sampling protocol. We aim to identify the sensitivity and variability of SOC in the FIA database, and to determine the amount of SOC change that can be detected with the current sampling scheme. For this analysis, we attempt to answer the following questions: 1) What is the sensitivity (power) of SOC data in the current FIA database? 2) How does the minimum detectable change in forest SOC respond to changes in sampling intervals and/or sample point density? Soil samples in the FIA database represent 0-10 cm and 10-20 cm depth increments with a 10-year sampling interval. We are investigating the variability of SOC and its change over time for composite soil data in each FIA region (Pacific Northwest, Interior West, Northern, and Southern). To guide future sampling efforts, we are employing statistical power analysis to examine the minimum detectable change in SOC storage. We are also investigating the sensitivity of SOC storage changes under various scenarios of sample size and/or sample frequency. This research will inform the design of future FIA soil sampling schemes and improve the information available to international policy makers, university and industry partners, and the public.

  12. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  13. Relation between Soil Order and Sorptive Capacity for Dissolved Organic Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heal, Katherine R; Brandt, Craig C; Mayes, Melanie

    2012-01-01

    Soils have historically been considered a temporary sink for organic C, but deeper soils may serve as longer term C sinks due to the sorption of dissolved organic C (DOC) onto Fe- and clay-rich mineral soil particles. This project provides an improved understanding and predictive capability of the physical and chemical properties of deep soils that control their sorptive capacities for DOC. Two hundred thirteen subsurface soil samples (72 series from five orders) were selected from the eastern and central United States. A characterized natural DOC source was added to the soils, and the Langmuir sorption equation was fitted tomore » the observed data by adjusting the maximum DOC sorption capacity (Q{sub max}) and the binding coefficient (k). Different isotherm shapes were observed for Ultisols, Alfisols, and Mollisols due to statistically significant differences in the magnitude of k, while Q{sub max} was statistically invariant among these three orders. Linear regressions were performed on the entire database and as a function of soil order to correlate Langmuir fitted parameters with measured soil properties, e.g., pH, clay content, total organic C (TOC), and total Fe oxide content. Together, textural clay and Fe oxide content accounted for 35% of the variation in Q{sub max} in the database, and clay was most important for Alfisols and Ultisols. The TOC content, however, accounted for 27% of the variation in Q{sub max} in Mollisols. Soil pH accounted for 45% of the variation in k for the entire database, 41% for Mollisols, and 22% for Alfisols. Our findings demonstrate that correlations between Langmuir parameters and soil properties are different for different soil orders and that k is a more sensitive parameter for DOC sorption than is Q{sub max} for temperate soils from the central and eastern United States.« less

  14. Supporting the operational use of process based hydrological models and NASA Earth Observations for use in land management and post-fire remediation through a Rapid Response Erosion Database (RRED).

    NASA Astrophysics Data System (ADS)

    Miller, M. E.; Elliot, W.; Billmire, M.; Robichaud, P. R.; Banach, D. M.

    2017-12-01

    We have built a Rapid Response Erosion Database (RRED, http://rred.mtri.org/rred/) for the continental United States to allow land managers to access properly formatted spatial model inputs for the Water Erosion Prediction Project (WEPP). Spatially-explicit process-based models like WEPP require spatial inputs that include digital elevation models (DEMs), soil, climate and land cover. The online database delivers either a 10m or 30m USGS DEM, land cover derived from the Landfire project, and soil data derived from SSURGO and STATSGO datasets. The spatial layers are projected into UTM coordinates and pre-registered for modeling. WEPP soil parameter files are also created along with linkage files to match both spatial land cover and soils data with the appropriate WEPP parameter files. Our goal is to make process-based models more accessible by preparing spatial inputs ahead of time allowing modelers to focus on addressing scenarios of concern. The database provides comprehensive support for post-fire hydrological modeling by allowing users to upload spatial soil burn severity maps, and within moments returns spatial model inputs. Rapid response is critical following natural disasters. After moderate and high severity wildfires, flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies. Mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fire, runoff, and erosion risks also are highly heterogeneous in space, creating an urgent need for rapid, spatially-explicit assessment. The database has been used to help assess and plan remediation on over a dozen wildfires in the Western US. Future plans include expanding spatial coverage, improving model input data and supporting additional models. Our goal is to facilitate the use of the best possible datasets and models to support the conservation of soil and water.

  15. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

    USGS Publications Warehouse

    Chaney, Nathaniel W; Wood, Eric F; McBratney, Alexander B; Hempel, Jonathan W; Nauman, Travis; Brungard, Colby W.; Odgers, Nathan P

    2016-01-01

    A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.

  16. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    NASA Technical Reports Server (NTRS)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  17. Slushie World: An In-Class Access Database Tutorial

    ERIC Educational Resources Information Center

    Wynn, Donald E., Jr.; Pratt, Renée M. E.

    2015-01-01

    The Slushie World case study is designed to teach the basics of Microsoft Access and database management over a series of three 75-minute class sessions. Students are asked to build a basic database to track sales and inventory for a small business. Skills to be learned include table creation, data entry and importing, form and report design,…

  18. The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric

    NASA Astrophysics Data System (ADS)

    Van Sundert, Kevin; Horemans, Joanna A.; Stendahl, Johan; Vicca, Sara

    2018-06-01

    The availability of nutrients is one of the factors that regulate terrestrial carbon cycling and modify ecosystem responses to environmental changes. Nonetheless, nutrient availability is often overlooked in climate-carbon cycle studies because it depends on the interplay of various soil factors that would ideally be comprised into metrics applicable at large spatial scales. Such metrics do not currently exist. Here, we use a Swedish forest inventory database that contains soil data and tree growth data for > 2500 forests across Sweden to (i) test which combination of soil factors best explains variation in tree growth, (ii) evaluate an existing metric of constraints on nutrient availability, and (iii) adjust this metric for boreal forest data. With (iii), we thus aimed to provide an adjustable nutrient metric, applicable for Sweden and with potential for elaboration to other regions. While taking into account confounding factors such as climate, N deposition, and soil oxygen availability, our analyses revealed that the soil organic carbon concentration (SOC) and the ratio of soil carbon to nitrogen (C : N) were the most important factors explaining variation in normalized (climate-independent) productivity (mean annual volume increment - m3 ha-1 yr-1) across Sweden. Normalized forest productivity was significantly negatively related to the soil C : N ratio (R2 = 0.02-0.13), while SOC exhibited an empirical optimum (R2 = 0.05-0.15). For the metric, we started from a (yet unvalidated) metric for constraints on nutrient availability that was previously developed by the International Institute for Applied Systems Analysis (IIASA - Laxenburg, Austria) for evaluating potential productivity of arable land. This IIASA metric requires information on soil properties that are indicative of nutrient availability (SOC, soil texture, total exchangeable bases - TEB, and pH) and is based on theoretical considerations that are also generally valid for nonagricultural ecosystems. However, the IIASA metric was unrelated to normalized forest productivity across Sweden (R2 = 0.00-0.01) because the soil factors under consideration were not optimally implemented according to the Swedish data, and because the soil C : N ratio was not included. Using two methods (each one based on a different way of normalizing productivity for climate), we adjusted this metric by incorporating soil C : N and modifying the relationship between SOC and nutrient availability in view of the observed relationships across our database. In contrast to the IIASA metric, the adjusted metrics explained some variation in normalized productivity in the database (R2 = 0.03-0.21; depending on the applied method). A test for five manually selected local fertility gradients in our database revealed a significant and stronger relationship between the adjusted metrics and productivity for each of the gradients (R2 = 0.09-0.38). This study thus shows for the first time how nutrient availability metrics can be evaluated and adjusted for a particular ecosystem type, using a large-scale database.

  19. Soil carbon debt of 12,000 years of human land use.

    PubMed

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Gregory J

    2017-09-05

    Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes "grazing" and "cropland" contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.

  20. Soil carbon debt of 12,000 years of human land use

    PubMed Central

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Gregory J.

    2017-01-01

    Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts. PMID:28827323

  1. A Communication Framework for Collaborative Defense

    DTIC Science & Technology

    2009-02-28

    been able to provide sufficient automation to be able to build up the most extensive application signature database in the world with a fraction of...perceived. We have been able to provide sufficient automation to be able to build up the most extensive application signature database in the world with a...that are well understood in the context of databases . These techniques allow users to quickly scan for the existence of a key in a database . 8 To be

  2. Field Identification of Andic Soil Properties for Soils of North-central Idaho

    Treesearch

    Brian Gardner

    2007-01-01

    Currently, laboratory measurements are definitive for identifying andic soil properties in both the USDA Soil Taxonomy (Soil Survey Staff 1999) and the World Reference Base for Soil Resources (FAO/ISRIC/ISSS 1998). Andic soil properties, as described in Soil Taxonomy, result mainly from the presence of significant amounts of allophone, imogolite, ferrihydrite or...

  3. Data Structures in Natural Computing: Databases as Weak or Strong Anticipatory Systems

    NASA Astrophysics Data System (ADS)

    Rossiter, B. N.; Heather, M. A.

    2004-08-01

    Information systems anticipate the real world. Classical databases store, organise and search collections of data of that real world but only as weak anticipatory information systems. This is because of the reductionism and normalisation needed to map the structuralism of natural data on to idealised machines with von Neumann architectures consisting of fixed instructions. Category theory developed as a formalism to explore the theoretical concept of naturality shows that methods like sketches arising from graph theory as only non-natural models of naturality cannot capture real-world structures for strong anticipatory information systems. Databases need a schema of the natural world. Natural computing databases need the schema itself to be also natural. Natural computing methods including neural computers, evolutionary automata, molecular and nanocomputing and quantum computation have the potential to be strong. At present they are mainly at the stage of weak anticipatory systems.

  4. Marginality principle

    USDA-ARS?s Scientific Manuscript database

    Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...

  5. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks.

    PubMed

    Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L

    2008-03-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.

  6. In Situ California Bearing Ration Database

    DTIC Science & Technology

    2007-10-01

    for use in this investigation ( Berney and Wahl 2007). The goal of the JRAC effort is to enable a rapid assessment of a soil with a miniaturized...variability - Benalla test section. Research Report ARR 220. Victoria, Australia: Australian Road Research Board. Berney , E.S., and R.E. Wahl. 2007. Rapid...number given to each unique soil that was identified in the Joint Rapid Airfield Construction program’s database ( Berney and Wahl 2007). Test or

  7. Modeling soil evaporation efficiency in a range of soil and atmospheric conditions using a meta-analysis approach

    NASA Astrophysics Data System (ADS)

    Merlin, O.; Stefan, V. G.; Amazirh, A.; Chanzy, A.; Ceschia, E.; Er-Raki, S.; Gentine, P.; Tallec, T.; Ezzahar, J.; Bircher, S.; Beringer, J.; Khabba, S.

    2016-05-01

    A meta-analysis data-driven approach is developed to represent the soil evaporative efficiency (SEE) defined as the ratio of actual to potential soil evaporation. The new model is tested across a bare soil database composed of more than 30 sites around the world, a clay fraction range of 0.02-0.56, a sand fraction range of 0.05-0.92, and about 30,000 acquisition times. SEE is modeled using a soil resistance (rss) formulation based on surface soil moisture (θ) and two resistance parameters rss,ref and θefolding. The data-driven approach aims to express both parameters as a function of observable data including meteorological forcing, cut-off soil moisture value θ1/2 at which SEE=0.5, and first derivative of SEE at θ1/2, named Δθ1/2-1. An analytical relationship between >(rss,ref;θefolding) and >(θ1/2;Δθ1/2-1>) is first built by running a soil energy balance model for two extreme conditions with rss = 0 and rss˜∞ using meteorological forcing solely, and by approaching the middle point from the two (wet and dry) reference points. Two different methods are then investigated to estimate the pair >(θ1/2;Δθ1/2-1>) either from the time series of SEE and θ observations for a given site, or using the soil texture information for all sites. The first method is based on an algorithm specifically designed to accomodate for strongly nonlinear SEE>(θ>) relationships and potentially large random deviations of observed SEE from the mean observed SEE>(θ>). The second method parameterizes θ1/2 as a multi-linear regression of clay and sand percentages, and sets Δθ1/2-1 to a constant mean value for all sites. The new model significantly outperformed the evaporation modules of ISBA (Interaction Sol-Biosphère-Atmosphère), H-TESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land), and CLM (Community Land Model). It has potential for integration in various land-surface schemes, and real calibration capabilities using combined thermal and microwave remote sensing data.

  8. Simulating the influence of groundwater table fluctuation on vapor intrusion

    NASA Astrophysics Data System (ADS)

    Huo, J.

    2017-12-01

    The migration of volatile chemicals from groundwater to an overlying building is a commonly existing phenomenon around the world. Due to the distinction of hydrologic conditions among vapor intrusion sites, it is necessary to consider the effect of dominant hydrologic factors in order to obtain a precise site evaluation and a health risk assessment during the screening process. This study mainly discusses the impact of groundwater table fluctuation and other hydrological factors including porosity, permeability and soil moisture on the vapor intrusion transport. A two-dimensional model is configured to inject different typical volatile organic contaminants from EPA's Vapor Intrusion Database. Through quantifying the contaminant vapor concentration attenuation factors under the effect of groundwater table fluctuation, this study provides suggestions for indoor air sample and vapor intrusion assessment.

  9. What is Soil?

    Science.gov Websites

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils << 1 What is Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  10. Soil pH Errors Propagation from Measurements to Spatial Predictions - Cost Benefit Analysis and Risk Assessment Implications for Practitioners and Modelers

    NASA Astrophysics Data System (ADS)

    Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.

    2017-12-01

    The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that need to be assessed against the risk. The modeling community can benefit from such analysis, however, error size and spatial distribution for global and regional predictions need to be assessed against the variability of other drivers and impact on management decisions.

  11. Biochar: What is the future for industrial production and world usage?

    USDA-ARS?s Scientific Manuscript database

    Biochar has gained world attention as a soil amendment to increase carbon sequestration, improve fertility levels and bolster soil water retention. Unfortunately, the amount of biochar needed for field application rates to achieve these results can be in the tons per hectare range. There is concer...

  12. A blue carbon soil database: Tidal wetland stocks for the US National Greenhouse Gas Inventory

    NASA Astrophysics Data System (ADS)

    Feagin, R. A.; Eriksson, M.; Hinson, A.; Najjar, R. G.; Kroeger, K. D.; Herrmann, M.; Holmquist, J. R.; Windham-Myers, L.; MacDonald, G. M.; Brown, L. N.; Bianchi, T. S.

    2015-12-01

    Coastal wetlands contain large reservoirs of carbon, and in 2015 the US National Greenhouse Gas Inventory began the work of placing blue carbon within the national regulatory context. The potential value of a wetland carbon stock, in relation to its location, soon could be influential in determining governmental policy and management activities, or in stimulating market-based CO2 sequestration projects. To meet the national need for high-resolution maps, a blue carbon stock database was developed linking National Wetlands Inventory datasets with the USDA Soil Survey Geographic Database. Users of the database can identify the economic potential for carbon conservation or restoration projects within specific estuarine basins, states, wetland types, physical parameters, and land management activities. The database is geared towards both national-level assessments and local-level inquiries. Spatial analysis of the stocks show high variance within individual estuarine basins, largely dependent on geomorphic position on the landscape, though there are continental scale trends to the carbon distribution as well. Future plans including linking this database with a sedimentary accretion database to predict carbon flux in US tidal wetlands.

  13. THE ECOTOX DATABASE AND ECOLOGICAL SOIL SCREENING LEVEL (ECO-SSL) WEB SITES

    EPA Science Inventory

    The EPA's ECOTOX database (http://www.epa.gov/ecotox/) provides a web browser search interface for locating aquatic and terrestrial toxic effects information. Data on more than 8100 chemicals and 5700 terrestrial and aquatic species are included in the database. Information is ...

  14. Development of a Coupled Framework for Simulating Interactive Effects of Frozen Soil Hydrological Dynamics in Permafrost Regions

    DTIC Science & Technology

    2013-11-01

    Permafrost Input Database Geology, Lithologic Data, Snow Cover, Air Temperature, Ground Temperatures, Vegetation Precipitation Soil Properties GIPL...be found in Nicolsky et al. (2007). Required input data include climate data, snow cover, soil thermal properties, lithological data, and vegetative

  15. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  16. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    NASA Astrophysics Data System (ADS)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  17. Vital Soil: Function, Value and Properties.

    USDA-ARS?s Scientific Manuscript database

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  18. Geostatistical modelling of soil-transmitted helminth infection in Cambodia: do socioeconomic factors improve predictions?

    PubMed

    Karagiannis-Voules, Dimitrios-Alexios; Odermatt, Peter; Biedermann, Patricia; Khieu, Virak; Schär, Fabian; Muth, Sinuon; Utzinger, Jürg; Vounatsou, Penelope

    2015-01-01

    Soil-transmitted helminth infections are intimately connected with poverty. Yet, there is a paucity of using socioeconomic proxies in spatially explicit risk profiling. We compiled household-level socioeconomic data pertaining to sanitation, drinking-water, education and nutrition from readily available Demographic and Health Surveys, Multiple Indicator Cluster Surveys and World Health Surveys for Cambodia and aggregated the data at village level. We conducted a systematic review to identify parasitological surveys and made every effort possible to extract, georeference and upload the data in the open source Global Neglected Tropical Diseases database. Bayesian geostatistical models were employed to spatially align the village-aggregated socioeconomic predictors with the soil-transmitted helminth infection data. The risk of soil-transmitted helminth infection was predicted at a grid of 1×1km covering Cambodia. Additionally, two separate individual-level spatial analyses were carried out, for Takeo and Preah Vihear provinces, to assess and quantify the association between soil-transmitted helminth infection and socioeconomic indicators at an individual level. Overall, we obtained socioeconomic proxies from 1624 locations across the country. Surveys focussing on soil-transmitted helminth infections were extracted from 16 sources reporting data from 238 unique locations. We found that the risk of soil-transmitted helminth infection from 2000 onwards was considerably lower than in surveys conducted earlier. Population-adjusted prevalences for school-aged children from 2000 onwards were 28.7% for hookworm, 1.5% for Ascaris lumbricoides and 0.9% for Trichuris trichiura. Surprisingly, at the country-wide analyses, we did not find any significant association between soil-transmitted helminth infection and village-aggregated socioeconomic proxies. Based also on the individual-level analyses we conclude that socioeconomic proxies might not be good predictors at an aggregated large-scale analysis due to their large between- and within-village heterogeneity. Specific information of both the infection risk and potential predictors might be needed to obtain any existing association. The presented soil-transmitted helminth infection risk estimates for Cambodia can be used for guiding and evaluating control and elimination efforts. Copyright © 2014. Published by Elsevier B.V.

  19. S/MARt DB: a database on scaffold/matrix attached regions.

    PubMed

    Liebich, Ines; Bode, Jürgen; Frisch, Matthias; Wingender, Edgar

    2002-01-01

    S/MARt DB, the S/MAR transaction database, is a relational database covering scaffold/matrix attached regions (S/MARs) and nuclear matrix proteins that are involved in the chromosomal attachment to the nuclear scaffold. The data are mainly extracted from original publications, but a World Wide Web interface for direct submissions is also available. S/MARt DB is closely linked to the TRANSFAC database on transcription factors and their binding sites. It is freely accessible through the World Wide Web (http://transfac.gbf.de/SMARtDB/) for non-profit research.

  20. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948-1997

    NASA Astrophysics Data System (ADS)

    Makarieva, Olga; Nesterova, Nataliia; Lebedeva, Lyudmila; Sushansky, Sergey

    2018-04-01

    In 2018, 70 years have passed since the beginning of observations at the Kolyma Water-Balance Station (KWBS), a unique scientific research hydrological and permafrost catchment. The volume and duration (50 continuous years) of hydrometeorological standard and experimental data, characterizing the natural conditions and processes occurring in mountainous permafrost conditions, significantly exceed any counterparts elsewhere in the world. The data are representative of mountainous territory of the North-East of Russia. In 1997, the station was terminated, thereby leaving Russia without operating research watersheds in the permafrost zone. This paper describes the dataset containing the series of daily runoff from 10 watersheds with an area from 0.27 to 21.3 km2, precipitation, meteorological observations, evaporation from soil and snow, snow surveys, soil thaw and freeze depths, and soil temperature for the period 1948-1997. It also highlights the main historical stages of the station's existence, its work and scientific significance, and outlines the prospects for its future, where the Kolyma Water-Balance Station could be restored to the status of a scientific research watershed and become a valuable international centre for hydrological research in permafrost. The data are available at https://doi.org/10.1594/PANGAEA.881731.

  1. Exhibition

    Science.gov Websites

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It have been sizing up soils. Today, soil scientists analyze soils and predict how they will behave. But Big Picture TheBigPicture How well do you know the world beneath your feet? Take our Soil Quiz and

  2. Workshop Report on a Future Information Infrastructure for the Physical Sciences. The Facts of the Matter: Finding, Understanding, and Using Information about out Physical World Held at the National Academy of Sciences on May 30-31, 2000

    DTIC Science & Technology

    2000-05-31

    Grey Literature Network Service ( Farace , Dominic,1997) as, “that which is produced on all levels of government, academics, business and industry in... literature is available, on-line, to scientific workers throughout the world, for a world scientific database.” These reports served as the base to begin...all the world’s formal scientific literature is available, on-line, to scientific workers throughout the world, for a world scientific database

  3. What the soil reveals: potential total ecosystem C stores of the Pacific Northwest region, USA.

    Treesearch

    Peter S. Homann; Mark Harmon; Suzanne Remillard; Erica A.H. Smithwick

    2005-01-01

    How much organic C can a region naturally store in its ecosystems? How can this be determined, when land management has altered the vegetation of the landscape substantially? The answers may lie in the soil: this study synthesized the spatial distribution of soil properties derived from the state soils geographic database with empirical measurements of old-growth...

  4. Soils as Sediment database: closing a gap between soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2016-04-01

    Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil. Key areas where such an understanding is essential are all issues related to the lateral movement of soil-bound substances that affect the nature of soils itself, as well as water or vegetation downslope from the source area. The redistribution of eroded soil falls several disciplines, most notably soil science, agronomy, hydrology and geomorphology. Accordingly, the way sediment is described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil as sediment would represent a step forward. To develop such a proxy, a database collating relevant soil and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil as sediment.

  5. Remediating soils: Designing biochars to meet the need

    EPA Science Inventory

    Biochar, the porous, carbon-rich product of pyrolysis, may provide an additional tool for remediating both metal and organic contaminated soils and for reducing other soil limitations. Soils contaminated with metals, organics or limited in some other way is a world-wide problem...

  6. The NMDB collaboration

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.

    2015-12-01

    Since the International Geophysical Year (IGY) in 1957-58 cosmic rays areroutinely measured by many ground-based Neutron Monitors (NM) around theworld. The World Data Center for Cosmic Rays (WDCCR) was established as apart of this activity and is providing a database of cosmic-ray neutronobservations in unified formats. However, that standard data comprises onlyof one hour averages, whereas most NM stations have been enhanced at the endof the 20th century to provide data in one minute resolution or even better.This data was only available on the web-sites of the institutes operatingthe station, and every station invented their own data format for thehigh-resolution measurements. There were some efforts to collect data fromseveral stations, to make this data available on FTP servers, however noneof these efforts could provide real-time data for all stations.The EU FP7 project NMDB (real-time database for high-resolution NeutronMonitor measurements, http://nmdb.eu) was funded by the European Commission,and a new database was set up by several Neutron Monitor stations in Europeand Asia to store high-resolution data and to provide access to the data inreal-time (i.e. less than five minute delay). By storing the measurements ina database, a standard format for the high-resolution measurements isenforced. This database is complementary to the WDCCR, as it does not (yet)provide all historical data, but the creation of this effort has spurred anew collaboration between Neutron Monitor scientists worldwide, (new)stations have gone online (again), new projects are building on the resultsof NMDB, new users outside of the Cosmic Ray community are starting to useNM data for new applications like soil moisture measurements using cosmicrays. These applications are facilitated by the easy access to the data withthe http://nest.nmdb.eu interface that offers access to all NMDB data forall users.

  7. Sugars in soil: Review of sources, contents, fate and functions

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov

    2015-04-01

    Sugars are the most abundant organic compounds in the biosphere because they are monomers of all polysaccharides. We summarized the results of the last 40 years on sources, content and fate of sugars in soil and discussed their main functions in soil. We especially focused on uptake and utilization of sugars by microorganisms as this is by far the dominating process of sugars transformation in soil. Two databases have been created and analyzed. The 1st database was focused on the contents of cellulose, non-cellulose, hot water and cold water extractable sugars in soils (348 data from 32 studies). This database was also used to determine the primary (plant derived) and secondary (microbially and soil organic matter (SOM) derived) sources of carbohydrates in soil. The galactose+mannose/arabinose+xylose (GM/AX) ratio was calculated to analyze the origin of sugars in soil. The 2nd database was focused on the fate of sugar C in soil (734 data pairs from 32 studies), and only the papers used 13C or 14C labelled sugars were included. All data to the fate were analyzed and presented in dynamics. This allowed to calculate: 1) maximal rate of glucose-C decomposition, 2) mean residence time (MRT) of C of the initially applied sugars, 3) MRT of glucose-C incorporated into microbial biomass (MB) and SOM pools. Content of hexoses was 3-4 times higher than that of pentoses for both cellulose and non-cellulose sugars, because hexoses have two sources in soil: plants and microorganisms. The GM/AX ratio revealed higher contribution of hexoses in forest (ratio was 1.5) than in cropland and grassland soils (ratio was 0.7-1), reflecting high input of hexoses with forest litter. The MRT of sugars in soil solution was much less than 30 minutes. Based on the experiments with 13C or 14C labelled glucose, the maximal rate of glucose C decomposition in microbial biomass was ˜ 1min-1. Considering this rate, the glucose input from plants and content of sugar C in soil, we estimated that only about 20soil originate from the primary source - decomposition of plant biomass and root exudation. The remaining 80from microbial recycling. Estimated MRT of sugar C in MB was about 230 days, showing intense and efficient recycling of sugars in microorganisms. In contrast, MRT of sugar C in SOM was about 360 days, reflecting essential accumulation of sugar C in dead MB. Thus, very fast uptake of sugars by microorganisms as well as intensive microbial recycling clearly shows the importance of sugars for microbes in soil. Based on the assessed MRT we conclude that real contribution of sugar C (not only whole sugar molecules, which are usually determined) in SOM is much higher than commonly measured 10-15

  8. A hydrophysical database to develop pedotransfer functions for Brazilian soils: challenges and perspectives

    USDA-ARS?s Scientific Manuscript database

    Access to soil hydrological data is vital for hydrology projects and for supporting decision-making in issues related to the availability of food and water and the forecasting of phenomena related to soil surface stability. Brazil is a country of continental dimensions and has accumulated a signific...

  9. Drawing a representative sample from the NCSS soil database: Building blocks for the national wind erosion network

    USDA-ARS?s Scientific Manuscript database

    Developing national wind erosion models for the continental United States requires a comprehensive spatial representation of continuous soil particle size distributions (PSD) for model input. While the current coverage of soil survey is nearly complete, the most detailed particle size classes have c...

  10. Levelling and merging of two discrete national-scale geochemical databases: A case study showing the surficial expression of metalliferous black shales

    USGS Publications Warehouse

    Smith, Steven M.; Neilson, Ryan T.; Giles, Stuart A.

    2015-01-01

    Government-sponsored, national-scale, soil and sediment geochemical databases are used to estimate regional and local background concentrations for environmental issues, identify possible anthropogenic contamination, estimate mineral endowment, explore for new mineral deposits, evaluate nutrient levels for agriculture, and establish concentration relationships with human or animal health. Because of these different uses, it is difficult for any single database to accommodate all the needs of each client. Smith et al. (2013, p. 168) reviewed six national-scale soil and sediment geochemical databases for the United States (U.S.) and, for each, evaluated “its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.” Each of the evaluated databases has strengths and weaknesses that were listed in that review.Two of these U.S. national-scale geochemical databases are similar in their sample media and collection protocols but have different strengths—primarily sampling density and analytical consistency. This project was implemented to determine whether those databases could be merged to produce a combined dataset that could be used for mineral resource assessments. The utility of the merged database was tested to see whether mapped distributions could identify metalliferous black shales at a national scale.

  11. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.

    PubMed

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-03-01

    Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org

  12. Simulating the evolution of Permafrost in the recent past with the ISBA land surface model

    NASA Astrophysics Data System (ADS)

    Delire, C. L.; Decharme, B.; Alkama, R.

    2013-12-01

    We present here a numerical study of the evolution of permafrost over the N hemisphere land since the 1960ies. We used the ISBA land-surface model (Masson et al., 2013). The simulations were done according to a protocol proposed by D. Mc Guire for the 'Research Coordination Network on carbon vulnerability in the permafrost. Compared to the estimates of Brown et al., 1998, ISBA represents well the current area of permafrost (defined as the area for which active layer thickness is less than 3 m) with a total area of 22.8 million km2. It also represents reasonably well the distribtion of soil organic matter compared to the Harmonised World Soil Database. In the last 40 years, the model simulates a reduction of about 2.8 million km2 while simulating an increase of about 600 gC/m2 of soil organic matter. To understand these changes we performed as suggested by the RCN a few runs keeping one climatic variable (temperature, precipitation or CO2 concentration) at its 1960 levels while allowing the others to change as observed. As expected, the decrease in area is mostly due to the temperature increase since the 1960ies. The increase in soil carbon due to a larger increase in NPP than microbial decomposition mostly depends on the atmospheric CO2 increase since 1960 and the lengthening of the growing season. The spinup choice and the way land-use change is treated also play a role in this carbon accumulation.

  13. Explorers

    Science.gov Websites

    Atmosphere Explorers Patrick Megonigal Melissa McCormick Dennis Whigham Curator and Soil Ecologist Soil Scientist Brigham Young University Sophomore Waiakea High School Hilo, Hawaii Graduate Student USDA/NRCS St. Croix Field Office National Leader for World Soil Resources USDA/NRCS Soil Scientist USDA

  14. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    ERIC Educational Resources Information Center

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  15. Underneath It All

    Science.gov Websites

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It Soil 4 Toxic Soil 5 Wildfires and Mudslides >> Underneath It All Soils are the foundations on well do you know the world beneath your feet? Click here to take our Soil Quiz and find out! Copyright

  16. Protecting global soil resources for future generations

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2017-04-01

    The latest Status of World's Soil Resources report has highlighted that soils are increasingly under pressure by numerous human induced degradation processes in most parts of the world. The limits of our planetary boundaries concerning vital soil resources have been reached and without reversing this negative trend there will be a serious lack of necessary soil resources for future generations. It has been therefore of the highest importance to include soils within some of the Sustainable Development Goals (SDG) recently approved by the United Nations. Sustainable development can not be achieved without protecting the limited, non-renewable, soil resources of our planet. There is the need to limit on-going soil degradation processes and to implement extensive soil restoration activities in order to strive towards a land degradation neutral (LDN) world, as called upon by SDG 15. Sustainable soil management needs to be placed at the core of any LDN strategy and therefore it is of highest importance that the recently approved Voluntary Guidelines for Sustainable Soil Management (VGSSM) of FAO get fully implemented at National and local scale.Sustainable soil management is not only relevant for the protection of fertile soils for food production, but also to mitigate and adopt to climate change at to preserve the large soil biodiversity pool. Therefore the VGSSM are not only relevant to FAO, but also the the climate change convention (UNFCCC) and the biodiversity convention (CBD). An integrated assessment of the current land degradation processes and the available land restoration practices is needed in order to fully evaluate the potential for effectively achieving LDN by 2030. The on-going Land Degradation and Restoration Assessment (LDRA) of the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) will provide the necessary scientific basis for the full implementation of the necessary measures for achieving the planned SGS's relevant to land and soils by 2030.

  17. Urban Soil Hydrology: bridging the data gap with a nationwide field study

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Shuster, W.

    2016-12-01

    Urban communities generally rely on hydrologic models or tools for assessing suitable sites for green infrastructure. These rainfall-runoff models, e.g. National Stormwater Calculator (NSWC), query soil hydrologic information from national databases, e.g. Soil Survey Geographic Database (SSURGO), or are estimated via pedotransfer-based algorithms like USDA Rosetta. As part of urban soil hydrologic assessments we have collected soil textural and hydrologic data in 12 cities throughout the United States and compared these measurements to NSWC and SSURGO queried infiltration rates (Kunsat) and Rosetta-estimated drainage rates (Ksat and Kunsat). We found that soil hydrologic parameters obtained through pedotransfer functions and queries to soil databases are not representative of field-measured values (RMSE range from 6.2 to 15.2 for infiltration and from 13.2 to 16.3 for drainage). Although the NSWC queries SSURGO, we found that SSURGO overestimates infiltration and NSWC underestimates with MEs of 4.9, and -1.4, respectively. In Rosetta, we found that pedotransfer functions overestimated drainage rates (MEs 1.8 to 3.8). In an attempt to improve drainage estimates using Rosetta the soil texture was adjusted in soils with an apparent portion of finer sands. Here, sand included: very coarse, coarse, and medium sand, whereas silt included fine, and very fine sand and silt, with the justification that fine sands behave similarly to silt. These adjusted estimates resulted in generally underestimating drainage and still not suitable for use in planning for stormwater detention (e.g., infiltrative green infrastructure). With this work we highlight the importance of obtaining field measured values when assessing sites for green infrastructure planning instead of relying on estimates, as the discrepancies in sensitive parameters such as Kunsat and Ksat, implications for parameter selection in error propagation through rainfall-runoff models, and consequences for over- or under-design of stormwater control measures for detention.

  18. A World Wide Web (WWW) server database engine for an organelle database, MitoDat.

    PubMed

    Lemkin, P F; Chipperfield, M; Merril, C; Zullo, S

    1996-03-01

    We describe a simple database search engine "dbEngine" which may be used to quickly create a searchable database on a World Wide Web (WWW) server. Data may be prepared from spreadsheet programs (such as Excel, etc.) or from tables exported from relationship database systems. This Common Gateway Interface (CGI-BIN) program is used with a WWW server such as available commercially, or from National Center for Supercomputer Algorithms (NCSA) or CERN. Its capabilities include: (i) searching records by combinations of terms connected with ANDs or ORs; (ii) returning search results as hypertext links to other WWW database servers; (iii) mapping lists of literature reference identifiers to the full references; (iv) creating bidirectional hypertext links between pictures and the database. DbEngine has been used to support the MitoDat database (Mendelian and non-Mendelian inheritance associated with the Mitochondrion) on the WWW.

  19. How Indigenous values shaped a successful multi-year Soil Health program in Aotearoa-New Zealand (presented from both indigenous Māori and western science perspectives)

    NASA Astrophysics Data System (ADS)

    Stevenson, B.; Harmsworth, G.; Kalaugher, E.

    2017-12-01

    New Zealand is a multicultural society, founded on the Treaty of Waitangi which when enshrined into various legislation and national policy, provides incentive to incorporate indigenous Māori world views into nationally funded science and research programmes. Here we discuss how the integration of indigenous world views and western science were combined in a research proposal that resulted in successful funding for a 5 year collaborative science programme. The programme strives to develop an expanded national soil health framework for New Zealand that will be used by policy makers, local government, indigenous Māori, industry, and primary sector groups to maintain the natural capital and productivity of soils within environmental constraints. Soil health is fundamental to economic, social, and human wellbeing, and provides a myriad of ecosystem and environmental services, such as those sustaining food and fibre production. Typically soil health is defined by "dynamic" soil characteristics that are susceptible to changes in land use or land management over relatively short time frames (years to decades). Soil resilience, however, is a much longer-term concept that is not well captured in current soil health thinking. The Māori world view encapsulates such long term thinking through interconnected Māori values and inter-generational concepts (e.g., whakapapa, rangatiratanga, manawhenua, kaitiakitanga, mauri) that provide the basis for indigenous resource management in Aotearoa-New Zealand. These values and recognition of the Treaty of Waitangi provide authority and rights to manage resources according to tikanga (customs, principles). Māori environmental concepts and knowledge combined with science concepts for understanding soil health and resilience, served as a powerful central theme for the design and implementation of this science program. Māori involvement and capability development are integral to this research effort and we believe the synthesis of Māori-world views together with a western science approach will progress understanding of soil health at multiple scales, provide an enriched multi-stakeholder worldview, and help promote significant change in New Zealand policy and practice towards sustainable land and soil management.

  20. World-wide precision airports for SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Lugsch, Bill; Launer, Marc; Baca, Diana

    2004-08-01

    Future cockpit and aviation applications require high quality airport databases. Accuracy, resolution, integrity, completeness, traceability, and timeliness [1] are key requirements. For most aviation applications, attributed vector databases are needed. The geometry is based on points, lines, and closed polygons. To document the needs for aviation industry RTCA and EUROCAE developed in a joint committee, the DO-272/ED-99 document. It states industry needs for data features, attributes, coding, and capture rules for Airport Mapping Databases (AMDB). This paper describes the technical approach Jeppesen has taken to generate a world-wide set of three-hundred AMDB airports. All AMDB airports are DO-200A/ED-76 [1] and DO-272/ED-99 [2] compliant. Jeppesen airports have a 5m (CE90) accuracy and an 10-3 integrity. World-wide all AMDB data is delivered in WGS84 coordinates. Jeppesen continually updates the databases.

  1. A network of experimental forests and ranges: Providing soil solutions for a changing world

    Treesearch

    Mary Beth Adams

    2010-01-01

    The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...

  2. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  3. The agro-ecological suitability of Atriplex nummularia and A. halimus for biomass production in Argentine saline drylands.

    PubMed

    Falasca, Silvia Liliana; Pizarro, María José; Mezher, Romina Nahir

    2014-09-01

    The choice of the best species to cultivate in semi-arid and arid climates is of fundamental importance, and is determined by many factors, including temperature and rainfall, soil type, water availability for irrigation and crop purposes. Soil or water salinity represents one of the major causes of crop stress. Species of the genus Atriplex are characterized by high biomass productivity, high tolerance to drought and salinity, and high efficiency in use of solar radiation and water. Based on a search of the international literature, the authors outline an agro-climatic zoning model to determine potential production areas in Argentina for Atriplex halimus and Atriplex numularia. Using the agroclimatic limits presented in this work, this model may be applied to any part of the world. When superimposed on the saline areas map, the agroclimatic map shows the suitability of agro-ecological zoning for both species for energy purposes on land unsuitable for food production. This innovative study was based on the implementation of a geographic information system that can be updated by further incorporation of complementary information, with consequent improvement of the original database.

