Biological monitors of pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Root, M.
1990-02-01
This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).
Production of germline ablated male pigs via Crispr/Cas editing of the NANOS2 gene
USDA-ARS?s Scientific Manuscript database
The availability of alternative models to flies, worms, and mice for studying germ cell biology is important for translating findings to higher order mammals. In this context, investigations in pigs and other livestock species can also serve to find applications for both basic biomedical research ...
Induction of autophagy by spermidine promotes longevity.
Eisenberg, Tobias; Knauer, Heide; Schauer, Alexandra; Büttner, Sabrina; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Ring, Julia; Schroeder, Sabrina; Magnes, Christoph; Antonacci, Lucia; Fussi, Heike; Deszcz, Luiza; Hartl, Regina; Schraml, Elisabeth; Criollo, Alfredo; Megalou, Evgenia; Weiskopf, Daniela; Laun, Peter; Heeren, Gino; Breitenbach, Michael; Grubeck-Loebenstein, Beatrix; Herker, Eva; Fahrenkrog, Birthe; Fröhlich, Kai-Uwe; Sinner, Frank; Tavernarakis, Nektarios; Minois, Nadege; Kroemer, Guido; Madeo, Frank
2009-11-01
Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.
Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
Lee, Jeeyong; Kim, Kwang-Youl; Paik, Young-Ki
2014-02-01
Altered acetylcholine (Ach) homeostasis is associated with loss of viability in flies, developmental defects in mice, and cognitive deficits in human. Here, we assessed the importance of Ach in Caenorhabditis elegans development, focusing on the role of Ach during dauer formation. We found that dauer formation was disturbed in choline acetyltransferase (cha-1) and acetylcholinesterase (ace) mutants defective in Ach biosynthesis and degradation, respectively. When examined the potential role of G-proteins in dauer formation, goa-1 and egl-30 mutant worms, expressing mutated versions of mammalian G(o) and G(q) homolog, respectively, showed some abnormalities in dauer formation. Using quantitative mass spectrometry, we also found that dauer larvae had lower Ach content than did reproductively grown larvae. In addition, a proteomic analysis of acetylcholinesterase mutant worms, which have excessive levels of Ach, showed differential expression of metabolic genes. Collectively, these results indicate that alterations in Ach release may influence dauer formation in C. elegans.
Migratory response of Echinostoma caproni (Digenea: Echinostomatidae) to feeding by ICR mice.
Platt, Thomas R; Quintana, Guadalupe; Rodriguez, Arianne E; Zelmer, Derek A
2013-04-01
The migratory response of Echinostoma caproni to host feeding was examined in female ICR mice. Thirty-six mice were each infected with 20 metacercariae of E. caproni . Twenty-eight days post-infection, food, but not water, was withheld for 24 hr. Mice were haphazardly divided into 4 groups of 9, and each group received one of the following treatments: (1) 0.25 g glucose, (2) access to standard lab chow, (3) 0.5 ml saline, and (4) continued fasting. Three mice from each treatment group were killed 1, 2, and 4 hr post-treatment. The intestine of each mouse was removed, flash-frozen, and stored in a conventional freezer for later examination. Intestines were partially thawed, measured, and opened longitudinally, and the position of each worm, or worm cluster was measured. The intestine was divided into equal 5% segments based on the initial measurement and locations of worms, and worm clusters were recorded from the appropriate section of the intestine for analysis. There was no significant effect of treatment in the position of worms at 1 hr. There was a posterior shift in worm position in all treatment groups at 2 hr, except in the saline-treated mice; however, only worms in the glucose-fed mice were significantly posterior to the unfed controls. From 2 to 4 hr, there was a significant anterior movement of worms in both the glucose and chow-fed mice. The data strongly suggest that E. caproni responds to the initiation of gastric activity of the host by migrating anteriorly in the ileum. The specific stimulus for this migration is unknown.
Diurnal migration of Echinostoma caproni (Digenea: Echinostomatidae) in ICR mice.
Platt, Thomas R; Graf, Emily; Kammrath, Anna; Zelmer, Derek A
2010-12-01
Twenty-four female ICR mice, 12 acclimated to a 12 ∶ 12 light-dark cycle and 12 to a 12 ∶ 12 dark-light cycle for 7 days, were each infected with 10 metacercariae of Echinostoma caproni. Infected mice were maintained on their respective lighting regimes for 28 days. Six mice (3 from each group) were necropsied at 4-hr intervals beginning at 0700 hr. The small intestine was removed, opened, and the position of individual worms and worm clusters was measured to the nearest 0.1 cm. Each intestine was subsequently divided into 20 equal segments and individual worms and worm clusters were assigned to the appropriate segment based on the original measurements. All worms were found in the posterior 55% of the intestine (ileum). All posterior segments (10-20), with the exception of segment 18, harbored at least 1 worm at some time. A Monte Carlo simulation of worm abundance in segments 10-17 over all time periods indicated a random distribution, while the same analysis of segments 10-20 indicated a non-random distribution due to large numbers of worms in segment 20 and to the absence of worms in segment 18. To analyze temporal changes in worm distribution, mice were grouped by time of necropsy as follows: night (1900 and 2300 hr), morning (0300 and 0700 hr), and day (1100 and 1500 hr). During the night and morning, E. caproni was heavily concentrated in segments 10-17 and, during the day, worms were located more posteriorly, with a heavy concentration in the last segment (20).
Growth and development of Gymnophalloides seoi in immunocompetent and immunosuppressed C3H/HeN mice
Chung, Won-Jae; Kook, Jina; Seo, Min; Park, Yun-Kyu; Guk, Sang-Mee; Choi, Min-Ho; Lee, Soon-Hyung
1999-01-01
The growth and development of Gymnophalloides seoi were studied in C3H/HeN mice and effects of immunosuppression of the host on the worm development were observed. Two hundred metacercariae of G. seoi were orally administered to each mouse, and worms were recovered on days 1, 3, 5, 7, 14 and 21 post-infection (PI). The worm recovery rate was significantly higher in immunosuppressed (ImSP) mice than in immunocompetent (ImCT) mice except on days 1 and 3 PI. The worms attained sexual maturity by day 3 PI with eggs in the uterus, and worm dimensions and the number of uterine eggs continuously increased until day 14 PI in ImSP mice. Worms recovered from ImSP mice were significantly larger in size than those from ImCT mice on days 1 and 3 PI, and the number of uterine eggs was significantly larger in ImSP mice on days 5 and 7 PI. Genital organs such as the ovary, testes, and vitellaria, that were already developed in the metacercarial stage, grew a little in size until day 14 PI. The results show that the C3H/HeN mouse is, though not excellent, a suitable laboratory host for G. seoi. PMID:10188379
Reduced insulin signaling maintains electrical transmission in a neural circuit in aging flies
McGourty, Kieran; Allen, Marcus J.; Madem, Sirisha Kudumala; Adcott, Jennifer; Kerr, Fiona; Wong, Chi Tung; Vincent, Alec; Godenschwege, Tanja; Boucrot, Emmanuel; Partridge, Linda
2017-01-01
Lowered insulin/insulin-like growth factor (IGF) signaling (IIS) can extend healthy lifespan in worms, flies, and mice, but it can also have adverse effects (the “insulin paradox”). Chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber system (GFS), a simple escape response neuronal circuit, by increasing targeting of the gap junctional protein innexin shaking-B to gap junctions (GJs). Endosomal recycling of GJs was also stimulated in cultured human cells when IIS was reduced. Furthermore, increasing the activity of the recycling small guanosine triphosphatases (GTPases) Rab4 or Rab11 was sufficient to maintain GJs upon elevated IIS in cultured human cells and in flies, and to rescue age-related loss of GJs and of GFS function. Lowered IIS thus elevates endosomal recycling of GJs in neurons and other cell types, pointing to a cellular mechanism for therapeutic intervention into aging-related neuronal disorders. PMID:28902870
Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost.
Mupambwa, Hupenyu A; Mnkeni, Pearson N S
2016-05-01
Although it is widely agreed that stocking density critically affects the rate of vermicomposting, there is no established stocking density for mixtures of fly ash and other waste materials. This study sought to optimize (Savigny, 1826) stocking density for effective biodegradation and nutrient release in a fly ash-cow dung-waste paper (FCP) mixture. Four stocking densities of 0, 12.5, 25, and 37.5 g worms kg were evaluated. Although the 12.5, 25, and 37.5 g worms kg treatments all resulted in a mature vermicompost, stocking densities of 25 and 37.5 g worms kg resulted in faster maturity, higher humification parameters, and a significantly lower final C/N ratio (range 11.1-10.4). The activity of β-glucosidase and fluorescein diacetate hydrolysis enzymes showed faster stabilization at stocking densities of 25 and 37.5 g worms kg, indicating compost stability and maturity. Similarly, a stocking density of 25 g worms kg resulted in the highest release of Olsen-extractable P and (NO + NO)-N contents. The 0-, 12.5-, 25-, and 37.5-g treatments resulted in net Olsen P increases of 16.3, 38.9, 61.0, and 53.0%, respectively, after 10 wk. Although compost maturity could be attained at stocking densities of 12.5 g worms kg, for faster production of humified and nutrient-rich FCP vermicompost, a stocking density of 25 g worms kg seems most appropriate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Cheung, Lumei; Beshah, Ethiopia; Shea-Donohue, Terez; Urban, Joseph F.
2013-01-01
Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity. PMID:23649095
Barthod, J; Rumpel, C; Calabi-Floody, M; Mora, M-L; Bolan, N S; Dignac, M-F
2018-09-15
Alkaline industrial wastes such as red mud and fly ash are produced in large quantities. They may be recycled as bulking agent during composting and vermicomposting, converting organic waste into soil amendments or plant growth media. The aim of this study was to assess the microbial parameters, greenhouse gas emissions and nutrient availability during composting and vermicomposting of household waste with red mud and fly ash 15% (dry weight). CO 2 , CH 4 and N 2 O emissions were monitored during 6 months in controlled laboratory conditions and microbial biomass and phospholipid acids, N and P availability were analysed in the end-products. Higher CO 2 emissions were observed during vermicomposting compared to composting. These emissions were decreased by red mud addition, while fly ash had no effect. Nitrate (NO 3 -N) content of the end-products were more affected by worms than by alkaline materials, while higher ammonium (NH 4 -N) contents were recorded for composts than vermicomposts. Red mud vermicompost showed higher soluble P proportion than red mud compost, suggesting that worm presence can counterbalance P adsorption to the inorganic matrix. Final composts produced with red mud showed no harmful heavy metal concentrations. Adding worms during composting thus improved the product nutrient availability and did not increase metal toxicity. From a practical point of view, this study suggests that for carbon stabilisation and end-product quality, the addition of red mud during composting should be accompanied by worm addition to counterbalance negative effects on nutrient availability. Copyright © 2018. Published by Elsevier Ltd.
Xiao, Shu-hua; Xue, Jian; Shen, Bing-gui
2010-02-01
To observe the effect of mefloquine on the tegument of adult Schistosoma japonicum harbored in mice. Twelve mice were each infected with 60-80 S. japonicum cercariae. At 35 days post-infection, 10 mice were treated orally with mefloquine at a single dose of 400 mg/kg. Two mice were sacrificed at 8 h, 24 h, 3 days, 7 days, and 14 days post-treatment respectively, and schistosomes were collected by the perfusion technique, fixed and examined under a scanning electron microscope. Schistosomes obtained from the remaining 2 untreated mice served as control. 8 h post-treatment, male and female schistosomes showed focal swelling of the worm body accompanied by extensive swelling, tough junction and fusion of tegumental ridges. Meanwhile, some of the sensory structures showed enlargement and part of them collapsed. 24 h after mefloquine administration, head portion of some male and female worms revealed high swelling accompanied by severe damage to oral sucker. 3 days post-treatment, focal swelling of worm body along the whole worm was universal. In some male and female worms, the damaged tegument fused together to form a large mass protruding from the tegumental surface. In addition, focal or extensive peeling of tegumental ridges was seen or collapse of enlarged sensory structure resulted in formation of hole-like appearance. 7 days post administration, focal swelling of worm body and damage to tegument induced by mefloquine were similar to those aforementioned, but focal peeling, collapse of enlarged sensory structures, and deformation of oral sucker in male and female worms were universal. 14 days post-treatment, individual male worm survived the treatment revealed normal appearance of tegumental ridges in head portion, although light focal swelling of worm body was still observed. Mefloquine causes focal swelling of worm body, extensive and severe damage to the tegument in adult S. japonicum.
Platt, Thomas R; Zelmer, Derek A
2016-02-01
The course of infection of Echinostoma caproni was followed in female ICR mice, a permissive laboratory host, from infection to natural termination. Twenty-one mice were infected with 20 metacercariae via oral intubation and housed 3 per cage. Three mice from a randomly selected cage were necropsied at 1 mo intervals. A second group of 15 mice was infected approximately 1 yr later to replace mice negative at necropsy in the first group. Mice in the second group were examined weekly for the presence of eggs in the feces. Mice negative for eggs on consecutive days were killed and necropsied. The location of individual worms and worm clusters were located in 20 segments of the small intestine. Adult worms were killed and fixed in hot formalin, stained, and prepared as whole mounts. Standard measurements were taken using a compound microscope fitted with an ocular micrometer. The infection spontaneously resolved in 10 mice from 7 to 32 wk PI, indicating the host response is highly variable and extending the maximum recorded length of E. caproni infections in ICR mice to 31 wk. A moribund worm was found in the feces of an animal that continued to pass eggs for an additional 2 mo indicating individual variation in worm responses. Worms located preferentially in the ileum (segments 11-13) during the first 3 mo of the infection but shifted to the jejunum (segments 8-9) during weeks 4-6. Morphologically, worms of different ages clustered together in multivariate space, with substantial overlap between the 3- and 4-mo-old infrapopulations and between the 5- and 6-mo-old infrapopulations. Muscular structures increased in size throughout the experiment, while the gonads increased in size for the first 3 mo and then declined during the last 3 mo. The relationship between E. caproni and ICR mice is more nuanced than previously reported. The reduction in gonad size and the shift from the ileum to the jejunum in the last 3 mo likely are related. These changes might be attributable to a localized immune response by mice to E. caproni that results in the ileum becoming less hospitable and a resultant relocation of the worms to a less favorable location in the jejunum.
Muñoz-Soriano, Verónica; Paricio, Nuria
2011-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is mainly characterized by the selective and progressive loss of dopaminergic neurons, accompanied by locomotor defects. Although most PD cases are sporadic, several genes are associated with rare familial forms of the disease. Analyses of their function have provided important insights into the disease process, demonstrating that three types of cellular defects are mainly involved in the formation and/or progression of PD: abnormal protein aggregation, oxidative damage, and mitochondrial dysfunction. These studies have been mainly performed in PD models created in mice, fruit flies, and worms. Among them, Drosophila has emerged as a very valuable model organism in the study of either toxin-induced or genetically linked PD. Indeed, many of the existing fly PD models exhibit key features of the disease and have been instrumental to discover pathways relevant for PD pathogenesis, which could facilitate the development of therapeutic strategies. PMID:21512585
The growth and development of Schistosoma mansoni in mice exposed to sublethal doses of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, R.; Wilson, R.A.
1989-12-01
The maturation of Schistosoma mansoni was studied in mice exposed to various sublethal doses of radiation. Although the treatment of mice with 500 rads of radiation prior to infection did not alter parasite maturation, doses in excess of 500 rads led to a reduction in worm burden. This could not be attributed to a delay in the arrival of parasites in the hepatic portal system. Worms developing in mice treated with 800 rads commenced egg-laying about 1 wk later than worms in intact mice, and the rate of egg deposition appeared to be lower in irradiated hosts. The data demonstratemore » that exposure of C57BL/6 mice to doses of radiation in excess of 500 rads impairs their ability to carry infections of S. mansoni. The findings do not support the hypothesis that primary worm burdens in the mouse are controlled by a host immune response.« less
RESISTANCE PRODUCED IN MICE BY EXPOSURE TO IRRADIATED SCHISTOSOMA MANSONI CERCARIAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radke, M.G.; Sadun, E.H.
1963-04-01
Studies were undertaken to determine whether gamma irradiation of cercariae might provide a means of investigating some of the mechanisms involved in the acquired resistance to schistosomiasis. Control mice received 200 nonirradiated cercariae, and other groups received the same number of cercariae that had been exposed to 6 different doses of Co/sup 60/ gamma irradiation varying from 1000--20000 rep. Eight weeks later the worms recovered were counted. Doses of 4000 rep or higher completely inhibited the development of schistosomes. A few stunted and underdeveloped worms were found in some of the mice receiving cercariae irradiated at 2500 and 3000 rep.more » Some adult schistosomes were observed in the groups receiving 1500 and 2000 rep and eggs were found in the liver but not in the stools of some mice. However, all of the mice exposed to cercariae irradiated with 1000 rep had eggs in liver and stools. The worm burden decreased regularly with increasing dosages up to 3000 rep, beyond which no worms were found at necropsy. The decrease in the number of worms mice acquired was linear only when cercariae were exposed from 1000to 2000 rep, however, even beyond such dosages, it followed a straight line when the logarithm of irradiation dose was plotied. Acquired resistance to S. mansoni was observed in mice following a previous exposure to irradiated cercariae. (TCO)« less
'Accelerated aging': a primrose path to insight?
Miller, Richard A
2004-04-01
Organism envy afflicts most researchers who work on aging in mice; how frustrating it is to see the worm and fly biologists nail down milestone after milestone, citation after citation! Surely genetic trickery can produce mice that age in a comparable jiffy? Alas, our near-total ignorance of what times the aging process makes it hard to guess what genes to tweak, if indeed aging can be mimicked a presto. Building a case that a given short-lived mutant ages quickly is a steep and thorny path, requiring more than just plucking a symptom here and there from a list of things that sometimes go wrong in old people or old mice. The hallmark of aging is that a lot goes wrong more or less at the same time, in 2-year-old mice, 10-year-old dogs and 70-year-old people. Finding ways to damage one or two systems in a 6-week or 6-month-old mouse is not too hard to do, but the implications of such studies for improved understanding of aging per se are at best indirect and at worst imaginary and distracting.
Dolan, Jackie; Walshe, Karen; Alsbury, Samantha; Hokamp, Karsten; O'Keeffe, Sean; Okafuji, Tatsuya; Miller, Suzanne FC; Tear, Guy; Mitchell, Kevin J
2007-01-01
Background Leucine-rich repeats (LRRs) are highly versatile and evolvable protein-ligand interaction motifs found in a large number of proteins with diverse functions, including innate immunity and nervous system development. Here we catalogue all of the extracellular LRR (eLRR) proteins in worms, flies, mice and humans. We use convergent evidence from several transmembrane-prediction and motif-detection programs, including a customised algorithm, LRRscan, to identify eLRR proteins, and a hierarchical clustering method based on TribeMCL to establish their evolutionary relationships. Results This yields a total of 369 proteins (29 in worm, 66 in fly, 135 in mouse and 139 in human), many of them of unknown function. We group eLRR proteins into several classes: those with only LRRs, those that cluster with Toll-like receptors (Tlrs), those with immunoglobulin or fibronectin-type 3 (FN3) domains and those with some other domain. These groups show differential patterns of expansion and diversification across species. Our analyses reveal several clusters of novel genes, including two Elfn genes, encoding transmembrane proteins with eLRRs and an FN3 domain, and six genes encoding transmembrane proteins with eLRRs only (the Elron cluster). Many of these are expressed in discrete patterns in the developing mouse brain, notably in the thalamus and cortex. We have also identified a number of novel fly eLRR proteins with discrete expression in the embryonic nervous system. Conclusion This study provides the necessary foundation for a systematic analysis of the functions of this class of genes, which are likely to include prominently innate immunity, inflammation and neural development, especially the specification of neuronal connectivity. PMID:17868438
Vallance, Bruce A.; Galeazzi, Francesca; Collins, Stephen M.; Snider, Denis P.
1999-01-01
Expulsion of intestinal nematode parasites and the associated increased contraction by intestinal muscle are T cell dependent, since both are attenuated in athymic rodents. The CD4 T-cell subset has been strongly associated with worm expulsion; however, the relationship between these cells, antigen presentation, and worm expulsion is not definitive and the role of these factors in intestinal muscle hypercontractility has not been defined. We infected C57BL/6, athymic, CD4-deficient, CD8α-deficient, and major histocompatibility complex class II (MHC II)-deficient (C2d) mice with Trichinella spiralis larvae. We examined intestinal worm numbers, longitudinal muscle contraction, and MHC II expression. Numerous MHC II-positive cells were identified within the muscularis externa of infected but not uninfected C57BL/6 mice. C57BL/6 and CD8α-deficient mice developed large increases in muscle contraction, expelling the parasite by day 21. Athymic and C2d mice exhibited much smaller increases in muscle contraction and delayed parasite expulsion. CD4-deficient mice exhibited intermediate levels of muscle contraction and delayed parasite expulsion. To further examine the role of MHC II and CD4 T cells, we irradiated C2d mice and reconstituted them with C57BL/6 bone marrow alone or with C57BL/6 CD4 T cells. C57BL/6 bone marrow alone did not affect muscle function or worm expulsion in recipient C2d mice. Partial CD4 T-cell reconstitution was sufficient to restore increased muscle contraction but not worm expulsion. Thus, hematopoietic MHC II expression alone is insufficient for the development of muscle hypercontractility and worm expulsion, but the addition of even small numbers of CD4 T cells was sufficient to induce intestinal muscle pathophysiology. PMID:10531271
Hu, Yuan; Xu, Yuxin; Lu, Weiyuan; Quan, Hong; Shen, Yujuan; Yuan, Zhongying; Zhang, Jing; Zang, Wei; He, Yongkang; Cao, Jianping
2014-07-01
Microtus fortis is a non-permissive host for Schistosoma japonicum. While M. fortis lymphocytes are known to provide natural resistance against S. japonicum, the specific mechanism remains unclear. A bone marrow transplantation (BMT) model was established using immunodeficient mice, either nude (experiment 1) or V(D)J recombination activation gene deficient mice (RAG-1(-/-)) (experiment 2) as recipients and M. fortis or C57BL/6 mice as donors. The growth and development of S. japonicum were evaluated in each group to assess the role of M. fortis lymphocytes in the response to infection. Lymphocyte ratios and S. japonicum-specific antibody production in transplanted groups increased significantly compared to those in non-transplanted group. Spleen indices and density of splenic lymphocytes in transplanted RAG-1(-/-) mice were higher than those in non-transplanted RAG-1(-/-) mice. No difference in the worm burden was observed among group A (transplants derived from M. fortis), B (transplants derived from C57BL/6 mouse) and C (non-transplanted mice), although worms in group A were shorter than those in other groups, except non-transplanted RAG-1(-/-) mice. Reproductive systems of worms in mice (nude or RAG-1(-/-)) transplanted from M. fortis were not as mature as those in mice (nude or RAG-1(-/-)) transplanted from C57BL/6 mouse and non-transplanted nude mice, but they were more mature than worms in non-transplanted RAG-1(-/-) mice. Therefore, the transplantation model using nude and RAG-1(-/-) mice was successfully established. The M. fortis lymphocytes did not appear to affect the S. japonicum worm burden, but they led to schistosome shortening and a significant reduction in parasite spawning. Thus, M. fortis cellular and humoral immunity provides a defense against schistosomes by negatively impacting the parasite growth and reproductive development. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsue, S.Y.; Hsue, H.F.; Osborne, J.W.
1982-04-01
A high degree of immunity, as shown by a 91% reduction of the number of worms recovered was found in five groups of mice that were immunized five times with highly X-irradiated cercariae and then challenged with 10, 20, 50, 100, or 500 normal Schistosoma mansoni cercariae. The results indicated that there were no significant differences in worm reduction in immunized mice challenged with different numbers of cercariae; consequently the immunity induced by this immunization method did not appear to be challenge-dose-dependent. However, the results also showed that when immunized mice were challenged with 500, 100, 50, 20, and 10more » cercariae, 0, 13, 26, 56, and 68%, respectively, of the experimental animals were free of worms. Thus, the percentage of worm-negative cases increased as the number of challenge cercariae decreased. When viewed in this manner, the acquired immunity may be considered challenge-dose-dependent as well. If this method of vaccination is used for schistosomiasis control, we may anticipate that in both hypo- and hyperendemic areas, the intensity of infection and the severity of the disease will be reduced owing to a reduction in worms burdens, and in hypoendemic areas, there will be a number of worm-free cases.« less
Metwally, Dina M; Al-Olayan, Ebtesam M; Alanazi, Mohammad; Alzahrany, Sanaa B; Semlali, Abdelhabib
2018-04-27
Schistosomiasis is an acute and chronic zoonotic parasitic disease caused by trematode worms. The host inflammatory response to schistosome eggs leads to perioval granulomata formation, mainly in the liver and intestine. This study investigated the potential antischistosomal and anti-inflammatory activity of both garlic extract and allicin on liver fibrotic markers in BALB/c mice with schistosomiasis (S. mansoni infection) compared with that of the commonly used drug, praziquantel (PZQ). In this study, 140 female BALB/c mice (7-weeks old) were divided into seven groups with 20 mice each. Six groups were infected with S. mansoni cercariae and treated with garlic, allicin, or PZQ. The seventh group was the negative control. Twenty-four hours after the final treatment, the mice were euthanised and perfused for worm recovery. The liver and intestines were harvested for parasitological and histological assessment and to analyse the proinflammatory cytokine mRNA expression. Prophylactic administration of garlic and allicin to the infected mice significantly reduced the worm burden. Serum concentrations of liver fibrosis markers and proinflammatory cytokines were also reduced. PZQ was the most efficacious for reduction in the number of worms. These results are similar to those normally obtained using PZQ. Crushed garlic homogenate and allicin are potential complementary treatments that may be used with PZQ.
Lennerz, Jochen K; Hurov, Jonathan B; White, Lynn S; Lewandowski, Katherine T; Prior, Julie L; Planer, G James; Gereau, Robert W; Piwnica-Worms, David; Schmidt, Robert E; Piwnica-Worms, Helen
2010-11-01
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Mostafa, Osama M S; Eid, Refaat A; Adly, Mohamed A
2011-08-01
The repeated chemotherapy of schistosomiasis has resulted in the emergence of drug-resistant schistosome strains. The development of such resistance has drawn the attention of many authors to alternative drugs. Many medicinal plants were studied to investigate their antischistosomal potency. The present work aimed to evaluate antischistosomal activity of crude aqueous extract of ginger against Schistosoma mansoni. Sixteen mice of C57 strain were exposed to 100 ± 10 cercariae per mouse by the tail immersion method; the mice were divided into two groups: untreated group and ginger-treated one. All mice were sacrificed at the end of 10th week post-infection. Worm recovery and egg counting in the hepatic tissues and faeces were determined. Surface topography of the recovered worms was studied by scanning electron microscopy. Histopathological examination of liver and intestine was done using routine histological procedures. The worm burden and the egg density in liver and faeces of mice treated with ginger were fewer than in non-treated ones. Scanning electron microscopical examination revealed that male worms recovered from mice treated with ginger lost their normal surface architecture, since its surface showed partial loss of tubercles' spines, extensive erosion in inter-tubercle tegumental regions and numerous small blebs around tubercles. Histopathological data indicated a reduction in the number and size of granulomatous inflammatory infiltrations in the liver and intestine of treated mice compared to non-treated mice. The results of the present work suggested that ginger has antischistosomal activities and provided a basis for subsequent experimental and clinical trials.
