Commercial industry on the horizon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belcher, J.
2000-01-01
About 5,000 Tcf of stranded gas reserves exist worldwide--gas that is not economically feasible to recover and move to market through pipelines. For oil producers, this is problematic for a number of reasons. What do you do with associated gas when environmental regulations worldwide are banning flaring due to concerns over greenhouse gas emissions? Reinjection is costly and may not be the best solution in every reservoir. While many producers have enormous gas reserves, they are of no value if that gas is just sitting in the ground with no potential markets at hand. How can you monetize these reserves?more » A potential solution to the problem of stranded gas reserves is GTL processing. This process takes methane and converts it to synthesis gas, uses the Fischer-Tropsch (FT) process to convert the synthesis gas to syncrude, and upgrades the syncrude to various hydrocarbon chains to produce a variety of refined products. Three recent developments favor commercial GTL development: environmental regulations are creating a premium for ultraclean fuels; new technology is lowering the capital costs and operating costs of GTL development; and world oil prices have risen above $20/bbl. Therefore, the oil and gas industry is taking a serious look at commercialization of GTL.« less
Worldwide distribution of subaquatic gas hydrates
Kvenvolden, K.A.; Ginsburg, G.D.; Soloviev, V.A.
1993-01-01
Sediments containing natural gas hydrates occur worldwide on continental and insular slopes and rises of active and passive margins, on continental shelves of polar regions, and in deep-water (> 300 m) environments of inland lakes and seas. The potential amount of methane in natural gas hydrates is enormous, with current estimates at about 1019 g of methane carbon. Subaquatic gas hydrates have been recovered in 14 different areas of the world, and geophysical and geochemical evidence for them has been found in 33 other areas. The worldwide distribution of natural gas hydrates is updated here; their global importance to the chemical and physical properties of near-surface subaquatic sediments is affirmed. ?? 1993 Springer-Verlag.
Turboexpanders with dry gas seals and active magnetic bearings in hydrocarbon processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.
1999-07-01
Since its first application in hydrocarbon processing in the early 1960s, turboexpander design has changed, evolved and improved tremendously. Today, hydrocarbon process designers use turboexpanders for almost all hydrocarbon liquid rejection and hydrocarbon dew point control for onshore and offshore installations. There are presently more than 3,000 turboexpanders operating in hydrocarbon gas processing plants worldwide. Due to the wide application of turboexpanders in hydrocarbon processing, the API-617 committee has assigned a task force to prepare an appendix to API-617 to cover design and manufacturing standards for turboexpanders. Dry gas seals (DGS) were cautiously introduced in the early 1980s for compressorsmore » used in hydrocarbon processing. It took almost a decade before dry gas seals found their application in turboexpanders. Dry gas seals were originally utilized to protect cryogenic hydrocarbon process gas from contamination by lubricating oil. Later on, dry gas seals were used to minimized hydrocarbon process gas leakage and also to provide an inert-gas-purged environment for both oil bearings and active magnetic bearings. The former eliminates the lubricating oil dilution problem and the latter made certification of active magnetic bearings by international certifying agencies possible. Active magnetic bearings (AMB), similar to dry gas seals, were originally introduced into hydrocarbon process gas compressors in the mid 1980s. The hydrocarbon processing industry waited half a decade to adopt this innovative technology for turboexpanders in the hydrocarbon process. The first turboexpander with active magnetic bearings was installed on an offshore platform in 1991. High reliability, low capital investment, low capital investment, low operating costs and more compact design have accelerated demand in recent years for turboexpanders with active magnetic bearings. In this paper, the author describes the technology of turboexpanders with dry gas seals and active magnetic bearings. Several applications are presented and performance, reliability and availability data will be presented.« less
Segan, Louise; Permezel, Fiona; Ch'ng, Wei; Millar, Ian; Brooks, Mark; Lee-Archer, Matt; Cloud, Geoffrey
2018-04-01
Cerebral arterial gas embolism is a recognised complication of endovascular intervention with an estimated incidence of 0.08%. Its diagnosis is predominantly clinical, supported by neuroimaging. The treatment relies on alleviating mechanical obstruction and reversing the proinflammatory processes that contribute to tissue ischaemia. Hyperbaric oxygen therapy is an effective treatment and has multiple mechanisms to reverse the pathological processes involved in cerebral arterial gas embolism. Symptomatic cerebral arterial gas embolism is a rare complication of endovascular intervention for acute ischaemic stroke. Although there are no previous descriptions of its successful treatment with hyperbaric oxygen therapy following mechanical thrombectomy, this is likely to become more common as mechanical thrombectomy is increasingly used worldwide to treat acute ischaemic stroke. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Unconventional oil and gas extraction and animal health.
Bamberger, M; Oswald, R E
2014-08-01
The extraction of hydrocarbons from shale formations using horizontal drilling with high volume hydraulic fracturing (unconventional shale gas and tight oil extraction), while derived from methods that have been used for decades, is a relatively new innovation that was introduced first in the United States and has more recently spread worldwide. Although this has led to the availability of new sources of fossil fuels for domestic consumption and export, important issues have been raised concerning the safety of the process relative to public health, animal health, and our food supply. Because of the multiple toxicants used and generated, and because of the complexity of the drilling, hydraulic fracturing, and completion processes including associated infrastructure such as pipelines, compressor stations and processing plants, impacts on the health of humans and animals are difficult to assess definitively. We discuss here findings concerning the safety of unconventional oil and gas extraction from the perspectives of public health, veterinary medicine, and food safety.
A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1997-01-01
This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, V.G.
1995-07-01
More than 170 delegates from 14 countries in Europe, North America, Africa, and Asia took part in a conference on the topic: Exploration and Production of Petroleum and Gas from Chalk Reservoirs Worldwide. The conference was held in Copenhagen, Denmark in September,1994, and was a joint meeting of the American Association of Petroleum Geologists (AAPG), and the European Association of Petroleum Geoscientists and Engineers (EAPG). In addition to the opening remarks, 25 oral and nine poster reports were presented. The topics included chalk deposits as reservoir rocks, the occurrence of chalk deposits worldwide, the North Sea oil and gas fields,more » and other related topics.« less
Is shale gas drilling an energy solution or public health crisis?
Rafferty, Margaret A; Limonik, Elena
2013-01-01
High-volume horizontal hydraulic fracturing, a controversial new mining technique used to drill for shale gas, is being implemented worldwide. Chemicals used in the process are known neurotoxins, carcinogens, and endocrine disruptors. People who live near shale gas drilling sites report symptoms that they attribute to contaminated air and water. When they seek help from clinicians, a diagnosis is often elusive because the chemicals to which the patients have been exposed are a closely guarded trade secret. Many nurses have voiced grave concern about shale gas drilling safety. Full disclosure of the chemicals used in the process is necessary in order for nurses and other health professionals to effectively care for patients. The economic exuberance surrounding natural gas has resulted in insufficient scrutiny into the health implications. Nursing research aimed at determining what effect unconventional drilling has on human health could help fill that gap. Public health nurses using the precautionary principle should advocate for a more concerted transition from fossil fuels to sustainable energy. Any initiation or further expansion of unconventional gas drilling must be preceded by a comprehensive Health Impact Assessment (HIA). © 2013 Wiley Periodicals, Inc.
A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.
Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion
2010-01-01
The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.
NOx Removal from Flue Gases Using Non-Thermal Plasma
NASA Astrophysics Data System (ADS)
Takaki, Koichi
Air pollution caused by gas emission of pollutants produced from a wide range of sources including coal, oil and gas burning power plants, diesel engines, paper mills, steel and chemical production plants must be reduced drastically and urgently, as mandated by recent worldwide nation legislation which recently are being reinforced increasingly by international agreements. Non-thermal plasma in which the mean energy of electrons is substantially higher than that of the gas offer advantages in reducing energy required to remove the pollutants. The electrical energy supplied into the discharge is used preferentially to create energetic electrons which are then used to produce radicals by dissociation and ionization of the carrier gas in which the pollutants are present. These radicals are used to decompose the pollutants. There are two technologically promising techniques for generating non-thermal plasmas in atmospheric gas pressure containing the pollutants, namely electron beam irradiation and electrical discharge techniques. Both techniques are undergoing intensive and continuous development worldwide. This is done to reduce the energy requirement for pollutant removal, and therefore the associated cost, as well as to obtain a better understanding of the physical and chemical processes involved in reducing the pollutants. In the present paper only electrical discharge techniques for NOx removal from flue gases and exhaust emissions are reviewed. This paper summarizes the chemical reactions responsible for the removal of the major polluting constituents of NO and NO2 encountered in the flue gases.
Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus
Barnett, Timothy C.; McArthur, Jason D.; Cole, Jason N.; Gillen, Christine M.; Henningham, Anna; Sriprakash, K. S.; Sanderson-Smith, Martina L.; Nizet, Victor
2014-01-01
SUMMARY Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority. PMID:24696436
Regulation and policy: International trends and issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, W S
As offshore oil and gas resources become exhausted, the associated production platforms and facilities will be decommissioned. The world-wide oil and gas industry is strictly regulated by global, regional and national guidelines which have been developed by governments to find the most responsible framework to perform the decommissioning. In the summer of 1995, the Brent Spar incident brought uncertainty to decommissioning world-wide. In June of 1995, a moratorium prohibiting sea disposal within the North East Atlantic was imposed by the Oslo Commission, and an unsuccessful attempt was made in December of 1995 to impose a world-wide moratorium on sea disposalmore » at the London Convention.« less
Mathematical model of gas plasma applied to chronic wounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J. G.; Liu, X. Y.; Liu, D. W.
2013-11-15
Chronic wounds are a major burden for worldwide health care systems, and patients suffer pain and discomfort from this type of wound. Recently gas plasmas have been shown to safely speed chronic wounds healing. In this paper, we develop a deterministic mathematical model formulated by eight-species reaction-diffusion equations, and use it to analyze the plasma treatment process. The model follows spatial and temporal concentration within the wound of oxygen, chemoattractants, capillary sprouts, blood vessels, fibroblasts, extracellular matrix material, nitric oxide (NO), and inflammatory cell. Two effects of plasma, increasing NO concentration and reducing bacteria load, are considered in this model.more » The plasma treatment decreases the complete healing time from 25 days (normal wound healing) to 17 days, and the contributions of increasing NO concentration and reducing bacteria load are about 1/4 and 3/4, respectively. Increasing plasma treatment frequency from twice to three times per day accelerates healing process. Finally, the response of chronic wounds of different etiologies to treatment with gas plasmas is analyzed.« less
A primer on the geological occurrence of gas hydrate
Kvenvolden, K.A.
1998-01-01
This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert).Natural gas hydrates occur world-wide in polar regions, usually associated with onshore and offshore permafrost, and in sediment of outer continental and insular margins. The total amount of methane in gas hydrates probably exceeds 1019 g of methane carbon. Three aspects of gas hydrates are important: their fossil fuel resource potential; their role as a submarine geohazard; and their effects on global climate change. Because gas hydrates represent a large amount of methane within 2000 m of the Earth's surface, they are considered to be an unconventional, unproven source of fossil fuel. Because gas hydrates are metastable, changes of pressure and temperature affect their stability. Destabilized gas hydrates beneath the sea floor lead to geological hazards such as submarine slumps and slides, examples of which are found world-wide. Destabilized gas hydrates may also affect climate through the release of methane, a 'greenhouse' gas, which may enhance global warming and be a factor in global climate change.
Methylal and methylal-diesel blended fuels for use in compression-ignition engines
DOT National Transportation Integrated Search
2000-06-21
Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-toliquids : products are used as transportation fuels and as blendstocks for upgra...
Optimization of the monitoring of landfill gas and leachate in closed methanogenic landfills.
Jovanov, Dejan; Vujić, Bogdana; Vujić, Goran
2018-06-15
Monitoring of the gas and leachate parameters in a closed landfill is a long-term activity defined by national legislative worldwide. Serbian Waste Disposal Law defines the monitoring of a landfill at least 30 years after its closing, but the definition of the monitoring extent (number and type of parameters) is incomplete. In order to define and clear all the uncertainties, this research focuses on process of monitoring optimization, using the closed landfill in Zrenjanin, Serbia, as the experimental model. The aim of optimization was to find representative parameters which would define the physical, chemical and biological processes in the closed methanogenic landfill and to make this process less expensive. Research included development of the five monitoring models with different number of gas and leachate parameters and each model has been processed in open source software GeoGebra which is often used for solving optimization problems. The results of optimization process identified the most favorable monitoring model which fulfills all the defined criteria not only from the point of view of mathematical analyses, but also from the point of view of environment protection. The final outcome of this research - the minimal required parameters which should be included in the landfill monitoring are precisely defined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shale Gas in Europe: pragmatic perspectives and actions
NASA Astrophysics Data System (ADS)
Hübner, A.; Horsfield, B.; Kapp, I.
2012-10-01
Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.
Monitoring the progress of emission inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, J.A. Jr.; Solomon, D.; Husk, M.
This issue of EM contains three articles which focus on the latest improvements on the emissions inventory process. The first, 'Building the national emissions inventory: challenges and plans for improvements' by Doug Solomon and Martin Husk (pages 8-11), looks at the US national emissions inventory. The next, 'Greenhouse gas inventories - a historical perspective and assessment of improvements since 1990' by Bill Irving and Dina Kruger (pages 12-19) assesses improvements in national and international greenhouse gas emissions inventories over the last 15 years. The third article, 'The global mercury emissions inventory' by Leonard Levin (pages 20-25) gives an overview ofmore » the challenges associated with conducting a worldwide inventory of mercury emissions.« less
Valin, Zenon C.; Collett, Timothy S.
1992-01-01
Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.
NASA Astrophysics Data System (ADS)
Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.
2017-12-01
Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout Quaternary glacial cycles. The presented conceptual model for the evolution of giant craters can also serve as an analogue for future destabilization of glacially influenced hydrate reservoirs.
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming
2016-05-01
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.
Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching
2015-05-01
The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.
30 CFR 256.43 - Chargeability for production.
Code of Federal Regulations, 2011 CFR
2011-07-01
... THE INTERIOR OFFSHORE LEASING OF SULPHUR OR OIL AND GAS IN THE OUTER CONTINENTAL SHELF Issuance of... oil, gas, or other mineral rights, or, in general, any interest or instrument commonly known as a... crude oil, natural gas, and liquefied petroleum products which it owned worldwide; (2) The average daily...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-08
Natural gas powers about 150,000 vehicles in the United States and roughly 22 million vehicles worldwide. Natural gas vehicles (NGVs) are a good choice for high-mileage fleets -- such as buses, taxis, and refuse vehicles -- that are centrally fueled or operate within a limited area or along a route with natural gas fueling stations. This brochure highlights the advantages of natural gas as an alternative fuel, including its domestic availability, established distribution network, relatively low cost, and emissions benefits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-06-01
Natural gas powers about 150,000 vehicles in the United States and roughly 22 million vehicles worldwide. Natural gas vehicles (NGVs) are a good choice for high-mileage fleets -- such as buses, taxis, and refuse vehicles -- that are centrally fueled or operate within a limited area or along a route with natural gas fueling stations. This brochure highlights the advantages of natural gas as an alternative fuel, including its domestic availability, established distribution network, relatively low cost, and emissions benefits.
Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources
2006-01-01
Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.
Shallow Methane Hydrates: Rates, Mechanisms of Formation and Environmental Significance.
NASA Astrophysics Data System (ADS)
Torres, M. E.; Trehu, A. M.
2005-05-01
Shallow gas hydrates have been identified at more than 20 locations worldwide, and are commonly associated with observations of bubble discharge at the seafloor. These deposits are host to active chemosynthetic communities and are likely to play a predominant role in energy, climate and carbon cycle issues associated with hydrate processes. Because seafloor gas hydrates are not in equilibrium with seawater, these deposits require a constant supply of methane to replace loss by continuous diffusion to bottom water. We will summarize evidence documenting that at the shallow deposits on Hydrate Ridge (OR) methane must be delivered in the free gas phase and present simple models used to infer formation rates, which are orders of magnitude higher than those for hydrates formed deeper in the sediment column (Torres et al., 2004). At Hydrate Ridge, methane gas is channeled from deep accretionary margin sequences to the gas hydrate stability zone (GHSZ) through a permeable layer that has been mapped seismically (Horizon A). High gas pressure in this horizon can drive gas through the GHSZ to the seafloor (Trehu et al., 2004). We will review current ideas that address mechanisms whereby gas migrates from Horizon A to the seafloor, including inhibition by capillary effects and the development of a high salinity front that can shift the hydrate stability field enough to allow for methane transport as a gas phase.
Engineering application of anaerobic ammonium oxidation process in wastewater treatment.
Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke
2017-08-01
Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.
Use of IMS data and its potential for research through global noble gases concentration maps
NASA Astrophysics Data System (ADS)
Terzi, Lucrezia; Kalinowski, Martin; Gueibe, Christophe; Camps, Johan; Gheddou, Abdelhakim; Kusmierczyk-Michulec, Jolanta; Schoeppner, Michael
2017-04-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) established for verification purposes a global monitoring system for atmospheric radioisotopes and noble gas radioactivity. Daily activity concentrations have been collected worldwide for over 15 years providing unique data sets with long term time series that can be used for atmospheric circulation dynamics analysis. In this study, we want to emphasize the value of worldwide noble gas data by reconstructing global xenon concentration maps and comparing these observations with ATM simulations. By creating a residual plot, we can improve our understanding of our source estimation level for each region.
Natural gas hydrates; vast resource, uncertain future
Collett, T.S.
2001-01-01
Gas hydrates are naturally occurring icelike solids in which water molecules trap gas molecules in a cagelike structure known as a clathrate. Although many gases form hydrates in nature, methane hydrate is by far the most common; methane is the most abundant natural gas. The volume of carbon contained in methane hydrates worldwide is estimated to be twice the amount contained in all fossil fuels on Earth, including coal.
Chemical looping combustion: A new low-dioxin energy conversion technology.
Hua, Xiuning; Wang, Wei
2015-06-01
Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
Natural gas hydrate occurrence and issues
Kvenvolden, K.A.
1994-01-01
Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Alexis T.; Alger, Monty M.; Flytzani-Stephanopoulos, Maria
A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity tomore » discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.« less
Prospecting for marine gas hydrate resources
Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.
2016-01-01
As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.
Worldwide Natural Gas Supply and Demand and the Outlook for Global LNG Trade
1997-01-01
This article is adapted from testimony by Jay Hakes, Administrator of the Energy Information Administration, before the Senate Energy and Natural Resources Committee on July 23, 1997. The hearing focused on the examination of certain aspects of natural gas into the next century with special emphasis on world natural gas supply and demand to 2015.
Methane on the Move: natural greenhouse gas emissions over geological time
NASA Astrophysics Data System (ADS)
Horsfield, B.; di Primio, R.; Kroeger, K. F.; Schicks, J. M.
2008-12-01
The mass of organic carbon in sedimentary basins amounts to a staggering 1016 tons, dwarfing the mass contained in coal, oil, gas and all living systems by ten thousand-fold. The changing fate of this giant mass during subsidence and uplift, via chemical, physical and biological processes, is known to ultimately control fossil energy resource occurrence worldwide. But what has been overlooked and/or ignored until now is its enormous capacity for driving global climate: only a tiny degree of leakage, particularly when focussed through the clathrate cycle, can result in high greenhouse gas emissions. Understanding the workings of sedimentary basins in time and space is fundamental to gaining insights into Earth's climate. Here we shall present an integrated framework based on petroleum system modelling that will ultimately quantify methane migration and emission from one hundred of the world's most prolific petroliferous sedimentary basins. Timing of hydrocarbon generation from globally occurring prolific Jurassic and Cretaceous source rocks is regarded to be the key factor in quantifying gas release. Combined thermogenic and biogenic methane fluxes are the base for prediction of gas hydrate formation through time and space, by application of kinetics developed in the laboratory to geological scenarios. Results are calibrated in basin scale by emission structure evaluation (mud volcanoes, carbonate mounds, pockmarks) and on a global scale by proxy data from sedimentary archives and local atmospheric data. Identifying potential climate feedback processes over a geological time line that spans the Cenozoic requires a comprehensive understanding of source-sink relationships by coupling these feedstock fluxes with gas hydrate stability considerations, deep biosphere activity, ocean and atmosphere modelling
On the physics-based processes behind production-induced seismicity in natural gas fields
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan
2017-05-01
Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.
ERIC Educational Resources Information Center
Meyerhoff, Arthur A.
1983-01-01
Highlights worldwide oil and gas developments during 1982, focusing on production, drilling, and other activities/projects in specific countries and regional areas. Indicates that the most political actions (other than the U.S. decision not to protest further the Siberian pipeline project) were the continued Afghanistan and Iraq-Iran wars.…
Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel
DOT National Transportation Integrated Search
2017-11-09
The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...
The role of nano-particles in the field of thermal spray coating technology
NASA Astrophysics Data System (ADS)
Siegmann, Stephan; Leparoux, Marc; Rohr, Lukas
2005-06-01
Nano-particles play not only a key role in recent research fields, but also in the public discussions about health and safety in nanotechnology. Nevertheless, the worldwide activities in nano-particles research increased dramatically during the last 5 to 10 years. There are different potential routes for the future production of nano-particles at large scale. The main directions envisaged are mechanical milling, wet chemical reactions or gas phase processes. Each of the processes has its specific advantages and limitations. Mechanical milling and wet chemical reactions are typically time intensive and batch processes, whereas gas phase productions by flames or plasma can be carried out continuously. Materials of interest are mainly oxide ceramics, carbides, nitrides, and pure metals. Nano-ceramics are interesting candidates for coating technologies due to expected higher coating toughness, better thermal shock and wear resistance. Especially embedded nano-carbides and-nitrides offer homogenously distributed hard phases, which enhance coatings hardness. Thermal spraying, a nearly 100 years old and world wide established coating technology, gets new possibilities thanks to optimized, nano-sized and/or nano-structured powders. Latest coating system developments like high velocity flame spraying (HVOF), cold gas deposition or liquid suspension spraying in combination with new powder qualities may open new applications and markets. This article gives an overview on the latest activities in nano-particle research and production in special relation to thermal spray coating technology.
Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development
Llewellyn, Garth T.; Dorman, Frank; Westland, J. L.; Yoxtheimer, D.; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E.; Brantley, Susan L.
2015-01-01
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼1–3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad—the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide. PMID:25941400
Llewellyn, Garth T; Dorman, Frank; Westland, J L; Yoxtheimer, D; Grieve, Paul; Sowers, Todd; Humston-Fulmer, E; Brantley, Susan L
2015-05-19
High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.
Global occurrences of gas hydrate
Kvenvolden, K.A.; Lorenson, T.D.
2001-01-01
Natural gas hydrate is found worldwide in sediments of outer continental margins of all oceans and in polar areas with continuous permafrost. There are currently 77 localities identified globally where geophysical, geochemical and/or geological evidence indicates the presence of gas hydrate. Details concerning individual gas-hydrate occurrences are compiled at a new world-wide-web (www) site (http://walrus.wr.usgs.gov/globalhydrate). This site has been created to facilitate global gas-hydrate research by providing information on each of the localities where there is evidence for gas hydrate. Also considered are the implications of gas hydrate as a potential (1) energy resource, (2) factor in global climate change, and (3) geohazard.
The worldwide search for petroleum offshore; a status report for the quarter century, 1947-72
Berryhill, Henry L.
1974-01-01
At the end of 1972, offshore petroleum exploration was in progress on the submerged continental margins of 80 countries. Some 780 oil and gas fields had been discovered. Estimated worldwide volume of oil discovered offshore as of January 1, 1973, is 172.8 billion barrels of oil, or about 26 percent of the world total, and 168.4 trillion ft3 of natural gas. Present reserves of oil are 135.5 billion barrels, of which 70 percent is in the Persian Gulf. Some 90 percent of the oil discovered offshore has been found in 60 giant fields having reserves of 500 million or more barrels each.
Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem
2013-09-03
In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.
Competitiveness and potentials of UCG-CCS on the European energy market
NASA Astrophysics Data System (ADS)
Kempka, T.; Nakaten, N.; Schlüter, R.; Fernandez-Steeger, T.; Azzam, R.
2009-04-01
The world-wide coal reserves can satisfy the world's primary energy demand for several hundred years. However, deep coal deposits with seams of low thickness and structural complexity do currently not allow an economic exploitation of many deposits. Here, underground coal gasification (UCG) can offer an economical approach for coal extraction. The intended overall process relies on coal deposit exploitation using directed drillings located at the coal seam base and the subsequent in situ coal conversion into a synthesis gas. The resulting synthesis gas is used for electricity generation in a combined cycle plant at the surface. A reduction of the CO2 emissions resulting from the combined process is realized by subsequent CO2 capture and its injection into the previously gasified coal seams. The scope of the present study was the investigation of UCG-CCS competitiveness on the European energy market and the determination of the impacting factors. For that purpose, a modular model for calculation of UCG-CCS electricity generation costs was implemented and adapted to the most relevant process parameters. Furthermore, the range of energy supply coverage was estimated based on different German energy generation scenarios.
Processing methods, characteristics and adsorption behavior of tire derived carbons: a review.
Saleh, Tawfik A; Gupta, Vinod Kumar
2014-09-01
The remarkable increase in the number of vehicles worldwide; and the lack of both technical and economical mechanisms of disposal make waste tires to be a serious source of pollution. One potential recycling process is pyrolysis followed by chemical activation process to produce porous activated carbons. Many researchers have recently proved the capability of such carbons as adsorbents to remove various types of pollutants including organic and inorganic species. This review attempts to compile relevant knowledge about the production methods of carbon from waste rubber tires. The effects of various process parameters including temperature and heating rate, on the pyrolysis stage; activation temperature and time, activation agent and activating gas are reviewed. This review highlights the use of waste-tires derived carbon to remove various types of pollutants like heavy metals, dye, pesticides and others from aqueous media. Copyright © 2014 Elsevier B.V. All rights reserved.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates thatmore » such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.« less
Greenhouse-gas exchange of croplands worldwide: a process-based model simulation
NASA Astrophysics Data System (ADS)
Inatomi, M.; Ito, A.
2009-12-01
Croplands cover about 15% of the land surface, and play unique roles in global biogeochemical cycles. Especially, greenhouse gas budget of croplands is important for climate projection in the future and for mitigation toward climate stabilization. Sustainable cropland is carbon-neutral (i.e., neither a sink nor a source of CO2 for a long time), but those in developed countries consume fossil fuels for agricultural operations and releases CO2 as revealed by LCAs. Paddy field is one of the substantial sources of CH4, and cropland may be the largest anthropogenic source of N2O. However, these features have not been evaluated and discussed using a spatial-explicit comprehensive framework at the global scale. This study applies a process-based terrestrial ecosystem model (VISIT) to worldwide croplands. Exchange of CO2 is simulated as a difference between photosynthesis and respiration, each of which is calculated in a biogeochemical carbon cycle scheme. Net carbon budget accounts for carbon flows by planting, compost input, and harvest. Exchange of CH4 is simulated as a difference between oxidation by aerobic soils and production by anaerobic soils, each of which is calculated using mechanistic schemes. Emission of N2O from nitrification and denitrification is simulated with a semi-mechanistic scheme on the basis of leaky-pipe concept. We are also validating the model through comparison with chamber and tower flux measurements. Global simulations were conducted during a period from 1901 to 2100 on the basis of historical and projected climate and land-use conditions, at a spatial resolution of 0.5 x 0.5 degree. Cropland type and distribution was derived from SAGE-HYDE dataset and country-base fertilizer input was obtained from FAOSTAT. Our preliminary simulation for the 1990s estimated that croplands are a net sink of CO2 by 1.1 Gt C/yr; this sink is offset by emission by food consumption. Paddy fields are estimated to release CH4 by 46 Tg CH4/yr, and croplands worldwide release N2O by 5.9 Tg N2O/yr. Because of high Global Warming Potential of CH4 (25 for 100-yr) and N2O (298), these results imply that agriculture is a net source of radiative forcing for the atmosphere. Additionally, recent studies show that N2O is the most important substance for stratospheric ozone depletion. Therefore, further studies are needed to improve quantification of greenhouse gas budget in croplands and to design mitigation strategy.