  4. The agro-ecological suitability of Atriplex nummularia and A. halimus for biomass production in Argentine saline drylands

    NASA Astrophysics Data System (ADS)

    Falasca, Silvia Liliana; Pizarro, María José; Mezher, Romina Nahir

    2014-09-01

    The choice of the best species to cultivate in semi-arid and arid climates is of fundamental importance, and is determined by many factors, including temperature and rainfall, soil type, water availability for irrigation and crop purposes. Soil or water salinity represents one of the major causes of crop stress. Species of the genus Atriplex are characterized by high biomass productivity, high tolerance to drought and salinity, and high efficiency in use of solar radiation and water. Based on a search of the international literature, the authors outline an agro-climatic zoning model to determine potential production areas in Argentina for Atriplex halimus and Atriplex numularia. Using the agroclimatic limits presented in this work, this model may be applied to any part of the world. When superimposed on the saline areas map, the agroclimatic map shows the suitability of agro-ecological zoning for both species for energy purposes on land unsuitable for food production. This innovative study was based on the implementation of a geographic information system that can be updated by further incorporation of complementary information, with consequent improvement of the original database.

  5. Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale

    2017-05-01

    The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1  h -1  yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

  6. Exploring the World Beneath Your Feet.

    ERIC Educational Resources Information Center

    Flass, Christine A.

    1984-01-01

    A clod of soil contains a multitude of different organisms that can be used to teach students about the invaluable services of soil-dwellers. Activities presented are identifying vertebrate and invertebrate soil-dwellers, learning functions of earthworms, conducting a soil 'population survey', starting a worm culture, and separating anthropods…

  7. Erosion Losses of Soils on Arable Land in the European part of Russia

    NASA Astrophysics Data System (ADS)

    Maltsev, K. A.; Yermolaev, O. P.

    2018-01-01

    The quantitative assessment of potential soil losses in arable lands of the European part of Russia is carried out in the article. The assessment was carried out using a mathematical model based on the mathematical dependencies of the universal soil loss equation and the mathematical dependencies of the State Hydrological Institute of Russia. Assessment of potential soil losses was performed using calculations in a geographic information system. To perform the calculations the database was created containing information on: the relief; properties of soils; climate and land use. The raster model of data organization was used to create the database and subsequent calculations. The assessment shows that the average amount of soil loss in the plowed land of the European territory of Russia is 11 t/ha per year. At the same time, about half of the territories are located in conditions where the soil loss value does not exceed 0.5 t/ha per year. The potential loss of soil taking into account the soil protection role of vegetation is 3.3 tons/ha per year. In addition, a spatial analysis of the distribution of soil loss by landscape zones shows that there is a consistent reduction in the potential loss of soil from the forest zone (20.92 t/ha per year) to the forest-steppe (10.84 t / ha per year), steppe (8.13 t/ha per year) and semi-desert (4.7 tons/ha per year) zone.

  8. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons, have been included in the CCAP Geochemical Database and are planned to be added to the NGDB.

  9. Developing a Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas

    DTIC Science & Technology

    2010-12-01

    Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power Erosion and...2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http... Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE model

  10. Geolocation of man-made reservoirs across terrains of varying complexity using GIS

    NASA Astrophysics Data System (ADS)

    Mixon, David M.; Kinner, David A.; Stallard, Robert F.; Syvitski, James P. M.

    2008-10-01

    The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys in the database date from 1904 to 1999, though more than 95% of surveys were entered prior to 1980, making RESIS largely a historical database. The use of this database for large-scale studies has been limited by the lack of precise coordinates for the reservoirs. Many of the reservoirs are relatively small structures and do not appear on current USGS topographic maps. Others have been renamed or have only approximate (i.e. township and range) coordinates. This paper presents a method scripted in ESRI's ARC Macro Language (AML) to locate the reservoirs on digital elevation models using information available in RESIS. The script also delineates the contributing watersheds and compiles several hydrologically important parameters for each reservoir. Evaluation of the method indicates that, for watersheds larger than 5 km 2, the correct outlet is identified over 80% of the time. The importance of identifying the watershed outlet correctly depends on the application. Our intent is to collect spatial data for watersheds across the continental United States and describe the land use, soils, and topography for each reservoir's watershed. Because of local landscape similarity in these properties, we show that choosing the incorrect watershed does not necessarily mean that the watershed characteristics will be misrepresented. We present a measure termed terrain complexity and examine its relationship to geolocation success rate and its influence on the similarity of nearby watersheds.

  11. Dig It! The Secrets of Soil

    Science.gov Websites

    It! The Secrets of Soil Come and Explore! Discover the amazing world of soils with images and information from the Dig It! The Secrets of Soil exhibit from the Smithsonian's National Museum of Natural and new web content will be added over the coming months including a new soil blog. New Interactives

  12. ESTABLISHING A SOIL CARBON BASELINE FOR CARBON ACCOUNTING THE FORESTED SOILS OF THE UNITED STATES

    EPA Science Inventory

    Soils are an important global reservoir of organic carbon (C). It has been estimated that at 1500 Pg world soils hold approximately three times the amount of C held in vegetation and two times that in the atmosphere. Soils provide a relatively stable reservoir for C. With the int...

  13. A linear geospatial streamflow modeling system for data sparse environments

    USGS Publications Warehouse

    Asante, Kwabena O.; Arlan, Guleid A.; Pervez, Md Shahriar; Rowland, James

    2008-01-01

    In many river basins around the world, inaccessibility of flow data is a major obstacle to water resource studies and operational monitoring. This paper describes a geospatial streamflow modeling system which is parameterized with global terrain, soils and land cover data and run operationally with satellite‐derived precipitation and evapotranspiration datasets. Simple linear methods transfer water through the subsurface, overland and river flow phases, and the resulting flows are expressed in terms of standard deviations from mean annual flow. In sample applications, the modeling system was used to simulate flow variations in the Congo, Niger, Nile, Zambezi, Orange and Lake Chad basins between 1998 and 2005, and the resulting flows were compared with mean monthly values from the open‐access Global River Discharge Database. While the uncalibrated model cannot predict the absolute magnitude of flow, it can quantify flow anomalies in terms of relative departures from mean flow. Most of the severe flood events identified in the flow anomalies were independently verified by the Dartmouth Flood Observatory (DFO) and the Emergency Disaster Database (EM‐DAT). Despite its limitations, the modeling system is valuable for rapid characterization of the relative magnitude of flood hazards and seasonal flow changes in data sparse settings.

  14. Development of database of real-world diesel vehicle emission factors for China.

    PubMed

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. Copyright © 2015. Published by Elsevier B.V.

  15. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi

    2017-03-01

    Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs and improve the modeling of terrestrial carbon dynamics in ESMs. This study also reveals how a data-mining algorithm can be used to assess model outputs.

  16. Status of the World's Soil Resources Report, Intergovernmental Technical Panel on Soils

    EPA Science Inventory

    The scope of main objectives of the report are: (a) to provide a global scientific assessment of current and projected soil conditions built on regional data analysis and expertise (b) to explore the implications of these soil conditions for food security, climate change, water q...

  17. The World Database for Pediatric and Congenital Heart Surgery: Update.

    PubMed

    Louis, James St; Kirklin, James

    2018-05-01

    Following several years of planning and design, the World Database for Pediatric and Congenital Heart Surgery (WDPCHS) went live on January 1, 2017. The first operational year of this valuable database has proven very successful. As of February 28, 2018, more than 4,500 patients have been submitted from 39 centers; participation currently spans 19 countries over 6 continents, with 120 more centers in the enrollment pipeline. This update, the first in a series, is intended to provide World Society for Pediatric and Congenital Heart Surgery members and others who care for children with congenital heart disease with a broad overview of current progress and ongoing activities surrounding the WDPCHS.

  18. Geotechnical Materials Database for Embankment Design and Construction

    DOT National Transportation Integrated Search

    2011-12-01

    This project was focused on the assimilation of engineering properties of borrow soils across the state of : South Carolina. Extensive data on soils used for embankment construction were evaluated and compared : within Group A (Piedmont) and Group B ...

  19. ANZSoilML: An Australian - New Zealand standard for exchange of soil data

    NASA Astrophysics Data System (ADS)

    Simons, Bruce; Wilson, Peter; Ritchie, Alistair; Cox, Simon

    2013-04-01

    The Australian-New Zealand soil information exchange standard (ANZSoilML) is a GML-based standard designed to allow the discovery, query and delivery of soil and landscape data via standard Open Geospatial Consortium (OGC) Web Feature Services. ANZSoilML modifies the Australian soil exchange standard (OzSoilML), which is based on the Australian Soil Information Transfer and Evaluation System (SITES) database design and exchange protocols, to meet the New Zealand National Soils Database requirements. The most significant change was the removal of the lists of CodeList terms in OzSoilML, which were based on the field methods specified in the 'Australian Soil and Land Survey Field Handbook'. These were replaced with empty CodeLists as placeholders to external vocabularies to allow the use of New Zealand vocabularies without violating the data model. Testing of the use of these separately governed Australian and New Zealand vocabularies has commenced. ANZSoilML attempts to accommodate the proposed International Organization for Standardization ISO/DIS 28258 standard for soil quality. For the most part, ANZSoilML is consistent with the ISO model, although major differences arise as a result of: • The need to specify the properties appropriate for each feature type; • The inclusion of soil-related 'Landscape' features; • Allowing the mapping of soil surfaces, bodies, layers and horizons, independent of the soil profile; • Allowing specifying the relationships between the various soil features; • Specifying soil horizons as specialisations of soil layers; • Removing duplication of features provided by the ISO Observation & Measurements standard. The International Union of Soil Sciences (IUSS) Working Group on Soil Information Standards (WG-SIS) aims to develop, promote and maintain a standard to facilitate the exchange of soils data and information. Developing an international exchange standard that is compatible with existing and emerging national and regional standards is a considerable challenge. ANZSoilML is proposed as a profile of the more generalised SoilML model being progressed through the IUSS Working Group.

  20. The TERRA-PNW Dataset: A New Source for Standardized Plant Trait, Forest Carbon Cycling, and Soil Properties Measurements from the Pacific Northwest US, 2000-2014.

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-12-01

    Plant traits include physiological, morphological, and biogeochemical characteristics that in combination determine a species sensitivity to environmental conditions. Standardized, co-located, and geo-referenced species- and plot-level measurements are needed to address variation in species sensitivity to climate change impacts and for ecosystem process model development, parameterization and testing. We present a new database of plant trait, forest carbon cycling, and soil property measurements derived from multiple TERRA-PNW projects in the Pacific Northwest US, spanning 2000-2014. The database includes measurements from over 200 forest plots across Oregon and northern California, where the data were explicitly collected for scaling and modeling regional terrestrial carbon processes with models such as Biome-BGC and the Community Land Model. Some of the data are co-located at AmeriFlux sites in the region. The database currently contains leaf trait measurements (specific leaf area, leaf longevity, leaf carbon and nitrogen) from over 1,200 branch samples and 30 species, as well as plot-level biomass and productivity components, and soil carbon and nitrogen. Standardized protocols were used across projects, as summarized in an FAO protocols document. The database continues to expand and will include agricultural crops. The database will be hosted by the Oak Ridge National Laboratory (ORLN) Distributed Active Archive Center (DAAC). We hope that other regional databases will become publicly available to help enable Earth System Modeling to simulate species-level sensitivity to climate at regional to global scales.

  1. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    PubMed

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  3. Data compilation, synthesis, and calculations used for organic-carbon storage and inventory estimates for mineral soils of the Mississippi River Basin

    USGS Publications Warehouse

    Buell, Gary R.; Markewich, Helaine W.

    2004-01-01

    U.S. Geological Survey investigations of environmental controls on carbon cycling in soils and sediments of the Mississippi River Basin (MRB), an area of 3.3 x 106 square kilometers (km2), have produced an assessment tool for estimating the storage and inventory of soil organic carbon (SOC) by using soil-characterization data from Federal, State, academic, and literature sources. The methodology is based on the linkage of site-specific SOC data (pedon data) to the soil-association map units of the U.S. Department of Agriculture State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) digital soil databases in a geographic information system. The collective pedon database assembled from individual sources presently contains 7,321 pedon records representing 2,581 soil series. SOC storage, in kilograms per square meter (kg/m2), is calculated for each pedon at standard depth intervals from 0 to 10, 10 to 20, 20 to 50, and 50 to 100 centimeters. The site-specific storage estimates are then regionalized to produce national-scale (STATSGO) and county-scale (SSURGO) maps of SOC to a specified depth. Based on this methodology, the mean SOC storage for the top meter of mineral soil in the MRB is approximately 10 kg/m2, and the total inventory is approximately 32.3 Pg (1 petagram = 109 metric tons). This inventory is from 2.5 to 3 percent of the estimated global mineral SOC pool.

  4. ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes

    PubMed Central

    Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim

    2010-01-01

    Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515

  5. Quality standards for real-world research. Focus on observational database studies of comparative effectiveness.

    PubMed

    Roche, Nicolas; Reddel, Helen; Martin, Richard; Brusselle, Guy; Papi, Alberto; Thomas, Mike; Postma, Dirjke; Thomas, Vicky; Rand, Cynthia; Chisholm, Alison; Price, David

    2014-02-01

    Real-world research can use observational or clinical trial designs, in both cases putting emphasis on high external validity, to complement the classical efficacy randomized controlled trials (RCTs) with high internal validity. Real-world research is made necessary by the variety of factors that can play an important a role in modulating effectiveness in real life but are often tightly controlled in RCTs, such as comorbidities and concomitant treatments, adherence, inhalation technique, access to care, strength of doctor-caregiver communication, and socio-economic and other organizational factors. Real-world studies belong to two main categories: pragmatic trials and observational studies, which can be prospective or retrospective. Focusing on comparative database observational studies, the process aimed at ensuring high-quality research can be divided into three parts: preparation of research, analyses and reporting, and discussion of results. Key points include a priori planning of data collection and analyses, identification of appropriate database(s), proper outcomes definition, study registration with commitment to publish, bias minimization through matching and adjustment processes accounting for potential confounders, and sensitivity analyses testing the robustness of results. When these conditions are met, observational database studies can reach a sufficient level of evidence to help create guidelines (i.e., clinical and regulatory decision-making).

  6. Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; Mladenova, Iliana; Fang, Fan

    2010-01-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by coordinating monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main goal of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE (See diagram below). Soil moisture is currently a primary data gap at WAOB.

  7. Impact of land use, soil and DEM databases on surface runoff assessment with GIS decision support tool: A study case on the Briançon vineyard catchment (Gard, France)

    NASA Astrophysics Data System (ADS)

    Regazzoni, C.; Payraudeau, S.

    2012-04-01

    Runoff and associated erosion represent a primary mode of mobilization and transfer of pesticides from agricultural lands to watercourses and groundwater. The pesticides toxicity is potentially higher at the headwater catchment scale. These catchments are usually ungauged and characterized by temporary streams. Several mitigation strategies and management practices are currently used to mitigate the pesticides mixtures in agro-ecosystems. Among those practices, Stormwater Wetlands (SW) could be implemented to store surface runoff and to mitigate pesticides loads. The implementation of New Potential Stormwater Wetlands (NPSW) requires a diagnosis of intermittent runoff at the headwater catchment scale. The main difficulty to perform this diagnosis at the headwater catchment scale is to spatially characterize with enough accuracy the landscape components. Indeed, fields and field margins enhance or decrease the runoff and determine the pathways of hortonian overland flow. Land use, soil and Digital Elevation Model databases are systematically used. The question of the respective weight of each of these databases on the uncertainty of the diagnostic results is rarely analyzed at the headwater catchment scale. Therefore, this work focused (i) on the uncertainties of each of these databases and their propagation on the hortonian overland flow modelling, (ii) the methods to improve the accuracy of each database, (iii) the propagation of the databases uncertainties on intermittent runoff modelling and (iv) the impact of modelling cell size on the diagnosis. The model developed was a raster approach of the SCS-CN method integrating re-infiltration processes. The uncertainty propagation was analyzed on the Briançon vineyard catchment (Gard, France, 1400 ha). Based on this study site, the results showed that the geographic and thematic accuracies of regional soil database (1:250 000) were insufficient to correctly simulate the hortonian overland flow. These results have to be weighted according to the soil heterogeneity. Conversely, the regional land use (1:50 000) provided an acceptable diagnostic when combining with accurate soil database (1:15 000). Moreover, the regional land use quality can be improved by integrating road and river networks usually available at the national scale. Finally, a 5 m modelling cell size appeared as an optimum to correctly describe the landscape components and to assess the hortonian overland flow. A wrong assessment of the hortonian overland flow leads to a misinterpretation of the results and affects effective decision-making, e.g. the number and the location of the NSPW. This uncertainty analysis and the improvement methods developed on this study site can be adapted on other headwater catchments characterized by intermittent surface runoff.

  8. Increasing cotton stand establishment in soils prone to soil crusting

    USDA-ARS?s Scientific Manuscript database

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  9. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Treesearch

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  10. Combining Landsat-8 and WorldView-3 data to assess crop residue cover

    USDA-ARS?s Scientific Manuscript database

    Crop residues on the soil surface contribute to soil quality and form the first line defense against the erosive forces of water and wind. Quantifying crop residue cover on the soil surface after crops are planted is crucial for monitoring soil tillage intensity and assessing the extent of conserva...

  11. Sources and Practices Contributing to Soil Contamination

    Treesearch

    A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan

    1999-01-01

    The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...

  12. Developing an integration tool for soil contamination assessment

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  13. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    NASA Astrophysics Data System (ADS)

    von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani

    2017-04-01

    Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.

  14. Significance of exchanging SSURGO and STATSGO data when modeling hydrology in diverse physiographic terranes

    USGS Publications Warehouse

    Williamson, Tanja N.; Taylor, Charles J.; Newson, Jeremy K.

    2013-01-01

    The Water Availability Tool for Environmental Resources (WATER) is a TOPMODEL-based hydrologic model that depends on spatially accurate soils data to function in diverse terranes. In Kentucky, this includes mountainous regions, karstic plateau, and alluvial plains. Soils data are critical because they quantify the space to store water, as well as how water moves through the soil to the stream during storm events. We compared how the model performs using two different sources of soils data--Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database laboratory data (STATSGO)--for 21 basins ranging in size from 17 to 1564 km2. Model results were consistently better when SSURGO data were used, likely due to the higher field capacity, porosity, and available-water holding capacity, which cause the model to store more soil-water in the landscape and improve streamflow estimates for both low- and high-flow conditions. In addition, there were significant differences in the conductivity multiplier and scaling parameter values that describe how water moves vertically and laterally, respectively, as quantified by TOPMODEL. We also evaluated whether partitioning areas that drain to streams via sinkholes in karstic basins as separate hydrologic modeling units (HMUs) improved model performance. There were significant differences between HMUs in properties that control soil-water storage in the model, although the effect of partitioning these HMUs on streamflow simulation was inconclusive.

  15. Downsizing a database platform for increased performance and decreased costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.M.; Tolendino, L.F.

    Technological advances in the world of microcomputers have brought forth affordable systems and powerful software than can compete with the more traditional world of minicomputers. This paper describes an effort at Sandia National Laboratories to decrease operational and maintenance costs and increase performance by moving a database system from a minicomputer to a microcomputer.

  16. Developing a Spatially Distributed Terrestrial Biogeochemical Cycle Modeling System to Support the Management of Fort Benning and its Surrounding Areas

    DTIC Science & Technology

    2010-12-01

    nitrogen SSURGO Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power...Zaluski et al., 2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http...Estimating Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE

  17. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  18. Determinants of total and available phosphorus in forested Alfisols and Ultisols of the Ozark Highlands, USA

    Treesearch

    Gurbir Singh; Keith W. Goyne; John M. Kabrick

    2015-01-01

    Phosphorus is an important nutrient limiting forest growth in many parts of world, and soil P forms and concentrations may be associated with a host of soil and environmental attributes in a complex soil landscape. The objective of this study was to identify key environmental and soil properties influencing total and available soil P concentrations in a mixed oak (

  19. A Canadian upland forest soil profile and carbon stocks database.

    PubMed

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve accuracy in modeled predictions. The current database is being used to develop soil carbon model parameters linked to soil taxonomy and leading tree species and, by various governmental and nongovernmental organizations, to improve digital mapping of ecosite types and soil properties regionally, nationally, and internationally. © Her Majesty the Queen in Right of Canada, 2018. Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: exercise due diligence in ensuring the accuracy of the materials reproduced; indicate the complete title of the materials reproduced, and the name of the author organization; indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan. Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at copyright.droitdauteur@nrcan-rncan.gc.ca. © 2018 by the Ecological Society of America.

  20. The Glinka Memorial Soil Monolith Collection: a treasure of Soil Science

    NASA Astrophysics Data System (ADS)

    Muggler, C. C.; Spaargaren, O.; Hartemink, A. E.

    2012-04-01

    The first World Congress of Soil Science, held in 1927 in Washington DC, USA, had as one of its highlights the exposition of soils from all over the world. The Russian delegation had planned the presentation of 50 soil monoliths. The soil profiles were collected under the supervision of Konstantin D. Glinka, then director of the Leningrad Agricultural Institute. The soil profiles included a geographical sequence form St Petersburg to the Caucasus and soils from Georgia, Azerbaijan, Kazakhstan, the Amu Darya region and the Siberian Far East. Due to shipping problems they did not arrive on time for the congress, and ended up in an USDA storage facility, where they remained untouched in their original wooden boxes. At first congress Glinka gave a lecture on Dokuchaev's ideas and the Russian developments on soil science, and joined the transcontinental field trip of 30 days that followed the congress. At that congress, Glinka was elected president of the International Soil Science Society, and was in charge to organize the next congress in Russia. However, he passed away a few months after the congress. In the 1970s, after a consultation with Wim Sombroek, then director of the International Soil Museum (ISM) in the Netherlands, the collection was donated to ISRIC by the US Soil Conservation Service. The soil profiles were shipped over in 1980 to become part of the collection of the Museum. The collection was named as "Glinka Memorial Collection" in agreement with the Dokuchaev Soil Institute, Moscow and the U.S. Soil Conservation Service, Washington. The monoliths were treated with a sugar solution by the Russians before shipment to the USA, this way keeping a good preservation quality. They were aimed for a single exhibition and for that they were poorly documented and lacked additional samples. In the early 1990s a project for revisit the sites was set up and six sites around St Petersburg were sampled for a comparative study of the soils within a time span of 70 years of great environmental change. The Glinka Memorial Collection is a special collection of the World Soil Museum, a scientific and historical treasure that offers possibilities to dig into the history of soil science and the history of the soils themselves.

  1. Estimating the soil organic carbon content for European NUTS2 regions based on LUCAS data collection.

    PubMed

    Panagos, Panos; Ballabio, Cristiano; Yigini, Yusuf; Dunbar, Martha B

    2013-01-01

    Under the European Union Thematic Strategy for Soil Protection, the European Commission Directorate-General for the Environment and the European Environmental Agency (EEA) identified a decline in soil organic carbon and soil losses by erosion as priorities for the collection of policy relevant soil data at European scale. Moreover, the estimation of soil organic carbon content is of crucial importance for soil protection and for climate change mitigation strategies. Soil organic carbon is one of the attributes of the recently developed LUCAS soil database. The request for data on soil organic carbon and other soil attributes arose from an on-going debate about efforts to establish harmonized datasets for all EU countries with data on soil threats in order to support modeling activities and display variations in these soil conditions across Europe. In 2009, the European Commission's Joint Research Centre conducted the LUCAS soil survey, sampling ca. 20,000 points across 23 EU member states. This article describes the results obtained from analyzing the soil organic carbon data in the LUCAS soil database. The collected data were compared with the modeled European topsoil organic carbon content data developed at the JRC. The best fitted comparison was performed at NUTS2 level and showed underestimation of modeled data in southern Europe and overestimation in the new central eastern member states. There is a good correlation in certain regions for countries such as the United Kingdom, Slovenia, Italy, Ireland, and France. Here we assess the feasibility of producing comparable estimates of the soil organic carbon content at NUTS2 regional level for the European Union (EU27) and draw a comparison with existing modeled data. In addition to the data analysis, we suggest how the modeled data can be improved in future updates with better calibration of the model. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A global spectral library to characterize the world's soil

    USDA-ARS?s Scientific Manuscript database

    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about so...

  3. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  4. Selected Aspects of Soil Science History in the USA - Prehistory to the 1970s

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Fenton, Thomas E.; Homburg, Jeffrey A.

    2017-04-01

    Interest in understanding America's soils originated in prehistory with Native Americans. Following European settlement, notable individuals such as Thomas Jefferson and Lewis and Clark made observations of soil resources. Moving into the 1800s, state geological surveys became involved in soil work and E.W. Hilgard started to formulate ideas similar to those that would eventually lead to V.V. Dokuchaev being recognized as the father of modern soil science. However, Hilgard's advanced ideas on soil genesis were not accepted by the wider American soil science community at the time. Moving into the 1900s, the National Cooperative Soil Survey, the first nationally organized detailed soil survey in the world, was founded under the direction of M. Whitney. Initial soil classification ideas were heavily based in geology, but over time Russian ideas of soil genesis and classification moved into the American soil science community, mainly due to the influence of C.F. Marbut. Early American efforts in scientific study of soil erosion and soil fertility were also initiated in the 1910s and university programs to educate soil scientists started. Soil erosion studies took on high priority in the 1930s as the USA was impacted by the Dust Bowl. Soil Taxonomy, one of the most widely utilized soil classification systems in the world, was developed from the 1950s through the 1970s under the guidance of G.D. Smith and with administrative support from C.E. Kellogg. American soil scientists, such as H. Jenny, R.W. Simonson, D.L. Johnson, and D. Watson-Stegner, developed influential models of soil genesis during the 20th Century, and the use of soil information expanded beyond agriculture to include issues such as land-use planning, soil geomorphology, and interactions between soils and human health.

  5. The methane sink associated to soils of natural and agricultural ecosystems in Italy.

    PubMed

    Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo

    2007-01-01

    In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.

  6. Soil quality standards and guidelines for forest sustainability in northwestern North America

    Treesearch

    Deborah Page-Dumroese; Martin Jurgensen; William Elliot; Thomas Rice; John Nesser; Thomas Collins; Robert Meurisse

    2000-01-01

    Soil quality standards and guidelines of the USDA Forest Service were some of the first in the world to be developed to evaluate changes in forest soil productivity and sustainability after harvesting and site preparation. International and national development of criteria and indicators for maintenance of soil productivity make it imperative to have adequate threshold...

  7. Climate Change, Growth, and Poverty in Ethiopia

    DTIC Science & Technology

    2013-06-01

    agricultural effects of global warming, reflecting their disadvantaged geographic location Higher evaporation and reduced soil moisture can damage crops...Ringler (2007) 5 Temperature, radiation, rainfall, soil moisture , and carbon dioxide (CO2) concentration are important variables that can proxy...iii) rainfall can affect other proxies of climate change in the literature such as soil moisture 6 This is based on FAOstat database 7 According to

  8. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

    PubMed Central

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Shepherd, Keith D.; Sila, Andrew; MacMillan, Robert A.; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E.

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data. PMID:26110833

  9. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    PubMed

    Hengl, Tomislav; Heuvelink, Gerard B M; Kempen, Bas; Leenaars, Johan G B; Walsh, Markus G; Shepherd, Keith D; Sila, Andrew; MacMillan, Robert A; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological knowledge from data rich countries to countries with limited soil data.

  10. Seventy-five years of vegetation treatments on public rangelands in the Great Basin of North America

    USGS Publications Warehouse

    Pilliod, David S.; Welty, Justin; Toevs, Gordon R.

    2017-01-01

    On the Ground Land treatments occurring over millions of hectares of public rangelands in the Great Basin over the last 75 years represent one of the largest vegetation manipulation and restoration efforts in the world.The ability to use legacy data from land treatments in adaptive management and ecological research has improved with the creation of the Land Treatment Digital Library (LTDL), a spatially explicit database of land treatments conducted by the U.S. Bureau of Land Management.The LTDL contains information on over 9,000 confirmed land treatments in the Great Basin, composed of seedings (58%), vegetation control treatments (24%), and other types of vegetation or soil manipulations (18%).The potential application of land treatment legacy data for adaptive management or as natural experiments for retrospective analyses of effects of land management actions on physical, hydrologic, and ecologic patterns and processes is considerable and just beginning to be realized.

  11. WOCAT mapping, GIS and the Góis municipality

    NASA Astrophysics Data System (ADS)

    Esteves, T. C. J.; Soares, J. A. A.; Ferreira, A. J. D.; Coelho, C. O. A.; Carreiras, M. A.; Lynden, G. V.

    2012-04-01

    In the scope of the goals of the association "The World Overview of Conservation Approaches and Technologies" (WOCAT), the established methodology intends to support the sustainable development of new techniques and the process of decision making in Sustainable Soil Management (SSM). Its main goal is to promote the co-existence with nature, in order to assure the wellbeing of upcoming generations. SSM is defined as the use of terrestrial resources, including soil, water, fauna, flora, for the production of goods that fulfill human needs, guaranteeing simultaneously a long-term productive potential for these resources, as well as the maintenance of their environmental functions. The EU-funded DESIRE (Desertification Mitigation & Remediation of Land: a global approach for local solutions) project is centered on SSM, having as a main goal the development and study of promising conservation, soil use and management strategies, therefore contributing for the protection of arid and semi-arid vulnerable areas. In Portugal, one of the main soil degradation and desertification agents are wildfires. There is consequently an urgent need to establish integrated conservation measures to reduce or prevent these occurrences. To do so, and for the DESIRE project, the WOCAT methodology was implemented, where it could be foreseen as 3 major questionnaires for: technologies (WOCAT Technologies), approaches (WOCAT Approaches) and mapping (WOCAT Mapping). The established methodology for WOCAT Mapping was created in order to attend the questions associated to the soil and water degradation, emphasizing the direct and socio-economic causes of this degradation. It evaluates what type of soil degradation is occurring, where, why and what actions are in practice in what respects to SSM. The association of this questionnaire to Geographical Information Systems (GIS) allows not only to produce maps, but also to calculate areas, taking into account several aspects of soil degradation and conservation. The map database and their outputs give a comprehensive and powerful tool to obtain a global vision of the degradation state of a given territory, at the desired local or regional scale. However for the selected study area, the Portuguese Góis Municipality, there was no base information prepared to be readily inserted in the geographical database. It was necessary to create the requested mapping units, so that the WOCAT Mapping questionnaire could be used.As a result, municipal cartography with 39 mapping units was obtained, and for each one, an exhaustive field work was made, allowing to characterize them in detail and answer the required information by WOCAT Mapping. These answers allowed creating a clearer image of what is happening in the territory in what respects to the used techniques, degradation degree and conservation measures applied. The all-important contact with the municipalities main stakeholders is an important aspect to refer, once they are the ones to help validate the obtained results for the WOCAT Mapping methodology, due to their extensive knowledge of the territory.

  12. First Database Course--Keeping It All Organized

    ERIC Educational Resources Information Center

    Baugh, Jeanne M.

    2015-01-01

    All Computer Information Systems programs require a database course for their majors. This paper describes an approach to such a course in which real world examples, both design projects and actual database application projects are incorporated throughout the semester. Students are expected to apply the traditional database concepts to actual…

  13. Book review: Principals of soil conservation and management

    USDA-ARS?s Scientific Manuscript database

    Conservation and sustainable management of soil are essential features of humankind’s reverence for Nature. As well they should be, given the essential ecosystem services that soil imparts to our world, such as producing food, moderating climate, storing and cycling water and nutrients, purifying w...

  14. Surficial and bedrock geologic map database of the Kelso 7.5 Minute quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Bedford, David R.

    2003-01-01

    This geologic map database describes geologic materials for the Kelso 7.5 Minute Quadrangle, San Bernardino County, California. The area lies in eastern Mojave Desert of California, within the Mojave National Preserve (a unit of the National Parks system). Geologic deposits in the area consist of Proterozoic metamorphic rocks, Cambrian-Neoproterozoic sedimentary rocks, Mesozoic plutonic and hypabyssal rocks, Tertiary basin fill, and Quaternary surficial deposits. Bedrock deposits are described by composition, texture, and stratigraphic relationships. Quaternary surficial deposits are classified into soil-geomorphic surfaces based on soil characteristics, inset relationships, and geomorphic expression. The surficial geology presented in this report is especially useful to understand, and extrapolate, physical properties that influence surface conditions, and surface- and soil-water dynamics. Physical characteristics such as pavement development, soil horizonation, and hydraulic characteristics have shown to be some of the primary drivers of ecologic dynamics, including recovery of those ecosystems to anthropogenic disturbance, in the eastern Mojave Desert and other arid and semi-arid environments.

  15. Generic Entity Resolution in Relational Databases

    NASA Astrophysics Data System (ADS)

    Sidló, Csaba István

    Entity Resolution (ER) covers the problem of identifying distinct representations of real-world entities in heterogeneous databases. We consider the generic formulation of ER problems (GER) with exact outcome. In practice, input data usually resides in relational databases and can grow to huge volumes. Yet, typical solutions described in the literature employ standalone memory resident algorithms. In this paper we utilize facilities of standard, unmodified relational database management systems (RDBMS) to enhance the efficiency of GER algorithms. We study and revise the problem formulation, and propose practical and efficient algorithms optimized for RDBMS external memory processing. We outline a real-world scenario and demonstrate the advantage of algorithms by performing experiments on insurance customer data.

  16. Biogeosystem technique - the fundamental base of modern Water Policy and Management

    NASA Astrophysics Data System (ADS)

    Kalinitchenko, Valery; Batukaev, Abdulmalik; Minkina, Tatiana; Solntseva, Natalia; Skovpen, Andrey; Zarmaev, Ali; Jusupov, Vaha; Lohmanova, Olga

    2014-05-01

    Freshwater conservation is the problem of world water strategy. Water is intended not only for human consumption but also for functions of the biosphere - the only place where humanity can exist. To maintain the quality of biosphere is very relevant. An important property of biosphere is ability of soil to provide the synthesis of fresh living biological material by plants. There are few places in the world where exists a natural high level of biological production. Therefore, irrigation widely applies. Irrigation provides an increase of crops, but the imitating gravitational frontal isotropic-continual irrigation paradigm has the adverse effects on soils and landscapes. So irrigation in the past history of humanity was one of the causes for civilization's downfall, Sumer in particular, now irrigation causes a humanitarian catastrophe in Central Asia. Irrigation is the world main consumer of water. Leading cause of negative results of irrigation in biosphere is the irrigation paradigm defect. By artificial watering is imitated a natural hydrological regime of the land. The water flows down into soil through the soil surface. Or groundwater flows up through the soil bottom. In either case, a natural or standard artificial soil moisturizing amplifies the mass transfer in soil continuum. At initial soil stage the mass transfer in soil continuum plays positive role. Adverse substances are leached, in particular soluble salts. Fine material and organic particles determining soil fertility are accumulating. However, after a soil genesis initial stage the mass transfer through soil continuum plays negative role. Irrigation excess water flow into soil reduces the productivity of cultivated plants as compared to the optimum soil solution conditions. The excess soil moisture leads to excess transpiration, evaporation, infiltration, destroys the soil disperse system composition, forms inactive dead-end pores, leaches useful biological and other substances synthesized in soil out from active biosphere stage to vadose zone. These substances are entering the undesired stage of sedimentation and lithogenesis. Such adverse events are enhanced by irrigation. As a result, up to 80-90% of the fresh water taken for irrigation from lakes, rivers, storage reservoirs, desalinators are lost useless entailing economic losses. As a result of irrigation the quality of water is deteriorated as well as the quality of soil and landscape. A quality of human environment and a quality of biosphere as a whole is reduced. It is much more dangerous than economic losses. The irrigation paradigm shift is essential for successful water policy and water management in modern world. In a framework of Biogeosystem technics the new intrasoil pulse continuous-discrete paradigm of irrigation is developed. Water is supplied by small discrete portions into individual volumes of a soil continuum without excess soil mass transfer, transpiration, evaporation and seepage. New paradigm of irrigation optimizes plant growth, reduces consumption of water per unit of biological product, the yield increases. It provides the soil and landscape conservation, fresh water - the global deficit - saving up to 10-20 times, biological productivity and sustainability of biosphere. Intrasoil pulse continuous-discrete robotic irrigation technologies match the nowadays noosphere technological platform.

  17. The World Database for Pediatric and Congenital Heart Surgery: The Dawn of a New Era of Global Communication and Quality Improvement in Congenital Heart Disease.

    PubMed

    St Louis, James D; Kurosawa, Hiromi; Jonas, Richard A; Sandoval, Nestor; Cervantes, Jorge; Tchervenkov, Christo I; Jacobs, Jeffery P; Sakamoto, Kisaburo; Stellin, Giovanni; Kirklin, James K

    2017-09-01

    The World Society for Pediatric and Congenital Heart Surgery was founded with the mission to "promote the highest quality comprehensive cardiac care to all patients with congenital heart disease, from the fetus to the adult, regardless of the patient's economic means, with an emphasis on excellence in teaching, research, and community service." Early on, the Society's members realized that a crucial step in meeting this goal was to establish a global database that would collect vital information, allowing cardiac surgical centers worldwide to benchmark their outcomes and improve the quality of congenital heart disease care. With tireless efforts from all corners of the globe and utilizing the vast experience and invaluable input of multiple international experts, such a platform of global information exchange was created: The World Database for Pediatric and Congenital Heart Disease went live on January 1, 2017. This database has been thoughtfully designed to produce meaningful performance and quality analyses of surgical outcomes extending beyond immediate hospital survival, allowing capture of important morbidities and mortalities for up to 1 year postoperatively. In order to advance the societal mission, this quality improvement program is available free of charge to WSPCHS members. In establishing the World Database, the Society has taken an essential step to further the process of global improvement in care for children with congenital heart disease.

  18. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    PubMed

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  19. Testing plant use of mobile vs immobile soil water sources using stable isotope experiments.