In vitro cultivation of Gymnophalloides seoi metacercariae (Digenea:Gymnophallidae).
Kook, J; Lee, S H; Chai, J Y
1997-03-01
Gymnophalloides seoi is a human intestinal trematode prevalent on southwestern islands in Korea. In the present study, we investigated whether G. seoi metacercariae can grow and develop into adults by in vitro cultivation. The metacercariae were obtained from naturally infected oysters, and cultured in vitro for 5 days under three conditions; 37 degrees C/5% CO2, 41 degrees C/8% CO2, or 41 degrees C/5% CO2, in NCTC 109 complete media containing 20% FBS and 1% antibiotics-antimycotics. The degree of worm growth and development was compared with that grown in vivo of C3H mice. The length of the worms cultivated in vitro was 200-300 microns not significantly different from metacercariae, whereas the length of the worms recovered from C3H mice was significantly larger, 300-400 microns. The worms produced eggs when grown in C3H mice or cultured in vitro for 2 days under 41 degrees C/8% CO2 or 41 degrees C/5% CO2, but not when cultured under 37 degrees C/5% CO2. Among the in vitro conditions, 41 degrees C/5% CO2 was best for egg production, although the number of eggs was about half of worms obtained from C3H mice. In conclusion, in vitro cultivation of G. seoi metacercariae into egg-producing adults was partially successful under culture conditions of 41 degrees C/5% CO2 or 41 degrees C/8% CO2.
Comparative Endocrinology of Aging and Longevity Regulation
Allard, John B.; Duan, Cunming
2011-01-01
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, “regulate” the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway’s involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms. PMID:22654825
Behnke, J M; Stewart, A; Bajer, A; Grzybek, M; Harris, P D; Lowe, A; Ribas, A; Smales, L; Vandegrift, K J
2015-10-01
The molecular phylogeny and morphology of the oxyuroid nematode genus Aspiculuris from voles and house mice has been examined. Worms collected from Myodes glareolus in Poland, Eire and the UK are identified as Aspiculuris tianjinensis, previously known only from China, while worms from Mus musculus from a range of locations in Europe and from laboratory mice, all conformed to the description of Aspiculuris tetraptera. Worms from voles and house mice are not closely related and are not derived from each other, with A. tianjinensis being most closely related to Aspiculuris dinniki from snow voles and to an isolate from Microtus longicaudus in the Nearctic. Both A. tianjinensis and A. tetraptera appear to represent recent radiations within their host groups; in voles, this radiation cannot be more than 2 million years old, while in commensal house mice it is likely to be less than 10,000 years old. The potential of Aspiculuris spp. as markers of host evolution is highlighted.
Lennerz, Jochen K.; Hurov, Jonathan B.; White, Lynn S.; Lewandowski, Katherine T.; Prior, Julie L.; Planer, G. James; Gereau, Robert W.; Piwnica-Worms, David; Schmidt, Robert E.; Piwnica-Worms, Helen
2010-01-01
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice. PMID:20733003
9 CFR 355.16 - Control of flies, rats, mice, etc.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Control of flies, rats, mice, etc. 355.16 Section 355.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF....16 Control of flies, rats, mice, etc. Flies, rats, mice, and other vermin shall be excluded from...
9 CFR 355.16 - Control of flies, rats, mice, etc.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Control of flies, rats, mice, etc. 355.16 Section 355.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF....16 Control of flies, rats, mice, etc. Flies, rats, mice, and other vermin shall be excluded from...
9 CFR 355.16 - Control of flies, rats, mice, etc.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Control of flies, rats, mice, etc. 355.16 Section 355.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF....16 Control of flies, rats, mice, etc. Flies, rats, mice, and other vermin shall be excluded from...
9 CFR 355.16 - Control of flies, rats, mice, etc.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Control of flies, rats, mice, etc. 355.16 Section 355.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF....16 Control of flies, rats, mice, etc. Flies, rats, mice, and other vermin shall be excluded from...
9 CFR 355.16 - Control of flies, rats, mice, etc.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Control of flies, rats, mice, etc. 355.16 Section 355.16 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF....16 Control of flies, rats, mice, etc. Flies, rats, mice, and other vermin shall be excluded from...
Helminth infections predispose mice to pneumococcal pneumonia but not to other pneumonic pathogens.
Apiwattanakul, Nopporn; Thomas, Paul G; Kuhn, Raymond E; Herbert, De'Broski R; McCullers, Jonathan A
2014-10-01
Pneumonia is the leading killer of children worldwide. Here, we report that helminth-infected mice develop fatal pneumonia when challenged with Streptococcus pneumoniae. Mice were chronically infected with either the flatworm Taenia crassiceps or the roundworm Heligmosomoides polygyrus. Upon challenge with a pneumonic type 3 strain of S. pneumoniae (A66.1), the worm-infected mice developed pneumonia at a rate and to a degree higher than age-matched control mice as measured by bioluminescent imaging and lung titers. This predisposition to pneumonia appears to be specific to S. pneumoniae, as worm-infected mice did not show evidence of increased morbidity when challenged with a lethal dose of influenza virus or sublethal doses of Staphylococcus aureus or Listeria monocytogenes. The defect was also present when worm-infected mice were challenged with a type 2 sepsis-causing strain (D39); an increased rate of pneumonia, decreased survival, and increased lung and blood titers were found. Pneumococcal colonization and immunity against acute otitis media were unaffected. Anti-helminthic treatment in the H. polygyrus model reversed this susceptibility. We conclude that helminth coinfection predisposes mice to fatal pneumococcal pneumonia by promoting increased outgrowth of bacteria in the lungs and blood. These data have broad implications for the prevention and treatment for pneumonia in the developing world, where helminth infections are endemic and pneumococcal pneumonia is common.
Hill, William Allen; Randolph, Mildred M; Mandrell, Timothy D
2009-07-01
We determined the sensitivity of perianal tape impressions to detect Syphacia spp. in rats and mice. We evaluated 300 rat and 200 mouse perianal impressions over 9 wk. Pinworm-positive perianal tape impressions from animals with worm burdens at necropsy were considered as true positives. Conversely, pinworm-negative perianal tape impressions from animals with worm burdens were considered false negatives. The sensitivity of perianal tape impressions for detecting Syphacia muris infections in rats was 100%, and for detecting Syphacia obvelata in mice was 85.5%. Intermittent shedding of Syphacia obvelata ova is the most probable explanation for the decreased sensitivity rate we observed in mice. We urge caution in use of perianal tape impressions alone for Syphacia spp. screening in sentinel mice and rats.
Recognition and modification of seX chromosomes.
Nusinow, Dmitri A; Panning, Barbara
2005-04-01
Flies, worms and mammals employ dosage compensation complexes that alter chromatin or chromosome structure to equalize X-linked gene expression between the sexes. Recent work has improved our understanding of how dosage compensation complexes achieve X chromosome-wide association and has provided significant insight into the epigenetic modifications directed by these complexes to modulate gene expression. In flies, the prevailing view that dosage compensation complexes assemble on the X chromosome at approximately 35 chromatin-entry sites and then spread in cis to cover the chromosome has been re-evaluated in light of the evidence that these chromatin-entry sites are not required for localization of the complex. By contrast, identification of discrete recruitment elements indicates that nucleation at and spread from a limited number of sites directs dosage compensation complex localization on the worm X-chromosome. Studies in flies and mammals have extended our understanding of how ribonucleoprotein complexes are used to modify X chromatin, for either activation or repression of transcription. Finally, evidence from mammals suggests that the chromatin modifications that mediate dosage compensation are very dynamic, because they are established, reversed and re-established early in development.
Stillson, Lindsey L; Platt, Thomas R
2007-04-01
Population density, or crowding, was examined to determine its effect on the morphometric variability of Echinostoma caproni (Digenea) in ICR mice. Six mice were infected with 25 and 100 metacercariae, and a single mouse was infected with 300 metacercariae. All mice were infected at necropsy 22 days postinfection with recoveries of 77%, 69%, and 7.3%, respectively. Whole mounts were prepared, and 31 characters were evaluated (25 direct measurements and 6 ratios). Univariate and multivariate statistical analysis revealed significant differences between adult worms from all 3 groups. Twenty-seven of 31 characters showed significant within-group differences, with the primary differences between worms from 25/100 versus 300 metacercariae infections. Discriminant function analysis yielded a 100% correct classification based on infection size, which is consistent with studies on distinct species of Echinostoma. The low recovery from the mouse infected with 300 metacercariae suggests inflammatory expulsion of juvenile worms and the possibility of immunity as a factor in the crowding effect. These results suggest that external factors may affect morphometric variability of digenetic trematodes to a larger degree than previously recognized.
[Adolpho Lutz's collection of black flies (Diptera - Simuliidae), its history and importance].
Ribeiro do Amaral-Calvão, Ana Margarida; Maia-Herzog, Marilza
2003-01-01
This is part of a master's thesis currently being written under the auspices of the Post-Graduate Program in Animal Biology of the Federal University of Rio de Janeiro, with support from CAPES. It presents the species of black flies in Adolpho Lutz's collection, held at the Laboratory of Black Flies and Oncocercosis of the Department of Entomology of the Instituto Oswaldo Cruz. A pioneer in the study of these dipterons, Lutz described about 25 species from different places in Brazil. A vector of round worm, the black fly's importance to public health was recognized at the end of the 1920s.
Maghraby, Amany Sayed; Hamed, Manal Abdel-Aziz; Ali, Sanaa Ahmed
2010-06-03
In this study, we evaluated the biochemical, immunological, histopathological and antischistosomal activities of Schistosoma mansoni or Fasciola gigantica worm homogenates mixed either with or without saponin that was extracted from Atriplex nummularia. The immunization schedule was based on subcutaneous administration of two doses (50 microg /100 microl PBS) of each homogenate with time intervals of 15 days. After 15 days of the last homogenate inoculation, all mice were challenged with 100 Schistosoma mansoni cercariae and sacrificed after two months. Free radical scavengers and liver function enzymes were determined in mice liver. Worm counting and the histopathological picture of the liver were also done. Immunization with Schistosoma or Fasciola worm homogenates, mixed either with or without saponin, recorded an amelioration of the free radical scavenger levels, liver function enzymes and reduction in worm burden, as well as improvement of the histological feature of the liver, the number and size of granuloma, evidence of increased immune reaction manifested by a lymphocytic cuff surrounding the granuloma, diminution of its fibrotic and collagen content, and destruction of Schistosoma ova. Fasciola or Schistosoma worm antigens mixed with or without saponin succeeded to eliminate the product of oxidative stress and assistance in immune-mediated destruction of eggs that ameliorate the histopathological picture of the liver cells and preserve its function.
Graph theoretic analysis of protein interaction networks of eukaryotes
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Kahng, B.; Kim, D.
2005-11-01
Owing to the recent progress in high-throughput experimental techniques, the datasets of large-scale protein interactions of prototypical multicellular species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, have been assayed. The datasets are obtained mainly by using the yeast hybrid method, which contains false-positive and false-negative simultaneously. Accordingly, while it is desirable to test such datasets through further wet experiments, here we invoke recent developed network theory to test such high-throughput datasets in a simple way. Based on the fact that the key biological processes indispensable to maintaining life are conserved across eukaryotic species, and the comparison of structural properties of the protein interaction networks (PINs) of the two species with those of the yeast PIN, we find that while the worm and yeast PIN datasets exhibit similar structural properties, the current fly dataset, though most comprehensively screened ever, does not reflect generic structural properties correctly as it is. The modularity is suppressed and the connectivity correlation is lacking. Addition of interologs to the current fly dataset increases the modularity and enhances the occurrence of triangular motifs as well. The connectivity correlation function of the fly, however, remains distinct under such interolog additions, for which we present a possible scenario through an in silico modeling.
Sundararaj, Kamala P; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W; Drake, Richard R; Nowling, Tamara K
2015-12-15
The ETS factor Friend leukemia virus integration 1 (FLI1) is a key modulator of lupus disease expression. Overexpressing FLI1 in healthy mice results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1(+/-)) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1(+/-) lupus mice have reduced activation and IL-4 production, neuraminidase 1 expression, and the levels of the glycosphingolipid lactosylceramide. In this study, we demonstrate that MRL/lpr Fli1(+/-) mice have significantly decreased renal neuraminidase 1 and lactosylceramide levels. This corresponds with a significant decrease in the number of total CD3(+) cells, as well as CD4(+) and CD44(+)CD62L(-) T cell subsets in the kidney of MRL/lpr Fli1(+/-) mice compared with the Fli1(+/+) nephritic mice. We further demonstrate that the percentage of CXCR3(+) T cells and Cxcr3 message levels in T cells are significantly decreased and correspond with a decrease in renal CXCR3(+) cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1(+/-) compared with the Fli1(+/+) nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through downregulation of CXCR3, reducing renal T cell infiltration and glycosphingolipid levels. Copyright © 2015 by The American Association of Immunologists, Inc.
Sundararaj, Kamala P.; Thiyagarajan, Thirumagal; Molano, Ivan; Basher, Fahmin; Powers, Thomas W.; Drake, Richard R.; Nowling, Tamara K.
2015-01-01
The ETS factor FLI1 is a key modulator of lupus disease expression. Over-expressing FLI1 in healthy mice, results in the development of an autoimmune kidney disease similar to that observed in lupus. Lowering the global levels of FLI1 in two lupus strains (Fli1+/−) significantly improved kidney disease and prolonged survival. T cells from MRL/lpr Fli1+/− lupus mice have reduced activation and IL-4 production, Neuraminidase1 (Neu1) expression, and the levels of the glycosphingolipid (GSL) lactosylceramide (LacCer). Here we demonstrate that MRL/lpr Fli1+/− mice have significantly decreased renal Neu1 and LacCer levels. This corresponds with a significant decrease in the number of total CD3+ cells, as well as CD4+ and CD44+CD62L− T cell subsets in the kidney of MRL/lpr Fli1+/− mice compared to the Fli1+/+ nephritic mice. We further demonstrate that the percentage of CXCR3+ T cells and Cxcr3 message levels in T cells are significantly decreased and corresponds with a decrease in renal CXCR3+ cells and in Cxcl9 and Cxcl10 expression in the MRL/lpr Fli1+/− compared to the Fli1+/+ nephritic mice. Our results suggest that reducing the levels of FLI1 in MRL/lpr mice may be protective against development of nephritis in part through down-regulation of CXCR3, reducing renal T cell infiltration and GSL levels. PMID:26538397
Beer, Katharina B; Wehman, Ann Marie
2017-03-04
Cells from bacteria to man release extracellular vesicles (EVs) that contain signaling molecules like proteins, lipids, and nucleic acids. The content, formation, and signaling roles of these conserved vesicles are diverse, but the physiological relevance of EV signaling in vivo is still debated. Studies in classical genetic model organisms like C. elegans and Drosophila have begun to reveal the developmental and behavioral roles for EVs. In this review, we discuss the emerging evidence for the in vivo signaling roles of EVs. Significant effort has also been made to understand the mechanisms behind the formation and release of EVs, specifically of exosomes derived from exocytosis of multivesicular bodies and of microvesicles derived from plasma membrane budding called ectocytosis. In this review, we detail the impact of flies and worms on understanding the proteins and lipids involved in EV biogenesis and highlight the open questions in the field.
Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M
2009-01-01
A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p < 0.05) in the recovered S. mansoni worms from treated mice in comparison to control ones whose tails were painted with jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.
Lactobacillus rhamnosus Ingestion Promotes Innate Host Defense in an Enteric Parasitic Infection
McClemens, Jessica; Kim, Janice J.; Wang, Huaqing; Mao, Yu-Kang; Collins, Matthew; Kunze, Wolfgang; Bienenstock, John
2013-01-01
Enteric parasite infections around the world are a huge economic burden and decrease the quality of life for many people. The use of beneficial bacteria has attracted attention for their potential therapeutic applications in various diseases. However, the effects of beneficial bacteria in enteric parasitic infections remain largely unexplored. We investigated the effects of ingestion of Lactobacillus rhamnosus (JB-1) in a model of enteric nematode (Trichuris muris) infection. C57BL/6 (resistant to infection), AKR (susceptible to infection), interleukin 10 (IL-10) knockout (KO), and mucin Muc2 KO mice were infected with T. muris and treated orally with probiotic JB-1 or medium. The mice were sacrificed on various days postinfection to examine goblet cells, epithelial cell proliferation, cytokines, and worm burdens. Treatment with JB-1 significantly enhanced worm expulsion in resistant C57BL/6 mice, and this was associated with increases in IL-10 levels, goblet cell numbers, and epithelial cell proliferation. Beneficial effects of JB-1 were absent in IL-10 KO and resistant mice treated with γ-irradiated bacteria. Live JB-1 treatment also expedited worm expulsion in Muc2 KO mice and, more importantly, in AKR mice (susceptible to infection). Injection of IL-10 directly into the colonic tissue of uninfected mice induced goblet cell hyperplasia. These findings demonstrate that JB-1 modulates goblet cell biology and promotes parasite expulsion via an IL-10-mediated pathway and provide novel insights into probiotic effects on innate defense in nematode infection. PMID:23536695
Lactobacillus rhamnosus ingestion promotes innate host defense in an enteric parasitic infection.
McClemens, Jessica; Kim, Janice J; Wang, Huaqing; Mao, Yu-Kang; Collins, Matthew; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Khan, Waliul I
2013-06-01
Enteric parasite infections around the world are a huge economic burden and decrease the quality of life for many people. The use of beneficial bacteria has attracted attention for their potential therapeutic applications in various diseases. However, the effects of beneficial bacteria in enteric parasitic infections remain largely unexplored. We investigated the effects of ingestion of Lactobacillus rhamnosus (JB-1) in a model of enteric nematode (Trichuris muris) infection. C57BL/6 (resistant to infection), AKR (susceptible to infection), interleukin 10 (IL-10) knockout (KO), and mucin Muc2 KO mice were infected with T. muris and treated orally with probiotic JB-1 or medium. The mice were sacrificed on various days postinfection to examine goblet cells, epithelial cell proliferation, cytokines, and worm burdens. Treatment with JB-1 significantly enhanced worm expulsion in resistant C57BL/6 mice, and this was associated with increases in IL-10 levels, goblet cell numbers, and epithelial cell proliferation. Beneficial effects of JB-1 were absent in IL-10 KO and resistant mice treated with γ-irradiated bacteria. Live JB-1 treatment also expedited worm expulsion in Muc2 KO mice and, more importantly, in AKR mice (susceptible to infection). Injection of IL-10 directly into the colonic tissue of uninfected mice induced goblet cell hyperplasia. These findings demonstrate that JB-1 modulates goblet cell biology and promotes parasite expulsion via an IL-10-mediated pathway and provide novel insights into probiotic effects on innate defense in nematode infection.
Nelson, Shakira M.; Shay, Ashley E.; James, Jamaal L.; Carlson, Bradley A.; Urban, Joseph F.; Prabhu, K. Sandeep
2016-01-01
The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trspfl/flCreWT mice that express selenoproteins driven by tRNASec (Trsp), whereas N. brasiliensis-infected Trspfl/flCreLysM selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ12-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses. PMID:26644468
Carpinelli, Marina R; Kruse, Elizabeth A; Arhatari, Benedicta D; Debrincat, Marlyse A; Ogier, Jacqueline M; Bories, Jean-Christophe; Kile, Benjamin T; Burt, Rachel A
2015-07-01
E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Tallima, Hatem; Dalton, John P.; El Ridi, Rashika
2015-01-01
One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P < 0.005) reduction of >50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8–10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1- and type 2-related cytokines and antibody responses. PMID:25852696
Antiparasitic activity of menadione (vitamin K3) against Schistosoma mansoni in BABL/c mice.
Kapadia, Govind J; Soares, Ingrid A O; Rao, G Subba; Badoco, Fernanda R; Furtado, Ricardo A; Correa, Mariana B; Tavares, Denise C; Cunha, Wilson R; Magalhães, Lizandra G
2017-03-01
Schistosomiasis is one of the neglected tropical diseases affecting nearly quarter of a billion people in economically challenged tropical and subtropical countries of the world. Praziquantel (PZQ) is the only drug currently available to treat this parasitic disease in spite being ineffective against juvenile worms and concerns about developing resistance to treat reinfections. Our earlier in vitro viability studies demonstrated significant antiparasitic activity of menadione (MEN) (vitamin K 3 ) against Schistosoma mansoni adult worms. To gain insight into plausible mechanism of antischistosomal activity of MEN, its effect on superoxide anion levels in adult worms were studied in vitro which showed significant increases in both female and male worms. Further confirmation of the deleterious morphological changes in their teguments and organelles were obtained by ultrastructural analysis. Genotoxic and cytotoxic studies in male Swiss mice indicated that MEN was well tolerated at the oral dose of 500mg/kg using the criteria of MNPCE frequency and PCE/RBC ratio in the bone marrow of infected animals. The in vivo antiparasitic activity of MEN was conducted in female BALB/c mice infected with S. mansoni and significant reductions (P<0.001) in total worm burden were observed at single oral doses of 40 and 400mg/kg (48.57 and 61.90%, respectively). Additionally, MEN significantly reduced (P<0.001) the number of eggs in the liver of infected mice by 53.57 and 58.76%, respectively. Similarly, histological analysis of the livers showed a significant reduction (P<0.001) in the diameter of the granulomas. Since MEN is already in use globally as an over-the-counter drug for a variety of common ailments and a dietary supplement with a safety record in par with similar products when used in recommended doses, the above antiparasitic results which compare reasonably well with PZQ, make a compelling case for considering MEN to treat S. mansoni infection in humans. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential effects of Cramoll 1,4 lectin on murine Schistosomiasis mansoni.
Melo, Cristiane Moutinho Lagos de; de Lima, Amanda Lucena Rosendo; Beltrão, Eduardo Isidoro Carneiro; Cavalcanti, Carmelita C Bezerra; de Melo-Júnior, Mário Ribeiro; Montenegro, Silvia Maria L; Coelho, Luana Cassandra B Barroso; Correia, Maria Tereza dos Santos; Carneiro-Leão, Ana Maria dos Anjos
2011-05-01
Cratylia mollis is a natural forage plant from the Northeast of Brazil. C. mollis seed lectin (Cramoll) containing molecular forms 1 and 4 (Cramoll 1,4) has shown anti-inflammatory and wound-healing activities. This work analyzed the effect of Cramoll 1,4 on experimental schistosomiasis in mice. Experimental groups (n=15/group) were composed of female albino Swiss mice, which were subcutaneously and caudally infected with Schistosoma mansoni (BH strain, 100 cercariae/mouse) and were treated with an intraperitoneal dose after infection as follows: (1) Cramoll 1,4 (50 mg kg(-1) single dose - after 40 days of infection), (2) Cramoll 1,4 (7 mg kg(-1) daily dose - for 7 days after infection) and control (untreated mice). Mice were sacrificed 8 weeks after infection and adult worms were recovered from the portal-hepatic system. Livers were fixed in 10% (v/v) formaldehyde/0.15M NaCl and tissue sections were processed for haematoxilin and Masson's trichrome stainings. Mice infected subcutaneously harboured no or very few worms and hence the effect of Cramoll 1,4 could not be assessed. Results (P≤0.05) were obtained with Cramoll 1,4 using the two treatments, with reduction of: egg excretion (79 and 80%), adult worm recovery (71 and 79%) and liver granulomas (40 and 73.5%) in relation to control. This study showed the potential anti-helminthic activity of Cramoll 1,4 when tested against Schistosomiasis mansoni infection in mice. Copyright © 2011 Elsevier B.V. All rights reserved.
Hussein, Atef; Rashed, Samia; El Hayawan, Ibrahim; El-Sayed, Rabab; Ali, Hemat
2017-01-01
Curcumin is the major active ingredient of Curcuma longa L. , traditionally known as turmeric and has been shown to exhibit a wide range of pharmacological activities including anti-parasitic effect. However, it is found to be water-insoluble and has low bioavailability. The aim of this study was to explore the potential role of turmeric solved in olive oil either alone or in combination with praziquantel (PZQ) in treatment of schistosomiasis mansoni . The whole turmeric powder suspended in olive oil (as a solvent) is indicated to S. mansoni -infected mice aiming to study its potential therapeutic role, either alone or in combination with PZQ. Turmeric significantly reduced S. mansoni worm burden and complete absence of adult worms achieved in mice treated with combination of turmeric and PZQ. Turmeric has slight non-significant effect on the oogram pattern in all examined S. mansoni infected mice. Turmeric and PZQ found to exert a significant reduction of granuloma size in comparison with control. However, turmeric has a non-significant effect on granuloma number. On the other hand, turmeric or/and PZQ treated mice showed obvious improvement of pathology with mild cloudy swelling and less hydropic degeneration. Turmeric significantly reduced parasite worm burden, granuloma size and consequently the pathology of affected liver, it still far less effective than PZQ.