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
Seismic data compression speeds exploration projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galibert, P.Y.
As part of an ongoing commitment to ensure industry-wide distribution of its revolutionary seismic data compression technology, Chevron Petroleum Technology Co. (CPTC) has entered into licensing agreements with Compagnie Generale de Geophysique (CGG) and other seismic contractors for use of its software in oil and gas exploration programs. CPTC expects use of the technology to be far-reaching to all of its industry partners involved in seismic data collection, processing, analysis and storage. Here, CGG--one of the world`s leading seismic acquisition and processing companies--talks about its success in applying the new methodology to replace full on-board seismic processing. Chevron`s technology ismore » already being applied on large off-shore 3-D seismic surveys. Worldwide, CGG has acquired more than 80,000 km of seismic data using the data compression technology.« less
Carbon footprint: current methods of estimation.
Pandey, Divya; Agrawal, Madhoolika; Pandey, Jai Shanker
2011-07-01
Increasing greenhouse gaseous concentration in the atmosphere is perturbing the environment to cause grievous global warming and associated consequences. Following the rule that only measurable is manageable, mensuration of greenhouse gas intensiveness of different products, bodies, and processes is going on worldwide, expressed as their carbon footprints. The methodologies for carbon footprint calculations are still evolving and it is emerging as an important tool for greenhouse gas management. The concept of carbon footprinting has permeated and is being commercialized in all the areas of life and economy, but there is little coherence in definitions and calculations of carbon footprints among the studies. There are disagreements in the selection of gases, and the order of emissions to be covered in footprint calculations. Standards of greenhouse gas accounting are the common resources used in footprint calculations, although there is no mandatory provision of footprint verification. Carbon footprinting is intended to be a tool to guide the relevant emission cuts and verifications, its standardization at international level are therefore necessary. Present review describes the prevailing carbon footprinting methods and raises the related issues.
NASA Astrophysics Data System (ADS)
Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.
2016-12-01
The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.
Kronabel, D B J
2010-03-01
The nitrous oxide production unit of the German Armed Forces was a worldwide unique facility which was only employed in the former main medical depot at Euskirchen (nitrous oxide: medical gas which is now obsolete). The last unit was phased out in 2002 and brought to the main medical depot at Blankenburg. Unfortunately the unit is now no longer in the depot and seems to have disappeared. This article describes the nitrous oxide production process and the use of the production unit which was designed by the Socsil company of Switzerland.
Executive reflects on progress in the oil and gas industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, S.
1997-08-01
This paper reflects on the UK oil and gas industry`s international globalization and progress from the perspective of a UK industry executive. Sir Ian Wood, managing director of John Wood Group plc, outlined past and future industry developments during a 1997 Offshore Technology Conference speech. He concludes that the UK supply and service industry is now fully involved in the international arena, and hopes to play a significant role in the exciting oil and gas developments in the Gulf of Mexico and frontiers worldwide.
Membrane separation systems---A research and development needs assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, R.W.; Cussler, E.L.; Eykamp, W.
1990-03-01
Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conductedmore » by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.« less
Kim, Young-Chan; Hong, Won-Hwa; Zhang, Yuan-Long; Son, Byeung-Hun; Seo, Youn-Kyu; Choi, Jun-Ho
2016-01-01
When asbestos containing materials (ACM) must be removed from the building before demolition, additional greenhouse gas (GHG) emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS). The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO2eq to 132,141 tonCO2eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide. PMID:27626433
ERIC Educational Resources Information Center
Geotimes, 1972
1972-01-01
Briefly reviews the worldwide developments in petroleum geology in 1971, including exploration, new fields, and oil production. This report is condensed from the October Bulletin of the American Association of Petroleum Geologists. (PR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn
2012-11-01
The pulp and paper industry ranks fourth in terms of energy consumption among industries worldwide. Globally, the pulp and paper industry accounted for approximately 5 percent of total world industrial final energy consumption in 2007, and contributed 2 percent of direct carbon dioxide (CO2) emissions from industry. Worldwide pulp and paper demand and production are projected to increase significantly by 2050, leading to an increase in this industry’s absolute energy use and greenhouse gas (GHG) emissions. Development of new energy-efficiency and GHG mitigation technologies and their deployment in the market will be crucial for the pulp and paper industry’s mid-more » and long-term climate change mitigation strategies. This report describes the industry’s processes and compiles available information on the energy savings, environmental and other benefits, costs, commercialization status, and references for 36 emerging technologies to reduce the industry’s energy use and GHG emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies that have already been commercialized for the pulp and paper industry, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. The purpose of this report is to provide engineers, researchers, investors, paper companies, policy makers, and other interested parties with easy access to a well-structured resource of information on these technologies.« less
Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey.
Christianson, Mindy S; Zhao, Yulian; Shoham, Gon; Granot, Irit; Safran, Anat; Khafagy, Ayatallah; Leong, Milton; Shoham, Zeev
2014-08-01
To identify trends in embryo catheter loading and embryo culture techniques performed worldwide. A retrospective evaluation using the results of a web-based survey, (IVF Worldwide ( www.IVF-worldwide.com ), was performed. Responses from 265 centers in 71 countries were obtained. Most centers (97 %) preferred a catheter with its orifice on top, with only 3 % preferring a catheter with the orifice on its side; 41 % preferred a catheter marked for clear ultrasound view. The most commonly-reported methods of embryo loading were medium-air-embryo-air-medium (42 %), medium in catheter with embryo at end (20 %) and medium-air-embryo (15 %). In 68 % of centers the final volume of the catheter was up to 0.3 ml, with only 19 % using 0.3-0.5 ml and 1 % using 0.5-0.7 ml. Using reduced oxygen concentrations for embryo culture was divided between those who used it in combination with the two-gas system (34 %) and those who did not use it at all (39 %); 24 % reported using a three-gas system. Most clinics using reduced oxygen concentrations used it throughout the entire culture period. Half of centers (51 %) reported using reduced oxygen concentrations for the entire IVF population while 6 % reserved it only for blastocyst transfer. The use of sequential media was highly dominant with 40 % reporting its use.
A finite element simulation of biological conversion processes in landfills.
Robeck, M; Ricken, T; Widmann, R
2011-04-01
Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following. Copyright © 2010 Elsevier Ltd. All rights reserved.
Worldwide surplus of LP-gases to grow, expert tells European meet in Venice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
There appears to be a growing consensus among students of the LP-gas industry that (1) the worldwide surplus of supplies of LP-gases will continue and grow, and (2) this will provide ample opportunity for market development between now and the year 2000, but (3) that development will be largely in the field of petro-chemical feedstocks, although (4) if the price should not remain competitive with feedstocks such as naphtha, the surpluses could find their way into the U.S., if (5) the price is right. This viewpoint was set forth for the benefit of the delegates to the convention May 19-20more » of the European LP-Gas Association in Venice, Italy, by Rick Haun, vice president of Purvin and Gertz, the Dallas consulting firm.« less
SEASAT demonstration experiments with the offshore oil, gas and mining industries
NASA Technical Reports Server (NTRS)
Mourad, A. G.; Robinson, A. C.; Balon, J. E.
1979-01-01
Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.
Gas transfer velocities in small forested ponds
NASA Astrophysics Data System (ADS)
Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.
2017-05-01
Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.
Greenhouse gas emissions and N turnover along an altitudinal gradient at Mt. Kilimanjaro, Tanzania.
NASA Astrophysics Data System (ADS)
Gütlein, Adrian; Gerschlauer, Friederike; Zistl-Schlingmann, Marcus; Dannenmann, Michael; Meier, Rudolf; Kolar, Alison; Butterbach-Bahl, Klaus; Kiese, Ralf
2016-04-01
Worldwide climate and land-use change force alterations in various ecosystem properties and functions such as diversity and activity of soil microbial communities which are responsible for biogeochemical processes like soil nitrogen (N) turnover and associated greenhouse gas (GHG) exchange. Tropical deforestation is highest in Africa and despite the importance of those ecosystems to global climate and biogeochemical cycles, data for greenhouse gas exchange is still rare (Serca et al., 1994, Werner et al., 2007) and no study regarding N turnover processes has been published yet. For that reason, we focused on seven different land-use types extending along an altitudinal gradient (950 -- 3880m) at Mt. Kilimanjaro, East Africa, covering (semi-) natural savanna, two montane forests and one afro alpine ecosystem, an extensive agroforest (homegarden) and an intensively managed coffee plantation. On all ecosystems we measured CO_2, CH4 and N_2O fluxes and gross rates of ammonification, nitrification, N immobilization, and dissimilatory nitrate reduction to ammonium (DNRA). GHG results reveal pronounced N_2O fluxes depending mainly on soil moisture and to a lesser extent on soil temperature. Emissions are highest during the rainy seasons while lowest at dry season conditions. The largest N_2O emissions are recognizable at Ocotea forest, most likely due to the generally higher SOC/ totN and wetter conditions favoring formation and emission of N_2O via denitrification. Soils of the studied ecosystems were a sink of atmospheric CH
Generating CO(2)-credits through landfill in situ aeration.
Ritzkowski, M; Stegmann, R
2010-04-01
Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less
Corrosion Assessment Guidance for High Strength Steels (Phase 1)
DOT National Transportation Integrated Search
2009-08-01
The continuing worldwide demand for natural gas presents major challenges to pipeline operators. There is increasing need to construct long distance, high capacity transmission pipelines, particularly in the more remote areas of Arctic North America,...
The use of advanced steam reforming technology for hydrogen production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbishaw, J.B.; Cromarty, B.J.
1996-12-01
The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturingmore » site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.« less
Sea-floor methane blow-out and global firestorm at the K-T boundary
Max, M.D.; Dillon, William P.; Nishimura, C.; Hurdle, B.G.
1999-01-01
A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous-Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.
Serious group a streptococcal infections.
Wong, Christopher J; Stevens, Dennis L
2013-07-01
The spectrum of illnesses caused by group A streptococcus (GAS) includes invasive infections, noninvasive infections, and noninfectious complications. Increasingly virulent infections associated with high morbidity and mortality have been observed since the late 1980s and continue to be prevalent in North America and worldwide. Penicillin remains the therapy of choice, with the addition of clindamycin recommended in high risk cases. Early recognition of GAS as the cause of these serious clinical syndromes is critical for timely administration of appropriate therapy. In this review, the pathophysiology, clinical manifestations, and treatment of invasive GAS infections are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Physical Properties of Gas Hydrates: A Review
Gabitto, Jorge F.; Tsouris, Costas
2010-01-01
Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less
Paulot, Fabien; Jacob, Daniel J; Henze, Daven K
2013-04-02
Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.
Hydrogen Production in the U.S. and Worldwide - 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daryl R.
2015-04-01
This article describes the different categories of hydrogen production (captive, by-product, and merchant) and presents production data for 2013 by industry within these categories. Merchant production data is provided for the top-four industrial gas companies.
Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco
2018-02-15
The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.
Lavoie, Jean-Michel
2014-01-01
With the actual growth of the natural gas industry in the US as well as the potential and availability of this non-renewable carbon source worldwide, reforming of methane gas is getting increasing attention. Methane can be used for the production of heat or electricity, as well, it can be converted to syngas, a building block that could lead to the production of liquid fuels and chemicals, a very promising pathway in light of the increasing price of oil. Amongst the different reforming techniques, dry reforming could represent a very interesting approach both to valorize a cheap source or carbon (CO2) as well as to reduce the overall carbon footprint of the increasing worldwide fossil-based methane consumption. In this short review, attention will be given to the thermodynamics of dry reforming followed by an investigation on dry reforming using heterogeneous catalyst by focusing on the most popular elements used in literature for dry reforming. Attention will as well be given to other emerging techniques that may allow countering at one point the high thermodynamic penalties that accompanies conversion of methane using carbon dioxide. PMID:25426488
Future sea level rise constrained by observations and long-term commitment.
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-03-08
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.
Preface to the Special Issue on TOUGH Symposium 2015
NASA Astrophysics Data System (ADS)
Blanco-Martín, Laura
2017-11-01
The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.
Future sea level rise constrained by observations and long-term commitment
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-01-01
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648
Clean recycle and utilization of hazardous iron-bearing waste in iron ore sintering process.
Gan, Min; Ji, Zhiyun; Fan, Xiaohui; Chen, Xuling; Zhou, Yang; Wang, Guojing; Tian, Ye; Jiang, Tao
2018-04-18
Applying recycled iron-bearing waste materials (RIM) into iron ore sintering process is the general disposal approach worldwide, while its use is still a thorny problem. Results showed that adding RIM increased contents of hazardous elements (K, Na, Pb, Zn, and Cl) in sinter product, and also enhanced emission concentration of PM 2.5 in flue gas; increasing reaction temperature, and contents of CaO & coke breeze in raw mixtures improved hazardous elements removal. Based on these features, a novel method through granulating natural iron ores and RIM separately and distributing granulated RIM in bottom sintering layers was proposed for clean RIM cycle. When recycling 5% RIM, granulating RIM separately with higher contents of CaO and coke breeze removed hazardous elements effectively, the contents of which in sinter were reduced to comparable level of the case without RIM. Moreover, distributing RIM in bottom sintering layer reached intensive release of hazardous elements and PM 2.5 during sintering, which reduced the flue gas volume needing purification by about 2/3. Through activated carbon purification, about 60% of PM 2.5 comprised high contents of hazardous elements was removed. Novel technique eliminated the negative impact of RIM and has the prospect to reach clean recycle in sinter-making plants. Copyright © 2018. Published by Elsevier B.V.
Optimization Manufacture of Virus- and Tumor-Specific T Cells
Lapteva, Natalia; Vera, Juan F.
2011-01-01
Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex). This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP) facilities for clinical cell production in our institution as well as many others in the US and worldwide. PMID:21915183
Ceramic membrane development in NGK
NASA Astrophysics Data System (ADS)
Araki, Kiyoshi; Sakai, Hitoshi
2011-05-01
NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.
SO2 SCRUBBING TECHNOLOGIES: A REVIEW
The paper gives results of a review of commercially available flue gas desulfurization (FGD) technologies that have an established record of performance. Data on worldwide FGD applications reflect that wet FGD technologies have been used at most of the installations. Among the ...
NASA Astrophysics Data System (ADS)
LONG, S.; He, T.; Lan, K.; Spence, G.; Yelisetti, S.
2017-12-01
Natural gas hydrate-related submarine landslides have been identified on worldwide continental slope. Being a potential risk for marine environment and engineering projects, it has been a hot topic of hydrate research in recent decades. The study target is Slipstream submarine landslide, one of the slope failures on the frontal ridges of the Northern Cascadia accretionary margin, off Vancouver Island, Canada. The previous studies of P- & S-wave velocity structure based on OBS (Ocean Bottom Seismometer) data of SeaJade (Seafloor Earthquake Array - Japan Canada Cascadia Experiment) project indicated that there are two high concentration gas-hydrate layers within the ridge, one is at a depth of 100 mbsf (meter beneath the seafloor) with anomalous high P-wave velocities and the other is just above the prominent BSR (bottom-simulating reflector) at a depth of 265-275 mbsf. In this study we investigated the possible creeping behavior of gas hydrate layer to examine the critical instability of the ridge slope using the finite element method for self weight and additional stress (e.g., mega earthquake) conditions. The elastic and elasticoplasticity moduli of gas hydrate layer were obtained from laboratory measurements for different uniaxial pressure tests, which indicated that the sediments behave elastically for uniaxial pressures below 6 MPa, but elasticoplastically between 6-6.77 MPa. The modeled shear stress distribution indicated that the current sliding surface is more likely connected with the shallow high-velocity gas hydrate layer and sliding process related with gas hydrate starts from the toe of the slope and then progressively retreats to the place of current headwall, in a series of triangular blocks or wedges. Since the study area is in the earthquake belt, the large seismic acceleration will greatly affect the stress field and pore pressure distribution within the ridge, and the landslide is going to happen and supposedly at the shallow high-velocity gas hydrate layer.
Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2017-04-01
Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and the model settings. In particular, the permeability and the available heat, which is required to decompose the hydrate, play an important role. The work is focused on the thermodynamic principles and technological approaches for the exploitation.
Possible Causes of Double-BSRs on the Hikurangi Margin, New Zealand
NASA Astrophysics Data System (ADS)
Pecher, I. A.; Mountjoy, J. J.; Crutchley, G. J.; Krastel, S.; Koch, S.; Dannowski, A.; Bialas, J.; Henrys, S. A.
2014-12-01
Bottom Simulating Reflections (BSRs) are commonly thought to be caused by free gas at the base of gas hydrate stability (BGHS). BSRs usually occur at the pressure-temperature conditions for the phase boundary of gas hydrate, which depends on gas composition, pore water chemistry, and various other factors. Hence, BSRs should only occur at a single depth level beneath the seafloor. At several locations worldwide however, double and multiple BSRs have been observed. We have recently discovered localized double-BSRs on the Hikurangi Margin east of New Zealand and present first results from studying the possible origin of these double-BSRs. Both BSRs display negative polarity compared to the seafloor ruling out diagenetic origins. The deeper BSR (BSR-2) is found to be anomalously deep, while the shallower BSR (BSR-1) is at similar depths as BSRs regionally. BSR-2 and BSR-1 are clearly separated on seismic lines from east to west, while they converge from north to south. We propose two possible models for formation of these double-BSRs: 1. Uplift leads to depressurization and an upward movement of the BGHS with respect to the seafloor. BSR-1 may have formed at the new BGHS while immobile gas may remain in place at the original level of the BGHS causing BSR-2. 2. Thermogenic gas may leak from a deeper hydrocarbon reservoir. Gas mixes of thermogenic origin are predicted to form hydrate that is more stable than pure methane hydrate, in particular if the mix contains gases that lead to formation of Structure-II hydrate. BSR-2 may form at a level of the BGHS for a more stable gas mix; residual gases may migrate further until they reach the phase boundary for less stable hydrates at BSR-1. We currently slightly favour uplift as cause of the double-BSRs largely because of the smooth topography of BSR-2: Small-scale lateral variations of gas composition should lead to significant BSR topography. More importantly, we note that the process of fractionation of gas during hydrate formation from thermogenic gas mixes in nature is only poorly understood.
The Coast Guard Proceedings of the Marine Safety & Security Council. Volume 72, Number 3, Fall 2015
2015-01-01
Elliott 11 The Global Gas Revolution America’s Energy Renaissance is a game -changer. by LCDR Anthony Hillenbrand 14 The New Crudes From Bakken to...a fuel for electrical generation worldwide, and new uses are being developed, The Global Gas Revolution America’s Energy Renaissance is a game ...Compete in Tender to Build 6 New LNG Carriers for Kogas,” Platts, October 7, 2014. Open Market Shipping Capacity aside, the International Chamber of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tawfik, Hazem
Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as wellmore » as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.« less
Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)
NASA Astrophysics Data System (ADS)
Anders, E.; Rothfuss, M.; Müller, W. H.
2009-04-01
Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be dispensable. The complete core processing and preparation of in-situ sample sections for worldwide shipping could be conducted within hours after retrieval.
Collett, Timothy S.; Boswell, Ray
2012-01-01
In the 1970's, Russian scientists were the first to suggest that gas hydrates, a crystalline solid of water and natural gas, and a historical curiosity to physical chemists, should occur in abundance in the natural environment. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. Recent field testing programs in the Arctic (Dallimore et al., 2008; Yamamoto and Dallimore, 2008) have indicated that natural gas can be produced from gas hydrate accumulations, particularly when housed in sand-rich sediments, with existing conventional oil and gas production technology (Collett et al., 2008) and preparations are now being made for the first marine field production tests (Masuda et al., 2009). Beyond a future energy resource, gas hydrates in some settings may represent a geohazard. Other studies also indicate that methane released to the atmosphere from destabilized gas hydrates may have contributed to global climate change in the past.
NASA Astrophysics Data System (ADS)
Molina, Belinda Delilah
For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.
USDA-ARS?s Scientific Manuscript database
Various processing methods are used in the food industry worldwide to produce numerous rice products with desirable sensory qualities based on cultural and cooking preferences and nutritional considerations. The processes result in variable degrees of macro- and micronutrient content, stability, and...
Biotechnologies for greenhouse gases (CH₄, N₂O, and CO₂) abatement: state of the art and challenges.
López, Juan C; Quijano, Guillermo; Souza, Theo S O; Estrada, José M; Lebrero, Raquel; Muñoz, Raúl
2013-03-01
Today, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions. In this context, an active abatement of these emissions will help to achieve these target emission cuts without compromising industrial growth. Nowadays, there are sufficient empirical evidence to support that biological technologies can become, if properly tailored, a low-cost and environmentally friendly alternative to physical/chemical methods for the abatement of GHGs. This study constitutes a state-of-the-art review of the microbiology (biochemistry, kinetics, and waste-to-value processes) and bioreactor technology of CH4, N2O, and CO2 abatement. The potential and limitations of biological GHG degradation processes are critically discussed, and the current knowledge gaps and technology niches in the field are identified.
Hamilton, Stephanie M; Stevens, Dennis L; Bryant, Amy E
2013-09-01
Puerperal sepsis caused by group A Streptococcus (GAS) remains an important cause of maternal and infant mortality worldwide, including countries with modern antibiotic regimens, intensive care measures and infection control practices. To provide insights into the genesis of modern GAS puerperal sepsis, we reviewed the published cases and case series from 1974 to 2009, specifically seeking relationships between the likely source of pathogen acquisition, clinical signs, and symptoms at infection onset and patient outcomes that could provide clues for early diagnosis. Results suggest that the pathogenesis of pregnancy-related GAS infections in modern times is complex and not simply the result of exposure to GAS in the hospital setting. Additional research is needed to further explore the source of GAS, the specific M types involved, and the pathogenesis of these pregnancy-related infections to generate novel preventative and therapeutic strategies.
Hamilton, Stephanie M.; Stevens, Dennis L.; Bryant, Amy E.
2013-01-01
Puerperal sepsis caused by group A Streptococcus (GAS) remains an important cause of maternal and infant mortality worldwide, including countries with modern antibiotic regimens, intensive care measures and infection control practices. To provide insights into the genesis of modern GAS puerperal sepsis, we reviewed the published cases and case series from 1974 to 2009, specifically seeking relationships between the likely source of pathogen acquisition, clinical signs, and symptoms at infection onset and patient outcomes that could provide clues for early diagnosis. Results suggest that the pathogenesis of pregnancy-related GAS infections in modern times is complex and not simply the result of exposure to GAS in the hospital setting. Additional research is needed to further explore the source of GAS, the specific M types involved, and the pathogenesis of these pregnancy-related infections to generate novel preventative and therapeutic strategies. PMID:23645851
Internal Surface Adsorption of Methane in the Microporous and the Mesoporous Montmorillonite Models
NASA Astrophysics Data System (ADS)
Shao, Changjin; Nie, Dakai; Zhai, Zengqiang; Yang, Zhenqing
2018-05-01
Due to the rising worldwide energy demands and the shortage of natural gas resources, the development of shale gas has become the new research focus in the field of novel energy resources. To understand the adsorption mechanism of shale gas in the reservoir, we use grand canonical Monte Carlo (GCMC) method to investigate the internal surface adsorption behavior of methane (main component of shale gas) in microporous and mesoporous montmorillonite materials for changing pressure, temperature and surface spacing. The results show that the adsorption capacity of methane decreases with increasing temperature while increasing as the surface spacing increases. Especially, the adsorption isotherm of the microporous model has a mutation when the surface spacing is about 10 ˚A. According to the trend for the change in the adsorption capacity, the best scheme for the exploitation of shale gas can be selected so that the mining efficiency is greatly improved.
75 FR 33949 - Mandatory Reporting of Greenhouse Gases
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
.... The http://www.regulations.gov Web site is an ``anonymous access'' system, which means EPA will not.../emissions/ghgrulemaking.html . Alternatively, contact Carole Cook at 202-343-9263. Worldwide Web (WWW). In... greenhouse gas reporting rule Web site at http://www.epa.gov/climatechange/emissions/ghgrulemaking.html...
Submission of nucleotide sequence clostridium perfringens NetB toxin to genbank database
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens can cause gas gangrene and food poisoning in humans and causes several enterot-oxemic diseases in animals including avian necrotic enteritis. This disease affects all chicken producing countries worldwide and is a considerable burden on the commercial chicken production indus...
Climate change and sugarcane production: potential impact and mitigation strategies
USDA-ARS?s Scientific Manuscript database
Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Kataria, Atish; Soukri, Mustapha
It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less
Microstructural characteristics of natural gas hydrates hosted in various sand sediments.
Zhao, Jiafei; Yang, Lei; Liu, Yu; Song, Yongchen
2015-09-21
Natural gas hydrates have aroused worldwide interest due to their energy potential and possible impact on climate. The occurrence of natural gas hydrates hosted in the pores of sediments governs the seismic exploration, resource assessment, stability of deposits, and gas production from natural gas hydrate reserves. In order to investigate the microstructure of natural gas hydrates occurring in pores, natural gas hydrate-bearing sediments were visualized using microfocus X-ray computed tomography (CT). Various types of sands with different grain sizes and wettability were used to study the effect of porous materials on the occurrence of natural gas hydrates. Spatial distributions of methane gas, natural gas hydrates, water, and sands were directly identified. This work indicates that natural gas hydrates tend to reside mainly within pore spaces and do not come in contact with adjacent sands. Such an occurring model of natural gas hydrates is termed the floating model. Furthermore, natural gas hydrates were observed to nucleate at gas-water interfaces as lens-shaped clusters. Smaller sand grain sizes contribute to higher hydrate saturation. The wetting behavior of various sands had little effect on the occurrence of natural gas hydrates within pores. Additionally, geometric properties of the sediments were collected through CT image reconstructions. These findings will be instructive for understanding the microstructure of natural gas hydrates within major global reserves and for future resource utilization of natural gas hydrates.
Moritz, Anja; Hélie, Jean-Francois; Pinti, Daniele L; Larocque, Marie; Barnetche, Diogo; Retailleau, Sophie; Lefebvre, René; Gélinas, Yves
2015-04-07
Hydraulic fracturing is becoming an important technique worldwide to recover hydrocarbons from unconventional sources such as shale gas. In Quebec (Canada), the Utica Shale has been identified as having unconventional gas production potential. However, there has been a moratorium on shale gas exploration since 2010. The work reported here was aimed at defining baseline concentrations of methane in shallow aquifers of the St. Lawrence Lowlands and its sources using δ(13)C methane signatures. Since this study was performed prior to large-scale fracturing activities, it provides background data prior to the eventual exploitation of shale gas through hydraulic fracturing. Groundwater was sampled from private (n = 81), municipal (n = 34), and observation (n = 15) wells between August 2012 and May 2013. Methane was detected in 80% of the wells with an average concentration of 3.8 ± 8.8 mg/L, and a range of <0.0006 to 45.9 mg/L. Methane concentrations were linked to groundwater chemistry and distance to the major faults in the studied area. The methane δ(1)(3)C signature of 19 samples was > -50‰, indicating a potential thermogenic source. Localized areas of high methane concentrations from predominantly biogenic sources were found throughout the study area. In several samples, mixing, migration, and oxidation processes likely affected the chemical and isotopic composition of the gases, making it difficult to pinpoint their origin. Energy companies should respect a safe distance from major natural faults in the bedrock when planning the localization of hydraulic fracturation activities to minimize the risk of contaminating the surrounding groundwater since natural faults are likely to be a preferential migration pathway for methane.