    PubMed

    Vargas, Ana I; Schaffer, Bruce; Yuhong, Li; Sternberg, Leonel da Silveira Lobo

    2017-07-01

    We tested for isotope exchange between bound (immobile) and mobile soil water, and whether there is isotope fractionation during plant water uptake. These are critical assumptions to the formulation of the 'two water worlds' hypothesis based on isotope profiles of soil water. In two different soil types, soil-bound water in two sets of 19-l pots, each with a 2-yr-old avocado plant (Persea americana), were identically labeled with tap water. After which, one set received isotopically enriched water whereas the other set received tap water as the mobile phase water. After a dry down period, we analyzed plant stem water as a proxy for soil-bound water as well as total soil water by cryogenic distillation. Seventy-five to 95% of the bound water isotopically exchanged with the mobile water phase. In addition, plants discriminated against 18 O and 2 H during water uptake, and this discrimination is a function of the soil water loss and soil type. The present experiment shows that the assumptions for the 'two water worlds' hypothesis are not supported. We propose a novel explanation for the discrepancy between isotope ratios of the soil water profile and other water compartments in the hydrological cycle. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. The current structure of key actors involved in research on land and soil degradation

    NASA Astrophysics Data System (ADS)

    Escadafal, Richard; Barbero, Celia; Exbrayat, Williams; Marques, Maria Jose; Ruiz, Manuel; El Haddadi, Anass; Akhtar-Schuster, Mariam

    2013-04-01

    Land and soil conservation topics, the final mandate of the United Convention to Combat desertification in drylands, have been diagnosed as still suffering from a lack of guidance. On the contrary, climate change and biodiversity issues -the other two big subjects of the Rio Conventions- seem to progress and may benefit from the advice of international panels. Arguably the weakness of policy measures and hence the application of scientific knowledge by land users and stakeholders could be the expression of an inadequate research organization and a lack of ability to channel their findings. In order to better understand the size, breadth and depth of the scientific communities involved in providing advice to this convention and to other bodies, this study explores the corpus of international publications dealing with land and/or with soils. A database of several thousands records including a significant part of the literature published so far was performed using the Web of Science and other socio-economic databases such as FRANCIS and CAIRN. We extracted hidden information using bibliometric methods and data mining applied to these scientific publications to map the key actors (laboratories, teams, institutions) involved in research on land and on soils. Several filters were applied to the databases in combination with the word "desertification". The further use of Tetralogie software merges databases, analyses similarities and differences between keywords, disciplines, authors and regions and identifies obvious clusters. Assessing their commonalities and differences, the visualisation of links and gaps between scientists, organisations, policymakers and other stakeholders is possible. The interpretation of the 'clouds' of disciplines, keywords, and techniques will enhance the understanding of interconnections between them; ultimately this will allow diagnosing some of their strengths and weaknesses. This may help explain why land and soil degradation remains a serious global problem that lacks sufficient attention. We hope that this study will contribute to clarify the scientific landscape at stake to remediate possible weaknesses in the future.

  1. Informing soil models using pedotransfer functions: challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Romano, Nunzio

    2015-04-01

    Pedotransfer functions (PTFs) are empirical relationships between parameters of soil models and more easily obtainable data on soil properties. PTFs have become an indispensable tool in modeling soil processes. As alternative methods to direct measurements, they bridge the data we have and data we need by using soil survey and monitoring data to enable modeling for real-world applications. Pedotransfer is extensively used in soil models addressing the most pressing environmental issues. The following is an attempt to provoke a discussion by listing current issues that are faced by PTF development. 1. As more intricate biogeochemical processes are being modeled, development of PTFs for parameters of those processes becomes essential. 2. Since the equations to express PTF relationships are essentially unknown, there has been a trend to employ highly nonlinear equations, e.g. neural networks, which in theory are flexible enough to simulate any dependence. This, however, comes with the penalty of large number of coefficients that are difficult to estimate reliably. A preliminary classification applied to PTF inputs and PTF development for each of the resulting groups may provide simple, transparent, and more reliable pedotransfer equations. 3. The multiplicity of models, i.e. presence of several models producing the same output variables, is commonly found in soil modeling, and is a typical feature in the PTF research field. However, PTF intercomparisons are lagging behind PTF development. This is aggravated by the fact that coefficients of PTF based on machine-learning methods are usually not reported. 4. The existence of PTFs is the result of some soil processes. Using models of those processes to generate PTFs, and more general, developing physics-based PTFs remains to be explored. 5. Estimating the variability of soil model parameters becomes increasingly important, as the newer modeling technologies such as data assimilation, ensemble modeling, and model abstraction, become progressively more popular. The variability PTFs rely on the spatio-temporal dynamics of soil variables, and that opens new sources of PTF inputs stemming from technology advances such as monitoring networks, remote and proximal sensing, and omics. 6. Burgeoning PTF development has not so far affected several persisting regional knowledge gaps. Remarkably little effort was put so far into PTF development for saline soils, calcareous and gypsiferous soils, peat soils, paddy soils, soils with well expressed shrink-swell behavior, and soils affected by freeze-thaw cycles. 7. Soils from tropical regions are quite often considered as a pseudo-entity for which a single PTF can be applied. This assumption will not be needed as more regional data will be accumulated and analyzed. 8. Other advances in regional PTFs will be possible due to presence of large databases on region-specific useful PTF inputs such as moisture equivalent, laser diffractometry data, or soil specific surface. 9. Most of flux models in soils, be it water, solutes, gas, or heat, involve parameters that are scale-dependent. Including scale dependencies in PTFs will be critical to improve PTF usability. 10. Another scale-related matter is pedotransfer for coarse-scale soil modeling, for example, in weather or climate models. Soil hydraulic parameters in these models cannot be measured and the efficiency of the pedotransfer can be evaluated only in terms of its utility. There is a pressing need to determine combinations of pedotransfer and upscaling procedures that can lead to the derivation of suitable coarse-scale soil model parameters. 11. The spatial coarse scale often assumes a coarse temporal support, and that may lead to including in PTFs other environmental variables such as topographic, weather, and management attributes. 12. Some PTF inputs are time- or space-dependent, and yet little is known whether the spatial or temporal structure of PTF outputs is properly predicted from such inputs 13. Further exploration is needed to use PTF as a source of hypotheses on and insights into relationships between soil processes and soil composition as well as between soil structure and soil functioning. PTFs are empirical relationships and their accuracy outside the database used for the PTF development is essentially unknown. Therefore they should never be considered as an ultimate source of parameters in soil modeling. Rather they strive to provide a balance between accuracy and availability. The primary role of PTF is to assist in modeling for screening and comparative purposes, establishing ranges and/or probability distributions of model parameters, and creating realistic synthetic soil datasets and scenarios. Developing and improving PTFs will remain the mainstream way of packaging data and knowledge for applications of soil modeling.

  2. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2013-12-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation type data from the European Space Agency (ESA) GlobCover Project, and 30 arc-sec Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation data from the ESA GlobCarbon Project. Simulations are carried out for the Metropolitan Area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers with depths of 0.01 and 1.0 m are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering the period from 6 to 7 September 2007 are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, topographic and land-use databases and grid resolution. Our comparisons show overall good agreement between simulated and observed data and also indicate that the low resolution of the 30 arc-sec soil database from United States Geological Survey, the soil moisture and skin temperature initial conditions assimilated from the GFS analyses and the synoptic forcing on the lateral boundaries of the finer grids may affect an adequate spatial description of the meteorological variables.

  3. Expanding the use of administrative claims databases in conducting clinical real-world evidence studies in multiple sclerosis.

    PubMed

    Capkun, Gorana; Lahoz, Raquel; Verdun, Elisabetta; Song, Xue; Chen, Weston; Korn, Jonathan R; Dahlke, Frank; Freitas, Rita; Fraeman, Kathy; Simeone, Jason; Johnson, Barbara H; Nordstrom, Beth

    2015-05-01

    Administrative claims databases provide a wealth of data for assessing the effect of treatments in clinical practice. Our aim was to propose methodology for real-world studies in multiple sclerosis (MS) using these databases. In three large US administrative claims databases: MarketScan, PharMetrics Plus and Department of Defense (DoD), patients with MS were selected using an algorithm identified in the published literature and refined for accuracy. Algorithms for detecting newly diagnosed ('incident') MS cases were also refined and tested. Methodology based on resource and treatment use was developed to differentiate between relapses with and without hospitalization. When various patient selection criteria were applied to the MarketScan database, an algorithm requiring two MS diagnoses at least 30 days apart was identified as the preferred method of selecting patient cohorts. Attempts to detect incident MS cases were confounded by the limited continuous enrollment of patients in these databases. Relapse detection algorithms identified similar proportions of patients in the MarketScan and PharMetrics Plus databases experiencing relapses with (2% in both databases) and without (15-20%) hospitalization in the 1 year follow-up period, providing findings in the range of those in the published literature. Additional validation of the algorithms proposed here would increase their credibility. The methods suggested in this study offer a good foundation for performing real-world research in MS using administrative claims databases, potentially allowing evidence from different studies to be compared and combined more systematically than in current research practice.

  4. Sporotrichosis

    MedlinePlus

    ... Sporothrix . This fungus lives throughout the world in soil and on plant matter such as sphagnum moss, ... that causes sporotrichosis, lives in the environment in soil and on plant matter such as sphagnum moss, ...

  5. Geolocation of man-made reservoirs across terrains of varying complexity using GIS

    USGS Publications Warehouse

    Mixon, D.M.; Kinner, D.A.; Stallard, R.F.; Syvitski, J.P.M.

    2008-01-01

    The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys in the database date from 1904 to 1999, though more than 95% of surveys were entered prior to 1980, making RESIS largely a historical database. The use of this database for large-scale studies has been limited by the lack of precise coordinates for the reservoirs. Many of the reservoirs are relatively small structures and do not appear on current USGS topographic maps. Others have been renamed or have only approximate (i.e. township and range) coordinates. This paper presents a method scripted in ESRI's ARC Macro Language (AML) to locate the reservoirs on digital elevation models using information available in RESIS. The script also delineates the contributing watersheds and compiles several hydrologically important parameters for each reservoir. Evaluation of the method indicates that, for watersheds larger than 5 km2, the correct outlet is identified over 80% of the time. The importance of identifying the watershed outlet correctly depends on the application. Our intent is to collect spatial data for watersheds across the continental United States and describe the land use, soils, and topography for each reservoir's watershed. Because of local landscape similarity in these properties, we show that choosing the incorrect watershed does not necessarily mean that the watershed characteristics will be misrepresented. We present a measure termed terrain complexity and examine its relationship to geolocation success rate and its influence on the similarity of nearby watersheds. ?? 2008 Elsevier Ltd. All rights reserved.

  6. An Algorithm of Association Rule Mining for Microbial Energy Prospection

    PubMed Central

    Shaheen, Muhammad; Shahbaz, Muhammad

    2017-01-01

    The presence of hydrocarbons beneath earth’s surface produces some microbiological anomalies in soils and sediments. The detection of such microbial populations involves pure bio chemical processes which are specialized, expensive and time consuming. This paper proposes a new algorithm of context based association rule mining on non spatial data. The algorithm is a modified form of already developed algorithm which was for spatial database only. The algorithm is applied to mine context based association rules on microbial database to extract interesting and useful associations of microbial attributes with existence of hydrocarbon reserve. The surface and soil manifestations caused by the presence of hydrocarbon oxidizing microbes are selected from existing literature and stored in a shared database. The algorithm is applied on the said database to generate direct and indirect associations among the stored microbial indicators. These associations are then correlated with the probability of hydrocarbon’s existence. The numerical evaluation shows better accuracy for non-spatial data as compared to conventional algorithms at generating reliable and robust rules. PMID:28393846

  7. Soil property maps of Africa at 250 m resolution

    NASA Astrophysics Data System (ADS)

    Kempen, Bas; Hengl, Tomislav; Heuvelink, Gerard B. M.; Leenaars, Johan G. B.; Walsh, Markus G.; MacMillan, Robert A.; Mendes de Jesus, Jorge S.; Shepherd, Keith; Sila, Andrew; Desta, Lulseged T.; Tondoh, Jérôme E.

    2015-04-01

    Vast areas of arable land in sub-Saharan Africa suffer from low soil fertility and physical soil constraints, and significant amounts of nutrients are lost yearly due to unsustainable soil management practices. At the same time it is expected that agriculture in Africa must intensify to meet the growing demand for food and fiber the next decades. Protection and sustainable management of Africa's soil resources is crucial to achieve this. In this context, comprehensive, accurate and up-to-date soil information is an essential input to any agricultural or environmental management or policy and decision-making model. In Africa, detailed soil information has been fragmented and limited to specific zones of interest for decades. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. AfSIS builds on recent advances in digital soil mapping, infrared spectroscopy, remote sensing, (geo)statistics, and integrated soil fertility management to improve the way soils are evaluated, mapped, and monitored. Over the period 2008-2014, the AfSIS project has compiled two soil profile data sets (about 28,000 unique locations): the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site (new soil samples) database -- the two data sets represent the most comprehensive soil sample database of the African continent to date. In addition a large set of high-resolution environmental data layers (covariates) was assembled. The point data were used in the AfSIS project to generate a set of maps of key soil properties for the African continent at 250 m spatial resolution: sand, silt and clay fractions, bulk density, organic carbon, total nitrogen, pH, cation-exchange capacity, exchangeable bases (Ca, K, Mg, Na), exchangeable acidity, and Al content. These properties were mapped for six depth intervals up to 2 m: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm. Random forests modelling was used to relate the soil profile observations to a set covariates, that included global soil class and property maps, MODIS imagery and a DEM, in a 3D mapping framework. The model residuals were interpolated by 3D kriging, after which the kriging predictions were added to the random forests predictions to obtain the soil property predictions. The model predictions were validated with 5-fold cross-validation. The random forests models explained between 37% (exch. Na) and 85% (Al content) of the variation in the data. Results also show that globally predicted soil classes help improve continental scale mapping of the soil nutrients and are often among the most important predictors. We conclude that the first mapping results look promising. We used an automated modelling framework that enables re-computing the maps as new data becomes arrives, hereby gradually improving the maps. We showed that global maps of soil classes and properties produced with models that were predominantly calibrated on areas with plentiful observations can be used to improve the accuracy of predictions in regions with less plentiful data, such as Africa.

  8. Ecotoxicological effects and risk assessment of pollutants

    EPA Science Inventory

    Until somewhat recently there was limited awareness about the impact of soils on human health, ecosystems, and economy. Only in the second half of the twenty century the world awaked for the poor condition of soils, and to its several threats (e.g. soil contamination), as well as...

  9. Soil management and conservation: Irrigation: Methods

    USDA-ARS?s Scientific Manuscript database

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  10. Speciation And Distribution Of Phosphorus In A Fertilized Soil: A Synchrotron-Based Investigation

    EPA Science Inventory

    Phosphorus availability is often a limiting factor for crop production around the world. The efficiency of P fertilizers in calcareous soils is limited by reactions that decrease P availability; however, fluid fertilizers have recently been shown, in highly calcareous soils of s...

  11. Key features for ATA / ATR database design in missile systems

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2017-05-01

    Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.

  12. Data Gap Analysis and Database Expansion of Parameters for Munitions Constitutents

    DTIC Science & Technology

    2005-12-01

    BIOWIN documentation (Boethling et al. 1994). Sediment is briefly considered to be anaerobic soil, with overall conversion factors, and water is aerobic...degradation of a chemical in water, soil, and sediment is determined using the ultimate biodegradation expert survey module of the BIOWIN estimation

  13. Geographic trends in alfalfa stand age and crops that follow alfalfa

    USDA-ARS?s Scientific Manuscript database

    USDA-National Agricultural Statistics Service cropland data layers and Soil Survey Geographic Database layers were combined for six states (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, and Wisconsin) and seven years (2006-2012) to determine how soil texture and geographic location affect t...

  14. Computer aided modeling of soil mix designs to predict characteristics and properties of stabilized road bases.

    DOT National Transportation Integrated Search

    2009-07-01

    "Considerable data exists for soils that were tested and documented, both for native properties and : properties with pozzolan stabilization. While the data exists there was no database for the Nebraska : Department of Roads to retrieve this data for...

  15. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Treesearch

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  16. Plant community composition as a predictor of regional soil carbon storage in Alaskan boreal black spruce ecosystems

    Treesearch

    T.N. Hollingsworth; E.A.G. Schuur; F.S. III Chapin; M.D. Walker

    2008-01-01

    The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world's reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and...

  17. Nocardia infection

    MedlinePlus

    ... eyes, and bones. Nocardia bacteria are found in soil around the world. You can get the disease ... bacteria. You can also get the disease if soil containing nocardia bacteria gets into an open wound. ...

  18. Environmental Health

    MedlinePlus

    ... of the environment, like the air, water, or soil become polluted, it can lead to health problems. ... of the natural world, like radon in the soil. Others are the result of human activities, like ...

  19. Using experimental and geospatial data to estimate regional carbon sequestration potential under no-till management

    USGS Publications Warehouse

    Tan, Z.; Lal, R.; Liu, S.

    2006-01-01

    Conservation management of croplands at the plot scale has demonstrated a great potential to mitigate the greenhouse effect through sequestration of atmospheric carbon (C) into soil. This study estimated the potential of soil to sequester C through the conversion of croplands from conventional tillage (CT) to no-till (NT) in the East Central United States between 1992 and 2012. This study used the baseline soil organic C (SOC) pool (SOCP) inventory and the empirical models that describe the relationships of the SOCP under CT and NT, respectively, to their baseline SOCP in the upper 30-cm depth of soil. The baseline SOCP were obtained from the State Soil Geographic database, and the cropland distribution map was generated from the 1992 National Land Cover Database. The results indicate that if all the croplands under CT in 1992 were converted to NT, the SOCP would increase by 16.8% by 2012, which results in a total C sink of 136 Tg after 20 years. A greater sequestration rate would occur in soils with lower baseline SOCP, but the sink strength would be weaker with increasing SOCP levels. The CT-induced C sources tend to become larger in soils with higher baseline levels, which can be significantly reduced by adopting NT. We conclude that baseline SOC contents are an indicator of C sequestration potential with NT practices. ?? 2006 Lippincott Williams & Wilkins, Inc.

  20. The creation of digital thematic soil maps at the regional level (with the map of soil carbon pools in the Usa River basin as an example)

    NASA Astrophysics Data System (ADS)

    Pastukhov, A. V.; Kaverin, D. A.; Shchanov, V. M.

    2016-09-01

    A digital map of soil carbon pools was created for the forest-tundra ecotone in the Usa River basin with the use of ERDAS Imagine 2014 and ArcGIS 10.2 software. Supervised classification and thematic interpretation of satellite images and digital terrain models with the use of a georeferenced database on soil profiles were applied. Expert assessment of the natural diversity and representativeness of random samples for different soil groups was performed, and the minimal necessary size of the statistical sample was determined.

  1. Environmental and health disparities in residential communities of New Orleans: the need for soil lead intervention to advance primary prevention.

    PubMed

    Mielke, Howard W; Gonzales, Christopher R; Powell, Eric T; Mielke, Paul W

    2013-01-01

    Urban environments are the major sites for human habitation and this study evaluates soil lead (Pb) and blood Pb at the community scale of a U.S. city. There is no safe level of Pb exposure for humans and novel primary Pb prevention strategies are requisite to mitigate children's Pb exposure and health disparities observed in major cities. We produced a rich source of environmental and Pb exposure data for metropolitan New Orleans by combining a large soil Pb database (n=5467) with blood Pb databases (n=55,551 pre-Katrina and 7384 post-Katrina) from the Louisiana Childhood Lead Poisoning Prevention Program (LACLPPP). Reanalysis of pre- and post-Hurricane Katrina soil samples indicates relatively unchanged soil Pb. The objective was to evaluate the New Orleans soil Pb and blood Pb database for basic information about conditions that may merit innovative ways to pursue primary Pb exposure prevention. The city was divided into high (median census tract soil≥100 mg/kg) and low Pb areas (median census tract soil<100mg/kg). Soil and blood Pb concentrations within the high and low Pb areas of New Orleans were analyzed by permutation statistical methods. The high Pb areas are toward the interior of the city where median soil Pb was 367, 313, 1228, and 103 mg/kg, respectively for samples collected at busy streets, residential streets, house sides, and open space locations; the low Pb areas are in outlying neighborhoods of the city where median soil Pb was 64, 46, 32, and 28 mg/kg, respectively for busy streets, residential streets, house sides, and open spaces (P-values<10(-16)). Pre-Katrina children's blood Pb prevalence of ≥5 μg/dL was 58.5% and 24.8% for the high and low Pb areas, respectively compared to post-Katrina prevalence of 29.6% and 7.5%, for high and low Pb areas, respectively. Elevated soil Pb permeates interior areas of the city and children living there generally lack Pb safe areas for outdoor play. Soil Pb medians in outlying areas were safer by factors ranging from 3 to 38 depending on specific location. Patterns of Pb deposition from many decades of accumulation have not been transformed by hastily conducted renovations during the seven year interval since Hurricane Katrina. Low Pb soils available outside of cities can remedy soil Pb contamination within city interiors. Mapping soil Pb provides an overview of deposition characteristics and assists with planning and conducting primary Pb exposure prevention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identifying riparian sinks for watershed nitrate using soil surveys.

    PubMed

    Rosenblatt, A E; Gold, A J; Stolt, M H; Groffman, P M; Kellogg, D Q

    2001-01-01

    The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.

  3. Concepts of soil mapping as a basis for the assessment of soil functions

    NASA Astrophysics Data System (ADS)

    Baumgarten, Andreas

    2014-05-01

    Soil mapping systems in Europe have been designed mainly as a tool for the description of soil characteristics from a morphogenetic viewpoint. Contrasting to the American or FAO system, the soil development has been in the main focus of European systems. Nevertheless , recent developments in soil science stress the importance of the functions of soils with respect to the ecosystems. As soil mapping systems usually offer a sound and extensive database, the deduction of soil functions from "classic" mapping parameters can be used for local and regional assessments. According to the used pedo-transfer functions and mapping systems, tailored approaches can be chosen for different applications. In Austria, a system mainly for spatial planning purposes has been developed that will be presented and illustrated by means of best practice examples.

  4. The Web-Database Connection Tools for Sharing Information on the Campus Intranet.

    ERIC Educational Resources Information Center

    Thibeault, Nancy E.

    This paper evaluates four tools for creating World Wide Web pages that interface with Microsoft Access databases: DB Gateway, Internet Database Assistant (IDBA), Microsoft Internet Database Connector (IDC), and Cold Fusion. The system requirements and features of each tool are discussed. A sample application, "The Virtual Help Desk"…

  5. Correspondence: World Wide Web access to the British Universities Human Embryo Database

    PubMed Central

    AITON, JAMES F.; MCDONOUGH, ARIANA; MCLACHLAN, JOHN C.; SMART, STEVEN D.; WHITEN, SUSAN C.

    1997-01-01

    The British Universities Human Embryo Database has been created by merging information from the Walmsley Collection of Human Embryos at the School of Biological and Medical Sciences, University of St Andrews and from the Boyd Collection of Human Embryos at the Department of Anatomy, University of Cambridge. The database has been made available electronically on the Internet and World Wide Web browsers can be used to implement interactive access to the information stored in the British Universities Human Embryo Database. The database can, therefore, be accessed and searched from remote sites and specific embryos can be identified in terms of their location, age, developmental stage, plane of section, staining technique, and other parameters. It is intended to add information from other similar collections in the UK as it becomes available. PMID:9034891

  6. Effect of mineralogical, geochemical and biological properties on soils reflectance to assess temporal and spatial dynamics of BSCs in Sahelian ecosystems

    NASA Astrophysics Data System (ADS)

    Bourguignon, A.; Cerdan, O.; Desprats, J. F.; Marin, B.; Malam Issa, O.; Valentin, C.; Rajot, J. L.

    2012-04-01

    Land degradation and desertification are among the major environmental problems, resulting in reduced productivity and development of bare surfaces in arid and semi-arid areas of the world. One important factor that acts to increase soil stability and nutrient content, and thus to prevent water and wind erosion and enhance soil productivity of arid environment, is the presence of biological soil crusts (BSCs). They are the dominant ground cover and a key component of arid environments built up mainly by cyanobacteria. They enhance degraded soil quality by providing a stable and water-retaining substratum and increasing fertility by N and C fixations. The BioCrust project, funded by ANR (VMCS 2008), focuses on BSCs in the Sahelian zone of West Africa (Niger), a highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic pressure on land use. Unlike arid areas of developed countries (USA, Australia and Israel) or China where BSCs have been extensively studied, studies from Sahelian zone (Africa) are limited (neither the inventory of their different form nor the estimation of their spatial extension has been carried out). The form, structure and composition of BSCs vary depending on characteristics related to soils and biological composition. This study focuses on the soils characterisation using ground-based spectroradiometry. An extensive database was built included spectral measurements on BSCs, bare soils and vegetation that occur in the same area, visual criteria, in situ and laboratory measurements on the physical, chemical and biological characteristics of BSCs and their substratum. The work is carried out on geo-statistical processing of data acquired in sites along a north-south climatic gradient and three types of representative land uses. The investigated areas are highly vulnerable zone facing soil degradation due to the harsh climatic conditions, with variable rainfall, and high anthropic pressure on land use Soil surface disturbances due to the intensification of human activities. Spectral field and laboratory data were acquired in 2009, 2010 and 2011 with the FieldSpec Pro®. The spectra of soils with respect to different parameters are studied in details and their separability from BSCs, vegetation and vegetation residue as well are be analysed. First, the effect of the mineralogy and the geochemical variables on the soil reflectance properties is studied and then the feasibility to resolve some of these effects with satellite imagery (e. g., ASTER) will be tested in order to define the potential capability for identifying the locations of sensitive areas affected by soil degradation and appearance of BSCs.

  7. Introducing the GRACEnet/REAP Data Contribution, Discovery, and Retrieval System.

    PubMed

    Del Grosso, S J; White, J W; Wilson, G; Vandenberg, B; Karlen, D L; Follett, R F; Johnson, J M F; Franzluebbers, A J; Archer, D W; Gollany, H T; Liebig, M A; Ascough, J; Reyes-Fox, M; Pellack, L; Starr, J; Barbour, N; Polumsky, R W; Gutwein, M; James, D

    2013-07-01

    Difficulties in accessing high-quality data on trace gas fluxes and performance of bioenergy/bioproduct feedstocks limit the ability of researchers and others to address environmental impacts of agriculture and the potential to produce feedstocks. To address those needs, the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) and REAP (Renewable Energy Assessment Project) research programs were initiated by the USDA Agricultural Research Service (ARS). A major product of these programs is the creation of a database with greenhouse gas fluxes, soil carbon stocks, biomass yield, nutrient, and energy characteristics, and input data for modeling cropped and grazed systems. The data include site descriptors (e.g., weather, soil class, spatial attributes), experimental design (e.g., factors manipulated, measurements performed, plot layouts), management information (e.g., planting and harvesting schedules, fertilizer types and amounts, biomass harvested, grazing intensity), and measurements (e.g., soil C and N stocks, plant biomass amount and chemical composition). To promote standardization of data and ensure that experiments were fully described, sampling protocols and a spreadsheet-based data-entry template were developed. Data were first uploaded to a temporary database for checking and then were uploaded to the central database. A Web-accessible application allows for registered users to query and download data including measurement protocols. Separate portals have been provided for each project (GRACEnet and REAP) at nrrc.ars.usda.gov/slgracenet/#/Home and nrrc.ars.usda.gov/slreap/#/Home. The database architecture and data entry template have proven flexible and robust for describing a wide range of field experiments and thus appear suitable for other natural resource research projects. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.

  9. A World Wide Web Human Dimensions Framework and Database for Wildlife and Forest Planning

    Treesearch

    Michael A. Tarrant; Alan D. Bright; H. Ken Cordell

    1999-01-01

    The paper describes a human dimensions framework(HDF) for application in wildlife and forest planning. The HDF is delivered via the world wide web and retrieves data on-line from the Social, Economic, Environmental, Leisure, and Attitudes (SEELA) database. The proposed HDF is guided by ten fundamental HD principles, and is applied to wildlife and forest planning using...

  10. Linkages between forest soils and water quality and quantity

    Treesearch

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  11. Biochar amendment of soil improves resilience to climate change

    USDA-ARS?s Scientific Manuscript database

    Because of climate change, insufficient soil moisture may become an increasing limitation to crop productivity in certain regions of the world. This may be particularly consequential for biofuel crops, many of which will have to be grown in drought-prone soils to avoid competition with food crops. ...

  12. Impacts of an integrated crop-livestock system on soil properties to enhance precipitation capture

    USDA-ARS?s Scientific Manuscript database

    Cropping/Livestock systems alter soil properties that are important in enhancing capture of precipitation by developing and maintaining water infiltration and storage. In this paper we will relate soil hydraulic conductivity and other physical properties on managed Old World Bluestem grassland, whea...

  13. Pyrogenic Carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks

    NASA Astrophysics Data System (ADS)

    Reisser, Moritz; Purves, Ross; Schmidt, Michael W. I.; Abiven, Samuel

    2016-08-01

    Pyrogenic carbon (PyC) is considered one of the most stable components in soil and can represent more than 30% of total soil organic carbon (SOC). However, few estimates of global PyC stock or distribution exist and thus PyC is not included in any global carbon cycle models, despite its potential major relevance for the soil pool. To obtain a global picture, we reviewed the literature for published PyC content in SOC data. We generated the first PyC database including more than 560 measurements from 55 studies. Despite limitations due to heterogeneous distribution of the studied locations and gaps in the database, we were able to produce a worldwide PyC inventory. We found that global PyC represent on average 13.7% of the SOC and can be even up to 60%, making it one of the largest groups of identifiable compounds in soil, together with polysaccharides. We observed a consistent range of PyC content in SOC, despite the diverse methods of quantification. We tested the PyC content against different environmental explanatory variables: fire and land use (fire characteristics, land use, net primary productivity), climate (temperature, precipitation, climatic zones, altitude) and pedogenic properties (clay content, pH, SOC content). Surprisingly, soil properties explain PyC content the most. Soils with clay content higher than 50% contain significantly more PyC (> 30% of the SOC) than with clay content lower than 5% (< 6% of the SOC). Alkaline soils contain at least 50% more PyC than acidic soils. Furthermore, climatic conditions, represented by climatic zone or mean temperature or precipitation, correlate significantly with the PyC content. By contrast, fire characteristics could only explain PyC content, if site-specific information was available. Datasets derived from remote sensing did not explain the PyC content. To show the potential of this database, we used it in combination with other global datasets to create a global worldwide PyC content and a stock estimation, which resulted in around 200Pg PyC for the uppermost 2 meters. These modelled estimates indicated a clear mismatch between the location of the current PyC studies and the geographical zones where we expect high PyC stocks.

  14. Evaluation and selection of indicators for land degradation and desertification monitoring: types of degradation, causes, and implications for management.

    PubMed

    Kairis, Or; Kosmas, C; Karavitis, Ch; Ritsema, C; Salvati, L; Acikalin, S; Alcalá, M; Alfama, P; Atlhopheng, J; Barrera, J; Belgacem, A; Solé-Benet, A; Brito, J; Chaker, M; Chanda, R; Coelho, C; Darkoh, M; Diamantis, I; Ermolaeva, O; Fassouli, V; Fei, W; Feng, J; Fernandez, F; Ferreira, A; Gokceoglu, C; Gonzalez, D; Gungor, H; Hessel, R; Juying, J; Khatteli, H; Khitrov, N; Kounalaki, A; Laouina, A; Lollino, P; Lopes, M; Magole, L; Medina, L; Mendoza, M; Morais, P; Mulale, K; Ocakoglu, F; Ouessar, M; Ovalle, C; Perez, C; Perkins, J; Pliakas, F; Polemio, M; Pozo, A; Prat, C; Qinke, Y; Ramos, A; Ramos, J; Riquelme, J; Romanenkov, V; Rui, L; Santaloia, F; Sebego, R; Sghaier, M; Silva, N; Sizemskaya, M; Soares, J; Sonmez, H; Taamallah, H; Tezcan, L; Torri, D; Ungaro, F; Valente, S; de Vente, J; Zagal, E; Zeiliguer, A; Zhonging, W; Ziogas, A

    2014-11-01

    Indicator-based approaches are often used to monitor land degradation and desertification from the global to the very local scale. However, there is still little agreement on which indicators may best reflect both status and trends of these phenomena. In this study, various processes of land degradation and desertification have been analyzed in 17 study sites around the world using a wide set of biophysical and socioeconomic indicators. The database described earlier in this issue by Kosmas and others (Environ Manage, 2013) for defining desertification risk was further analyzed to define the most important indicators related to the following degradation processes: water erosion in various land uses, tillage erosion, soil salinization, water stress, forest fires, and overgrazing. A correlation analysis was applied to the selected indicators in order to identify the most important variables contributing to each land degradation process. The analysis indicates that the most important indicators are: (i) rain seasonality affecting water erosion, water stress, and forest fires, (ii) slope gradient affecting water erosion, tillage erosion and water stress, and (iii) water scarcity soil salinization, water stress, and forest fires. Implementation of existing regulations or policies concerned with resources development and environmental sustainability was identified as the most important indicator of land protection.

  15. The British Society of Soil Science in the International Year of Soils

    NASA Astrophysics Data System (ADS)

    Aitkenhead, Matt; Baggs, Liz; Towers, Willie; Black, Helaina

    2015-04-01

    During the IYS, the British Society of Soil Science is engaging in a large number of activities aimed at raising the awareness of soil within society. Regional Groups are organising Society participation in a number of events, a numberof which are large, annual events providing access to a mixed audience of stakeholders. The success of the Society in raising awareness in soil during the IYS will not lie solely in developing new events which take time and money to organise, advertise and host, but primarily in linking up with existing events that are already featured with the UK's annual calendar of trade shows, agricultural meetings and scientific conferences. Examples of such events include the Royal Highland Show in Edinburgh in June, the World Water Congress in May, and internationally Expo15 in Milan with other societies across Europe. In addition, BSSS is aware of many soil-related activities being organised by research organisations (e.g. Lancaster University, James Hutton Institute, CEH, University of Aberdeen) and is working with these organisations to provide a synergy of activities. This has the combined effects of reducing costs, increasing access to potential audiences and stakeholders, and avoiding overlap with events that were already organised. The IYS also finds BSSS one year on from their success in bidding to host the World Congress of Soil Science in 2022 in Glasgow. Activities by BSSS during 2015 are intended to develop a momentum towards this Congress and to raise awareness of British Soil Science and the Congress amongst industry, researchers, policymakers and the general public. This will provide a springboard for increasing sponsorship and funding for the World Congress, and will hopefully result in increased attendance and quality of experience for the delegates at the Congress.

  16. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Land Use Change and Soil Organic Carbon Dynamics in China

    NASA Astrophysics Data System (ADS)

    Peng, C.; Wu, H.; Guo, Z.

    2004-05-01

    The changes of soil organic carbon depend not only on biogeochemical and climatological processes, but also on human activities and their interaction with carbon cycle. A long history of agricultural exploitation, forest management practice, rapid change in land use, forestry policies, and economic growth suggest that Chinese terrestrial ecosystems play an important role in the global carbon cycles. Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and non-cultivated soils in China. The results reveal that ~57% of the cultivated soil subgroups (~31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their non-cultivated counterparts. The most significant carbon loss is observed for the non-irrigated soils (dry farmland) within a semi-arid/semi-humid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. Our results suggest that total organic carbon storage in soils in China is estimated to be about 70.31 Pg, representing 4.7% of the world storage. The results also indicated that a soil organic carbon loss of 7.1 Pg was primarily due to human activity, in which the loss in organic horizons has contributed to 77%. This total loss of soil organic carbon in China induced by land use represents 9.5% of the world's soil organic carbon decrease.

  18. The Better World Project - Home

    Science.gov Websites

    Toggle navigation Featured Stories Past Reports FAQ Background Information 500 Better World Stories ... and Counting! Thanks to the hard work of AUTM members around the world, the Better World Project Better World Project Database. Simply type in the criteria you're looking for. Add Your Story to the

  19. Diversity and Ecology of Viruses in Hyperarid Desert Soils

    PubMed Central

    Zablocki, Olivier; Adriaenssens, Evelien M.

    2015-01-01

    In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies. PMID:26590289

  20. Data Gap Analysis and Database Expansion of Parameters for Munitions Constituents

    DTIC Science & Technology

    2005-12-01

    the BIOWIN documentation (Boethling et al. 1994). Sediment is briefly considered to be anaerobic soil, with overall conversion factors, and water is...life for degradation of a chemical in water, soil, and sediment is determined using the ultimate biodegradation expert survey module of the BIOWIN

  1. SPATIAL FOREST SOIL PROPERTIES FOR ECOLOGICAL MODELING IN THE WESTERN OREGON CASCADES

    EPA Science Inventory

    The ultimate objective of this work is to provide a spatially distributed database of soil properties to serve as inputs to model ecological processes in western forests at the landscape scale. The Central Western Oregon Cascades are rich in biodiversity and they are a fascinati...

  2. An Integrated Learning Project in Introductory Soils.

    ERIC Educational Resources Information Center

    Robinson, C. A.; Schafer, J.

    1993-01-01

    Describes a problem-solving teaching method used in the Introductory Soils course at Iowa State University whereby students are assigned to groups and asked to serve as an advisor to a landowner. Using a computerized database for most data acquisition, students recommend farm usage and urban/alternate development plans. Includes the program…

  3. TECHNOLOGY EVALUATION REPORT: BIOTROL SOIL WASHING SYSTEM FOR TREATMENT OF A WOOD PRESERVING SITE - VOLUME I

    EPA Science Inventory

    The report presents and evaluates the extensive database from the SITE Program demonstration at the MacGillis and Gibbs wood treatment facility in New Brighton, MN. Soil washing and segregation, biotreatment of contaminated process water, and biodegradation of a slurry of the con...

  4. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    USDA-ARS?s Scientific Manuscript database

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  5. Crystallography Open Databases and Preservation: a World-wide Initiative

    NASA Astrophysics Data System (ADS)

    Chateigner, Daniel

    In 2003, an international team of crystallographers proposed the Crystallography Open Database (COD), a fully-free collection of crystal structure data, in the aim of ensuring their preservation. With nearly 250000 entries, this database represents a large open set of data for crystallographers, academics and industrials, located at five different places world-wide, and included in Thomson-Reuters’ ISI. As a large step towards data preservation, raw data can now be uploaded along with «digested» structure files, and COD can be questioned by most of the crystallography-linked industrial software. The COD initiative work deserves several other open developments.

  6. Mars Phoenix Scout Thermal Evolved Gas Analyzer (TEGA) Database: Thermal Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Niles, P. B.; Stein, T. C.; Hamara, D.; Boynton, W. V.; Ming, D. W.

    2017-01-01

    The Mars Phoenix Scout Lander mission in 2008 examined the history of water, searched for organics, and evaluated the potential for past/present microbial habitability in a martian arctic ice-rich soil [1]. The Thermal Evolved Gas Analyzer (TEGA) instrument measured the isotopic composition of atmospheric CO2 and detected volatile bearing mineralogy (perchlorate, carbonate, hydrated mineral phases) in the martian soil [2-7]. The TEGA data are archived at the Planetary Data System (PDS) Geosciences Node but are reported in forms that require further processing to be of use to the non-TEGA expert. The soil and blank TEGA thermal data are reported as duty cycle and must be converted to differential power (mW) to allow for enthalpy calculations of exothermic/endothermic transitions. The exothermic/endothermic temperatures are also used to determine what phases (inorganic/organic) are present in the sample. The objectives of this work are to: 1) Describe how interpretable thermal data can be created from TEGA data sets on the PDS and 2) Provide additional thermal data interpretation of two Phoenix soils (Baby Bear, Wicked Witch) and include interpretations from three unreported soils (Rosy Red 1, 2, and Burning Coals).