HUSSEIN, Atef; RASHED, Samia; El HAYAWAN, Ibrahim; El-SAYED, Rabab; ALI, Hemat
2017-01-01
Background: Curcumin is the major active ingredient of Curcuma longa L., traditionally known as turmeric and has been shown to exhibit a wide range of pharmacological activities including anti-parasitic effect. However, it is found to be water-insoluble and has low bioavailability. The aim of this study was to explore the potential role of turmeric solved in olive oil either alone or in combination with praziquantel (PZQ) in treatment of schistosomiasis mansoni. Methods: The whole turmeric powder suspended in olive oil (as a solvent) is indicated to S. mansoni-infected mice aiming to study its potential therapeutic role, either alone or in combination with PZQ. Results: Turmeric significantly reduced S. mansoni worm burden and complete absence of adult worms achieved in mice treated with combination of turmeric and PZQ. Turmeric has slight non-significant effect on the oogram pattern in all examined S. mansoni infected mice. Turmeric and PZQ found to exert a significant reduction of granuloma size in comparison with control. However, turmeric has a non-significant effect on granuloma number. On the other hand, turmeric or/and PZQ treated mice showed obvious improvement of pathology with mild cloudy swelling and less hydropic degeneration. Conclusion: Turmeric significantly reduced parasite worm burden, granuloma size and consequently the pathology of affected liver, it still far less effective than PZQ. PMID:29317884
A Novel Interaction Between Aging and ER Overload in a Protein Conformational Dementia
Schipanski, Angela; Lange, Sascha; Segref, Alexandra; Gutschmidt, Aljona; Lomas, David A.; Miranda, Elena; Schweizer, Michaela; Hoppe, Thorsten; Glatzel, Markus
2013-01-01
Intraneuronal deposition of aggregated proteins in tauopathies, Parkinson disease, or familial encephalopathy with neuroserpin inclusion bodies (FENIB) leads to impaired protein homeostasis (proteostasis). FENIB represents a conformational dementia, caused by intraneuronal polymerization of mutant variants of the serine protease inhibitor neuroserpin. In contrast to the aggregation process, the kinetic relationship between neuronal proteostasis and aggregation are poorly understood. To address aggregate formation dynamics, we studied FENIB in Caenorhabditis elegans and mice. Point mutations causing FENIB also result in aggregation of the neuroserpin homolog SRP-2 most likely within the ER lumen in worms, recapitulating morphological and biochemical features of the human disease. Intriguingly, we identified conserved protein quality control pathways to modulate protein aggregation both in worms and mice. Specifically, downregulation of the unfolded protein response (UPR) pathways in the worm favors mutant SRP-2 accumulation, while mice overexpressing a polymerizing mutant of neuroserpin undergo transient induction of the UPR in young but not in aged mice. Thus, we find that perturbations of proteostasis through impairment of the heat shock response or altered UPR signaling enhance neuroserpin accumulation in vivo. Moreover, accumulation of neuroserpin polymers in mice is associated with an age-related induction of the UPR suggesting a novel interaction between aging and ER overload. These data suggest that targets aimed at increasing UPR capacity in neurons are valuable tools for therapeutic intervention. PMID:23335331
Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao
2017-08-07
Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5) = 2.595, P = 0.049), 60 (t (5) = 7.838, P = 0.001) and 90 dpi (t (5) = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5) = 5.139, P = 0.004), 60 (t (5) = 6.138, P = 0.002) and 90 dpi (t (5) = 6.332, P = 0.001). However, the rising of iNOS transcripts dropped under the uninfected control level in the TLR2 mutant mice at 120 dpi (t (5) = -9.082, P < 0.0001). Both total NO and iNOS transcripts were significantly higher in the TLR2 mutant mice than those in the TLR2 wild-type mice at 30 (t (5) = 3.091/2.933, P = 0.027/0.033) and 60 dpi (t (5) = 2.667/6.331, P = 0.044/0.001), respectively. In addition, the remarkable increase of iNOS expressions was immunohistochemically detected in the splenic serial sections of TLR2 wild-type mice at 30 and 60 dpi. However, the expressions of iNOS were remarkably decreased in the splenocytes of both TLR2 wild-type and mutant mice at 120 dpi. These results demonstrate that TLR2 signal plays an important role in the regulation of iNOS expression after C. sinensis infection. TLR2 signal is also beneficial to limiting worm growth and development and contributing to the susceptibility to C. sinensis in which the iNOS/NO reactions possibly participate.
Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps
Huang, Hailiang; Jedynak, Bruno M; Bader, Joel S
2007-01-01
Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture–recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erdös-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in Datasets S1 and S2, Figures S1–S5, and Tables S1−S6, and are also available from our Web site, http://www.baderzone.org. PMID:18039026
Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies
Venkatachalam, Kartik; Luo, Junjie; Montell, Craig
2015-01-01
The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected. PMID:24961975
Mesquita, L P; Diaz, M H; Howerth, E W; Stallknecht, D E; Noblet, R; Gray, E W; Mead, D G
2017-01-01
The natural transmission of vesicular stomatitis New Jersey virus (VSNJV), an arthropod-borne virus, is not completely understood. Rodents may have a role as reservoir or amplifying hosts. In this study, juvenile and nestling deer mice ( Peromyscus maniculatus) were exposed to VSNJV-infected black fly ( Simulium vittatum) bites followed by a second exposure to naive black flies on the nestling mice. Severe neurological signs were observed in some juvenile mice by 6 to 8 days postinoculation (DPI); viremia was not detected in 25 juvenile deer mice following exposure to VSNJV-infected fly bites. Both juvenile and nestling mice had lesions and viral antigen in the central nervous system (CNS); in juveniles, their distribution suggested that the sensory pathway was the most likely route to the CNS. In contrast, a hematogenous route was probably involved in nestling mice, since all of these mice developed viremia and had widespread antigen distribution in the CNS and other tissues on 2 DPI. VSNJV was recovered from naive flies that fed on viremic nestling mice. This is the first report of viremia in a potential natural host following infection with VSNJV via insect bite and conversely of an insect becoming infected with VSNJV by feeding on a viremic host. These results, along with histopathology and immunohistochemistry, show that nestling mice have widespread dissemination of VSNJV following VSNJV-infected black fly bite and are a potential reservoir or amplifying host for VSNJV.
Classical-Conditioning Demonstrations for Elementary and Advanced Courses.
ERIC Educational Resources Information Center
Abramson, Charles I.; And Others
1996-01-01
Describes two new exercises in classical conditioning that use earthworms and houseflies. The animals are available year-round and pose no risk to the students or instructor. The conditioned stimuli are odorants. These elicit a conditioned response of contraction in worms or proboscis extension in flies. (MJP)
Lamberton, Poppy H L; Faust, Christina L; Webster, Joanne P
2017-06-16
Mass drug administration of praziquantel is the World Health Organization's endorsed control strategy for schistosomiasis. A decade of annual treatments across sub-Saharan Africa has resulted in significant reductions of infection prevalence and intensity levels, although 'hotspots' remain. Repeated drug treatments place strong selective pressures on parasites, which may affect life-history traits that impact transmission dynamics. Understanding drug treatment responses and the evolution of such traits can help inform on how to minimise the risk of drug resistance developing, maximise sustainable control programme success, and improve diagnostic protocols. We performed a four-generation Schistosoma mansoni praziquantel selection experiment in mice and snails. We used three S. mansoni lines: a praziquantel-resistant isolate (R), a praziquantel-susceptible isolate (S), and a co-infected line (RS), under three treatment regimens: untreated, 25 mg/kg praziquantel, or 50 mg/kg praziquantel. Life-history traits, including parasite adult-worm establishment, survival, reproduction (fecundity), and associated morbidity, were recorded in mice across all four generations. Predictor variables were tested in a series of generalized linear mixed effects models to determine which factors had a significant influence on parasite life-history traits in definitive hosts under different selection regimes. Praziquantel pressure significantly reduced adult-worm burdens across all generations and isolates, including within R-lines. However, previous drug treatment resulted in an increase in adult-worm establishment with increasing generation from P1 to F3. The highest worm numbers were in the co-infected RS line. Praziquantel treatment decreased adult-worm burden, but had a larger negative impact on the mean daily number of miracidia, a proxy for fecundity, across all three parasite isolates. Our predicted cost of resistance was not supported by the traits we measured within the murine host. We did not find evidence for negative adult worm density-dependent effects on fecundity. In contrast, of the adult worms that survived treatment, even low doses of praziquantel significantly reduced adult-worm fecundity. Such reductions in worm fecundity post treatment suggest that egg - based measures of drug efficacy, such as Kato-Katz, may overestimate the short-term effect of praziquantel on adult - worm burdens. These findings have important implications for S. mansoni transmission control, diagnostic protocols, and the potential for undetected selection toward drug resistance.
Wang, Xu; Ryu, Dongryeol
2015-01-01
Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well‐being of these endosymbionts that are essential to sustain health. Also watch the Video Abstract. PMID:26347282
Wang, Xu; Ryu, Dongryeol; Houtkooper, Riekelt H; Auwerx, Johan
2015-10-01
Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well-being of these endosymbionts that are essential to sustain health. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.
Genome sequencing efforts in the past decade were aimed at generating draft sequences of many prokaryotic and eukaryotic model organisms. Successful completion of unicellular eukaryotes, worm, fly and human genome have opened up the new field of molecular biology and function...
Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma
USDA-ARS?s Scientific Manuscript database
Naïve CD4+ T-helper cells differentiate into Th2 effector cells during asthma and helminth (worm) infection. Here we report that mice lacking the transcription factor Bcl11b in mature CD4+ T-cells are incapable of mounting an effective Th2 response in asthma and worm infection with a major reductio...
Artemether as adjuvant therapy to praziquantel in murine Egyptian schistosomiasis mansoni.
Mahmoud, M R; Botros, S S
2005-02-01
We investigated the activity of artemether (ART) against different developmental stages of schistosomes alone and in addition to praziquantel (PZQ). ART was administered orally (400 mg/kg) 4 and 6 wk postinfection (PI), 4 and 5 wk PI, or 4 or 6 wk PI alone and in addition to oral PZQ (500 x 2 mg/kg) 6 wk PI. Mice were killed in parallel to infected untreated controls 8 wk PI. Parasitological parameters and histological changes in the liver were studied. ART given 4 and 6 wk PI reduced worm burdens by 59 and 55% and tissue egg load by 96 and 90%, respectively. Moreover, eggs in different developmental stages were not found. The reduction in worm and egg burden (63 and 58%, and 96 and 99%, respectively) in mice treated with ART 4 and 5 wk or 4 and 6 wk PI was comparable with that in ART-treated mice at 4 or 6 wk PI. Compared with PZQ alone, combined treatment of PZQ and ART (4 and 5 wk or 4 and 6 wk PI) did not enhance worm eradication, but there was a complete absence of parasite eggs. Livers revealed no granulomata when ART was given 4 and 5 wk or 4 and 6 wk PI, with minimal central necrosis in those treated 4 and 6 wk PI. In conclusion, combined treatment of ART (4 and 6 wk PI) and PZQ resulted in >90% worm eradication and amelioration of Schistosoma mansoni eggs from the tissues, with minor histological changes in the liver.
Liu, J; Chappell, L H
1998-01-01
To study the action mode of cyclosporin A (CsA) against Schistosoma mansoni in vitro. MF1 mice were infected with Schistosoma mansoni cercariae for 6 weeks when the adult worms were recovered by portal perfusion. The male worms of S. mansoni recovered were exposed to varying concentrations of CsA at 8, 16, and 24 h in vitro. Drug induced damage to the male worm surface was chrono-biologically observed throughout these experiments by SEM. After the male worms of S. mansoni were incubated with 1 microgram/ml CsA for 8-24 h, the tegument showed swelling of ridges with appearance of holes on their surface and detachment of a part of spines. The above damage of the tegument became more evident in male worms after incubation with 10, 15, 20 micrograms/ml CsA for 8-24 h. Moreover, incubation of male worms with 25 micrograms/ml CsA for 8-24 h resulted in significant deformation and disruption of tegument, rupture of ridges and detachment of spines. The tegumental damage of male worms of S. mansoni was dose- and time-dependent. The antischistosomal action of CsA is direct, the schistosome tegument appears to be the main site for CsA attack.
ERIC Educational Resources Information Center
Rea, Shane L.; Graham, Brett H.; Nakamaru-Ogiso, Eiko; Kar, Adwitiya; Falk, Marni J.
2010-01-01
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level.…
Patton, John B; Bonne-Année, Sandra; Deckman, Jessica; Hess, Jessica A; Torigian, April; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Durham, Amy C; Lee, James J; Eberhard, Mark L; Mangelsdorf, David J; Lok, James B; Abraham, David
2018-01-02
Strongyloides stercoralis hyperinfection causes high mortality rates in humans, and, while hyperinfection can be induced by immunosuppressive glucocorticoids, the pathogenesis remains unknown. Since immunocompetent mice are resistant to infection with S. stercoralis , we hypothesized that NSG mice, which have a reduced innate immune response and lack adaptive immunity, would be susceptible to the infection and develop hyperinfection. Interestingly, despite the presence of large numbers of adult and first-stage larvae in S. stercoralis -infected NSG mice, no hyperinfection was observed even when the mice were treated with a monoclonal antibody to eliminate residual granulocyte activity. NSG mice were then infected with third-stage larvae and treated for 6 wk with methylprednisolone acetate (MPA), a synthetic glucocorticoid. MPA treatment of infected mice resulted in 50% mortality and caused a significant >10-fold increase in the number of parasitic female worms compared with infected untreated mice. In addition, autoinfective third-stage larvae, which initiate hyperinfection, were found in high numbers in MPA-treated, but not untreated, mice. Remarkably, treatment with Δ7-dafachronic acid, an agonist of the parasite nuclear receptor Ss -DAF-12, significantly reduced the worm burden in MPA-treated mice undergoing hyperinfection with S. stercoralis Overall, this study provides a useful mouse model for S. stercoralis autoinfection and suggests a therapeutic strategy for treating lethal hyperinfection.
Igetei, Joseph E; Liddell, Susan; El-Faham, Marwa; Doenhoff, Michael J
2016-04-01
A serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl-ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host-parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion.
A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress
Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi
2014-01-01
Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742
Cliffe, Laura J.; Bancroft, Alison J.; Forman, Simon P.; Thompson, Seona; Booth, Cath
2017-01-01
Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant. PMID:28650985
Hayes, Kelly S; Cliffe, Laura J; Bancroft, Alison J; Forman, Simon P; Thompson, Seona; Booth, Cath; Grencis, Richard K
2017-06-01
Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris) is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+) mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant.
The Role of Protein Kinase D (PKD) Signaling in Breast Cancer Cell Migration and Invasion
2010-09-01
CONTRACTING ORGANIZATION: Beth Israel Deaconess Med Center Boston, MA 02215...PERFORMING ORGANIZATION REPORT NUMBER Beth Israel Deaconess Medical Center Boston, MA 02215 9. SPONSORING / MONITORING AGENCY...species including fish , flies and worms (Figure 8A). A distinct putative PKD consensus phosphorylation motif on Rabaptin-5 is also found at Ser162
Potential Nematode Alarm Pheromone Induces Acute Avoidance in Caenorhabditis elegans.
Zhou, Ying; Loeza-Cabrera, Mario; Liu, Zheng; Aleman-Meza, Boanerges; Nguyen, Julie K; Jung, Sang-Kyu; Choi, Yuna; Shou, Qingyao; Butcher, Rebecca A; Zhong, Weiwei
2017-07-01
It is crucial for animal survival to detect dangers such as predators. A good indicator of dangers is injury of conspecifics. Here we show that fluids released from injured conspecifics invoke acute avoidance in both free-living and parasitic nematodes. Caenorhabditis elegans avoids extracts from closely related nematode species but not fruit fly larvae. The worm extracts have no impact on animal lifespan, suggesting that the worm extract may function as an alarm instead of inflicting physical harm. Avoidance of the worm extract requires the function of a cGMP signaling pathway that includes the cGMP-gated channel TAX-2/TAX-4 in the amphid sensory neurons ASI and ASK. Genetic evidence indicates that the avoidance behavior is modulated by the neurotransmitters GABA and serotonin, two common targets of anxiolytic drugs. Together, these data support a model that nematodes use a nematode-specific alarm pheromone to detect conspecific injury. Copyright © 2017 by the Genetics Society of America.
The DrugAge database of aging-related drugs.
Barardo, Diogo; Thornton, Daniel; Thoppil, Harikrishnan; Walsh, Michael; Sharifi, Samim; Ferreira, Susana; Anžič, Andreja; Fernandes, Maria; Monteiro, Patrick; Grum, Tjaša; Cordeiro, Rui; De-Souza, Evandro Araújo; Budovsky, Arie; Araujo, Natali; Gruber, Jan; Petrascheck, Michael; Fraifeld, Vadim E; Zhavoronkov, Alexander; Moskalev, Alexey; de Magalhães, João Pedro
2017-06-01
Aging is a major worldwide medical challenge. Not surprisingly, identifying drugs and compounds that extend lifespan in model organisms is a growing research area. Here, we present DrugAge (http://genomics.senescence.info/drugs/), a curated database of lifespan-extending drugs and compounds. At the time of writing, DrugAge contains 1316 entries featuring 418 different compounds from studies across 27 model organisms, including worms, flies, yeast and mice. Data were manually curated from 324 publications. Using drug-gene interaction data, we also performed a functional enrichment analysis of targets of lifespan-extending drugs. Enriched terms include various functional categories related to glutathione and antioxidant activity, ion transport and metabolic processes. In addition, we found a modest but significant overlap between targets of lifespan-extending drugs and known aging-related genes, suggesting that some but not most aging-related pathways have been targeted pharmacologically in longevity studies. DrugAge is freely available online for the scientific community and will be an important resource for biogerontologists. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Asghari Adib, Elham; Stanchev, Doychin T; Xiong, Xin; Klinedinst, Susan; Soppina, Pushpanjali; Jahn, Thomas Robert; Hume, Richard I
2017-01-01
The kinesin-3 family member Unc-104/KIF1A is required for axonal transport of many presynaptic components to synapses, and mutation of this gene results in synaptic dysfunction in mice, flies and worms. Our studies at the Drosophila neuromuscular junction indicate that many synaptic defects in unc-104-null mutants are mediated independently of Unc-104’s transport function, via the Wallenda (Wnd)/DLK MAP kinase axonal damage signaling pathway. Wnd signaling becomes activated when Unc-104’s function is disrupted, and leads to impairment of synaptic structure and function by restraining the expression level of active zone (AZ) and synaptic vesicle (SV) components. This action concomitantly suppresses the buildup of synaptic proteins in neuronal cell bodies, hence may play an adaptive role to stresses that impair axonal transport. Wnd signaling also becomes activated when pre-synaptic proteins are over-expressed, suggesting the existence of a feedback circuit to match synaptic protein levels to the transport capacity of the axon. PMID:28925357
Aly, Ibrahim; Taher, Eman E; El-Sayed, Hoda; Mohammed, Faten A; ELnain, Gehan; Hamad, Rabab S; Bayoumy, Elsayed M
2017-06-01
In this work, the efficiency of crude MeOH extracts and soluble glycoprotein fraction of Allium sativum purified by size-exclusion chromatography (SEC) on parasitological, histopathological and some biochemical parameters in Schistosoma mansoni infected mice were investigated. Animals were infected by tail immersion with 100 cercariae/each mouse and divided into five groups in addition to the normal control. The results revealed a significant decrease in mean worm burden in all treated mice especially in the group treated with soluble glycoprotein fraction of A. sativum as compared to infected non-treated control with the disappearance of female worms. Administration of the studied extracts revealed remarkable amelioration in the levels of all the measured parameters in S. mansoni infected mice. In addition, treatment of mice with crude A. sativum MeOH extract and soluble glycoprotein fraction of A. sativum decreased significantly the activities of studied enzymes as compared to the infected untreated group. The highest degrees of enhancement in pathological changes was observed in the treated one with soluble glycoprotein fraction of A. sativum compared to the infected group represented by small sized, late fibro-cellular granuloma, the decrease in cellular constituents and degenerative changes in eggs. In conclusion, A. sativum treatment had effective schistosomicidal activities, through reduction of worm burden and tissue eggs, especially when it was given in purified glycoprotein fraction. Moreover, the soluble glycoprotein fraction of A. sativum largely modulates both the size and the number of granulomas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of a novel benzimidazole derivative in experimental Schistosoma mansoni infection.
El Bialy, Serry A; Taman, Amira; El-Beshbishi, Samar N; Mansour, Basem; El-Malky, Mohamed; Bayoumi, Waleed A; Essa, Hassan M
2013-12-01
Currently, praziquantel is the only drug of choice for treatment of schistosomiasis. Reports of praziquantel resistance raise concerns about future control of the disease. Therefore, the search for new schistosomicidal drugs is eminent. In this study, the effect of a novel benzimidazole-derived compound (compound BTP-Iso) was assessed in mice harboring adult Schistosoma mansoni (Egyptian strain). Mice were treated 42 days p.i. with compound BTP-Iso using two treatment regimens (200 or 300 mg/kg). In both regimens, there were significant reductions in the number of recovered S. mansoni worms especially females and in immature ova, in addition to a significant reduction in the number and size of hepatic granulomata. A dose of 300 mg/kg resulted in a significant decrease in intestinal and hepatic tissue egg loads. Effect on schistosomes was confirmed by scanning electron microscopy, where adult worms recovered from mice treated with 200 mg/kg of compound BTP-Iso revealed tegumental alternations, characterised by swelling of tegumental ridges, bleb formation, and mild erosion in male worms; however in females, there were extensive erosion and destruction of the tegumental surface. These promising results may encourage future use of compound BTP-Iso in the treatment of schistosomiasis. However, more research is needed to detect the effect of compound BTP-Iso on early developmental stages of S. mansoni and on other species of human schistosomes.
Šnábel, Viliam; Utsuki, Daisuke; Kato, Takehiro; Sunaga, Fujiko; Ooi, Hong-Kean; Gambetta, Barbara; Taira, Kensuke
2014-09-01
Heterakis spumosa is a nematode of invasive rodents, mainly affiliated with Rattus spp. of Asian origin. Despite the ecological importance and cosmopolitan distribution, little information is available on the genetic characteristics and infectivity to experimental animals of this roundworm. Heterakis isolates obtained from naturally infected brown rats caught in 2007 in the city of Sagamihara, east central Honshu, Japan, and maintained by laboratory passages were subjected to mitochondrial sequence analysis and experimental infection in mice. Sequencing of the cox1 gene revealed that nucleotides of H. spumosa and previously examined Heterakis isolonche isolates from gallinaceous birds in Japan differed by 11.2-12.2% that conforms to the range expected for interspecific differences. The two H. spumosa isolates differed by a single 138T/C non-synonymous substitution in the 393-bp mt sequence. In a dendrogram, the H. spumosa samples formed a subcluster with members of the nematode superfamily Heterakoidea, H. isolonche and Ascaridia galli. In an experimental infection study, ICR, AKR, B10.BR and C57BL/6 mice strains were inoculated with 200 H. spumosa eggs/head and necropsied at 14 and 90 days post-inoculation (DPI) when the number of worms was recorded. Eggs were initially detected in faeces from 32-35 DPI in ICR, AKR and B10.BR mice and the highest mean number of eggs per gram of faeces (EPG) was 4,800 at 38 DPI, 2,200 at 58 DPI and 800 at 44 and 72 DPI in ICR, AKR and B10.BR mice, respectively. No eggs were observed in faeces of the C57BL/6 mouse strain during the experiment. A similar number of juvenile worms were isolated from all mouse strains at 14 DPI, whereas no adult worms were detected in C57BL/6 mice at 90 DPI.
Schriner, Samuel E.; Kuramada, Steven; Lopez, Terry E.; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab
2015-01-01
Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling. PMID:25456850
Schriner, Samuel E; Kuramada, Steven; Lopez, Terry E; Truong, Stephanie; Pham, Andrew; Jafari, Mahtab
2014-12-01
Cinnamon is a spice commonly used worldwide to flavor desserts, fruits, cereals, breads, and meats. Numerous health benefits have been attributed to its consumption, including the recent suggestion that it may decrease blood glucose levels in people with diabetes. Insulin signaling is an integral pathway regulating the lifespan of laboratory organisms, such as worms, flies, and mice. We posited that if cinnamon truly improved the clinical signs of diabetes in people that it would also act on insulin signaling in laboratory organisms and increase lifespan. We found that cinnamon did extend lifespan in the fruit fly, Drosophila melanogaster. However, it had no effect on the expression levels of the 3 aging-related Drosophila insulin-like peptides nor did it alter sugar, fat, or soluble protein levels, as would be predicted. In addition, cinnamon exhibited no protective effects in males against oxidative challenges. However, in females it did confer a protective effect against paraquat, but sensitized them to iron. Cinnamon provided no protective effect against desiccation and starvation in females, but sensitized males to both. Interestingly, cinnamon protected both sexes against cold, sensitized both to heat, and elevated HSP70 expression levels. We also found that cinnamon required the insulin receptor substrate to extend lifespan in males, but not females. We conclude that cinnamon does not extend lifespan by improving stress tolerance in general, though it does act, at least in part, through insulin signaling. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; Perron, M.M.; Friedman, C.L.
Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspectedmore » that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.« less
... important part of medical research because their body chemistry is remarkably similar to ours. Worm Harmless roundworms ... human disorders. Photo courtesy of NIGMS Mouse Genetic engineering allows scientists to create specific strains of mice ...
Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab
2016-03-01
The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn.
Krichbaum, Kristle; Mahan, Carolyn G; Steele, Michael A; Turner, Gregory; Hudson, Peter J
2010-01-01
There is growing evidence that populations of the northern flying squirrel (Glaucomys sabrinus) are declining in the eastern United States, perhaps due to competition with the southern flying squirrel (Glaucomys volans). Potential causes include parasite-mediated or apparent competition from the shared intestinal nematode, Strongyloides robustus, which has been shown to detrimentally affect the northern flying squirrel but not the southern flying squirrel. To investigate this hypothesis, we conducted a preliminary study on the parasite community of both flying squirrel species from sites in Pennsylvania where the two species occur sympatrically and where G. sabrinus is now considered endangered at the state level. We compared these parasite communities with those from northern flying squirrels from northern New York where the southern flying squirrel is absent. We found eight species of gastrointestinal parasites (Pterygodermatites peromysci, Lemuricola sciuri, Syphacia thompsoni, Syphacia spp., Capillaria spp., Citellinema bifurcatum, Strogyloides robustus, and an unidentifiable cestode species) in both species of flying squirrels examined for our study. The parasite-mediated competition hypothesis was partially supported. For example, in Pennsylvania, S. robustus was overdispersed in southern flying squirrels, such that a small proportion of the hosts carried a large proportion of the worm population. In addition, we found S. robustus to be present in northern flying squirrels when the species were sympatric, but not where southern flying squirrels were absent in New York. However, there was no association between S. robustus and the body condition of flying squirrels. We detected a potential parasite community interaction, as S. robustus abundance was positively associated with P. peromysci.
Burgess, Robert M.; Perron, Monique M.; Friedman, Carey L.; Suuberg, Eric M.; Pennell, Kelly G.; Cantwell, Mark G.; Pelletier, Marguerite C.; Ho, Kay T.; Serbst, Jonathan R.; Ryba, Stephan A.
2013-01-01
Approaches for cleaning-up contaminated sediments range from dredging to in situ treatment. In the present report, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7 d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of post-oxidation treatment to reduce nitrous oxides emissions. Relatively simple methods exist to remove ammonia from fly ash prior to use and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. There was no evidence of the release of the metals cadmium, copper, nickel or lead from the fly ashes. A preliminary 28 d polychaete bioaccumulation study with one of the high carbon fly ashes and a reference sediment was also performed. Although preliminary, there was no evidence of adverse effects to worm growth or lipid content, or the accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon contents may represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments. PMID:18717615
Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros.
Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N; Payne, Junaidi
2013-02-01
To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA(®) blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases.
Cornaglia, Matteo; Krishnamani, Gopalan; Zhang, Jingwei; Mouchiroud, Laurent; Lehnert, Thomas; Auwerx, Johan; Gijs, Martin A. M.
2018-01-01
The nematode Caenorhabditis elegans is an important model organism for biomedical research and genetic studies relevant to human biology and disease. Such studies are often based on high-resolution imaging of dynamic biological processes in the worm body tissues, requiring well-immobilized and physiologically active animals in order to avoid movement-related artifacts and to obtain meaningful biological information. However, existing immobilization methods employ the application of either anesthetics or servere physical constraints, by using glue or specific microfluidic on-chip mechanical structures, which in some cases may strongly affect physiological processes of the animals. Here, we immobilize C. elegans nematodes by taking advantage of a biocompatible and temperature-responsive hydrogel-microbead matrix. Our gel-based immobilization technique does not require a specific chip design and enables fast and reversible immobilization, thereby allowing successive imaging of the same single worm or of small worm populations at all development stages for several days. We successfully demonstrated the applicability of this method in challenging worm imaging contexts, in particular by applying it for high-resolution confocal imaging of the mitochondrial morphology in worm body wall muscle cells and for the long-term quantification of number and size of specific protein aggregates in different C. elegans neurodegenerative disease models. Our approach was also suitable for immobilizing other small organisms, such as the larvae of the fruit fly Drosophila melanogaster and the unicellular parasite Trypanosoma brucei. We anticipate that this versatile technique will significantly simplify biological assay-based longitudinal studies and long-term observation of small model organisms. PMID:29509812
Conn, D B; Etges, F J
1983-10-01
Asexually proliferative Mesocestoides corti tetrathyridia were studied to test the hypothesis of in utero transmission in mice and define more clearly the path of transmammary transmission. In utero transmission was not observed in 132 fetuses (22 litters) taken by caesarean section from infected mothers. However, 19 of these mothers had tetrathyridia in their mammary glands at the time of operation, nine had worms in the uterine lumen, and one had a single worm in the maternal blood space of a placenta. No tetrathyridia were found in amniotic cavities. No infection was found in 32 young (7 litters) examined immediately after birth to infected mothers, but before nursing. No infection was found in 30 young (5 litters) removed from infected mothers before nursing and raised by uninfected fosters. Of 29 uninfected young (5 litters) allowed to nurse on infected mothers, 18 became infected. Whole mounts and sections of infected mammary glands showed proliferating tetrathyridia free in larger milk ducts and free and encapsulated in mammary parenchyma. These data suggest that maternal transmission of M. corti tetrathyridia in mice occurs primarily or perhaps exclusively by the transmammary route.
Measurement of lifespan in Drosophila melanogaster.
Linford, Nancy J; Bilgir, Ceyda; Ro, Jennifer; Pletcher, Scott D
2013-01-07
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts(1-4). In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.
Frezza, Tarsila Ferraz; de Souza, Ana Luiza Ribeiro; Prado, César Corat Ribeiro; de Oliveira, Claudineide Nascimento Fernandes; Gremião, Maria Palmira Daflon; Giorgio, Selma; Dolder, Mary Anne Heidi; Joazeiro, Paulo Pinto; Allegretti, Silmara Marques
2015-10-01
The treatment of schistosomiasis depends on a single drug: praziquantel (PZQ). However, this treatment presents limitations such as low and/or erratic bioavailability that can contribute to cases of tolerance. Improvements to the available drug are urgently needed and studies with a controlled system of drug release, like liposomes, have been gaining prominence. The present study evaluated the activity and synergy between liposomal-praziquantel (lip.PZQ) and hyperbaric oxygen therapy (HBO). Mice received doses of 60 or 100mg/kg PZQ or lip.PZQ, 50 days post-infection, and after the treatment, were exposed to HBO (3 atmosphere absolute - ATA) for 1h. The viability of adult worms and oviposition were analyzed, by necropsy and Kato-Katz examination performed after 15 days of treatment. A concentration of 100mg/kg of lip.PZQ+HBO was more effective (48.0% reduction of worms, 83.3% reduction of eggs/gram of feces) and 100% of the mice had altered of oograms (indicating interruption of oviposition) compared to other treatments and to the Control group (infected and untreated). It is known that PZQ requires participation of the host immune system to complete its antischistosomal activity and that HBO is able to stimulate the immune system. The drug became more available in the body when incorporated into liposomes and, used with HBO, the HBO worked as an adjuvant. This explains the decreases of oviposition and worms recovered form hepatic portal system. Copyright © 2015 Elsevier B.V. All rights reserved.
Baliban, Scott M; Curtis, Brittany; Toema, Deanna; Tennant, Sharon M; Levine, Myron M; Pasetti, Marcela F; Simon, Raphael
2018-05-23
In sub-Saharan Africa, invasive nontyphoidal Salmonella (iNTS) infections with serovars S. Enteritidis, S. Typhimurium and I 4,[5],12:i:- are widespread in children < 5 years old. Development of an efficacious vaccine would provide an important public health tool to prevent iNTS disease in this population. Glycoconjugates of S. Enteritidis core and O-polysaccharide (COPS) coupled to the homologous serovar phase 1 flagellin protein (FliC) were previously shown to be immunogenic and protected adult mice against death following challenge with a virulent Malian S. Enteritidis blood isolate. This study extends these observations to immunization of mice in early life and also assesses protection with partial and full regimens. Anti-COPS and anti-FliC serum IgG titers were assessed in infant and adult mice after immunization with 1, 2 or 3 doses of S. Enteritidis COPS:FliC alone or co-formulated with aluminum hydroxide or monophosphoryl lipid A (MPL) adjuvants. S. Enteritidis COPS:FliC was immunogenic in both age groups, although the immune responses were quantitatively lower in infants. Kinetics of antibody production were similar for the native and adjuvanted formulations after three doses; conjugates formulated with MPL elicited significantly increased anti-COPS IgG titers in adult but not infant mice. Nevertheless, robust protection against S. Enteritidis challenge was seen for all three formulations when three doses were given either during infancy or as adults. We further found that significant protection could be achieved with two COPS:FliC doses, despite elicitation of modest serum anti-COPS IgG antibody titers. These findings guide potential immunization strategies that may be translated to develop a human pediatric iNTS vaccine for sub-Saharan Africa.
Kirienko, Natalia V.; Mani, Kumaran; Fay, David S.
2013-01-01
Although now dogma, the idea that non-vertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis. PMID:20175192
Animal and human models to understand ageing.
Lees, Hayley; Walters, Hannah; Cox, Lynne S
2016-11-01
Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing. Copyright © 2016. Published by Elsevier Ireland Ltd.
Caloric restriction: Impact upon pituitary function and reproduction
Martin, Bronwen; Golden, Erin; Carlson, Olga D.; Egan, Josephine M.; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities. PMID:18329344
Cho-Ngwa, Fidelis; Monya, Elvis; Azantsa, Boris K; Manfo, Faustin Pascal T; Babiaka, Smith B; Mbah, James A; Samje, Moses
2016-08-30
Onchocerciasis is the world's second leading infectious cause of blindness. Its control is currently hampered by the lack of a macrofilaricidal drug and by severe adverse events observed when the lone recommended microfilaricide, ivermectin is administered to individuals co-infected with Loa loa. Therefore, there is the need for a safe and effective macrofilaricidal drug that will be able to cure the infection and break transmission cycles, or at least, an alternative microfilaricide that does not kill L. loa microfilariae (mf). Fourteen extracts from two medicinal plants, Tragia benthami and Piper umbellatum were screened in vitro against Onchocerca ochengi parasite and L. loa mf. Activities of extracts on male worms and microfilariae were assessed by motility reduction, while MTT/Formazan assay was used to assess biochemically the death of female worms. Cytotoxicity and acute toxicity of active extracts were tested on monkey kidney cells and Balb/c mice, respectively. At 500 μg/mL, all extracts showed 100 % activity on Onchocerca ochengi males and microfilariae, while 9 showed 100 % activity on female worms. The methylene chloride extract of Piper umbellatum leaves was the most active on adult male and female worms (IC50s: 16.63 μg/mL and 35.65 μg/mL, respectively). The three most active extracts on Onchocerca ochengi females were also highly active on Loa loa microfilariae, with IC50s of 35.12 - 13.9 μg/mL. Active extracts were generally more toxic to the worms than to cells and showed no acute toxicity to Balb/c mice. Phytochemical screening revealed the presence of saponins, steroids, tannins and flavanoids in the promising extracts. These results unfold potential sources of novel anti-Onchocerca lead compounds and validate the traditional use of the plants in onchocerciasis treatment.
Nguyen, Huu-Hung; Vo, Doan-Trung; Thai, Thi-Tuyet-Trinh; LE, Thi-Thanh-Thao; LE, Thanh-Dong; Hoang, Nghia-Son
2017-01-01
Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear. Excreted/secreted (E/S) antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB) assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm's E/S antigens in different infected hosts including mice, rabbits and human, were examined. In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band. 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation.
Abou Shady, Omayma M; Basyoni, Maha M A; Mahdy, Olfat A; Bocktor, Nardden Zakka
2014-08-01
Hymenolepis nana (H. nana) is the most common tapeworm infection worldwide. It is more prevalent in warm climates where sanitation is poor, particularly among children. The effect and mechanism of action of praziquantel (PZQ), given at a dose of 25-mg/kg BW, and Carica papaya dried seed crude aqueous extract (CAE), given at a dose of 1.2-g/kg BW, were assessed on H. nana worms in experimentally infected mice. Tegumental changes were studied using the scanning electron microscope (SEM) and different parasitological parameters were observed. Each group of infected mice was divided into two subgroups. The first subgroup received either treatment before the 4th day after infection to investigate their effects on the cysticercoid stage. The other subgroup received treatments after the development of the adult stage, confirmed by eggs detection in stool. Both PZQ and C. papaya dried seed CAE resulted in a significant reduction of worm burden, total egg output and viable egg count. Marked tegumental changes were evident in adult worms treated with either treatment including shrinkage of the scolex and neck region with rostellar edema and complete loss of its hooks. However, all previous effects were exerted more rapidly in the case of PZQ treatment. They both significantly reduced cysticercoid stage size. Nevertheless, C. papaya outstand PZQ in having a deforming effect on adults arising from treated cysticercoids. It was concluded that C. papaya has significant anti-cestodal properties that enable its seed extract to be a very effective alternative to PZQ against H. nana.
Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.
Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A
2013-10-17
Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection. Copyright © 2013 Elsevier Inc. All rights reserved.
Detrimental effects of cement mortar and fly ash mortar on asthma progression.
Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok
2013-11-01
Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (p<0.05) were observed in the OPC mortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher expression of IL-5, 13 and monocyte chemoattractant protein-1 (MCP-1) compared to the asthma control group. These results indicate that OPC mortar and OPC mortar with fly ash might exacerbate asthma. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadun, E.H.
1963-12-30
A review on immmnization in schistosomiasis indicates that immunization is certainly possible. Mice can be protected much more readily against S. japonicum than against S. mansoni. However, the Rhesus monkeys develop an acquired resistance to S. mansoni. Rats can also be easily protected with worm homogenates of S. mansoni. It has also been observed that a previous exposure to a Formosan heterologous strain of S. japonicum induced a greater degree of resistance than exposures to the Japanese homologous strains. The least significant degree of acquired immunity is induced by vaccination with worm homogenates or worm products and with the transfermore » of serum from immune to normal animals. It was also indicated that exposure of monkeys to irradiated cercariae induced a marked resistance to a subsequent challenge of nonattenuated cercaria of S. mansoni. 67 references are included. (P.C.H.)« less
Gogoi, Shyamalima; Yadav, Arun K.
2016-01-01
Background: Leaves of Caesalpinia bonducella (L.) Roxb. have been traditionally used as an herbal remedy to treat the intestinal helminthic infections in traditional medicine of India. Aim: This study was undertaken to evaluate the potential in vitro and in vivo anthelmintic effects of C. bonducella leaf extract against Syphacia obvelata (Nematoda) and Hymenolepis diminuta (Cestoda). Materials and Methods: The in vitro anthelmintic activity of the extract was investigated on adult worms of S. obvelata (Nematoda) and H. diminuta (Cestoda) in terms of physical motility and mortality of parasites. The in vivo study was performed in H. diminuta-rat model and S. obvelata-mice model, by monitoring the egg per gram of feces count and worm count of animals following the treatment with different doses of plant extract. Results: The study recorded significant and dose-dependent anthelmintic effects of the extract on both the parasites. In the in vitro study, 30 mg/ml concentration of extract caused mortality of H. diminuta in 2.5 ± 0.2 h and S. obvelata in 3.57 ± 0.16 h. In the in vivo study, the extract showed a comparatively better efficacy on S. obvelata, where its 800 mg/kg dose revealed 93% reduction of worm load in mice, as compared to 85% worm load reduction of H. diminuta in rats. Conclusions: The findings suggest that leaf extract of C. bonducella possesses significant anthelmintic effects and supports its use as an anthelmintic in traditional medicine. This appears to be the first report of in vivo anthelmintic activity of C. bonducella against these parasites. PMID:27757275
Science stories: flies, planes, worms, and lasers.
Rolls, Melissa
2011-11-01
"Tell a story," my mother instructs her graduate students as they prepare their talks. I will make use of her advice here, and will tell several short stories. The themes revolve around the practice of science-what motivates us to go into science and how we choose questions once we get there. I also touch on progress in scientific tools, teaching, good mentors, and good colleagues, all of which contribute to making a career in science constantly compelling.
Comparative analysis of metazoan chromatin organization.
Ho, Joshua W K; Jung, Youngsook L; Liu, Tao; Alver, Burak H; Lee, Soohyun; Ikegami, Kohta; Sohn, Kyung-Ah; Minoda, Aki; Tolstorukov, Michael Y; Appert, Alex; Parker, Stephen C J; Gu, Tingting; Kundaje, Anshul; Riddle, Nicole C; Bishop, Eric; Egelhofer, Thea A; Hu, Sheng'en Shawn; Alekseyenko, Artyom A; Rechtsteiner, Andreas; Asker, Dalal; Belsky, Jason A; Bowman, Sarah K; Chen, Q Brent; Chen, Ron A-J; Day, Daniel S; Dong, Yan; Dose, Andrea C; Duan, Xikun; Epstein, Charles B; Ercan, Sevinc; Feingold, Elise A; Ferrari, Francesco; Garrigues, Jacob M; Gehlenborg, Nils; Good, Peter J; Haseley, Psalm; He, Daniel; Herrmann, Moritz; Hoffman, Michael M; Jeffers, Tess E; Kharchenko, Peter V; Kolasinska-Zwierz, Paulina; Kotwaliwale, Chitra V; Kumar, Nischay; Langley, Sasha A; Larschan, Erica N; Latorre, Isabel; Libbrecht, Maxwell W; Lin, Xueqiu; Park, Richard; Pazin, Michael J; Pham, Hoang N; Plachetka, Annette; Qin, Bo; Schwartz, Yuri B; Shoresh, Noam; Stempor, Przemyslaw; Vielle, Anne; Wang, Chengyang; Whittle, Christina M; Xue, Huiling; Kingston, Robert E; Kim, Ju Han; Bernstein, Bradley E; Dernburg, Abby F; Pirrotta, Vincenzo; Kuroda, Mitzi I; Noble, William S; Tullius, Thomas D; Kellis, Manolis; MacAlpine, David M; Strome, Susan; Elgin, Sarah C R; Liu, Xiaole Shirley; Lieb, Jason D; Ahringer, Julie; Karpen, Gary H; Park, Peter J
2014-08-28
Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros
Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N.; Payne, Junaidi
2013-01-01
Objective To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Methods Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA® blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. Results BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. Conclusions This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases. PMID:23593586
Frantz, Fabiani G.; Rosada, Rogério S.; Peres-Buzalaf, Camila; Perusso, Franciele R. T.; Rodrigues, Vanderlei; Ramos, Simone G.; Kunkel, Steven L.; Silva, Célio L.; Faccioli, Lúcia H.
2010-01-01
Background Helminthiasis and tuberculosis (TB) coincide geographically and there is much interest in exploring how concurrent worm infections might alter immune responses against bacilli and might necessitate altered therapeutic approaches. A DNA vaccine that codifies heat shock protein Hsp65 from M. leprae (DNAhsp65) has been used in therapy during experimental tuberculosis. This study focused on the impact of the co-existence of worms and TB on the therapeutic effects of DNAhsp65. Methodology/Principal Findings Mice were infected with Toxocara canis or with Schistosoma mansoni, followed by coinfection with M. tuberculosis and treatment with DNAhsp65. While T. canis infection did not increase vulnerability to pulmonary TB, S. mansoni enhanced susceptibility to TB as shown by higher numbers of bacteria in the lungs and spleen, which was associated with an increase in Th2 and regulatory cytokines. However, in coinfected mice, the therapeutic effect of DNAhsp65 was not abrogated, as indicated by colony forming units and analysis of histopathological changes. In vitro studies indicated that Hsp65-specific IFN-γ production was correlated with vaccine-induced protection in coinfected mice. Moreover, in S. mansoni-coinfected mice, DNA treatment inhibited in vivo TGF-β and IL-10 production, which could be associated with long-term protection. Conclusions/Significance We have demonstrated that the therapeutic effects of DNAhsp65 in experimental TB infection are persistent in the presence of an unrelated Th2 immune response induced by helminth infections. PMID:20544012
Boros, D L; Singh, K P; Gerard, H C; Hudson, A P; White, S L; Cutroneo, K R
2005-08-01
Schistosomiasis mansoni disseminated worm eggs in mice and humans induce granulomatous inflammations and cumulative fibrosis causing morbidity and possibly mortality. In this study, intrahepatic and I.V. injections of a double-stranded oligodeoxynucleotide decoy containing the TGF-beta regulatory element found in the distal promoter of the COL1A1 gene into worm-infected mice suppressed TGF-beta1, COL1A1, tissue inhibitor of metalloproteinase-1, and decreased COL3A1 mRNAs to a lesser extent. Sequence comparisons within the mouse genome found homologous sequences within the COL3A1, TGF-beta1, and TIMP-1 5' flanking regions. Cold competition gel mobility shift assays using these homologous sequences with 5' and 3' flanking regions found in the natural COL1A1 gene showed competition. Competitive gel mobility assays in a separate experiment showed no competition using a 5-base mutated or scrambled sequence. Explanted liver granulomas from saline-injected mice incorporated 10.45 +/- 1.7% (3)H-proline into newly synthesized collagen, whereas decoy-treated mice showed no collagen synthesis. Compared with the saline control schistosomiasis mice phosphorothioate double-stranded oligodeoxynucleotide treatment decreased total liver collagen content (i.e. hydroxy-4-proline) by 34%. This novel molecular approach has the potential to be employed as a novel antifibrotic treatment modality. (c) 2005 Wiley-Liss, Inc.
Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis.
Mirhosseini, Seyed Ali; Fooladi, Abbas Ali Imani; Amani, Jafar; Sedighian, Hamid
Food-borne diseases, caused by the pathogenic bacteria, are highly prevalent in the world. Salmonella is one of the most important bacterial genera responsible for this. Salmonella Enteritidis (SE) is one of the non-typhoid Salmonellae that can be transmitted to human from poultry products, water, and contaminated food. In recent years, new and rapid detection methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) have been developed. In this study, recombinant FliC (rFliC) was produced to be used as an antigen. The immunization was conducted in mice with the purified recombinant FliC (rFliC). The mice were subcutaneously immunized with rFliC and elicited significant rFliC specific serum IgG antibodies. An indirect ELISA system was established for the detection of Salmonella Enteritidis. Our results confirmed that the recombinant flagellin can be one of the excellent indicators for the detection of Salmonella Enteritidis. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Cossa-Moiane, I L; Mendes, T; Ferreira, T M; Mauricio, I; Calado, M; Afonso, A; Belo, S
2015-11-01
Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18- / - and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.
Genetic basis of male sexual behavior.
Emmons, Scott W; Lipton, Jonathan
2003-01-01
Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences. Copyright 2003 Wiley Periodicals, Inc.
Rodgers, D T; Pineda, M A; Suckling, C J; Harnett, W
2015-01-01
Introduction ES-62, a phosphorylcholine (PC)-containing immunomodulator secreted by the parasitic worm Acanthocheilonema viteae, protects against nephritis in the MRL/Lpr mouse model of systemic lupus erythematosus (SLE). However, ES-62 is not suitable for development as a therapy and thus we have designed drug-like small molecule analogues (SMAs) based around its active PC-moiety. To provide proof of concept that ES-62-based SMAs exhibit therapeutic potential in SLE, we have investigated the capacity of two SMAs to protect against nephritis when administered to MRL/Lpr mice after onset of kidney damage. Methods SMAs 11a and 12b were evaluated for their ability to suppress antinuclear antibody (ANA) generation and consequent kidney pathology in MRL/Lpr mice when administered after the onset of proteinuria. Results SMAs 11a and 12b suppressed development of ANA and proteinuria. Protection reflected downregulation of MyD88 expression by kidney cells and this was associated with reduced production of IL-6, a cytokine that exhibits promise as a therapeutic target for this condition. Conclusions SMAs 11a and 12b provide proof of principle that synthetic compounds based on the safe immunomodulatory mechanisms of parasitic worms can exhibit therapeutic potential as a novel class of drugs for SLE, a disease for which current therapies remain inadequate. PMID:26085597
Wang, A; Arai, T; Campbell, A; Reyes, J L; Lopes, F; McKay, D M
2017-11-01
Infection with parasitic helminths can ameliorate the severity of concomitant inflammatory disease. To use the tapeworm, Hymenolepis diminuta, and to extend this concept by assessing whether triggering a memory response against the worm inhibits dinitrobenzene sulphonic acid (DNBS)-induced colitis in Balb/c mice. Initial studies revealed that oral infection with 1, 3 or 5 H. diminuta cysticercoids 8 days before intrarectal administration of DNBS (3 mg) resulted in less severe inflammation and that infected mice displayed an increased propensity for T helper-2 immunity. A 1 mg dose of a PBS-soluble extract of the worm (HdAg) delivered intraperitoneally concomitant with DNBS was anticolitic as determined by macroscopic and histological disease scores 72 hour post-DNBS. Mice infected 28 days previously had a memory response as determined by HdAg-evoked increases in interleukin (IL)-4 and IL-10 from in vitro stimulated splenocytes and serum anti-H. diminuta IgG. Moreover, mice infected with 5 H. diminuta 28 days previously were protected from DNBS-induced colitis by secondary infection or 100 μg HdAg (ip.) at the time of DNBS treatment. An additional approach to managing inflammatory disease could be infection with H. diminuta followed by eliciting antiworm recall responses. © 2017 John Wiley & Sons Ltd.
Eosinophils mediate protective immunity against secondary nematode infection.
Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A
2015-01-01
Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.
Udgaonkar, U S; Dharamsi, R; Kulkarni, S A; Shah, S R; Patil, S S; Bhosale, A L; Gadgil, S A; Mohite, R S
2012-01-01
Intestinal myiasis is a condition when the fly larvae inhabit the gastrointestinal tract and are passed out in faeces. This type of infestation results when eggs or larvae of the fly, deposited on food are inadvertently taken by man. They survive the unfavourable conditions within the gastrointestinal tract and produce disturbances, which may vary from mild to severe. The condition is not uncommon and is often misdiagnosed as pinworm infestation. Correct diagnosis by the clinical microbiologist is important to avoid unnecessary treatment. We had 7 cases of intestinal myiasis. In 2 cases the larvae were reared to adult fly in modified meat and sand medium (developed by Udgaonkar). This medium is simple and can be easily prepared in the laboratory. Of the 7 larvae, 5 were Sarcophaga haemorrhoidalis, 1 Megaselia species and 1 was identified as Muscina stabulans. S. haemorrhoidalis was the commonest maggot involved. A high index of suspicion is required for clinical diagnosis when the patient complains of passing wriggling worms in faeces for a long period without any response to antihelminthics. The reason for long duration of illness and recurrence of infestation is baffling. The nearest to cure was colonic wash. We feel prevention is of utmost importance, which is to avoid eating food articles with easy access to flies.
Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H
2014-12-15
Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.
USDA-ARS?s Scientific Manuscript database
Immune modulation by helminth (worm) parasites could protect the host against autoimmune diseases. We report that the parasitic nematode Nippostrongylus brasiliensis induces changes in the expression of antimicrobial peptides that are associated with marked microbial composition shifts, including re...
Walker, Andrew A; Weisman, Sarah; Trueman, Holly E; Merritt, David J; Sutherland, Tara D
2015-09-01
Glow-worms (larvae of dipteran genus Arachnocampa) are restricted to moist habitats where they capture flying prey using snares composed of highly extensible silk fibres and sticky mucus droplets. Little is known about the composition or structure of glow-worm snares, or the extent of possible convergence between glow-worm and arachnid capture silks. We characterised Arachnocampa richardsae silk and mucus using X-ray scattering, Fourier transform infrared spectroscopy and amino acid analysis. Silk but not mucus contained crystallites of the cross-β-sheet type, which occur in unrelated insect silks but have not been reported previously in fibres used for prey capture. Mucus proteins were rich in Gly (28.5%) and existed in predominantly a random coil structure, typical of many adhesive proteins. In contrast, the silk fibres were unusually rich in charged and polar residues, particularly Lys (18.1%), which we propose is related to their use in a highly hydrated state. Comparison of X-ray scattering, infrared spectroscopy and amino acid analysis data suggests that silk fibres contain a high fraction of disordered protein. We suggest that in the native hydrated state, silk fibres are capable of extension via deformation of both disordered regions and cross-β-sheet crystallites, and that high extensibility is an adaptation promoting successful prey capture. This study illustrates the rich variety of protein motifs that are available for recruitment into biopolymers, and how convergently evolved materials can nevertheless be based on fundamentally different protein structures. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Tang, Duozhuang; Tao, Si; Chen, Zhiyang; Koliesnik, Ievgen Oleksandrovich; Calmes, Philip Gerald; Hoerr, Verena; Han, Bing; Gebert, Nadja; Zörnig, Martin; Löffler, Bettina
2016-01-01
Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways. PMID:26951333
The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster.