Atmospheric methane from organic carbon mobilization in sedimentary basins — The sleeping giant?
NASA Astrophysics Data System (ADS)
Kroeger, K. F.; di Primio, R.; Horsfield, B.
2011-08-01
The mass of organic carbon in sedimentary basins amounts to a staggering 10 16 t, dwarfing the mass contained in coal, oil, gas and all living systems by ten thousand-fold. The evolution of this giant mass during subsidence and uplift, via chemical, physical and biological processes, not only controls fossil energy resource occurrence worldwide, but also has the capacity for driving global climate: only a tiny change in the degree of leakage, particularly if focused through the hydrate cycle, can result in globally significant greenhouse gas emissions. To date, neither climate models nor atmospheric CO 2 budget estimates have quantitatively included methane from thermal or microbial cracking of sedimentary organic matter deep in sedimentary basins. Recent estimates of average low latitude Eocene surface temperatures beyond 30 °C require extreme levels of atmospheric CO 2. Methane degassing from sedimentary basins may be a mechanism to explain increases of atmospheric CO 2 to values as much as 20 times higher than pre-industrial values. Increased natural gas emission could have been set in motion either by global tectonic processes such as pulses of activity in the global alpine fold belt, leading to increased basin subsidence and maturation rates in the prolific Jurassic and Cretaceous organic-rich sediments, or by increased magmatic activity such as observed in the northern Atlantic around the Paleocene-Eocene boundary. Increased natural gas emission would have led to global warming that was accentuated by long lasting positive feedback effects through temperature transfer from the surface into sedimentary basins. Massive gas hydrate dissociation may have been an additional positive feedback factor during hyperthermals superimposed on long term warming, such as the Paleocene-Eocene Thermal Maximum (PETM). As geologic sources may have contributed over one third of global atmospheric methane in pre-industrial time, variability in methane flux from sedimentary basins may have driven global climate not only at time scales of millions of years, but also over geologically short periods of time. Earth system models linking atmospheric, ocean and earth surface processes at different timescales with the sedimentary organic carbon cycle are the tools that need to be developed in order to investigate the role of methane from sedimentary basins in earth's climate.
USDA-ARS?s Scientific Manuscript database
Global transportation demands have led to concerns about the sustainability, costs, and environmental consequences of relying on petroleum to meet future energy needs. Future low-carbon fuel standards (LCFS) are being implemented worldwide to evaluate alternative fuel potential in reducing greenho...
Defense Energy Support Center Fact Book: Providing Energy Solutions Worldwide
2010-04-20
2011.through.fiscal. 2017 .. • Merging.System.Analysis.and.Program. Development.Oil.and.GAS.with.EBS.in.fiscal.2010...Wright.Patterson.Air.Force.Base,.OH Rock.Island.Arsenal,.IL Red.River.Army.Depot,. Texarkana ,.TX Malmstrom.Air.Force.Base,.MT Sub-Bituminous Coal: Ft..Wainwright,.AK
Electronic Desorption of gas from metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Kollmus, H; Mahner, E
During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.
Molecular Epidemiology and Genomics of Group A Streptococcus
Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé
2014-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818
Proceedings: 1995 SO{sub 2} control symposium. Volume 1, Sessions 1, 2, 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less
Proceedings: 1995 SO{sub 2} control symposium. Volume 4, Sessions Ba, 8b
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less
Influence of Arbuscular Mycorrhizal Fungus (AMF) on degradation of iron-cyanide complexes
NASA Astrophysics Data System (ADS)
Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas
2015-04-01
Soil contamination in the vicinities of former Manufactured Gas Plant (MGP) sites is a worldwide known environmental issue. The pollutants, in form of iron-cyanide complexes, originating from the gas purification process, create a risk for human health due to potential release of toxic free cyanide, CN(aq) and HCN(g), (aq).The management and remediation of cyanide contaminated soil can be very challenging due to the complex chemistry and toxicity of CN compounds. The employment of phytoremediation to remove or stabilize contaminants at a former MGP site is an inexpensive process, but can be limited through shallow rotting, decreased biomass, poor growing and the risk of secondary accumulation. However, this adaptation may be enhanced via arbuscular mycorrhizal fungi (AMF) activity, which may cooperate on the degradation, transformation or uptake of the contaminants. We would like to present our preliminary results from the ongoing project concerning toxic substrate-AMF-plant relation, based on studying the site of a former MGP site. In situ experiments contributed to identifying those fungi that are likely to persist in extremely acidic and toxic conditions. Subsequently, commercially available Rhizophagus irregularis was grown in sterilized, un-spiked soil with the roots of the host plant Calamagrostis epigejos. Extracted roots and AMF hyphae were used in the batch experiment, were the potential of this association on degradation of iron-cyanide complexes, in form of potassium ferrocyanide solution, was assessed.
Nixon, Sophie L.; Walker, Leanne; Streets, Matthew D. T.; Eden, Bob; Boothman, Christopher; Taylor, Kevin G.; Lloyd, Jonathan R.
2017-01-01
Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide. PMID:28469616
Nixon, Sophie L; Walker, Leanne; Streets, Matthew D T; Eden, Bob; Boothman, Christopher; Taylor, Kevin G; Lloyd, Jonathan R
2017-01-01
Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria ( Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.
De Bhowmick, Goldy; Sarmah, Ajit K; Sen, Ramkrishna
2018-01-01
A constant shift of society's dependence from petroleum-based energy resources towards renewable biomass-based has been the key to tackle the greenhouse gas emissions. Effective use of biomass feedstock, particularly lignocellulosic, has gained worldwide attention lately. Lignocellulosic biomass as a potent bioresource, however, cannot be a sustainable alternative if the production cost is too high and/ or the availability is limited. Recycling the lignocellulosic biomass from various sources into value added products such as bio-oil, biochar or other biobased chemicals in a bio-refinery model is a sensible idea. Combination of integrated conversion techniques along with process integration is suggested as a sustainable approach. Introducing 'series concept' accompanying intermittent dark/photo fermentation with co-cultivation of microalgae is conceptualised. While the cost of downstream processing for a single type of feedstock would be high, combining different feedstocks and integrating them in a bio-refinery model would lessen the production cost and reduce CO 2 emission. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.
2008-12-01
HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea, and West Africa Margin) world-wide by using the substantial archive of satellite synthetic aperture radar (SAR) images. An automated system for satellite image interpretation will make it possible to process hundreds of SAR images to increase the geographic and temporal coverage. Field programs will quantify the flux and fate of hydrate methane in sediments and the water column.
(abstract) Application of the GPS Worldwide Network in the Study of Global Ionospheric Storms
NASA Technical Reports Server (NTRS)
Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Pi, X.; Sparks, L. C.; Rao, A. M.; Wilsion, B. D.; Yuan, D. N.; Reyes, M.
1997-01-01
Ionospheric storm dynamics as a response to the geomagnetic storms is a very complicated global process involving many different mechanisms. Studying ionospheric storms will help us to understand the energy coupling process between the Sun and Earth and possibly also to effectively forecast space weather changes. Such a study requires a worldwide monitoring system. The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility.
Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus
Smeesters, Pierre R.; Frost, Hannah R. C.; Steer, Andrew C.
2015-01-01
Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates. PMID:26101780
Understanding public perception of hydraulic fracturing: a case study in Spain.
Costa, D; Pereira, V; Góis, J; Danko, A; Fiúza, A
2017-12-15
Public acceptance is crucial for the implementation of energy technologies. Hydraulic fracturing is a technology widely used in the USA for natural gas production from shale formations, but currently finds strong public opposition worldwide, especially in Europe. Shale gas exploitation and exploration have the potential to significantly reduce import dependency in several countries, including Spain. To better understand public opinion on this issue, this article reports a survey targeting both the entire Spanish population and the inhabitants of the province of Burgos, the location where shale gas exploration permits have already been issued. Results demonstrate that half of the Spanish population opposes shale gas, and this opposition increases in autonomous communities that are closer to possible exploration sites. The results also show that socio-demographic aspects are not strong predictors of opposition. In addition, Burgos' population show different behaviours toward shale gas that demonstrates that proximity and prospect of shale gas development affects opinion. Finally, there is still a great level of unfamiliarity with high volume hydraulic fracturing and shale gas in both populations sampled. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiological issues associated with the recent boom in oil and gas hydraulic fracturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Alejandro
As the worldwide hydraulic fracturing 'fracking' market continued to grow to an estimated $37 Billion in 2012, the need to understand and manage radiological issues associated with fracking is becoming imperative. Fracking is a technique that injects pressurized fluid into rock layer to propagate fractures that allows natural gas and other petroleum products to be more easily extracted. Radioactivity is associated with fracking in two ways. Radioactive tracers are frequently a component of the injection fluid used to determine the injection profile and locations of fractures. Second, because there are naturally-occurring radioactive materials (NORM) in the media surrounding and containingmore » oil and gas deposits, the process of fracking can dislodge radioactive materials and transport them to the surface in the wastewater and gases. Treatment of the wastewater to remove heavy metals and other contaminates can concentrate the NORM into technologically-enhanced NORM (TENORM). Regulations to classify, transport, and dispose of the TENORM and other radioactive waste can be complicated and cumbersome and vary widely in the international community and even between states/provinces. In many cases, regulations on NORM and TENORM do not even exist. Public scrutiny and regulator pressure will only continue to increase as the world demands on oil and gas continue to rise and greater quantities of TENORM materials are produced. Industry experts, health physicists, regulators, and public communities must work together to understand and manage radiological issues to ensure reasonable and effective regulations protective of the public, environment, and worker safety and health are implemented. (authors)« less
Development of 72kV High Pressure Air-insulated GIS with Vacuum Circuit Breaker
NASA Astrophysics Data System (ADS)
Rokunohe, Toshiaki; Yagihashi, Yoshitaka; Endo, Fumihiro; Aoyagi, Kenji; Saitoh, Hitoshi; Oomori, Takashi
SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. So investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6 gas-free GIS has been commercialized for the 24kV class. Air or N2 gas is used as insulation gas for this GIS. On the other hand, SF6 gas-free GIS has not been commercialized for 72kV class GIS. Dielectric strengths of air and N2 gas are approximately 1/3 that of SF6 gas. So to enhance insulation performance of air and N2, we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72kV SF6 gas-free GIS. This paper deals with key technologies for SF6 gas-free GIS such as the hybrid insulation structure, bellows for the high pressure vacuum circuit breaker, a newly designed disconnector and spacer and prevention of particle levitation. Test results of 72kV high pressure air-insulated GIS with the vacuum circuit breaker are described.
Water-saving liquid-gas conditioning system
Martin, Christopher; Zhuang, Ye
2014-01-14
A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
Integrating forest products with ecosystem services: a global perspective
Robert L. Deal; Rachel White
2012-01-01
Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....
Shannon Entropy of Ammonia Volatilization from Fertilized Agricultural Soils
USDA-ARS?s Scientific Manuscript database
The economic loss of ammonia (NH3) volatilization from chemical N fertilizers applied to farmlands worldwide is 11.6 billion US dollars per year. The economic impact of negative environmental effects resulted from NH3 volatilization, i.e., formation of potent greenhouse gas (N2O) and PM2.5, is diffi...
For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...
The true cost of greenhouse gas emissions: analysis of 1,000 global companies.
Ishinabe, Nagisa; Fujii, Hidemichi; Managi, Shunsuke
2013-01-01
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development.
The True Cost of Greenhouse Gas Emissions: Analysis of 1,000 Global Companies
Ishinabe, Nagisa; Fujii, Hidemichi; Managi, Shunsuke
2013-01-01
This study elucidated the shadow price of greenhouse gas (GHG) emissions for 1,024 international companies worldwide that were surveyed from 15 industries in 37 major countries. Our results indicate that the shadow price of GHG at the firm level is much higher than indicated in previous studies. The higher shadow price was found in this study as a result of the use of Scope 3 GHG emissions data. The results of this research indicate that a firm would carry a high cost of GHG emissions if Scope 3 GHG emissions were the focus of the discussion of corporate social responsibility. In addition, such shadow prices were determined to differ substantially among countries, among sectors, and within sectors. Although a number of studies have calculated the shadow price of GHG emissions, these studies have employed country-level or industry-level data or a small sample of firm-level data in one country. This new data from a worldwide firm analysis of the shadow price of GHG emissions can play an important role in developing climate policy and promoting sustainable development. PMID:24265710
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
Dekeirsschieter, Jessica; Stefanuto, Pierre-Hugues; Brasseur, Catherine; Haubruge, Eric; Focant, Jean-François
2012-01-01
Soon after death, the decay process of mammalian soft tissues begins and leads to the release of cadaveric volatile compounds in the surrounding environment. The study of postmortem decomposition products is an emerging field of study in forensic science. However, a better knowledge of the smell of death and its volatile constituents may have many applications in forensic sciences. Domestic pigs are the most widely used human body analogues in forensic experiments, mainly due to ethical restrictions. Indeed, decomposition trials on human corpses are restricted in many countries worldwide. This article reports on the use of comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOFMS) for thanatochemistry applications. A total of 832 VOCs released by a decaying pig carcass in terrestrial ecosystem, i.e. a forest biotope, were identified by GCxGC-TOFMS. These postmortem compounds belong to many kinds of chemical class, mainly oxygen compounds (alcohols, acids, ketones, aldehydes, esters), sulfur and nitrogen compounds, aromatic compounds such as phenolic molecules and hydrocarbons. The use of GCxGC-TOFMS in study of postmortem volatile compounds instead of conventional GC-MS was successful. PMID:22723918
Dahunsi, S O; Oranusi, S; Owolabi, J B; Efeovbokhan, V E
2017-02-01
The co-digestion of Chromolaena odorata with poultry manure was evaluated in this study. Two samples of the weed: (A: which was pre-treated with mechanical, chemical and thermal methods) and (B: which was pretreated using mechanical and chemical methods only) were separately digested with poultry manure. Biogas generation started from the 2nd to 4th and 4th to 7th day for samples 'A' and 'B' respectively. The most desired actual biogas yield from samples 'A' and 'B' were 3884.20 and 2544.70 (10 -4 m 3 /kg VS) respectively and the gas composition was 68±2% Methane and 20±2% Carbon dioxide for sample A while it was 62±3% Methane and 22±2% Carbon dioxide for sample B. In all, there was a 38.06% increase in gas generation in 'A' over 'B'. The coefficient of determination (R 2 ) for the Response Surface Methodology (RSM) model (0.9009) was high suggesting high accuracy in the modeling and prediction. The worldwide usage of C. odorata is encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.
Current situation and control measures of groundwater pollution in gas station
NASA Astrophysics Data System (ADS)
Wu, Qiong; Zhang, Xiaofeng; Zhang, Qianjin
2017-11-01
In recent years, pollution accidents caused by gas station leakage has occurred worldwide which can be persistent in groundwater. Numerous studies have demonstrated that the contaminated groundwater is threatening the ecological environment and human health. In this article, current status and sources of groundwater pollution by gas station are analyzed, and experience of how to prevent groundwater pollution from gas stations are summarized. It is demonstrated that installation of secondary containment measures for the oil storage of the oil tank system, such as installation of double-layer oil tanks or construction of impermeable ponds, is a preferable method to prevent gas stations from groundwater pollution. Regarding to the problems of groundwater pollution caused by gas station, it is proposed that it is urgent to investigate the leakage status of gas station. Relevant precise implementation regulations shall be issued and carried out, and supervision management of gas stations would need to be strengthened. Then single-layer steel oil tanks shall be replaced by double-layer tanks, and the impermeable ponds should be constructed according to the risk ranking. From the control methodology, the groundwater environment monitoring systems, supervision level, laws and regulations as well as pollution remediation should also be carried out and strengthened.
Evaluation of greenhouse gas emissions from waste management approaches in the islands.
Chen, Ying-Chu
2017-07-01
Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.
Tong, Tiezheng; Elimelech, Menachem
2016-07-05
Zero liquid discharge (ZLD)-a wastewater management strategy that eliminates liquid waste and maximizes water usage efficiency - has attracted renewed interest worldwide in recent years. Although implementation of ZLD reduces water pollution and augments water supply, the technology is constrained by high cost and intensive energy consumption. In this critical review, we discuss the drivers, incentives, technologies, and environmental impacts of ZLD. Within this framework, the global applications of ZLD in the United States and emerging economies such as China and India are examined. We highlight the evolution of ZLD from thermal- to membrane-based processes, and analyze the advantages and limitations of existing and emerging ZLD technologies. The potential environmental impacts of ZLD, notably greenhouse gas emission and generation of solid waste, are discussed and the prospects of ZLD technologies and research needs are highlighted.
Louwen, Atse; van Sark, Wilfried G J H M; Faaij, André P C; Schropp, Ruud E I
2016-12-06
Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We present a review of 40 years of photovoltaics development, analysing the development of energy demand and greenhouse gas emissions associated with photovoltaics production. Here we show strong downward trends of environmental impact of photovoltaics production, following the experience curve law. For every doubling of installed photovoltaic capacity, energy use decreases by 13 and 12% and greenhouse gas footprints by 17 and 24%, for poly- and monocrystalline based photovoltaic systems, respectively. As a result, we show a break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.
Winters, William J.; Dillon, William P.; Pecher, Ingo A.; Mason, David H.; Max, Michael D.
2003-01-01
Gas-hydrate samples have been recovered at about 16 areas worldwide (Booth et al., 1996). However, gas hydrate is known to occur at about 50 locations on continental margins (Kvenvolden, 1993) and is certainly far more widespread so it may represent a potentially enormous energy resource (Kvenvolden, 1988). But adverse effects related to the presence of hydrate do occur. Gas hydrate appears to have caused slope instabilities along continental margins (Booth et al., 1994; Dillon et al., 1998; Mienert et al., 1998; Paull & Dillon, (Chapter 12; Twichell & Cooper, 2000) and it has also been responsible for drilling accidents (Yakushev and Collett, 1992). Uncontrolled release of methane could affect global climate (Chapter 11), because methane is 15–20 times more effective as a “greenhouse gas” than an equivalent concentration of carbon dioxide. Clearly, a knowledge of gas-hydrate properties is necessary to safely explore the possibility of energy recovery and to understand its past and future impact on the geosphere.
Mechanisms of group A Streptococcus resistance to reactive oxygen species
Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.
2015-01-01
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736
Mechanisms of group A Streptococcus resistance to reactive oxygen species.
Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N
2015-07-01
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. © FEMS 2015.
Physical properties of hydrate‐bearing sediments
Waite, William F.; Santamarina, J.C.; Cortes, D.D.; Dugan, Brandon; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; Soga, K.; Winters, William J.; Yun, T.S.
2009-01-01
Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate‐bearing sediments. Formation phenomena include pore‐scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small‐strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate‐bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate‐bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.
Research on the theory and application of adsorbed natural gas used in new energy vehicles: A review
NASA Astrophysics Data System (ADS)
Nie, Zhengwei; Lin, Yuyi; Jin, Xiaoyi
2016-09-01
Natural gas, whose primary constituent is methane, has been considered a convincing alternative for the growth of the energy supply worldwide. Adsorbed natural gas (ANG), the most promising methane storage method, has been an active field of study in the past two decades. ANG constitutes a safe and low-cost way to store methane for natural gas vehicles at an acceptable energy density while working at substantially low pressures (3.5-4.0 MPa), allowing for conformable store tank. This work serves to review the state-of-the-art development reported in the scientific literature on adsorbents, adsorption theories, ANG conformable tanks, and related technologies on ANG vehicles. Patent literature has also been searched and discussed. The review aims at illustrating both achievements and problems of the ANG technologies- based vehicles, as well as forecasting the development trends and critical issues to be resolved of these technologies.
Tabb, Michelle M; Batterman, Hollis J
2016-01-01
The Simplexa™ Group A Strep Direct assay is intended for use on the Integrated Cycler for detection of Group A Streptococcus (GAS) directly from throat swabs that have not undergone nucleic acid extraction. A prospective study of 1352 samples in 4 geographically diverse sites showed an overall prevalence of GAS of 15.4%. The assay demonstrated 97.4% sensitivity and 95.2% specificity versus culture. The positive predictive value compared to culture was 72.7%. However, 46 out of 57 discrepant samples were Group A Strep positive when tested using a bi-directional sequencing method illustrating the increased sensitivity of the assay compared to culture for detection of GAS. Rapid and accurate diagnosis of GAS allows for timely treatment to decrease complications of this prevalent organism that continues to cause substantial morbidity and mortality worldwide.
Heavy-ion induced electronic desorption of gas from metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Kollmus, H; Mahner, E
During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.
CO2 Emissions in an Oil Palm Plantation on Tropical Peat in Malaysia
NASA Astrophysics Data System (ADS)
Leclerc, M.; Zhang, G.; Jantan, N. M.; Harun, M. H.; Kamarudin, N.; Choo, Y. M.
2016-12-01
Tropical peats are large contributors to greenhouse gas emissions and differ markedly from their counterparts at temperate latitudes. The rapid deforestation and subsequent land conversion of tropical virgin forests in Southeast Asia have been decried by environmental groups worldwide even though there is currently little robust scientific evidence to ascertain the net amount of greenhouse gas released to the atmosphere. The conversion to oil palm plantation at a large scale further exacerbates the situation. This paper shows preliminary data on CO2 emissions in a converted oil palm plantation grown on tropical peat in northeast Malaysia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Grunewald; Paul Jehn; Tom Gillespie
The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMSmore » and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline regulatory approaches and allow small operators to produce energy from areas that have become sub-economic for the major producers. The GWPC is working with states to develop a coal bed methane program, which will both manage the data and develop a public education program on the benefits of produced water. The CERA program benefits all oil and gas states by reducing the cost of regulatory compliance, increasing environmental protection, and providing industry and regulatory agencies a discussion forum. Activities included many small and large group forum settings for discussions of technical and policy issues as well as the ongoing State Class II UIC peer review effort. The accomplishments detailed in this report will be the basis for the next initiative which is RBDMS On-Line. RBDMS On-Line will combine data mining, electronic permitting and electronic reporting with .net technology. Industry, BLM, GWPC and all Oil and Gas states are partnering this effort.« less
Ecosystem Modeling of Biological Processes to Global Budgets
NASA Technical Reports Server (NTRS)
Christopher, Potter S.; Condon, Estelle (Technical Monitor)
2000-01-01
From an ecological perspective, the search for life on distant planets begins from several key assumptions. The first of these is that, viewed from a remote location in space, the signature of life on a distant planet will be the result of net gas exchange of organisms with their environment. On the basis of extensive biogeochemical measurements and biogenic trace gas fluxes in modem Earth environments, it is probable that certain groups of organisms both produce and consume the same trace gas(es) within a single bioprofile of Solid (porous) substrate or surface water. The net gas exchange rate with the atmosphere measured at the living surface is frequently the result of competing metabolic reactions, which may carried out by different functional groups of organisms located at dissimilar 'climatic' or chemical microsites within the same bioprofile. Biogenic gases produced at one (deep) level of a bioprofile may be consumed by another functional group of organisms located closer to the level of surface exchange with the atmosphere. A second key assumption is that the net biogenic fluxes of atmospheric gases on Earth can be used to infer relative abundance and functional composition of the major organisms on a distant planet. Examples of this principle include the presence of methanogenic microorganisms abundant today in freshwater ecosystems worldwide, which are major source of atmospheric methane and its seasonal variability in Earth's atmosphere. A third assumption is that scaling up biogenic gas fluxes from a single biological community to the planetary level requires flux measurements at the whole ecosystem level. This implies that measurements of biogenic gas exchange with the global atmosphere cannot be easily inferred from measurements of gas production rates of single organisms, which may have been isolated in some manner from the setting of their native ecosystem. Hence, the unit of biological organization used in modern Earth Science for scaling up to biosphere effects on atmospheric composition is the ecosystem level. These assumptions are the foundation for developing modern emission budgets for biogenic gases such as carbon dioxide, methane, carbon monoxide, isoprene, nitrous and nitric oxide, and ammonia. Such emission budgets commonly include information on seasonal flux patterns, typical diurnal profiles, and spatial resolution of at least one degree latitude/longitude for the globe. On the basis of these budgets, it is possible to compute 'base emission rates' for the major biogenic trace gases from both terrestrial and ocean sources, which may be useful benchmarks for defining the gas production rates of organisms, especially those from early Earth history, which are required to generate a detectable signal on a global atmosphere. This type of analysis is also the starting point for evaluation of the 'biological processes to global gas budget' extrapolation procedure described above for early Earth ecosystems.
Lokhandwala, Kaaeid A.
2000-01-01
A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.
Tear gas: an epidemiological and mechanistic reassessment
Rothenberg, Craig; Achanta, Satyanarayana; Svendsen, Erik R.
2016-01-01
Deployments of tear gas and pepper spray have rapidly increased worldwide. Large amounts of tear gas have been used in densely populated cities, including Cairo, Istanbul, Rio de Janeiro, Manama (Bahrain), and Hong Kong. In the United States, tear gas was used extensively during recent riots in Ferguson, Missouri. Whereas tear gas deployment systems have rapidly improved—with aerial drone systems tested and requested by law enforcement—epidemiological and mechanistic research have lagged behind and have received little attention. Case studies and recent epidemiological studies revealed that tear gas agents can cause lung, cutaneous, and ocular injuries, with individuals affected by chronic morbidities at high risk for complications. Mechanistic studies identified the ion channels TRPV1 and TRPA1 as targets of capsaicin in pepper spray, and of the tear gas agents chloroacetophenone, CS, and CR. TRPV1 and TRPA1 localize to pain‐sensing peripheral sensory neurons and have been linked to acute and chronic pain, cough, asthma, lung injury, dermatitis, itch, and neurodegeneration. In animal models, transient receptor potential inhibitors show promising effects as potential countermeasures against tear gas injuries. On the basis of the available data, a reassessment of the health risks of tear gas exposures in the civilian population is advised, and development of new countermeasures is proposed. PMID:27391380
Paleozoic shale gas resources in the Sichuan Basin, China
Potter, Christopher J.
2018-01-01
The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... Pure Water, Inc., Paladin Holdings, Inc., Performing Brands, Inc., Petrol Oil and Gas, Inc., Platinum Research Organization, Inc., Renew Energy Resources, Inc., and Vital Living, Inc.; Order of Suspension of... Water, Inc. because it has not filed any periodic reports since the period ended March 31, 2007. It...
The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for t...
USDA-ARS?s Scientific Manuscript database
Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...
2006-01-01
Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents... Services , Kooragang Island, NSW Port of Newcastle Corporation, Newcastle, NSW Australian Energy Regulator, Sydney, NSW 1 PART ONE: INDUSTRY OVERVIEW...contiguous states has been exploited. New natural gas discoveries are expected to be smaller, deeper and more expensive to develop. However, as worldwide
USDA-ARS?s Scientific Manuscript database
There is an increased demand on agricultural systems worldwide to provide food, fiber, and feedstock for the emerging bioenergy industry, raising legitimate concerns on the associated impacts of such intensification on the environment. Of the many ecosystem services that could be impacted by the la...
Maps showing geology, oil and gas fields, and geological provinces of South America
Schenk, C. J.; Viger, R.J.; Anderson, C.P.
1999-01-01
This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.