  7. Carbon - Bulk Density Relationships for Highly Weathered Soils of the Americas

    NASA Astrophysics Data System (ADS)

    Nave, L. E.

    2014-12-01

    Soils are dynamic natural bodies composed of mineral and organic materials. As a result of this mixed composition, essential properties of soils such as their apparent density, organic and mineral contents are typically correlated. Negative relationships between bulk density (Db) and organic matter concentration provide well-known examples across a broad range of soils, and such quantitative relationships among soil properties are useful for a variety of applications. First, gap-filling or data interpolation often are necessary to develop large soil carbon (C) datasets; furthermore, limitations of access to analytical instruments may preclude C determinations for every soil sample. In such cases, equations to derive soil C concentrations from basic measures of soil mass, volume, and density offer significant potential for purposes of soil C stock estimation. To facilitate estimation of soil C stocks on highly weathered soils of the Americas, I used observations from the International Soil Carbon Network (ISCN) database to develop carbon - bulk density prediction equations for Oxisols and Ultisols. Within a small sample set of georeferenced Oxisols (n=89), 29% of the variation in A horizon C concentrations can be predicted from Db. Including the A-horizon sand content improves predictive capacity to 35%. B horizon C concentrations (n=285) were best predicted by Db and clay content, but were more variable than A-horizons (only 10% of variation explained by linear regression). Among Ultisols, a larger sample set allowed investigation of specific horizons of interest. For example, C concentrations of plowed A (Ap) horizons are predictable based on Db, sand and silt contents (n=804, r2=0.38); gleyed argillic (Btg) horizon concentrations are predictable from Db, sand and clay contents (n=190, r2=0.23). Because soil C stock estimates are more sensitive to variation in soil mass and volume determinations than to variation in C concentration, prediction equations such as these may be used on carefully collected samples to constrain soil C stocks. The geo-referenced ISCN database allows users the opportunity to derive similar predictive relationships among measured soil parameters; continued input of new datasets from highly weathered soils of the Americas will improve the precision of these prediction equations.

  8. The distribution of soil phosphorus for global biogeochemical modeling

    DOE PAGES

    Yang, Xiaojuan; Post, Wilfred M.; Thornton, Peter E.; ...

    2013-04-16

    We discuss that phosphorus (P) is a major element required for biological activity in terrestrial ecosystems. Although the total P content in most soils can be large, only a small fraction is available or in an organic form for biological utilization because it is bound either in incompletely weathered mineral particles, adsorbed on mineral surfaces, or, over the time of soil formation, made unavailable by secondary mineral formation (occluded). In order to adequately represent phosphorus availability in global biogeochemistry–climate models, a representation of the amount and form of P in soils globally is required. We develop an approach that buildsmore » on existing knowledge of soil P processes and databases of parent material and soil P measurements to provide spatially explicit estimates of different forms of naturally occurring soil P on the global scale. We assembled data on the various forms of phosphorus in soils globally, chronosequence information, and several global spatial databases to develop a map of total soil P and the distribution among mineral bound, labile, organic, occluded, and secondary P forms in soils globally. The amount of P, to 50cm soil depth, in soil labile, organic, occluded, and secondary pools is 3.6 ± 3, 8.6 ± 6, 12.2 ± 8, and 3.2 ± 2 Pg P (Petagrams of P, 1 Pg = 1 × 10 15g) respectively. The amount in soil mineral particles to the same depth is estimated at 13.0 ± 8 Pg P for a global soil total of 40.6 ± 18 Pg P. The large uncertainty in our estimates reflects our limited understanding of the processes controlling soil P transformations during pedogenesis and a deficiency in the number of soil P measurements. In spite of the large uncertainty, the estimated global spatial variation and distribution of different soil P forms presented in this study will be useful for global biogeochemistry models that include P as a limiting element in biological production by providing initial estimates of the available soil P for plant uptake and microbial utilization.« less

  9. Modeling potential distribution of Oligoryzomys longicaudatus, the Andes virus (Genus: Hantavirus) reservoir, in Argentina.

    PubMed

    Andreo, Verónica; Glass, Gregory; Shields, Timothy; Provensal, Cecilia; Polop, Jaime

    2011-09-01

    We constructed a model to predict the potential distribution of Oligoryzomys longicaudatus, the reservoir of Andes virus (Genus: Hantavirus), in Argentina. We developed an extensive database of occurrence records from published studies and our own surveys and compared two methods to model the probability of O. longicaudatus presence; logistic regression and MaxEnt algorithm. The environmental variables used were tree, grass and bare soil cover from MODIS imagery and, altitude and 19 bioclimatic variables from WorldClim database. The models performances were evaluated and compared both by threshold dependent and independent measures. The best models included tree and grass cover, mean diurnal temperature range, and precipitation of the warmest and coldest seasons. The potential distribution maps for O. longicaudatus predicted the highest occurrence probabilities along the Andes range, from 32°S and narrowing southwards. They also predicted high probabilities for the south-central area of Argentina, reaching the Atlantic coast. The Hantavirus Pulmonary Syndrome cases coincided with mean occurrence probabilities of 95 and 77% for logistic and MaxEnt models, respectively. HPS transmission zones in Argentine Patagonia matched the areas with the highest probability of presence. Therefore, colilargos presence probability may provide an approximate risk of transmission and act as an early tool to guide control and prevention plans.

  10. Prescribed burning effects on soil physical properties and soil water repellency in a steep chaparral watershed, southern California, USA

    Treesearch

    K.R. Hubbert; H.K. Preisler; P.M. Wohlgemuth; R.C. Graham; M.G. Narog

    2006-01-01

    Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency,...

  11. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  12. Use of the World Wide Web for multisite data collection.

    PubMed

    Subramanian, A K; McAfee, A T; Getzinger, J P

    1997-08-01

    As access to the Internet becomes increasingly available, research applications in medicine will increase. This paper describes the use of the Internet, and, more specifically, the World Wide Web (WWW), as a channel of communication between EDs throughout the world and investigators who are interested in facilitating the collection of data from multiple sites. Data entered into user-friendly electronic surveys can be transmitted over the Internet to a database located at the site of the study, rendering geographic separation less of a barrier to the conduction of multisite studies. The electronic format of the data can enable real-time statistical processing while data are stored using existing database technologies. In theory, automated processing of variables within such a database enables early identification of data trends. Methods of ensuring validity, security, and compliance are discussed.

  13. Nutrient resources for crop production in the tropics

    PubMed Central

    Vlek, P. L. G.; Kühne, R. F.; Denich, M.

    1997-01-01

    For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.
    Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world's fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.
    With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level it is associated with considerable costs of collection, detoxification and transportation to the farms. Yet, at the rate at which some of the non-renewable resources such as phosphorus and potassium are being exploited, recycling of these nutrients will soon be required.

  14. Spatial disaggregation of complex soil map units at regional scale based on soil-landscape relationships

    NASA Astrophysics Data System (ADS)

    Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian

    2015-04-01

    Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.

  15. Area- and depth- weighted averages of selected SSURGO variables for the conterminous United States and District of Columbia

    USGS Publications Warehouse

    Wieczorek, Michael

    2014-01-01

    This digital data release consists of seven data files of soil attributes for the United States and the District of Columbia. The files are derived from National Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are percent sand, silt, and clay (AVG_SAND, AVG_SILT, and AVG_CLAY). The soil characteristics in the WTDEP table are the annual minimum water table depth (WTDEP_MIN), available water storage in the 0-25 cm soil horizon (AWS025), the minimum water table depth for the months April, May and June (WTDEPAMJ), the available water storage in the first 25 centimeters of the soil horizon (AWS25), the dominant drainage class (DRCLSD), the wettest drainage class (DRCLSWET), and the hydric classification (HYDCLASS), which is an indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of a given MUKEY. (See Entity_Description for more detail). The tables were created with a set of arc macro language (aml) and awk (awk was created at Bell Labsin the 1970s and its name is derived from the first letters of the last names of its authors – Alfred Aho, Peter Weinberger, and Brian Kernighan) scripts. Send an email to mewieczo@usgs.gov to obtain copies of the computer code (See Process_Description.) The methods used are outlined in NRCS's "SSURGO Data Packaging and Use" (NRCS, 2011). The tables can be related or joined to the gSSURGO rasters of MUKEYs by the item 'MUKEY.' Joining or relating the tables to a MUKEY grid allows the creation of grids of area- and depth-weighted soil characteristics. A 90-meter raster of MUKEYs is provided which can be used to produce rasters of soil attributes. More detailed resolution rasters are available through NRCS via the link above.

  16. The radiopurity.org material database

    NASA Astrophysics Data System (ADS)

    Cooley, J.; Loach, J. C.; Poon, A. W. P.

    2018-01-01

    The database at http://www.radiopurity.org is the world's largest public database of material radio-purity mea-surements. These measurements are used by members of the low-background physics community to build experiments that search for neutrinos, neutrinoless double-beta decay, WIMP dark matter, and other exciting physics. This paper summarizes the current status and the future plan of this database.

  17. 50 Years And 400 Radiocarbon Measurements Since 1959: What Has The “Bomb Spike” Taught Us About Soil C Dynamics In New Zealand Soils?

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Parfitt, R. L.; Ross, C.

    2009-12-01

    In 1959, Athol Rafter began a substantial programme of monitoring the flow of 14C produced by atmospheric thermonuclear tests through New Zealand’s atmosphere, biosphere and soil. The programme produced important publications, but also leaves a legacy of unpublished data critical for understanding soil C dynamics. A database of ~400 soil radiocarbon measurements spanning 50 years has now been compiled. Among the most compelling data is a comparison of soil carbon dynamics in deforested dairy pastures under similar climate in the Tokomaru silt loam (non-Andisol) versus the Egmont black loam (Andisol), originally sampled in 1962-3, 1965 and 1969. After adding soil profiles sampled to similar depths in 2008, we can use a relatively simple 2-box model to calculate that the residence time of soil C (upper ~8 cm) in the Tokomaru soil is ~9 years compared to ~15 years for the Egmont soil. This difference represents nearly a doubling of soil C residence time, and roughly explains the doubling of the soil C stock. With three measurements in the 1960s, the data is of sufficient resolution to estimate the parameters for an “inert” or “passive pool” comprising approximately 15% of soil C, and having a residence time of 600 years in the Tokomaru soil versus 3000 years in the Egmont surface soil. The Tokomaru/Egmont comparison is necessarily illustrative since the 1960s samplings were not replicated extensively, but provides globally unique data illustrating the nature of C movement through soil. Moreover, the Tokomaru/Egmont comparison supports evidence that C dynamics does differ in Andisols versus other soils. Additional lines of evidence include emerging theories of soil organic matter stabilisation processes, rates of soil organic matter change following land-use change, and chemistry data. The contrasting soil C dynamics in these different soils appear to have implications for land-use change and management schemes that could be eligible for “C credits”. More broadly, the large database of radiocarbon measurements also creates opportunities to quantify carbon turnover and transport as a function of soil depth, and in non-steady state soil systems where the C stocks are known to be changing. The Egmont loam (Allophanic) and Tokomaru silt loam (non-Allophanic) showed different rates of "bomb-14C" incorporation under similar climate and land use.

  18. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    PubMed

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  19. Landmarks of History of Soil Science in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Mapa, R.

    2012-04-01

    Sri Lanka is a tropical Island in the Southern tip of Indian subcontinent positioned at 50 55' to 90 50' N latitude and 790 42' to 810 53' E longitude surrounded by the Indian Ocean. It is an island 435 km in length and 224 km width consisting of a land are of 6.56 million ha with a population of 20 million. In area wise it is ranked as 118th in the world, where at present ranked as 47 in population wise and ranked 19th in population density. The country was under colonial rule under Portuguese, Dutch and British from 1505 to 1948. The majority of the people in the past and present earn their living from activities based on land, which indicates the important of the soil resource. The objective of this paper is to describe the landmarks of the history of Soil Science to highlight the achievements and failures, which is useful to enrich our present understanding of Sri Lankan soils. The landmarks of the history of Soil Science in Sri Lanka can be divided to three phases namely, the early period (prior to 1956), the middle period (1956 to 1972) and the present period (from 1972 onwards). During the early period, detailed analytical studies of coffee and tea soils were compiled, and these gave mainly information on up-country soils which led to fertilizer recommendations based on field trials. In addition, rice and forest soils were also studied in less detail. The first classification of Sri Lankan soils and a provisional soil map based on parent material was published by Joachim in 1945 which is a major landmark of history of Soil Science in Sri Lanka. In 1959 Ponnamperuma proposed a soil classification system for wetland rice soils. From 1963 to 1968 valuable information on the land resource was collected and documented by aerial resource surveys funded by Canada-Ceylon Colombo plan aid project. This covered 18 major river basins and about 1/4th of Sri Lanka, which resulted in producing excellent soil maps and information of the areas called the Kelani Aruvi Ara and Walawe basins. The provisional soil map was updated by many other workers as Moorman and Panabokke in 1961 and 1972 using this information. The soil map produced by De Alwis and Panabokke in 1972 at a scale of 1:500,000 was the soil maps mostly used during the past years During the present era, the need for classification of Soils of Sri Lanka according to international methods was felt. A major leap forward in Soil Survey, Classification leading to development of a soil data base was initiated in 1995 with the commencement of the "SRICANSOL" project which was a twining project between the Soil Science Societies of Sri Lanka and Canada. This project is now completed with detail soil maps at a scale of 1:250,000 and soil classified according to international methods for the Wet, Intermediate and Dry zones of Sri Lanka. A digital database consisting of soil profile description and physical and chemical data is under preparation for 28, 40 and 51 benchmark sites of the Wet, Intermediate and Dry zones respectively. The emphases on studies on Soil Science in the country at present is more towards environmental conservation related to soil erosion control, reducing of pollution of soil and water bodies from nitrates, pesticide residues and heavy metal accumulation. Key words: Sri Lanka, Provisional soil map

  20. A potential global soils data base

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Joyce, A. T.; Hogg, H. C.

    1984-01-01

    A general procedure is outlined for refining the existing world soil maps from the existing 1:1 million scale to 1:250,000 through the interpretation of Landsat MSS and TM images, and the use of a Geographic Information System to relate the soils maps to available information on climate, topography, geology, and vegetation.

  1. The persistent environmental relevance of soil phosphorus sorption saturation

    USDA-ARS?s Scientific Manuscript database

    Controlling phosphorus (P) loss from agricultural soils remains a priority pollution concern in much of the world. Dissolved forms of P loss are amongst the most difficult to manage. The concept of soil P sorption saturation emerged from the Netherlands in the 1990s and has broad appeal as an enviro...

  2. Fire-induced water repellency: An erosional factor in wildland environments

    Treesearch

    Leonard F. DeBano

    2000-01-01

    Watershed managers and scientists throughout the world have been aware of fire-induced water-repellent soils for over three decades. Water repellency affects many hydrologic processes, including infiltration, overland flow, and surface erosion (rill and sheet erosion). This paper describes; the formation of fire-induced water-repellent soils, the effect of soil water...

  3. Effects of Land Use of the Hydrology of Drained Coastal Plain Watersheds

    Treesearch

    R. Wayne Skaggs; George M Chescheir; Glen P. Fernandez; Devendra M. Amatya

    2004-01-01

    Some of the world's most productive cropland requires artificial or improved drainage for efficient agricultural production. Soil hydraulic properties, such as hydraulicconductivity and drainable porosity, are conventionally used in design of drainage systems. While it is recognized that these soil properties vary over a relatively wide range within a given soil...

  4. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  5. Herbicides--Protecting Long-Term Sustainability and Water Quality in Forest Ecosystems

    Treesearch

    Daniel G. Neary; Jerry L. Michael

    1996-01-01

    World-wide, sediment is the major water quality problem. The use of herbicides for controllingcompeting vegetation during stand establishment can be benciicial to forest ecosystem sustainability and water quality by minimising off-site soil loss, reducing onsite soil and organic matter displacement, and preventing deterioration of soil physical properties. Sediment...

  6. Macronutrients in soils and plants, and their impacts on animal and human health

    USDA-ARS?s Scientific Manuscript database

    Soil supplies an abundance of macronutrients necessary for plants to grow and thrive under a variety of environmental conditions around the world. The capability of soil to store and release these nutrients supports our existence. Scientists from USDA-ARS in Raleigh NC and at the University of Ark...

  7. A review of the applications of ASCAT soil moisture products

    USDA-ARS?s Scientific Manuscript database

    Remote sensing of soil moisture has reached a level of good maturity and accuracy for which the retrieved products are ready to use in real-world applications. Due to the importance of soil moisture in the partitioning of the water and energy fluxes between the land surface and the atmosphere, a wid...

  8. CLAY MINERALS AND THE ACCUMULATION OF SOIL ORGANIC MATTER IN NORTHWESTERN U.S. FORESTS

    EPA Science Inventory

    Globally soils are an important terrestrial reservoir of carbon, storing approximately 3 times the carbon held in vegetation and 2 times the amount contained in the atmosphere. With the potential for global climate change it is imperative that world soils continue to be a sink f...

  9. Soil salinity: Germination tolerance of alternative oilseed crops for soil health

    USDA-ARS?s Scientific Manuscript database

    World-wide, saline soils contribute to over US$27.3 billion in agricultural losses annually by reducing plant growth through osmotic imbalances and ion toxicity. Nearly 800,000 ha of salt affected land is located in the northern Great Plains. Limited information is available on the germination of al...

  10. Epidemiological surveys of, and research on, soil-transmitted helminths in Southeast Asia: a systematic review.

    PubMed

    Dunn, Julia C; Turner, Hugo C; Tun, Aung; Anderson, Roy M

    2016-01-27

    Soil-transmitted helminth (STH) infections of humans fall within the World Health Organization's (WHO) grouping termed the neglected tropical diseases (NTDs). It is estimated that they affect approximately 1.4 billion people worldwide. A significant proportion of these infections are in the population of Southeast Asia. This review analyses published data on STH prevalence and intensity in Southeast Asia over the time period of 1900 to the present to describe age related patterns in these epidemiological measures. This is with a focus on the four major parasite species affecting humans; namely Ascaris lumbricoides, Trichuris trichiura and the hookworms; Necator americanus and Ancylostoma duodenale. Data were also collected on the diagnostic methods used in the published surveys and how the studies were designed to facilitate comparative analyses of recorded patterns and changes therein over time. PubMed, Google Scholar, EMBASE, ISI Web of Science, Cochrane Database of Systematic Reviews and the Global Atlas of Helminth Infections search engines were used to identify studies on STH in Southeast Asia with the search based on the major key words, and variants on, "soil-transmitted helminth" "Ascaris" "Trichuris" "hookworm" and the country name. A total of 280 studies satisfied the inclusion criteria from 11 Southeast Asian countries; Brunei, Cambodia, Indonesia, Lao People's Democratic Republic (Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste and Vietnam. It was concluded that the epidemiological patterns of STH infection by age and species mix in Southeast Asia are similar to those reported in other parts of the world. In the published studies there were a large number of different diagnostic methods used with differing sensitivities and specificities, which makes comparison of the results both within and between countries difficult. There is a clear requirement to standardise the methods of both STH diagnosis in faecal material and how the intensity of infection is recorded and reported in future STH research and in monitoring and evaluation (M&E) of the impact of continuing and expanding mass drug administration (MDA) programmes.

  11. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration

    PubMed Central

    Gražulis, Saulius; Daškevič, Adriana; Merkys, Andrius; Chateigner, Daniel; Lutterotti, Luca; Quirós, Miguel; Serebryanaya, Nadezhda R.; Moeck, Peter; Downs, Robert T.; Le Bail, Armel

    2012-01-01

    Using an open-access distribution model, the Crystallography Open Database (COD, http://www.crystallography.net) collects all known ‘small molecule / small to medium sized unit cell’ crystal structures and makes them available freely on the Internet. As of today, the COD has aggregated ∼150 000 structures, offering basic search capabilities and the possibility to download the whole database, or parts thereof using a variety of standard open communication protocols. A newly developed website provides capabilities for all registered users to deposit published and so far unpublished structures as personal communications or pre-publication depositions. Such a setup enables extension of the COD database by many users simultaneously. This increases the possibilities for growth of the COD database, and is the first step towards establishing a world wide Internet-based collaborative platform dedicated to the collection and curation of structural knowledge. PMID:22070882

  12. New generic indexing technology

    NASA Technical Reports Server (NTRS)

    Freeston, Michael

    1996-01-01

    There has been no fundamental change in the dynamic indexing methods supporting database systems since the invention of the B-tree twenty-five years ago. And yet the whole classical approach to dynamic database indexing has long since become inappropriate and increasingly inadequate. We are moving rapidly from the conventional one-dimensional world of fixed-structure text and numbers to a multi-dimensional world of variable structures, objects and images, in space and time. But, even before leaving the confines of conventional database indexing, the situation is highly unsatisfactory. In fact, our research has led us to question the basic assumptions of conventional database indexing. We have spent the past ten years studying the properties of multi-dimensional indexing methods, and in this paper we draw the strands of a number of developments together - some quite old, some very new, to show how we now have the basis for a new generic indexing technology for the next generation of database systems.

  13. Estimation of Soil Moisture with L-band Multi-polarization Radar

    NASA Technical Reports Server (NTRS)

    Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.

    2004-01-01

    Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.

  14. SoilInfo App: global soil information on your palm

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  15. Anthropometry for WorldSID, a World-Harmonized Midsize Male Side Impact Crash Dummy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Moss; Z. Wang; M. Salloum

    2000-06-19

    The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Researchmore » Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.« less

  16. Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Quiring, S. M.

    2016-12-01

    Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.

  17. Exploring the Role of Soil Moisture Conditions for Rainfall Triggered Landslides on Catchment Scale: the case of the Ialomita Sub Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Adler, Mary-Jeanne; Steele-Dunne, Susan; Hrachowitz, Markus; Busuioc, Aristita; Sandric, Ionut; Istrate, Alexandru

    2014-05-01

    Like in many parts of the world, landslides represent in Romania recurrent phenomena that produce numerous damages to the infrastructure every few years. The high frequency of landslide events over the world has resulted to the development of many early warning systems that are based on the definition of rainfall thresholds triggering landslides. In Romania in particular, recent studies exploring the temporal occurrence of landslides have revealed that rainfall represents the most important triggering factor for landslides. The presence of low permeability soils and gentle slope degrees in the Ialomita Subcarpathians of Romania makes that cumulated precipitation over variable time interval and the hydraulic response of the soil plays a key role in landslides triggering. In order to identify the slope responses to rainfall events in this particular area we investigate the variability of soil moisture and its relationship to landslide events in three Subcarpathians catchments (Cricovul Dulce, Bizididel and Vulcana) by combining in situ measurements, satellite-based radiometry and hydrological modelling. For the current study, hourly soil moisture measurements from six soil moisture monitoring stations that are fitted with volumetric soil moisture sensors, temperature soil sensors and rain gauges sensors are used. Pedotransfer functions will be applied in order to infer hydraulic soil properties from soil texture sampled from 50 soil profiles. The information about spatial and temporal variability of soil moisture content will be completed with the Level 2 soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. A time series analysis of soil moisture is planned to be integrated to landslide and rainfall time series in order to determine a preliminary rainfall threshold triggering landslides in Ialomita Subcarpathians.

  18. Exploring the Impact of Different Input Data Types on Soil Variable Estimation Using the ICRAF-ISRIC Global Soil Spectral Database.

    PubMed

    Aitkenhead, Matt J; Black, Helaina I J

    2018-02-01

    Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2  > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.

  19. Six Online Periodical Databases: A Librarian's View.

    ERIC Educational Resources Information Center

    Willems, Harry

    1999-01-01

    Compares the following World Wide Web-based periodical databases, focusing on their usefulness in K-12 school libraries: EBSCO, Electric Library, Facts on File, SIRS, Wilson, and UMI. Search interfaces, display options, help screens, printing, home access, copyright restrictions, database administration, and making a decision are discussed. A…

  20. Soil biogeochemistry in the age of big data

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre; Coissac, Eric; Plante, Alain; Rasse, Daniel

    2015-04-01

    Data is becoming one of the key resource of the XXIst century. Soil biogeochemistry is not spared by this new movement. The conservation of soils and their services recently came into the political agenda. However, clear knowledge on the links between soil characteristics and the various processes ensuring the provision of soil services is rare at the molecular or the plot scale, and does not exist at the landscape scale. This split between society's expectations on its natural capital, and scientific knowledge on the most complex material on earth has lead to an increasing number of studies on soils, using an increasing number of techniques of increasing complexity, with an increasing spatial and temporal coverage. From data scarcity with a basic data management system, soil biogeochemistry is now facing a proliferation of data, with few quality controls from data collection to publication and few skills to deal with them. Based on this observation, here we (1) address how big data could help in making sense of all these soil biogeochemical data, (2) point out several shortcomings of big data that most biogeochemists will experience in their future career. Massive storage of data is now common and recent opportunities for cloud storage enables data sharing among researchers all over the world. The need for integrative and collaborative computational databases in soil biogeochemistry is emerging through pioneering initiatives in this direction (molTERdb; earthcube), following soil microbiologists (GenBank). We expect that a series of data storage and management systems will rapidly revolutionize the way of accessing raw biogeochemical data, published or not. Data mining techniques combined with cluster or cloud computing hold significant promises for facilitating the use of complex analytical methods, and for revealing new insights previously hidden in complex data on soil mineralogy, organic matter and biodiversity. Indeed, important scientific advances have already been made thanks to meta-analysis, chemometrics, machine-learning systems and bioinformatics. Some techniques like structural equation modeling eventually propose to explore causalities opening a way towards the mechanistic understanding of soil big data rather than simple correlations. We claim that data science should be fully integrated into soil biogeochemists basic education schemes. We expect the blooming of a new generation of soil biogeochemists highly skilled in manipulating big data. Will big data represent a net gain for soil biogeochemistry? Increasing the amount of data will increase associated biases that may further be exacerbated by the increasing distance between data manipulators, soil sampling and data acquisition. Integrating data science into soil biogeochemistry should thus not be done at the expenses of pedology and metrology. We further expect that the more data, the more spurious correlations will appear leading to possible misinterpretation of data. Finally, big data on soils characteristics and processes will always need to be confronted to biogeochemical theories and socio-economic knowledge to be useful. Big data could revolutionize soil biogeochemistry, fostering new scientific and business models around the conservation of the soil natural capital, but our community should go into this new era with clear-sightedness and discernment.

  1. Evaluating soil carbon in global climate models: benchmarking, future projections, and model drivers

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Randerson, J. T.; Post, W. M.; Allison, S. D.

    2012-12-01

    The carbon cycle plays a critical role in how the climate responds to anthropogenic carbon dioxide. To evaluate how well Earth system models (ESMs) from the Climate Model Intercomparison Project (CMIP5) represent the carbon cycle, we examined predictions of current soil carbon stocks from the historical simulation. We compared the soil and litter carbon pools from 17 ESMs with data on soil carbon stocks from the Harmonized World Soil Database (HWSD). We also examined soil carbon predictions for 2100 from 16 ESMs from the rcp85 (highest radiative forcing) simulation to investigate the effects of climate change on soil carbon stocks. In both analyses, we used a reduced complexity model to separate the effects of variation in model drivers from the effects of model parameters on soil carbon predictions. Drivers included NPP, soil temperature, and soil moisture, and the reduced complexity model represented one pool of soil carbon as a function of these drivers. The ESMs predicted global soil carbon totals of 500 to 2980 Pg-C, compared to 1260 Pg-C in the HWSD. This 5-fold variation in predicted soil stocks was a consequence of a 3.4-fold variation in NPP inputs and 3.8-fold variability in mean global turnover times. None of the ESMs correlated well with the global distribution of soil carbon in the HWSD (Pearson's correlation <0.40, RMSE 9-22 kg m-2). On a biome level there was a broad range of agreement between the ESMs and the HWSD. Some models predicted HWSD biome totals well (R2=0.91) while others did not (R2=0.23). All of the ESM terrestrial decomposition models are structurally similar with outputs that were well described by a reduced complexity model that included NPP and soil temperature (R2 of 0.73-0.93). However, MPI-ESM-LR outputs showed only a moderate fit to this model (R2=0.51), and CanESM2 outputs were better described by a reduced model that included soil moisture (R2=0.74), We also found a broad range in soil carbon responses to climate change predicted by the ESMs, with changes of -480 to 230 Pg-C from 2005-2100. All models that reported NPP and heterotrophic respiration showed increases in both of these processes over the simulated period. In two of the models, soils switched from a global sink for carbon to a net source. Of the remaining models, half predicted that soils were a sink for carbon throughout the time period and the other half predicted that soils were a carbon source.. Heterotrophic respiration in most of the models from 2005-2100 was well explained by a reduced complexity model dependent on soil carbon, soil temperature, and soil moisture (R2 values >0.74). However, MPI-ESM (R2=0.45) showed only moderate fit to this model. Our analysis shows that soil carbon predictions from ESMs are highly variable, with much of this variability due to model parameterization and variations in driving variables. Furthermore, our reduced complexity models show that most variation in ESM outputs can be explained by a simple one-pool model with a small number of drivers and parameters. Therefore, agreement between soil carbon predictions across models could improve substantially by reconciling differences in driving variables and the parameters that link soil carbon with environmental drivers. However it is unclear if this model agreement would reflect what is truly happening in the Earth system.

  2. The Italian contribution to the World Soils Book Series: The Soils of Italy

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Dazzi, Carmelo

    2015-04-01

    Passing to the age of "Anthropocene", man has forgotten the ancient bond that ties him to the soil, and turning from "homo sapiens" to "homo technologicus" he has stopped considering how much his well-being and the quality of life on Earth are fundamentally linked to the quality of soils. Yet today, as never before, maintaining the quality of soils is of paramount relevance for the sustainable development of humanity. Unfortunately, as soils are a crypto-resource, not many lay-people recognize its importance in the biosphere equilibrium and, unfortunately, seldom consider it among the environmental resources that must be protected! To fill such a gap in knowledge, the Springer editor, under the leading of professor Alfred Hartemink, has published the World Soils Book Series, whose aim is to spread the knowledge on the soils in a particular country in a concise and highly reader-friendly way. The volume "The Soils of Italy" belongs to this international series of books. Its ambitious goals are to establish a broad base for the knowledge of the soils of Italy, and to give useful information on i) their characteristics, diffusion and fertility, ii) the main threats they are subjected, and iii) the future scenarios of relationships between soil sciences and the disciplines, which are not traditionally linked to the world of agriculture, such as urban development, medicine, economics, sociology, archaeology. In Italy there is about 75% of the global pedodiversity. A vast majority of the WRB reference soil groups (25 out of 32), as well as soil orders of Soil Taxonomy (10 out of 12) are represented in the main Italian soil typological units (STUs). More than a fourth of STUs belongs to Cambisols, more than a half to only four reference soil groups (Cambisols, Luvisols, Regosols, Phaeozems), and 88% to nine RSGs (the former plus Calcisols, Vertisols, Fluvisols, Leptosols, and Andosols), while the remaining 16 RSGs are represented in 12% of STUs. The clear skewness and lognormal distribution of STUs demonstrate the utmost endemic nature of most of Italian soils, which make many of them threatened with extinction. The writing of this book was attended by numerous experts from several Italian universities and research centres, which have taken on the responsibility of editing the various chapters. A specific characteristic of the book is that it collects scripts of both mature and young soil scientists, who contributed in a decisive way to render the text up-to-date and, hopefully, attractive. It is a common aspiration of the authors that this book could provide interesting information to soil experts and students, so that they can enhance the attention of the public on the Italian soils: a very limited but very economically and environmentally important resource of Italy.

  3. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias (PBIAS15%) for 8 gauges of 10. Weaker results were obtained for Great Bear River at outlet of Great Bear Lake and Peace River at Peace Point. Possibilities of a model approach for the construction of mean annual hydrological fields (maps) using meteorological data for the large river basins are shown. Spatial fields of the 32-year mean annual runoff and evaporation (1971-2002) for the Mackenzie River basin were simulated by the distributed model and the corresponding maps were compared with that provided by Hydrological Atlas of Canada (1972) for 30-year period (1941-1970). Analysis of fields conformity is made and possible sources of errors are discussed.

  4. Global distribution of carbon turnover times in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus

    2015-04-01

    The response of the carbon cycle in terrestrial ecosystems to climate variability remains one of the largest uncertainties affecting future projections of climate change. This feedback between the terrestrial carbon cycle and climate is partly determined by the response of carbon uptake and by changes in the residence time of carbon in land ecosystems, which depend on climate, soil, and vegetation type. Thus, it is of foremost importance to quantify the turnover times of carbon in terrestrial ecosystems and its spatial co-variability with climate. Here, we develop a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times (τ) to investigate its co-variation with climate at global scale. Assuming a balance between uptake (gross primary production, GPP) and emission fluxes, τ can be defined as the ratio between the total stock (C_total) and the output or input fluxes (GPP). The estimation of vegetation (C_veg) stocks relies on new remote sensing-based estimates from Saatchi et al (2011) and Thurner et al (2014), while soil carbon stocks (C_soil) are estimated based on state of the art global (Harmonized World Soil Database) and regional (Northern Circumpolar Soil Carbon Database) datasets. The uptake flux estimates are based on global observation-based fields of GPP (Jung et al., 2011). Globally, we find an overall mean global carbon turnover time of 23-4+7 years (95% confidence interval). A strong spatial variability globally is also observed, from shorter residence times in equatorial regions to longer periods at latitudes north of 75°N (mean τ of 15 and 255 years, respectively). The observed latitudinal pattern reflect the clear dependencies on temperature, showing increases from the equator to the poles, which is consistent with our current understanding of temperature controls on ecosystem dynamics. However, long turnover times are also observed in semi-arid and forest-herbaceous transition regions. Furthermore, based on a local correlation analysis, our results reveal a similarly strong association between τ and precipitation. A further analysis of carbon turnover times as simulated by state-of-the-art coupled climate carbon-cycle models from the CMIP5 experiments reveals wide variations between models and a tendency to underestimate the global τ by 36%. The latitudinal patterns correlate significantly with the observation-based patterns. However, the models show stronger associations between τ and temperature than the observation-based estimates. In general, the stronger relationship between τ and precipitation is not reproduced and the modeled turnover times are significantly faster in many semi-arid regions. Ultimately, these results suggest a strong role of the hydrological cycle in the carbon cycle-climate interactions, which is not currently reproduced by Earth system models.

  5. Ionospheric characteristics for archiving at the World Data Centers. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamache, R.R.; Reinisch, B.W.

    1990-12-01

    A database structure for archiving ionospheric characteristics at uneven data rates was developed at the July 1989 Ionospheric Informatics Working Group (IIWG) Lowell Workshop in Digital Ionogram Data Formats for World Data Center Archiving. This structure is proposed as a new URSI standard and is being employed by the World Data Center A for solar terrestrial physics for archiving characteristics. Here the database has been slightly refined for the application and programs written to generate these database files using as input Digisonde 256 ARTIST data, post processed by the ULCAR ADEP (ARTIST Data Editing Program) system. The characteristics program asmore » well as supplemental programs developed for this task are described here. The new software will make it possible to archive the ionospheric characteristics from the Geophysics Laboratory high latitude Digisonde network, the AWS DISS and the international Digisonde networks, and other ionospheric sounding networks.« less

  6. Long-term sensitivity of soil carbon turnover to warming.

    PubMed

    Knorr, W; Prentice, I C; House, J I; Holland, E A

    2005-01-20

    The sensitivity of soil carbon to warming is a major uncertainty in projections of carbon dioxide concentration and climate. Experimental studies overwhelmingly indicate increased soil organic carbon (SOC) decomposition at higher temperatures, resulting in increased carbon dioxide emissions from soils. However, recent findings have been cited as evidence against increased soil carbon emissions in a warmer world. In soil warming experiments, the initially increased carbon dioxide efflux returns to pre-warming rates within one to three years, and apparent carbon pool turnover times are insensitive to temperature. It has already been suggested that the apparent lack of temperature dependence could be an artefact due to neglecting the extreme heterogeneity of soil carbon, but no explicit model has yet been presented that can reconcile all the above findings. Here we present a simple three-pool model that partitions SOC into components with different intrinsic turnover rates. Using this model, we show that the results of all the soil-warming experiments are compatible with long-term temperature sensitivity of SOC turnover: they can be explained by rapid depletion of labile SOC combined with the negligible response of non-labile SOC on experimental timescales. Furthermore, we present evidence that non-labile SOC is more sensitive to temperature than labile SOC, implying that the long-term positive feedback of soil decomposition in a warming world may be even stronger than predicted by global models.

  7. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  8. Effect of slash burning on soil pH.

    Treesearch

    Robert F. Tarrant

    1954-01-01

    Evaluating the effects of slash burning on regeneration and tree growth is one of the most pressing forest soil problems in the Douglas-fir region. Extensive literature concerning burning and soils is available for other parts of the world, but conclusions are not directly applicable to the Pacific Northwest. Here several studies are under way or planned to determine...

  9. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    USDA-ARS?s Scientific Manuscript database

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  10. A Cross-Site Comparison of Factors Influencing Soil Nitrification Rates in Northeastern USA Forested Watersheds

    Treesearch

    Donald S. Ross; Beverley C. Wemple; Austin E. Jamison; Guinevere Fredriksen; James B. Shanley; Gregory B. Lawrence; Scott W. Bailey; John L. Campbell

    2009-01-01

    Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small...

  11. Organization and dissemination of multimedia medical databases on the WWW.

    PubMed

    Todorovski, L; Ribaric, S; Dimec, J; Hudomalj, E; Lunder, T

    1999-01-01

    In the paper, we focus on the problem of building and disseminating multimedia medical databases on the World Wide Web (WWW). The current results of the ongoing project of building a prototype dermatology images database and its WWW presentation are presented. The dermatology database is part of an ambitious plan concerning an organization of a network of medical institutions building distributed and federated multimedia databases of a much wider scale.

  12. Land improvement as part of environmental planning

    NASA Astrophysics Data System (ADS)

    Zupanc, Vesna; Grcman, Helena; Pintar, Marina; Kammerer, Gerhard

    2017-04-01

    Agricultural land degradation and fertile soil loss occur at an alarming rate: in a year, an area of roughly twelve million hectares is lost for agricultural production worldwide. The process of land degradation is a real-world driver and amplifier of instability. Given the scope and severity of the problem, calls for large scale land and soil rehabilitation are likely to be expected. In a case study of hydropower plant construction in Slovenia, the process of land rehabilitation is described from agricultural and environmental aspect considering changing environmental policy in the past five decades. Soil protection relies on national policy, stemming from policy which originated from soil protection initiative after severe increase in sealing of most fertile areas after second World War. Environmental protection policy evolved and adapted after the accession to European Union. Under certain circumstances, agricultural land is used for environmental rehabilitation measures, and of secondary status in the remediation measures decision process.