Labachyan, Khachik E; Kiani, Dara; Sevrioukov, Evgueni A; Schriner, Samuel E; Jafari, Mahtab
2018-01-01
The root extract of Rhodiola rosea has historically been used in Europe and Asia as an adaptogen, and similar to ginseng and Shisandra , shown to display numerous health benefits in humans, such as decreasing fatigue and anxiety while improving mood, memory, and stamina. A similar extract in the Rhodiola family, Rhodiola crenulata , has previously been shown to confer positive effects on the gut homeostasis of the fruit fly, Drosophila melanogaster. Although, R. rosea has been shown to extend lifespan of many organisms such as fruit flies, worms and yeast, its anti-aging mechanism remains uncertain. Using D. melanogaster as our model system, the purpose of this work was to examine whether the anti-aging properties of R. rosea are due to its impact on the microbial composition of the fly gut. Rhodiola rosea treatment significantly increased the abundance of Acetobacter , while subsequently decreasing the abundance of Lactobacillales of the fly gut at 10 and 40 days of age. Additionally, supplementation of the extract decreased the total culturable bacterial load of the fly gut, while increasing the overall quantifiable bacterial load. The extract did not display any antimicrobial activity when disk diffusion tests were performed on bacteria belonging to Microbacterium , Bacillus , and Lactococcus . Under standard and conventional rearing conditions, supplementation of R. rosea significantly alters the microbial community of the fly gut, but without any general antibacterial activity. Further studies should investigate whether R. rosea impacts the gut immunity across multiple animal models and ages.
Ziewer, Sebastian; Hübner, Marc P.; Dubben, Bettina; Hoffmann, Wolfgang H.; Bain, Odile; Martin, Coralie; Hoerauf, Achim; Specht, Sabine
2012-01-01
Background Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. Methodology/Principal Findings Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. Conclusions/Significance Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis. PMID:22413031
Modulation of visual physiology by behavioral state in monkeys, mice, and flies.
Maimon, Gaby
2011-08-01
When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Drosophila Ana2 is a conserved centriole duplication factor
Stevens, Naomi R.; Dobbelaere, Jeroen; Brunk, Kathrin; Franz, Anna
2010-01-01
In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP—orthologues of ZYG-1, SAS-6, and SAS-4, respectively—are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery. PMID:20123993
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, E.R.; Dobinson, A.R.
1984-06-01
Mechanically transformed schistosomula of Schistosoma mansoni were irradiated with levels of 60Co irradiation between 2.5 and 54 krad, cryopreserved by the two-step addition of ethanediol and rapid cooling technique, and were injected intramuscularly into groups of mice which were perfused 40 days later. The schistosomula were either irradiated and then cryopreserved (IC) or cryopreserved and then irradiated in the frozen state (CI). Development into adult worms was prevented with 4 krad for IC schistosomula, but for CI schistosomula a small number of worms (1.6%) was recovered using 8.8 krad. A dose of 4 krad was sufficient to prevent development ofmore » unfrozen controls (I), but for schistosomula irradiated while exposed to ethanediol (EI), a dose of 7 krad was required. Using the different protocols, the peak levels of protection against a challenge infection were achieved with 9 (IC) and 16 krad (CI), compared to 20 krad for unfrozen schistosomula (I) reported previously. The highest level of protection (65%) was achieved with CI schistosomula. Possible interactions between the radioprotective and damaging effects of cryopreservation are discussed.« less
Effects of dietary intake of garlic on intestinal trematodes.
Cortés, Alba; García-Ferrús, Miguel; Sotillo, Javier; Guillermo Esteban, J; Toledo, Rafael; Muñoz-Antolí, Carla
2017-08-01
The current strategy for the control of helminth infections relies on chemotherapy. However, resistance appearance is promoting the necessity of developing new drugs against trematodes. Herein, potential trematocidal effects of garlic (Allium sativum) are investigated in the context of intestinal foodborne trematodes, employing the Echinostoma caproni-mouse model. Daily administration of dietary doses of garlic was conducted in three groups of mice: (i) before infection (prophylaxis), (ii) after infection (therapeutic) and (iii) both, before and after infection (continuous). A fourth group of mice, not exposed to garlic, was used as control. No differences in worm recovery, fecundity and local cytokine expression profiles were found with respect to control infections. However, considerable alterations in tegument structure, including swelling, furrowing, vacuolization and changes in secretory bodies were detected in garlic-exposed parasites using scanning and transmission electron microscopy. Protein secretion was markedly reduced in response to garlic, whereas up-regulation of several proteins, such as major vault protein and tER-ATPase, was observed in treated worms. The results presented herein provide new insights in the anthelminthic activity of bioactive garlic compounds and the manner that parasites respond to toxins.
Role of helminths in regulating mucosal inflammation.
Weinstock, Joel V; Summers, Robert W; Elliott, David E
2005-09-01
The rapid rise in prevalence of ulcerative colitis (UC) and Crohn's disease (CD) in highly developed countries suggests that environmental change engenders risk for inflammatory bowel disease (IBD). Eradication of parasitic worms (helminths) through increased hygiene may be one such change that has led to increased prevalence of these diseases. Helminths alter host mucosal and systemic immunity, inhibiting dysregulated inflammatory responses. Animals exposed to helminths are protected from experimental colitis, encephalitis, and diabetes. Patients with CD or UC improve when exposed to whipworm. Lamina propria (LP) mononuclear cells from helminth-colonized mice make less interleukin (IL)-12 p40 and IFN-gamma, but more IL-4, IL-13, IL-10, TGF-beta, and PGE(2) compared to LP mononuclear cells from naive mice. Systemic immune responses show similar skewing toward Th2 and regulatory cytokine production in worm-colonized animal models and humans. Recent reports suggest that helminths induce regulatory T cell activity. These effects by once ubiquitous organisms may have protected individuals from many of the emerging immune-mediated illnesses like IBD, multiple sclerosis, type I diabetes, and asthma.
Bian, Meng; Li, Shan; Wang, Xiaoyun; Xu, Yanquan; Chen, Wenjun; Zhou, Chenhui; Chen, Xueqing; He, Lei; Xu, Jin; Liang, Chi; Wu, Zhongdao; Huang, Yan; Li, Xuerong; Yu, Xinbing
2014-05-01
Recently, accumulating evidences indicate that nitric oxide (NO) is a potent mediator with diverse roles in regulating cellular functions, signaling pathways, and variety of pathological processes. In the present study, using data from the published genomic for Clonorchis sinensis (C. sinensis), we investigated a gene encoding nitric oxide synthase-interacting protein (NOSIP) of C. sinensis. Recombinant CsNOSIP (rCsNOSIP) was expressed and purified from Escherichia coli BL21. The open reading frame of CsNOSIP comprises 867 bp which encodes 289 amino acids and shares 72.9, 45.2, 47, 46.4, and 45.8% identity with NOSIP from Schistosoma mansoni, Xenopus laevis, Rattus norvegicus, Mus musculus, and Homo sapiens, respectively. Bioinformatics analysis suggested that the full-length sequence contains an eNOS-interacting domain and numerous B-cell epitopes. Quantitative RT-PCR indicated that CsNOSIP differentially transcribed throughout the adult worms, metacercariae, and egg stages of C. sinensis, and were highly expressed in the adult worms. Moreover, western blot analysis showed that the rCsNOSIP could be detected by the serum from BALB/c mice infected with C. sinensis and the serum from BALB/c mice immunized with excretory/secretory products (ESPs). Furthermore, immunolocalization assay showed that CsNOSIP was specifically localized in the intestine, vitellarium, and eggs of adult worm. Both immunoblot and immunolocalization results demonstrated that CsNOSIP was one component of ESPs of C. sinensis, which could be supported by SignalP analysis. Moreover, analysis of the antibody subclass and cytokine profile demonstrated that subcutaneously immunized BALB/c mice with rCsNOSIP could significantly enhance serum IgG1 level and up-regulate expression of IL-4 and IL-6 in the splenocytes. Our results suggested that CsNOSIP was an important antigen exposed to host immune system and probably involved in immune regulation of host by inducing Th2-polarized immune response.
Drosophila TRP channels and animal behavior
Fowler, Melissa A.; Montell, Craig
2012-01-01
Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650
Helminthic therapy: using worms to treat immune-mediated disease.
Elliott, David E; Weinstock, Joel V
2009-01-01
There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.
Rzepecka, Justyna; Pineda, Miguel A; Al-Riyami, Lamyaa; Rodgers, David T; Huggan, Judith K; Lumb, Felicity E; Khalaf, Abedawn I; Meakin, Paul J; Corbet, Marlene; Ashford, Michael L; Suckling, Colin J; Harnett, Margaret M; Harnett, William
2015-06-01
Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1β was the most down-regulated gene. Consistent with this, IL-1β was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1β by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rea, Shane L.; Graham, Brett H.; Nakamaru-Ogiso, Eiko; Kar, Adwitiya; Falk, Marni J.
2013-01-01
The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacteria Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multi-cellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems. PMID:20818735
Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid
2018-04-01
Urinary tract infections (UTI) caused by Proteus mirabilis are prevalent among the catheterized patients. There is no effective vaccine to reduce the frequency of UTIs caused by P. mirabilis. In the present study, the immune responses and effectiveness of different combinations of MrpA and flagellin (FliC) of P. mirabilis were assessed intranasally in the mice model. The addition of FliC as adjuvant to MrpA in fusion form significantly raised the mucosal IgA and cellular (IFN-γ and IL-17) responses and maintained the serum IgG responses for 180 days after the first vaccination. Furthermore, MrpA in fusion form with FliC significantly increased the systemic, mucosal and IFN-γ responses of the FliC alone. In a bladder challenge assay with P. mirabilis, the fusion MrpA.FliC and the mixture of MrpA and FliC significantly decreased the colony count of the bacteria in the bladder and kidneys of mice in comparison to the control mice. It suggests a complex of the systemic, mucosal and cellular responses are needed for protection of the bladder and kidneys against P. mirabilis UTI. In our knowledge, the adjuvant property of the recombinant P. mirabilis flagellin was evaluated for the first time in a vaccine combination administered by an intranasal route. Our results suggest the recombinant flagellin of P. mirabilis could be used as an intranasal adjuvant in combination with other potential antigens against UTIs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xue, Jian; Jiang, Bin; Liu, Cong-Shan; Sun, Jun; Xiao, Shu-Hua
2013-06-01
To observe and compare the inhibition of hemozoin formation and the in vitro as well as in vivo antischistosomal activity induced by seven antimalarial drugs. Inhibition of hemozoin formation displayed by chloroquine phosphate, quinine hydrochloride, quinidine, mefloquine hydrochloride, pyronaridine phosphate and lumefantrine at 25 micromol/L, and artemether at 100 micromol/L was performed by assay of inhibition of beta-hematin formation in 1 mol/L sodium acetate buffers containing hematin with various pH of 4.0, 4.2, 4.4, 4.6, 4.8, and 5.0. In in vitro antischistosomal study, the medium of RPMI 1640 supplemented by 10% calf serum was used to maintain the adult Schistosoma japonicum, and the 50% and 95% lethal concentrations (LC50 and LC95) to kill the adult worms of each drug were then determined. Meanwhile, the interaction of quinine, pyronaridine and chloroquine combined with hemin against adult schistosomes was also undertaken. As to in vivo test, the efficacy of seven antimalarial drugs administered orally or intraperitoneally to mice infected with adult schistosomes was observed. In the acidic acetate-hematin solution, 25 micromol/L pyronaridine showed significant inhibition of beta-hematin formation at pH 4.4-5.0 with inhibition rates of 81.3%-97.0%. At pH 4.6, the inhibition rates of beta-hematin formation in acetate-hematin solution induced by mefloquine, chloroquine or quinine at concentration of 25 beta mol/L were 79.7%, 72.8% or 65.8%, respectively, and the beta-hematin formation was continually inhibited by these 3 antimalarial drugs at pH 4.8 and 5.0 with inhibition rates of 83.1%-90.6%, 41.9%-49.0% or 53.2-62.0%. The inhibition rates of beta-hematin formation at pH 4.6 and 4.8-5.0 induced by lumefantrine 25 micromol/L were 74.3% and 40.4%-40.5%, respectively. While under the same concentration of quinidine, 53.4% and 50.9% inhibition rates of beta-hematin formation were observed at pH 4.8 and 5.0. As to artemether, higher concentration of 100 micromol/L only showed light inhibition of beta-hematin formation at pH 4.4-4.8 with inhibition rates of 16.6%-25.0%. As regard to in vitro test, the LC50 and LC95 of mefloquine, pyronaridine, quinine and quinidine were 4.93 and 6.123 microg/ml, 37.278 and 75.703 microg/ml, 93.688 and 134.578 microg/ml, as well as 101.534 and 129.957 microg/ml, respectively. When adult schistosomes were exposed to the medium containing chloroquine, lumefantrine or artemether at higher concentrations of 100 or 120 microg/ml for 72 h, no or only individual worms died. Hence the LC50 and LC95 of these 3 drugs could not be determined. In other in vitro test, adult schistosomes exposed to quinine 50 micromol/L (20 microg/ml) in combination with 153.4 micromol/L (100 microg/ml) hemin, all worms died within 72 h post incubation. While the worms exposed to 50 micromol/L (26 microg/ml) chloroquine combined with the same concentration of hemin, only 18.8%(3/16) of worm died at 72 h post exposure. Unexpectedly, in schistosomes exposed to pyronaridine at a toxic concentrations of 50 micromol/L (46 microg/ml) in combination with 153.4 mol/L (100 microg/ml) hemin for 72 h, all of the worms were protected from the toxic action induced by pyronaridine, which revealed in normal motor activity and appearance of morphology in majority of the worms. In in vivo test, mice infected with adult schistosomes were treated orally with chloroquine, pyronaridine or lumefantrine at a daily dose of 400 mg/kg for 3 days, or intraperitoneally with chloroquine or pyronaridine at a daily dose of 100 mg/kg for 2 or 3 days, no apparent efficacy was seen. When mefloquine, quinine, quinidine or artemether were administered orally to infected mice at a single dose of 400 mg/kg or 200 mg/kg (mefloquine), all groups of mice treated showed moderate or higher efficacy with worm burden reductions of 61.1%-98.1%. Among the seven antimalarial drugs tested, their inhibitions of hemozoin (beta-hematin) exhibit no definite correlation to their in vitro and in vivo antischistosomal activity. Quinine in combination with hemin shows synergistic effect against schistosomes in vitro. While antagonist effect is observed in pyronaridine combined with hemin.
AZIZI, Hekmat; FARAHNAK, Ali; MOBEDI, Iraj; MOLAEI RAD, MohamadBagher
2015-01-01
Background: Human Echinostomiasis is an intestinal disease caused by the members of family Echinostomatidae parasites. The aim of present research was to identify echinostomatidae cercariae emitted by Lymnaea palustris snails from Mazandaran province in the north of Iran based on the morphological and morphometrical characteristics of the different stages of experimental parasite life cycle. Methods: Echinostomatidae cercariae were collected from L. palustris (Gastropoda: Lymnaeidae) of the north of Iran. To collect metacercaria, 50 healthy snails were infected with cercariae experimentally (50 cercariae for each). To obtain the adult stage, 9 laboratory animals (3 ducks, 2 rats, 2 mice and 2 quails) were fed with 60 metacercaria for each. To identify parasite, the different stages of worm were examined using light microscope and then the figures were draw under camera Lucida microscope and measures were determined. Results: Averagely, 15metacercaria were obtained from each snail that had been previously exposed with cercariae. Ducks presented worm eggs in feces after 10–15 days post-infection. Intestinal worms were collected and identified as Hypoderaeum conoideum on the bases of figures and measures of cephalic collar, the number of collar spine, suckers diameter ratio, testes arrangement, etc. Conclusion: H. conoideum cercariae and adult worm are described. This is the first report of the different stages of the experimental life cycle of this parasite in Iran. PMID:25904952
Azizi, Hekmat; Farahnak, Ali; Mobedi, Iraj; Molaei Rad, MohamadBagher
2015-01-01
Human Echinostomiasis is an intestinal disease caused by the members of family Echinostomatidae parasites. The aim of present research was to identify echinostomatidae cercariae emitted by Lymnaea palustris snails from Mazandaran province in the north of Iran based on the morphological and morphometrical characteristics of the different stages of experimental parasite life cycle. Echinostomatidae cercariae were collected from L. palustris (Gastropoda: Lymnaeidae) of the north of Iran. To collect metacercaria, 50 healthy snails were infected with cercariae experimentally (50 cercariae for each). To obtain the adult stage, 9 laboratory animals (3 ducks, 2 rats, 2 mice and 2 quails) were fed with 60 metacercaria for each. To identify parasite, the different stages of worm were examined using light microscope and then the figures were draw under camera Lucida microscope and measures were determined. Averagely, 15metacercaria were obtained from each snail that had been previously exposed with cercariae. Ducks presented worm eggs in feces after 10-15 days post-infection. Intestinal worms were collected and identified as Hypoderaeum conoideum on the bases of figures and measures of cephalic collar, the number of collar spine, suckers diameter ratio, testes arrangement, etc. H. conoideum cercariae and adult worm are described. This is the first report of the different stages of the experimental life cycle of this parasite in Iran.
Koko, W S; Abdalla, H S; Galal, M; Khalid, H S
2005-01-01
The efficacy of Balanites aegyptiaca fruit mesocarp was compared with praziquantel in mice infected with Sudanese strain of Schistosoma mansoni. Infected mice were given a single dose of 200 mg/kg body weight of B. aegyptiaca fruit mesocarp and 200 mg/kg b.w. of praziquantel after 6 weeks from the onset of the infection. A significant reduction was observed in EPG (egg count per gram of faeces), eggs burden in tissues and recovery of adult worms (P<0.05) for both the plant and the drug-treated animals.
Immunity to Trichinella spiralis infection in vitamin A-deficient mice
1992-01-01
Vitamin A-deficient (A-) mice make strikingly poor IgG responses when they are immunized with purified protein antigens. Previously, we showed that A- T cells overproduce interferon gamma (IFN-gamma), which then could inhibit interleukin 4 (IL-4)-stimulated B cell IgG responses. To determine if the altered IFN-gamma regulation pattern and its immunological consequences would extend to a natural infection, we studied mice infected with the parasitic helminth Trichinella spiralis. The course of the infection was similar in A- and A-sufficient (A+) mice. These mice did not differ with respect to newborn larvae/female/hour produced in the intestine, or muscle larvae burden 5 wk postinfection. They also did not differ in the intestinal worm expulsion rate until day 15, when A- mice still harbored parasites, whereas A+ mice had cleared intestinal worms. Vitamin A deficiency reduced both the frequency of B lymphocytes secreting IgG1 antibodies to parasite antigens, and the bone marrow eosinophilia associated with helminth infection. The cytokine secretion patterns in infected mice were consistent with these observations and with previous studies. Mesenteric lymph node cells from infected A- mice secreted significantly more IFN-gamma, and significantly less IL-2, IL-4, and IL- 5 than infected A+ controls. A- splenocytes secreted significantly more IFN-gamma, and equivalent amounts of IL-2, IL-4, and IL-5 compared with A+ controls. Interestingly, CD4-CD8- cells secreted the majority of the IL-4 produced in the spleen. The IL-2, IL-4, and IL-5 steady-state transcript levels correlated with secreted protein levels, but IFN- gamma transcripts did not. Although they secreted more protein, A- cells contained fewer IFN-gamma transcripts than A+ cells. These results suggest two vitamin A-mediated regulation steps in IFN-gamma gene expression: positive regulation of IFN-gamma transcript levels, and negative regulation posttranscriptionally. The essentially unaltered outcome of T. spiralis infection in vitamin A-deficient mice probably reflects a balance between cellular and humoral responses. The IFN-gamma overproduction might have a positive effect on the gut inflammatory response, but the decrease eosinophilia, cytokine production in mesenteric lymph node, and IgG1-secreting cell frequency might have a negative effect on T. spiralis immunity. PMID:1730911
Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in Vertebratesa
Anderson, E.O.; Schneider, E.R.; Bagriantsev, S.N.
2017-01-01
Mechanosensitivity is a fundamental physiological capacity, which pertains to all life forms. Progress has been made with regard to understanding mechanosensitivity in bacteria, flies, and worms. In vertebrates, however, the molecular identity of mechanotransducers in somatic and neuronal cells has only started to appear. The Piezo family of mechanogated ion channels marks a pivotal milestone in understanding mechanosensitivity. Piezo1 and Piezo2 have now been shown to participate in a number of processes, ranging from arterial modeling to sensing muscle stretch. In this review, we focus on Piezo2 and its role in mediating mechanosensation and proprioception in vertebrates. PMID:28728817
JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity.
Kapfhamer, David; King, Ian; Zou, Mimi E; Lim, Jana P; Heberlein, Ulrike; Wolf, Fred W
2012-01-01
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
I'm sexy and I glow it: female ornamentation in a nocturnal capital breeder.
Hopkins, Juhani; Baudry, Gautier; Candolin, Ulrika; Kaitala, Arja
2015-10-01
In many species, males rely on sexual ornaments to attract females. Females, by contrast, rarely produce ornaments. The glow-worm (Lampyris noctiluca) is an exception where wingless females glow to attract males that fly in search of females. However, little is known about the factors that promote the evolution of female ornaments in a sexual selection context. Here, we investigated if the female ornament of the glow-worm is a signal of fecundity used in male mate choice. In support of this, we found brightness to correlate with female fecundity, and males to prefer brighter dummy females. Thus, the glow emitted by females is a reliable sexual signal of female fecundity. It is likely that male preference for the fecundity-indicating ornament has evolved because of large variation among females in fecundity, and because nocturnal males cannot directly assess female size and fecundity. These results indicate that female ornamentation may evolve in capital breeders (i.e. those in which stored resources are invested in reproduction) when females vary significantly in fecundity and this variation cannot be assessed directly by males. © 2015 The Author(s).
TPL-2 restricts Ccl24-dependent immunity to Heligmosomoides polygyrus
Kannan, Yashaswini; Entwistle, Lewis J.; Pelly, Victoria S.; Perez-Lloret, Jimena; Ley, Steven C.
2017-01-01
TPL-2 (COT, MAP3K8) kinase activates the MEK1/2-ERK1/2 MAPK signaling pathway in innate immune responses following TLR, TNFR1 and IL-1R stimulation. TPL-2 contributes to type-1/Th17-mediated autoimmunity and control of intracellular pathogens. We recently demonstrated TPL-2 reduces severe airway allergy to house dust mite by negatively regulating type-2 responses. In the present study, we found that TPL-2 deficiency resulted in resistance to Heligmosomoides polygyrus infection, with accelerated worm expulsion, reduced fecal egg burden and reduced worm fitness. Using co-housing experiments, we found resistance to infection in TPL-2 deficient mice (Map3k8–/–) was independent of microbiota alterations in H. polygyrus infected WT and Map3k8–/–mice. Additionally, our data demonstrated immunity to H. polygyrus infection in TPL-2 deficient mice was not due to dysregulated type-2 immune responses. Genome-wide analysis of intestinal tissue from infected TPL-2-deficient mice identified elevated expression of genes involved in chemotaxis and homing of leukocytes and cells, including Ccl24 and alternatively activated genes. Indeed, Map3k8–/–mice had a significant influx of eosinophils, neutrophils, monocytes and Il4GFP+ T cells. Conditional knockout experiments demonstrated that specific deletion of TPL-2 in CD11c+ cells, but not Villin+ epithelial cells, LysM+ myeloid cells or CD4+ T cells, led to accelerated resistance to H. polygyrus. In line with a central role of CD11c+ cells, CD11c+ CD11b+ cells isolated from TPL-2-deficient mice had elevated Ccl24. Finally, Ccl24 neutralization in TPL-2 deficient mice significantly decreased the expression of Arg1, Retnla, Chil3 and Ear11 correlating with a loss of resistance to H. polygyrus. These observations suggest that TPL-2-regulated Ccl24 in CD11c+CD11b+ cells prevents accelerated type-2 mediated immunity to H. polygyrus. Collectively, this study identifies a previously unappreciated role for TPL-2 controlling immune responses to H. polygyrus infection by restricting Ccl24 production. PMID:28759611
Seif el-Din, Sayed H; El-Lakkany, Naglaa M; Mohamed, Mona A; Hamed, Manal M; Sterner, Olov; Botros, Sanaa S
2014-02-01
Calotropis procera (Ait.) R. Br. (Asclepiadaceae), Ficus elastica Roxb. (Moraceae) and Zingiber officinale Roscoe (Zingiberaceae) have been traditionally used to treat many diseases. The antischistosomal activity of these plant extracts was evaluated against Schistosoma mansoni. Male mice exposed to 80 ± 10 cercariae per mouse were divided into two batches. The first was divided into five groups: (I) infected untreated, while groups from (II-V) were treated orally (500 mg/kg for three consecutive days) by aqueous stem latex and flowers of C. procera, latex of F. elastica and ether extract of Z. officinale, respectively. The second batch was divided into four comparable groups (except Z. officinale-treated group) similarly treated as the first batch in addition to the antacid ranitidine (30 mg/kg) 1 h before extract administration. Safety, worm recovery, tissues egg load and oogram pattern were assessed. Calotropis procera latex and flower extracts are toxic (50-70% mortality) even in a small dose (250 mg/kg) before washing off their toxic rubber. Zingiber officinale extract insignificantly decrease (7.26%) S. mansoni worms. When toxic rubber was washed off and ranitidine was used, C. procera (stem latex and flowers) and F. elastica extracts revealed significant S. mansoni worm reductions by 45.31, 53.7 and 16.71%, respectively. Moreover, C. procera extracts produced significant reductions in tissue egg load (∼34-38.5%) and positively affected oogram pattern. The present study may be useful to supplement information with regard to C. procera and F. elastica antischistosomal activity and provide a basis for further experimental trials.
Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans
Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.
2011-01-01
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947
Regulation of schistosome egg production by HMG CoA reductase
DOE Office of Scientific and Technical Information (OSTI.GOV)
VandeWaa, E.A.; Bennett, J.L.