San Francisco Biofuel Program: Brown Grease to Biodiesel Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolis, Domènec; Martis, Mary; Jones, Bonnie
2013-03-01
Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a goodmore » example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas.« less
Proceedings: 1995 SO{sub 2} control symposium. Volume 3, Sessions 6a, 6b, 7a, 7b
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less
Proceedings: 1995 SO{sub 2} control symposium. Volume 2, Sessions 4a, 4b, 5a, 5b
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
Cosponsored by EPRI, DOE, and EPA, this conference provided a forum for the exchange of economic, technical, and regulatory information on sulfur dioxide control technology. From March 28--31, 1995, participants presented 100 technical papers to an audience of 525 people from around the world. Given in thirteen technical sessions, the papers included regulatory and economic issues, wet and dry SO{sub 2} control processes, emerging technologies, and experience with Clean Air Act Amendments (CAAA) Phase I startups. The fifteenth in a series of symposia over the past two decades, the conference included these key points: the domestic flue gas desulfurization (FGD)more » market is likely to be modest over the next ten years, with most activity overseas; FGD awards could reach over $4 billion a year from 1996--2003, with more than half going to Eastern Europe and Asia; worldwide, at the start of 1994, FGD systems were installed on 609 coal-fired power plants; the average capital cost for Phase I retrofits has been $233/kW; and, trends point to simpler designs, such as towers that operate at higher gas velocities with fewer internals. Published proceedings from these regularly scheduled symposia are valuable resources for engineers and utility planners who need up-to-date information to comply with clean air legislation. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.« less
Li, Yi-Fan; Qiao, Li-Na; Ren, Nan-Qi; Sverko, Ed; Mackay, Donald; Macdonald, Robie W
2017-01-17
In this paper, we report air concentrations of BDE-209 in both gas- and particle-phases across China. The annual mean concentrations of BDE-209 were from below detection limit (BDL) to 77.0 pg·m -3 in the gas-phase and 1.06-728 pg·m -3 in the particle-phase. Among the nine PBDEs measured, BDE-209 is the dominant congener in Chinese atmosphere in both gas and particle phases. We predicted the partitioning behavior of BDE-209 in air using our newly developed steady state equation, and the results matched the monitoring data worldwide very well. It was found that the logarithm of the partition quotient of BDE-209 is a constant, and equal to -1.53 under the global ambient temperature range (from -50 to +50 °C). The gaseous fractions of BDE-209 in air depends on the concentration of total suspended particle (TSP). The most important conclusion derived from this study is that, BDE-209, like other semivolatile organic compounds (SVOCs), cannot be sorbed entirely to atmospheric particles; and there is a significant amount of gaseous BDE-209 in global atmosphere, which is subject to long-range atmospheric transport (LRAT). Therefore, it is not surprising that BDE-209 can enter the Arctic through LRAT mainly by air transport rather than by particle movement. This is a significant advancement in understanding the global transport process and the pathways entering the Arctic for chemicals with low volatility and high octanol-air partition coefficients, such as BDE-209.
Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia.
Eggleton, P; Homathevi, R; Jones, D T; MacDonald, J A; Jeeva, D; Bignell, D E; Davies, R G; Maryati, M
1999-11-29
A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
Martins, Marcelo Ramos; Schleder, Adriana Miralles; Droguett, Enrique López
2014-12-01
This article presents an iterative six-step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty. © 2014 Society for Risk Analysis.
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Wilson, Alphus D.
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191
Diverse applications of electronic-nose technologies in agriculture and forestry.
Wilson, Alphus D
2013-02-08
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Modeling of acoustic wave dissipation in gas hydrate-bearing sediments
NASA Astrophysics Data System (ADS)
Guerin, Gilles; Goldberg, David
2005-07-01
Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus
Füssel, Jessika; Lücker, Sebastian; Yilmaz, Pelin; Nowka, Boris; van Kessel, Maartje A. H. J.; Bourceau, Patric; Hach, Philipp F.; Littmann, Sten; Berg, Jasmine; Spieck, Eva; Daims, Holger; Kuypers, Marcel M. M.; Lam, Phyllis
2017-01-01
Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus. These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences. PMID:29109973
Industrial use of land observation satellite systems
NASA Technical Reports Server (NTRS)
Henderson, F. B., III
1984-01-01
The principal industrial users of land observation satellite systems are the geological industries; oil/gas, mining, and engineering/environmental companies. The primary system used is LANDSAT/MSS. Currently, use is also being made of the limited amounts of SKYLAB photography, SEASAT and SIR-A radar, and the new LANDSAT/TM data available. Although considered experimental, LANDSAT data is now used operationally by several hundred exploration and engineering companies worldwide as a vastly improved geological mapping tool to help direct more expensive geophysical and drilling phases, leading to more efficient decision-making and results. Future needs include global LANDSAT/TM; higher spatial resolution; stereo and radar; improved data handling, processing distribution and archiving systems, and integrated geographical information systems (GIS). For a promising future, governments must provide overall continuity (government and/or private sector) of such systems, insure continued government R and D, and commit to operating internationally under the civil Open Skies policy.
Energy Resources Program of the U.S. Geological Survey
Weedman, Suzanne
2001-01-01
Our Nation faces the simultaneous challenges of increasing demand for energy, declining domestic production from existing oil and gas fields, and increasing expectations for environmental protection. The Energy Information Administration (2000) forecasts that worldwide energy consumption will increase 32 percent between 1999 and 2020 because of growth of the world economy. Forecasts indicate that in the same time period, U.S. natural gas consumption will increase 62 percent, petroleum consumption will increase 33 percent, and coal consumption will increase 22 percent. The U.S. Geological Survey provides the objective scientific information our society needs for sound decisions regarding land management, environmental quality, and economic, energy, and strategic policy.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
SHINE Vacuum Pump Test Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Gregg A; Peters, Brent
2013-09-30
Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to themore » movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ''booster pump'' is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of 3/4 inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.« less
USDA-ARS?s Scientific Manuscript database
Worldwide, dryland soils store 10-15% of all the soil organic matter (SOM) to 1m. Drylands are increasingly threatened by agriculture, overgrazing, mining, and energy development. To prevent loss of carbon from these soils, it is important to understand, first, how disturbances impact SOM and second...
USDA-ARS?s Scientific Manuscript database
Guayule (Parthenium argentatum), a woody desert shrub cultivated in the southwestern United States, is a source of natural rubber and organic resins that promises to revolutionize the tire and rubber industry. Some 20,000 kg ha-1 yr-1 is reported to be harvested worldwide and expected to grow due to...
Nonthermal plasma processor utilizing additive-gas injection and/or gas extraction
Rosocha, Louis A.
2006-06-20
A device for processing gases includes a cylindrical housing in which an electrically grounded, metal injection/extraction gas supply tube is disposed. A dielectric tube surrounds the injection/extraction gas supply tube to establish a gas modification passage therearound. Additionally, a metal high voltage electrode circumscribes the dielectric tube. The high voltage electrode is energizable to create nonthermal electrical microdischarges between the high voltage electrode and the injection/extraction gas supply tube across the dielectric tube within the gas modification passage. An injection/extraction gas and a process gas flow through the nonthermal electrical microdischarges within the gas modification passage and a modified process gas results. Using the device contaminants that are entrained in the process gas can be destroyed to yield a cleaner, modified process gas.
Qvist, Staffan A; Brook, Barry W
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.
Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope
Collett, T.S.; Lee, M.W.; Agena, W.F.; Miller, J.J.; Lewis, K.A.; Zyrianova, M.V.; Boswell, R.; Inks, T.L.
2011-01-01
In the 1960s Russian scientists made what was then a bold assertion that gas hydrates should occur in abundance in nature. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. In 1995, the U.S. Geological Survey made the first systematic assessment of the in-place natural gas hydrate resources of the United States. That study suggested that the amount of gas in the gas hydrate accumulations of northern Alaska probably exceeds the volume of known conventional gas resources on the North Slope. Researchers have long speculated that gas hydrates could eventually become a producible energy resource, yet technical and economic hurdles have historically made gas hydrate development a distant goal. This view began to change in recent years with the realization that this unconventional resource could be developed with existing conventional oil and gas production technology. One of the most significant developments was the completion of the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well on the Alaska North Slope, which along with the Mallik project in Canada, have for the first time allowed the rational assessment of gas hydrate production technology and concepts. Almost 40 years of gas hydrate research in northern Alaska has confirmed the occurrence of at least two large gas hydrate accumulations on the North Slope. We have also seen in Alaska the first ever assessment of how much gas could be technically recovered from gas hydrates. However, significant technical concerns need to be further resolved in order to assess the ultimate impact of gas hydrate energy resource development in northern Alaska. ?? 2009 Elsevier Ltd.
Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics
NASA Astrophysics Data System (ADS)
Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.
2005-05-01
Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-12-04
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.
Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors
Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth
2015-01-01
Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur
2015-11-01
Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.
A simple capacitive method to evaluate ethanol fuel samples
NASA Astrophysics Data System (ADS)
Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.
2017-02-01
Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.
NASA Astrophysics Data System (ADS)
Husin, H.; Ahmad, N.; Jamil, N.; Chyuan, O. H.; Roslan, A.
2018-05-01
Worldwide demand in oil and gas energy consumption has been driving many of oil and gas companies to explore new oil and gas resource field in an ultra-deep water environment. As deeper well is drilled, more problems and challenges are expected. The successful of drilling operation is highly dependent on properties of drilling fluids. As a way to operate drilling in challenging and extreme surroundings, nanotechnology with their unique properties is employed. Due to unique physicochemical, electrical, thermal, hydrodynamic properties and exceptional interaction potential of nanomaterials, nanoparticles are considered to be the most promising material of choice for smart fluid design for oil and gas field application. Throughout this paper, the effect of nano silver particle in improving a conventional water based drilling fluid was evaluated. Results showed that nano silver gave a significant improvement to the conventional water based drilling fluid in terms of its rheological properties and filtration test performance.
NASA Astrophysics Data System (ADS)
Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar
2016-10-01
Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.
Prpich, George; Coulon, Frédéric; Anthony, Edward J
2016-09-01
Interest in the development of shale gas resources using hydraulic fracturing techniques is increasing worldwide despite concerns about the environmental risks associated with this activity. In the United Kingdom (UK), early attempts to hydraulically fracture a shale gas well resulted in a seismic event that led to the suspension of all hydraulic fracturing operations. In response to this occurrence, UK regulators have requested that future shale gas operations that use hydraulic fracturing should be accompanied by a high-level environmental risk assessment (ERA). Completion of an ERA can demonstrate competency, communicate understanding, and ultimately build trust that environmental risks are being managed properly, however, this assessment requires a scientific evidence base. In this paper we discuss how the ERA became a preferred assessment technique to understand the risks related to shale gas development in the UK, and how it can be used to communicate information between stakeholders. We also provide a review of the evidence base that describes the environmental risks related to shale gas operations, which could be used to support an ERA. Finally, we conclude with an update of the current environmental risks associated with shale gas development in the UK and present recommendations for further research. Copyright © 2015 Elsevier B.V. All rights reserved.
Wilding, Bruce M; Turner, Terry D
2014-12-02
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Kvenvolden, K.A.
2000-01-01
The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.
Survey of natural helium occurrences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinnah, D.W.; Hamak, J.E.
1993-01-01
Since 1917, gas samples from oil and gas wells and natural gas pipelines throughout the United States and other countries worldwide have been collected by the USBM in a continuing search for helium occurrences. Analyses of 15,583 of the samples, which were collected from 40 States and 26 foreign countries, are available from the USBM. The USBM is charged with the responsibility of ensuring a continuing supply of helium to meet essential Government needs, and this survey of the world's natural gas fields is made in connection with this responsibility. Most of these analyses have been published in USBM publications.more » The first of this series of publications was Bulletin 486 and was followed by two more bulletins. These three publications contained data on analyses of 5,218 gas samples collected from the beginning of the survey through 1960. Data on gas analyses since 1961 have been published on an annual basis, and 35 Information Circulars have presented the analyses of 10,365 gas samples collected through 1991. These analyses are also available on magnetic tape and 3.5-inch diskettes from the National Technical Information Service. The helium survey program is conducted by soliciting natural gas samples throughout the United States and from other countries with free market economies. Without the assistance of the oil and gas industry, State and National agencies, and many individuals engaged in oil and gas exploration and production, the present scope of the helium survey would have been impossible. 39 refs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Kumar, Shani; Dhingra, Vishal; Garg, Amit; Chowdhuri, Arijit
2016-05-01
Worldwide researchers are actively engaged in utilizing Graphene and its related materials in gas sensing applications. A high surface-to-volume ratio that offers scope of optimization leading to enhanced sensing performance besides lower sensor operating temperatures are some advantages that graphene based sensors possess over conventional semiconducting metal oxide (SMO) sensors. Conventional SMO based gas sensors are known to suffer from problems of cross-selectivity where selectivity is understood to be a gas sensor's ability to preferentially detect one particular gas without responding to or experiencing interference from other gases present in the ambient. In the current study gas sensing mechanism of Graphene oxide (GO) thin films is investigated by repeatedly exposing the sensing configuration to various gases and its cross-selectivity response to the same is examined. In the investigation typical gas sensing response characteristics of the sensor configuration are studied in both oxidizing as well as reducing environments. The gas sensing data is acquired by means of Keithley 6487 picoammeter which is interfaced with a customized Gas Sensing Test Rig (GSTR) that provides a controlled ambient to the sensors for measurement of reproducible characteristics. GSTR further provided the option of varying the operating temperature and gas concentration for the different sensor configurations under study. XRD studies indicate formation of GO with typical crystallite size of 4.2 nm. UV-Vis investigations reveal a typical band-gap of 4.42 (eV) which is in conformity with those reported in the available literature.1,2
Potential effects of gas hydrate on human welfare
Kvenvolden, K.A.
1999-01-01
For almost 30 years, serious interest has been directed toward natural gas hydrate, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) sub-marine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas hydrate as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and phase-equilibria considerations diminish the energy resource potential of natural gas hydrate. The possible role of gas hydrate in global climate change has been often overstated. Although methane is a 'greenhouse' gas in the atmosphere, much methane from dissociated gas hydrate may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas hydrate may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-hydrate dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas hydrate to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected.
Direct observations of gas-hydrate formation in natural porous media on the micro-scale
NASA Astrophysics Data System (ADS)
Chaouachi, M.; Sell, K.; Falenty, A.; Enzmann, F.; Kersten, M.; Pinzer, B.; Saenger, E. H.; Kuhs, W. F.
2013-12-01
Gas hydrates (GH) are crystalline, inclusion compounds consisting of hydrogen-bonded water network encaging small gas molecules such as methane, ethane, CO2, etc (Sloan and Koh 2008). Natural gas hydrates are found worldwide in marine sediments and permafrost regions as a result of a reaction of biogenic or thermogenic gas with water under elevated pressure. Although a large amount of research on GH has been carried out over the years, the micro-structural aspects of GH growth, and in particular the contacts with the sedimentary matrix as well as the details of the distribution remain largely speculative. The present study was undertaken to shed light onto the well-established but not fully understood seismic anomalies, in particular the unusual attenuation of seismic waves in GH-bearing sediments, which may well be linked to micro-structural features. Observations of in-situ GH growth have been performed in a custom-build pressure cell (operating pressures up to several bar) mounted at the TOMCAT beam line of SLS/ PSI. In order to provide sufficient absorption contrast between phases and reduce pressure requirements for the cell we have used Xe instead of CH4. To the best of our knowledge this represents the first direct observation of GH growth in natural porous media with sub-micron spatial resolution and gives insight into the nucleation location and growth process of GH. The progress of the formation of sI Xe-hydrate in natural quartz sand was observed with a time-resolution of several minutes; the runs were conducted with an excess of a free-gas phase and show that the nucleation starts at the gas-water interface. Initially, a GH film is formed at this interface with a typical thickness of several μm; this film may well be permeable to gas as suggested in the past - which would explain the rapid transport of gas molecules for further conversion of water to hydrate, completed in less than 20 min. Clearly, initially the growth is directed mainly into the liquid (and not into the gas phase as sometimes suggested). The observations of the 2D slices after full transformation show for all systems studied that hydrates tend to concentrate in the center of pore spaces and do not adhere in a systematic manner to quartz grains. Whether or not a thin film of water remained at the quartz-GH interface after completion of the reaction is presently under investigation. Sloan, E.D., Koh, C.A., (2008) Clathrate hydrates of natural gases. CRC Press, Boca Raton, FL.
Current trends in Natural Gas Flaring Observed from Space with VIIRS
NASA Astrophysics Data System (ADS)
Zhizhin, M. N.; Elvidge, C.; Baugh, K.
2017-12-01
The five-year survey of natural gas flaring in 2012-2016 has been completed with nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) data. The survey identifies flaring site locations, annual duty cycle, and provides an estimate of the flared gas volumes in methane equivalents. VIIRS is particularly well-.suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. The total flared gas volume is estimated at 140 +/-30 billion cubic meters (BCM) per year, corresponding to 3.5% of global natural gas production. While Russia leads in terms of flared gas volume (>20 BCM), the U.S. has the largest number of flares (8,199 of 19,057 worldwide). The two countries have opposite trends in flaring: while for the U.S. the peak was reached in 2015, for Russia it was the minimum. On the regional scale in the U.S., Texas has the maximum number of flares (3749), with North Dakota, the second highest, having one half of this number (2,003). The number of flares for most of the states has decreased in the last 3 years following the trend in oil prices. The presentation will compare the global estimates, and regional trends observed in the U.S. regions. Preliminary estimates for global gas flaring in 2017 will be presented
Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.
Velasco, Erik; Roth, Matthias
2012-06-01
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.
Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.
2012-08-21
A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
NASA Astrophysics Data System (ADS)
Hong, Yong C.; Kim, Jeong H.; Uhm, Han S.
2004-02-01
The threat of chemical and biological warfare agents in a domestic terrorist attack and in military conflict is increasing worldwide. Elimination and decontamination of chemical and biological warfare (CBW) agents are immediately required after such an attack. Simulated experiment for elimination of CBW agents by making use of atmospheric-pressure microwave plasma torches is carried out. Elimination of biological warfare agents indicated by the vitrification or burnout of sewage sludge powders and decomposition of toluene gas as a chemical agent stimulant are presented. A detailed characterization for the elimination of the simulant chemicals using Fourier transform infrared and gas chromatography is also presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2013 CFR
2013-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2012 CFR
2012-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Code of Federal Regulations, 2014 CFR
2014-07-01
... crude oil removed from the earth and the oils derived from tar sands, shale, and coal. (c) Process gas means any gas generated by a petroleum refinery process unit, except fuel gas and process upset gas as defined in this section. (d) Fuel gas means any gas which is generated at a petroleum refinery and which...
Electrochemical and partial oxidation of methane
NASA Astrophysics Data System (ADS)
Singh, Rahul
2008-10-01
Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by in situ infrared spectroscopy combined with mass spectrometry and (ii) evaluating the performance of coal gas for power generation based on the composition on a Cu-SOFC. The voltage-current performance curve for coal gas suggests that hydrogen and methane rich coal gas performed better than CO2 or D2O concentrated coal gas. A slow rate of reforming reaction of D2O than CO2 with coal and coal gas was observed during pyrolysis reaction. The coal and coke (by-product of pyrolysis) were characterized by Raman spectrometer to reveal the effect of pyrolysis on the structural properties of coal.
Mercury enrichment and its effects on atmospheric emissions in cement plants of China
NASA Astrophysics Data System (ADS)
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming
2014-08-01
The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, V.S.
1980-06-01
This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author indexmore » following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.« less
Gas hydrates of outer continental margins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kvenvolden, K.A.
1990-05-01
Gas hydrates are crystalline substances in which a rigid framework of water molecules traps molecules of gas, mainly methane. Gas-hydrate deposits are common in continental margin sediment in all major oceans at water depths greater than about 300 m. Thirty-three localities with evidence for gas-hydrate occurrence have been described worldwide. The presence of these gas hydrates has been inferred mainly from anomalous lacoustic reflectors seen on marine seismic records. Naturally occurring marine gas hydrates have been sampled and analyzed at about tensites in several regions including continental slope and rise sediment of the eastern Pacific Ocean and the Gulf ofmore » Mexico. Except for some Gulf of Mexico gas hydrate occurrences, the analyzed gas hydrates are composed almost exclusively of microbial methane. Evidence for the microbial origin of methane in gas hydrates includes (1) the inverse relation between methane occurence and sulfate concentration in the sediment, (2) the subparallel depth trends in carbon isotopic compositions of methane and bicarbonate in the interstitial water, and (3) the general range of {sup 13}C depletion ({delta}{sub PDB}{sup 13}C = {minus}90 to {minus}60 {per thousand}) in the methane. Analyses of gas hydrates from the Peruvian outer continental margin in particular illustrate this evidence for microbially generated methane. The total amount of methane in gas hydrates of continental margins is not known, but estimates of about 10{sup 16} m{sup 3} seem reasonable. Although this amount of methane is large, it is not yet clear whether methane hydrates of outer continental margins will ever be a significant energy resource; however, these gas hydrates will probably constitute a drilling hazard when outer continental margins are explored in the future.« less
Scale-free characteristics of random networks: the topology of the world-wide web
NASA Astrophysics Data System (ADS)
Barabási, Albert-László; Albert, Réka; Jeong, Hawoong
2000-06-01
The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
Qualitative flow visualization of flame attachment on slopes
Torben P. Grumstrup; Sara S. McAllister; Mark A. Finney
2017-01-01
Heating of unburned fuel by attached flames and plume of a wildfire can produce high spread rates that have resulted in firefighter fatalities worldwide. Qualitative flow fields of the plume of a gas burner embedded in a table tilted to 0°, 10°, 20°, and 30° above horizontal were imaged using the retroreflective shadowgraph technique as a means to understand plume...
Qvist, Staffan A.; Brook, Barry W.
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621
Gas sampling system for a mass spectrometer
Taylor, Charles E; Ladner, Edward P
2003-12-30
The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
Huang, Ya-Shu; Fisher, Morly; Nasrawi, Ziyad; Eichenbaum, Zehava
2011-06-01
The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.
A meta-analysis of leaf gas exchange and water status responses to drought.
Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping
2016-02-12
Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought.
A meta-analysis of leaf gas exchange and water status responses to drought
Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping
2016-01-01
Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought. PMID:26868055
Puerperal sepsis in the 21st century: progress, new challenges and the situation worldwide.
Buddeberg, Bigna S; Aveling, Wynne
2015-10-01
Puerperal sepsis is one of the five leading causes of maternal mortality worldwide, and accounts for 15% of all maternal deaths. The WHO defined puerperal sepsis in 1992 as an infection of the genital tract occurring at any time between the rupture of membranes or labour and the 42nd day post partum; in which, two or more of the following are present: pelvic pain, fever, abnormal vaginal discharge and delay in the reduction of the size of the uterus. At the same time, the WHO introduced the term puerperal infections, which also include non-genital infections in the obstetric population. Recent epidemiological data shows that puerperal sepsis and non-genital tract infections are a major area of concern. In puerperal sepsis, group A streptococcus (GAS) is the most feared pathogen. Up to 30% of the population are asymptomatic carriers of GAS. GAS commonly causes throat infections. Women who died from GAS-positive sepsis all had signs of a throat infection themselves or one of their family members suffered from a throat infection. The pathway of infection is from the hands of the pregnant women or the mother to her perineum. In non-genital tract infections, influenza viruses and the HIV pandemic in the developing part of the world are responsible for many maternal deaths, and demand our attention. The physiological changes of pregnancy and the puerperium can obscure the signs and symptoms of sepsis in the obstetric population. A high level of suspicion is, therefore, needed in the care for the sick pregnant patient. If sepsis is suspected, timely administration of antibiotics, sepsis care bundles, multidisciplinary discussion and early involvement of senior staff members are important to improve outcome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... leases. (b) A reasonable amount of residue gas shall be allowed royalty free for operation of the... the operation of the processing plant shall be allowed royalty free. (c) No royalty is due on residue gas, or any gas plant product resulting from processing gas, which is reinjected into a reservoir...
Methane-Hydrogen Generation in the Zambales Ophiolite (Philippines) Revisited
NASA Astrophysics Data System (ADS)
Abrajano, J.; Telling, J.; Sherwood-Lollar, B.; Villiones, R.
2006-05-01
The so-called Zambales Ophiolite Methane (ZOM) is one of the earliest reported occurrences of reduced gas in ultramafic terranes. The ZOM also holds the distinction of having the most 13C-enriched carbon of naturally occurring methane seeps on Earth. This attribute, along with evidence that shows strong "mantle-like" noble gas components, led to the general acknowledgement that ZOM represents abiotically generated methane. In this presentation, the geologic setting, host rocks, apparent gas flux and composition and other field attributes of ZOM will be described, based on a fieldwork and sampling that we recently conducted. In addition to the original gas occurrence in Los Fuegos Eternos, LFE (e.g., Abrajano et al., 1988), a newly discovered major gas seep occurrence on Nagsaza, San Antonio, Zambales will also be described. It is noteworthy that the new site occurs in a separate ophiolitic block, and is over 70 km away from the LFE site. Analyses of molecular composition and compound-specific carbon and hydrogen isotope composition of methane and minor hydrocarbons are currently on-going. We will conclude this presentation with a re-assessment of the generation mechanism(s) previously considered for the ZOM and other similar occurrences worldwide.
GeoCENS: a geospatial cyberinfrastructure for the world-wide sensor web.
Liang, Steve H L; Huang, Chih-Yuan
2013-10-02
The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision.
GeoCENS: A Geospatial Cyberinfrastructure for the World-Wide Sensor Web
Liang, Steve H.L.; Huang, Chih-Yuan
2013-01-01
The world-wide sensor web has become a very useful technique for monitoring the physical world at spatial and temporal scales that were previously impossible. Yet we believe that the full potential of sensor web has thus far not been revealed. In order to harvest the world-wide sensor web's full potential, a geospatial cyberinfrastructure is needed to store, process, and deliver large amount of sensor data collected worldwide. In this paper, we first define the issue of the sensor web long tail followed by our view of the world-wide sensor web architecture. Then, we introduce the Geospatial Cyberinfrastructure for Environmental Sensing (GeoCENS) architecture and explain each of its components. Finally, with demonstration of three real-world powered-by-GeoCENS sensor web applications, we believe that the GeoCENS architecture can successfully address the sensor web long tail issue and consequently realize the world-wide sensor web vision. PMID:24152921
Potential effects of gas hydrate on human welfare
Kvenvolden, Keith A.
1999-01-01
For almost 30 years. serious interest has been directed toward natural gas hydrate, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) submarine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas hydrate as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and phase-equilibria considerations diminish the energy resource potential of natural gas hydrate. The possible role of gas hydrate in global climate change has been often overstated. Although methane is a “greenhouse” gas in the atmosphere, much methane from dissociated gas hydrate may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas hydrate may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-hydrate dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas hydrate to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected. PMID:10097052
30 CFR 202.151 - Royalty on processed gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... residue gas shall be allowed royalty free for operation of the processing plant, but no allowance shall be... that proportionate share of each lease's residue gas necessary for the operation of the processing... resulting from processing gas, which is reinjected into a reservoir within the same lease, unit area, or...
30 CFR 206.158 - Processing allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.158 Processing allowances—general. (a) Where the value of gas... actual costs of processing. (b) Processing costs must be allocated among the gas plant products. A...
30 CFR 206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for each gas plant product and processing plant relationship. Natural gas liquids are considered as... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Gas Processing Allowances § 206.179 What general requirements regarding processing allowances apply to me? (a) When you value any gas plant...