  13. Status Report for Remediation Decision Support Project, Task 1, Activity 1.B – Physical and Hydraulic Properties Database and Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.

    2008-09-26

    The objective of Activity 1.B of the Remediation Decision Support (RDS) Project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data.more » Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the objectives of Activity 1.B of the RDS Project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which has most recently been maintained by Fluor-Hanford, Inc., (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The development of the Virtual Library module was to be performed by a third party under subcontract to Fluor. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. This status report describes the history of this development effort and progress to date.« less

  14. Where can cone penetrometer technology be applied? Development of a map of Europe regarding the soil penetrability.

    PubMed

    Fleischer, Matthias; van Ree, Derk; Leven, Carsten

    2014-01-01

    Over the past decades, significant efforts have been invested in the development of push-in technology for site characterization and monitoring for geotechnical and environmental purposes and have especially been undertaken in the Netherlands and Germany. These technologies provide the opportunity for faster, cheaper, and collection of more reliable subsurface data. However, to maximize the technology both from a development and implementation point of view, it is necessary to have an overview of the areas suitable for the application of this type of technology. Such an overview is missing and cannot simply be read from existing maps and material. This paper describes the development of a map showing the feasibility or applicability of Direct Push/Cone Penetrometer Technology (DPT/CPT) in Europe which depends on the subsurface and its extremely varying properties throughout Europe. Subsurface penetrability is dependent on a range of factors that have not been mapped directly or can easily be inferred from existing databases, especially the maximum depth reachable would be of interest. Among others, it mainly depends on the geology, the soil mechanical properties, the type of equipment used as well as soil-forming processes. This study starts by looking at different geological databases available at the European scale. Next, a scheme has been developed linking geological properties mapped to geotechnical properties to determine basic penetrability categories. From this, a map of soil penetrability is developed and presented. Validating the output by performing field tests was beyond the scope of this study, but for the country of the Netherlands, this map has been compared against a database containing actual cone penetrometer depth data to look for possible contradictory results that would negate the approach. The map for the largest part of Europe clearly shows that there is a much wider potential for the application of Direct Push Technology than is currently seen. The study also shows that there is a lack of large-scale databases that contain depth-resolved data as well as soil mechanical and physical properties that can be used for engineering purposes in relation to the subsurface.

  15. The application of ERTS imagery to the FAO/Unesco soil map of the world

    NASA Technical Reports Server (NTRS)

    Dudal, R. J.; Pecrot, A. J. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. It was concluded that direct identification and mapping of the various soil degradation forms and intensities from the color composite imager was generally difficult, if not impossible. The imagery, however, provided valuable information on some main environmental criteria which can be used in connection other available field data to assess actual soil degradation and estimate soil degradation hazards.

  16. The IRHUM database - bioavailable strontium isotope ratios of France for geochemical fingerprinting

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; Moffat, Ian; Grün, Rainer; Armstrong, Richard; Kinsley, Les; McMorrow, Linda

    2013-04-01

    Strontium isotope ratios (87Sr/86Sr) are used as a geochemical tracer in a wide range of fields including archaeology, ecology, soil, food and forensic sciences. These applications are based on the principle that strontium isotopic ratios of materials reflect the geological sources of the strontium, which were available during its formation. Geologic regions with distinct strontium isotope ranges, which depend on their age and composition, can be differentiated. A major constraint for current studies is the lack of robust reference maps to evaluate the strontium isotope ratios measured in the samples. The aim of the IRHUM (isotopic reconstruction of human migration) database is to provide a reference map of bioavailable strontium isotope ratios for continental France. The current dataset contains 400 sample locations covering the major geologic units of the Paris and Aquitaine Basin, the Massif Central, and the Pyrenees. At each site soil and plant samples have been collected to cover the whole range of strontium ratios at a specific location. The database is available online at www.rses.anu.edu.au/research-areas/archaeogeochemistry and contains the bioavailable strontium isotope data as well as major and trace element concentrations for soil and plant samples. Strontium isotopes were analysed using a Neptune multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) and elemental concentrations with a Varian Vista Pro Axial ICP-AES (inductively-coupled plasma atomic emission spectrometer). In addition, IRHUM provides spatial context for each sample, including background geology, field observations and soil descriptions. This metadata allows users to evaluate the suitability of a specific data point for their study. The IRHUM database fills an important gap between high resolution studies from specific sites (e.g. archaeological sites), to the very broad geochemical mapping of Europe. Thus it provides an excellent tool to evaluate the regional context of a sample and complement more closed spaced studies. New results will be added to the database continuously with the aim of covering all major geologic units of France within the next year.

  17. ClinicalTrials.gov

    MedlinePlus

    ... Terms and Conditions Disclaimer ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted ... world. ClinicalTrials.gov is a registry and results database of publicly and privately supported clinical studies of ...

  18. WEPP FuME Analysis for a North Idaho Site

    Treesearch

    William Elliot; Ina Sue Miller; David Hall

    2007-01-01

    A computer interface has been developed to assist with analyzing soil erosion rates associated with fuel management activities. This interface uses the Water Erosion Prediction Project (WEPP) model to predict sediment yields from hillslopes and road segments to the stream network. The simple interface has a large database of climates, vegetation files and forest soil...

  19. Soil carbon storage in plantation forests and pastures: land-use change implications

    NASA Astrophysics Data System (ADS)

    Scott, Neal A.; Tate, Kevin R.; Ford-Robertson, Justin; Giltrap, David J.; Tattersall Smith, C.

    1999-04-01

    Afforestation may lead to an accumulation of carbon (C) in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Plantation forest carbon budget models often omit mineral soil C changes from stand-level C budget calculations, while including forest floor C accumulation, or predict continuous soil C increases over several rotations. We used national soil C databases to quantify differences in soil C content between pasture and exotic pine forest plantations dominated by P. radiata (D. Don), and paired site studies to quantify changes in soil C with conversion of pasture to plantation forest in New Zealand. Overall, mineral soil C to 0.10 m was 20 40% lower under pine for all soil types (p<0.01) except soils with high clay activity (HCA), where there was no difference. Similar trends were observed in the 0.1 0.3 m layer. Moreover, mineral soil C to 0.1 m was 17 40% lower under pine than pasture in side-by-side comparisons. The only non-significant difference occurred at a site located on a HCA soil (p=0.08). When averaged across the site studies and the national databases, the difference in soil C between pasture and pine was about 16 t C ha-1on non-HCA soils. This is similar to forest floor C averaged across our individual sites (about 20 t C ha-1). The decrease in mineral soil C could result in about a 15% reduction in the average C sequestration potential (112 t C ha-1) when pasture is converted to exotic plantation forest on non-HCA soils. The relative importance of this change in mineral soil C will likely vary depending on the productivity potential of a site and harvest impacts on the forest floor C pool. Our results emphasize that changes in soil C should be included in any calculations of C sequestration attributed to plantation forestry.

  20. Inherent agricultural constraints in Allegheny Plateau soils

    USDA-ARS?s Scientific Manuscript database

    World population increases demand increased agricultural production. This can be accomplished through improved cultivars and production techniques or increased use of previously marginal agricultural regions. In the Allegheny Plateau (AP) region of the Appalachian Mountains, acid soils with toxic ...

  1. N2O fluxes at the soil-atmosphere interface in various ecosystems and the global N2O budget

    NASA Technical Reports Server (NTRS)

    Banin, Amos

    1987-01-01

    The overall purpose of this research task is to study the effects of soil properties and ecosystem variables on N2O exchanges at the soil-atmosphere interface, and to assess their effects on the globle N2O budget. Experimental procedures are implemented in various sites to measure the source/sink relations of N2O at the soil-atmosphere interface over prolonged periods of time as part of the research of biogeochemical cycling in terrestrial ecosystems. A data-base for establishing quantitative correlations between N2O fluxes and soil and environmental parameters that are of potential use for remote sensing, is being developed.

  2. Fire-induced water-repellent soils, an annotated bibliography

    USGS Publications Warehouse

    Kalendovsky, M.A.; Cannon, S.H.

    1997-01-01

    The development and nature of water-repellent, or hydrophobic, soils are important issues in evaluating hillslope response to fire. The following annotated bibliography was compiled to consolidate existing published research on the topic. Emphasis was placed on the types, causes, effects and measurement techniques of water repellency, particularly with respect to wildfires and prescribed burns. Each annotation includes a general summary of the respective publication, as well as highlights of interest to this focus. Although some references on the development of water repellency without fires, the chemistry of hydrophobic substances, and remediation of water-repellent conditions are included, coverage of these topics is not intended to be comprehensive. To develop this database, the GeoRef, Agricola, and Water Resources Abstracts databases were searched for appropriate references, and the bibliographies of each reference were then reviewed for additional entries. Additional references will be added to this bibliography as they become available. The annotated bibliography can be accessed on the Web at http://geohazards.cr.usgs.gov/html_files/landslides/ofr97-720/biblio.html. A database consisting of the references and keywords is available through a link at the above address. This database was compiled using EndNote2 plus software by Niles and Associates, and is necessary to search the database.

  3. Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments

    NASA Astrophysics Data System (ADS)

    Karam, Lina J.; Zhu, Tong

    2015-03-01

    The varying quality of face images is an important challenge that limits the effectiveness of face recognition technology when applied in real-world applications. Existing face image databases do not consider the effect of distortions that commonly occur in real-world environments. This database (QLFW) represents an initial attempt to provide a set of labeled face images spanning the wide range of quality, from no perceived impairment to strong perceived impairment for face detection and face recognition applications. Types of impairment include JPEG2000 compression, JPEG compression, additive white noise, Gaussian blur and contrast change. Subjective experiments are conducted to assess the perceived visual quality of faces under different levels and types of distortions and also to assess the human recognition performance under the considered distortions. One goal of this work is to enable automated performance evaluation of face recognition technologies in the presence of different types and levels of visual distortions. This will consequently enable the development of face recognition systems that can operate reliably on real-world visual content in the presence of real-world visual distortions. Another goal is to enable the development and assessment of visual quality metrics for face images and for face detection and recognition applications.

  4. Impacts of wildfire severity on hydraulic conductivity in forest, woodland, and grassland soils (Chapter 7)

    Treesearch

    Daniel G. Neary

    2011-01-01

    Forest, woodland, and grassland watersheds throughout the world are major sources of high quality water for human use because of the nature of these soils to infiltrate, store, and transmit most precipitation instead of quickly routing it to surface runoff. This characteristic of these wildland soils is due to normally high infiltration rates, porosities, and hydraulic...

  5. QUANTIFYING THE ORGANIC CARBON HELD IN FORESTED SOILS OF THE UNITED STATES AND PUERTO RICO

    EPA Science Inventory

    It is well known that soils are an important global reservoir of organic carbon (C). In fact, it has been estimated that at 1500 Pg (1Pg = 1015 g) world soils hold approximately three times the amount of C held in vegetation (~560 Pg) and two times that in the atmosphere (~735 P...

  6. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  7. Facilitating Collaboration, Knowledge Construction and Communication with Web-Enabled Databases.

    ERIC Educational Resources Information Center

    McNeil, Sara G.; Robin, Bernard R.

    This paper presents an overview of World Wide Web-enabled databases that dynamically generate Web materials and focuses on the use of this technology to support collaboration, knowledge construction, and communication. Database applications have been used in classrooms to support learning activities for over a decade, but, although business and…

  8. FirstSearch and NetFirst--Web and Dial-up Access: Plus Ca Change, Plus C'est la Meme Chose?

    ERIC Educational Resources Information Center

    Koehler, Wallace; Mincey, Danielle

    1996-01-01

    Compares and evaluates the differences between OCLC's dial-up and World Wide Web FirstSearch access methods and their interfaces with the underlying databases. Also examines NetFirst, OCLC's new Internet catalog, the only Internet tracking database from a "traditional" database service. (Author/PEN)

  9. Tao of Gateway: Providing Internet Access to Licensed Databases.

    ERIC Educational Resources Information Center

    McClellan, Gregory A.; Garrison, William V.

    1997-01-01

    Illustrates an approach for providing networked access to licensed databases over the Internet by positioning the library between patron and vendor. Describes how the gateway systems and database connection servers work and discusses how treatment of security has evolved with the introduction of the World Wide Web. Outlines plans to reimplement…

  10. A Database Design and Development Case: NanoTEK Networks

    ERIC Educational Resources Information Center

    Ballenger, Robert M.

    2010-01-01

    This case provides a real-world project-oriented case study for students enrolled in a management information systems, database management, or systems analysis and design course in which database design and development are taught. The case consists of a business scenario to provide background information and details of the unique operating…

  11. The response of soil CO2 fluxes to progressively excluding vertebrate and invertebrate herbivores depends on ecosystem type

    Treesearch

    Anita C. Risch; Alan G. Haynes; Matt D. Busse; Flurin Filli; Martin Schütz

    2013-01-01

    Grasslands support large populations of herbivores and store up to 30% of the world’s soil carbon (C). Thus, herbivores likely play an important role in the global C cycle. However, most studies on how herbivory impacts the largest source of C released from grassland soils—soil carbon dioxide (CO2) emissions—only considered the role of large...

  12. The Sand Land Soil System and Society

    NASA Astrophysics Data System (ADS)

    Mahjoory, R. A.

    Worldwide arid soils such as Latterites from African Savannas to the Xeralfs and Xererts of the Mediterranean Basin Ortents and Orthids of Asian Deserts are uniquely different in their strategic roles for utilizing the land in places where a delicate balance between annual climatic cycles and general trends toward desertification predominate Arid lands cover 1 3 of global land surface and contain irreplaceable natural resources with potential productivity of meeting the demands of more than two billion people and serving as sources and sinks of atmospheric CO2 to combat global warming The soil system in these arid areas are being degraded underutilized and kept in a stage of obliviousness due to inadequate public literacy and most importantly in-sufficient scientific evaluations based on pedology and soil taxonomy standards Implementation of food security projects and sustainable development programs on randomly selected sites and assessment of land degradation worldwide by powerful computers and satellite imagery techniques without field work and identification of Representative Soil Units are data producing and grant attracting but counter productive We live in a world in which there is an order out there and things are precisely measured and categorized for efficient utilization Why not the soils mainly in arid areas How we could generalize the world of soils under our feet by concept of soils are the same Expansion of educational programs quantification of multiple ecosystems within the arid regions through detailed and correlated

  13. Comparing Global Influence: China’s and U.S. Diplomacy, Foreign Aid, Trade, and Investment in the Developing World

    DTIC Science & Technology

    2008-08-15

    from 2006-2010 and about 7.4% for Source: United Nations, COMTRADE Database . 95 96 97 98 99 2000 1 2 3 4 5 6 7 Year 0 500 1000 1500 2000 2500 3000...49 Source: United Nations, COMTRADE Database . 95 96 97 98 99 2000 1 2 3 4 5 6 7 Year 0 200 400 600 800 1000 1200 1400 $Billion China Exports 149 151...U.S. and China’s Exports of Goods to the World Source: United Nations, COMTRADE Database . 95 96 97 98 99 2000 1 2 3 4 5 6 7 Year 0 500 1000 1500

  14. Study on a pattern classification method of soil quality based on simplified learning sample dataset

    USGS Publications Warehouse

    Zhang, Jiahua; Liu, S.; Hu, Y.; Tian, Y.

    2011-01-01

    Based on the massive soil information in current soil quality grade evaluation, this paper constructed an intelligent classification approach of soil quality grade depending on classical sampling techniques and disordered multiclassification Logistic regression model. As a case study to determine the learning sample capacity under certain confidence level and estimation accuracy, and use c-means algorithm to automatically extract the simplified learning sample dataset from the cultivated soil quality grade evaluation database for the study area, Long chuan county in Guangdong province, a disordered Logistic classifier model was then built and the calculation analysis steps of soil quality grade intelligent classification were given. The result indicated that the soil quality grade can be effectively learned and predicted by the extracted simplified dataset through this method, which changed the traditional method for soil quality grade evaluation. ?? 2011 IEEE.

  15. Osteoporosis therapies: evidence from health-care databases and observational population studies.

    PubMed

    Silverman, Stuart L

    2010-11-01

    Osteoporosis is a well-recognized disease with severe consequences if left untreated. Randomized controlled trials are the most rigorous method for determining the efficacy and safety of therapies. Nevertheless, randomized controlled trials underrepresent the real-world patient population and are costly in both time and money. Modern technology has enabled researchers to use information gathered from large health-care or medical-claims databases to assess the practical utilization of available therapies in appropriate patients. Observational database studies lack randomization but, if carefully designed and successfully completed, can provide valuable information that complements results obtained from randomized controlled trials and extends our knowledge to real-world clinical patients. Randomized controlled trials comparing fracture outcomes among osteoporosis therapies are difficult to perform. In this regard, large observational database studies could be useful in identifying clinically important differences among therapeutic options. Database studies can also provide important information with regard to osteoporosis prevalence, health economics, and compliance and persistence with treatment. This article describes the strengths and limitations of both randomized controlled trials and observational database studies, discusses considerations for observational study design, and reviews a wealth of information generated by database studies in the field of osteoporosis.

  16. Clear-water abutment and contraction scour in the Coastal Plain and Piedmont Provinces of South Carolina, 1996-99

    USGS Publications Warehouse

    Benedict, Stephen T.

    2016-01-01

    Data from this study have been compiled into a database that includes photographs, figures, observed scour depths, theoretical scour depths, limited basin characteristics, limited soil data, and theoretical hydraulic data. The database can be used to compare studied sites with unstudied sites to assess the potential for scour at the unstudied sites. In addition, the database can be used to assess the performance of various theoretical methods for predicting clear-water abutment and contraction scour.

  17. Global land information system (GLIS) access to worldwide Landsat data

    USGS Publications Warehouse

    Smith, Timothy B.; Goodale, Katherine L.

    1993-01-01

    The Landsat Technical Working Group (LTWG) and the Landsat Ground Station Operations Working Group (LGSOWG) have encouraged Landsat receiving stations around the world to share information about their data holdings through the exchange of metadata records. Receiving stations forward their metadata records to the U.S. Geological Survey's EROS Data Center (EDC) on a quarterly basis. The EDC maintains the records for each station, coordinates changes to the database, and provides metadata to the stations as requested. The result is a comprehensive international database listing most of the world's Landsat data acquisitions This exchange of information began in the early 1980's with the inclusion in the EDC database os scenes acquired by a receiving station in Italy. Through the years other stations have agreed to participate; currently ten of the seventeen stations actively share their metadata records. Coverage maps have been generated to depict the status of the database. The Worldwide Landsat database is also available though the Global Land Information System (GLIS).

  18. COREMIC: a web-tool to search for a niche associated CORE MICrobiome.

    PubMed

    Rodrigues, Richard R; Rodgers, Nyle C; Wu, Xiaowei; Williams, Mark A

    2018-01-01

    Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool "COREMIC" meets a great need in the search for understanding niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly statistically robust web-tool (http://coremic2.appspot.com or http://core-mic.com), developed using Google App Engine, to help in the process of database mining to identify the "core microbiome" associated with a given habitat. A case study is presented using data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass microbiome. Even across a diverse set of soils (five environments), and conservative statistical criteria (presence in more than 90% samples and FDR q -val <0.05% for Fisher's exact test) a core set of bacteria associated with switchgrass was observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp , and Chitinophagaceae . These bacteria have been shown to have functions related to the production of bacterial and fungal antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using currently available databases and a unique freely available software.

  19. COREMIC: a web-tool to search for a niche associated CORE MICrobiome

    PubMed Central

    Rodgers, Nyle C.; Wu, Xiaowei; Williams, Mark A.

    2018-01-01

    Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool “COREMIC” meets a great need in the search for understanding niche partitioning and habitat-function relationships. The work is unique, furthermore, because it provides a user-friendly statistically robust web-tool (http://coremic2.appspot.com or http://core-mic.com), developed using Google App Engine, to help in the process of database mining to identify the “core microbiome” associated with a given habitat. A case study is presented using data from 31 switchgrass rhizosphere community habitats across a diverse set of soil and sampling environments. The methodology utilizes an outgroup of 28 non-switchgrass (other grasses and forbs) to identify a core switchgrass microbiome. Even across a diverse set of soils (five environments), and conservative statistical criteria (presence in more than 90% samples and FDR q-val <0.05% for Fisher’s exact test) a core set of bacteria associated with switchgrass was observed. These included, among others, closely related taxa from Lysobacter spp., Mesorhizobium spp, and Chitinophagaceae. These bacteria have been shown to have functions related to the production of bacterial and fungal antibiotics and plant growth promotion. COREMIC can be used as a hypothesis generating or confirmatory tool that shows great potential for identifying taxa that may be important to the functioning of a habitat (e.g. host plant). The case study, in conclusion, shows that COREMIC can identify key habitat-specific microbes across diverse samples, using currently available databases and a unique freely available software. PMID:29473009

  20. Vanishing Croplands.

    ERIC Educational Resources Information Center

    Brown, Lester R.

    1978-01-01

    Natural soil fertility is now declining on an estimated one-fifth of the world's croplands. Direct evidence of the mounting pressures on the global cropland base is seen in accelerating soil erosion, the spread of deserts, and the loss of cropland to nonfarm uses. (Author/BB)

  1. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    PubMed

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  3. Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status

    NASA Astrophysics Data System (ADS)

    Kvakić, Marko; Pellerin, Sylvain; Ciais, Philippe; Achat, David L.; Augusto, Laurent; Denoroy, Pascal; Gerber, James S.; Goll, Daniel; Mollier, Alain; Mueller, Nathaniel D.; Wang, Xuhui; Ringeval, Bruno

    2018-01-01

    Phosphorus (P) is an essential element for plant growth. Low P availability in soils is likely to limit crop yields in many parts of the world, but this effect has never been quantified at the global scale by process-based models. Here we attempt to estimate P limitation in three major cereals worldwide for the year 2000 by combining information on soil P distribution in croplands and a generic crop model, while accounting for the nature of soil-plant P transport. As a global average, the diffusion-limited soil P supply meets the crop's P demand corresponding to the climatic yield potential, due to the legacy soil P in highly fertilized areas. However, when focusing on the spatial distribution of P supply versus demand, we found strong limitation in regions like North and South America, Africa, and Eastern Europe. Averaged over grid cells where P supply is lower than demand, the global yield gap due to soil P is estimated at 22, 55, and 26% in winter wheat, maize, and rice. Assuming that a fraction (20%) of the annual P applied in fertilizers is directly available to the plant, the global P yield gap lowers by only 5-10%, underlying the importance of the existing soil P supply in sustaining crop yields. The study offers a base for exploring P limitation in crops worldwide but with certain limitations remaining. These could be better accounted for by describing the agricultural P cycle with a fully coupled and mechanistic soil-crop model.

  4. Testing the Hole-in-the-Pipe Model of nitric and nitrous oxide emissions from soils using the TRAGNET Database

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Verchot, Louis V.

    2000-12-01

    Because several soil properties and processes affect emissions of nitric oxide (NO) and nitrous oxide (N2O) from soils, it has been difficult to develop effective and robust algorithms to predict emissions of these gases in biogeochemical models. The conceptual "hole-in-the-pipe" (HIP) model has been used effectively to interpret results of numerous studies, but the ranges of climatic conditions and soil properties are often relatively narrow for each individual study. The Trace Gas Network (TRAGNET) database offers a unique opportunity to test the validity of one manifestation of the HIP model across a broad range of sites, including temperate and tropical climates, grasslands and forests, and native vegetation and agricultural crops. The logarithm of the sum of NO + N2O emissions was positively and significantly correlated with the logarithm of the sum of extractable soil NH4+ + NO3-. The logarithm of the ratio of NO:N2O emissions was negatively and significantly correlated with water-filled pore space (WFPS). These analyses confirm the applicability of the HIP model concept, that indices of soil N availability correlate with the sum of NO+N2O emissions, while soil water content is a strong and robust controller of the ratio of NO:N2O emissions. However, these parameterizations have only broad-brush accuracy because of unaccounted variation among studies in the soil depths where gas production occurs, where soil N and water are measured, and other factors. Although accurate predictions at individual sites may still require site-specific parameterization of these empirical functions, the parameterizations presented here, particularly the one for WFPS, may be appropriate for global biogeochemical modeling. Moreover, this integration of data sets demonstrates the broad ranging applicability of the HIP conceptual approach for understanding soil emissions of NO and N2O.

  5. U.S. Geological Survey mineral databases; MRDS and MAS/MILS

    USGS Publications Warehouse

    McFaul, E.J.; Mason, G.T.; Ferguson, W.B.; Lipin, B.R.

    2000-01-01

    These two CD-ROM's contain the latest version of the Mineral Resources Data System (MRDS) database and the Minerals Availability System/Minerals Industry Location System (MAS/MILS) database for coverage of North America and the world outside North America. The records in the MRDS database each contain almost 200 data fields describing metallic and nonmetallic mineral resources, deposits, and commodities. The records in the MAS/MILS database each contain almost 100 data fields describing mines and mineral processing plans.

  6. Hydrometeorological database for Hubbard Brook Experimental Forest: 1955-2000

    Treesearch

    Amey Schenck Bailey; James W. Hornbeck; John L. Campbell; Christopher Eagar

    2003-01-01

    The 3,160-ha Hubbard Brook Experimental Forest (HBEF) in New Hampshire has been a prime area of research on forest and stream ecosystems since its establishment by the USDA Forest Service in 1955. Streamflow and precipitation have been measured continuously on the HBEF, and long-term datasets exist for air and soil temperature, snow cover, soil frost, solar radiation,...

  7. A national framework for monitoring and reporting on environmental sustainability in Canada.

    PubMed

    Marshall, I B; Scott Smith, C A; Selby, C J

    1996-01-01

    In 1991, a collaborative project to revise the terrestrial component of a national ecological framework was undertaken with a wide range of stakeholders. This spatial framework consists of multiple, nested levels of ecological generalization with linkages to existing federal and provincial scientific databases. The broadest level of generalization is the ecozone. Macroclimate, major vegetation types and subcontinental scale physiographic formations constitute the definitive components of these major ecosystems. Ecozones are subdivided into approximately 200 ecoregions which are based on properties like regional physiography, surficial geology, climate, vegetation, soil, water and fauna. The ecozone and ecoregion levels of the framework have been depicted on a national map coverage at 1:7 500 000 scale. Ecoregions have been subdivided into ecodistricts based primarily on landform, parent material, topography, soils, waterbodies and vegetation at a scale (1:2 000 000) useful for environmental resource management, monitoring and modelling activities. Nested within the ecodistricts are the polygons that make up the Soil Landscapes of Canada series of 1:1 000 000 scale soil maps. The framework is supported by an ARC-INFO GIS at Agriculture Canada. The data model allows linkage to associated databases on climate, land use and socio-economic attributes.

  8. Soil color - a window for public and educators to understands soils

    NASA Astrophysics Data System (ADS)

    Libohova, Zamir; Beaudette, Dylan; Wills, Skye; Monger, Curtis; Lindbo, David

    2017-04-01

    Soil color is one of the most visually striking properties recorded by soil scientists around the world. Soil color is an important characteristic related to soil properties such organic matter, parent materials, drainage. It is a simplified way for the public and educators alike to understand soils and their functions. Soil color is a quick measurement that can be recorded by people using color charts or digital cameras, offering an opportunity for the citizen science projects to contribute to soil science. The US Soil Survey has recorded soil colors using Munsell color system for over 20,000 soil types representing a wide range of conditions throughout the Unites States. The objective of this research was to generate a US soil color map based on color descriptions from the Official Series Descriptions (OSDs). A color calculator developed in R and ArcMap were used to spatially display the soil colors. Soil colors showed vertical trends related to soil depth and horizontal trends related to parent material and climate. Soil colors represent development processes depending upon environment and time that have influenced their appearance and geographic distribution. Dark colors represent soils that are rich in organic matter, such as the soils of the Midwest USA, which are some of the most fertile soils in the world. These soils are relatively "young" in that they developed over the last 20,000 years in materials left behind after continental Glaciers retreated and reflect long- term prairie vegetation that dominated this area prior to European settlements. Dark soils of the Pacific Northwest reflect the influence of forests (and volcanic activity) but are shallower and less fertile than the deep dark Midwest soils. Soils of the eastern and southern Coastal Plains are older and are enriched with iron oxides ('rust') which gives them their red coloring. Soils of flood plains, like the broad Mississippi Valley, have multi-colored soils that reflect the process of flooding, scouring, depositions and standing water areas, providing a mosaic of process-driven colors. In the drier areas of the High Plains and Desert Southwest, soils are lighter in color and reflect the presence of sands like Nebraska Sand Hills or enrichment with light-colored carbonates and salts. The mountainous regions such as Appalachians, Ozarks etc., were predominantly red to brown due to higher clay content and older soils.

  9. Science Across the World in Teacher Training

    ERIC Educational Resources Information Center

    Schoen, Lida; Weishet, Egbert; Kennedy, Declan

    2007-01-01

    Science Across the World is an exchange programme between schools world-wide. It has two main components: existing resources for students (age 6-10) and a database with all participating schools. The programme exists since 1990. It is carried out in partnership with the British Association of Science Education (ASE) and international…

  10. Dust and chemical erosion biases in cosmogenic nuclide studies: A factor-of-ten problem that could mask strong climatic effects on landscape evolution

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Arvin, L.; Ferrier, K.; Aciego, S.

    2017-12-01

    Cosmogenic nuclides have been widely used to quantify erosion in mountain ranges around the world, creating a global database of erosion rates from climatically and lithologically diverse sites, and providing vital clues about how mountain landscape evolution is coupled to Earth's carbon cycle and thus global climate change over geologic timescales. Despite this wealth of data, few studies have observed the widely expected strong control of erosion rates by climatic factors such as precipitation and temperature. Here we show that cosmogenic nuclide studies are prone to biases due to dust deposition and chemical erosion, which together can obscure strong relationships between climate and erosion rates. Erosion rates of sites exposed to intense chemical weathering can be underestimated by two-fold due to chemical enrichment of the cosmogenic target mineral quartz — a result of its high chemical erosion resistance, which increases its residence time and thus reduces its apparent erosion rate compared to other soil minerals. Meanwhile, erosion rates of sites with rapid dust deposition can be overestimated by more than ten-fold, due to dust's contributions to soil mass and target mineral abundance. Compilations of dust fluxes and cosmogenic nuclide data suggest that steep climatic trends in erosion rates, ranging from slow erosion rates in dry settings to twenty-fold faster erosion rates in wet settings, could be largely masked by the combined effects of dust deposition and chemical erosion. We argue that these effects need to be quantified in many cosmogenic nuclide studies of erosion rates. Doing so will require dust input rates; soil depth and density; quartz-enrichment ratios in both saprolite relative to bedrock and soil relative to saprolite; and quartz concentrations in deposited dust. Failure to quantify these crucial parameters can lead to misinterpretation of the strength — and even the sign — of feedbacks between climate and erosion rates in mountain landscapes.

  11. Research progress on expansive soil cracks under changing environment.

    PubMed

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  12. Representation of micrometeorological and physiological parameters with numerical models influencing the vineyard ecosystem: the case of Piemonte (Italy).

    NASA Astrophysics Data System (ADS)

    Andreoli, Valentina; Cassardo, Claudio; Cavalletto, Silvia; Ferrarese, Silvia; Guidoni, Silvia; Mania, Elena; Spanna, Federico

    2017-04-01

    Grapevine represents worldwide key economic activities, with Europe representing the largest vineyard area in the world (38%). This is also true both for Italy and for its Piemonte region, in which famous and renowned wines (such as Barolo and Barbaresco) are produced. Grapevine productivity depends on several factors including soil fertility, management practices, climate and meteorology. In particular, concerning the latter, there is a need for a reliable assessment of the effects of a changing climate on its yield and quality. However, in this respect, it is essential to understand how and how much climate and meteorology affect grape productivity and quality, since only few studies related to few regions in the world have been produced. In this context, crop models are essential tools for investigating the effects of climate change on crop development and growth via the integration of existing knowledge of crop physiology relating to changing environmental conditions. Nevertheless, crop models were developed and applied mainly for studying the responses to climate change of annual crops (e.g. cereals); whilst appropriate crop models and application of these are still limited for tree crops such as grapevine. The rationale of the study, included in the MACSUR2 JPI FACCE project, is to use the third generation land surface model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) [1], in order to evaluate all components of hydrological and energy budget, as well as soil and canopy parameters, on a specific subset of land use, the vineyards. A preliminary step of this work has been to compare the datasets resulted from the calculations made by the UTOPIA and some experimental datasets acquired within vineyards by our team in the past experiments. The reason for such control is to ensure that UTOPIA outputs could be considered as sufficiently representative of the climatology of vineyards. Thus, some Piedmontese vineyards were selected, each one characterized by same climatic but different microclimatic conditions, in which measurements of a wide number of variables were performed in the vegetative seasons (such as in the experiment MASGRAPE). Subsequently, in this study, the results of additional simulations performed using the freely available global database GLDAS (Global Land Data Assimilation System) were compared with those of the simulations driven by observations, in order to check if the model was still able to reproduce the microclimatic characteristics of the vineyards. This preliminary part of the study gave satisfactory results; thus, we could pass to the phase two of the project. In this phase, using GLDAS database, long term simulations will be carried out with the UTOPIA in order to have output data available on a period of climatic interest (30 years or more). This database could be used in order to perform climatic statistics and assess possible trends in some parameters, eventually to be correlated with grape production. In the talk, the preliminary aspects of this work will be illustrated.

  13. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China

    USDA-ARS?s Scientific Manuscript database

    Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It...

  14. Estimating COCOM Natural Background Dormancy

    DTIC Science & Technology

    2015-04-01

    Goode and Espenshade 1953). Maps from Goode’s World Atlas included natural vegetation, agricultural regions, and soils . Clark University provided...and shallow, high mountain soils (Chambers 1967). The vertical stripes indi- cate a probability of more than two weeks of snow cover during the month...needle-leaf evergreen and deciduous trees during dormant or dry season, and desert alluvial deposits, sand, and thin mountain soils 6 Needle-leaf

  15. Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    NASA Technical Reports Server (NTRS)

    Bolten, John; Crow, Wade

    2012-01-01

    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.

  16. Patent Family Databases.

    ERIC Educational Resources Information Center

    Simmons, Edlyn S.

    1985-01-01

    Reports on retrieval of patent information online and includes definition of patent family, basic and equivalent patents, "parents and children" applications, designated states, patent family databases--International Patent Documentation Center, World Patents Index, APIPAT (American Petroleum Institute), CLAIMS (IFI/Plenum). A table…

  17. Checklist of the micro- and anophthalmic soil-dwelling weevils of the world (Coleoptera: Curculionidae).

    PubMed

    Morrone, Juan J; Hlaváč, Peter

    2017-03-08

    A checklist of the soil-dwelling microphthalmic and anophthalmic weevils of the world is presented. A total of 485 species in 85 genera are recognised, distributed over eight subfamilies and 26 tribes. The subfamilies are arranged in the currently accepted phylogenetic sequence, whereas the tribes, genera and species are listed in alphabetical order. For each species, the type locality and the geographical distribution by country is provided. Particularly diversified taxa are Entiminae: Otiorhynchini (125 species), Brachycerinae: Raymondionymini (90 species), Cossoninae: Dryotribini (59 species), Cryptorhynchinae: Torneumatini (58 species) and Molytinae: Lymantini (39 species). The biogeographic region with the highest diversity of soil-dwelling weevils is the Palearctic, especially the circum-Mediterranean area, mostly because of the exploration effort that it has received, followed by the Ethiopian and Neotropical regions.

  18. Global Ground Motion Prediction Equations Program | Just another WordPress

    Science.gov Websites

    Motion Task 2: Compile and Critically Review GMPEs Task 3: Select or Derive a Global Set of GMPEs Task 6 : Design the Specifications to Compile a Global Database of Soil Classification Task 5: Build a Database of Update on PEER's Global GMPEs Project from recent workshop in Turkey Posted on June 11, 2012 During May

  19. Get immersed in the Soil Sciences: the first community of avatars in the EGU Assembly 2015!

    NASA Astrophysics Data System (ADS)

    Castillo, Sebastian; Alarcón, Purificación; Beato, Mamen; Emilio Guerrero, José; José Martínez, Juan; Pérez, Cristina; Ortiz, Leovigilda; Taguas, Encarnación V.

    2015-04-01

    Virtual reality and immersive worlds refer to artificial computer-generated environments, with which users act and interact as in a known environment by the use of figurative virtual individuals (avatars). Virtual environments will be the technology of the early twenty-first century that will most dramatically change the way we live, particularly in the areas of training and education, product development and entertainment (Schmorrow, 2009). The usefulness of immersive worlds has been proved in different fields. They reduce geographic and social barriers between different stakeholders and create virtual social spaces which can positively impact learning and discussion outcomes (Lorenzo et al. 2012). In this work we present a series of interactive meetings in a virtual building to celebrate the International Year of Soil to promote the importance of soil functions and its conservation. In a virtual room, the avatars of different senior researchers will meet young scientist avatars to talk about: 1) what remains to be done in Soil Sciences; 2) which are their main current limitations and difficulties and 3) which are the future hot research lines. The interactive participation does not require physically attend to the EGU Assembly 2015. In addition, this virtual building inspired in Soil Sciences can be completed with different teaching resources from different locations around the world and it will be used to improve the learning of Soil Sciences in a multicultural context. REFERENCES: Lorenzo C.M., Sicilia, M.A., Sánchez S. 2012. Studying the effectiveness of multi-user immersive environments for collaborative evaluation tasks. Computers & Education 59 (2012) 1361-1376 Schmorrow D.D. 2009. "Why virtual?" Theoretical Issues in Ergonomics Science 10(3): 279-282.

  20. The Importance of CO2 Utilizing Chemolithoautotrophic Microorganisms for Carbon Sequestration and Isotope Signatures of SOM in Tropical Rainforest Soils

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Behrendt, T.; Quesada, B.; Yanez Serrano, A. M.; Trumbore, S.