1986-03-05
Hydroxymethylglutaryl coenzyme A reductase (HMG CoA reductase) catalyzes the conversion of HMG CoA to mevalonate in the synthesis of steroids, isoprenoids and terpenes. Mevinolin, an inhibitor of this enzyme, decreased egg production in Schistosoma mansoni during in vitro incubations. This was associated with a reduction in the incorporation of /sup 14/C-acetate into polyisoprenoids and a reduction in the formation of a lipid-linked oligosaccharide. In vivo, mevinolin in daily doses of 50 mg/kg (p.o., from days 30-48 post-infection) caused no change in gross liver pathology in S. mansoni infected mice. However, when parasites exposed to mevinolin or its vehicle in vivomore » were cultured in vitro, worms from mevinolin-treated mice produced six times more eggs than control parasites. When infected mice were dosed with 250 mg/kg mevinolin daily (p.o., from days 35-45 post-infection), liver pathology was reduced in comparison to control mice. Thus, during in vivo exposure to a high dose of the drug egg production is decreased, while at a lower dose it appears unaffected until the parasites are cultured in a drug-free in vitro system wherein egg production is stimulated to extraordinarily high levels. It may be that at low doses mevinolin, by inhibiting the enzyme, is blocking the formation of a product (such as an isoprenoid) which normally acts to down-regulate enzyme synthesis, resulting in enzyme induction. Induction of HMG CoA reductase is then expressed as increased egg production when the worms are removed from the drug. These data suggest that HMG CoA reductase plays a role in schistosome egg production.« less
A new focus of schistosomiasis mansoni in Hayk town, northeastern Ethiopia.
Amsalu, Gashaw; Mekonnen, Zeleke; Erko, Berhanu
2015-02-03
The endemicity of human schistosomiasis has long been established in Ethiopia, and new foci have also been continuously reported.The objective of this study was to determine the transmission and magnitude of schistosomiasis in Hayk area, northeastern Ethiopia. A cross sectional parasitological survey involving 384 school children was conducted for intestinal schistosomiasis between January and March 2010 in two primary schools in Hayk area, northeastern Ethiopia. The stool samples were processed for microscopic examination using Kato-Katz technique. Malacological survey and observation on human water contact activities were also carried out. Snails were checked for schistosome infection by shedding and lab-bred mice were exposed to the cercariae shed from Biomphalaria pfeifferi en masse. Adult Schistosoma mansoni worms were harvested from the mice after 45 days of exposure to the schistosome cercariae. The overall prevalence and intensity of intestinal schistosomiasis among school children in Hayk Number 1 and Hayk Number 2 Primary Schools was found to be 45% and 161 epg, respectively. The prevalence of infection had relationship with age and sex. Males were more infected than females. Children in the age group 15-19 years had the highest infection rate, followed by 10-14 and 5-9 years age group. Schistosome infection in Biomphalaria pfeifferi was 3.2%. Schistosome infection was also established in laboratory-bred mice and adult Schistosoma mansoni worms were harvested. The observed intestinal schistosomiasis with prevalence of 45% among young children, collection of schistosome infected Biomphalaria pfeifferi, and the establishment of lab infection in mice showed that transmission of intestinal schistosomiasis is taking place in the area. Preventive chemotherapy with praziquantel should be immediately put in place to reduce morbidity and interrupt transmission of schistosomiasis in the area.
Carvalho-Queiroz, Claudia; Cook, Rosemary; Wang, Ching C.; Correa-Oliveira, Rodrigo; Bailey, Nicola A.; Egilmez, Nejat K.; Mathiowitz, Edith; LoVerde, Philip T.
2004-01-01
Schistosoma mansoni, an intravascular parasite, has evolved a number of immune evasion mechanisms to establish itself in the host, such as antioxidant enzymes. Our laboratory has demonstrated that the highest levels of certain antioxidant enzymes are found in adult worms, which are the least susceptible to immune killing. Vaccination of mice with naked DNA constructs containing the gene encoding Cu/Zn cytosolic superoxide dismutase (SmCT-SOD) showed significant levels of protection compared to a control group, and our data demonstrate that the adult worms are a target of the immune response that confers resistance in SmCT-SOD DNA-vaccinated mice. Because SmCT-SOD shows significant identity with the human homologue, we evaluated the reactivity of anti-SmCT-SOD antibodies derived from SmCT-SOD-immunized mice and rabbits and from S. mansoni-infected individuals to human superoxide dismutase (hSOD) and SmCT-SOD parasite-specific peptides to assess the potential for autoimmune responses from immunization with the recombinant molecule. In addition, we evaluated the ability of various SmCT-SOD adjuvant-delivered immunizations to induce cross-reactive antibodies. Both mouse and rabbit antibodies generated against SmCT-SOD recognized the denatured form of hSOD. The same antibodies did not recognize nondenatured hSOD. Sera from infected individuals with different clinical forms of schistosomiasis recognized SmCT-SOD but not hSOD. Antibodies from mice immunized with different SmCT-SOD-containing formulations of both DNA and protein were able to recognize SmCT-SOD-derived peptides but not soluble hSOD. All together, these findings serve as a basis for developing a subunit vaccine against schistosomiasis. PMID:15102772
Dallaire, Alexandra; Garand, Chantal; Paquet, Eric R.; Mitchell, Sarah J.; de Cabo, Rafael; Simard, Martin J.
2012-01-01
Small non-coding microRNAs are believed to be involved in the mechanism of aging but nothing is known on the impact of microRNAs in the progeroid disorder Werner syndrome (WS). WS is a premature aging disorder caused by mutations in a RecQ-like DNA helicase. Mice lacking the helicase domain of the WRN ortholog exhibit many phenotypic features of WS, including a pro-oxidant status and a shorter mean life span. Caenorhabditis elegans (C. elegans) with a nonfunctional wrn-1 DNA helicase also exhibit a shorter life span. Thus, both models are relevant to study the expression of microRNAs involved in WS. In this study, we show that miR-124 expression is lost in the liver of Wrn helicase mutant mice. Interestingly, the expression of this conserved miR-124 in whole wrn-1 mutant worms is also significantly reduced. The loss of mir-124 in C. elegans increases reactive oxygen species formation and accumulation of the aging marker lipofuscin, reduces whole body ATP levels and results in a reduction in life span. Finally, supplementation of vitamin C normalizes the median life span of wrn-1 and mir-124 mutant worms. These results suggest that biological pathways involving WRN and miR-124 are conserved in the aging process across different species. PMID:23075628
Zhao, F; Huang, X; Hou, X; Deng, Y; Wu, M; Guan, F; Liu, W; Li, Y; Lei, J
2013-01-01
This study was to investigate the differences between neonate mice born to Schistosoma japonicum-infected mothers and those born to noninfected mothers in subsequent challenge. The intensity of infection (evidenced by worm burden and liver egg burden) and liver immunopathology (number and size of liver granulomas) were significantly reduced in neonates from infected mothers (I.M.) compared with neonates from noninfected mothers (N.M.). Anti-soluble worm antigen of S. japonicum (SWA) IgG could be detected in sera of neonates from I.M. (N.N./I.M.) at 1 week after delivery, remained a plateau for 2 weeks and gradually decreased until 8 weeks of age. Parasite-specific IgM was not detected in sera from N.N./I.M. at any time after delivery. At 6 weeks after infection, the level of anti-SWA IgG in infected neonates from I.M. (I.N./I.M.) was significantly higher than that of infected neonates from N.M. (I.N./N.M.). In addition, production of IFN-γ, IL-12 and TGF-β by cultured splenocytes from I.N./I.M. was significantly increased, while the level of IL-4 was significantly decreased when compared to those from I.N./N.M.. These data demonstrate that congenital exposure to schistosomiasis japonica may render neonatal mice born to I.M. less susceptible to subsequent challenge and result in down-regulation of both infection intensity and immunopathology. © 2013 John Wiley & Sons Ltd.
Gurvitz, Aner
2009-01-01
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research. PMID:19924289
Oates, A C; Wollberg, P; Achen, M G; Wilks, A F
1998-08-28
The polymerase chain reaction (PCR), with cDNA as template, has been widely used to identify members of protein families from many species. A major limitation of using cDNA in PCR is that detection of a family member is dependent on temporal and spatial patterns of gene expression. To circumvent this restriction, and in order to develop a technique that is broadly applicable we have tested the use of genomic DNA as PCR template to identify members of protein families in an expression-independent manner. This test involved amplification of DNA encoding protein tyrosine kinase (PTK) genes from the genomes of three animal species that are well known development models; namely, the mouse Mus musculus, the fruit fly Drosophila melanogaster, and the nematode worm Caenorhabditis elegans. Ten PTK genes were identified from the mouse, 13 from the fruit fly, and 13 from the nematode worm. Among these kinases were 13 members of the PTK family that had not been reported previously. Selected PTKs from this screen were shown to be expressed during development, demonstrating that the amplified fragments did not arise from pseudogenes. This approach will be useful for the identification of many novel members of gene families in organisms of agricultural, medical, developmental and evolutionary significance and for analysis of gene families from any species, or biological sample whose habitat precludes the isolation of mRNA. Furthermore, as a tool to hasten the discovery of members of gene families that are of particular interest, this method offers an opportunity to sample the genome for new members irrespective of their expression pattern.
Laboratory assessment of molluscicidal and cercariacidal effects of Glinus lotoides fruits
2014-01-01
Background The negative impact of synthetic molluscicides on the environment and their high cost necessitated search for an alternative approach of using plant extracts for the control of schistosomiasis. The objective of this study was, therefore, to evaluate aqueous and ethyl acetate crude extracts of Glinus lotoides fruits for their cercariacidal activity and molluscicidal effect against schistosome snail intermediate hosts. Methods Assessment of the molluscicidal activity against Biomphalaria pfeifferi was made by immersion method in accordance with WHO guideline. The results of mortality were statistically analyzed using probit analysis. The attenuating effect of the plant on Schistosoma mansoni cercariae was determined using establishment of adult worms as a parasitological parameter post exposure. Results The 24 and 48 hour-LC50 values for the aqueous extract of G. lotoides fruits were 47.1 and 44.1 mg/L, respectively, whereas that of ethyl acetate were 66.1 and 59.6 mg/L, respectively. The 24 and 48 hour LC90 values for the aqueous extract of G. lotoides fruits were 56.96 and 51.0 mg/L, respectively, while that of ethyl acetate were 77.2 and 70.0 mg/L, respectively. The in vitro cercariacidal activity was determined after 2 hrs of exposure to the aqueous plant extract. It was found out that the LC50 and LC90 values were 18.7 and 41.7 mg/L, respectively. Besides, infectivity of Schistosoma mansoni cercariae to mice was determined by exposing mice to cercariae pre-treated with the sub-lethal concentrations (3.7, 11.6 and 18.7 mg/L) of the aqueous extract. A significant reduction in worm burden in mice was obtained at 11.6 mg/L (p < 0.05). Moreover, the reduction in number of worms recovered was highly significant at 18.7 mg/L (p < 0.001). Conclusions The results showed that G. lotoides has molluscicidal activity against B. pfeifferi snails and cercariacidal activity against S. mansoni. Yet, further comprehensive evaluation is recommended for the possible use of G. lotoides against B. pfeifferi and the schistosome parasite. PMID:24713133
Gonçalves de Assis, Natan Raimundo; Batistoni de Morais, Suellen; Figueiredo, Bárbara Castro Pimentel; Ricci, Natasha Delaqua; de Almeida, Leonardo Augusto; da Silva Pinheiro, Carina; Martins, Vicente de Paulo; Oliveira, Sergio Costa
2015-01-01
Schistosomiasis is an important parasitic disease worldwide that affects more than 207 million people in 76 countries and causes approximately 250,000 deaths per year. The best long-term strategy to control schistosomiasis is through immunization combined with drug treatment. Due to the ability of DNA vaccines to generate humoral and cellular immune responses, such vaccines are considered a promising approach against schistosomiasis. Sm29 and tetraspanin-2 (Sm-TSP2) are two proteins that are located in the S. mansoni tegument of adult worms and schistosomula and induce high levels of protection through recombinant protein immunization. In this study, we transfected BHK-21 cells with plasmids encoding Sm29, Sm-TSP2 or a chimera containing both genes. Using RT-PCR analysis and western blot, we confirmed that the DNA vaccine constructs were transcribed and translated, respectively, in BHK-21 cells. After immunization of mice, we evaluated the reduction in worm burden. We observed worm burden reductions of 17-22%, 22%, 31-32% and 24-32% in animals immunized with the pUMVC3/Sm29, pUMVC3/SmTSP-2, pUMVC3/Chimera and pUMVC3/Sm29 + pUMVC3/SmTSP-2 plasmids, respectively. We evaluated the humoral response elicited by DNA vaccines, and animals immunized with pUMVC3/Sm29 and pUMVC3/Sm29 + pUMVC3/SmTSP-2 showed higher titers of anti-Sm29 antibodies. The cytokine profile produced by the spleen cells of immunized mice was then evaluated. We observed higher production of Th1 cytokines, such as TNF-α and IFN-γ, in vaccinated mice and no significant production of IL-4 and IL-5. The DNA vaccines tested in this study showed the ability to generate a protective immune response against schistosomiasis, probably through the production of Th1 cytokines. However, future strategies aiming to optimize the protective response induced by a chimeric DNA construct need to be developed. PMID:25942636
Drug Discovery in Fish, Flies, and Worms
Strange, Kevin
2016-01-01
Abstract Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies. PMID:28053067
EFFECT OF CONVENTIONAL AND ADVANCED COAL CONVERSION BY-PRODUCTS ON THE PULMONARY SYSTEM
To evaluate the environmental impact of different energy technologies, fly ash samples collected from a coal-fired and from an oil-fired electric power plant were used in aerosol inhalation exposures of mice. The effects of multiple 3-h exposures to the fly ash particles at 2 and...
Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice
Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu
2015-01-01
In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771
Mehlhorn, Heinz; Al-Quraishy, Saleh; Al-Rasheid, Khaled A S; Jatzlau, Antje; Abdel-Ghaffar, Fathy
2011-04-01
Sheep with gastrointestinal nematodes and cestodes were fed on three farms with a combination of specially prepared extracts of onion (Allium cepa) and coconut (Cocos nucifera) for 8 days containing each 60 g coconut and onion extract, combined with milk powder and/or polyethylene glycol (PEG) propylencarbonate (PC). In all cases, the worm stages disappeared from the feces and were also not found 9 and 20 days after the end of the feeding with this plant combination. Since all treated animals increased their body weight considerably (when compared to untreated animals), worm reduction was apparently as effective as it was shown in previous laboratory trials with rats and mice (Klimpel et al., Parasitol Res, in press, 2010; Abdel-Ghaffar et al., Parasitol Res, in press, 2010; in this volume).
Han, Eun-Taek; Whang, Jong-Dae; Chai, Jong-Yil
2009-12-01
Metacercariae of Himasthla alincia (Echinostomatidae) were discovered in brackish water bivalves in the Republic of Korea; their growth and development were observed in experimental animals. Five species of clams (Mactra veneriformis, Solen grandis, Meretrix petechialis, Cyclina sinensis, and Tapes philippinarum) were found to harbor the metacercariae of H. alincia. Chicks, rats, and mice were orally fed the metacercariae, and worms were recovered from their intestines from day 1 to day 20 postinfection (PI). Only chicks appeared to be a fairly suitable host, although the worm recovery was low, i.e., 1.5% from 17 chicks, and the number decreased from 2.6% on day 1 PI to 1.3% on day 20 PI. Worm development in chicks was quick and remarkable during days 10–20 PI. Adult flukes were morphologically characterized by the presence of a head collar with 31 dorsally uninterrupted collar spines, including 4 end-group spines, and distribution of vitellaria only up to the most posterior margin of the cirrus sac. We verified that several species of brackish water clams are second intermediate hosts for H. alincia, and that its life cycle occurs in the Republic of Korea.
Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong
2017-09-10
The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
Attempted mechanical transfer of Ehrlichia risticii by tabanids (Diptera: Tabanidae).
Levine, J F; Levy, M G; Nicholson, W L; Irby, W S; Gager, R; Apperson, C S
1992-09-01
The ability of tabanid mouthparts to retain and to transfer mechanically Ehrlichia risticii Holland, Weiss, Burgdorfer, Cole & Kakoma was evaluated by feeding flies on infected and noninfected mice and on capillary tubes containing infected cells and cell-free medium. Flies representing two genera and 29 species were collected at equine boarding stables, farms, and along riding trails in Wake, Johnston, and Duplin counties in North Carolina for the feeding trials. Two species, Tabanus fulvulus Wiedemann and T. pallidescens Philip, fed on mice but failed to transfer the pathogen from infected to susceptible mice. Chrysops vittatus Wiedemann, Tabanus americanus Forster, and T. sulcifrons Macquart transferred E. risticii-infected cells from capillary tubes containing infected cells in medium to tubes containing medium. These studies document that E. risticii-infected cells can be retained on mouthparts and potentially transferred by tabanids.
Thomas, Amanda L; Davis, Shaun M; Dierick, Herman A
2015-08-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.
Dierick, Herman A.
2015-01-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression. PMID:26312756
Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation
Budischak, Sarah A.; Hansen, Christina B.; Caudron, Quentin; Garnier, Romain; Kartzinel, Tyler R.; Pelczer, István; Cressler, Clayton E.; van Leeuwen, Anieke; Graham, Andrea L.
2018-01-01
Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs. PMID:29358937
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Lau, Hiu E; Chalasani, Sreekanth H
2014-09-01
Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.
de Oliveira, Rosimeire Nunes; Rehder, Vera Lúcia Garcia; Oliveira, Adriana Silva Santos; Jeraldo, Veronica de Lourdes Sierpe; Linhares, Arício Xavier; Allegretti, Silmara Marques
2014-04-01
Although its efficiency against all Schistosoma species, praziquantel (PZQ) shows low efficacy against schistosomula and juvenile stages. The potential for development of resistance to PZQ has justified the search for new alternative chemotherapies. In this scenario, studies to new formulations, more comprehensive and without adverse effects, are being conducted. One viable and promising treatment is the study of medicinal plants as a new approach to the experimental treatment for Schistosomiasis. Amongst all the variety of the medicinal species studied, we can highlight Baccharis trimera (Less) DC, known as "Carqueja-amarga". This paper not only describes the effect of crude dichloromethane extract (DE) and aqueous fraction (AF) obtained from B. trimera, in vitro but also is the first one that investigates the in vivo efficacy of B. trimera against schistosomula, juvenile and adult worms of Schistosoma mansoni BH strain. In the experiment, mice were treated with DE, AF and PZQ (40 and 200mg/kg) over the period of larval development (3 and 30 post-infection; pi), and adult worms (60days post-infection; pi). The in vitro results show that the DE and AF effects are dose-dependents, being the 130μg/mL the most effective one in a shorter period of incubation. The exposure of the in vitro samples over adult parasites were able to inhibit 100% of the oviposition in females. Likewise caused the mortality of the parasites with morphological alterations on the tegument, on the suckers, oral and acetabulum, in both males and females after 6-72h of exposure. Additionally, the in vivo treatments against juvenile and adult infection were more effective compared to the control group untreated. Administrations of AF and DE in day 30pi (juvenile worms) show female worm total burden reductions of 75% and 68% respectively. At the same period of infection reductions of respectively 98% and 97% egg/g in the faeces were seen. In relation to the different egg developmental stages (oogram), the results showed significant reductions, due to the reduction in the number of worms, especially the females. In conclusion, B. trimera exhibits major schistosomicidal effects in vivo against immature and adult worms of S. mansoni, opening up perspectives for future researches on substance or compound isolation and the elucidation of its mechanisms of action. Copyright © 2014 Elsevier Inc. All rights reserved.
Gutierrez-Sanchez, Maria de Los Angeles; Luna-Herrera, Julieta; Trejo-Castro, Lauro; Montenegro-Cristino, Natividad; Almanza-Gonzalez, Alfredo; Escobar-Gutierrez, Alejandro; de la Rosa-Arana, Jorge Luis
2015-08-28
We have studied the influence of both levamisole (AL) and Freund's adjuvant (AF) on the immunisation of mice with the secretory antigens of adults of the liver fluke Fasciola hepatica Linnaeus, 1758. Total IgG antibodies were detected in all groups where the F. hepatica antigen was administered, been levels of IgG1 increased respect to IgG2a antibodies. During immunisation, IL-4 and IFN-γ were only detected in AL and AF groups, but after infection, IL-4 boosted in all groups. IFN-γ increased two fold in AF and AL groups compared to the saline solution (AS) group. Worm recovering was of 32-35% in groups administered without antigen whereas in AS, AL and AF groups recovering was of 25%, 12% and 8%, respectively. Macroscopical lesions in the liver were scarce in AL and AF groups. Our data suggest that immunisation of mice with antigens of F. hepatica enhances the immune response avoiding both liver damage and worm establishment after challenge infection. The murine model of fasciolosis has appeared to be useful to elucidate the mechanism by which the parasite modulates immune responses toward a Th2 type but also the development of Th1 type-inducing vaccines.
Kamel, Reem O A
2016-11-01
The present study tests the anti-inflammatory and anti-fibrotic effects of silymarin alone or combined with mefloquine on acute schistosomiasis by evaluating parasitological, histopathological, biochemical and immunological parameters. Male CDI Swiss mice were divided into seven groups, which included healthy controls, mice infected with Schistosoma mansoni or treated with silymarin (140 mg/kg body weight) or mefloquine (400 mg/kg body weight), or mice treated with a combination of both drugs and uninfected mice simply treated with mefloquine or silymarin alone. All mouse groups were sacrificed 8 weeks post-infection (pi) and/or post-treatment. Those infected mice treated with both silymarin and mefloquine showed a significant decrease (P < 0.001) in worm burden, immunoglobulins (IgG and IgM), liver function enzymes and granuloma diameter, with complete eradication of immature and mature eggs. In conclusion, treatment with silymarin combined with mefloquine in murine schistosomiasis was able to reduce granulomatous reactions and hepatic fibrosis. Hence, this combination is a new strategy to be studied as an efficient tool in the treatment of schistosomal liver fibrosis.
Alhusseiny, Samar M; El-Beshbishi, Samar N; Hashim, Maha M Abu; El-Nemr, Hosam El-Dein E; Handoussa, Aya E
2017-12-01
Schistosomiasis is a remarkable public health problem in developing countries. Presently, praziquantel is the optional drug for all human schistosomiasis. Owing to the increased praziquantel resistance, there is an urgent need to develop new alternatives. This study aims at determining the anti-schistosomal and/or the hepatoprotective effects of the anti-inflammatory drug; vinpocetine, and the vasodilator and the nitric oxide donor; isosorbide-5-mononitrate, in comparison to praziquantel. In the present research, the therapeutic efficacies of these drugs were assessed in Swiss albino female mice (CD-I strain) experimentally infected with an Egyptian strain of Schistosoma mansoni, using some general, parasitological, and histopathological parameters. In this work, praziquantel significantly reduced worm burden and hepatic egg load, increased the percentage of dead eggs in the small intestine and decreased granuloma count, but did not reduce granuloma diameter. While, either vinpocetine or isosorbide-5-mononitrate monotherapy did not induce significant reduction in the worm count, hepatic egg load or shift in the oogram pattern, but significantly reduced granuloma count and diameter. Moreover, isosorbide-5-mononitrate significantly reduced hepatic inflammation and necrosis. The best results were obtained in the mice groups treated with isosorbide-5-mononitrate combined with praziquantel or vinpocetine. Our results point to vinpocetine and isosorbide-5-mononitrate as a convenient and promising adjuvant to praziquantel for ameliorating schistosomal liver pathology. Further studies are recommended to reveal the actual pathways responsible for the different activities of vinpocetine and isosorbide-5-mononitrate. Copyright © 2017 Elsevier B.V. All rights reserved.
Immunity to adult cestodes: basic knowledge and vaccination problems. A review.
Andreassen, J
1991-04-01
Immunity in mammals to intestinal cestodes has been reviewed using the normal final host infected with the tapeworms Hymenolepis diminuta in rats and H. microstoma and H. nana in mice as a model. Primary infections up to a certain level continue to live as long the host, while most worms in infections with larger doses are destrobilated and expelled. It has been argued that concomitant immunity against a superimposed infection exists in rats and mice infected with H. diminuta and H. microstoma, respectively, and suggested that it also takes place in humans infected with Taenia spp. Immunity to secondary infections after expulsion of a primary infection occurs, but immunological memory is rather short-lived, although depression of worm growth occurs for at least two third of the rat's life. Serum antibodies have been shown to produce a direct precipitate on the surface of cestodes in vitro, but a direct effect of antibodies in vivo or the relationship with e.g. host effector cells, like mast cells and eosinophils, is unknown. It has been shown that peritoneal exudate cells from rats are able to kill H. diminuta in vitro. Very little is known about the mechanisms of tapeworms to counteract host immunological responses, but the tegumental glycoconjugates and discoidal secretory bodies are possible candidates. Passive transfer of immunity by mesenteric lymph node cells has only been successful using cells from H. nana egg-infected mice and has shown that only short-lived proliferating cells are responsible for transferring immunity. Vaccination procedures and problems are discussed with special reference to E. granulosus in dogs.
Liu, Ji-xin; Sun, Yan-hong; Zhang, Hao; Li, Chao-pin
2014-08-01
From May to November 2013, a total of 1175 wild freshwater fishes were collected from the rivers of Chuoer, Yalu, Wuyuer, Alun, and Yin in Nenjiang River basin Qiqihaer City, and examined for metacercariae by direct compression method. The metacercariae were collected by artificial digestion method. Forty Kunming mice were infected with 30-40 metacercariae of Clonorchis sinensis. The mice were sacrificed 36 days after infection, and the adult worms were collected from bile duct, and observed under microscope. The results showed that a total of 1 175 fishes, belonging to nine species were taken from the Nenjiang basin of Qiqihaer region. The infection rate of Clonorchis sinensis metacercariae was 51.2% (602/1 175). All the species were infected besides Silurus asotus, and the highest prevalence (82.7%, 91/149) was found in Longnose gudgeon and the lowest (7.1%, 6/84) in Perccottus glenii. Among the rivers, the highest prevalence of metacercariae was in Wuyuer River. (65.7%, 218/332), and the lowest was in Alun River and Yin River (24.1%, 67/278) (P<0.05). Each part of the body in the Carassius auratus and Pseudorasbora parva were susceptible for metacercariae. The main infection site in Longnose gudgeon was the fish scales, and C. sinensis metacercaria was first discovered in the brain tissue of Phoxinus lagowskii. The experimental results showed that the adult worms of C. sinensis were found in the hepatic bile duct of the mice, with an infection rate of 85.0% (34/40). The suckers, digestive system and reproductive system of C. sinensis were visible clearly.