NASA Astrophysics Data System (ADS)
Dong, Xu; Sun, Jianmeng; Li, Jun; Gao, Hui; Liu, Xuefeng; Wang, Jinjie
2015-08-01
Gas shale has shown considerable force in gas production worldwide, but little attention has been paid to its electrical properties, which are essential for reservoir evaluation and differentiating absorbed gas and free gas. In this study, experiments are designed to research water saturation establishment methods and electrical properties of gas shale. Nuclear magnetic resonance (NMR) with short echo space (TE) is used to identify water saturation and distribution of saturated pores which contribute to the conductivity. The experimental results indicate that NMR with shorter TE can estimate porosity and fluid distribution better than NMR with longer TE. A full range of water saturation is established by the combination of new-type spontaneous imbibition and semi-permeable plate drainage techniques. Spontaneous imbibition gains water saturation from 0% to near irreducible water saturation, and, semi-permeable plate drainage desaturates from 100% to irreducible water saturation. The RI-Sw curve shows a nonlinear relationship, and can be divided into three parts with different behaviors. The comparative analysis of transverse relaxation time (T2) distribution and RI-Sw curves, indicates that free water, and water trapped by capillarity in the non-clay matrix, differ in terms of electrical conductivity from water absorbed in clay. The new experiments prove the applicability of imbibition, drainage and NMR in investigating electrical properties of gas shale and differentiating fluid distribution which makes contribution to conductivity.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
Carbon dioxide-selective membranes and their applications in hydrogen processing
NASA Astrophysics Data System (ADS)
Zou, Jian
Fuel cells, which are regarded as a promising energy conversion approach in the 21st century, are now receiving increasing attention worldwide. In most cases, hydrogen is the preferred fuel for fuel cells, especially for proton-exchange membrane fuel cells (PEMFCs). One key issue in the development of PEMFC is how to generate hydrogen from the available hydrocarbon fuels. Most feasible strategies consist of a reforming step followed by the water gas shift (WGS) reaction. The resulting synthesis gas (syngas) still consists of 0.5--1.0% CO, which needs to be reduced to less than 10 ppm to meet the requirement of PEMFCs. Therefore, a further CO clean-up step is usually used to decrease CO concentration. In the present work, new CO2-selective membranes were synthesized and their applications for fuel cell fuel processing and synthesis gas purification were investigated. In order to enhance CO2 transport across membranes, the synthesized membranes contained both mobile and fixed site carriers in crosslinked poly(vinyl alcohol). The effects of crosslinking, membrane composition, feed pressure, water content, and temperature on transport properties were investigated. The membranes have shown a high permeability and a good CO 2/H2 selectivity and maintained their separation performance up to 170°C. One type of these membranes showed a permeability of 8000 Barrers (1 Barrer = 10-10 cm3 (STP).cm/(cm 2.s.cm.Hg)) and a CO2/H2 selectivity of 290 at 110°C. This membrane had a permeability of 1200 Barrers and a CO 2/H2 selectivity of 33 even at 170°C. The applications of the synthesized membranes were demonstrated in a CO2-removal experiment, in which the CO2 concentration in retentate was decreased from 17% to less than 10 ppm. With such membranes, there are several options to reduce the CO concentration of syngas. One option is to develop a WGS membrane reactor, in which both the low temperature WGS reaction and the CO2-removal take place. Another option is to use a proposed process consisting of a CO2-removal membrane module followed by a conventional low-temperature WGS reactor. A third option is to use methanation after the CO2-removal, one of the most widely used processes for the CO clean-up step. Experimental results showed that CO concentration was reduced to below 10 ppm with all three approaches. In the membrane reactor, a CO concentration of less than 10 ppm and a H 2 concentration of greater than 50% (on the dry basis) were achieved at various flow rates of a simulated autothermal reformate. In the proposed CO2-removal/WGS process, with more than 99.5 % CO2 removed from the synthesis gas, the reversible WGS was shifted forward so that the CO concentration was decreased from 1.2% to less than 10 ppm (dry), which is the requirement for PEMFC. The WGS reactor had a gas hourly space velocity of 7650 h-1 at 150°C and the H2 concentration in the outlet was more than 54.7% (dry). The applications of the synthesized CO2-selective membranes for high-pressure synthesis gas purification were also studied. Synthesis gas is the primary source for hydrogen as well as an intermediate for a broad range of chemicals. The separation of CO2 from synthesis gas is a critical step to obtain high purity hydrogen in many industrial plants, especially refinery plants. We studied the synthesized polymeric CO2 -selective membranes for synthesis gas purification at feed pressures higher than 200 psia and temperatures ranging from 100 to 150°C. The effects of feed pressure, microporous support, temperature, and permeate pressure were investigated using a simulated synthesis gas containing 20% carbon dioxide and 80% hydrogen. The membranes synthesized showed best CO2 permeability and CO2/H2 selectivity at 110°C. At a feed pressure of 220 psia, the CO2 permeability and CO2/H2 selectivity reached 756 Barrers and 42, respectively, whereas at a feed pressure of 440 psia, the CO2 permeability was 391 Barrers and the CO 2/H2 selectivity was about 25.
Process for removing an organic compound from water
Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.
1993-12-28
A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Chang, Liang-Yu; Chuang, Ming-Yen; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung; Yeh, Ping-Hung; Chen, Jian-Nan
2017-04-28
In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.
30 CFR 206.153 - Valuation standards-processed gas.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., prices received in spot sales of residue gas or gas plant products, other reliable public sources of... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.153 Valuation standards—processed gas. (a)(1) This section... to this section shall be the combined value of the residue gas and all gas plant products determined...
Apparatus for the liquefaction of a gas and methods relating to same
Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-12-29
Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.
WOVOdat - An online, growing library of worldwide volcanic unrest
NASA Astrophysics Data System (ADS)
Newhall, C. G.; Costa, F.; Ratdomopurbo, A.; Venezky, D. Y.; Widiwijayanti, C.; Win, Nang Thin Zar; Tan, K.; Fajiculay, E.
2017-10-01
The World Organization of Volcano Observatories (WOVO), with major support from the Earth Observatory of Singapore, is developing a web-accessible database of seismic, geodetic, gas, hydrologic, and other unrest from volcanoes around the world. This database, WOVOdat, is intended for reference during volcanic crises, comparative studies, basic research on pre-eruption processes, teaching, and outreach. Data are already processed to have physical meaning, e.g. earthquake hypocenters rather than voltages or arrival times, and are historical rather than real-time, ranging in age from a few days to several decades. Data from > 900 episodes of unrest covering > 75 volcanoes are already accessible. Users can visualize and compare changes from one episode of unrest or from one volcano to the next. As the database grows more complete, users will be able to analyze patterns of unrest in the same way that epidemiologists study the spatial and temporal patterns and associations among diseases. WOVOdat was opened for station and data visualization in August 2013, and now includes utilities for data downloads and Boolean searches. Many more data sets are being added, as well as utilities interfacing to new applications, e.g., the construction of event trees. For more details, please see www.wovodat.org.
Nucleic acid-based approaches to investigate microbial-related cheese quality defects
O'Sullivan, Daniel J.; Giblin, Linda; McSweeney, Paul L. H.; Sheehan, Jeremiah J.; Cotter, Paul D.
2012-01-01
The microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors. PMID:23346082
Dynamics of Fluids and Transport in Fractured Rock
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
U.S. shale gas trends - economic and global implications
NASA Astrophysics Data System (ADS)
Murphy, T.
2016-09-01
Natural gas from shale has moved the U.S., and North America more broadly, to become one of the largest producers of the commodity worldwide. Large technological gains have allowed reservoirs of unconventional hydrocarbons to become commercially viable to extract and market. The addition of this growing supply into the global marketplace, has upended longstanding trading patterns, and created new economic outcomes worth noting. This paper will discuss the recent trends of shale energy development in the U.S., the impact it is having on domestic and international markets, and the implications as the world shifts to a new low carbon energy paradigm. It will cover changes in workforce, midstream build out, power generation trends, petrochemicals, and emerging LNG export capacities.
NASA Technical Reports Server (NTRS)
Casas, J. C.; Condon, E.; Campbell, S. A.
1978-01-01
In order to establish the applicability of a gas filter correlation radiometer, GFCR, to remote carbon monoxide, CO, measurements on a regional and worldwide basis, Old Dominion University has been engaged in the development of accurate and cost effective techniques for inversion of GFCR CO data and in the development of an independent gas chromatographic technique for measuring CO. This independent method is used to verify the results and the associated inversion method obtained from the GFCR. A description of both methods (direct and remote) will be presented. Data obtained by both techniques during a flight test over the lower Lake Michigan Basin in August of 1976 will also be discussed.
Oil and gas reserves estimates
Harrell, R.; Gajdica, R.; Elliot, D.; Ahlbrandt, T.S.; Khurana, S.
2005-01-01
This article is a summary of a panel session at the 2005 Offshore Technology Conference. Oil and gas reserves estimates are further complicated with the expanding importance of the worldwide deepwater arena. These deepwater reserves can be analyzed, interpreted, and conveyed in a consistent, reliable way to investors and other stakeholders. Continually improving technologies can lead to improved estimates of production and reserves, but the estimates are not necessarily recognized by regulatory authorities as an indicator of "reasonable certainty," a term used since 1964 to describe proved reserves in several venues. Solutions are being debated in the industry to arrive at a reporting mechanism that generates consistency and at the same time leads to useful parameters in assessing a company's value without compromising confidentiality. Copyright 2005 Offshore Technology Conference.
Thermodynamic Studies of High Temperature Materials Via Knudsen Cell Mass Spectrometry
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Brady, Michael P.
1997-01-01
The Knudsen Cell technique is a classic technique from high temperature chemistry for studying condensed phase/vapor equilibria. It is based on a small enclosure, usually about 1 cm in diameter by 1 cm high, with an orifice of well-defined geometry. This forms a molecular beam which is analyzed with mass spectrometry. There are many applications to both fundamental and applied problems with high temperature materials. Specific measurements include vapor pressures and vapor compositions above solids, activities of alloy components, and fundamental gas/solid reactions. The basic system is shown. Our system can accommodate a wide range of samples, temperatures, and attachments, such as gas inlets. It is one of only about ten such systems world-wide.
Direct Imaging of Shale Gas Leaks Using Passive Thermal Infrared Hyperspectral Imaging
NASA Astrophysics Data System (ADS)
Marcotte, F.; Chamberland, M.; Morton, V.; Gagnon, M. A.
2017-12-01
Natural gas is an energy resource in great demand worldwide. There are many types of gas fields including shale formations which are common especially in the St-Lawrence Valley (Qc). Regardless of its origin, methane (CH4) is the major component of natural gas. Methane gas is odorless, colorless and highly flammable. It is also an important greenhouse gas. Therefore, dealing efficiently with methane emanations and/or leaks is an important and challenging issue for both safety and environmental considerations. In this regard, passive remote sensing represents an interesting approach since it allows characterization of large areas from a safe location. The high propensity of methane contributing to global warming is mainly because it is a highly infrared-active molecule. For this reason, thermal infrared remote sensing represents one of the best approaches for methane investigations. In order to illustrate the potential of passive thermal infrared hyperspectral imaging for research on natural gas, imaging was carried out on a shale gas leak that unexpectedly happen during a geological survey near Hospital Enfant-Jésus (Québec City) in December 2014. Methane was selectively identified in the scene by its unique infrared signature. The estimated gas column density near the leak source was on the order of 65 000 ppm×m. It was estimated that the methane content in the shale gas is on the order of 6-7 %, which is in good agreement with previous geological surveys carried out in this area. Such leaks represent a very serious situation because such a methane concentration lies within the methane lower/upper explosion limits (LEL-UEL, 5-15 %). The results show how this novel technique could be used for research work dealing with methane gas.
Mozaner Bordin, Dayanne C; Alves, Marcela N R; Cabrices, Oscar G; de Campos, Eduardo G; De Martinis, Bruno Spinosa
2014-01-01
Drug abuse by pregnant women is considered a serious public health problem worldwide. Meconium is the first excretion in newborns and has been used as an alternative matrix to evaluate in utero drug exposure. Solid phase extraction (SPE) is widely employed to prepare and clean up samples in the field of forensic analysis. Most SPE products require large volumes of solvent, which culminates in longer sample processing times and increased cost per sample. Disposable pipette extraction (DPX) tips have been used as an alternative to traditional SPE cartridges. They combine efficient and rapid extraction with reduced solvent consumption. The purpose of this study was to develop and validate a method to determine nicotine, cotinine, cocaine, benzoylecgonine, cocaethylene and methyl ester anhydroecgonine in meconium using DPX and gas chromatography-mass spectrometry (GC-MS). Validation results indicated that extraction efficiency ranged 50-98%, accuracy 92-106%, intra-assay precision 4-12% and inter-assay precision 6-12%. Linear calibration curves resulted in R(2) values >0.99, limits of detection ranged from 2.5 to 15 ng/g and the limit of quantitation from 10 to 20 ng/g. The DPX-GC-MS method was shown to selectively analyze trace concentrations of drugs in meconium samples. Finally, the developed and validated method was applied to 50 meconium samples.
A network biology approach to denitrification in Pseudomonas aeruginosa
Arat, Seda; Bullerjahn, George S.; Laubenbacher, Reinhard
2015-02-23
Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO₂), nitric oxide (NO) and nitrous oxide (N₂O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O₂), nitrate (NO₃),more » and phosphate (PO₄) suggests that PO₄ concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO₄ on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N₂O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.« less
[Confrontation of knowledge on alcohol concentration in blood and in exhaled air].
Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef
2015-01-01
The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.
Gas plant converts amine unit to MDEA-based solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mak, H.Y.
1992-10-01
This paper reports that methyldiethanolamine (MDEA) has successfully replaced monoethanolamine (MEA) solvent at one of Canada's largest gas processing plants. This acid gas treating solvent lowered costs associated with pumping horsepower, reboiler duty, solvent losses, corrosion and other gas processing problems. Not all operating conditions at a gas processing plant favor MDEA or MEA. In the Rimbey plant, originally designed to process sour gas, more sweet gas feed (per volume) called for considering advantages of the lesser-used MDEA. Gulf Canada Resources operates several major sour gas plants in Alberta. The Rimbey Plant was designed in 1960 to process 400 MMscfdmore » of sour gas with 2% H[sub 2]S and 1.32% CO[sub 2]. The amine unit was designed to circulate 2,400 gpm of 20 wt% MEA solution. The single train amine plant has four gas conductors and two amine regenerators. The present raw inlet gas flowrate to the Rimbey Plant is about 312 MMscfd which is made up of three sources: 66 MMscfd of sour gas with 1.5% H[sub 2]S and 1.8% CO[sub 2]; 65 MMscfd of high CO[sub 2] gas with 400 ppmv H[sub 2]S and 3.9% CO[sub 2]; and 181 MMscfd of sweet gas with 2.2% CO[sub 2].« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... measurement of inlet production, residue gas, fuel gas, flare gas, condensate, natural gas liquids, or any... governing gas and liquid hydrocarbon production measurement. We have recently completed the first phase of... Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas AGENCY: Bureau...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
NASA Astrophysics Data System (ADS)
Morin, T. H.; Rey Sanchez, C.; Bohrer, G.; Riley, W. J.; Angle, J.; Mekonnen, Z. A.; Stefanik, K. C.; Wrighton, K. C.
2016-12-01
Estimates of wetland greenhouse gas (GHG) budgets currently have large uncertainties. While wetlands are the largest source of natural methane (CH4) emissions worldwide, they are also important carbon dioxide (CO2) sinks. Determining the GHG budget of a wetland is challenging, particularly because wetlands have intrinsically temporally and spatially heterogeneous land cover patterns and complex dynamics of CH4 production and emissions. These issues pose challenges to both measuring and modeling GHG budgets from wetlands. To improve wetland GHG flux predictability, we utilized the ecosys model to predict CH4 fluxes from a natural temperate estuarine wetland in northern Ohio. Multiple patches of terrain (that included Typha spp. and Nelumbo lutea) were represented as separate grid cells in the model. Cells were initialized with measured values but were allowed to dynamically evolve in response to meteorological, hydrological, and thermodynamic conditions. Trace gas surface emissions were predicted as the end result of microbial activity, physical transport, and plant processes. Corresponding to each model gridcell, measurements of dissolved gas concentrations were conducted with pore-water dialysis samplers (peepers). The peeper measurements were taken via a series of tubes, providing an undisturbed observation of the pore water concentrations of in situ dissolved gases along a vertical gradient. Non-steady state chambers and a flux tower provided both patch level and integrated site-level fluxes of CO2 and CH4. New Typha chambers were also developed to enclose entire plants and segregate the plant fluxes from soil/water fluxes. We expect ecosys to predict the seasonal and diurnal fluxes of CH4 from within each land cover type and to resolve where CH4 is generated within the soil column and its transmission mechanisms. We demonstrate the need for detailed information at both the patch and site level when using models to predict whole wetland ecosystem-scale GHG budgets.
New geochemical insights into volcanic degassing.
Edmonds, Marie
2008-12-28
Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in which we understand and classify volcanic eruptions.
Somebody better find some rigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
The paper discusses the outlook for the gas and oil industries of the Middle East. Field development projects abound, as the larger exporting nations pursue ambitious policies of production expansion. However, their plans may be hampered by the growing worldwide shortage of rigs. Separate evaluations are given for Saudi Arabia, Kuwait, Neutral Zone, Abu Dhabi, Iran, Iraq, Qatar, Yemen, Syria, Dubai, Turkey, Sharjah, and briefly for Bahrain, Israel, Jordan, UAE-Ajman, and UAE-Ras al-Khaimah.
Exploring a Multiphysics Resolution Approach for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Estupinan Donoso, Alvaro Antonio; Peters, Bernhard
2018-06-01
Metal additive manufacturing (AM) is a fast-evolving technology aiming to efficiently produce complex parts while saving resources. Worldwide, active research is being performed to solve the existing challenges of this growing technique. Constant computational advances have enabled multiscale and multiphysics numerical tools that complement the traditional physical experimentation. In this contribution, an advanced discrete-continuous concept is proposed to address the physical phenomena involved during laser powder bed fusion. The concept treats powder as discrete by the extended discrete element method, which predicts the thermodynamic state and phase change for each particle. The fluid surrounding is solved with multiphase computational fluid dynamics techniques to determine momentum, heat, gas and liquid transfer. Thus, results track the positions and thermochemical history of individual particles in conjunction with the prevailing fluid phases' temperature and composition. It is believed that this methodology can be employed to complement experimental research by analysis of the comprehensive results, which can be extracted from it to enable AM processes optimization for parts qualification.
Azemard, Sabine; Vassileva, Emilia
2015-06-01
In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.
The search for Infrared radiation prior to major earthquakes
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Pulinets, S.
2004-12-01
This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.
Camargo, Alejandra B; Manucha, Walter
Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.
2010-09-29
Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) formore » construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.« less
Near-zero emissions combustor system for syngas and biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yongho, Kim; Rosocha, Louis
2010-01-01
A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. Inmore » this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on research necessary to develop a novel, high-efficiency, low-emissions (near-zero, or as low as reasonably achievable), advanced combustion technology for electricity and heat production from biofuels and fuels derived from MSW. For any type of combustion technology, including the advanced technology of this project, two problems of special interest must be addressed: developing and optimizing the combustion chambers and the systems for igniting and sustaining the fuel-burning process. For MSW in particular, there are new challenges over gaseous or liquid fuels because solid fuels must be ground into fine particulates ({approx} 10 {micro}m diameter), fed into the advanced combustor, and combusted under plasma-assisted conditions that are quite different than gaseous or liquid fuels. The principal idea of the combustion chamber design is to use so-called reverse vortex gas flow, which allows efficient cooling of the chamber wall and flame stabilization in the central area of the combustor (Tornado chamber). Considerable progress has been made in design ing an advanced, reverse vortex flow combustion chamber for biofuels, although it was not tested on biofuels and a system that could be fully commercialized has never been completed.« less
Hepatitis B virus evasion from cGAS sensing in human hepatocytes.
Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F
2018-04-20
Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Development of an opsonophagocytic killing assay for group a streptococcus.
Jones, Scott; Moreland, Nicole J; Zancolli, Marta; Raynes, Jeremy; Loh, Jacelyn M S; Smeesters, Pierre R; Sriskandan, Shiranee; Carapetis, Jonathan R; Fraser, John D; Goldblatt, David
2018-05-15
Group A Streptococcus (GAS) or Streptococcus pyogenes is responsible for an estimated 500,000 deaths worldwide each year. Protection against GAS infection is thought to be mediated by phagocytosis, enhanced by bacteria-specific antibody. There are no licenced GAS vaccines, despite many promising candidates in preclinical and early stage clinical development, the most advanced of which are based on the GAS M-protein. Vaccine progress has been hindered, in part, by the lack of a standardised functional assay suitable for vaccine evaluation. Current assays, developed over 50 years ago, rely on non-immune human whole blood as a source of neutrophils and complement. Variations in complement and neutrophil activity between donors result in variable data that is difficult to interpret. We have developed an opsonophagocytic killing assay (OPKA) for GAS that utilises dimethylformamide (DMF)-differentiated human promyelocytic leukemia cells (HL-60) as a source of neutrophils and baby rabbit complement, thus removing the major sources of variation in current assays. We have standardised the OPKA for several clinically relevant GAS strain types (emm1, emm6 and emm12) and have shown antibody-specific killing for each emm-type using M-protein specific rabbit antisera. Specificity was demonstrated by pre-incubation of the antisera with homologous M-protein antigens that blocked antibody-specific killing. Additional qualifications of the GAS OPKA, including the assessment of the accuracy, precision, linearity and the lower limit of quantification, were also performed. This GAS OPKA assay has the potential to provide a robust and reproducible platform to accelerate GAS vaccine development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klint, V.W.; Dale, P.R.; Stephenson, C.
1997-10-01
Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.« less
WOVOdat as a worldwide resource to improve eruption forecasts
NASA Astrophysics Data System (ADS)
Widiwijayanti, Christina; Costa, Fidel; Zar Win Nang, Thin; Tan, Karine; Newhall, Chris; Ratdomopurbo, Antonius
2015-04-01
During periods of volcanic unrest, volcanologists need to interpret signs of unrest to be able to forecast whether an eruption is likely to occur. Some volcanic eruptions display signs of impending eruption such as seismic activity, surface deformation, or gas emissions; but not all will give signs and not all signs are necessarily followed by an eruption. Volcanoes behave differently. Precursory signs of an eruption are sometimes very short, less than an hour, but can be also weeks, months, or even years. Some volcanoes are regularly active and closely monitored, while other aren't. Often, the record of precursors to historical eruptions of a volcano isn't enough to allow a forecast of its future activity. Therefore, volcanologists must refer to monitoring data of unrest and eruptions at similar volcanoes. WOVOdat is the World Organization of Volcano Observatories' Database of volcanic unrest - an international effort to develop common standards for compiling and storing data on volcanic unrests in a centralized database and freely web-accessible for reference during volcanic crises, comparative studies, and basic research on pre-eruption processes. WOVOdat will be to volcanology as an epidemiological database is to medicine. We have up to now incorporated about 15% of worldwide unrest data into WOVOdat, covering more than 100 eruption episodes, which includes: volcanic background data, eruptive histories, monitoring data (seismic, deformation, gas, hydrology, thermal, fields, and meteorology), monitoring metadata, and supporting data such as reports, images, maps and videos. Nearly all data in WOVOdat are time-stamped and geo-referenced. Along with creating a database on volcanic unrest, WOVOdat also developing web-tools to help users to query, visualize, and compare data, which further can be used for probabilistic eruption forecasting. Reference to WOVOdat will be especially helpful at volcanoes that have not erupted in historical or 'instrumental' time and thus for which no previous data exist. The more data in WOVOdat, the more useful it will be. We actively solicit relevant data contributions from volcano observatories, other institutions, and individual researchers. Detailed information and documentation about the database and how to use it can be found at www.wovodat.org.
Essays on the Future of Continuing Education Worldwide.
ERIC Educational Resources Information Center
Ziegler, Warren L., Ed.
Topics chosen for these eight seminar papers divide basically into three categories: discussions on processes and methods for planning for the future of adult education; attempts to project into the future such worldwide problems as urbanism, conflict, the population explosion, and specific adult education trends; and discussion of the current…
2008-06-01
Transportation Systems * The Worldwide Air Transportation and Air Traffic Control System * The Worldwide Web and the Underlying Internet * Automobile Production...their use in automobiles as a way to reduce gasoline consumption, increase fuel mileage, and reduce harmful emissions. They represent a power source that
NASA Astrophysics Data System (ADS)
Klaus, M.; MacIntyre, S.; Hotchkiss, E. R.; Bergström, A. K.; Karlsson, J.
2015-12-01
Lake metabolism models based on the diel oxygen technique often assume that oxygen dynamics are mainly controlled by metabolic processes, only accounting for wind-driven atmospheric gas exchange. However, oxygen dynamics can also be affected by abiotic mass fluxes across oxygen gradients within lakes and atmospheric gas exchange driven by convection. Here, we quantify how much vertical fluxes of oxygen modify epilimnetic metabolism estimates for three pairs of small Swedish boreal lakes, one of each fertilized with nitrate, with dissolved organic carbon (DOC) concentrations of 7 to 22 mg l-1. Oxygen concentrations were measured every 10 min at 50 cm depth and biweekly across depths profiles during one full open water period. Based on additional two weeks of ten-minute oxygen profiling we calculated vertical fluxes of oxygen using equations for atmospheric gas exchange caused by wind shear (F1) and convection (F2), and lake-internal gas exchange caused by diffusion and mixed layer deepening (F3). We ran three inverse Bayesian models to estimate daily metabolism: (M1) accounting for F1, (M2) accounting for F1 and F2, and (M3) accounting for F1 and F3. Initial results suggest that gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) ranged from 0.1 to 0.2, -0.3 to -0.5 and -0.2 to -0.4 g C m-2 d-1, respectively. GPP and R were higher in fertilized lakes and at the lower end of previous worldwide estimates. Accounting for convection-driven gas exchange increased ER estimates by 10-40% (M2 vs. M1). This bias increased with DOC concentration but was not affected by fertilization. Including lake-internal vertical oxygen fluxes changed GPP and ER estimates by up to ±40% (M3 vs. M1), with inconsistent trends along the DOC-gradient. We conclude that vertical fluxes of oxygen can significantly affect diel oxygen dynamics in oligotrophic humic systems and should therefore be included in metabolism models applied to small boreal lakes.
Chong, Andrea D; Mayer, K Ulrich
2017-09-01
Historical heavy use of chlorinated solvents in conjunction with improper disposal practices and accidental releases has resulted in widespread contamination of soils and groundwater in North America and worldwide. As a result, remediation of chlorinated solvents is required at many sites. For source zone treatment, common remediation strategies include in-situ chemical oxidation (ISCO) using potassium or sodium permanganate, and the enhancement of biodegradation by primary substrate addition. It is well known that these remediation methods tend to generate gas (carbon dioxide (CO 2 ) in the case of ISCO using permanganate, CO 2 and methane (CH 4 ) in the case of bioremediation). Vigorous gas generation in the presence of chlorinated solvents, which are categorized as volatile organic contaminants (VOCs), may cause gas exsolution, ebullition and stripping of the contaminants from the treatment zone. This process may lead to unintentional 'compartment transfer', whereby VOCs are transported away from the contaminated zone into overlying clean sediments and into the vadose zone. To this extent, benchtop column experiments were conducted to quantify the effect of gas generation during remediation of the common chlorinated solvent trichloroethylene (TCE/C 2 Cl 3 H). Both ISCO and enhanced bioremediation were considered as treatment methods. Results show that gas exsolution and ebullition occurs for both remediation technologies. Facilitated by ebullition, TCE was transported from the source zone into overlying clean groundwater and was subsequently released into the column headspace. For the case of enhanced bioremediation, the intermediate degradation product vinyl chloride (VC) was also stripped from the treatment zone. The concentrations measured in the headspace of the columns (TCE ∼300ppm in the ISCO column, TCE ∼500ppm and VC ∼1380ppm in the bioremediation column) indicate that substantial transfer of VOCs to the vadose zone is possible. These findings provide direct evidence for the unintended spreading of contaminants as a result of remediation efforts, which can, under some circumstances, result in enhanced risks for soil vapour intrusion. Copyright © 2017 Elsevier B.V. All rights reserved.
Salt Marsh sediment 15N/13C "Push-Pull" assays reveal coupled sulfur, nitrogen, and carbon cycling
NASA Astrophysics Data System (ADS)
Thomas, S. M.; Tucker, J.; Thomas, F.; Sievert, S. M.; Cardon, Z. G.; Giblin, A. E.