    2015-12-01

    Soil organic matter (SOM) is a major compartment of the tropical carbon cycle with up to 26 % of global carbon stocks stored in tropical soils. Understanding factors and processes driving SOM dynamics under changing climate conditions is crucial for predicting the role of tropical forest ecosystems to act as a carbon sink or source. Soil microorganisms are major drivers of the belowground carbon cycle by releasing CO2 by soil respiration but also by stabilizing and storing SOM, as indicated by recent research. Our investigations focus on chemolithoautotrophic microorganisms, a group that relies on CO2 as their carbon source. Chemolithoautotrophic microorganisms have been shown to be highly abundant in soils, whereas their role in SOM sequestration is still poorly understood. In tropical soils, the activity of chemolithoautotropic microbes might be important for generating and stabilizing carbon, especially in the deeper soil, which is rich in CO2 and reduced energy sources like Fe2+. They further might impact carbon isotope signatures (13C and 14C) of SOM, because of enzymatic fractionation during carboxylation and the use of carbon, which has a distinct isotopic composition than other carbon sources at the same depth. In order to study the activity of chemolithoautotropic microbes and their importance for SOM, we conducted isotope and isotope-labelling studies, gas measurements as well as molecular analyses at soils from the Atto site from 0 to 1 meter depth. These soils are classified as Ferralsols and Alisols and represent the most abundant soil types in the Amazon. With this we will be able to gain knowledge about the function and identity of an important group of microorganisms and their contribution to crucial biogeochemical cycles in the world`s most important ecosystem.

  1. How Population Growth and Land-Use Change Increased Fluvial Dissolved Organic Carbon Fluxes over 130 Years in the Thames Basin (UK)

    NASA Astrophysics Data System (ADS)

    Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.; Burt, T. P.

    2015-12-01

    This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.

  2. Biodiversity of nematofauna of oilseed rape (Brassica napus L.).

    PubMed

    Manachini, B; Landi, S; Tomasini, V

    2005-01-01

    Few data is available on the nematodes found in Brassicaceae, except for the most important plant parasite. However, studying the structure of nematofauna could be an important database for the soil quality and in order to assess the effects of future disturbance. This is particularly important considering that the diffusion of the canola crop in the world is increasing because of its use as a bio-diesel. Very diffused is also the Bt variety of oil seed rape, and, in this case, the study of the impact on the soil health and on bio-diversity is essential. In this research we have analyzed the nematode community, used as a bio-indicator of the soil condition. The nematofauna found in canola (Brassica napus var. oleifera) fields located in Southern Italy (Metaponto - MT) was investigated. The nematode community was studied considering its abundance, genus composition and trophic structure. Maturity and biodiversity indices were also calculated. A total of 5286 nematodes were extracted. They belong to 14 families and 24 genera. Bacterial and fungal feeders, 50.18% and 42.90% of the total respectively, dominated the trophic structure. Aphelencus is the most abundant genus (23.71%) followed by Acrobeloides (20.49%) and Aphelencoides (19.18%). Among plant feeders (6.59%), Pratylenchus is the dominant genus (2.20%) and Tylenchidae the main family (3.54%). No infestation of Meloidogyne, Heterodera or Naboccus, important plant-parasitic nematodes of canola crops, was recorded. Other important phytophagous were Helycotylenchus (0.5%), Trichotylenchus (0.5%) and Filenchus (0.9%). All of them had an abundance level below injury level. The indices of biodiversity are rather low (H'=0.93, J'=0.67), as is typical for agro ecosystems. However, the nematofauna community is quite well structured (N2=6.31, D=0.16) and the maturity index rather high (EMI=1.94). These values demonstrate that oilseed rape has a lower impact on the soil compared to other crop systems and that it could be taken into consideration for crop rotation programs. Canola could follow other more stressful crops, trying to maintain soil equilibrium.

  3. Distribution of soil organic carbon in the conterminous United States

    USGS Publications Warehouse

    Bliss, Norman B.; Waltman, Sharon; West, Larry T.; Neale, Anne; Mehaffey, Megan; Hartemink, Alfred E.; McSweeney, Kevin M.

    2014-01-01

    The U.S. Soil Survey Geographic (SSURGO) database provides detailed soil mapping for most of the conterminous United States (CONUS). These data have been used to formulate estimates of soil carbon stocks, and have been useful for environmental models, including plant productivity models, hydrologic models, and ecological models for studies of greenhouse gas exchange. The data were compiled by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) from 1:24,000-scale or 1:12,000-scale maps. It was found that the total soil organic carbon stock in CONUS to 1 m depth is 57 Pg C and for the total profile is 73 Pg C, as estimated from SSURGO with data gaps filled from the 1:250,000-scale Digital General Soil Map. We explore the non-linear distribution of soil carbon on the landscape and with depth in the soil, and the implications for sampling strategies that result from the observed soil carbon variability.

  4. Leaching potential of chlorpyrifos in an Andisol and Entisol: adsorption-desorption and degradation studies

    NASA Astrophysics Data System (ADS)

    Mosquera-Vivas, Carmen; Walther Hansen, Eddy; Garcia-Santos, Glenda; Obregón-Neira, Nelson; Celis-Ossa, Raul Ernesto; González-Murillo, Carlos Alberto; Juraske, Ronnie; Hellweg, Stefanie; Guerrero-Dallos, Jairo Arturo

    2017-04-01

    Ecological status of tropical soils like high OC content and microbial activity plays a key role to reduce the leaching of insecticide chlorpyrifos through the soil profile and therefore into groundwater. We found that chlorpyrifos has "transitional" leaching potential (GUS values varied between 1.8 and 2.5) throughout the soil depth, which differs from the "nonleacher" classification for temperate soils as based on surface level t1/2 and Koc values from international databases. These findings provide strong evidence of the importance of estimating the transport parameters and insecticide concentrations in different soil layers, especially when the amount and type of OC content vary throughout the soil profile. We got to such conclusions after studying the soil profile structural composition of soil organic matter and the adsorption/desorption characteristics of the insecticide in two different soil profiles (Andisol and Entisol) under agriculture production using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and batch analysis methods.

  5. Gemas: issues from the comparison of aqua regia and X-ray fluorescence results

    NASA Astrophysics Data System (ADS)

    Dinelli, Enrico; Birke, Manfred; Reimann, Clemens; Demetriades, Alecos; DeVivo, Benedetto; Flight, Dee; Ladenberger, Anna; Albanese, Stefano; Cicchella, Domenico; Lima, Annamaria

    2014-05-01

    The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the The comparison of analytical results from aqua regia (AR) and X-ray fluorescence spectroscopy (XRF) can provide information on soil processes controlling the element distribution in soil. The GEMAS (GEochemical Mapping of Agricultural and grazing land Soils) agricultural soil database, consisting of 2 x ca. 2100 samples spread evenly over 33 European countries, is used for this comparison. Analyses for the same suite of elements and parameters were carried out in the same laboratory under strict quality control procedures. Sample preparation has been conducted at the laboratory of the Geological Survey of the Slovak Republic, AR analyses were carried out at ACME Labs, and XRF analyses at the Federal Institute for Geosciences and Natural Resources, Germany Element recovery by AR is very different, ranging from <1% (e.g. Na, Zr) to > 80% (e.g. Mn, P, Co). Recovery is controlled by mineralogy of the parent material, but geographic and climatic factors and the weathering history of the soils are also important. Nonetheless, even the very low recovery elements show wide ranges of variation and spatial patterns that are affected by other factors than soil parent material. For many elements soil pH have a clear influence on AR extractability: under acidic soil conditions almost all elements tend to be leached and their extractability is generally low. It progressively increases with increasing pH and is highest in the pH range 7-8. Critical is the clay content of the soil that almost for all elements correspond to higher extractability with increasing clay abundance. Also other factors such as organic matter content of soil, Fe and Mn occurrence are important for certain elements or in selected areas. This work illustrates that there are significant differences in the extractability of elements from soils and addresses important influencing factors related to soil properties, geology, climate.

  6. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  7. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  8. Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.

    1994-01-01

    The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given.

  9. JPL-19670908-SURVEYf-0001-AVC2002083 Surveyor 5 Launches

    NASA Image and Video Library

    1967-09-08

    Launch of Surveyor 5 toward a soft landing on the Moon. Equipped with a chemical element analyzer for conducting analyses of the lunar soil, the Surveyor 5 lander was the first spacecraft to do a soil analysis on the moon, or any other world.

  10. Scale and scaling in soils

    USDA-ARS?s Scientific Manuscript database

    Scale is recognized as a central concept in the description of the hierarchical organization of our world. Pressing environmental and societal problems such require an understanding of how processes operate at different scales, and how they can be linked across scales. Soil science as many other dis...

  11. Sustainable agriculture, soil management and erosion from prehistoric times to 2100

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Gómez, Jose Alfonso; Infante Amate, Juan; González Molina, Manuel; Fernández, David Soto; Guzmán, Gema; Vanderlinden, Karl; Laguna, Ana; Giráldez, Juan Vicente

    2015-04-01

    The rational use of soil requires the selection of management practices to take profit of the beneficial functions of plant growth, water and nutrient storage, and pollutants removal by filtering and decomposition without altering its properties. However, the first evidence of important and widespread erosion peaks can generally be found with the arrival of the first farmers all over the world. In areas with a long land-use history such as the Mediterranean, clear signs indicating the advanced degradation status of the landscape, such as heavily truncated soils, are visible throughout. Soil conservation practices are then aimed at reducing erosion to geological rates, in equilibrium with long-term soil formation rates, while maximizing agricultural production. The adoption of such practices in most areas of the world are as old as the earliest soil erosion episodes themselves. This work firstly reviews historical evidence linking soil management and soil erosion intensity, with examples from N Europe and the Mediterranean. In particular, work by the authors in olive orchards will be presented that shows how significant variations in soil erosion rates between could be linked to the historical soil management. The potential of historical documents for calibrating a soil erosion model is shown as the model, in this case RUSLE-based and combining tillage and water erosion, adequately represents the measured erosion rate dynamics. Secondly, results from present-day, long-term farm experiments in the EU are reviewed to evaluate the effect of different soil management practices on physical soil properties, such as bulk density, penetration resistance, aggregate stability, runoff coefficient or sediment yield. Finally, we reflect upon model and field data that indicate how future global climate change is expected to affect soil management and erosion and how the examples used above hold clues about sustainable historical management practices that can be used successfully in the future.

  12. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    USGS Publications Warehouse

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil temperature, and vegetation composition than to increased availability of organic matter following permafrost thaw.

  13. Social Change and Anomie: A Cross-National Study

    ERIC Educational Resources Information Center

    Zhao, Ruohui; Cao, Liqun

    2010-01-01

    We apply Durkheim's social transitional theory to explain the variation of anomie in 30 nations in the world. Combining data from two sources--the 1995 "World Values Survey and the United Nations University's World Income Inequality Database" or WIID--we test the hypothesis that rapid sociopolitical change at the structural level disrupts social…

  14. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 9: Microscale Recovery of a Soil Metal Pollutant and Its Extractant

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Balderas-Hernandez, Patricia; Garcia-Pintor, Elizabeth; Barba-Gonzalez, Sandy Nohemi; Doria-Serrano, Ma. del Carmen; Hernaiz-Arce, Lorena; Diaz-Perez, Armando; Lozano-Cusi, Ana

    2011-01-01

    Many soils throughout the world are contaminated with metal salts of diverse toxicity. We have developed an experiment to demonstrate the removal of a metal from an insoluble surrogate soil pollutant, CuCO[subscript 3] multiplied by Cu(OH)[subscript 2], by complexation followed by the simultaneous electrochemical recovery of the ligand (i.e.,…

  15. Composition of vegetable oil from seeds of native halophytes

    Treesearch

    D. J. Weber; B. Gul; A. Khan; T. Williams; N. Williams; P. Wayman; S. Warner

    2001-01-01

    Of the world’s land area, about 7 percent is salt affected. Irrigated land is more susceptible to salinity and it is estimated that over 1/3 of the irrigated soils are becoming saline. Certain plants (halophytes) grow well on high saline soils. One approach would be to grow halophytes on high saline soils and harvest their seeds. The oil in the seeds would be extracted...

  16. Saving the soil: lessons from the long-term soil productivity experiment

    Treesearch

    Mark T. Sampson; Robert F. Featured: Powers

    2007-01-01

    Soil nourishes and sustains the forest, yet it’s also one of the least understood ecosystem components. In a landmark experiment involving the Forest Services of both the United States and Canada, scientist Robert F.Powers leads the world’s largest effort at understanding how to best manage this resource to improve the health and productivity of the forest.

  17. Using a Geographic Information System to Assess the Risk of Hurricane Hazards on the Maya Civilization

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Sever, T.

    2014-12-01

    The extent of the Maya civilization spanned across portions of modern day Mexico, Belize, Guatemala, El Salvador and Honduras. Paleoclimatic studies suggest this region has been affected by strong hurricanes for the past six thousand years, reinforced by archeological evidence from Mayan records indicating they experienced strong storms. It is theorized hurricanes aided in the collapse of the Maya, damaging building structures, agriculture, and ceasing industry activities. Today, this region is known for its active tropical climatology, being hit by numerous strong storms including Hurricane Dean, Iris, Keith, and Mitch. This research uses a geographic information system (GIS) to model hurricane hazards, and assess the risk posed on the Maya civilization. GIS has the ability to handle various layer components making it optimal for combining parameters necessary for assessing the risk of experiencing hurricane related hazards. For this analysis, high winds, storm surge flooding, non-storm surge related flooding, and rainfall triggered landslides were selected as the primary hurricane hazards. Data sets used in this analysis include the National Climatic Data Center International Best Track Archive for Climate Stewardships (IBTrACS) hurricane tracks, Shuttle Radar Topography Mission Digital Elevation Model, WorldClim monthly accumulated precipitation, USGS HydroSHEDS river locations, Harmonized World Soil Database soil types, and known Maya site locations from the Electronic Atlas of Ancient Maya Sites. ArcGIS and ENVI software were utilized to process data and model hurricane hazards. To assess locations at risk of experiencing high winds, a model was created using ArcGIS Model Builder to map each storm's temporal wind profile, and adapted to simulate forward storm velocity, and storm frequency. Modeled results were then combined with physical land characteristics, meteorological, and hydrologic data to identify areas likely affected. Certain areas along the eastern edge of the Yucatan peninsula were found to be more prone to experiencing wind and flood related hurricane hazards. Novel methodologies developed from this analysis can be adapted for further hurricane risk assessment on archeological sites.

  18. Using Web Database Tools To Facilitate the Construction of Knowledge in Online Courses.

    ERIC Educational Resources Information Center

    McNeil, Sara G.; Robin, Bernard R.

    This paper presents an overview of database tools that dynamically generate World Wide Web materials and focuses on the use of these tools to support research activities, as well as teaching and learning. Database applications have been used in classrooms to support learning activities for over a decade, but, although business and e-commerce have…

  19. Evaluation of automated global mapping of Reference Soil Groups of WRB2015

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria

    2017-04-01

    SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992

  20. Targeting the right input data to improve crop modeling at global level

    NASA Astrophysics Data System (ADS)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management practices, initial soil conditions, and soil characteristics information. Management practices were represented by planting date and the amount of fertilizer, initial conditions estimates for initial nitrogen, soil water, and stable soil carbon, and soil information is based on a simplified version of the WISE database, characterized by soil organic matter, texture and soil depth. We considered these factors as the most important determinants of nutrient supply to crops during their growing season. Our first global results demonstrate that the model is most sensitive to the initial conditions in terms of soil carbon and nitrogen (CN): wheat yields decreased by 45% when soil CN is null and increase by 15% when twice the soil CN content of the reference run is used. The yields did not appear to be very sensitive to initial soil water conditions, varying from 0% yield increase when initial soil water is set to wilting point to 6% yield increase when it was set to field capacity. They are slightly sensitive to nitrogen application: 8% yield decrease when no N is applied to 9% yield increase when 150 kg.ha-1 is applied. However, with closer examination of results, the model is more sensitive to nitrogen application than to initial soil CN content in Vietnam, Thailand and Japan compared to the rest of the world. More analyses per region and results on the planting dates and soil properties will be presented.

  1. Balancing energy, conservation, and soil health requirements for plant biomass

    USDA-ARS?s Scientific Manuscript database

    The importance of crop residue for mitigating water and wind erosion, sustaining soil organic carbon (SOC) levels, and providing animal feed and bedding is well recognized around the world. But, those critical needs are no longer the only factors influencing crop residue management decisions. Global...

  2. Ionomics: Genes and QTLs controlling heavy metal uptake in perennial grasses grown on phytoxic soil

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses occupy diverse soils throughout the world, including many sites contaminated with heavy metals. Uncovering the genetic architecture of QTLs controlling mineral homoeostasis is critical for understanding the biochemical pathways that determine the elemental profiles of perennial pl...

  3. Spending our soil resources

    USDA-ARS?s Scientific Manuscript database

    A third of the world's population suffers from food insecurity. With an expected 2 billion population increase in the next few decades, that number is expected to rise significantly, leading to more people that are insecure and starving unless our soils can produce more food. Added to the problem ar...

  4. Teaching Global Perspectives in a Rural Environment.

    ERIC Educational Resources Information Center

    Lind, Mary Ann

    1980-01-01

    Rural students can understand global perspectives by developing pride as food providers who share "kinship of the soil" with the developing world. Important lessons include man's dependence on the land; philosophy of environmental protection; agricultural technology; political influence over soil use; and five factors controlling crop production.…

  5. Spectroscopic data for an astronomy database

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, Peter L.

    1995-01-01

    Very few of the atomic and molecular data used in analyses of astronomical spectra are currently available in World Wide Web (WWW) databases that are searchable with hypertext browsers. We have begun to rectify this situation by making extensive atomic data files available with simple search procedures. We have also established links to other on-line atomic and molecular databases. All can be accessed from our database homepage with URL: http:// cfa-www.harvard.edu/ amp/ data/ amdata.html.

  6. Inter-Annual Variability of the Acoustic Propagation in the Mediterranean Sea Identified from a Synoptic Monthly Gridded Database as Compared with GDEM

    DTIC Science & Technology

    2016-12-01

    VARIABILITY OF THE ACOUSTIC PROPAGATION IN THE MEDITERRANEAN SEA IDENTIFIED FROM A SYNOPTIC MONTHLY GRIDDED DATABASE AS COMPARED WITH GDEM by...ANNUAL VARIABILITY OF THE ACOUSTIC PROPAGATION IN THE MEDITERRANEAN SEA IDENTIFIED FROM A SYNOPTIC MONTHLY GRIDDED DATABASE AS COMPARED WITH GDEM 5...profiles obtained from the synoptic monthly gridded World Ocean Database (SMD-WOD) and Generalized Digital Environmental Model (GDEM) temperature (T

  7. Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0.

    PubMed

    Wang, Shirley V; Schneeweiss, Sebastian; Berger, Marc L; Brown, Jeffrey; de Vries, Frank; Douglas, Ian; Gagne, Joshua J; Gini, Rosa; Klungel, Olaf; Mullins, C Daniel; Nguyen, Michael D; Rassen, Jeremy A; Smeeth, Liam; Sturkenboom, Miriam

    2017-09-01

    Defining a study population and creating an analytic dataset from longitudinal healthcare databases involves many decisions. Our objective was to catalogue scientific decisions underpinning study execution that should be reported to facilitate replication and enable assessment of validity of studies conducted in large healthcare databases. We reviewed key investigator decisions required to operate a sample of macros and software tools designed to create and analyze analytic cohorts from longitudinal streams of healthcare data. A panel of academic, regulatory, and industry experts in healthcare database analytics discussed and added to this list. Evidence generated from large healthcare encounter and reimbursement databases is increasingly being sought by decision-makers. Varied terminology is used around the world for the same concepts. Agreeing on terminology and which parameters from a large catalogue are the most essential to report for replicable research would improve transparency and facilitate assessment of validity. At a minimum, reporting for a database study should provide clarity regarding operational definitions for key temporal anchors and their relation to each other when creating the analytic dataset, accompanied by an attrition table and a design diagram. A substantial improvement in reproducibility, rigor and confidence in real world evidence generated from healthcare databases could be achieved with greater transparency about operational study parameters used to create analytic datasets from longitudinal healthcare databases. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  8. Applying World Wide Web technology to the study of patients with rare diseases.

    PubMed

    de Groen, P C; Barry, J A; Schaller, W J

    1998-07-15

    Randomized, controlled trials of sporadic diseases are rarely conducted. Recent developments in communication technology, particularly the World Wide Web, allow efficient dissemination and exchange of information. However, software for the identification of patients with a rare disease and subsequent data entry and analysis in a secure Web database are currently not available. To study cholangiocarcinoma, a rare cancer of the bile ducts, we developed a computerized disease tracing system coupled with a database accessible on the Web. The tracing system scans computerized information systems on a daily basis and forwards demographic information on patients with bile duct abnormalities to an electronic mailbox. If informed consent is given, the patient's demographic and preexisting medical information available in medical database servers are electronically forwarded to a UNIX research database. Information from further patient-physician interactions and procedures is also entered into this database. The database is equipped with a Web user interface that allows data entry from various platforms (PC-compatible, Macintosh, and UNIX workstations) anywhere inside or outside our institution. To ensure patient confidentiality and data security, the database includes all security measures required for electronic medical records. The combination of a Web-based disease tracing system and a database has broad applications, particularly for the integration of clinical research within clinical practice and for the coordination of multicenter trials.

  9. Using Multispectral and Elevation Data to Predict Soil Properties for a Better Management of Fertilizers at Field Scale

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Sylvain, Jean-Daniel; N'Dayegamiye, Adrien; Gasser, Marc-Olivier; Nolin, Michel; Perron, Isabelle; Grenon, Lucie; Beaudin, Isabelle; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    This project aims at developing and validating an operational integrated management and localized approach at field scale using remote sensing data. It is realized in order to support the competitiveness of agricultural businesses, to ensure soil productivity in the long term and prevent diffuse contamination of surface waters. Our intention is to help agrienvironmental advisors and farmers in the consideration of spatial variability of soil properties in the management of fields. The proposed approach of soil properties recognition is based on the combination of elevation data and multispectral satellite imagery (Landsat) within statistical models. The method is based on the use of the largest possible number of satellite images to cover the widest range of soil moisture variability. Several spectral indices are calculated for each image (normalized brightness index, soil color index, organic matter index, etc.). The assignation of soils is based on a calibration procedure making use of the spatial soil database available in Canada. It includes soil profile point data associated to a database containing the information collected in the field. Three soil properties are predicted and mapped: A horizon texture, B horizon texture and drainage class. All the spectral indices, elevation data and soil data are combined in a discriminant analysis that produces discriminant functions. These are then used to produce maps of soil properties. In addition, from mapping soil properties, management zones are delineated within the field. The delineation of management zones with relatively similar soil properties is created to enable farmers to manage their fertilizers by taking greater account of their soils. This localized or precision management aims to adjust the application of fertilizer according to the real needs of soils and to reduce costs for farmers and the exports of nutrients to the stream. Mapping of soil properties will be validated in three agricultural regions in Quebec through an experimental field protocol (spatial sampling by management zones). Soils will be sampled, but crop yields under different nitrogen rates will also be assessed. Specifically, in each of the management areas defined, five different doses of nitrogen were applied (0, 50, 100, 150, 200 kg N / ha) on corn fields. In fall, the corn is harvested to assess differences in yields between the management areas and also in terms of doses of nitrogen. Ultimately, on the basis of well-established management areas, showing contrasting soil properties, the farmer will be able to ensure optimal correction of soil acidity, nitrogen fertilization, richness of soil in P and K, and improve soil drainage and physical properties. Environmentally, the principles of integrated and localized management carries significant benefits, particularly in terms of reduction of diffuse nutrient pollution.

  10. Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling

    Treesearch

    D.J. Glass; N. Takebayashi; L. Olson; D.L. Taylor

    2013-01-01

    The number of sequences from both formally described taxa and uncultured environmental DNA deposited in the International Nucleotide Sequence Databases has increased substantially over the last two decades. Although the majority of these sequences represent authentic gene copies, there is evidence of DNA artifacts in these databases as well. These include lab artifacts...

  11. Compositon of sediments transported by the wind at different heights

    NASA Astrophysics Data System (ADS)

    Iturri, Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel

    2017-04-01

    Wind erosion (WE) is one of the most important degradation process of soils in arid- and semiarid environments in the world, affecting soil properties and adjacent ecosystems, including human health. Estimations about the amount of eroded soil are available in Argentina and in the world, but the quality of the eroded sediments, particularly the sorting effects in agricultural soils, has been scarcely studied. The trend of the different mineral and organic soil compounds, which enrich in different size classes, can define height distribution profiles. Therefore, the uppermost 2.5 cm of four agricultural loess soils that differ in granulometric composition were used for WE simulations in a wind tunnel. Particles with a diameter smaller than 10 µm (PM10) were collected with a laboratory dust generator. The bulk soil and all the sediment samples were characterized by the granulometric composition, the soil organic carbon (SOC) content and the mineral and organic functional groups. Despite different texture, the soils were subjected to similar sorting processes in height, but differed depending on their granulometry. There was a separation between coarser and finer soil particles in coarser textured soils, while finer textured soils were more homogeneous in all heights. This correlated with the preferential transport of Si-O from quartz and C-H, C=O and C-C from soil organic matter (SOM), which were transported in larger and/or denser particles at lower heights. O-H from clay minerals and C-O-C and C-O from polysaccharides, carbohydrates and derivatives from SOM were transported in higher heights. Despite similar SOC content in the bulk soils, both the amount and composition in the PM10 fractions was different. The SOC transported at higher heights was mostly composed of polysaccharides, carbohydrates and derivatives associated with clay minerals. The SOC in PM10 fractions of coarser-textured soils was dominated by labile C-H groups. According to the determined height distribution profiles, it can be deduced that WE may affect both soil quality and the soil C balance due to the sorting effects during transport.

  12. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    PubMed

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  13. State of the World, 1984: A Worldwatch Institute Report on Progress toward a Sustainable Society. First Edition.

    ERIC Educational Resources Information Center

    Brown, Lester R.; And Others

    The first of a series of annual reports for policy makers, this publication focuses on evaluating changes in the interplay between the world's changing resource base and the economic system. Following an overview, content is divided into 10 additional chapters covering population stabilization, the world's dependence on oil, soil conservation,…

  14. RESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey Information System (RESIS) Database

    USGS Publications Warehouse

    Ackerman, Katherine V.; Mixon, David M.; Sundquist, Eric T.; Stallard, Robert F.; Schwarz, Gregory E.; Stewart, David W.

    2009-01-01

    The Reservoir Sedimentation Survey Information System (RESIS) database, originally compiled by the Soil Conservation Service (now the Natural Resources Conservation Service) in collaboration with the Texas Agricultural Experiment Station, is the most comprehensive compilation of data from reservoir sedimentation surveys throughout the conterminous United States (U.S.). The database is a cumulative historical archive that includes data from as early as 1755 and as late as 1993. The 1,823 reservoirs included in the database range in size from farm ponds to the largest U.S. reservoirs (such as Lake Mead). Results from 6,617 bathymetric surveys are available in the database. This Data Series provides an improved version of the original RESIS database, termed RESIS-II, and a report describing RESIS-II. The RESIS-II relational database is stored in Microsoft Access and includes more precise location coordinates for most of the reservoirs than the original database but excludes information on reservoir ownership. RESIS-II is anticipated to be a template for further improvements in the database.

  15. Elaboration of a framework for the compilation of countrywide, digital maps for the satisfaction of recent demands on spatial, soil related information in Hungary

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Dobos, Endre; Szabó, József; Bakacsi, Zsófia; Laborczi, Annamária

    2013-04-01

    There is a heap of evidences that demands on soil related information have been significant worldwide and it is still increasing. Soil maps were typically used for long time to satisfy these demands. By the spread of GI technology, spatial soil information systems (SSIS) and digital soil mapping (DSM) took the role of traditional soil maps. Due to the relatively high costs of data collection, new conventional soil surveys and inventories are getting less and less frequent, which fact valorises legacy soil information and the systems which are serving the their digitally processed version. The existing data contain a wealth of information that can be exploited by proper methodology. Not only the degree of current needs for soil information has changed but also its nature. Traditionally the agricultural functions of soils were focussed on, which was also reflected in the methodology of data collection and mapping. Recently the multifunctionality of soils is getting to gain more and more ground; consequently information related to additional functions of soils becomes identically important. The new types of information requirements however cannot be fulfilled generally with new data collections at least not on such a level as it was done in the frame of traditional soil surveys. Soil monitoring systems have been established for the collection of recent information on the various elements of the DPSIR (Driving Forces-Pressures-State-Impacts-Responses) framework, but the primary goal of these systems has not been mapping by all means. And definitely this is the case concerning the two recently working Hungarian soil monitoring systems. In Hungary, presently soil data requirements are fulfilled with the recently available datasets either by their direct usage or after certain specific and generally fortuitous, thematic and/or spatial inference. Due to the more and more frequently emerging discrepancies between the available and the expected data, there might be notable imperfection as for the accuracy and reliability of the delivered products. Since, similarly to the great majority of the world, large-scale, comprehensive new surveys cannot be expected in the near future, the actually available legacy data should be relied on. With a recently started project we would like to significantly extend the potential, how countrywide soil information requirements could be satisfied. In the frame of our project we plan the execution of spatial and thematic data mining of significant amount of soil related information available in the form of legacy soil data as well as digital databases and spatial soil information systems. In the course of the analyses we will lean on auxiliary, spatial data themes related to environmental elements. Based on the established relationships we will convert and integrate the specific data sets for the regionalization of the various, derived soil parameters. By the aid of GIS and geostatistical tools we will carry out the spatial extension of certain pedological variables featuring the (including degradation) state, processes or functions of soils. We plan to compile digital soil maps which fulfil optimally the national and international demands from points of view of thematic, spatial and temporal accuracy. The targeted spatial resolution of the proposed countrywide, digital, thematic soil property and function maps is at least 1:50.000 (approx. 50-100 meter raster). Our stressful objective is the definite solution of the regionalization of the information collected in the frame of two recent, contemporary, national, systematic soil data collection (not designed for mapping purpose) on the recent state of soils, in order to produce countrywide maps for the spatial inventory of certain soil properties, processes and functions with sufficient accuracy and reliability.

  16. Spatial and temporal predictions of agricultural land prices using DSM techniques.

    NASA Astrophysics Data System (ADS)

    Carré, F.; Grandgirard, D.; Diafas, I.; Reuter, H. I.; Julien, V.; Lemercier, B.

    2009-04-01

    Agricultural land prices highly impacts land accessibility to farmers and by consequence the evolution of agricultural landscapes (crop changes, land conversion to urban infrastructures…) which can turn to irreversible soil degradation. The economic value of agricultural land has been studied spatially, in every one of the 374 French Agricultural Counties, and temporally- from 1995 to 2007, by using data of the SAFER Institute. To this aim, agricultural land price was considered as a digital soil property. The spatial and temporal predictions were done using Digital Soil Mapping techniques combined with tools mainly used for studying temporal financial behaviors. For making both predictions, a first classification of the Agricultural Counties was done for the 1995-2006 periods (2007 was excluded and served as the date of prediction) using a fuzzy k-means clustering. The Agricultural Counties were then aggregated according to land price at the different times. The clustering allows for characterizing the counties by their memberships to each class centroid. The memberships were used for the spatial prediction, whereas the centroids were used for the temporal prediction. For the spatial prediction, from the 374 Agricultural counties, three fourths were used for modeling and one fourth for validating. Random sampling was done by class to ensure that all classes are represented by at least one county in the modeling and validation datasets. The prediction was done for each class by testing the relationships between the memberships and the following factors: (i) soil variable (organic matter from the French BDAT database), (ii) soil covariates (land use classes from CORINE LANDCOVER, bioclimatic zones from the WorldClim Database, landform attributes and landform classes from the SRTM, major roads and hydrographic densities from EUROSTAT, average field sizes estimated by automatic classification of remote sensed images) and (iii) socio-economic factors (population density, gross domestic product and its combination with the population density obtained from EUROSTAT). Linear (Generalized Linear Models) and non-linear models (neural network) were used for building the relationships. For the validation, the relationships were applied to the validation datasets. The RMSE and the coefficient of determination (from a linear regression) between predicted and actual memberships, and the contingency table between the predicted and actual allocation classes were used as validation criteria. The temporal prediction was done on the year 2007 from the centroid land prices characterizing the 1995-2006 period. For each class, the land prices of the time-series 1995-2006 were modeled using an Auto-Regressive Moving Average approach. For the validation, the models were applied to the year 2007. The RMSE between predicted and actual prices is used as the validation criteria. We then discussed the methods and the results of the spatial and temporal validation. Based on this methodology, an extrapolation will be tested on another European country with land price market similar to France (to be determined).

  17. Glyphosate and AMPA, "pseudo-persistent" pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina.

    PubMed

    Primost, Jezabel E; Marino, Damián J G; Aparicio, Virginia C; Costa, José Luis; Carriquiriborde, Pedro

    2017-10-01

    In the Pampas, public concern has strongly risen because of the intensive use of glyphosate for weed control and fallow associated with biotech crops. The present study was aimed to evaluate the occurrence and concentration of the herbicide and its main metabolite (AMPA) in soil and other environmental compartments of the mentioned agroecosystem, including groundwater, in relation to real-world agricultural management practices in the region. Occurrence was almost ubiquitous in solid matrices (83-100%) with maximum concentrations among the higher reported in the world (soil: 8105 and 38939; sediment: 3294 and 7219; suspended particulate matter (SPM): 584 and 475 μg/kg of glyphosate and AMPA). Lower detection frequency was observed in surface water (27-55%) with maximum concentrations in whole water of 1.80 and 1.90 μg/L of glyphosate and AMPA, indicating that SPM analysis would be more sensitive for detection in the aquatic ecosystem. No detectable concentrations of glyphosate or AMPA were observed in groundwater. Glyphosate soil concentrations were better correlated with the total cumulative dose and total number of applications than the last spraying event dose, and an increment of 1 mg glyphosate/kg soil every 5 spraying events was estimated. Findings allow to infer that, under current practices, application rates are higher than dissipation rates. Hence, glyphosate and AMPA should be considered "pseudo-persistent" pollutants and a revisions of management procedures, monitoring programs, and ecological risk for soil and sediments should be also recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Handwritten word preprocessing for database adaptation

    NASA Astrophysics Data System (ADS)

    Oprean, Cristina; Likforman-Sulem, Laurence; Mokbel, Chafic

    2013-01-01

    Handwriting recognition systems are typically trained using publicly available databases, where data have been collected in controlled conditions (image resolution, paper background, noise level,...). Since this is not often the case in real-world scenarios, classification performance can be affected when novel data is presented to the word recognition system. To overcome this problem, we present in this paper a new approach called database adaptation. It consists of processing one set (training or test) in order to adapt it to the other set (test or training, respectively). Specifically, two kinds of preprocessing, namely stroke thickness normalization and pixel intensity normalization are considered. The advantage of such approach is that we can re-use the existing recognition system trained on controlled data. We conduct several experiments with the Rimes 2011 word database and with a real-world database. We adapt either the test set or the training set. Results show that training set adaptation achieves better results than test set adaptation, at the cost of a second training stage on the adapted data. Accuracy of data set adaptation is increased by 2% to 3% in absolute value over no adaptation.

  19. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various environmental applications. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    PubMed

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Eoin

    2011-01-01

    There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/

  2. Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event

    ScienceCinema

    Brodie, Eoin

    2017-12-11

    There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/

  3. The Effect of Soil Hydraulic Properties vs. Soil Texture in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Gutmann, E. D.; Small, E. E.

    2005-01-01

    This study focuses on the effect of Soil Hydraulic Property (SHP) selection on modeled surface fluxes following a rain storm in a semi-arid environment. SHPs are often defined based on a Soil Texture Class (STC). To examine the effectiveness of this approach, the Noah land surface model was run with each of 1306 soils in a large SHP database. Within most STCs, the outputs have a range of 350 W/m2 for latent and sensible heat fluxes, and 8K for surface temperature. The average difference between STC median values is only 100 W/m2 for latent and sensible heat. It is concluded that STC explains 5-15% of the variance in model outputs and should not be used to determine SHPs.

  4. The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward

    USDA-ARS?s Scientific Manuscript database

    Recent studies using water isotopes have shown that trees and streams appear to return distinct water pools to the hydrosphere. Cryogenically extracted plant and soil water isotopic signatures diverge from the Meteoric Water Lines (MWL), suggesting that plants would preferentially use bound soil wat...

  5. Proceedings - Management and productivity of western-montane forest soils

    Treesearch

    Alan E. Harvey; Leon F. Neuenschwander

    1991-01-01

    Includes 35 papers and six poster synopses presenting state-of-the-art knowledge on the nature and problems of integrating soils information and expertise into management of inland western forest resources. Papers emphasize regional information, but include data from world literature and previously unpublished material from regional experts.

  6. Biochar can positively influence soil moisture relations

    USDA-ARS?s Scientific Manuscript database

    One major issue related to climate change is the potential to improve soil water relations in light of changes in future precipitation patterns or reductions in water availability in drier portions of the world (such as the western US). It appears that biochar may play a positive role, but that rol...

  7. Estimating raindrop kinetic energy: evaluation of a low-cost method

    USDA-ARS?s Scientific Manuscript database

    The Loess Plateau of China is regarded as the most intensively eroded region in the world and soil erosion caused by raindrop action is a common occurrence on agricultural land within this region. Therefore, understanding the influence of rainfall energy on the soil surface is needed for modeling pu...

  8. Development of cropland management dataset to support U.S. SWAT assessments

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) is a widely used hydrologic/water quality simulation model in the U.S. Process-based models like SWAT require a great deal of data to accurately represent the natural world, including topography, landuse, soils, weather, and management. With the exception ...

  9. Soil health for improved food securities: natural ecosystems, row crop, and livestock production

    USDA-ARS?s Scientific Manuscript database

    Recent environmental and ecological awareness has resulted in consideration of soil as more than just a medium for root growth and livestock production. In order to meet the expected growing world population and subsequent food production demands, producers are reevaluating traditional management sy...

  10. Engineering geological mapping in Wallonia (Belgium) : present state and recent computerized approach

    NASA Astrophysics Data System (ADS)

    Delvoie, S.; Radu, J.-P.; Ruthy, I.; Charlier, R.