Phalee, Anawat; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil
2015-02-01
This study was conducted to investigate the life history, morphology, and maturation of larval stages and adult worms of Fasciola gigantica in experimental mice. Lymnaea auricularia rubiginosa was used as the intermediate host, and Oryza sativa was used for encystment of the metacercariae, while Mus musculus was used as the definitive host for maturation study. Fresh eggs from the gall bladder of water buffaloes fully developed into embryonated ones and hatched out at days 11-12 after incubation at about 29ºC. Free-swimming miracidia rapidly penetrated into the snail host, and gradually developed into the next larval stages; sporocyst, redia, and daughter redia with cercariae. Fully-developed cercariae were separated from the redia and shed from the snails on day 39 post-infection (PI). Free-swimming cercariae were immediately allowed to adhere to rice plants, and capsules were constructed to protect metacercariae on rice plants. Juvenile worms were detected in intestines of mice at days 3 and 6 PI, but they were found in the bile duct from day 9 PI. Juvenile and adult flukes were recovered from 16 mice experimentally infected with metacercariae, with the average recovery rate of 35.8%. Sexually mature adult flukes were recovered from day 42 PI. It could be confirmed that experimentally encysted metacercariae could infect and develop to maturity in the experimental host. The present study reports for the first time the complete life history of F. gigantica by an experimental study in Thailand. The obtained information can be used as a guide for prevention, elimination, and treatment of F. gigantica at environment and in other hosts.
Phalee, Anawat; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil
2015-01-01
This study was conducted to investigate the life history, morphology, and maturation of larval stages and adult worms of Fasciola gigantica in experimental mice. Lymnaea auricularia rubiginosa was used as the intermediate host, and Oryza sativa was used for encystment of the metacercariae, while Mus musculus was used as the definitive host for maturation study. Fresh eggs from the gall bladder of water buffaloes fully developed into embryonated ones and hatched out at days 11-12 after incubation at about 29ºC. Free-swimming miracidia rapidly penetrated into the snail host, and gradually developed into the next larval stages; sporocyst, redia, and daughter redia with cercariae. Fully-developed cercariae were separated from the redia and shed from the snails on day 39 post-infection (PI). Free-swimming cercariae were immediately allowed to adhere to rice plants, and capsules were constructed to protect metacercariae on rice plants. Juvenile worms were detected in intestines of mice at days 3 and 6 PI, but they were found in the bile duct from day 9 PI. Juvenile and adult flukes were recovered from 16 mice experimentally infected with metacercariae, with the average recovery rate of 35.8%. Sexually mature adult flukes were recovered from day 42 PI. It could be confirmed that experimentally encysted metacercariae could infect and develop to maturity in the experimental host. The present study reports for the first time the complete life history of F. gigantica by an experimental study in Thailand. The obtained information can be used as a guide for prevention, elimination, and treatment of F. gigantica at environment and in other hosts. PMID:25748710
NGUYEN, Huu-Hung; VO, Doan-Trung; THAI, Thi-Tuyet-Trinh; LE, Thi-Thanh-Thao; LE, Thanh-Dong; HOANG, Nghia-Son
2017-01-01
Background: Toxocariasis is a prevalent zoonosis disease caused by the closely related nematode species Toxocara canis and Toxocara cati which parasitise Canidae and Felidae respectively. In paratenic hosts, larvae of these worms cause multiple organ damage. However, how these paratenic hosts response to these worms and whether any common biomarker can be applied for diagnosis are still unclear. Methods: Excreted/secreted (E/S) antigens were prepared by culture of T. canis larvae in vitro. Using a western blot (WB) assay the humoral IgG responses, induced by Toxocara spp. larvae to the worm’s E/S antigens in different infected hosts including mice, rabbits and human, were examined. Results: In a mouse model of toxocariasis, intraperitoneal injection of T. canis larvae induces inflammatory leukocyte accumulation in the liver and the lungs but not in the brain, although a remarkable number of larvae were detected in this organ. Mice and rabbits responded differently to Toxocara spp. resulting in distinct heterogenous WB band patterns. Mice and rabbits both responded to a 33.1 kDa E/S constituent that turned out to be the most sensitive protein for serodiagnosis. Sera from human toxocariasis patients showed heterogenous WB band patterns similar to those observed in rabbits and all responded to the 33.1 kDa band. Conclusion: 33.1 kDa E/S protein can be considered as a critical common biomarker for toxocariasis immuno-diagnosis in both paratenic animals and human and its specificity requires further investigation. PMID:28761463
Intestinal infection with Trichinella spiralis induces distinct, regional immune responses
Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.
2013-01-01
The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441
Contreras, Azalia; Vitale, John; Hutchins-Carroll, Virginia; Carroll, Edward J.; Oppenheimer, Steven B.
2008-01-01
Summary Hyalin is a large glycoprotein, consisting of the hyalin repeat domain and non-repeated regions, and is the major component of the hyaline layer in the early sea urchin embryo of Strongylocentrotus purpuratus. The hyalin repeat domain has been identified in proteins from organisms as diverse as bacteria, sea urchins, worms, flies, mice and humans. While the specific function of hyalin and the hyalin repeat domain is incompletely understood, many studies suggest that it has a functional role in adhesive interactions. In part I of this series, we showed that hyalin isolated from the sea urchin S. purpuratus blocked archenteron elongation and attachment to the blastocoel roof occurring during gastrulation in S. purpuratus embryos, (Razinia et al., 2007). The cellular interactions that occur in the sea urchin, recognized by the U.S. National Institutes of Health as a model system, may provide insights into adhesive interactions that occur in human health and disease. In part II of this series, we showed that S. purpuratus hyalin heterospecifically blocked archenteron-ectoderm interaction in Lytechinus pictus embryos (Alvarez et al, 2007). In the current study, we have isolated hyalin from the sea urchin L. pictus and demonstrated that L. pictus hyalin homospecifically blocks archenteron-ectoderm interaction, suggesting a general role for this glycoprotein in mediating a specific set of adhesive interactions. We also found one major difference in hyalin activity in the two sea urchin species involving hyalin influence on gastrulation invagination. PMID:18925979
Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study.
Aitken, T H; Woodall, J P; De Andrade, A H; Bensabath, G; Shope, R E
1975-03-01
Pacui virus, originally obtained from forest rodents, was isolated 100 times from 61,437 specimens (658 pools) of the phlebotomine fly Lutzomyia flaviscutellata, collected from rodent-baited traps in the forests of Belem, Para, Brazil in the period October 1968 through September 1970. Isolations were made from engorged and unengorged females and from males (3 strains), and occurred in all 24 months. Pacui virus also was isolated from the blood of two wild rodents (Oryzomys), but not from 424 L. infraspinosa, 12,000 mosquitoes, or sentinel mice. Pacui virus neutralizing antibodies were detected in serum of six bait animals after exposure to biting flies in the forest, in 30% of wild rodents surveyed (including two from Amapa Territory), and in 10% of marsupials, but were absent in human survey sera and in bats. Low-passage Pacui virus produced viremia in and was lethal to infant mice by the subcutaneous route. L. flaviscutellata was most abundant in the dry season, in which period Pacui virus isolations increased. This fly is strongly attracted to rodents close to the ground. L. flaviscutellata also yielded single strains of Guama, Icoaraci, and BeAr 177325 viruses.
NASA Technical Reports Server (NTRS)
Wang, Vincent Y.; Hassan, Bassem A.; Bellen, Hugo J.; Zoghbi, Huda Y.
2002-01-01
Many genes share sequence similarity between species, but their properties often change significantly during evolution. For example, the Drosophila genes engrailed and orthodenticle and the onychophoran gene Ultrabithorax only partially substitute for their mouse or Drosophila homologs. We have been analyzing the relationship between atonal (ato) in the fruit fly and its mouse homolog, Math1. In flies, ato acts as a proneural gene that governs the development of chordotonal organs (CHOs), which serve as stretch receptors in the body wall and joints and as auditory organs in the antennae. In the fly CNS, ato is important not for specification but for axonal arborization. Math1, in contrast, is required for the specification of cells in both the CNS and the PNS. Furthermore, Math1 serves a role in the development of secretory lineage cells in the gut, a function that does not parallel any known to be served by ato. We wondered whether ato and Math1 might be more functionally homologous than they appear, so we expressed Math1 in ato mutant flies and ato in Math1 null mice. To our surprise, the two proteins are functionally interchangeable.
El-Beshbishi, Samar N; Taman, Amira; El-Malky, Mohamed; Azab, Manar S; El-Hawary, Amira K; El-Tantawy, Dina A
2013-10-01
The current treatment and control of schistosomiasis, rely on a single drug, praziquantel, although, it has minor activity against juvenile stages of the parasite. Studies have shown that artemether (ART) exhibits effects against juveniles of Schistosoma mansoni Liberian and Puerto Rican strains, Schistosoma japonicum and Schistosoma haematobium. Aiming to assess the in vivo activity of single oral dose of ART against early juvenile stages of S. mansoni Egyptian strain, this study was established. Mice were treated with ART (400 mg/kg) at two time points evenly spaced over the period of larval development (7 and 21 days post-infection; pi), and a third treatment point (day 49 pi) was included to elucidate when susceptibility decreases. Administration of ART on day 7 pi reduced the total worm burden by 85.94%. The greatest reductions were seen when treatment was given on day 21 pi, with total and female worm burden reductions of 91.52% and 90.57%, respectively, and cessation of oviposition. Similar dose given on day 49 pi reduced total worm burden by 55.17% and female worm burden by 66.51%. Moreover, it induced significant reduction in the tissue egg load and significant alterations in the oogram pattern with decreased immature eggs and increased dead eggs. Antipathological activities were evident in significant reductions in granulomata count and diameter. In conclusion, ART exhibits major in vivo schistosomicidal effects against the early larval migratory stages of S. mansoni Egyptian strain, mainly the 21-day old schistosomula, hence preventing disease progression and morbidity. Copyright © 2013 Elsevier Inc. All rights reserved.
Abuzar, S; Sharma, S; Visen, P K; Gupta, S; Katiyar, J C
1986-03-01
A number of substituted diphenylsulfides and sulfones (4-11) and 2,2'-disubstituted-5,5'-dibenzimidazolyl sulfides and sulphones (12-19) have been synthesized starting from 5-chloro-2-nitroacetanilide and (3) 4,4'-dichlorodiphenyl sulfone (9), respectively. Among the compounds tested against Ancylostoma ceylanicum in hamsters and Hymenolepis nana in rats and mice, 14, 15, 18 and 19 removed 100% of the worms at an oral dose of 25 mg/kg X 1 to 250 mg/kg X 3. Some of the compounds were tested for their blood schizontocidal activity against Plasmodium berghei in mice but none showed any activity up to an oral dose of 10 mg/kg given for 6 days.
Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert
2015-03-24
Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its efficacy is currently being studied in the larger economic animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Badary, Dalia M.; Sayed, Hesham M. B.; Bayoumi, Soad A. H.; Khalifa, Azza A.; El-Moghazy, Ahmed M.
2016-01-01
Due to the development of praziquantel (PZQ) schistosomes resistant strains, the discovery of new antischistosomal agents is of high priority in research. This work reported the in vitro and in vivo effects of the edible and ornamental pomegranate extracts against Schistosoma mansoni. Leaves and stem bark ethanolic extracts of both dried pomegranates were prepared at 100, 300, and 500 μg/mL for in vitro and 600 and 800 mg/kg for in vivo. Adult worms Schistosoma mansoni in RPMI-1640 medium for in vitro and S. mansoni infected mice for in vivo tests were obtained from Theodor Bilharz Research Institute, Cairo, Egypt. In vitro activity was manifested by significant coupled worms separation, reduction of motor activity, lethality, and ultrastructural tegumental alterations in adult worms. In vivo activity was manifested revealed by significant reduction of hepatic granulomas number and diameter, decreased number of bilharzial eggs in liver tissues, lowered liver inflammatory infiltration, decreased hepatic fibrosis, and inducible nitric oxide synthase (iNOS) expression. Ethanolic stem bark extract of edible pomegranate exhibited highest antischistosomal activities both in vitro and in vivo. Therefore, pomegranate showed a good potential to be used as a promising new candidate for the development of new schistosomicidal agents. PMID:27990425
Drosophila as a screening tool to study human neurodegenerative diseases.
Lenz, Sarah; Karsten, Peter; Schulz, Jörg B; Voigt, Aaron
2013-11-01
In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large-scale and genome-wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases. © 2013 International Society for Neurochemistry.
Developmental origins of epigenetic transgenerational inheritance
Hanson, Mark A.; Skinner, Michael K.
2016-01-01
Abstract Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective. PMID:27390622
[Biological experiments on "Kosmos-1887"].
Alpatov, A M; I'lin, E A; Antipov, V V; Tairbekov, M G
1989-01-01
In the 13-ray space flight on Kosmos-1887 various experiments in the field of cell biology, genetics, biorhythm, developmental biology and regeneration were performed using bacteria, protozoa, plants, worms, insects, fish and amphibia. Paramecia showed enhanced cell proliferation, spheroidization and diminished protein content. Experiments on fruit-flies, newt oocytes and primate lymphocytes confirmed involvement of the cell genetic apparatus in responses to microgravity. Beetles exhibited a reduction of the length of the spontaneous period of freely running circadian rhythms. Carausius morosus developed latent changes in early embryogenesis which manifested at later stages of ontogenesis. Exposure to microgravity did not prevent recovery of injured tissues; moreover their regeneration may be accelerated after recovery. Biology research programs in future biosatellite flights are discussed.
Immunoprotection of Mice against Schistosomiasis Mansoni Using Solubilized Membrane Antigens
Sulbarán, Guidenn; Noya, Oscar; Brito, Beatríz; Ballén, Diana E.; Cesari, Italo M.
2013-01-01
Background Schistosomiasis continues to be one of the most prevalent parasitic diseases in the world. Despite the existence of a highly effective antischistosome drug, the disease is spreading into new areas, and national control programs do not arrive to complete their tasks particularly in low endemic areas. The availability of a vaccine could represent an additional component to chemotherapy. Experimental vaccination studies are however necessary to identify parasite molecules that would serve as vaccine candidates. In the present work, C57BL/6 female mice were subcutaneously immunized with an n-butanol extract of the adult worm particulate membranous fraction (AWBE) and its protective effect against a S. mansoni challenge infection was evaluated. Methodology and Findings Water-saturated n-butanol release into the aqueous phase a set of membrane-associated (glyco)proteins that are variably recognized by antibodies in schistosome-infected patients; among the previously identified AWBE antigens there is Alkaline Phosphatase (SmAP) which has been associated with resistance to the infection in mice. As compared to control, a significantly lower number of perfuse parasites was obtained in the immunized/challenged mouse group (P<0.05, t test); and consequently, a lower number of eggs and granulomas (with reduced sizes), overall decreasing pathology. Immunized mice produced high levels of sera anti-AWBE IgG recognizing antigens of ∼190-, 130-, 98-, 47-, 28-23, 14-, and 9-kDa. The ∼130-kDa band (the AP dimer) exhibited in situ SmAP activity after addition of AP substrate and the activity was not apparently inhibited by host antibodies. A preliminary proteomic analysis of the 25-, 27-, and 28-kDa bands in the immunodominant 28–23 kDa region suggested that they are composed of actin. Conclusions Immunization with AWBE induced the production of specific antibodies to various adult worm membrane molecules (including AP) and a partial (43%) protection against a challenging S. mansoni infection by mechanism(s) that still has to be elucidated. PMID:23818994
Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Zhang, Wendi; Sun, Baoyun; Zhang, Longze; Zhao, Baolu; Nie, Guangjun; Zhao, Yuliang
2011-06-01
Gd@C82(OH)22, a water-soluble endohedral metallofullerene derivative, has been proven to possess significant antineoplastic activity in mice. Toxicity studies of the nanoparticle have shown some evidence of low or non toxicity in mice and cell models. Here we employed Caenorhabditis elegans (C. elegans) as a model organism to further evaluate the short- and long-term toxicity of Gd@C82(OH)22 and possible behavior changes under normal and stress culture conditions. With treatment of Gd@C82(OH)22 at 0.01, 0.1, 1.0 and 10 μg ml-1 within one generation (short-term), C. elegans showed no significant decrease in longevity or thermotolerance compared to the controls. Furthermore, when Gd@C82(OH)22 treatment was extended up to six generations (long-term), non-toxic effects to the nematodes were found. In addition, data from body length measurement, feeding rate and egg-laying assays with short-term treatment demonstrated that the nanoparticles have no significant impact on the individual growth, feeding behavior and reproductive ability, respectively. In summary, this work has shown that Gd@C82(OH)22 is tolerated well by worms and it has no apparent toxic effects on longevity, stress resistance, growth and behaviors that were observed in both adult and young worms. Our work lays the foundations for further developments of this anti-neoplastic agent for clinical applications.
Nieuwenhuizen, Natalie E; Meter, Jeanne M; Horsnell, William G; Hoving, J Claire; Fick, Lizette; Sharp, Michael F; Darby, Matthew G; Parihar, Suraj P; Brombacher, Frank; Lopata, Andreas L
2013-01-01
Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection. Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four -HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens. The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection.
Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil: Role of COL1A1
Almeida, Lucas; Oliveira, Joyce; Guimarães, Luiz Henrique; Carvalho, Edgar M; Blackwell, Jenefer M
2015-01-01
Previous studies have demonstrated a role for wound healing genes in resolution of cutaneous lesions caused by Leishmania spp. in both mice and humans, including the gene FLI1 encoding Friend leukaemia virus integration 1. Reduction of Fli1 expression in mice has been shown to result in up-regulation of collagen type I alpha 1 (Col1a1) and alpha 2 (Col1a2) genes and, conversely, in down-regulation of the matrix metalloproteinase 1 (Mmp1) gene, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program. Here we examined single nucleotide polymorphisms (SNPs) in these genes as risk factors for cutaneous (CL) and mucosal leishmaniasis (ML), and leishmaniasis per se, caused by L. braziliensis in humans. SNPs were genotyped in 168 nuclear families (250 CL; 87 ML cases) and replicated in 157 families (402 CL; 39 ML cases). Family-based association tests (FBAT) showed the strongest association between SNPs rs1061237 (combined P=0.002) and rs2586488 (combined P=0.027) at COL1A1 and CL disease. This contributes to our further understanding of the role of wound healing in the resolution of CL disease, providing potential for therapies modulating COL1A1 via drugs acting on FLI1. PMID:25562121
Zhang, Wenbao; Li, Jun; Duke, Mary; Jones, Malcolm K.; Kuang, Ling; Zhang, Jianfeng; Blair, David; Li, Yuesheng; McManus, Donald P.
2011-01-01
Background Schistosoma mansoni tetraspanin 2 (Sm-TSP-2) has been shown to be strongly recognized by IgG1 and IgG3 antibodies from individuals putatively resistant to schistosome infection, but not chronically infected people, and to induce high levels of protection against challenge infection in the murine model of schistosomiasis. Amplification by PCR of homologous sequences from male and female S. japonicum worms showed the presence of 7 different clusters or subclasses of S. japonicum TSP-2. We determined the protective efficacy of one subclass – Sj-TSP-2e. Methodology/Principal Findings Following the alignment of 211 cDNAs, we identified 7 clusters encoding S. japonicum TSP-2 (Sj-TSP-2) based on sequence variation in the large extracellular loop (LEL) region with differing frequency of transcription in male and female worms. Quantitative PCR analysis revealed elevated expression of Sj-TSP-2 in adult worms compared with other life cycle stages. We expressed in E. coli the LEL region of one of the clusters which exhibited a high frequency of transcription in female worms, and showed the purified recombinant protein (Sj-TSP-2e) was recognised by 43.1% of sera obtained from confirmed schistosomiasis japonica patients. Vaccination of mice with the recombinant protein induced high levels of IgG1 and IgG2 antibodies, but no consistent protective efficacy against challenge infection was elicited in three independent trials. Conclusions/Significance The highly polymorphic nature of the Sj-TSP-2 gene at the transcriptional level may limit the value of Sj-TSP-2 as a target for future S. japonicum vaccine development. PMID:21655308
Two SmDLC antigens as potential vaccines against schistosomiasis.
Diniz, Patricia Placoná; Nakajima, Erika; Miyasato, Patricia Aoki; Nakano, Eliana; de Oliveira Rocha, Márcia; Martins, Elizabeth Angelica Leme
2014-12-01
The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates. Copyright © 2014 Elsevier B.V. All rights reserved.
Stepek, G; Lowe, A E; Buttle, D J; Duce, I R; Behnke, J M
2007-09-01
Gastrointestinal (GI) nematodes are important disease-causing organisms, controlled primarily through treatment with synthetic drugs, but the efficacy of these drugs has declined due to widespread resistance, and hence new drugs, with different modes of action, are required. Some medicinal plants, used traditionally for the treatment of worm infections, contain cysteine proteinases known to damage worms irreversibly in vitro. Here we (i) confirm that papaya latex has marked efficacy in vivo against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, (ii) demonstrate the dose-dependent nature of the activity (>90% reduction in egg output and 80% reduction in worm burden at the highest active enzyme concentration of 133 nmol), (iii) establish unequivocally that it is the cysteine proteinases that are the active principles in vivo (complete inhibition of enzyme activity when pre-incubated with the cysteine proteinase-specific inhibitor, E-64) and (iv) show that activity is confined to worms that are in the intestinal lumen. The mechanism of action was distinct from all current synthetic anthelmintics, and was the same as that in vitro, with the enzymes attacking and digesting the protective cuticle. Treatment had no detectable side-effects on immune cell numbers in the mucosa (there was no difference in the numbers of mast cells and goblet cells between the treated groups) and mucosal architecture (length of intestinal villi). Only the infected and untreated mice had much shorter villi than the other 3 groups, which was a consequence of infection and not treatment. Plant-derived cysteine proteinases are therefore prime candidates for development as novel drugs for the treatment of GI nematode infections.
Automatic categorization of diverse experimental information in the bioscience literature
2012-01-01
Background Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. Results We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Conclusions Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort. PMID:22280404
Automatic categorization of diverse experimental information in the bioscience literature.
Fang, Ruihua; Schindelman, Gary; Van Auken, Kimberly; Fernandes, Jolene; Chen, Wen; Wang, Xiaodong; Davis, Paul; Tuli, Mary Ann; Marygold, Steven J; Millburn, Gillian; Matthews, Beverley; Zhang, Haiyan; Brown, Nick; Gelbart, William M; Sternberg, Paul W
2012-01-26
Curation of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance. We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction. Our methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort.
Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara
2016-11-10
Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.
Investigation of nocturnal oviposition by necrophilous flies in central Texas.
Baldridge, Robert S; Wallace, Susan G; Kirkpatrick, Ryan
2006-01-01
The need to accurately estimate the postmortem interval (PMI) has prompted research into factors affecting fly oviposition (i.e., oviposition and/or larviposition) on a corpse. Research efforts have focused on whether or not diurnally active flies oviposit during nighttime hours. This study reports that nocturnal oviposition (defined as occurring between 2100-0600 h CDST (Central Daylight Savings Time)) did not occur on freshly killed white rats or mice, on beef (fresh or aged up to 48 h), on freshly thawed pigs, nor, usually, on thawed pigs that were aged for up to 48 h. Limited oviposition did occur between 2100 and 2120 h on one bloated pig at a lighted rural site. Necrophilous flies were present and active at lighted and dark sites (urban and rural) before and immediately after sunset, but fly activity on the bait ceased within 50 min postsunset and did not resume until after 0600 h. These observations support other studies reporting that diurnally active flies do not oviposit during the nighttime.
Rickettsiae, protozoa, and opisthokonta/metazoa.
Schmutzhard, Erich; Helbok, Raimund
2014-01-01
Rhizobiales (formerly named Rickettsiales) cause in rare instances meningitis and meningovasculitis, respectively. In case of history of exposure, infection by Rhizobiales needs to be considered since both diagnosis and therapy may be extremely difficult and pathogen-specific. The same applies to protozoa; in this chapter, Babesia species, free-living amoebae and Entamoeba histolytica infection, including severe meningitis and brain abscess, infection by Trypanosoma species (South American and African trypanosomiasis) are discussed with respect to history, epidemiology, clinical signs, and symptoms as well as differential diagnosis and therapy. Parasitic flatworms and roundworms, potentially able to invade the central nervous system, trematodes (flukes), cestodes (in particular, Cysticercus cellulosae), but also nematodes (in particular, Strongyloides spp. in the immunocompromised) are of worldwide importance. In contrast, filarial worms, Toxocara spp., Trichinella spp., Gnathostoma and Angiostrongylus spp. are seen only in certain geographically confined areas. Even more regionally confined are infestations of the central nervous system by metazoa, in particular, tongue worms (=arthropods) or larvae of flies (=maggots). The aim of this chapter is (1) to alert the neurologist to these infections, and (2) to enable the attending emergency neurologist to take a knowledgeable history, with an emphasis on epidemiology, clinical signs, and symptoms as well as therapeutic management possibilities. © 2014 Elsevier B.V. All rights reserved.
Song, Li; Xiong, Dan; Song, Hongqin; Wu, Lili; Zhang, Meihua; Kang, Xilong; Pan, Zhiming; Jiao, Xinan
2017-01-01
Consecutive cases of human infection with H7N9 influenza viruses since 2013 in China have prompted efforts to develop an effective treatment. Subunit vaccines introduced by intranasal administration can block an infection at its primary site; flagellin (fliC) and polyethyleneimine (PEI) have been shown to be potent adjuvants. We previously generated the hemagglutinin (HA)1-2-fliC fusion protein consisting of the globular head domain (HA1-2; amino acids 62-284) of HA fused with Salmonella typhimurium fliC. In the present study, we investigated its effectiveness of both flagellin and PEI as mucosal adjuvants for the H7N9 influenza subunit vaccine. Mice immunized intranasally with HA1-2-fliC and HA1-2-PEI showed higher HA1-2-specific immunoglobulin (Ig)G and IgA titers in serum, nasal wash, and bronchial alveolar lavage fluid. Moreover, splenocyte activation and proliferation and the number of HA1-2-specific interferon (IFN)-γ- and interleukin (IL)-4-producing splenocytes were markedly increased in the fliC and PEI groups; in the latter, there were more cells secreting IL-4 than IFN-γ, suggesting that fliC induced T helper type (Th)1 and Th2 immune responses, and PEI induced Th2-biased responses, consistent with the serum antibody isotype pattern (IgG1/IgG2a ratio). Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving fliC and PEI adjuvant vaccine exhibited robust immune responses leading to a significant reduction in viral loads of throat and cloaca compared to chickens receiving only HA1-2. These findings provide a basis for the development of H7N9 influenza HA1-2 mucosal subunit vaccines.