2016-12-01
Salt marshes are extraordinarily productive ecosystems found in estuaries worldwide, hosting intensive sulfur, nitrogen, and carbon cycling. Although it has been hypothesized that in this environment sulfur oxidation may be important for energy flow, there is little direct data. At the heart of these hypothesized interactions are sulfur oxidizing microbes. Sulfur oxidizers can catalyze sulfide (re-)oxidation with nitrate as the electron acceptor under anaerobic conditions, producing ammonium (via DNRA) or dinitrogen gas (via denitrification). The form of sulfur present in marsh systems influences whether autotrophic or heterotrophic processes transform nitrate either to dinitrogen gas or ammonium through DNRA. To examine the fate of nitrate and interactions with sulfur, we conducted a series of "push-pull" experiments in marsh sediment at the Plum Island Ecosystems Long-Term Ecological Research site in Massachusetts. Porewater was extracted anoxically and amended with isotopically labeled nitrate (15N) and bicarbonate (13C). Porewater was pumped back into the sediment and then withdrawn at intervals of several hours. Dissolved inorganic nitrogen, sulfur, and carbon were measured as well as isotopes of nitrogen gas and ammonium. These push-pull experiments were conducted at several times during the growing season, to coincide with salt marsh grass initial growth (May), maximum growth (July), flowering (August), and senescence (October). Porewater sulfides were very low to non-detectable in May (time of initial plant growth) and increased to a maximum of 3 mM in October (time of plant senescence). Combined rates of denitrification and DNRA also varied seasonally: rates were higher in May (0.16 - 17.5 nmoles N/cm3/hr) and much lower in October (0 - 0.03 nmoles N/cm3/hr). Interestingly, DNRA rates were always higher than denitrification rates, often by an order of magnitude or more.
Thompson, Chad M; Gaylor, David W; Tachovsky, J Andrew; Perry, Camarie; Carakostas, Michael C; Haws, Laurie C
2013-12-01
Sulfolane is a widely used industrial solvent that is often used for gas treatment (sour gas sweetening; hydrogen sulfide removal from shale and coal processes, etc.), and in the manufacture of polymers and electronics, and may be found in pharmaceuticals as a residual solvent used in the manufacturing processes. Sulfolane is considered a high production volume chemical with worldwide production around 18 000-36 000 tons per year. Given that sulfolane has been detected as a contaminant in groundwater, an important potential route of exposure is tap water ingestion. Because there are currently no federal drinking water standards for sulfolane in the USA, we developed a noncancer oral reference dose (RfD) based on benchmark dose modeling, as well as a tap water screening value that is protective of ingestion. Review of the available literature suggests that sulfolane is not likely to be mutagenic, clastogenic or carcinogenic, or pose reproductive or developmental health risks except perhaps at very high exposure concentrations. RfD values derived using benchmark dose modeling were 0.01-0.04 mg kg(-1) per day, although modeling of developmental endpoints resulted in higher values, approximately 0.4 mg kg(-1) per day. The lowest, most conservative, RfD of 0.01 mg kg(-1) per day was based on reduced white blood cell counts in female rats. This RfD was used to develop a tap water screening level that is protective of ingestion, viz. 365 µg l(-1). It is anticipated that these values, along with the hazard identification and dose-response modeling described herein, should be informative for risk assessors and regulators interested in setting health-protective drinking water guideline values for sulfolane. Copyright © 2012 John Wiley & Sons, Ltd.
Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration.
Cha, Zhixiong; Lin, Cheng-Fang; Cheng, Chia-Jung; Andy Hong, P K
2010-01-01
Ever increasing energy demand worldwide necessitates energy supply, inevitably leading to an increasing volume of process waters containing hydrocarbon contaminants. Among them, dispersed and dissolved oils in produced water need to be removed adequately in order to reuse or avoid surface sheen from coastal discharge. We have recently developed a new ozonation technique coupled with sand filtration to quickly remove oil from process water and prevent oil sheen. The technique incorporates rapid, successive cycles of compression and decompression during ozonation. Gas bubbles expanding from small to large sizes occur that provide ample reactive zones at the gas-liquid interface, resulting in heightened chemical conversions-notably the conversion of hydrophobic hydrocarbon molecules into hydrophilic ones. This study examined the removal of hydrocarbons and sheen according to treatment parameters and configurations, as assessed by changes in turbidity, COD, BOD, and sheen presence following treatment. When a synthetic produced water containing 120ppm of oil (about 100ppm of dispersed and 20ppm of soluble oil at a total COD of 320mgL(-1)) was subjected to 10 pressure cycles (reaching 1.0MPa; 20s each) of ozonation and sand filtration at 6cmmin(-1) and then repeated by 20 cycles of ozonation and sand filtration, it resulted in removal of oil to 20ppm as water-soluble organic acids, decrease of turbidity from 200 to 2NTU, and complete sequestration of surface sheen. The new technique offers a treatment alternative for produced water and likely other tailings waters, promoting safe discharge to the environment and beneficial uses of the water. 2009 Elsevier Ltd. All rights reserved.
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
NASA Astrophysics Data System (ADS)
Cram, Ana Catalina
As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.
Life-cycle nitrogen trifluoride emissions from photovoltaics.
Fthenakis, Vasilis; Clark, Daniel O; Moalem, Mehran; Chandler, Phil; Ridgeway, Robert G; Hulbert, Forrest E; Cooper, David B; Maroulis, Peter J
2010-11-15
Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF₃, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF₃ in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF₃ and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF₃ at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF₃ in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO₂(eq)/kWh, which can be displaced within the first 1-4 months of the PV system life.
Li, Haitao; Boling, C Sam; Mason, Andrew J
2016-08-01
Airborne pollutants are a leading cause of illness and mortality globally. Electrochemical gas sensors show great promise for personal air quality monitoring to address this worldwide health crisis. However, implementing miniaturized arrays of such sensors demands high performance instrumentation circuits that simultaneously meet challenging power, area, sensitivity, noise and dynamic range goals. This paper presents a new multi-channel CMOS amperometric ADC featuring pixel-level architecture for gas sensor arrays. The circuit combines digital modulation of input currents and an incremental Σ∆ ADC to achieve wide dynamic range and high sensitivity with very high power efficiency and compact size. Fabricated in 0.5 [Formula: see text] CMOS, the circuit was measured to have 164 dB cross-scale dynamic range, 100 fA sensitivity while consuming only 241 [Formula: see text] and 0.157 [Formula: see text] active area per channel. Electrochemical experiments with liquid and gas targets demonstrate the circuit's real-time response to a wide range of analyte concentrations.
Widespread abiotic methane in chromitites.
Etiope, G; Ifandi, E; Nazzari, M; Procesi, M; Tsikouras, B; Ventura, G; Steele, A; Tardini, R; Szatmari, P
2018-06-07
Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13 C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars.
Natural Gas Processing: The Crucial Link Between NG Production & Its Transportation to Market
2006-01-01
This special report examines the processing plant segment of the natural gas industry, providing a discussion and an analysis of how the gas processing segment has changed following the restructuring of the natural gas industry in the 1990s and the trends that have developed during that time.
2011-10-04
to MWCNT paper via alternative crosslinkers. Identical concentrations of crosslinker were selected and used for control experiments, the ORR...United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is...person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control
Overview of past, present and future marine power plants
NASA Astrophysics Data System (ADS)
Morsy El-Gohary, M.
2013-06-01
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NO x and SO x emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel cells as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.
Web-Based Mapping Puts the World at Your Fingertips
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's award-winning Earth Resources Laboratory Applications Software (ELAS) package was developed at Stennis Space Center. Since 1978, ELAS has been used worldwide for processing satellite and airborne sensor imagery data of the Earth's surface into readable and usable information. DATASTAR Inc., of Picayune, Mississippi, has used ELAS software in the DATASTAR Image Processing Exploitation (DIPEx) desktop and Internet image processing, analysis, and manipulation software. The new DIPEx Version III includes significant upgrades and improvements compared to its esteemed predecessor. A true World Wide Web application, this product evolved with worldwide geospatial dimensionality and numerous other improvements that seamlessly support the World Wide Web version.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Small ponds play big role in greenhouse gas emissions from inland waters
NASA Astrophysics Data System (ADS)
Holgerson, M.; Raymond, P. A.
2017-12-01
Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.
NASA Astrophysics Data System (ADS)
Uchida, T.; Waseda, A.; Namikawa, T.
2004-12-01
Gas hydrates are ice-like solids made of water molecules containing various gas molecules. The geological evaluations have suggested worldwide methane contents of gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. Scientific and economic interests are increasing in gas hydrate as a new energy resource and a potential greenhouse gas. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling within sandy layers, whose saturations are higher than 70% in pore volume. Muddy sediments scarcely contain gas hydrate. The Nankai Trough runs along the Japanese Island, where forearc basins and accretionary prisms developed extensively and BSRs (bottom simulating reflectors) have been recognized widely. The METI Nankai Trough wells in 2000 also revealed the presence of pore-space hydrate filling intergranular pore of sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well-interconnected and highly saturated pore-space hydrate. It is necessary for evaluating subsurface fluid flow behaviors to know both porosity and permeability of gas hydrate-bearing sandy sediments, and measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sands revealed important geologic and sedimentologic controls on the formation and concentration of gas hydrate. It is suggested that the distribution of a porous and coarser-grained sandy sediments is one of the most important factors to control the occurrence of gas hydrates, as well as physicochemical conditions.
Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph
1986-01-01
An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.
Natural Gas Processing Plants in the United States: 2010 Update
2011-01-01
This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.
NASA Astrophysics Data System (ADS)
Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie
2017-04-01
Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pochan, M.J.; Massey, M.J.
1979-02-01
This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less
Method and apparatus for manufacturing gas tags
Gross, K.C.; Laug, M.T.
1996-12-17
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.
Method and apparatus for manufacturing gas tags
Gross, Kenny C.; Laug, Matthew T.
1996-01-01
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.
Developments in the safe design of LNG tanks
NASA Astrophysics Data System (ADS)
Fulford, N. J.; Slatter, M. D.
The objective of this paper is to discuss how the gradual development of design concepts for liquefied natural gas (LNG) storage systems has helped to enhance storage safety and economy. The experience in the UK is compared with practice in other countries with similar LNG storage requirements. Emphasis is placed on the excellent record of safety and reliability exhibited by tanks with a primary metal container designed and constructed to approved standards. The work carried out to promote the development of new materials, fire protection, and monitoring systems for use in LNG storage is also summarized, and specific examples described from British Gas experience. Finally, the trends in storage tank design world-wide and options for future design concepts are discussed, bearing in mind planned legislation and design codes governing hazardous installations.
Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA
2012-05-15
A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.
76 FR 30878 - Federal Oil and Gas Valuation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... when gas is processed, in lieu of valuing residue gas and extracted liquid products separately... natural gas liquids (NGL) price similar to a ``frac spread'' or a ``processing margin.'' Certain plant... No. ONRR-2011-0005] RIN 1012-AA01 Federal Oil and Gas Valuation AGENCY: Office of Natural Resources...
NASA Astrophysics Data System (ADS)
Pham, John Dinh Chuong
In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.
Nguyen, Trinh-Don; Faraldos, Juan A; Vardakou, Maria; Salmon, Melissa; O'Maille, Paul E; Ro, Dae-Kyun
2016-10-28
The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-06-01
Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC
NASA Astrophysics Data System (ADS)
Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia
2018-02-01
All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.
Wu, Guoyao; Fanzo, Jessica; Miller, Dennis D; Pingali, Prabhu; Post, Mark; Steiner, Jean L; Thalacker-Mercer, Anna E
2014-08-01
The Food and Agriculture Organization of the United Nations estimates that 843 million people worldwide are hungry and a greater number suffer from nutrient deficiencies. Approximately one billion people have inadequate protein intake. The challenge of preventing hunger and malnutrition will become even greater as the global population grows from the current 7.2 billion people to 9.6 billion by 2050. With increases in income, population, and demand for more nutrient-dense foods, global meat production is projected to increase by 206 million tons per year during the next 35 years. These changes in population and dietary practices have led to a tremendous rise in the demand for food protein, especially animal-source protein. Consuming the required amounts of protein is fundamental to human growth and health. Protein needs can be met through intakes of animal and plant-source foods. Increased consumption of food proteins is associated with increased greenhouse gas emissions and overutilization of water. Consequently, concerns exist regarding impacts of agricultural production, processing and distribution of food protein on the environment, ecosystem, and sustainability. To address these challenging issues, the New York Academy of Sciences organized the conference "Frontiers in Agricultural Sustainability: Studying the Protein Supply Chain to Improve Dietary Quality" to explore sustainable innovations in food science and programming aimed at producing the required quality and quantity of protein through improved supply chains worldwide. This report provides an extensive discussion of these issues and summaries of the presentations from the conference. © 2014 New York Academy of Sciences.
Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems
NASA Astrophysics Data System (ADS)
Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.
2014-12-01
Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, J.A.
1975-06-01
Liquid hydrocarbons contained in Argentina's Pico Truncade natural gas caused a number of serious pipeline transmission and gas processing problems. Gas del Estado has installed a series of efficient liquid removal devices at the producing fields. A flow chart of the gasoline stripping process is illustrated, as are 2 types of heat exchangers. This process of gasoline stripping (gas condensate recovery) integrates various operations which normally are performed independently: separation of the poor condensate in the gas, stabilization of the same, and incorporation of the light components (products of the stabilization) in the main gas flow.
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
Motor Vehicle Exhaust Gas Suicide.
Routley, Virginia
2007-01-01
In many motorized countries, inhalation of carbon monoxide from motor vehicle exhaust gas (MVEG) has been one of the leading methods of suicide. In some countries it remains so (e.g., Australia 16.0% of suicides in 2005). Relative to other methods it is a planned method and one often used by middle-aged males. The study provides a review of countermeasures aimed at restricting this method of suicide. The prevention measures identified were catalytic converters (introduced to reduce carbon monoxide for environmental reasons); in-cabin sensors; exhaust pipe modification; automatic idling stops; and helpline signage at suicide "hotspots." Catalytic converters are now in 90% of new vehicles worldwide and literature supports them being associated with a reduction in exhaust-gassing suicides. There remain, however, accounts of exhaust-gas fatalities in modern vehicles, whether accidentally or by suicide. These deaths and also crashes from fatigue could potentially be prevented by in-cabin multi-gas sensors, these having been developed to the prototype stage. Helpline signage at an exhaust-gassing suicide "hotspot" had some success in reducing suicides. The evidence on method substitution and whether a reduction in MVEG suicides causes a reduction in total suicides is inconsistent.
2016-01-01
Laser spectroscopy in the linear regime of radiation–matter interaction is a powerful tool for measuring thermodynamic quantities in a gas at thermodynamic equilibrium. In particular, the Doppler effect can be considered a gift of nature, linking the thermal energy to an optical frequency, namely the line centre frequency of an atomic or molecular spectral line. This is the basis of a relatively new method of primary gas thermometry, known as Doppler broadening thermometry (DBT). This paper reports on the efforts that have been carried out, in the last decade, worldwide, to the end of making DBT competitive with more consolidated and accurate methodologies, such as acoustic gas thermometry and dielectric constant gas thermometry. The main requirements for low-uncertainty DBT, of both theoretical and technical nature, will be discussed, with a special focus on those related to the line shape model and to the frequency scale. A deep comparison among the different molecules that have been selected in successful DBT implementations is also reported. Finally, for the first time, to the best of my knowledge, the influence of refractive index effects is discussed. PMID:26903093
Process for selected gas oxide removal by radiofrequency catalysts
Cha, Chang Y.
1993-01-01
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.
Worldwide Report, Arms Control.
1985-06-13
283086 JPRS-TAC-85-0 12 13 June 1985 Worldwide Report ARMS CONTROL 19980729 131 — . „_ | ^^CQWArpmr Approved fa pnbfi* nümam...retained. Headlines, editorial reports , and material enclosed in brackets [] are supplied by JPRS. Processing indicators such as [Text] or...JPRS number, title, date and author, if applicable, of publication be cited. Current JPRS publications are announced in Government Reports
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2002-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2000-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... search for crude oil, including condensate and natural gas liquids, or natural gas (“oil and gas”) in...) Gathering, treating, and field processing (as in the case of processing gas to extract liquid hydrocarbons... first point at which oil, gas, or gas liquids, natural or synthetic, are delivered to a main pipeline, a...
Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process
DeGeorge, Charles W.
1981-01-01
In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.
Process for selected gas oxide removal by radiofrequency catalysts
Cha, C.Y.
1993-09-21
This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.
Mathematical simulation of the process of condensing natural gas
NASA Astrophysics Data System (ADS)
Tastandieva, G. M.
2015-01-01
Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.
Worldwide Emerging Environmental Issues Affecting the U.S. Military
2010-11-01
in Cancun , Mexico, November 29-December 10, 2010, expectations of reaching agreement for a post-Kyoto greenhouse gas emissions treaty are low...and analysis of this report. Expanded details for some items are in the Appendix beginning on page 13. Item 1. NATO’s New Strategic Concept...by Diminishing Low-Cost Phosphorus…………………..2 Item 4. Renewed Protection for Refugees in Latin America………………………………….2 Item 5. Technological Advances
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Gas Processing... value any gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
Mars Atmospheric Capture and Gas Separation
NASA Technical Reports Server (NTRS)
Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James
2011-01-01
The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.
In-Situ Molecular Vapor Composition Measurements During Lyophilization.
Liechty, Evan T; Strongrich, Andrew D; Moussa, Ehab M; Topp, Elizabeth; Alexeenko, Alina A
2018-04-11
Monitoring process conditions during lyophilization is essential to ensuring product quality for lyophilized pharmaceutical products. Residual gas analysis has been applied previously in lyophilization applications for leak detection, determination of endpoint in primary and secondary drying, monitoring sterilization processes, and measuring complex solvents. The purpose of this study is to investigate the temporal evolution of the process gas for various formulations during lyophilization to better understand the relative extraction rates of various molecular compounds over the course of primary drying. In this study, residual gas analysis is used to monitor molecular composition of gases in the product chamber during lyophilization of aqueous formulations typical for pharmaceuticals. Residual gas analysis is also used in the determination of the primary drying endpoint and compared to the results obtained using the comparative pressure measurement technique. The dynamics of solvent vapors, those species dissolved therein, and the ballast gas (the gas supplied to maintain a set-point pressure in the product chamber) are observed throughout the course of lyophilization. In addition to water vapor and nitrogen, the two most abundant gases for all considered aqueous formulations are oxygen and carbon dioxide. In particular, it is observed that the relative concentrations of carbon dioxide and oxygen vary depending on the formulation, an observation which stems from the varying solubility of these species. This result has implications on product shelf life and stability during the lyophilization process. Chamber process gas composition during lyophilization is quantified for several representative formulations using residual gas analysis. The advantages of the technique lie in its ability to measure the relative concentration of various species during the lyophilization process. This feature gives residual gas analysis utility in a host of applications from endpoint determination to quality assurance. In contrast to other methods, residual gas analysis is able to determine oxygen and water vapor content in the process gas. These compounds have been shown to directly influence product shelf life. With these results, residual gas analysis technique presents a potential new method for real-time lyophilization process control and improved understanding of formulation and processing effects for lyophilized pharmaceutical products.
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2010 CFR
2010-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2012 CFR
2012-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
Thermal properties of methane gas hydrates
Waite, William F.
2007-01-01
Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Li, Z.; Yoxtheimer, D.; Vidic, R.
2015-12-01
New techniques of hydraulic fracturing - "fracking" - have changed the United States over the last 10 years into a leading producer of natural gas extraction from shale. The first such gas well in Pennsylvania was drilled and completed using high-volume hydraulic fracturing in 2004. By late 2014, more than 8500 of these gas wells had been drilled in the Marcellus Shale gas field in Pennsylvania alone. Almost 1000 public complaints about groundwater quality were logged by the PA Department of Environmental Protection (PA DEP) between 2008 and 2012. Only a fraction of these were attributed to unconventional gas development. The most common problem was gas migration into drinking water, but contamination incidents also included spills, seepage, or leaks of fracking fluids, brine salts, or very occasionally, radioactive species. Many problems of gas migration were from a few counties in the northeastern part of the state. However, sometimes one gas well contaminated multiple water wells. For example, one gas well was reported by the state regulator to have contaminated 18 water wells with methane near Dimock PA. It can be argued that such problems at a relatively small fraction of gas wells initiated pockets of pushback against fracking worldwide. This resistance to fracking has grown even though fracking has been in use in the U.S.A. since the 1940s. We have worked as part of an NSF-funded project (the Shale Network) to share water quality data and publish it online using the CUAHSI Hydrologic Information System. Sharing data has led to collaborative investigation of specific contamination incidents to understand how problems can occur, and to efforts to quantify the frequency of impacts. The Shale Network efforts have also highlighted the need for more transparency with water quality data in the arena related to the energy-water nexus. As more data are released, new techniques of data analysis will allow better understanding of how to tune best practices to be environmentally protective.
Fracking in the face of global climate change
NASA Astrophysics Data System (ADS)
Peterson, P.; Gautier, C.
2015-12-01
Until recently, "peak oil" was regarded as imminent. Now, however, the recent rapid increase in US oil and gas production from shale exploitation has delayed peak oil. This delay raises grave climate concerns. The development of new technologies (such as horizontal drilling) means that enormous unconventional reserves distributed worldwide may be readily recoverable, with large negative consequences on the global greenhouse gas emissions trajectory. If even a small portion of these unconventional reserves were exploited, it is highly likely that limiting global Earth warming to 2ºC, a goal being discussed for COP 21, will be impossible. Instead, tipping points in the climate system will likely be reached, with serious effects, including greatly accelerated ice melting, leading to large and unstoppable global sea level rise. The enthusiasm for shale gas stems in part from its potential role as a bridge fuel to wean the country from coal until low-carbon alternatives come into full play. However, shale gas and oil production entail direct adverse environmental impacts (air and water pollution, induced earthquakes and public health risks) that are only now coming to light. Gas production through fracking also has severe impacts on climate through the release of methane, a potent greenhouse gas that leaks from production sites. In intensive fracking regions, high methane concentrations are measured on the ground and are now detectable in satellite data. Proponents of gas fracking argue that with the right policies to protect communities and the environment, natural gas can be harnessed as part of a broad climate strategy. But opponents of gas fracking believe that no regulation will be adequate to protect communities and the local environment. They also fear that natural gas produced through fracking will delay progress toward a carbon-free future. We will explore the consequences for the global climate of exploiting these very large oil and gas resources.
Radioactivity in wastes generated from shale gas exploration and production - North-Eastern Poland.
Jodłowski, Paweł; Macuda, Jan; Nowak, Jakub; Nguyen Dinh, Chau
2017-09-01
In the present study, the K-40, U-238, Ra-226, Pb-210, Ra-228 and Th-228 activity concentrations were measured in 64 samples of wastes generated from shale gas exploration in North-Eastern Poland. The measured samples consist of drill cuttings, solid phase of waste drilling muds, fracking fluids, return fracking fluids and waste proppants. The measured activity concentrations in solid samples vary in a wide range from 116 to around 1100 Bq/kg for K-40, from 14 to 393 Bq/kg for U-238, from 15 to 415 Bq/kg for Ra-226, from 12 to 391 Bq/kg for Pb-210, from a few Bq/kg to 516 Bq/kg for Ra-228 and from a few Bq/kg to 515 Bq/kg for Th-228. Excluding the waste proppants, the measured activity concentrations in solid samples oscillate around their worldwide average values in soil. In the case of the waste proppants, the activity concentrations of radionuclides from uranium and thorium decay series are significantly elevated and equal to several hundreds of Bq/kg but it is connected with the mineralogical composition of proppants. The significant enhancement of Ra-226 and Ra-228 activity concentrations after fracking process was observed in the case of return fracking fluids, but the radium isotopes content in these fluids is comparable with that in waste waters from copper and coal mines in Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferrario, J; Byrne, C; Dupuy, A E
1997-06-01
The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.
NASA Technical Reports Server (NTRS)
Ferrario, J.; Byrne, C.; Dupuy, A. E. Jr
1997-01-01
The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Thunder Energy Inc. received approval from the Alberta Energy and Utilities Board for modification of an existing gas plant to process sour gas, and also applied for permission to increase the hydrogen sulfide content of its existing pipelines in the Kelsey area. This report presents the views of Thunder Energy, the Board, and various intervenors at a hearing held to consider objections to the plant approval and matters related to the application. Issues considered include the need for sour gas processing, the need for the plant modification as opposed to the feasibility of using existing sour gas processing facilities, environmentalmore » impacts, and the requirements for notification of industry in the area. The report concludes with the Board`s decision.« less
Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production
Chen, Zhipeng; Wang, Lingfeng
2018-01-01
Biofuels produced from microalgal biomass have received growing worldwide recognition as promising alternatives to conventional petroleum-derived fuels. Among the processes involved, the downstream refinement process for the extraction of lipids from biomass greatly influences the sustainability and efficiency of the entire biofuel system. This review summarizes and compares the current techniques for the extraction and measurement of microalgal lipids, including the gravimetric methods using organic solvents, CO2-based solvents, ionic liquids and switchable solvents, Nile red lipid visualization method, sulfo-phospho-vanillin method, and the thin-layer chromatography method. Each method has its own competitive advantages and disadvantages. For example, the organic solvents-based gravimetric method is mostly used and frequently employed as a reference standard to validate other methods, but it requires large amounts of samples and is time-consuming and expensive to recover solvents also with low selectivity towards desired products. The pretreatment approaches which aimed to disrupt cells and support subsequent lipid extraction through bead beating, microwave, ultrasonication, chemical methods, and enzymatic disruption are also introduced. Moreover, the principles and procedures for the production and quantification of fatty acids are finally described in detail, involving the preparation of fatty acid methyl esters and their quantification and composition analysis by gas chromatography.
10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS ...
10. Photograph of a line drawing. 'PROCESS FLOW SCHEMATIC, GAS PRODUCER PROCESS, BUILDING 10A.' Holston Army Ammunition Plant, Holston Defense Corporation. August 29, 1974. Delineator: G. A. Horne. Drawing # SK-1942. - Holston Army Ammunition Plant, Producer Gas Plant, Kingsport, Sullivan County, TN
TAM receptors Tyro3 and Mer as novel targets in colorectal cancer.
Schmitz, Robin; Valls, Aida Freire; Yerbes, Rosario; von Richter, Sophie; Kahlert, Christoph; Loges, Sonja; Weitz, Jürgen; Schneider, Martin; Ruiz de Almodovar, Carmen; Ulrich, Alexis; Schmidt, Thomas
2016-08-30
CRC remains the third most common cancer worldwide with a high 5-year mortality rate in advanced cases. Combined with chemotherapy, targeted therapy is an additional treatment option. However as CRC still escapes targeted therapy the vigorous search for new targets is warranted to increase patients´ overall survival. In this study we describe a new role for Gas6/protein S-TAM receptor interaction in CRC. Gas6, expressed by tumor-infiltrating M2-like macrophages, enhances malignant properties of tumor cells including proliferation, invasion and colony formation. Upon chemotherapy macrophages increase Gas6 synthesis, which significantly attenuates the cytotoxic effect of 5-FU chemotherapy on tumor cells. The anti-coagulant protein S has similar effects as Gas6.In CRC patient samples Tyro3 was overexpressed within the tumor. In-vitro inhibition of Tyro3 and Mer reduces tumor cell proliferation and sensitizes tumor cells to chemotherapy. Moreover high expression of Tyro3 and Mer in tumor tissue significantly shortens CRC patients´ survival. Various in vitro models were used to investigate the role of Gas6 and its TAM receptors in human CRC cells, by stimulation (rhGas6) and knockdown (siRNA) of Axl, Tyro3 and Mer. In terms of a translational research, we additionally performed an expression analysis in human CRC tissue and analyzed the medical record of these patients. Tyro3 and Mer represent novel therapeutic targets in CRC and warrant further preclinical and clinical investigation in the future.