    2012-04-01

    An engineering geological map can be defined as a geological map with a generalized representation of all the components of a geological environment which are strongly required for spatial planning, design, construction and maintenance of civil engineering buildings. In Wallonia (Belgium) 24 engineering geological maps have been developed between the 70s and the 90s at 1/5,000 or 1/10,000 scale covering some areas of the most industrialized and urbanized cities (Liège, Charleroi and Mons). They were based on soil and subsoil data point (boring, drilling, penetration test, geophysical test, outcrop…). Some displayed data present the depth (with isoheights) or the thickness (with isopachs) of the different subsoil layers up to about 50 m depth. Information about geomechanical properties of each subsoil layer, useful for engineers and urban planners, is also synthesized. However, these maps were built up only on paper and progressively needed to be updated with new soil and subsoil data. The Public Service of Wallonia and the University of Liège have recently initiated a study to evaluate the feasibility to develop engineering geological mapping with a computerized approach. Numerous and various data (about soil and subsoil) are stored into a georelational database (the geotechnical database - using Access, Microsoft®). All the data are geographically referenced. The database is linked to a GIS project (using ArcGIS, ESRI®). Both the database and GIS project consist of a powerful tool for spatial data management and analysis. This approach involves a methodology using interpolation methods to update the previous maps and to extent the coverage to new areas. The location (x, y, z) of each subsoil layer is then computed from data point. The geomechanical data of these layers are synthesized in an explanatory booklet joined to maps.

  11. WorldWideScience.org: the global science gateway.

    PubMed

    Fitzpatrick, Roberta Bronson

    2009-10-01

    WorldWideScience.org is a Web-based global gateway connecting users to both national and international scientific databases and portals. This column will provide background information on the resource as well as introduce basic searching practices for users.

  12. Electronic Resources in a Next-Generation Catalog: The Case of WorldCat Local

    ERIC Educational Resources Information Center

    Shadle, Steve

    2009-01-01

    In April 2007, the University of Washington Libraries debuted WorldCat Local (WCL), a localized version of the WorldCat database that interoperates with a library's integrated library system and fulfillment services to provide a single-search interface for a library's physical and electronic content. This brief will describe how WCL incorporates a…

  13. COMPUTER-AIDED SCIENCE POLICY ANALYSIS AND RESEARCH (WEBCASPAR)

    EPA Science Inventory

    WebCASPAR is a database system containing information about academic science and engineering resources and is available on the World Wide Web. Included in the database is information from several of SRS's academic surveys plus information from a variety of other sources, includin...

  14. Expanding Internationally: OCLC Gears Up.

    ERIC Educational Resources Information Center

    Chepesiuk, Ron

    1997-01-01

    Describes the Online Computer Library Center (OCLC) efforts in China, Germany, Canada, Scotland, Jamaica and Brazil. Discusses FirstSearch, an end-user reference service, and WorldCat, a bibliographic database. Highlights international projects developing increased OCLC online availability, database loading software, CD-ROM cataloging,…

  15. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Treesearch

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  16. Popular Astronomy in the World and in Armenia

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A review on the popular astronomy and astronomy outreach in the world and in Armenia is given. Various ways and methods of popularization of astronomy are described. The International Year of Astronomy (IYA-2009), amateur astronomy, publication of books and other materials, the database of astronomical books, AstroBook exhibition, science-popular articles, "Astghagitak" online science-popular astronomical journal, calendar of astronomical events, databases of Solar and Lunar eclipses 2001-2050, planetary triple conjunctions 2001-2050, and of periodic comets at ArAS webpage, ArAS School Lectures Program, public lectures, "Universe" club at "Mkhitar Sebastatsi" educational ensemble, the online database of Armenian astronomers, biographies of famous Armenian astronomers, astronomers' anniversaries, scientific journalism of Armenia, and "Mass media news" section at ArAS webpage are described and discussed.

  17. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  18. Effects of timber harvesting on the genetic potential for carbon and nitrogen cycling in five North American forest ecozones.

    PubMed

    Cardenas, Erick; Orellana, Luis H; Konstantinidis, Konstantinos T; Mohn, William W

    2018-02-16

    Forest ecosystems are critical to global biogeochemical cycles but under pressure from harvesting and climate change. We investigated the effects of organic matter (OM) removal during forest harvesting on the genetic potential of soil communities for biomass decomposition and nitrogen cycling in five ecozones across North America. We analyzed 107 samples, representing four treatments with varied levels of OM removal, at Long-Term Soil Productivity Study sites. Samples were collected more than ten years after harvesting and replanting and were analyzed via shotgun metagenomics. High-quality short reads totaling 1.2 Tbp were compared to the Carbohydrate Active Enzyme (CAZy) database and a custom database of nitrogen cycle genes. Gene profile variation was mostly explained by ecozone and soil layer. Eleven CAZy and nine nitrogen cycle gene families were associated with particular soil layers across all ecozones. Treatment effects on gene profiles were mainly due to harvesting, and only rarely to the extent of OM removal. Harvesting generally decreased the relative abundance of CAZy genes while increasing that of nitrogen cycle genes, although these effects varied among ecozones. Our results suggest that ecozone-specific nutrient availability modulates the sensitivity of the carbon and nitrogen cycles to harvesting with possible consequences for long-term forest sustainability.

  19. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed on the base of needs analysis inputs to mathematical models. Mathematical models are used for detailed analysis of chosen erosion events which include soil analysis. Till the end 2012 has had the database 135 events. The content of database still accrues and gives rise to the extensive source of data that is usable for testing mathematical models.

  20. Soil: The forgotten piece of the water, food, energy nexus

    USDA-ARS?s Scientific Manuscript database

    The water, food, energy nexus has prompted sustainability concerns as interactions between these interdependent human needs is degrading natural resources required for a secure future world. Discussions about the future needs for food, water, and energy to support the increasing world population hav...

  1. CHERNOLITTM. Chernobyl Bibliographic Search System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caff, F., Jr.; Kennedy, R.A.; Mahaffey, J.A.

    1992-03-02

    The Chernobyl Bibliographic Search System (Chernolit TM) provides bibliographic data in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the former Ukrainian Republic of the USSR in 1986. Chernolit TM is a portable and easy to use product. The bibliographic data is provided under the control of a graphical user interface so that the user may quickly and easily retrieve pertinent information from the large database. The user may search the database for occurrences of words, names, or phrases; view bibliographic references on screen; and obtain reports of selected references. Reports may bemore » viewed on the screen, printed, or accumulated in a folder that is written to a disk file when the user exits the software. Chernolit TM provides a cost-effective alternative to multiple, independent literature searches. Forty-five hundred references concerning the accident, including abstracts, are distributed with Chernolit TM. The data contained in the database were obtained from electronic literature searches and from requested donations from individuals and organizations. These literature searches interrogated the Energy Science and Technology database (formerly DOE ENERGY) of the DIALOG Information Retrieval Service. Energy Science and Technology, provided by the U.S. DOE, Washington, D.C., is a multi-disciplinary database containing references to the world`s scientific and technical literature on energy. All unclassified information processed at the Office of Scientific and Technical Information (OSTI) of the U.S. DOE is included in the database. In addition, information on many documents has been manually added to Chernolit TM. Most of this information was obtained in response to requests for data sent to people and/or organizations throughout the world.« less

  2. Chernobyl Bibliographic Search System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Jr, F.; Kennedy, R. A.; Mahaffey, J. A.

    1992-05-11

    The Chernobyl Bibliographic Search System (Chernolit TM) provides bibliographic data in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the former Ukrainian Republic of the USSR in 1986. Chernolit TM is a portable and easy to use product. The bibliographic data is provided under the control of a graphical user interface so that the user may quickly and easily retrieve pertinent information from the large database. The user may search the database for occurrences of words, names, or phrases; view bibliographic references on screen; and obtain reports of selected references. Reports may bemore » viewed on the screen, printed, or accumulated in a folder that is written to a disk file when the user exits the software. Chernolit TM provides a cost-effective alternative to multiple, independent literature searches. Forty-five hundred references concerning the accident, including abstracts, are distributed with Chernolit TM. The data contained in the database were obtained from electronic literature searches and from requested donations from individuals and organizations. These literature searches interrogated the Energy Science and Technology database (formerly DOE ENERGY) of the DIALOG Information Retrieval Service. Energy Science and Technology, provided by the U.S. DOE, Washington, D.C., is a multi-disciplinary database containing references to the world''s scientific and technical literature on energy. All unclassified information processed at the Office of Scientific and Technical Information (OSTI) of the U.S. DOE is included in the database. In addition, information on many documents has been manually added to Chernolit TM. Most of this information was obtained in response to requests for data sent to people and/or organizations throughout the world.« less

  3. [Explore method about post-marketing safety re-evaluation of Chinese patent medicines based on HIS database in real world].

    PubMed

    Yang, Wei; Xie, Yanming; Zhuang, Yan

    2011-10-01

    There are many kinds of Chinese traditional patent medicine used in clinical practice and many adverse events have been reported by clinical professionals. Chinese patent medicine's safety problems are the most concerned by patients and physicians. At present, many researchers have studied re-evaluation methods about post marketing Chinese medicine safety inside and outside China. However, it is rare that using data from hospital information system (HIS) to re-evaluating post marketing Chinese traditional patent medicine safety problems. HIS database in real world is a good resource with rich information to research medicine safety. This study planed to analyze HIS data selected from ten top general hospitals in Beijing, formed a large HIS database in real world with a capacity of 1 000 000 cases in total after a series of data cleaning and integrating procedures. This study could be a new project that using information to evaluate traditional Chinese medicine safety based on HIS database. A clear protocol has been completed as for the first step for the whole study. The protocol is as follows. First of all, separate each of the Chinese traditional patent medicines existing in the total HIS database as a single database. Secondly, select some related laboratory tests indexes as the safety evaluating outcomes, such as routine blood, routine urine, feces routine, conventional coagulation, liver function, kidney function and other tests. Thirdly, use the data mining method to analyze those selected safety outcomes which had abnormal change before and after using Chinese patent medicines. Finally, judge the relationship between those abnormal changing and Chinese patent medicine. We hope this method could imply useful information to Chinese medicine researchers interested in safety evaluation of traditional Chinese medicine.

  4. Edaphostat: interactive ecological analysis of soil organism occurrences and preferences from the Edaphobase data warehouse

    PubMed Central

    Scholz-Starke, Björn; Burkhardt, Ulrich; Lesch, Stephan; Rick, Sebastian; Russell, David; Roß-Nickoll, Martina; Ottermanns, Richard

    2017-01-01

    Abstract The Edaphostat web application allows interactive and dynamic analyses of soil organism data stored in the Edaphobase data warehouse. It is part of the Edaphobase web application and can be accessed by any modern browser. The tool combines data from different sources (publications, field studies and museum collections) and allows species preferences along various environmental gradients (i.e. C/N ratio and pH) and classification systems (habitat type and soil type) to be analyzed. Database URL: Edaphostat is part of the Edaphobase Web Application available at https://portal.edaphobase.org PMID:29220469

  5. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  6. Green ambrosia for Soil- Dry Cow Dung Powder: Rhexistasy to Biostasy

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    "Greener ambrosia for Soil - Dry cow dung powder: Rhexistasy to Biostasy" Pedosphere, the soil with its biotic and abiotic component, is produced by lithosphere`s interactions with atmosphere, hydrosphere and biosphere. The theory of Biorhexistasy proposed by pedologist H. Erhart [1], describes two crucial climatic phases of soil i.e. Biostasy, period of soil formation and Rhexistasy, periods of soil erosion. Humus, the organic matter in soil, permits better aeration, enhances the absorption and releases nutrients, and makes the soil less susceptible to leaching and erosion [2], thus the agent of soil`s vitality. Mismanagement of soil, leads to the degradation of millions of acres of land through erosion, compaction, salinization and acidification. Among these threats salinity is a major abiotic stress reducing the yield of wide variety of crops all over the world [3]. It is been proved that Humic Acid (HA) treatment can ameliorate the deleterious effects of salt stress by increasing root growth, altering mineral uptake, and decreasing membrane damage, thus inducing salt tolerance in plants [4]. HA can be inexpensively incorporated into soils via different biowastes. Dry cow dung powder (DCP), is naturally available bio-organic, complex, polymorphic humified fecal matter, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as HA, Fulvic Acid (FA) etc [5]. The microbial consortium enables DCP with considerable potentials for biodegradation and biotransformation of even saline soil and further contributes to many biogeochemical processes, boosting humus content of soil. Due to unambiguous biological, microbiological as well as chemical inert properties of DCP, it has been successfully utilized as a fertilizer and soil conditioner since ages in India, one of the leading agrarian countries of the world. Thus we summarize that DCP is one of the best contenders for the biostasy and desaliner of soil, aptly, soil`s Greener ambrosia. Reference: 1. C. Feller, E. Blanchart, A. Herbillon, SSSAJ: 72(5), (2008). 2. N.Fedoroff, M.Courty, Z.Guo, Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier B.V., (2010). 3. Mackowiak et al, SSSAJ: 65, (2001). 4. K.Cimrin, O.Turkmen, M.Turan, B.Tuncer, African Journal of Biotechnology, 9(36), (2010). 5. H.Bagla, N.Barot, EGUGA - 11, 515B, (2009).

  7. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain

    PubMed Central

    Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey

    2015-01-01

    This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC) of bare soils from their spectral signatures in the reflective domain (0.4–2.5 μm) in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI) and Water Index SOIL (WISOIL). Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL) and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON). These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER), using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are used to analyse the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R2 (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere. PMID:25648710

  8. Intrusion Detection in Database Systems

    NASA Astrophysics Data System (ADS)

    Javidi, Mohammad M.; Sohrabi, Mina; Rafsanjani, Marjan Kuchaki

    Data represent today a valuable asset for organizations and companies and must be protected. Ensuring the security and privacy of data assets is a crucial and very difficult problem in our modern networked world. Despite the necessity of protecting information stored in database systems (DBS), existing security models are insufficient to prevent misuse, especially insider abuse by legitimate users. One mechanism to safeguard the information in these databases is to use an intrusion detection system (IDS). The purpose of Intrusion detection in database systems is to detect transactions that access data without permission. In this paper several database Intrusion detection approaches are evaluated.

  9. Farming with rocks and minerals: challenges and opportunities.

    PubMed

    Van Straaten, Peter

    2006-12-01

    In many parts of the world food security is at risk. One of the biophysical root causes of falling per-capita food production is the declining quality and quantity of soils. To reverse this trend and increase soil fertility soil and plant nutrients have to be replenished. This review provides a literature survey of experiences of using multi-nutrient rock fertilizers for soil fertility enhancement from temperate and tropical environments. Advantages and limitations of the application of rock fertilizers are discussed. Examples are provided from two successful nutrient replenishment projects in Africa where locally available rock fertilizers are used on highly leached acid soils. The potential of combining organic materials alongside rock fertilizers in soil fertility replenishment strategies is stressed.

  10. GLIMS Glacier Database: Status and Challenges

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Racoviteanu, A.; Khalsa, S. S.; Armstrong, R.

    2008-12-01

    GLIMS (Global Land Ice Measurements from Space) is an international initiative to map the world's glaciers and to build a GIS database that is usable via the World Wide Web. The GLIMS programme includes 70 institutions, and 25 Regional Centers (RCs), who analyze satellite imagery to map glaciers in their regions of expertise. The analysis results are collected at the National Snow and Ice Data Center (NSIDC) and ingested into the GLIMS Glacier Database. The database contains approximately 80 000 glacier outlines, half the estimated total on Earth. In addition, the database contains metadata on approximately 200 000 ASTER images acquired over glacierized terrain. Glacier data and the ASTER metadata can be viewed and searched via interactive maps at http://glims.org/. As glacier mapping with GLIMS has progressed, various hurdles have arisen that have required solutions. For example, the GLIMS community has formulated definitions for how to delineate glaciers with different complicated morphologies and how to deal with debris cover. Experiments have been carried out to assess the consistency of the database, and protocols have been defined for the RCs to follow in their mapping. Hurdles still remain. In June 2008, a workshop was convened in Boulder, Colorado to address issues such as mapping debris-covered glaciers, mapping ice divides, and performing change analysis using two different glacier inventories. This contribution summarizes the status of the GLIMS Glacier Database and steps taken to ensure high data quality.

  11. Radon exhalation rates from some soil samples of Kharar, Punjab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vimal; Deptt of Physics, Punjabi University, Patiala- 147 001; Singh, Tejinder Pal, E-mail: tejinders03@gmail.com

    Radon and its progeny are major contributors in the radiation dose received by general population of the world. Because radon is a noble gas, a large portion of it is free to migrate away from radium. The primary sources of radon in the houses are soils and rocks source emanations, emanation from building materials, and entry of radon into a structure from outdoor air. Keeping this in mind the study of radon exhalation rate from some soil samples of the Kharar, Punjab has been carried out using Can Technique. The equilibrium radon concentration in various soil samples of Kharar areamore » of district Mohali varied from 12.7 Bqm{sup −3} to 82.9 Bqm{sup −3} with an average of 37.5 ± 27.0 Bqm{sup −3}. The radon mass exhalation rates from the soil samples varied from 0.45 to 2.9 mBq/kg/h with an average of 1.4 ± 0.9 mBq/kg/h and radon surface exhalation rates varied from 10.4 to 67.2 mBq/m{sup 2}/h with an average of 30.6 ± 21.8 mBq/m{sup 2}/h. The radon mass and surface exhalation rates of the soil samples of Kharar, Punjab were lower than that of the world wide average.« less

  12. Potential for use of environmental factors in urban planning

    NASA Astrophysics Data System (ADS)

    Teixeira da Silva, Ricardo; van der Ploeg, Martine; van Delden, Hedwig; Fleskens, Luuk

    2016-04-01

    Projections for population growth estimate, on top of the current 7.4 billion world population, an increase of 2 billion people for the next 40 years. It is also projected that 66 per cent of the world population in 2050 will live in urban areas. To accommodate the urban population growth cities are changing continuously land cover to urban areas. Such changes are a threat for natural resources and food production systems stability and capability to provide food and other functions. However, little has been done concerning a rational soil management for food production in urban and peri-urban areas. This study focuses on the assessment of soil lost due to urban expansion and discusses the potential loss regarding the quality of the soil for food production and environmental functions. It is relevant to increase the knowledge on the role of soils in peri-urban areas and in the interaction of physical, environmental and social factors. The methodology consists of assessing the soil quality in and around urban and peri-urban areas. It focuses particularly on the physical properties and the environmental factors, for two periods of time and account the potential losses due to urban expansion. This project is on-going, therefore current advances will be presented and will look for a discussion on the contribution of soil quality for decision-making and land management in urban and peri-urban areas.

  13. Stream and tree water sources in a coast redwood forest

    NASA Astrophysics Data System (ADS)

    Dymond, S.; Bladon, K. D.; McDonnell, J.; McNamara, J. P.

    2017-12-01

    Recent investigations in forested watersheds have shown the prevalence of "two water worlds" whereby plants access tightly bound soil waters and streamflow is sustained via mobile soil water and groundwater sources. We tested this hypothesis in a coast redwood forest at the Caspar Creek Experimental Watersheds (CCEW), California, USA. We collected water samples from different water pools (streams, groundwater, precipitation, soil, and trees) from 20 sites over 2 years for dual isotope analysis (δ18O and δD). Our results show that plants accessed deep, but tightly-bound soil waters throughout the growing season. This was true regardless of topographic position (riparian, toeslope, sideslope, shoulder, summit) of the sampled vegetation. Sap flux measurements of tree evapotranspiration (ET) also revealed no topographic variation in monthly ET rates. As the upper soil horizons dried through the growing season, the isotopic signature of the soils became increasingly depleted. Alternatively, piezometer and isotope data showed relatively stable groundwater conditions throughout the summer months; groundwater isotope data routinely plotted along the local meteoric water line. Moreover, the isotopic signature of streamflow data suggested that summer streamflow is sustained via groundwater and not interflow. Overall, our results appear to support the two water worlds hypothesis in a coast redwood forest. Our next steps are to subject the system to different levels of forest harvesting to investigate the role of disturbance on plant water use, storage selection and rainfall-runoff mechanisms.

  14. The Birkás influence on international soil management research and education

    USDA-ARS?s Scientific Manuscript database

    Professor, Dr. Márta Birkás invited several international colleagues to contribute chapters to a Memorial Volume reviewing soil management research conducted in Hungary and elswhere around the world. She asked each author to provide a brief account of how they had collaborated with her and to review...

  15. Measurements and models to identify agroecosystem practices that enhance soil organic carbon under changing climate

    USDA-ARS?s Scientific Manuscript database

    Adapting to the anticipated impacts of climate change is a pressing issue facing agriculture, as precipitation and temperature changes are expected to have major effects on agricultural production in many regions of the world. These changes will also affect soil organic matter (SOM) decomposition an...

  16. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  17. Soil compaction and chestnut ink disease

    Treesearch

    T.F. Fonseca; C.G. Abreu; B.R. Parresol

    2004-01-01

    Chestnut ink disease caused by the oomycete Phytophthora cinnamomi, a soil-borne pathogen of world-wide distribution, accounts for the majority of disease problems on chestnuts in Portugal, limiting yield in a large number of stands and impeding establishment of trees in new areas. A survey was carried out in 32 chestnut stands in the Padrela...

  18. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: Insight from a cross-site study

    USDA-ARS?s Scientific Manuscript database

    Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. Responses of communities of mites and nematodes to changes in moisture availability are not well known, yet these organisms play ...

  19. Rapid Accumulation and Turnover of Soil Carbon in a Re-Establishing Forest

    Treesearch

    Daniel D. Richter; Daniel Markewitz; Susan E. Trumbore; Carol G. Wells

    1999-01-01

    Present understanding of the global carbon cycle is limited by uncertainty over soil-carbon dynamics. The clearing of the world's forests, mainly for agricultural uses, releases large amounts of carbon to the atmosphere (up to 2 X 1015yr-1), much of which arises firon the cultivation driving an accelerated...

  20. World Ocean Database and the Global Temperature and Salinity Profile Program Database: Synthesis of historical and near real-time ocean profile data

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.

    2016-02-01

    The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.

  1. Evaluating the first Brazilian program of payments for environmental services: An approach for optimizing soil conservation using GIS

    NASA Astrophysics Data System (ADS)

    Zolin, C. A.; Folegatti, M. V.; Mingoti, R.; Paulino, J.; Sánchez-Román, R. M.; González, A. M.

    2013-12-01

    Brazil possesses one of the most important water assets in the world, however, the country experiences vast differences among its hydrographic regions. Although Brazil has the largest water reserves in the world, those reserves are not distributed according to the concentration of the population. In addition, the largest portions of these water reserves are not always located where the highest urban concentrations and demands occur, which causes serious problems in maintaining water supply within the country's most populous regions (Zolin et al. 2011). It has become evident that policies aimed at mitigating the growing water resources and water use conflicts in Brazil are crucial. The municipality of Extrema in Minas Gerais state in Brazil pioneered the first Brazilian municipal PES initiative (Conservador das Águas program), based on the relationship between forests and the benefits they provide. This study aimed to assess soil loss in the Posses sub-basin, where the Conservador das Águas program began. Additionally, we aimed to determine the potential that this PES initiative has for soil conservation, as well as to optimize the environmental services provided as a function of forest area size and location. In this sense, considering the prescribed conservation practices, land use situation, and soil cover in the Posses sub-basin, we analyzed the effectiveness of the Conservador das Águas program before and after implementation in relation to reduced soil loss under different land use and soil cover scenarios. We used a geographic information system (GIS) for spatializing and producing different information plans and the Revised Universal Soil Loss Equation (RUSLE) for estimating soil loss. As a result, we found that optimized soil conservation may be obtained by adopting pasture conservation practices. Additionally the expected average soil loss in the Posses sub-basin under conditions of land use and soil cover, before and after implementing the water conservation program, was 30.63 and 7.06 Mg ha-1 year-1, respectively.

  2. Quantifying the main sediment sources in agricultural landscapes of Southern Brazil cultivated with conventional and conservation practices

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Le Gall, Marion; Tiecher, Tales; Gomes Minella, Jean Paolo; Laceby, J. Patrick; Ayrault, Sophie

    2017-04-01

    Agricultural expansion that occurred in the 1960s in Southern Brazil significantly increased soil erosion and sediment supply to the river networks. To limit the deleterious impacts of soil erosion, conservation practices were progressively implemented in the 1990s, including the direct sowing of crops on a soil densely covered with plant residues, contour farming, the installation of ponds to trap sediment in the landscape and the use of crop rotations. However, there remains a lack of observational data to investigate the impact of these conservation practices on soil erosion and sediment supply. This data is crucial to protect soil resources and maintain the sustainability of food production systems in this region of the world characterized by a rapidly increasing population. Accordingly, sediment sources were investigated in the Guaporé catchment (2,032 km2) representative of the cultivated environments found in this part of the world. In the upper catchment, the landscape is characterized by gentle slopes and deep soils (Ferralsols, Nitisols) corresponding to the edge of the basaltic plateau. Soybean, corn and wheat under direct sowing are the main crops in this area. In contrast, steep and shallow soils (Luvisols, Acrisols, Leptosols) highly connected to the rivers are found in the lower catchment, where tobacco and corn fields are cultivated with conventional ploughing. These soil types were characterized by elemental geochemistry and 87Sr/86Sr ratios. Sediment sources were then modelled using the optimal suite of properties (87Sr/86Sr ratios, K, Ti, Co, As, Ba, and Pb). The results demonstrate that sediment collected at the catchment outlet during two hydrological years (2012-2014) mainly originated from downstream soils (Luvisols, Acrisols, Leptosols; 92±3%), with this proportion remaining stable throughout the monitoring period. This research indicates that conservation practices implemented in the upper catchment are effective and that similar methods should be applied to downstream soils in order to conserve soil resources and limit the degradation of freshwater environments.

  3. The fascinating side of dirt: Soil and the global environment course

    NASA Astrophysics Data System (ADS)

    Grand, S.; Krzic, M.; Crowley, C.; Lascu, G.; Rosado, J.

    2012-04-01

    Soil has recently been attracting some renewed public attention due to its inextricable link to current environmental challenges such as climate change, food security and water resource protection. It is increasingly acknowledged that the world's future will require a better understanding of soil science. Yet enrolment in soil related programs at universities in North America and around the world has been declining. One of the proposed causes for this drop is the tendency for soil science education to emphasize the agricultural side of soil science, while our increasingly urban and environmentally conscious student population is more interested in environmental sciences. To address this issue, in 2011 we created an on-line, first-year soil science course designed specifically to communicate the significance of soil science to global environmental questions. We propose that this type of course is an effective way to help increase interest in higher level soil courses and reverse the downward trend in enrolments. The course content was centered on prominent environmental issues, which were used to introduce basic concepts of soil science. Course materials emphasized integration with other natural resources disciplines such as ecology, biogeochemistry and hydrology. The online format allowed for a seamless integration of multimedia components and web content into course materials, and is believed to be appealing to technologically savvy new generations of students. Online discussion boards were extensively used to maintain strong student engagement in the course. Discussion topics were based on soil-related news stories that helped demonstrate the relevance of soils to society and illustrate the complex and often controversial nature of environmental issues. Students also made significant use of an online bulletin board to post information about environmental events and share news stories related to the course. This course was offered for the first time in term 1 of the 2011/12 academic year. Preliminary student feedback was very positive. In the presentation, we will evaluate the overall course performance in generating enthusiasm for soil. We will also present the lesson learned, particularly regarding facilitating student's transition from this introductory course to more quantitative soil science courses.

  4. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  5. Vinasse fertirrigation alters soil resistome dynamics: an analysis based on metagenomic profiles.

    PubMed

    Braga, Lucas P P; Alves, Rafael F; Dellias, Marina T F; Navarrete, Acacio A; Basso, Thiago O; Tsai, Siu M

    2017-01-01

    Every year around 300 Gl of vinasse, a by-product of ethanol distillation in sugarcane mills, are flushed into more than 9 Mha of sugarcane cropland in Brazil. This practice links fermentation waste management to fertilization for plant biomass production, and it is known as fertirrigation. Here we evaluate public datasets of soil metagenomes mining for changes in antibiotic resistance genes (ARGs) of soils from sugarcane mesocosms repeatedly amended with vinasse. The metagenomes were annotated using the ResFam database. We found that the abundance of open read frames (ORFs) annotated as ARGs changed significantly across 43 different families ( p -value < 0.05). Co-occurrence network analysis revealed distinct patterns of interactions among ARGs, suggesting that nutrient amendment to soil microbial communities can impact on the coevolutionary dynamics of indigenous ARGs within soil resistome.

  6. The salinity tolerant poplar database (STPD): a comprehensive database for studying tree salt-tolerant adaption and poplar genomics.

    PubMed

    Ma, Yazhen; Xu, Ting; Wan, Dongshi; Ma, Tao; Shi, Sheng; Liu, Jianquan; Hu, Quanjun

    2015-03-17

    Soil salinity is a significant factor that impairs plant growth and agricultural productivity, and numerous efforts are underway to enhance salt tolerance of economically important plants. Populus species are widely cultivated for diverse uses. Especially, they grow in different habitats, from salty soil to mesophytic environment, and are therefore used as a model genus for elucidating physiological and molecular mechanisms of stress tolerance in woody plants. The Salinity Tolerant Poplar Database (STPD) is an integrative database for salt-tolerant poplar genome biology. Currently the STPD contains Populus euphratica genome and its related genetic resources. P. euphratica, with a preference of the salty habitats, has become a valuable genetic resource for the exploitation of tolerance characteristics in trees. This database contains curated data including genomic sequence, genes and gene functional information, non-coding RNA sequences, transposable elements, simple sequence repeats and single nucleotide polymorphisms information of P. euphratica, gene expression data between P. euphratica and Populus tomentosa, and whole-genome alignments between Populus trichocarpa, P. euphratica and Salix suchowensis. The STPD provides useful searching and data mining tools, including GBrowse genome browser, BLAST servers and genome alignments viewer, which can be used to browse genome regions, identify similar sequences and visualize genome alignments. Datasets within the STPD can also be downloaded to perform local searches. A new Salinity Tolerant Poplar Database has been developed to assist studies of salt tolerance in trees and poplar genomics. The database will be continuously updated to incorporate new genome-wide data of related poplar species. This database will serve as an infrastructure for researches on the molecular function of genes, comparative genomics, and evolution in closely related species as well as promote advances in molecular breeding within Populus. The STPD can be accessed at http://me.lzu.edu.cn/stpd/ .

  7. Carbon stock and its responses to climate change in Central Asia.

    PubMed

    Li, Chaofan; Zhang, Chi; Luo, Geping; Chen, Xi; Maisupova, Bagila; Madaminov, Abdullo A; Han, Qifei; Djenbaev, Bekmamat M

    2015-05-01

    Central Asia has a land area of 5.6 × 10(6) km(2) and contains 80-90% of the world's temperate deserts. Yet it is one of the least characterized areas in the estimation of the global carbon (C) stock/balance. This study assessed the sizes and spatiotemporal patterns of C pools in Central Asia using both inventory (based on 353 biomass and 284 soil samples) and process-based modeling approaches. The results showed that the C stock in Central Asia was 31.34-34.16 Pg in the top 1-m soil with another 10.42-11.43 Pg stored in deep soil (1-3 m) of the temperate deserts. They amounted to 18-24% of the global C stock in deserts and dry shrublands. The C stock was comparable to that of the neighboring regions in Eurasia or major drylands around the world (e.g. Australia). However, 90% of Central Asia C pool was stored in soil, and the fraction was much higher than in other regions. Compared to hot deserts of the world, the temperate deserts in Central Asia had relatively high soil organic carbon density. The C stock in Central Asia is under threat from dramatic climate change. During a decadal drought between 1998 and 2008, which was possibly related to protracted La Niña episodes, the dryland lost approximately 0.46 Pg C from 1979 to 2011. The largest C losses were found in northern Kazakhstan, where annual precipitation declined at a rate of 90 mm decade(-1) . The regional C dynamics were mainly determined by changes in the vegetation C pool, and the SOC pool was stable due to the balance between reduced plant-derived C influx and inhibited respiration. © 2015 John Wiley & Sons Ltd.

  8. Education and Policy in Soil Science: The U.S. Experience

    NASA Astrophysics Data System (ADS)

    Sharpley, Andrew; van Es, Harold; Dick, Richard; Bergfeld, Ellen; Anderson, Karl; Chapman, Susan; Fisk, Susan

    2017-04-01

    The Soil Science Society of America (SSSA), founded in 1936, fosters the transfer of knowledge and practices to sustain soils globally, and now serves 6,000 members worldwide. It is also home to over 1,000 certified professionals dedicated to advancing the field of soil science. The Society provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use. We provide high-impact research publications, educational programs, certifications, and science-policy initiatives, which will be described in more detail in this presentation. The need for soil science education to a wider audience and development and promotion of soils-based policy initiatives, has increased in the last decade with recognition of the role soils play in sustaining life, population well-being at the nexus of food, energy, and water security. To address these needs, SSSA has two general public outreach sites online: www.soils.org/discover-soils and https://soilsmatter.wordpress.com/, reaching over a half-million viewers per year, as well as social media platforms. We are dedicated to increasing interest and awareness of soil science among K-12 teachers and their students, and working to integrate more information on soil science into the science curriculum of schools over multiple grade levels. For instance, we have a website dedicated to children (http://www.soils4kids.org/), which describes fun games to play with soil, suggestions for science-fair experiments, and opens their minds to careers in soil science. Another site (http://www.soils4teachers.org/) is dedicated to the needs of school teachers, providing ready resources for the classroom. Society members have even authored books ("Soil! Get the Inside Scoop" for one) to get children aged 9 to 12, excited about the living world of soil. In keeping with the times, a blog called "Soils Matter" is hosted by Society staff and now has over 24,000 views a month. Probably, the most successful recent campaigns have been our "I Heart Soil" brand, which features an array of products with "I Heart Soil" now in 15 languages (including Klingon) and the "I Dig It! Secrets of Soil" exhibit. This exhibit, is a 375-square meter interactive display revealing the complex world of soil and how this underfoot ecosystem supports nearly every form of life on earth. Developed by the Smithsonian's National Museum of Natural History with support from SSSA, "Dig It!" includes interactive displays, hands-on models, videos, and 54 soil monoliths representing soils from each USA state. It was on display at the Smithsonian in Washington, DC for nearly two years, and in 2010, moved to museums in the states of Nebraska, Washington, Minnesota, California and then North Carolina. Another major outreach emphasis of SSSA is the development and promotion of soils-based policy initiatives, with Society policy expert staff located in Washington, DC dedicated to this critical activity. Information on their activities is located on our Society website at https://www.soils.org/science-policy and includes funding concerns, educational briefings, and position statements and reports. For example, our Frontiers in Soil Science activity identified critical needs to augment federal funding and to promote innovation through partnerships between public and private sectors. The Congressional Soils Caucus Alliance communicates with Congressional members and staff to enhance knowledge and understanding of the role that soil and soil science play in addressing the most pressing issues facing the USA and the world. These SSSA activities bore fruit recently, when on December 5, 2016, the White House Office of Science and Technology Policy announced new steps to advance soil health. At the same time, the National Science and Technology Council released a Framework for a Federal Strategic Plan for Soil Science, which aims to identify needs, gaps, and opportunities in soil science; develop opportunities for expanding soil conservation practices and enhancing soil carbon sequestration; and coordinate Federal research priorities for the future. Clearly, the recognition and visibility of the critical role of soils to human and environmental health to diverse population of the USA has never been greater. This provides opportunities and challenges, with the SSSA at the forefront, leading the charge.

  9. Tritium environmental transport studies at TFTR

    NASA Astrophysics Data System (ADS)

    Ritter, P. D.; Dolan, T. J.; Longhurst, G. R.

    1993-06-01

    Environmental tritium concentrations will be measured near the Tokamak Fusion Test Reactor (TFTR) to help validate dynamic models of tritium transport in the environment. For model validation the database must contain sequential measurements of tritium concentrations in key environmental compartments. Since complete containment of tritium is an operational goal, the supplementary monitoring program should be able to glean useful data from an unscheduled acute release. Portable air samplers will be used to take samples automatically every 4 hours for a week after an acute release, thus obtaining the time resolution needed for code validation. Samples of soil, vegetation, and foodstuffs will be gathered daily at the same locations as the active air monitors. The database may help validate the plant/soil/air part of tritium transport models and enhance environmental tritium transport understanding for the International Thermonuclear Experimental Reactor (ITER).

  10. Urban soils as hotspots of anthropogenic carbon accumulation: Review of stocks, mechanisms and factors

    NASA Astrophysics Data System (ADS)

    Vasenev, Viacheslav; Kuzyakov, Yakov

    2017-04-01

    Urban soils and cultural layers accumulate carbon (C) over centuries and consequently large C stocks are sequestered below the cities. These C stocks as well as the full range of processes and mechanisms leading to high C accumulation in urban soils remain unknown. We collected data on organic (SOC), inorganic (SOC) and black (pyrogenic) (BC) C content in urban and natural soils from 100 papers based on Scopus and Web-of-Knowledge databases. The yielded database includes 770 values on SOC, SIC and BC stocks from 118 cities worldwide. The collected data were analyzed considering the effects of climatic conditions and urban-specific factors: city size, age and functional zoning. For the whole range of climatic conditions, the C contents in urban soils were 1.5-3 times higher than in respective natural soils. This higher C content and much deeper C accumulation in urban soils resulted in 3 to 5 times higher C stocks compared to natural soils. Urban SOC stocks were positively correlated with latitude, whereas SIC stocks were less affected by climate. The city size and age were the main factors controlling intra-city variability of C stocks with higher stocks in small cities compared to megapolises and in medieval compared to new cities. The inter-city variability of C stocks was dominated by functional zoning: large SOC and N stocks in residential areas and large SIC and BC stocks in industrial zones and roadsides were similar for all climates and for cities of different size and age. Substantial stocks of SOC, SIC and N were sequestered for long-term in the subsoils and cultural layers of the sealed soils, which underline the importance of these 'hidden' stocks for C assessments. Typical and specific for urban soils is that the anthropogenic factor overshadows the other five factors of soil formation. Substantial C stocks in urban soils and cultural layers result from specific mechanisms of C accumulation in cities: i) large and long-term C inputs from outside the city (e.g. suburban, agricultural and forest areas), and ii) C accumulation in parallel with upward soil growing without complete mineralization (common in natural soils). These mechanisms result over long period in gradual growing-up of urban soils and C accumulation. The average rate of urban soils' uprising growth of 50 cm per century and the average SOC contents of 3-5% led conclude that urban soils accumulate 15-30 kg C m-2 per century without steady state (common for all natural soils). These factors lead to high potential of urban soils for long-term C sequestration. We conclude that despite small area under the cities, urban soils are hotspots of belowground long-term C sequestration worldwide and the importance of urban soils will increase in future with global urbanization.