Surfactant process for promoting gas hydrate formation and application of the same
Rogers, Rudy E.; Zhong, Yu
2002-01-01
This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.
NASA Astrophysics Data System (ADS)
Borrás, Esther; Ródenas, Mila; Vera, Teresa; Muñoz, Amalia
2017-04-01
Pesticides are the chemical compounds most widely used worldwide, and their toxicological characteristics can have harmful effects on human health. The entry into the atmosphere of pesticides occurs during application or subsequent processes. Once they are emitted, they can be distributed in the gas phase or particulate phase. However, most of them are in both phases, since they are semi-volatile compounds. As with other organic compounds, pesticides' removal in the atmosphere can be mainly accomplished by wet or dry deposition, by photolysis or by reaction with hydroxyl radicals (OH), nitrate radicals (NO3) and ozone (O3) [1]. All these processes give rise to the formation of other products, which could become more harmful than the starting compounds. It is therefore necessary to know all these processes to estimate the impact of pesticides in the atmosphere. In addition, it is important to study how the pesticides interact with organic compounds naturally emitted by crops and their possible impact on the formation of secondary organic aerosols, ozone and other compounds. In this work, the gas phase atmospheric degradation of an organothiophosphate insecticide has been investigated at the large outdoor European Photoreactor (EUPHORE) in the presence of a biogenic compound mixture typical from orange trees emissions. Its photolysis has been studied under sunlight conditions, in the presence of different concentration ratios of chlorpyrifos and biogenic VOCs mixture and in the absence of initial inorganic seeds. Reaction with ozone has also been studied. Gaseous phase compounds were determined by a Fourier Transform Infrared Spectrometer (FTIR), Proton Transfer Reaction - Mass Spectrometry (PTRMS), Solid Phase Microextraction (SPME) coupled to gas chromatography-mass spectrometry (GCMS) and NOx, O3 and SO2 monitors. Aerosol mass concentration was measured using a scanning mobility particle sizer (SMPS) and a tapered element oscillating monitor (TEOM). Chemical characterization of degradation products were done by using different off-line analysis with SPME, C18 cartridges and filters plus derivatization and subsequent analysis by GCMS. The results show that the combination of pesticide and biogenic compounds increase the SOA and O3 formation, being, in combination, high contributors to photochemical smog. This study contributes providing useful data about atmospheric degradation processes of pesticides. Knowledge of the specific degradation products, including the formation of secondary particulate matter and ozone, could complete the assessment of their potential impact. The understanding of atmospheric reactions should help to estimate the expected formation of gas and/or particulate products in the troposphere for each pesticide. Hence, these results can contribute to the selection of environmentally sustainable strategies against plagues. Acknowledgements The authors wish to thank the EUPHORE staff. Ministerio de Economía y Competitividad for IMPLACAVELES (CGL2013-49093-C2-1-R) and Generalitat Valenciana for the DESESTRES- Prometeo II project are acknowledged. Fundación CEAM is partly supported by Generalitat Valenciana - Spain. References [1] R. Atkinson, et al. Water, Air and Soil Pollution 115, 219-243 (1999).
Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2.
Mason, Katie L; Rogers, Lisa M; Soares, Elyara M; Bani-Hashemi, Tara; Erb Downward, John; Agnew, Dalen; Peters-Golden, Marc; Weinberg, Jason B; Crofford, Leslie J; Aronoff, David M
2013-09-01
Streptococcus pyogenes (Group A Streptococcus; GAS) is a major cause of severe postpartum sepsis, a re-emerging cause of maternal morbidity and mortality worldwide. Immunological alterations occur during pregnancy to promote maternofetal tolerance, which may increase the risk for puerperal infection. PGE2 is an immunomodulatory lipid that regulates maternofetal tolerance, parturition, and innate immunity. The extent to which PGE2 regulates host immune responses to GAS infections in the context of endometritis is unknown. To address this, both an in vivo mouse intrauterine (i.u.) GAS infection model and an in vitro human macrophage-GAS interaction model were used. In C57BL/6 mice, i.u. GAS inoculation resulted in local and systemic inflammatory responses and triggered extensive changes in the expression of eicosanoid pathway genes. The i.u. administration of PGE2 increased the mortality of infected mice, suppressed local IL-6 and IL-17A levels, enhanced neutrophilic inflammation, reduced uterine macrophage populations, and increased bacterial dissemination. A role for endogenous PGE2 in the modulation of antistreptococcal host defense was suggested, because mice lacking the genes encoding the microsomal PGE2 synthase-1 or the EP2 receptor were protected from death, as were mice treated with the EP4 receptor antagonist, GW627368X. PGE2 also regulated GAS-macrophage interactions. In GAS-infected human THP-1 (macrophage-like) cells, PGE2 inhibited the production of MCP-1 and TNF-α while augmenting IL-10 expression. PGE2 also impaired the phagocytic ability of human placental macrophages, THP-1 cells, and mouse peritoneal macrophages in vitro. Exploring the targeted disruption of PGE2 synthesis and signaling to optimize existing antimicrobial therapies against GAS may be warranted.
Cole, Jason N.; Aziz, Ramy K.; Kuipers, Kirsten; Timmer, Anjuli M.; Nizet, Victor
2012-01-01
Group A Streptococcus (GAS) is a human-specific bacterial pathogen responsible for serious morbidity and mortality worldwide. The hyaluronic acid (HA) capsule of GAS is a major virulence factor, contributing to bloodstream survival through resistance to neutrophil and antimicrobial peptide killing and to in vivo pathogenicity. Capsule biosynthesis has been exclusively attributed to the ubiquitous hasABC hyaluronan synthase operon, which is highly conserved across GAS serotypes. Previous reports indicate that hasA, encoding hyaluronan synthase, and hasB, encoding UDP-glucose 6-dehydrogenase, are essential for capsule production in GAS. Here, we report that precise allelic exchange mutagenesis of hasB in GAS strain 5448, a representative of the globally disseminated M1T1 serotype, did not abolish HA capsule synthesis. In silico whole-genome screening identified a putative HasB paralog, designated HasB2, with 45% amino acid identity to HasB at a distant location in the GAS chromosome. In vitro enzymatic assays demonstrated that recombinant HasB2 is a functional UDP-glucose 6-dehydrogenase enzyme. Mutagenesis of hasB2 alone slightly decreased capsule abundance; however, a ΔhasB ΔhasB2 double mutant became completely acapsular. We conclude that HasB is not essential for M1T1 GAS capsule biogenesis due to the presence of a newly identified HasB paralog, HasB2, which most likely resulted from gene duplication. The identification of redundant UDP-glucose 6-dehydrogenases underscores the importance of HA capsule expression for M1T1 GAS pathogenicity and survival in the human host. PMID:22961854
Gas impermeable glaze for sealing a porous ceramic surface
Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.
2004-04-06
A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.
The effect of process parameters on Twin Wire Arc spray pattern shape
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
2015-04-20
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
The effect of process parameters on Twin Wire Arc spray pattern shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
Direct monitoring of wind-induced pressure-pumping on gas transport in soil
NASA Astrophysics Data System (ADS)
Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin
2017-04-01
Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non-diffusive gas transport process. Our method can also be used to study other non-diffusive gas transport processes occurring in soil and snow, and their possible feedbacks or interactions with biogeochemical processes.
Multi-fluid CFD analysis in Process Engineering
NASA Astrophysics Data System (ADS)
Hjertager, B. H.
2017-12-01
An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Application of Notched Long-Period Fiber Grating Based Sensor for CO2 Gas Sensing
NASA Astrophysics Data System (ADS)
Wu, Chao-Wei; Chiang, Chia-Chin
2016-01-01
An inductively coupled plasma etching process to fabricate notched long-period fiber gratings for CO2 gas sensing is proposed in this article. In the gas sensing test, the 15% mixed CO2 gas was used for characterization of CO2 adsorption by the amine-modified nanoporous silica foams of the notched long-period fiber grating sensor. The results shows the spectra were changed with the CO2 gas flow within 13 min. During the absorption process, the transmission of the resonant dip was decreased by 2.884 dB. Therefore, the proposed notched long-period fiber grating gas sensor shows good performance and is suitable as a gas sensor for monitoring the CO2 adsorption process.
Eaton, Timothy T
2013-09-01
Complex scientific and non-scientific considerations are central to the pending decisions about "hydrofracking" or high volume hydraulic fracturing (HVHF) to exploit unconventional natural gas resources worldwide. While incipient plans are being made internationally for major shale reservoirs, production and technology are most advanced in the United States, particularly in Texas and Pennsylvania, with a pending decision in New York State whether to proceed. In contrast to the narrow scientific and technical debate to date, focused on either greenhouse gas emissions or water resources, toxicology and land use in the watersheds that supply drinking water to New York City (NYC), I review the scientific and technical aspects in combination with global climate change and other critical issues in energy tradeoffs, economics and political regulation to evaluate the major liabilities and benefits. Although potential benefits of Marcellus natural gas exploitation are large for transition to a clean energy economy, at present the regulatory framework in New York State is inadequate to prevent potentially irreversible threats to the local environment and New York City water supply. Major investments in state and federal regulatory enforcement will be required to avoid these environmental consequences, and a ban on drilling within the NYC water supply watersheds is appropriate, even if more highly regulated Marcellus gas production is eventually permitted elsewhere in New York State. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan
2013-11-01
The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.
Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu
2018-02-01
Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liquid oil production from shale gas condensate reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, James J.
A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
Code of Federal Regulations, 2013 CFR
2013-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... processing plant relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be...
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.
2017-02-01
The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.
Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F
1984-04-01
The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.
Supercritical crystallization: The RESs-process and the GAS-process
NASA Astrophysics Data System (ADS)
Berends, Edwin M.
1994-09-01
This Doctoral Ph.D. thesis describes the development of two novel crystallization processes utilizing supercritical fluids either as a solvent, the RESS-process, or as an anti-solvent, the GAS-process. In th RESS-process precipitation of the solute is performed by expansion of the solution over a nozzle to produce ultra-fine, monodisperse particles without any solvent inclusions. In the GAS-process a high pressure gas is dissolved into the liquid phase solvent, where it causes a volumetric expansion of this liquid solvent and lowers the equilibrium solubility. Particle size, particle size distribution and other particle characteristics such as their shape, internal structure and the residual amount of solvent in the particles are expected to be influenced by the liquid phase expansion profile.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Zhicheng Hu.
1993-09-07
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Hu, Zhicheng
1993-01-01
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.
Gas hydrate suspensions formation and transportation research
NASA Astrophysics Data System (ADS)
Gulkov, A. N.; Gulkova, S.; Zemenkov, Yu D.; Lapshin, V. D.
2018-05-01
An experimental unit for studying the formation of gas hydrate suspensions and their transport properties is considered. The scheme of installation and the basic processes, which can be studied, are described. The results of studies of gas hydrates and a gas hydrate suspension’ formation in an adiabatic process in a stream of seawater are given. The adiabatic method of obtaining gas hydrates and forming gas hydrate suspensions is offered to use. Directions for further research are outlined.
Dores-Silva, Paulo R; Landgraf, Maria D; Rezende, Maria O O
2018-04-15
The organic matter existing in nature presents as a complex system of various substances. The humic fraction refers to the humic substances (HS) and consists of humic acids (HA), fulvic acids (FA), and humins, according to solubility in aqueous solution. The physical and chemical characteristics of HA, FA, and humins depend on many factors, among which is the type of original organic material. Two processes for the stabilization of organic materials are known worldwide: composting and vermicomposting. Cattle manure, rice straw, sugarcane bagasse, and vegetable wastes from leaves were the organic residues chosen for the composting and vermicomposting processes. In this study, the differences between the HS extracted from such composted and vermicomposted residues were evaluated. The so-extracted HS were evaluated by spectroscopy in the regions of infrared and ultraviolet-visible, and pyrolysis coupled with gas chromatography with mass spectrometric detection is applied. Thus, we expect that the results obtained here indicate which of the two processes is more efficient in the biotransformation of organic residues in a short period with respect to the HS content. It was also observed that the basic units of the humic fractions generated (although they presented different degrees of maturation) are the same. Altogether, the data reported here bring to light that the structures of the HS are very similar, differing in quantities. These results can still be extrapolated to several other raw materials, since the most variable organic matrices were used here to allow this data extrapolation. In addition, the process seems to lead to the formation of more aliphatic substances, counterpoising what is found in the literature.
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...
2016-10-13
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David
In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less
Abbatangelo, Marco; Núñez-Carmona, Estefanía; Sberveglieri, Veronica; Zappa, Dario; Comini, Elisabetta; Sberveglieri, Giorgio
2018-05-18
Parmigiano Reggiano cheese is one of the most appreciated and consumed foods worldwide, especially in Italy, for its high content of nutrients and taste. However, these characteristics make this product subject to counterfeiting in different forms. In this study, a novel method based on an electronic nose has been developed to investigate the potentiality of this tool to distinguish rind percentages in grated Parmigiano Reggiano packages that should be lower than 18%. Different samples, in terms of percentage, seasoning and rind working process, were considered to tackle the problem at 360°. In parallel, GC-MS technique was used to give a name to the compounds that characterize Parmigiano and to relate them to sensors responses. Data analysis consisted of two stages: Multivariate analysis (PLS) and classification made in a hierarchical way with PLS-DA ad ANNs. Results were promising, in terms of correct classification of the samples. The correct classification rate (%) was higher for ANNs than PLS-DA, with correct identification approaching 100 percent.
Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon
NASA Astrophysics Data System (ADS)
Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul
2018-03-01
The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).
Haines, Andy; McMichael, Anthony J; Smith, Kirk R; Roberts, Ian; Woodcock, James; Markandya, Anil; Armstrong, Ben G; Campbell-Lendrum, Diarmid; Dangour, Alan D; Davies, Michael; Bruce, Nigel; Tonne, Cathryn; Barrett, Mark; Wilkinson, Paul
2009-12-19
This Series has examined the health implications of policies aimed at tackling climate change. Assessments of mitigation strategies in four domains-household energy, transport, food and agriculture, and electricity generation-suggest an important message: that actions to reduce greenhouse-gas emissions often, although not always, entail net benefits for health. In some cases, the potential benefits seem to be substantial. This evidence provides an additional and immediate rationale for reductions in greenhouse-gas emissions beyond that of climate change mitigation alone. Climate change is an increasing and evolving threat to the health of populations worldwide. At the same time, major public health burdens remain in many regions. Climate change therefore adds further urgency to the task of addressing international health priorities, such as the UN Millennium Development Goals. Recognition that mitigation strategies can have substantial benefits for both health and climate protection offers the possibility of policy choices that are potentially both more cost effective and socially attractive than are those that address these priorities independently. Copyright 2009 Elsevier Ltd. All rights reserved.
Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.
2013-01-01
Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.
Managing flowback and produced water from hydraulic fracturing under stochastic environment
NASA Astrophysics Data System (ADS)
Zhang, X.; Sun, A. Y.; Duncan, I. J.; Vesselinov, V. V.
2017-12-01
A large volume of wastewater is being generated from hydraulic fracturing in shale gas plays, including flowback and produced water. The produced wastewater in terms of its quantity and quality has become one of the main environmental problems facing shale gas industries worldwide. Cost-effective planning and management of flowback and produced water is highly desirable. Careful choice of treatment, disposal, and reuse options can lower costs and reduce potential environmental impacts. To handle the recourse issue in decision-making, a two-stage stochastic management model is developed to provide optimal alternatives for fracturing wastewater management. The proposed model is capable of prompting corrective actions to allow decision makers to adjust the pre-defined management strategies. By using this two-stage model, potential penalties arising from decision infeasibility can be minimized. The applicability of the proposed model is demonstrated using a representative synthetic example, in which tradeoffs between economic and environmental goals are quantified. This approach can generate informed defensible decisions for shale gas wastewater management. In addition, probabilistic and non-probabilistic uncertainties are effectively addressed.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
Alternative Fuels Data Center: Propane Production and Distribution
produced from liquid components recovered during natural gas processing. These components include ethane & Incentives Propane Production and Distribution Propane is a by-product of natural gas processing distribution showing propane originating from three sources: 1) gas well and gas plant, 2) oil well and
Code of Federal Regulations, 2011 CFR
2011-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2010 CFR
2010-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2012 CFR
2012-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-03
New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less
Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys
NASA Astrophysics Data System (ADS)
Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do
The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.
Microporous polymer films and methods of their production
Aubert, James H.
1995-01-01
A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less
NASA Astrophysics Data System (ADS)
Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.
2014-12-01
The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in anoxic sediments in the Sea of Okhotsk, suggest that silicate weathering coupled to microbial methanogenesis should be occurring in continental margins worldwide, providing a net sink of atmospheric CO2 over geologic timescales.
Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C
2014-10-07
The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.
1985-04-09
OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid
Status and perspectives for the electron beam technology for flue gases treatment
NASA Astrophysics Data System (ADS)
Frank, Norman W.
The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.
Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.
2003-06-03
A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2010-01-01
High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics
NASA Astrophysics Data System (ADS)
Chen, Song; Hu, Yuan; Sun, Quanhua
2012-11-01
Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.
Treatment of gas from an in situ conversion process
Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX
2011-12-06
A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.
1986-01-01
A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.
Coal Liquids: Manufacture and Properties. A Review.
1982-09-01
a conventional furnace with flue gas desulfurization ; however, its use as a boiler fuel is not economical at present. Research continues on...J.B., "The Shell Flue Gas Desulfurization Process," Universal Oil Products Process Division, Universal Oil Products, Inc., Des Plaines, IL, presented...in 1980, H-Coal and EDS process, gasification obstacles. 187. Salmeczi, J.G., " Flue Gas Desulfurization by the ThiosorbicC Process," Dravo Time Company
Sung, Jaeyoung
2007-07-01
We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.
Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas
NASA Astrophysics Data System (ADS)
Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki
In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.
Morrow, Thomas B [San Antonio, TX; Kelner, Eric [San Antonio, TX; Owen, Thomas E [Helotes, TX
2008-07-08
A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.
Carbon dioxide removal process
Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.
2003-11-18
A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... to as natural gas liquids or NGLs. Interstate pipelines have a limit on how much NGLs natural gas can... gas processing plant to remove those liquids before it can be transported on interstate pipelines... Gas Transmission, and Trailblazer pipelines, as well as associated processing and storage capacity. On...
Turboexpanders with pressurized magnetic bearings for off-shore applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Ershaghi, B.; Baudelocque, L.
1995-12-31
There are two primary parameters that encourage the use of magnetic bearings in turbomachinery: oil-free process and space requirements. For cryogenic processes such as hydrogen purification and ethylene plants, oil free process is the primary objective. In the case of off-shore platforms for oil and gas production, the occupied space and weight are of prime concern. In off-shore operations, the process gas density is usually higher than in normal process plants because the gas is untreated and at high pressure. High density process gas generates more windage loss and may also cause excessive radial load to journal bearings. The bearingmore » assembly design should be suitable for sour gas environments as well. Furthermore, the thrust bearing system should withstand process fluctuations which are more severe due to high pressure. In this paper, the authors explain their experience of designing a turboexpander-compressor with magnetic bearings for an off-shore oil production platform. They will present side load analysis and their solutions for heat dissipation and coping with process fluctuations.« less
Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
Esfandiari, Nadia; Ghoreishi, Seyyed M
2015-12-01
The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.
Application of Risk-Based Inspection method for gas compressor station
NASA Astrophysics Data System (ADS)
Zhang, Meng; Liang, Wei; Qiu, Zeyang; Lin, Yang
2017-05-01
According to the complex process and lots of equipment, there are risks in gas compressor station. At present, research on integrity management of gas compressor station is insufficient. In this paper, the basic principle of Risk Based Inspection (RBI) and the RBI methodology are studied; the process of RBI in the gas compressor station is developed. The corrosion loop and logistics loop of the gas compressor station are determined through the study of corrosion mechanism and process of the gas compressor station. The probability of failure is calculated by using the modified coefficient, and the consequence of failure is calculated by the quantitative method. In particular, we addressed the application of a RBI methodology in a gas compressor station. The risk ranking is helpful to find the best preventive plan for inspection in the case study.
Closed-loop system for growth of aquatic biomass and gasification thereof
Oyler, James R.
2017-09-19
Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.
Fate of four phthalate plasticizers under various wastewater treatment processes.
Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba
2018-05-18
The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... natural gas 7/22/1998 6/17/1998 Repeal and readoption disapproval. processing, as Section treating, or 116... for Changes at Certain Natural Gas Processing, Treating, or Compression Facilities 1. What is the... the following grounds: This definition exempts changes at certain natural gas processing, treating, or...
Microporous polymer films and methods of their production
Aubert, J.H.
1995-06-06
A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.
Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David
2018-02-20
Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brush, Adrian; Masanet, Eric; Worrell, Ernst
The U.S. dairy processing industry—defined in this Energy Guide as facilities engaged in the conversion of raw milk to consumable dairy products—consumes around $1.5 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. dairy processing industry to reduce energy consumption and greenhouse gas emissions in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented atmore » the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. dairy processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to dairy processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in dairy processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in dairy processing, a summary of basic, proven measures for improving water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. dairy processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures—as well as on their applicability to different production practices—is needed to assess their cost effectiveness at individual plants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawyer, Karma; Green, Johney; Jackson, Roderick
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Concentrating Solar Power Systems
NASA Astrophysics Data System (ADS)
Pitz-Paal, R.
2017-07-01
Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.
Sawyer, Karma; Green, Johney; Jackson, Roderick; Love, Lonnie
2018-01-16
ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicleâs engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.
Portable spectrometer monitors inert gas shield in welding process
NASA Technical Reports Server (NTRS)
Grove, E. L.
1967-01-01
Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.
Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun
2012-09-01
To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.
Oil and Gas field code master list 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editionsmore » of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.« less
Laser beam heat method reported
NASA Astrophysics Data System (ADS)
Tsuchiya, Hachiro; Goto, Hidekazu
1988-07-01
An outline of research involving the processing method utilizing laser-induced thermochemistry was presented, with the CO2 laser processing of ceramics in CF4 gas used as a practical processing example. It has become clear that it will be possible to conduct laser proccessing of ceramics with high efficiency and high precision by utilizing the thermochemical processes, but it is not believed that the present method is the best one and it is not clear that it can be applied to commercial processing. It is thought that the processing characteristics of this method will be greatly changed by the combination of the atmospheric gas and the material, and it is important to conduct tests on various combinations. However, it is believed that the improvement and development will become possible by theoretically confirming the basic process of the processing, especially of the the thermochemical process between the solid surface and the atmospheric gas molecule. Actually, it is believed that the thermochemical process on the solid surface is quite complicated. For example, it was confirmed that when thermochemical processing the Si monocrystal in the CF4 gas, the processing speed would change by at least 10 times through changing the gas pressure and the mixing O2 gas density. However, conversely speaking, it is believed that the fact that this method is complicated, with many unexplained points and room for research, conceals the possibility of its being applied to various fields, and also, in this sense, the quantitative confirmation of its basic process in an important problem to be solved in the future.
Armstrong, Jean; Keep, Rory; Armstrong, William
2009-01-01
Oil pollution of wetlands is a world-wide problem but, to date, research has concentrated on its influences on salt marsh rather than freshwater plant communities. The effects of water-borne light oils (liquid paraffin and diesel) were investigated on the fresh/brackish wetland species Phragmites australis in terms of routes of oil infiltration, internal gas transport, radial O(2) loss (ROL), underwater gas films and bud growth. Pressure flow resistances of pith cavities of nodes and aerenchyma of leaf sheaths, with or without previous exposure to oil, were recorded from flow rates under applied pressure. Convective flows were measured from living excised culms with oiled and non-oiled nodes and leaf sheaths. The effect of oil around culm basal nodes on ROL from rhizome and root apices was measured polarographically. Surface gas films on submerged shoots with and without oil treatment were recorded photographically. Growth and emergence of buds through water with and without an oil film were measured. Internodes are virtually impermeable, but nodes of senesced and living culms are permeable to oils which can block pith cavity diaphragms, preventing flows at applied pressures of 1 kPa, natural convective transport to the rhizome, and greatly decreasing ROL to phyllospheres and rhizospheres. Oil infiltrating or covering living leaf sheaths prevents humidity-induced convection. Oil displaces surface gas films from laminae and leaf sheaths. Buds emerge only a few centimetres through oil and die. Oil infiltrates the gas space system via nodal and leaf sheath stomata, reducing O(2) diffusion and convective flows into the rhizome system and decreasing oxygenation of phyllospheres and rhizospheres; underwater gas exchange via gas films will be impeded. Plants can be weakened by oil-induced failure of emerging buds. Plants will be most at risk during the growing season.
NASA Astrophysics Data System (ADS)
Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.
2017-11-01
Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Kelly K.; Zavala-Zraiza, Daniel
Here, we summarize an effort to develop a global oil and gas infrastructure (GOGI) taxonomy and geodatabase, using a combination of big data computing, custom search and data integration algorithms, and expert driven spatio-temporal analytics to identify, access, and evaluate open oil and gas data resources and uncertainty trends worldwide. This approach leveraged custom National Energy Technology Laboratory (NETL) tools and capabilities in collaboration with Environmental Defense Fund (EDF) and Carbon Limits subject matter expertise, to identify over 380 datasets and integrate more than 4.8 million features into the GOGI database. In addition to acquisition of open oil and gasmore » infrastructure data, information was collected and analyzed to assess the spatial, temporal, and source quality of these resources, and estimate their completeness relative to the top 40 hydrocarbon producing and consuming countries.« less
Pockmarks: self-scouring seep features?
Brothers, Laura L.; Kelley, Joseph T.; Belknap, Daniel F.; Barnhardt, Walter A.; Koons, Peter O.
2011-01-01
Pockmarks, or seafloor craters, occur worldwide in a variety of geologic settings and are often associated with fluid discharge. The mechanisms responsible for pockmark preservation, and pockmarks? relation to active methane venting are not well constrained. Simple numerical simulations run in 2-and 3-dimensions, and corroborated by flume tank experiments, indicate turbulence may play a role in pockmark maintenance, and, potentially, in pockmark excavation. Morphological analysis of the pockmarks indicates an abundance of flat-bottomed and/or elongated pockmarks. Pockmarks transition into furrows as the bay narrows and tidal flow is enhanced, providing unmistakable evidence of post-formation evolution. We hypothesize that some pockmarks formed from seafloor perturbations (e.g., gas or methane discharge), are1 maintained and gradually modified by vortical flow. This hypothesis provides a mechanism for pockmark preservation and enlargement without active fluid venting, which has implications for the interpretation of seafloor seep features in gas hydrates areas.
Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C
The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream,more » to a destination where it is used or confined, preferably in an environmentally benign manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve
NASA Astrophysics Data System (ADS)
Jiang, Cong; Chen, Yanhao
2018-04-01
Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.
NASA Astrophysics Data System (ADS)
Wang, B.
2013-12-01
Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.
Methane’s Role in Promoting Sustainable Development in the Oil and Natural Gas Industry
The document summarizes a number of established methods to identify, measure and reduce methane emissions from a variety of equipment and processes in oil and gas production and natural gas processing and transmission facilities.
Tissue Engineering the Cornea: The Evolution of RAFT
Levis, Hannah J.; Kureshi, Alvena K.; Massie, Isobel; Morgan, Louise; Vernon, Amanda J.; Daniels, Julie T.
2015-01-01
Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro. PMID:25809689
The violent interstellar medium
NASA Technical Reports Server (NTRS)
Mccray, R.; Snow, T. P., Jr.
1979-01-01
Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.
CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu
2015-06-01
Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Field study of nitrous oxide production with in situ aeration in a closed landfill site.
Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai
2016-03-01
Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30-40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.
Global Job Opportunities with a ``Super-Major'' Oil and Gas Company
NASA Astrophysics Data System (ADS)
Baranovic, M. J.