  11. Inclusiveness, Effectiveness and Intrusiveness: Issues in the Developing Uses of DNA Profiling in Support of Criminal Investigations

    PubMed Central

    2005-01-01

    Précis The rapid implementation and continuing expansion of forensic DNA databases around the world has been supported by claims about their effectiveness in criminal investigations and challenged by assertions of the resulting intrusiveness into individual privacy. These two competing perspectives provide the basis for ongoing considerations about the categories of persons who should be subject to nonconsensual DNA sampling and profile retention as well as the uses to which such profiles should be put. This paper uses the example of the current arrangements for forensic DNA databasing in England & Wales to discuss the ways in which the legislative and operational basis for police DNA databasing is reliant upon continuous deliberations over these and other matters by a range of key stakeholders. We also assess the effects of the recent innovative use of DNA databasing for ‘familial searching’ in this jurisdiction in order to show how agreed understandings about the appropriate uses of DNA can become unsettled and reformulated even where their investigative effectiveness is uncontested. We conclude by making some observations about the future of what is recognised to be the largest forensic DNA database in the world. PMID:16240734

  12. From metaphor to practices: The introduction of "information engineers" into the first DNA sequence database.

    PubMed

    García-Sancho, Miguel

    2011-01-01

    This paper explores the introduction of professional systems engineers and information management practices into the first centralized DNA sequence database, developed at the European Molecular Biology Laboratory (EMBL) during the 1980s. In so doing, it complements the literature on the emergence of an information discourse after World War II and its subsequent influence in biological research. By the careers of the database creators and the computer algorithms they designed, analyzing, from the mid-1960s onwards information in biology gradually shifted from a pervasive metaphor to be embodied in practices and professionals such as those incorporated at the EMBL. I then investigate the reception of these database professionals by the EMBL biological staff, which evolved from initial disregard to necessary collaboration as the relationship between DNA, genes, and proteins turned out to be more complex than expected. The trajectories of the database professionals at the EMBL suggest that the initial subject matter of the historiography of genomics should be the long-standing practices that emerged after World War II and to a large extent originated outside biomedicine and academia. Only after addressing these practices, historians may turn to their further disciplinary assemblage in fields such as bioinformatics or biotechnology.

  13. 15 years in promoting the use of isotopic and nuclear technique for combating land degradation and soil erosion: the contribution of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Toloza, Arsenio; Heng, Lee

    2017-04-01

    The world population will exceed 9 billion by the year 2050 and food production will need to be approximately doubled to meet this crucial demand. Most of this increase will occur in developing countries, where the majority of the population depends on agriculture and their land for their livelihoods. Reports from the Intergovernmental Panel on Climate Change (IPCC) predicted negative impact of climate change, threatening global food security. In addition, the intensification of agricultural activities has increased pressure on land and water resources, resulting in different forms of soil degradation, of which soil erosion and associated sedimentation are worsening. Worldwide economic costs of agricultural soil loss and associated sedimentation downstream have been estimated at US 400 billion per year. As a result of climate change, world average soil erosion is expected to further increase significantly. Adapting to climate change requires agricultural soil and water management practices that make agricultural production systems resilient to drought, floods and land degradation, to enhance the conservation of the natural resource base for sustainable upland farming. These current concerns with ensuring sustainable use and management of agroecosystems create an urgent need for reliable quantitative data on the extent and magnitude of soil resource degradation over several spatial and time scales to formulate sound policies and management measures. Integrated isotopic approaches can help in targeting adapted and effective soil-water conservation measures to control soil degradation and therefore contribute to positive feedback mechanisms to mitigate climate change impact on soil and water resources. Set up 60 years ago as the world's centre for cooperation in the nuclear field, the International Atomic Energy Agency (IAEA) promotes the safe, secure and peaceful use of nuclear technologies. Since the end of the 1990s, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has developed research and development activities and capacity building to combat soil degradation (especially soil erosion) and to foster climate smart agriculture. More than 70 FAO/IAEA Member States have benefitted from the technical support and guidance in using fallout radionuclides (FRNs) and Compound-Specific Stable Isotope (CSSI) techniques to trace soil movement and assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management. This contribution summarizes the historical background and the latest innovative activities conducted by the Joint FAO/IAEA Division, as well as the main advantages and complementarity of stable and radioisotopic tracers to conventional techniques when investigating land degradation. As examples of the significant role played by the Joint FAO/IAEA Division, two major outcomes achieved in Africa (i.e. Madagascar and Morocco) through the use of isotopic and nuclear techniques will be elaborated. The authors will also report on a new 5-year Co-ordinated Research Project (CRP) funded by the IAEA on "Nuclear Techniques for a Better Understanding of the Impact of Climate Change on Soil Erosion in Upland Agro-ecosystems" which involves key research institutions from 12 participating countries.

  14. Presenting the 3rd edition of WRB

    NASA Astrophysics Data System (ADS)

    Schad, Peter

    2014-05-01

    The third edition of the international soil classification system "World Reference Base for Soil Resources" (WRB) will be presented during der 20th World Congress of Soil Science, Jeju, Korea, June 9-12. The second edition was published in 2006 and the first in 1998, which, in turn, was based on the Legends of the FAO Soil Map of the World. Now, after eight years of experience with the second edition, time was due for a revision. The major changes are: 1. The second edition had two different qualifier sequences for naming soils (IUSS Working Group WRB, 2006, update 2007) and for creating map legends (Guidelines for creating small-scale map legends using the WRB; IUSS Working Group WRB, 2010). The third edition has one sequence for both. The qualifiers for every Reference Soil Group are subdivided into a small number of main qualifiers that are ranked and a larger number of additional qualifiers that are not ranked and given in an alphabetical order. The name of a pedon must comprise all applying qualifiers. The name of a map unit comprises a specified small number of main qualifiers, depending on scale, whereas all other qualifiers are optional. 2. For some soils, problems have been reported. Albeluvisols are difficult to detect in the field and cover only small surfaces. They have been replaced by Retisols, which have a broader definition that is easier to identify in the field. 3. The use of some diagnostics was difficult. Examples are: The argic horizon had too low limit values, so we had much more soils with argic horizons than justified. The definitions of the cambic horizon and the gleyic and stagnic properties were not precise enough. Organic material, mollic and umbric horizons had an unnecessary complicated definition. 4. Some changes in the key to the Reference Soil Groups seemed to be justified. Fluvisols were moved further down, Durisols and Gypsisols switched their position, also Arenosols and Cambisols. The soils with an argic horizon were brought into a new sequence. 5. The umbrella function of WRB aims to allow the allocation of soil classes existing in a national classification system within the WRB. Characteristics that in a national system are regarded to be important must be considered in WRB - not necessarily at the highest level, but at least somewhere. The third edition of WRB allows a better accommodation of soil types, e.g., of the Australian and the Brazilian system. 6. Some environments or even ecoregions had not been well represented in WRB. The third edition allows a better accommodation of soils of ultra-continental permafrost regions, acid-sulphate soils and Technosols. 7. How to explain complicated sets of characteristics? For the third edition, efforts were made to give better structured definitions that can be more easily grasped. The editors of the third edition are convinced that the new WRB allows a more precise classification of soils including both, a better naming of pedons and a better elaboration of soil map legends.

  15. Interpolated mapping and investigation of environmental radioactivity levels in soils and mushrooms in the Middle Black Sea Region of Turkey.

    PubMed

    Türkekul, İbrahim; Yeşilkanat, Cafer Mert; Ciriş, Ali; Kölemen, Uğur; Çevik, Uğur

    2018-06-01

    The activity concentration of natural ( 238 U, 232 Th, and 40 K) and artificial ( 137 Cs) radionuclides was determined in 50 samples (obtained from the same station) from various species of mushrooms and soil collected from the Middle Black Sea Region (Turkey). The activities of 238 U, 232 Th, 40 K, and 137 Cs were found as 84 ± 16, 45 ± 14, 570 ± 28, and 64 ± 6 Bq kg -1 (dry weight), respectively, in the mushroom samples and as 51 ± 6, 41 ± 6, 201 ± 11, and 44 ± 4 Bq kg -1 , respectively, in the soil samples for the entire area of study. The results of all radionuclide activity measurements, except those of 238 U and 232 Th in the mushroom samples, are consistent with previous studies. In the soil samples, the mean values of 238 U and 232 Th are above the world mean, and the activity mean of 40 K is below the world mean. Finally, the activity estimation was made with both the soil and mushroom samples for unmeasured points within the study area by using the ordinary kriging method. Radiological distribution maps were generated.

  16. A review of perchlorate (ClO4-) occurrence in fruits and vegetables.

    PubMed

    Calderón, R; Godoy, F; Escudey, M; Palma, P

    2017-02-01

    Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.

  17. Reconfigurable Image Generator

    NASA Technical Reports Server (NTRS)

    Archdeacon, John L. (Inventor); Iwai, Nelson H. (Inventor); Kato, Kenji H. (Inventor); Sweet, Barbara T. (Inventor)

    2017-01-01

    A RiG may simulate visual conditions of a real world environment, and generate the necessary amount of pixels in a visual simulation at rates up to 120 frames per second. RiG may also include a database generation system capable of producing visual databases suitable to drive the visual fidelity required by the RiG.

  18. Teach with Databases: Toxics Release Inventory. [Multimedia].

    ERIC Educational Resources Information Center

    Barracato, Jay; Spooner, Barbara

    This curriculum unit provides students with real world applications of science as it pertains to toxic releases into the environment. This boxed package contains the Toxics Release Inventory (TRI) Teacher's Guide, TRI Database Basics guide, comprehensive TRI compact disk with user's guide, "Getting Started: A Guide to Bringing Environmental…

  19. Cleaning Data Helps Clean the Air

    ERIC Educational Resources Information Center

    Donalds, Kelley; Liu, Xiangrong

    2014-01-01

    In this project, students use a real-world, complex database and experience firsthand the consequences of inadequate data modeling. The U.S. Environmental Protection Agency created the database as part of a multimillion dollar data collection effort undertaken in order to set limits on air pollutants from electric power plants. First, students…

  20. HOED: Hypermedia Online Educational Database.

    ERIC Educational Resources Information Center

    Duval, E.; Olivie, H.

    This paper presents HOED, a distributed hypermedia client-server system for educational resources. The aim of HOED is to provide a library facility for hyperdocuments that is accessible via the world wide web. Its main application domain is education. The HOED database not only holds the educational resources themselves, but also data describing…

  1. Historical Collections | Alaska State Library

    Science.gov Websites

    Microfilm eResources Electronic Books (EBSCO) World Catalog (WorldCat) Free Images and Sounds Journal Finder Publications Catalog and Library Card Info Federal Publications Free Images and Sounds Library Resources Articles & Databases Free Images & Sounds Journal Finder Library Resources Live Homework Help

  2. Teaching about World War II: An ERIC/ChESS Sample.

    ERIC Educational Resources Information Center

    Schlene, Vickie L.

    1991-01-01

    Presents nine documents from the ERIC database dealing with teaching about World War II. Includes articles addressing the lessons of Pearl Harbor, the Holocaust, the wartime internment of Japanese Americans, industry's response to the war, and the moral lessons of Nazism. (SG)

  3. Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Shannon, H.

    2010-12-01

    The USDA World Agricultural Outlook Board (WAOB) coordinates the development of the monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Given the significant effect of weather on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments in the Global Agricultural Decision Support Environment (GLADSE). Because the timing of the precipitation is often as important as the amount, in their effects on crop production, WAOB frequently examines precipitation time series to estimate crop productivity. An effective method for such assessment is the use of analog year comparisons, where precipitation time series, based on surface weather stations, from several historical years are compared with the time series from the current year. Once analog years are identified, crop yields can be estimated for the current season based on observed yields from the analog years, because of the similarities in the precipitation patterns. In this study, NASA satellite precipitation and soil moisture time series are used to identify analog years. Given that soil moisture often has a more direct effect than does precipitation on crop water availability, the time series of soil moisture could be more effective than that of precipitation, in identifying those years with similar crop yields. Retrospective analyses of analogs will be conducted to determine any reduction in the level of uncertainty in identifying analog years, and any reduction in false negatives or false positives. The comparison of analog years could potentially be improved by quantifying the selection of analogs, instead of the current visual inspection method. Various approaches to quantifying are currently being evaluated. This study is part of a larger effort to improve WAOB estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE, including (1) the integration of the Land Parameter Retrieval Model (LPRM) soil moisture algorithm for operational production and (2) the assimilation of LPRM soil moisture into the USDA Environmental Policy Integrated Climate (EPIC) crop model.

  4. Using greenhouse gas fluxes to define soil functional types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variabilitymore » of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.« less

  5. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.

  6. Early-life residential exposure to soil components in rural areas and childhood respiratory health and allergy.

    PubMed

    Devereux, Graham; Tagiyeva, Nara; Turner, Stephen W; Ayres, Jon G; Seaton, Anthony; Hudson, Gordon; Hough, Rupert L; Campbell, Colin D; Shand, Charles A

    2014-01-01

    The increase in asthma and allergies has been attributed to declining exposure to environmental microorganisms. The main source of these is soil, the composition of which varies geographically and which is a major component (40-45%) of household dust. Our hypothesis-generating study aimed to investigate associations between soil components, respiratory health and allergy in a Scottish birth cohort. The cohort was recruited in utero in 1997/8, and followed up at one, two and five years for the development of wheezing, asthma and eczema. Lung function, exhaled nitric oxide and allergic sensitization were measured at age five in a subset. The Scottish Soils Database held at The James Hutton Institute was linked to the birth cohort data by the residential postcode at birth and five years. The soil database contained information on size separates, organic matter concentration, pH and a range of inorganic elements. Soil and clinical outcome data were available for 869, 790 and 727 children at one, two and five years. Three hundred and fifty nine (35%) of children had the same address at birth and five years. No associations were found between childhood outcomes and soil content in the residential area at age five. The soil silt content (2-20 μm particle size) of the residential area at birth was associated with childhood wheeze (adjusted OR 1.20, 95% CI [1.05; 1.37]), wheeze without a cold (1.41 [1.18; 1.69]), doctor-diagnosed asthma (1.54 [1.04; 2.28]), lung function (FEV1: beta -0.025 [-0.047;-0.001]) and airway inflammation (FENO: beta 0.15 [0.03; 0.27]) at age five, but not with allergic status or eczema. Whilst residual confounding is the most likely explanation for the associations reported, the results of this study lead us to hypothesise that early life exposure to residential soil silt may adversely influence childhood respiratory health, possibly because of the organic components of silt. © 2013 Elsevier B.V. All rights reserved.

  7. Water isotope partitioning and ecohydrologic separation in mixed conifer forest explored with a centrifugation water extraction method

    NASA Astrophysics Data System (ADS)

    Bowers, W.; Mercer, J.; Pleasants, M.; Williams, D. G.

    2017-12-01

    Isotopic partitioning of water within soil into tightly and loosely bound fractions has been proposed to explain differences between isotopic water sources used by plants and those that contribute to streams and ground water, the basis for the "two water worlds" hypothesis. We examined the isotope ratio values of water in trees, bulk soil, mobile water collected from soil lysimeters, stream water, and GW at three different hillslopes in a mixed conifer forest in southeastern Wyoming, USA. Hillslopes differed in aspect and topographic position with corresponding differences in surface energy balance, snowmelt timing, and duration of soil moisture during the dry summer. The isotopic results support the partitioning of water within the soil; trees apparently used a different pool of water for transpiration than that recovered from soil lysimeters and the source was not resolved with the isotopic signature of the water that was extracted from bulk soil via cryogenic vacuum distillation. Separating and measuring the isotope ratios values in these pools would test the assumption that the tightly bound water within the soil has the same isotopic signature as the water transpired by the trees. We employed a centrifugation approach to separate water within the soil held at different tensions by applying stepwise increases in rotational velocity and pressures to the bulk soil samples. Effluent and the remaining water (cryogenically extracted) at each step were compared. We first applied the centrifugation method in a simple lab experiment using sandy loam soil and separate introductions of two isotopically distinct waters. We then applied the method to soil collected from the montane hillslopes. For the lab experiment, we predicted that effluents would have distinct isotopic signatures, with the last effluent and extracted water more closely representing the isotopic signature of the first water applied. For our field samples, we predicted that the isotopic signature of the water discharged in the last centrifuge step and final extraction would more closely represent the isotopic signature of water extracted from trees. Understanding the isotopic partitioning of water within soil is important for interpreting plant water isotope values within the context of the "two water worlds" hypothesis.

  8. Enhanced DIII-D Data Management Through a Relational Database

    NASA Astrophysics Data System (ADS)

    Burruss, J. R.; Peng, Q.; Schachter, J.; Schissel, D. P.; Terpstra, T. B.

    2000-10-01

    A relational database is being used to serve data about DIII-D experiments. The database is optimized for queries across multiple shots, allowing for rapid data mining by SQL-literate researchers. The relational database relates different experiments and datasets, thus providing a big picture of DIII-D operations. Users are encouraged to add their own tables to the database. Summary physics quantities about DIII-D discharges are collected and stored in the database automatically. Meta-data about code runs, MDSplus usage, and visualization tool usage are collected, stored in the database, and later analyzed to improve computing. Documentation on the database may be accessed through programming languages such as C, Java, and IDL, or through ODBC compliant applications such as Excel and Access. A database-driven web page also provides a convenient means for viewing database quantities through the World Wide Web. Demonstrations will be given at the poster.

  9. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    DOE PAGES

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; ...

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, Pmore » and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg –1 dry soil, 0.1 mmol N Kg –1 dry soil, 0.1 mmol P Kg –1 dry soil, and 0.1 mmol S Kg –1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.« less

  10. Time compression of soil erosion by the effect of largest daily event. A regional analysis of USLE database.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Hidalgo, J. C.; Batalla, R.; Cerda, A.; de Luis, M.

    2009-04-01

    When Thornes and Brunsden wrote in 1977 "How often one hears the researcher (and no less the undergraduate) complain that after weeks of observation "nothing happened" only to learn that, the day after his departure, a flood caused unprecedent erosion and channel changes!" (Thornes and Brunsden, 1977, p. 57), they focussed on two different problems in geomorphological research: the effects of extreme events and the temporal compression of geomorphological processes. The time compression is one of the main characteristic of erosion processes. It means that an important amount of the total soil eroded is produced in very short temporal intervals, i.e. few events mostly related to extreme events. From magnitude-frequency analysis we know that few events, not necessarily extreme by magnitude, produce high amount of geomorphological work. Last but not least, extreme isolated events are a classical issue in geomorphology by their specific effects, and they are receiving permanent attention, increased at present because of scenarios of global change. Notwithstanding, the time compression of geomorphological processes could be focused not only on the analysis of extreme events and the traditional magnitude-frequency approach, but on new complementary approach based on the effects of largest events. The classical approach define extreme event as a rare event (identified by its magnitude and quantified by some deviation from central value), while we define largest events by the rank, whatever their magnitude. In a previous research on time compression of soil erosion, using USLE soil erosion database (Gonzalez-Hidalgo et al., EGU 2007), we described a relationship between the total amount of daily erosive events recorded by plot and the percentage contribution to total soil erosion of n-largest aggregated daily events. Now we offer a further refined analysis comparing different agricultural regions in USA. To do that we have analyzed data from 594 erosion plots from USLE database with different record periods, and located in different climatic regions. Results indicate that there are no significant differences in the mean contribution of aggregated 5-largest daily erosion events between different agricultural divisions (i.e. different regional climate), and the differences detected can be attributed to specific site and plots conditions. Expected contribution of 5-largest daily event for 100 total daily events recorded is estimated around 40% of total soil erosion. We discuss the possible causes of such results and the applicability of them to the design of field research on soil erosion plots.

  11. Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction

    USDA-ARS?s Scientific Manuscript database

    The long-term application of phosphorus (P) to agricultural lands has led to P accumulation in soils around the world. The build-up of soil P, also known as legacy P, poses a continued risk to ground and surface water quality that may be difficult to mitigate using traditional conservation and nutri...

  12. Soils. Science Education Research Unit. Working Paper 201.

    ERIC Educational Resources Information Center

    Happs, John C.

    The Learning in Science Project has adopted the view that science teaching might be improved if teachers can be given some appreciation of students' views of the world and the beliefs, expectations, and language that learners bring to new learning situations. This investigation looks at the topic of soil, one of the basic resources of New Zealand…

  13. The seen and unseen world of the fallen tree.

    Treesearch

    Chris Maser; James M. Trappe

    1984-01-01

    Large, fallen trees in various stages of decay contribute much-needed diversity to terrestrial and aquatic habitats in western forests. When most biological activity in soil is limited by low moisture availability in summer, the fallen tree-soil interface offers a relatively cool, moist habitat for animals and a substrate for microbial and root activity. Intensified...

  14. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil

    USDA-ARS?s Scientific Manuscript database

    Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. Humans and animals by ingesting plants, fruits, seeds or their derivatives contaminated with Cd can develop a number of chronic diseases, including cancer. The annual production of world cacao beans is approxima...

  15. CO2 and N2O emissions in a soil chronosequence at a glacier retreat zone in Maritime Antarctica

    USDA-ARS?s Scientific Manuscript database

    Polar regions represents a large carbon (C) sequestration reservoir in the world. Studies of alterations in C cycle are extremely important to identify changes due to climate change, especially among polar environments. The objectives of this study were to examine (i) patterns of soil CO2-C emission...

  16. Continued selenium biofortification of carrots and broccoli grown in soils once amended with Se-enriched S. pinnata

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops needed in Se-deficient ...

  17. Decreased water flowing from a forest amended with calcium silicate

    Treesearch

    Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...

  18. Soil sulfur amendments suppress Selenium uptake by alfalfa and western wheatgrass

    Treesearch

    C. L. Mackowiak; M. C. Amacher

    2008-01-01

    Selenium (Se) is a potential soil contaminant in many parts of the world where it can pose a health risk to livestock and wildlife. Phosphate ore mining in Southeast Idaho has resulted in numerous waste rock dumps revegetated with forages to stabilize the dumps and support grazing. Alfalfa (Medicago sativa L.), smooth brome (Bromus inermis...

  19. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil management in order to incorporate it into modern soil conservation strategies. The study shows that local and regional variations in natural settings, cultural traditions, and socioeconomic conditions played a major role for the dynamics and the rates of soil erosion on a long-term perspective. Geomorphic evidence and historical sources can often complement each other, but there should be also an awareness of new pitfalls when using them together.

  20. A short history of the soil science discipline

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Hartemink, A. E.

    2012-04-01

    Since people have cultivated the land they have generated and created knowledge about its soil. By the 4th century most civilizations around had various levels of soil knowledge and that includes irrigation, the use of terraces to control soil erosion, methods to maintain and improve soil fertility. The early soil knowledge was largely empirical and based on observations. Many famous scientists, for example, Francis Bacon, Robert Boyle, Charles Darwin, and Leonardo da Vinci worked on soil issues. Soil science became a true science in the 19th century with the development of genetic soil science, lead by the Russian Vasilii V. Dokuchaev. In the beginning soil science had strong ties to both geology and agriculture but in the 20th century, soil science is now being applied in residential development, the planning of highways, building foundations, septic systems, wildlife management, environmental management, and many other applications. The discipline is maturing and soil science plays a crucial role in many of the current issues that confront the world like climate change, water scarcity, biodiversity and environmental degradation.

  1. The potential roles of biological soil crusts in dryland hydrologic cycles

    USGS Publications Warehouse

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.

  2. Sugarcane straw harvest effects on soil quality and plant growth: preliminary data synthesis of a multi-local project running in Brazil

    NASA Astrophysics Data System (ADS)

    Cherubin, Maurício; Cerri, Carlos E. P.; Feigl, Brigitte J.; Cerri, Carlos C.

    2017-04-01

    Brazil is the largest sugarcane producer in the world, and consequently, it is one of major players in the bioenergy production sector. Despite that, growing demands for bioenergies have raised the interest of Brazilian sugarcane industry to harvest the sugarcane straw left on the field for cellulosic ethanol production and/or bioelectricity cogeneration. However, crop residues have a key role in the soil, affecting directly or indirectly multiple soil functions and related ecosystem services. Therefore, indiscriminate straw harvest could jeopardize soil quality, decreasing its capacity to sustain plant productivity over time. In order to evaluate the potential impacts of sugarcane straw harvest on soil quality and plant growth, we are conducting since 2014 a multi-local project across central-southern Brazil, the main core of sugarcane production in the world. A wide range of soil chemical, physical and biological parameters, as well as, plant biomass production has been quantified under increasing straw harvest intensities. Our preliminary findings have showed that short-term straw harvest management did not affect total organic C stocks; however, high straw harvest led to significant reduction in labile C forms (e.g., microbial biomass C and N), and abundance of microbial communities as well. Sugarcane straw harvest affects soil nutrient cycling, since significant amount of nutrients are removed annually by straw, especially in top (green) leaves. In addition, our data show that straw acts as a thermal insulator, decreasing soil temperature amplitude and keeping soil moisture for a longer time. Straw harvest management did not affect sugarcane yields in the first two crop seasons. Based on this first synthesis of the project, we conclude that short-term sugarcane straw harvest led to soil changes, especially in more sensitive and dynamic properties, which did not affect the plant yield. However, long-term impacts should be monitored towards a better understanding about potential trade-offs and synergies associated with sugarcane straw harvest for bioenergy production in Brazil.

  3. The potential roles of biological soil crusts in dryland hydrologic cycles

    NASA Astrophysics Data System (ADS)

    Belnap, Jayne

    2006-10-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.

  4. Decision Tree Approach for Soil Liquefaction Assessment

    PubMed Central

    Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498

  5. Decision tree approach for soil liquefaction assessment.

    PubMed

    Gandomi, Amir H; Fridline, Mark M; Roke, David A

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.

  6. Baseline Geochemical Data for Medical Researchers in Kentucky

    NASA Astrophysics Data System (ADS)

    Anderson, W.

    2017-12-01

    According to the Centers for Disease Control, Kentucky has the highest cancer incidence and death rates in the country. New efforts by geochemists and medical researchers are examining ways to diagnose the origin and sources of carcinogenesis. In an effort to determine if naturally occurring geochemical or mineral elements contributes to the cancer causation, the Kentucky Geological Survey has established a Minerals and Geochemical Database that is available to medical researchers for examination of baseline geochemistry and determine if naturally occurring mineral or chemical elements contribute to the high rate of cancers in the state. Cancer causation is complex, so if natural sources can be accounted for, then researchers can focus on the true causation. Naturally occurring minerals, metals and elements occur in many parts of the state, and their presence is valuable for evaluating causation. For example, some data in the database contain maps showing (a) statewide elemental geochemistry, (b) areas of black shale oxidation occurrence, which releases metals in soil and surface waters, (c) some clay deposits in the state that can contain high content of rare earth elements, and (d) site-specific uranium occurrences. Knowing the locations of major ore deposits in the state can also provide information related to mineral and chemical anomalies, such as for base metals and mercury. Radionuclide data in soil and water analyses are limited, so future research may involve obtaining more analyses to determine radon potential. This database also contains information on faulting and geology in the state. Although the metals content of trees may not seem relevant, the ash and humus content of degraded trees affects soil, stream sediment and water geochemistry. Many rural homes heat with wood, releasing metals into the surrounding biosphere. Stressed vegetation techniques can be used to explore for ore deposits and look for high metal contents in soils and rocks. These naturally occurring elements could be used for baseline information related to new collaborative research that integrates medicine, geology, forestry, and botany to predict metal contents of stream sediments, soil residuum, trees, plants, and forest cover and determine their relation to carcinogenesis.

  7. Mapping of nematode distribution and assessment of its ecological status using GIS techniques in Plovdiv region, Bulgaria.

    PubMed

    Bileva, T; Arnaudova, Zh

    2011-01-01

    The current investigation was carried out in selected vineyards in Plovdiv region, South Bulgaria. The GIS database was created including factors influenced on nematode distribution in the soil. The plant-parasitic nematodes from family Longidoridae associated with grapevine and soil type of the region were described. The impact of longidorids as virus vectors and some ecological aspects of their occurrence in vineyards in South Bulgaria are discussed.

  8. Using Technology to Learn from Travelmates' Adventures.

    ERIC Educational Resources Information Center

    Braun, Joseph A., Jr.; Kraft, Christine

    1995-01-01

    Describes a thematic curriculum unit in which elementary students simulate travel around the world and record their experiences using word processors and databases. Includes figures listing student directions and an actual student journal entry. Asserts that technology can heighten student motivation and improve knowledge about the world. (CFR)

  9. For State Employees | Alaska State Library

    Science.gov Websites

    Microfilm eResources Electronic Books (EBSCO) World Catalog (WorldCat) Free Images and Sounds Journal Finder Publications Catalog and Library Card Info Federal Publications Free Images and Sounds Library Resources Articles & Databases Free Images & Sounds Journal Finder Library Resources Live Homework Help

  10. Revisiting Melton: Analyzing the correlation structure of geomorphological and climatological parameters

    NASA Astrophysics Data System (ADS)

    Carothers, R. A.; Sangireddy, H.; Passalacqua, P.

    2013-12-01

    In his expansive 1957 study of over 80 basins in Arizona, Colorado, New Mexico, and Utah, Mark Melton measured key morphometric, soil, land cover, and climatic parameters [Melton, 1957]. He identified correlations between morphological parameters and climatic regimes in an attempt to characterize the geomorphology of the basin as a function of climate and vegetation. Using modern techniques such as high resolution digital terrain models in combination with high spatial resolution weather station records, vector soil maps, seamless raster geological data, and land cover vector maps, we revisit Melton's 1957 dataset with the following hypotheses: (1) Patterns of channelization carry strong, codependent signatures in the form of statistical correlations of rainfall variability, soil type, and vegetation patterns. (2) Channelization patterns reflect the erosion processes on sub-catchment scale and the subsequent processes of vegetation recovery and gullying. In order to characterize various topographic and climatic parameters, we obtain elevation and land cover data from the USGS National Elevation dataset, climate data from the Western Regional Climate Center and PRISM climate group database, and soil type from the USDA STATSGO soil database. We generate a correlative high resolution database on vegetation, soil cover, lithology, and climatology for the basins identified by Melton in his 1957 study. Using the GeoNet framework developed by Passalacqua et al. [2010], we extract various morphological parameters such as slope, drainage density, and stream frequency. We also calculate metrics for patterns of channelization such as number of channelized pixels in a basin and channel head density. In order to understand the correlation structure between climate and morphological variables, we compute the Pearson's correlation coefficient similar to Melton's analysis and also explore other statistical procedures to characterize the feedbacks between these variables. By identifying the differences in Melton's and our results, we address the influence of climate over the degree of channel dissection in the landscape. References: Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology (No. CU-TR-11). COLUMBIA UNIV NEW YORK Passalacqua, P., Do Trung, T., Foufoula-Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical Research: Earth Surface (2003-2012), 115(F1). PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created 4 Feb 2004 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. U.S. General Soil Map (STATSGO2). Available online at http://soildatamart.nrcs.usda.gov USGS National Map Viewer, United States Geological Survey. Web. 10 June 2013. http://viewer.nationalmap.gov/viewer/ Western U.S. Historical Climate Summaries, Western Regional Climate Group, 2013. Web. 10 June 2013. http://www.wrcc.dri.edu/Climsum.html

  11. Ecohydrological modeling: the consideration of agricultural trees is essential in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; von Bloh, Werner; Shi, Sinan; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall and direct degradation of ecosystems. Human population growth and socioeconomic changes, notably on the Eastern and Southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive ecohydrological model. Here we present here the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL, "Lund-Potsdam-Jena managed Land"): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was then successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. A first application of the model indicates that, currently, agricultural trees consume in average more irrigation water per hectare than annual crops. Also, different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. This is very relevant since the Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 74% from climate change and population growth if irrigation systems and conveyance are not improved. Additionally, future water scarcity might pose further challenges to the agricultural sector: Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain have a high risk of not being able to sustainably meet future irrigation water requirements in some scenarios by the end of the century (1). The importance of including agricultural trees in the ecohydrological models is also shown in the results concerning soil organic carbon (SOC). Since in former model versions, areas with agricultural trees were simulated as perennial grasslands, implementing agricultural trees in LPJmL increased the carbon stock in soils in most of the Mediterranean area. We compared the SOC estimates before and after the implementation of agricultural trees, with the organic carbon density from the HWSD database (2). These data are produced by establishing functions between SOC and soil type, topography, climate variables and land use situation. The number of grid-cells with decreased differences to the HWSD estimates almost doubles the number of grid-cells with increased differences. This means that the development moved LPJmL's results for SOC closer to HWSD values (3). With the model development presented here, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture and its linkage with water use and resources. References: (1) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015) : Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. HESSD 12, 8459-8504. (2) Hiederer, R. and Köchy, M.: Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. EUR Scientific and Technical Research series - ISSN 1831-9424 (online), doi: 10.2788/13267, 2012. (3) Fader, M., von Bloh, W., Shi, S., Bondeau, A., Cramer, W. (2015): Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev., 8, 3545-3561, 2015.

  12. Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.

    1995-01-01

    This progress report covers the following efforts initiated for the year: year-round monthly soil CO2 flux measurements were started in both primary and secondary forests and in managed and degraded pastures; root sorting and weighing has begun and all four ecosystems at Paragominas have been analyzed through samples; regional modeling of soil water dynamics and minimum rooting depth has been done and the RADAMBRASIL soils database has been digitized and a 20 year record of the precipitation for the region has been produced, along with a hydrological ('bucket-tipping') model that will run within a GIS framework; prototype tension lysimeters have been designed and installed in soil pits to begin assessing the importance of DOC as a source of organic matter in deep soils; and many publications, listed in this document, have resulted from this year's research. Two of the papers published are included with this annual report document.

  13. CHEMICAL CHARACTERIZATION OF AMBIENT PARTICULATE MATTER NEAR THE WORLD TRADE CENTER: ELEMENTAL CARBON, ORGANIC CARBON, AND MASS RECONSTRUCTION

    EPA Science Inventory

    Concentrations of elemental carbon (EC), organic carbon matter (OM), particulate matter less than 2.5 um (PM2.5), and reconstructed soil, trace element oxides, and sulfate are reported from four locations near the World Trade Center (WTC) complex for airborne particulate matter (...

  14. Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia

    USGS Publications Warehouse

    Grosse, Guido; Robinson, Joel E.; Bryant, Robin; Taylor, Maxwell D.; Harper, William; DeMasi, Amy; Kyker-Snowman, Emily; Veremeeva, Alexandra; Schirrmeister, Lutz; Harden, Jennifer

    2013-01-01

    This digital database is the product of collaboration between the U.S. Geological Survey, the Geophysical Institute at the University of Alaska, Fairbanks; the Los Altos Hills Foothill College GeoSpatial Technology Certificate Program; the Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; and the Institute of Physical Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences. The primary goal for creating this digital database is to enhance current estimates of soil organic carbon stored in deep permafrost, in particular the late Pleistocene syngenetic ice-rich permafrost deposits of the Yedoma Suite. Previous studies estimated that Yedoma deposits cover about 1 million square kilometers of a large region in central and eastern Siberia, but these estimates generally are based on maps with scales smaller than 1:10,000,000. Taking into account this large area, it was estimated that Yedoma may store as much as 500 petagrams of soil organic carbon, a large part of which is vulnerable to thaw and mobilization from thermokarst and erosion. To refine assessments of the spatial distribution of Yedoma deposits, we digitized 11 Russian Quaternary geologic maps. Our study focused on extracting geologic units interpreted by us as late Pleistocene ice-rich syngenetic Yedoma deposits based on lithology, ground ice conditions, stratigraphy, and geomorphological and spatial association. These Yedoma units then were merged into a single data layer across map tiles. The spatial database provides a useful update of the spatial distribution of this deposit for an approximately 2.32 million square kilometers land area in Siberia that will (1) serve as a core database for future refinements of Yedoma distribution in additional regions, and (2) provide a starting point to revise the size of deep but thaw-vulnerable permafrost carbon pools in the Arctic based on surface geology and the distribution of cryolithofacies types at high spatial resolution. However, we recognize that the extent of Yedoma deposits presented in this database is not complete for a global assessment, because Yedoma deposits also occur in the Taymyr lowlands and Chukotka, and in parts of Alaska and northwestern Canada.

  15. Analysis of Actual Soil Degradation by Erosion Using Satellite Imagery and Terrain Attributes in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Zizala, Daniel

    2015-04-01

    Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by statistical data of areas under farm crops from Czech Statistical Office. Information on number of scenes where bare soils are identified for each land parcel is available. This set of images with bare soils is used for assessment of soil degradation stage. Some land parcels were found without vegetation cover up to 40 times. Analysis was performed on 5 test sites in the Czech Republic and also using data from database of Soil Erosion Monitoring of Agricultural Land. Currently, more than 500 erosion events are registered in this database. Additional remote sensing data (Hyperion data, aerial hyperspectral data) was used for detailed analysis on the test sites. Results reveal that satellite imagery set, soil maps, terrain attributes and erosion modelling can be successfully applied in assessment of actual soil degradation by erosion. The research has been supported by the project no. QJ330118 "Using Remote Sensing for Monitoring of Soil Degradation by Erosion and Erosion Effects" funding by Ministry of Agriculture.

  16. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    PubMed

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. © 2014 Society of Chemical Industry.

  17. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality.

    PubMed

    Joimel, Sophie; Schwartz, Christophe; Hedde, Mickaël; Kiyota, Sayuri; Krogh, Paul Henning; Nahmani, Johanne; Pérès, Guénola; Vergnes, Alan; Cortet, Jérôme

    2017-04-15

    Despite their importance both in soil functioning and as soil indicators, the response of microarthropods to various land uses is still unclear. The aim of this study is to assess the effect of land use on microarthropod diversity and determine whether a soil's biological quality follows the same physicochemical quality-based gradient from forest, agriculture-grassland, agriculture-arable land, vineyards, urban vegetable gardens to urban, industrial, traffic, mining and military areas. A database compiling the characteristics of 758 communities has been established. We calculated Collembola community indices including: species richness, Pielou's evenness index, collembolan life forms, the abundance of Collembola and of Acari, the Acari/Collembola abundance ratio, and the Collembolan ecomorphological index. Results show that agricultural land use was the most harmful for soil microarthropod biodiversity, whilst urban and industrial land uses give the same level of soil biological quality as forests do. Furthermore, differences between the proportions of Acari and ecomorphological groups were observed between land uses. This study, defining soil microarthropod diversity baselines for current land uses, should therefore help in managing and preserving soil microarthropod biodiversity, especially by supporting the preservation of soil quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.

    PubMed

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Cheng, Min; Wang, Rongzhong; Wan, Jia

    2018-05-01

    Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.

  19. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1992-01-01

    One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.

  20. Phenology-based, remote sensing of post-burn disturbance windows in rangelands

    USGS Publications Warehouse

    Sankeya, Joel B.; Wallace, Cynthia S.A.; Ravi, Sujith

    2013-01-01

    Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ∼100 historical wildland fires, with associated post-fire reseeding treatments, that burned 1990–2003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance – such as nutrient cycling, carbon storage, microbial community composition, or soil hydrology – as a function of disturbance windows, possibly using simulation modeling and historical wildfire information.

Top