2001-12-01
Shell International Exploration and Production Company is one of the world's largest private employers of geoscientists with approximately 1500 geophysicists and geologists employed worldwide. The companies of the Royal Dutch/Shell Group together produce, process, and deliver energy to consumers. Operating across the globe, in more than 130 countries and with more than 100,000 staff, Shell companies are guided by values developed over more than a century of successful enterprise. Responsibilities and Career Path - As a processing or research Geophysicist, you will use proprietary methods to prepare 2D and 3D seismic data volumes for the direct detection of hydrocarbons, the delineation of reservoirs or to define the stratigraphic and structural framework of the subsurface. As an exploration or development Geophysicist, your business will be finding commercially viable oil and gas reserves by using 3D seismic acquisition, processing, and interpretation techniques. Your advanced geological models of the subsurface will drive drilling proposals, optimizing appraisal of hydrocarbon resources. As a production or surveillance geophysicist, your 4D seismic interpretations and geological models will drive drilling proposals and optimize the production and depletion of existing oil and gas accumulations. Up to seven steps in the technical career ladder are possible. Team leader and management candidates are chosen from Shell's technical workforce based on technical and business acumen demonstrated on the job. Projects - Geophysicists work as part of multi-disciplinary teams on projects that typically last from 18 to 36 months. Teams are responsible for projects that may vary from \\$1 million to hundreds of millions in scope. Accountability and responsibility varies according to individual experience level and team structure. Lifestyle - Geophysicists are mainly office-based, with business travel requirements rarely exceeding 2 weeks per event. In the U.S., Shell allows flexible daily office hours, and employees may choose an optional 9-hour work schedule that provides alternate Fridays off. Company pension and benefit programs are competitive with the best that industry has to offer. Degree requirements: Shell recruits Geophysicists for the global staff pool from approximately 20 universities in the U.S. Universities are chosen based on the curriculum of the school, the size of the student enrollment, and the regional location of the school. Geophysicists generally must have at least an MS degree to qualify for Shell employment. Electrical Engineers and Physicists who are recruited as seismic processors are required to have at least a BS degree. Recruiting targets vary annually based on company need.
Hydrogasification reactor and method of operating same
Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki
2013-09-10
The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.
Particle dispersing system and method for testing semiconductor manufacturing equipment
Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.
1998-01-01
The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.
Investigation of sewage sludge treatment using air plasma assisted gasification.
Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis
2017-06-01
This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
NASA Astrophysics Data System (ADS)
Pedone, Maria; Aiuppa, Alessandro; Giudice, Gaetano; Grassa, Fausto; Chiodini, Giovanni; Valenza, Mariano
2014-05-01
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in Volcanology are still limited to a few examples. Here, we explored the potentiality of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) to measurement of volcanic CO2 flux emissions. Our field tests were conducted at Campi Flegrei (near Pozzuoli, Southern Italy), where the GasFinder was used (during three campaigns in October 2012, January 2013 and May 2013) to repeatedly measure the path-integrated concentrations of CO2 along cross-sections of the atmospheric plumes of the two main fumarolic fields in the area (Solfatara and Pisciarelli). By using ad-hoc designed field-set-up and a tomographic post-processing routine, we resolved, for each of the 2 manifestations, the contour maps of CO2 concentrations in their atmospheric plumes, from the integration of which (and after multiplication by the plumes' transport speeds) the CO2 fluxes were finally obtained [1]. The so-calculated fluxes average of 490 tons/day, which agrees well with independent evaluations of Aiuppa et al. (2013) [2] (460 tons/day on average), and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [2]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. The application of lasers to volcanic gas studies is still an emerging (though intriguing) research field, and requires more testing and validation experiments. We conclude that TDL technique may valuably assist CO2 flux quantification at a number of volcanic targets worldwide. [1] Pedone M. et al. (2013) Gold2013:abs:5563, Goldschmidt Conference, session 11a. [2] Aiuppa A. et al. (2013) Geochemistry Geophysics Geosystems. doi: 10.1002/ggge.20261. [3] Chiodini G. et al. (2010) Journal of Geophysical Research, Volume 115, B03205. doi:10.1029/2008JB006258.
NASA Astrophysics Data System (ADS)
Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.
2016-12-01
Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon flux through metabolic activities. When holistically considered, these data will help to refine estimates of volatile flux and outgassing from the Aleutian Arc, particularly those involving carbon compounds, and potentially provide a novel predictive tool that can be applied in high throughput to volcanoes worldwide.
Murr, L. E.; Garza, K. M.; Soto, K. F.; Carrasco, A.; Powell, T. G.; Ramirez, D. A.; Guerrero, P. A.; Lopez, D. A.; Venzor, J.
2005-01-01
Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and virtually all gas combustion processes are variously effective sources. These results also raise concerns for manufactured carbon nanotube aggregates, and related fullerene nanoparticles. PMID:16705799
Exploring the Universe with the Worldwide Telescope
NASA Astrophysics Data System (ADS)
Fay, J. E.
2014-12-01
Microsoft Research WorldWide Telescope is a software platform for exploring the universe. Whether you are a researcher, student or just a casual explorer WorldWide Telescope uses cutting edge technology to take you anywhere in the universe and visualize data collected by science programs from across the globe, including NASA great observatories and planetary probes. WWT leverages technologies such as Virtual reality headsets, multi-channel full dome projection and HTML5/WebGL to bring the WWT experience to any device and any scale. We will discuss how to use WWT to browse previously curated data, as well as how to process and visualize your own data, using examples from NASA Mars missions.
Özdemir, Erdinç; Eş, Hüseyin; Demir, Muhammet; Üzün, İbrahim
2017-01-01
Voluntary inhalation/abuse of volatile substances is an important public health problem which especially affects adolescent and young populations worldwide and may be encountered in all socioeconomic and cultural levels. Lighter gas abuse-related death is still an important health problem in Turkey. In this study, 25,265 case files and final reports submitted to the Institute of Forensic Medicine of the First Specialization Board between January 2011 and December 2015 were evaluated retrospectively. In 56 of these cases, lighter gas inhalation (n-butane, propane, isobutane) was recorded as the cause of death. All subjects were male with a mean age of 16.8years. According to eyewitness and crime scene investigation reports, in 48 (85.7%) of the cases, a lighter refill container was found at the scene. It was determined that 21.4% of the cases used a plastic bag to increase the effects of lighter gas and 76.8% inhaled the lighter gas via their mouth and nose. The toxicological analysis of the samples taken while hospitalized showed no lighter refill components (n-butane, propane, isobutane) in 66% of the cases, n-butane in 32.1% of the cases, and n-butane+propane+isobutane in 1.9% of the cases. The importance of lighter gas inhalation-related deaths in Turkey has been increasing. Strict measures against the abuse of these very dangerous substances should be undertaken by the mutual efforts of medical specialists and legislators. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
1980-03-01
6.1 Excimers and Exciplexes : Background 55 6.2 Rare Gas-Halide Lasers 58 6.3 Formation, Quenching and Absorption Processes for Rare Gas-Halides 60... exciplex such as KrF* and XeF* laser systems as well as in various types of gas discharges. They are also of fundamental significance in their own...collision processes contributing to the formation and quenching of the excited molecular states in exciplex (such as KrF ) and excimer (such as Xe2
Potential of metal-organic frameworks for separation of xenon and krypton.
Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K
2015-02-17
CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application.
Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping
2014-05-01
Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Fuel cell plates with skewed process channels for uniform distribution of stack compression load
Granata, Jr., Samuel J.; Woodle, Boyd M.
1989-01-01
An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.
Effects of Lightning in the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.
2010-02-01
AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.
Degradation of hydrocarbons under methanogenic conditions in different geosystems
NASA Astrophysics Data System (ADS)
Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin
2014-05-01
With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.
Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder.
Cremer, D R; Eichner, K
2000-06-01
Spice paprika (red pepper; Capsicum annuum) is the most cultivated spice worldwide and is used mainly for its color and pungency. However, current research is also focusing on the flavor as an important parameter. This paper deals with the kinetics of the formation of those volatiles that indicate a decrease in spice paprika quality due to Maillard reaction, hydrolytic reactions, and oxidative degradation reactions of lipids such as fatty acids and carotenoids. Spice paprika volatiles were quantitatively analyzed by means of headspace gas chromatography (HS-GC) and solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The kinetics of their formation were investigated, and the respective activation energies determined. Strecker aldehyde, acetone, and methanol formation followed a pseudo-zero-order reaction kinetic, and formation of dimethyl sulfide (DMS) was characterized by a first-order kinetic. The activation energies determined were between 86.3 and 101.8 for the Strecker aldehydes acetaldehyde (AA), 2-methylpropanal (2-MP), 3-methylbutanal (3-MB), and 2-methylbutanal (2-MB), 130.7 for acetone, 114.2 for methanol, and 109.7 kJ/mol for DMS. The amounts of Strecker aldehydes formed were correlated to the concentrations of the corresponding free amino acids present in the samples. The formation of hexanal and 6-methyl-5-hepten-2-one in Capsicum annuum during processing was confirmed, and the formation of beta-ionone was probably described for the first time. During heating, the concentration of hexanal increased rapidly. The formation of 6-methyl-5-hepten-2-one confirms that Capsicum annuum fruits contain lycopene.
Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Reich, W.J.
1991-09-01
The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less
Hydrocarbon gas liquids production and related industrial development
2016-01-01
Hydrocarbon gas liquids (HGL) are produced at refineries from crude oil and at natural gas processing plants from unprocessed natural gas. From 2010 to 2015, total HGL production increased by 42%. Natural gas processing plants accounted for all the increase, with recovered natural gas plant liquids (NGPL)—light hydrocarbon gases such as propane—rising by 58%, from 2.07 million barrels per day (b/d) in 2010 to 3.27 million b/d in 2015, while refinery output of HGL declined by 7%. The rapid increase in NGPL output was the result of rapid growth in natural gas production, as production shifted to tight gas and shale gas resources, and as producers targeted formations likely to yield natural gas with high liquids content. Annual Energy Outlook 2016 results suggest varying rates of future NGPL production growth, depending on relative crude oil and natural gas prices.
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Espy, John
This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…
Nitrogen removal from natural gas using two types of membranes
Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.
2003-10-07
A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.
Methane/nitrogen separation process
Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.
1997-09-23
A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.
Methane/nitrogen separation process
Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott
1997-01-01
A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.
WORLDWIDE COLLECTION AND EVALUATION OF EARTHQUAKE DATA
period, the hypocenter and magnitude programs were tested and then used to process January 1964 data at the computer facilities of the Environmental ... Science Services Administration (ESSA), Suitland, Maryland, using the CDC 6600 computer. Results of this processing are shown.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.
2013-10-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.
Toy, Lora G.; Pinnau, Ingo; Baker, Richard W.
1994-01-01
A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.
Method and system for the removal of oxides of nitrogen and sulfur from combustion processes
Walsh, John V.
1987-12-15
A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.
Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2009-09-01
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.
Characterization of Biogenic Gas and Mineral Formation Process by Denitrification in Porous Media
NASA Astrophysics Data System (ADS)
Hall, C. A.; Kim, D.; Mahabadi, N.; van Paassen, L. A.
2017-12-01
Biologically mediated processes have been regarded and developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressure dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic chip simulating a homogenous pore structure. The denitrification process is monitored by sequential image capture, where gas and mineral phase changes are evaluated by image processing. Analysis of these images correspond with previous findings, which demonstrate that biogenic gas behaviour at the pore scale is affected by the balance between reaction, diffusion, and convection rates.
Process for clean-burning fuel from low-rank coal
Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.
1994-01-01
A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.
Process for clean-burning fuel from low-rank coal
Merriam, N.W.; Sethi, V.; Brecher, L.E.
1994-06-21
A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.
INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peet M. Soot; Dale R. Jesse; Michael E. Smith
2005-08-01
An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less
Im, K.H.; Ahluwalia, R.K.
1984-05-01
The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.
M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy
2015-07-07
Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.
Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique
2016-01-01
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5′-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP. PMID:27331814
Dejous, Corinne; Hallil, Hamida; Raimbault, Vincent; Lachaud, Jean-Luc; Plano, Bernard; Delépée, Raphaël; Favetta, Patrick; Agrofoglio, Luigi; Rebière, Dominique
2016-06-20
Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath) or liquid (e.g., modified nucleosides as urinary biomarkers). Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP) synthesized for adenosine-5'-monophosphate (AMP) as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM) and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target) demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm(-1) of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3'AMP and CMP, in accordance with previously published results on bulk MIP.
Bioremediation of cooking oil waste using lipases from wastes
do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando
2017-01-01
Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166
NASA Astrophysics Data System (ADS)
Reimann, S.; Brunner, D.; Vollmer, M. K.; Henne, S.; Maione, M.; Arduini, I.
2011-12-01
Methyl bromide (CH3Br) has been widely used for fumigation in agriculture, in food mills and for transport applications. Due to its high ozone-depleting potential, its use has been banned within the Montreal Protocol and its amendments, except for quarantine/pre-shipment uses. This led to a decline of global atmospheric background concentrations and of world-wide emissions. In Europe, emissions have declined concurrently and a generally good compliance with legislation is suggested based on emission estimates using inverse modelling of continuous measurements from the European high-altitude sites Jungfraujoch (Switzerland) and Monte Cimone (Italy). However, episodic pollution events of CH3Br show a violation of international legislation, as this substance has been banned in Europe from 2007 onwards in agriculture and from 2010 in quarantine/pre-shipment uses. Sulfuryl fluoride (SO2F2) is one of the replacement compounds for CH3Br in food processing structures. SO2F2 does not affect the ozone layer but is a potent greenhouse gas (100-year GWP: 4740) with a lifetime of 36 years. European emissions of SO2F2 are estimated by using measurements at Jungfraujoch. Large pollution events are very sporadic but consistently linked to emissions during long weekends and public holidays, presumably a preferable time to fumi-gate food processing structures.
Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
Clack, Herek L
2009-03-01
Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.
Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization
NASA Astrophysics Data System (ADS)
Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.
2015-11-01
Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.
Role of surface and subsurface processes in scaling N2O emissions along riverine networks
Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Bellin, Alberto; Tank, Jennifer L.
2017-01-01
Riverine environments, such as streams and rivers, have been reported as sources of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere mainly via microbially mediated denitrification. Our limited understanding of the relative roles of the near-surface streambed sediment (hyporheic zone), benthic, and water column zones in controlling N2O production precludes predictions of N2O emissions along riverine networks. Here, we analyze N2O emissions from streams and rivers worldwide of different sizes, morphology, land cover, biomes, and climatic conditions. We show that the primary source of N2O emissions varies with stream and river size and shifts from the hyporheic–benthic zone in headwater streams to the benthic–water column zone in rivers. This analysis reveals that N2O production is bounded between two N2O emission potentials: the upper N2O emission potential results from production within the benthic–hyporheic zone, and the lower N2O emission potential reflects the production within the benthic–water column zone. By understanding the scaling nature of N2O production along riverine networks, our framework facilitates predictions of riverine N2O emissions globally using widely accessible chemical and hydromorphological datasets and thus, quantifies the effect of human activity and natural processes on N2O production. PMID:28400514
Global and regional drivers of land-use emissions 1961-2013
NASA Astrophysics Data System (ADS)
Davis, S. J.; Burney, J. A.; Pongratz, J.; Hansis, E.
2017-12-01
Historically, human land use, including conversion of natural landscapes, has disrupted ecosystems worldwide, degraded global biodiversity, and added tremendous quantities of greenhouse gases (GHGs) to the atmosphere1-5. Yet, in contrast to fossil fuel emissions, trends and drivers of land use and related GHG emissions are usually assessed only for specific regions, processes, or products. Here, we present a comprehensive, country-level inventory of greenhouse gas (GHG) emissions from land use and land-use change from 1961-2013, decompose the demographic, economic and technical drivers of these emissions, and assess the sensitivity of results to different units of measurement and accounting assumptions. Globally, annual land use emissions (CO2-eq) have decreased between 1961 and 2013 (-32% in our central case), reflecting a balance between steady increases in agricultural production per capita (+42%) and equally persistent declines in the land required per unit of agricultural production (-65%), and emissions per area of land used (-41%). A few regions, processes, and products account for the majority of land use emissions: Latin America, Southeast Asia, and sub-Saharan Africa represent 55% of net cumulative emissions 1961-2013, conversion to cropland and pasture and enteric fermentation represent 103%, and cereal, dairy and beef products together represent 83%. Our results suggest that the emissions intensity of agricultural production is a particularly important indicator of agriculture's climate impact, where targeted reductions could substantially reduce that impact.
Bioremediation of cooking oil waste using lipases from wastes.
Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco
2017-01-01
Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.
NASA Astrophysics Data System (ADS)
Tian, Lei; Liu, Yan; Tang, Jun-jie; Lü, Guo-zhi; Zhang, Ting-an
2017-08-01
The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas-liquid-solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ɛ = 4.54 × 10-11 n 3.65 T 2.08 P g 0.18. It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator.
Gas-hydrate occurrence on the W-Svalbard margin at the gateway to the Arctic Ocean
NASA Astrophysics Data System (ADS)
Bünz, Stefan; Mienert, Jürgen
2010-05-01
Gas hydrates contain more carbon than does any other global reservoir and are abundant on continental margins worldwide. These two facts make gas hydrates important as a possible future energy resource, in submarine landsliding and in global climate change. With the ongoing global warming, there is a need for a better understanding of the distribution of gas hydrates and their sensitivity to environmental changes. Gas hydrate systems in polar latitudes may be of particular importance due to the fact that environmental changes will be felt here first and most likely are more extreme than elsewhere. The gas-hydrate systems offshore western Svalbard are far more extensive (~4000km^2) than previously assumed and include the whole Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. However, in this peculiar setting gas hydrates also occur within few km of a mid-oceanic ridge and transform fault, which makes this gas hydrate system unique on Earth. The close proximity to the spreading centre and its hydrothermal circulation system affects the dynamics of the gas hydrate system. A strong cross-cutting BSR is visible, especially in areas of dipping seafloor. Other places show a weak almost subtle BSR. The base of gas-hydrate stability varies with distance from the ridge system, suggesting a strong temperature-controlled subsurface depth as the underlying young oceanic crust cools off eastward. High amplitude reflections over a depth range of up to 150m underneath the BSR indicate the presence of a considerable amount of free gas. The free gas is focused laterally upwards by the less-permeable hydrated sediments as the only fluid-escape features occur at the crest of the Vestnesa Ridge. The fluid migration system and its active plumbing system at the crest provide an efficient mechanism for gas escape from the base of the hydrate stability zone. The high heat flow together with the high tectonic activity of this region, a thick sedimentary cover, a shallow maturation window and an accelerated rate of biogenic and thermogenic gas production cause substantial disturbance to the gas hydrate system leading to high variability in gas hydrate build up and dissociation. This young and dynamic system allows studying gas hydrate formation in marine sediments, their governing parameters and their relationship with the fluid flow in great detail.
LanzaTech- Capturing Carbon. Fueling Growth.
NONE
2018-01-16
LanzaTech will design a gas fermentation system that will significantly improve the rate at which methane gas is delivered to a biocatalyst. Current gas fermentation processes are not cost effective compared to other gas-to-liquid technologies because they are too slow for large-scale production. If successful, LanzaTech's system will process large amounts of methane at a high rate, reducing the energy inputs and costs associated with methane conversion.
Carbon Capture: A Technology Assessment
2013-10-21
gases produced at power plants burning coal or natural gas. Here, the captured CO2 is sold as a commodity to nearby industries such as food ...the food and beverage industry.19 A number of vendors currently offer commercial amine-based processes, including the Fluor Daniel Econamine FG Plus...Sleipner West Gas Field (North Sea, Norway) Natural gas separation 1996 N/A Amine (Aker) 1.0 Petronas Gas Processing Plant (Kuala Lumpur, Malaysia
NASA Astrophysics Data System (ADS)
Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano
2013-04-01
There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by the European Social Fund and the Romanian Government through the POSDRU project "DOCTORAL STUDIES FOR EUROPEAN PERFORMANCES IN RESEARCH AND INOVATION - CUANTUMDOC" ID79407
Two-stage coal liquefaction without gas-phase hydrogen
Stephens, H.P.
1986-06-05
A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.
Microbial removal of no.sub.x from gases
Sublette, Kerry L.
1991-01-01
Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.
Volcano Gas Measurements from UAS - Customization of Sensors and Platforms
NASA Astrophysics Data System (ADS)
Werner, C. A.; Dahlgren, R. P.; Kern, C.; Kelly, P. J.; Fladeland, M. M.; Norton, K.; Johnson, M. S.; Sutton, A. J.; Elias, T.
2015-12-01
Volcanic eruptions threaten not only the lives and property of local populations, but also aviation worldwide. Volcanic gas release is a key driving force in eruptive activity, and monitoring gas emissions is critical to assessing volcanic hazards, yet most volcanoes are not monitored for volcanic gas emission. Measuring volcanic gas emissions with manned aircraft has been standard practice for many years during eruptive crises, but such measurements are quite costly. As a result, measurements are typically only made every week or two at most during periods of unrest or eruption, whereas eruption dynamics change much more rapidly. Furthermore, very few measurements are made between eruptions to establish baseline emissions. Unmanned aerial system (UAS) measurements of volcanic plumes hold great promise for both improving temporal resolution of measurements during volcanic unrest, and for reducing the exposure of personnel to potentially hazardous conditions. Here we present the results of a new collaborative effort between the US Geological Survey and NASA Ames Research Center to develop a UAS specific for volcano gas monitoring using miniaturized gas sensing systems and a custom airframe. Two miniaturized sensing systems are being built and tested: a microDOAS system to quantify SO2 emission rates, and a miniature MultiGAS system for measuring in-situ concentrations of CO2, SO2, and H2S. The instruments are being built into pods that will be flown on a custom airframe built from surplus Raven RQ-11. The Raven is one of the smallest UAS (a SUAS), and has the potential to support global rapid response when eruptions occur because they require less crew for operations. A test mission is planned for fall 2015 or spring 2016 at the Crows Landing Airfield in central California. Future measurement locations might include Kilauea Volcano in Hawaii, or Pagan Volcano in the Marianas.
A fully integrated SWAT-MODFLOW hydrologic model
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...
USDA-ARS?s Scientific Manuscript database
Grapevine is the most valuable horticultural crop in the world. The majority of the fruit is processed into wine, but significant portions of the worldwide crop are destined for fresh consumption, dried into raisins, processed into non-alcoholic juice, and distilled into spirits. The quality of wi...
Raco, Brunella; Battaglini, Raffaele; Lelli, Matteo
2010-07-01
Landfill gas (LFG) tends to escape from the landfill surface even when LFG collecting systems are installed. Since LFG leaks are generally a noticeable percentage of the total production of LFG, the optimisation of the collection system is a fundamental step for both energy recovery and environmental impact mitigation. In this work, we suggest to take into account the results of direct measurements of gas fluxes at the air-cover interface to achieve this goal. During the last 5 years (2004-2009), 11 soil gas emission surveys have been carried out at the Municipal Solid Waste landfill of Legoli (Peccioli municipality, Pisa Province, Italy) by means of the accumulation chamber method. Direct and simultaneous measurements of CH(4) and CO(2) fluxes from the landfill cover (about 140,000 m(2)) have been performed to estimate the total output of both gases discharged into the atmosphere. Three different data processing have been applied and compared: Arithmetic mean of raw data (AMRD), sequential Gaussian conditional simulations (SGCS) and turning bands conditional simulations (TBCS). The total amount of LFG (captured and not captured) obtained from processing of direct measurements has been compared with the corresponding outcomes of three different numerical models (LandGEM, IPCC waste model and GasSim). Measured fluxes vary from undetectable values (<0.05 mol m(-2) day(-1) for CH(4) and <0.02 mol m(-2) day(-1) for CO(2)) to 246 mol m(-2) day(-1) for CH(4) and 275 mol m(-2) day(-1) for CO(2). The specific CH(4) and CO(2) fluxes (flux per surface unit) vary from 1.8 to 7.9 mol m(-2) day(-1) and from 2.4 to 7.8 mol m(-2) day(-1), respectively. The three different estimation methodologies (AMRD, SGCS and TBCS) used to evaluate the total output of diffused CO(2) and CH(4) fluxes from soil provide similar estimations, whereas there are some mismatches between these results and those of numerical LFG production models. Isoflux maps show a non-uniform spatial distribution, with high-flux zones not always corresponding with high-temperature areas shown by thermographic images. The average value estimated over the 5-year period for the Legoli landfill is 245 mol min(-1) for CH(4) and 379 mol min(-1) for CO(2), whereas the volume percentage of CH(4) in the total gas discharged into the atmosphere varies from 29% to 51%, with a mean value of 39%. The estimated yearly emissions from the landfill cover is about 1.29 x 10(8) mol annum(-1) (2,100 t year(-1)) of CH(4) and 1.99 x 10(8) mol annum(-1) (8,800 t year(-1)) of CO(2). Considering that the CH(4) global warming potential is 63 times greater than that of CO(2) (20 a time horizon, Lashof and Ahuja 1990), the emission of methane corresponds to 130,000 t annum(-1) of CO(2). The importance of these studies is to provide data for the worldwide inventory of CH(4) and CO(2) emissions from landfills, with the ultimate aim of determining the contribution of waste disposal to global warming. This kind of studies could be extended to other gas species, like the volatile organic compounds.
Radon gas, useful for medical purposes, safely fixed in quartz
NASA Technical Reports Server (NTRS)
Fields, P. R.; Stein, L.; Zirin, M. H.
1966-01-01
Radon gas is enclosed in quartz or glass ampules by subjecting the gas sealed at a low pressure in the ampules to an ionization process. This process is useful for preparing fixed radon sources for radiological treatment of malignancies, without the danger of releasing radioactive gases.
Code of Federal Regulations, 2013 CFR
2013-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
The ELI Eco Logic International Inc. (Eco Logic) process thermally separates organics, then chemically reduces them in a hydrogen atmosphere, converting them to a reformed gas that consists of light hydrocarbons and water. A scrubber treats the reformed gas to remove hydrogen chl...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
Wang, Xiaomei; Sun, Fazhe; Huang, Yongan; Duan, Yongqing; Yin, Zhouping
2015-02-21
Micropatterned ZnO nanorod arrays were fabricated by the mechanoelectrospinning-assisted direct-writing process and the hydrothermal growth process, and utilized as gas sensors that exhibited excellent Ohmic behavior and sensitivity response to oxidizing gas NO2 at low concentrations (1-100 ppm).
Evaluation of Mars CO2 Capture and Gas Separation Technologies
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James
2011-01-01
Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper summarizes the results of an extensive literature review of candidate technologies for the capture and separation of CO2 and other relevant gases. This information will be used to prioritize the technologies to be developed further during this and other ISRU projects.
Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed.
Fell, H J; Tuczek, M
1998-01-01
The presented adsorption--process KOMBISORBON is applied for high efficient off-gas purification, preferably of polychlorinated dioxins and furans from off-gas of incineration plants, which are generated, when these are operated under unfavourable conditions [2]. This off-gas purification process complies with german laws, which limit the concentration of these substances to less than 0.1 ng toxicity equivalents (TE) per cubic metre of gas [1]. The adsorbent, the adsorption process and its plant concept (fixed bed) is described in detail including economics and obtained operation results. Alternative removal technologies are briefly outlined.
Processes of conversion of a hot metal particle into aerogel through clusters
NASA Astrophysics Data System (ADS)
Smirnov, B. M.
2015-10-01
Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.
Toy, L.G.; Pinnau, I.; Baker, R.W.
1994-01-25
A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.
Methanation process utilizing split cold gas recycle
Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.
1976-07-06
In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.
Carbon dioxide capture from power or process plant gases
Bearden, Mark D; Humble, Paul H
2014-06-10
The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.