Song, Li; Xiong, Dan; Song, Hongqin; Wu, Lili; Zhang, Meihua; Kang, Xilong; Pan, Zhiming; Jiao, Xinan
2017-01-01
Consecutive cases of human infection with H7N9 influenza viruses since 2013 in China have prompted efforts to develop an effective treatment. Subunit vaccines introduced by intranasal administration can block an infection at its primary site; flagellin (fliC) and polyethyleneimine (PEI) have been shown to be potent adjuvants. We previously generated the hemagglutinin (HA)1–2-fliC fusion protein consisting of the globular head domain (HA1–2; amino acids 62–284) of HA fused with Salmonella typhimurium fliC. In the present study, we investigated its effectiveness of both flagellin and PEI as mucosal adjuvants for the H7N9 influenza subunit vaccine. Mice immunized intranasally with HA1–2-fliC and HA1–2-PEI showed higher HA1–2-specific immunoglobulin (Ig)G and IgA titers in serum, nasal wash, and bronchial alveolar lavage fluid. Moreover, splenocyte activation and proliferation and the number of HA1–2-specific interferon (IFN)-γ- and interleukin (IL)-4-producing splenocytes were markedly increased in the fliC and PEI groups; in the latter, there were more cells secreting IL-4 than IFN-γ, suggesting that fliC induced T helper type (Th)1 and Th2 immune responses, and PEI induced Th2-biased responses, consistent with the serum antibody isotype pattern (IgG1/IgG2a ratio). Furthermore, virus challenge was performed in a chicken model. The results showed that chickens receiving fliC and PEI adjuvant vaccine exhibited robust immune responses leading to a significant reduction in viral loads of throat and cloaca compared to chickens receiving only HA1–2. These findings provide a basis for the development of H7N9 influenza HA1–2 mucosal subunit vaccines. PMID:28424686
Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding.
Yamamoto, D S; Nagumo, H; Yoshida, S
2010-06-01
'Flying vaccinator' is the concept of using genetically engineered hematophagous insects to deliver vaccines. Here we show the generation of a transgenic anopheline mosquito that expresses the Leishmania vaccine candidate, SP15, fused to monomeric red fluorescent protein (mDsRed) in its salivary glands. Importantly, mice bitten repeatedly by the transgenic mosquitoes raised anti-SP15 antibodies, indicating delivery of SP15 via blood feeding with its immunogenicity intact. Thus, this technology makes possible the generation of transgenic mosquitoes that match the original concept of a 'flying vaccinator'. However, medical safety issues and concerns about informed consent mitigate the use of the 'flying vaccinator' as a method to deliver vaccines. We propose that this expression system could be applied to elucidate saliva-malaria sporozoite interactions.
Animal models to study microRNA function
Pal, Arpita S.; Kasinski, Andrea L.
2018-01-01
The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225
Drugs that modulate aging: the promising yet difficult path ahead.
Kennedy, Brian K; Pennypacker, Juniper K
2014-05-01
Once a backwater in medical sciences, aging research has emerged and now threatens to take the forefront. This dramatic change of stature is driven from 3 major events. First and foremost, the world is rapidly getting old. Never before have we lived in a demographic environment like today, and the trends will continue such that 20% percent of the global population of 9 billion will be over the age of 60 by 2050. Given current trends of sharply increasing chronic disease incidence, economic disaster from the impending silver tsunami may be ahead. A second major driver on the rise is the dramatic progress that aging research has made using invertebrate models such as worms, flies, and yeast. Genetic approaches using these organisms have led to hundreds of aging genes and, perhaps surprisingly, strong evidence of evolutionary conservation among longevity pathways between disparate species, including mammals. Current studies suggest that this conservation may extend to humans. Finally, small molecules such as rapamycin and resveratrol have been identified that slow aging in model organisms, although only rapamycin to date impacts longevity in mice. The potential now exists to delay human aging, whether it is through known classes of small molecules or a plethora of emerging ones. But how can a drug that slows aging become approved and make it to market when aging is not defined as a disease. Here, we discuss the strategies to translate discoveries from aging research into drugs. Will aging research lead to novel therapies toward chronic disease, prevention of disease or be targeted directly at extending lifespan? Copyright © 2014 Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming,and social interactions at similar or greater levels of occurrence. Overallactivity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within thefirst few days of flight following a common developmental sequence, comprising theprimary dark cycle activity of FLT mice. Circling participation by individual micepersisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive,organized group behavior unique to the weightless space environment.
Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.
Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas
2010-05-17
Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne
2014-01-01
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.
Giraud, Emilie; Martin, Oihane; Dillon, Rod J.; Műller, Ingrid
2018-01-01
Leishmania parasites are transmitted to vertebrate hosts by female phlebotomine sand flies as they bloodfeed by lacerating the upper capillaries of the dermis with their barbed mouthparts. In the sand fly midgut secreted proteophosphoglycans from Leishmania form a biological plug known as the promastigote secretory gel (PSG), which blocks the gut and facilitates the regurgitation of infective parasites. The interaction between the wound created by the sand fly bite and PSG is not known. Here we nanoinjected a sand fly egested dose of PSG into BALB/c mouse skin that lead to the differential expression of 7,907 transcripts. These transcripts were transiently up-regulated during the first 6 hours post-wound and enriched for pathways involved in inflammation, cell proliferation, fibrosis, epithelial cell differentiation and wound remodelling. We found that PSG significantly accelerated wound healing in vitro and in mice; which was associated with an early up-regulation of transcripts involved in inflammation (IL-1β, IL-6, IL-10, TNFα) and inflammatory cell recruitment (CCL2, CCL3, CCL4, CXCL2), followed 6 days later by enhanced expression of transcripts associated with epithelial cell proliferation, fibroplasia and fibrosis (FGFR2, EGF, EGFR, IGF1). Dermal expression of IGF1 was enhanced following an infected sand fly bite and was acutely responsive to the deposition of PSG but not the inoculation of parasites or sand fly saliva. Antibody blockade of IGF1 ablated the gel’s ability to promote wound closure in mouse ears and significantly reduced the virulence of Leishmania mexicana infection delivered by an individual sand fly bite. Dermal macrophages recruited to air-pouches on the backs of mice revealed that IGF1 was pivotal to the PSG’s ability to promote macrophage alternative activation and Leishmania infection. Our data demonstrate that through the regurgitation of PSG Leishmania exploit the wound healing response of the host to the vector bite by promoting the action of IGF1 to drive the alternative activation of macrophages. PMID:29352310
The NLRP3 Inflammasome Suppresses Protective Immunity to Gastrointestinal Helminth Infection.
Alhallaf, Rafid; Agha, Zainab; Miller, Catherine M; Robertson, Avril A B; Sotillo, Javier; Croese, John; Cooper, Matthew A; Masters, Seth L; Kupz, Andreas; Smith, Nicholas C; Loukas, Alex; Giacomin, Paul R
2018-04-24
Inflammasomes promote immunity to microbial pathogens by regulating the function of IL-1-family cytokines such as IL-18 and IL-1β. However, the roles for inflammasomes during parasitic helminth infections remain unclear. We demonstrate that mice and humans infected with gastrointestinal nematodes display increased IL-18 secretion, which in Trichuris-infected or worm antigen-treated mice and in macrophages co-cultured with Trichuris antigens or exosome-like vesicles was dependent on the NLRP3 inflammasome. NLRP3-deficient mice displayed reduced pro-inflammatory type 1 cytokine responses and augmented protective type 2 immunity, which was reversed by IL-18 administration. NLRP3-dependent suppression of immunity partially required CD4 + cells but was apparent even in Rag1 -/- mice that lack adaptive immune cells, suggesting that NLRP3 influences both innate and adaptive immunity. These data highlight a role for NLRP3 in limiting protective immunity to helminths, suggesting that targeting the NLRP3 inflammasome may be an approach for limiting the disease burden associated with helminth infections. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Kay, Helle; Murrell, K Darwin; Hansen, Axel Kornerup; Madsen, Henry; Trang, Nguyen Thi Thu; Hung, Nguyen Manh; Dalsgaard, Anders
2009-06-01
Recent studies in Vietnam and other Asian countries have shown that fish-borne zoonotic intestinal trematodes (FZT) occur very frequently in humans. The dominant intestinal FZT in Vietnamese fish are species of Haplorchis, in particular H. pumilio. However, basic studies on the biology and pathology of adult H. pumilio are difficult because of the lack of a standardized experimental animal model. The objective of this study was to establish and optimize such an animal-infection model for H. pumilio. Using metacercariae isolated from naturally infected fish, experiments were conducted to identify a suitable experimental animal host species, as well as the optimum metacercariae infection dose, and to determine the post-infection interval for patency. In a series of experiments, mice (Mus musculus) and chickens (Gallus gallus dom.) were infected with different numbers of metacercariae, and worm recoveries were made at varying intervals post-infection (PI). Based on the mean number of adult flukes recovered/number of metacercariae inoculated and the percent of hosts infected, mice were significantly more susceptible to infection than were chickens. The proportion of metacercariae developing to the adult stage increased with dose size. The peak worm recovery (geometric mean) was found to be day 7, although not all recovered flukes were gravid until day 9 PI. These results describe a mouse infection model with good predictability for intestinal flukes, such as H. pumilio, results which could facilitate investigations on important biological and pathological aspects of intestinal fluke infections.
Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme
2014-06-01
Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.
Peng, Wei; Huang, Xunwu; Yang, Dazhi
2014-08-01
An increasing number of T-cell epitopes derived from various tumor-associated antigens have been reported, and they proved to play significant roles for tumor rejection both in vivo and in vitro. Over 85% of Ewing's sarcoma family of tumors (ESFTs) express tumor-specific chimeric protein EWS/FLI-1, making it an attractive target for therapeutic cytotoxic T-lymphocyte responses. Here, we identified a novel peptide epitope derived from the EWS/FLI-1 protein and demonstrated that effectors induced by the peptide could specifically secrete IFN-γ and lyse the tumor cell line of EWS/FLI-1-positive and HLA-matched cells. In addition, mice treated with dendritic cells pulsed with the EWS/FLI-1 epitope were able to reject a lethal tumor inoculation of the Ewing's sarcoma A673 cells. Therefore, these data provide evidence for the use of the EWS/FLI-l peptide epitope in T cell-based immunotherapeutic concepts against Ewing's sarcoma cell in vitro and in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
9 CFR 416.2 - Establishment grounds and facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... about an establishment must be maintained to prevent conditions that could lead to insanitary conditions... entrance of vermin, such as flies, rats, and mice. (4) Rooms or compartments in which edible product is...
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A.; Basher, Fahmin; Roddy, Patrick O.; Siskind, Leah J.; Nietert, Paul J.; Nowling, Tamara K.
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1 +/+ or Fli1 +/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1 +/- lupus T cells compared to animals receiving Fli1 +/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1 +/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1 +/+ T cells. Moreover, the Fli1 +/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1 +/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus. PMID:24040398
Richard, Erin Morris; Thiyagarajan, Thirumagal; Bunni, Marlene A; Basher, Fahmin; Roddy, Patrick O; Siskind, Leah J; Nietert, Paul J; Nowling, Tamara K
2013-01-01
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1(+/+) or Fli1(+/-) T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1(+/-) lupus T cells compared to animals receiving Fli1(+/+) lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1(+/-) T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1(+/+) T cells. Moreover, the Fli1(+/-) T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1(+/+) T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models
2013-01-01
Background Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. Results Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. Conclusions Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies. PMID:23714384
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within the first few days of flight following a common developmental sequence, comprising the primary dark cycle activity of FLT mice. Circling participation by individual mice persisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment. Supported by the NASA Rodent Research Project, Space Biology Program, and Space Life Sciences Training Program.
Lazakovitch, Elena; Kalb, John M; Matsumoto, Reiko; Hirono, Keiko; Kohara, Yuji; Gronostajski, Richard M
2005-01-01
Background The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance. PMID:16242019
Grzybek, Maciej; Kukula-Koch, Wirginia; Strachecka, Aneta; Jaworska, Aleksandra; Phiri, Andrew M.; Paleolog, Jerzy; Tomczuk, Krzysztof
2016-01-01
A significant number of studies report growing resistance in nematodes thriving in both humans and livestock. This study was conducted to evaluate the in vitro and in vivo anthelmintic efficiency of Curcubita pepo (C. pepo) L. hot water extract (HWE), cold water extract (CWE) or ethanol extract (ETE) on two model nematodes: Caenorhabditis elegans (C. elegans) and Heligmosoides bakeri (H. bakeri). Methods: Raman, IR and LC-MS spectroscopy analyses were performed on the studied plant material to deliver qualitative and quantitative data on the composition of the obtained extracts: ETE, HWE and CWE. The in vitro activity evaluation showed an impact of C. pepo extracts on C. elegans and different developmental stages of H. bakeri. The following in vivo experiments on mice infected with H. bakeri confirmed inhibitory properties of the most active pumpkin extract selected by the in vitro study. All of the extracts were found to contain cucurbitine, aminoacids, fatty acids, and-for the first time-berberine and palmatine were identified. All C. pepo seed extracts exhibited a nematidicidal potential in vitro, affecting the survival of L1 and L2 H. bakeri larvae. The ETE was the strongest and demonstrated a positive effect on H. bakeri eggs hatching and marked inhibitory properties against worm motility, compared to a PBS control. No significant effects of pumpkin seed extracts on C. elegans integrity or motility were found. The EtOH extract in the in vivo studies showed anthelmintic properties against both H. bakeri fecal egg counts and adult worm burdens. The highest egg counts reduction was observed for the 8 g/kg dose (IC50 against H. bakeri = 2.43; 95% Cl = 2.01–2.94). A decrease in faecal egg counts (FEC) was accompanied by a significant reduction in worm burden of the treated mice compared to the control group. Conclusions: Pumpkin seed extracts may be used to control of Gastrointestinal (G.I.) nematode infections. This relatively inexpensive alternative to the currently available chemotherapeutic should be considered as a novel drug candidate in the nearest future. PMID:27598135
Grzybek, Maciej; Kukula-Koch, Wirginia; Strachecka, Aneta; Jaworska, Aleksandra; Phiri, Andrew M; Paleolog, Jerzy; Tomczuk, Krzysztof
2016-09-01
A significant number of studies report growing resistance in nematodes thriving in both humans and livestock. This study was conducted to evaluate the in vitro and in vivo anthelmintic efficiency of Curcubita pepo (C. pepo) L. hot water extract (HWE), cold water extract (CWE) or ethanol extract (ETE) on two model nematodes: Caenorhabditis elegans (C. elegans) and Heligmosoides bakeri (H. bakeri). Raman, IR and LC-MS spectroscopy analyses were performed on the studied plant material to deliver qualitative and quantitative data on the composition of the obtained extracts: ETE, HWE and CWE. The in vitro activity evaluation showed an impact of C. pepo extracts on C. elegans and different developmental stages of H. bakeri. The following in vivo experiments on mice infected with H. bakeri confirmed inhibitory properties of the most active pumpkin extract selected by the in vitro study. All of the extracts were found to contain cucurbitine, aminoacids, fatty acids, and-for the first time-berberine and palmatine were identified. All C. pepo seed extracts exhibited a nematidicidal potential in vitro, affecting the survival of L1 and L2 H. bakeri larvae. The ETE was the strongest and demonstrated a positive effect on H. bakeri eggs hatching and marked inhibitory properties against worm motility, compared to a PBS control. No significant effects of pumpkin seed extracts on C. elegans integrity or motility were found. The EtOH extract in the in vivo studies showed anthelmintic properties against both H. bakeri fecal egg counts and adult worm burdens. The highest egg counts reduction was observed for the 8 g/kg dose (IC50 against H. bakeri = 2.43; 95% Cl = 2.01-2.94). A decrease in faecal egg counts (FEC) was accompanied by a significant reduction in worm burden of the treated mice compared to the control group. Pumpkin seed extracts may be used to control of Gastrointestinal (G.I.) nematode infections. This relatively inexpensive alternative to the currently available chemotherapeutic should be considered as a novel drug candidate in the nearest future.
Molecular cloning and characterization of a HSP70 gene from Schistosoma japonicum.
Yang, Jie; Yang, Linlin; Lv, Zhiyue; Wang, Juan; Zhang, Qixian; Zheng, Huanqin; Wu, Zhongdao
2012-05-01
Schistosoma japonicum is the pathogen responsible for schistosomiasis japonica, one of the major infectious diseases targeted for prevention nationally in China. Expression of heat shock proteins (HSPs) following stress plays a very important biological role in many organisms including S. japonicum. Among the HSP family, the 70-kDa HSPs are most responsible for intracellular chaperone and extracellular immunoregulatory functions. Based on the published sequences in GenBank/EMBL (AF044412.1), open reading frame belonging to HSP70 protein corresponds to a full-length cDNA containing an open reading frame of 1,947 bp encoded of 648 amino acids was identified as HSP70 from schistosome. In this study, the coding region that we named rSj648/hsp70 was amplified from S. japonicum adult worm cDNA library, and the recombinant protein was expressed in vector pET32a(+) and purified using a Ni-NTA purification system. The target protein rSj648/hsp70 was determined by matrix-assisted laser desorption/ionization mass spectrometer after thrombin digestion and dialysis. Reverse transcriptase polymerase chain reaction and Western blotting analysis confirmed that Sj648/hsp70 could be expressed in the eggs, normal cercariae, ultraviolet-attenuated cercariae (UVAC), and adult worms of S. japonicum. Real-time quantitative PCR analysis indicated that Sj648/hsp70 was expressed significantly higher in eggs than that in cercariae and adult worms, and the expression in UVAC was higher than that in normal cercariae. A thermotolerance assay showed that rSj648/hsp70 could protect Escherichia coli cells from heat damage. The detection of specific antibody levels by indirect enzyme-linked immunosorbent assay demonstrated that mice immunized with rSj648/hsp70 induced higher level of specific anti-rSj648/hsp70 IgG1 compared with those vaccinated with adjuvant alone, indicating that rSj648/hsp70 was able to elicit Th2-type bias immune response. Our results suggest that Sj648/hsp70 might be an important molecule in parasite-host interaction and display potential roles in mice immunoregulation system.
Synnott, Aidan; Ohshima, Kazuhito; Nakai, Yutaka; Tanji, Yasunori
2009-01-01
Salmonella typhimurium antigens were displayed on the capsid of a T2 bacteriophage to explore the potential of phage display for an oral vaccine. Segments of the flagellin proteins FliC (H1 antigen) and FljB (H2) were fused to the N-terminal of T2 phage SOC to give two recombinant phages, T2FliCm and T2FljBm. Over 14 days, 19 BALB/c mice were orally administered twice, either with purified recombinant FliCm and FljBm protein, or T2FliCm and T2FljBm with or without host Escherichia coli. Feces were sampled over 10 weeks and examined for phage by plaque assay and for the presence of mucosal IgA by ELISA. Relatively few phages were detected relative to the amount administered (up to 8.21 x 10(3) PFU/g faeces) and none were detected five days after initial administration. The administration of a large number of phages appeared to cause no clinical symptoms. IgA concentration in feces peaked around four weeks after the second administration and subsided after eight weeks. The highest relative titers were observed in the protein group (0.37% for anti-FliCm and 0.22% for anti-FljBm) and the mouse group which received no E. coli (0.33% and 0.35%) despite the theoretical amount of protein contained in a phage dose being at least 80-465 times lower than the protein dose administered. The possibility that the immuno-stimulatory properties of the phage create an adjuvant effect to enhance the immunogenic properties of the displayed proteins is discussed. We conclude that phage may be valuable as a vector for oral vaccines. (c) 2009 American Institute of Chemical Engineers Biotechnol.
Bargieri, Daniel Y; Rosa, Daniela S; Braga, Catarina J M; Carvalho, Bruna O; Costa, Fabio T M; Espíndola, Noeli Maria; Vaz, Adelaide José; Soares, Irene S; Ferreira, Luis C S; Rodrigues, Mauricio M
2008-11-11
The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FliC), a Toll-like receptor 5 (TLR5) agonist. FliC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P. vivax MSP1(19) in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSP1(19)-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malarial antigens and the innate immunity agonist FliC. It contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants.
Research advances on animal genetics in China in 2015.
Zhang, Bo; Chen, Xiao-fang; Huang, Xun; Yang, Xiao
2016-06-20
Chinese scientists have made significant achievements in the field of animal genetics in 2015. Incomplete statistics show that among all the publications of 2015 involving nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), zebrafish (Danio rerio), African clawed frog (Xenopus) or mice (Mus musculus), about 1/5 publications are from China. Many innovative studies were published in high-impact international academic journals by Chinese scientists, including the identification of a putative magnetic receptor MagR, the genetic basis for the regulation of wing polyphenism in the insect brown planthopper (Nilaparvata lugens), DNA N 6 -methyladenine (6mA) modification in the Drosophila genome, a novel molecular mechanism regarding the dendritic spine pruning and maturation in the mammals, the mechanism for the CREB coactivator CRTC2 in the regulation of hepatic lipid metabolism, the control of systemic inflammation by neurotransmitter dopamine, the role of Gasdermin protein family in triggering pyroptosis, a parvalbumin-positive excitatory visual pathway to trigger fear responses in mice, etc. Chinese scientists have also made important contributions in genome editing via TALEN or CRISPR/Cas system. According to incomplete statistics, more than 1/5 of the publications related to genome editing in 2015 are from China, where a variety of animals with different approaches were targeted, ranging from the worm to primates. Particularly, CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes was successfully achieved for the first time. China has been one of the leading countries in genome sequencing in recent years, and Chinese scientists reported the sequence and annotation of the genomes of several important animal species in 2015, including goose (Anser cygnoides), Schlegel's Japanese Gecko (Gekko japonicus), grass carp (Ctenopharyngodon idellus), large yellow croaker (Larimichthys crocea) and pig (Sus scrofa). They further analyzed the genome-wide genetic basis of the species-specific physiological and pathological characteristics as well as their adaptation to environmental conditions. In this review, we make a first attempt to summarize the research advances on animal genetics in China in 2015, with an emphasis on the achievements led by Chinese scientists and carried out in Chinese institutions. We will briefly discuss the significance of their research and contributions of Chinese scientists in animal genetics.
PTH promotes allograft integration in a calvarial bone defect.
Sheyn, Dmitriy; Cohn Yakubovich, Doron; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M; Gazit, Dan; Gazit, Zulma
2013-12-02
Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and microcomputed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in allograft + PTH treated mice comparing to allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the allograft + PTH treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.
Eaten alive: novel insights into autophagy from multicellular model systems.
Zhang, Hong; Baehrecke, Eric H
2015-07-01
Autophagy delivers cytoplasmic material to lysosomes for degradation. First identified in yeast, the core genes that control this process are conserved in higher organisms. Studies of mammalian cell cultures have expanded our understanding of the core autophagy pathway, but cannot reveal the unique animal-specific mechanisms for the regulation and function of autophagy. Multicellular organisms have different types of cells that possess distinct composition, morphology, and organization of intracellular organelles. In addition, the autophagic machinery integrates signals from other cells and environmental conditions to maintain cell, tissue and organism homeostasis. Here, we highlight how studies of autophagy in flies and worms have identified novel core autophagy genes and mechanisms, and provided insight into the context-specific regulation and function of autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.
2016-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier
2017-09-01
We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters
2016-01-01
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice. PMID:27630760
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters.
Del Campo, Andrea; Jaimovich, Enrique; Tevy, Maria Florencia
2016-01-01
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.
Tang, F; Xu, L; Yan, R; Song, X; Li, X
2012-12-01
Plasmids expressing macrophage migration inhibitory factor (MIF) of Trichinella spiralis (TsMIF), multi-cystatin-like domain protein (MCD-1) of T. spiralis (TsMCD-1), or co-expressing TsMIF and TsMCD-1 were constructed with a pVAX1 vector. Their ability to generate a protective immune response against T. spiralis infection was evaluated in BALB/c mice. Groups of mice were immunized twice at 2-week intervals with 100 μg of recombinant plasmids pVAX1-Tsmif, pVAX1-Tsmcd-1 or pVAX1-Tsmif-Tsmcd-1. Control animals were immunized with phosphate-buffered saline (PBS) or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17) and CD4+/CD8+ T cells were monitored. Challenge infection was performed 2 weeks following the second immunization and worm burden was assayed at 35 days post-challenge. Vaccination with pVAX1-Tsmif induced moderate serum IFN-γ and increases of CD4+ and CD8+ T cells, but no specific immunoglobulin antibody response. Vaccination with pVAX1-Tsmcd-1 induced a predominant Th1 antibody (IgG2a and IgG2b) response and strong levels of serum IFN-γ, and increases of CD4+ T cells. Importantly, co-expression of TsMIF and TsMCD-1 in DNA immunization produced more serum IFN-γ and markedly enhanced CD4+ and CD8+ T cells than the single DNA vaccine of the two genes. Challenge infection demonstrated that immunization with pVAX1-Tsmif-Tsmcd-1 reduced worm burdens (by 23.17%; P < 0.05).
Nieuwenhuizen, Natalie E.; Meter, Jeanne M.; Horsnell, William G.; Hoving, J. Claire; Fick, Lizette; Sharp, Michael F.; Darby, Matthew G.; Parihar, Suraj P.; Brombacher, Frank; Lopata, Andreas L.
2013-01-01
Background Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection. Methodology/Principal Findings Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four –HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens. Conclusion The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection. PMID:24009787
Baum, Maurício; de Castro, Edilene Alcântara; Pinto, Mara Cristina; Goulart, Thais Marchi; Baura, Walter; Klisiowicz, Débora do Rocio; Vieira da Costa-Ribeiro, Magda Clara
2015-03-01
The feeding behavior of sand flies provides valuable information about the vector/host interactions and elucidates the epidemiological patterns of American cutaneous leishmaniasis (ACL) transmission. The aim of this study was to identify the blood meal sources of sand flies in endemic areas of leishmaniasis in Paraná State through polymerase chain reaction (PCR) amplification of a prepronociceptin (PNOC) gene fragment and its subsequent DNA sequencing. Moreover, molecular assays were conducted to evaluate the sensitivity and reproducibility of the PNOC gene amplification. Besides that, a time-course digestion test of the blood using sand flies that fed artificially on BALB/c mice was performed. Of 1263 female sand flies collected in the field, 93 (3.6%) specimens were engorged and 27 allowed efficient amplification of the PNOC gene. These flies had fed on equine (Equus caballus), porcine (Sus scrofa) and canine (Canis lupus familiaris) species. The results also showed that the identification of the blood meal sources of the sand flies using the molecular method was directly linked to the level of digestion of the blood (time-course) and not to the amount of blood that had been ingested or to the presence of inhibitors in the blood. Copyright © 2014 Elsevier B.V. All rights reserved.
QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.
Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei
2014-01-01
Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.
The clock gene Period1 regulates innate routine behaviour in mice
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-01-01
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour. PMID:24598427
The clock gene Period1 regulates innate routine behaviour in mice.
Bechstein, Philipp; Rehbach, Nils-Jörn; Yuhasingham, Gowzekan; Schürmann, Christoph; Göpfert, Melanie; Kössl, Manfred; Maronde, Erik
2014-04-22
Laboratory mice are well capable of performing innate routine behaviour programmes necessary for courtship, nest-building and exploratory activities although housed for decades in animal facilities. We found that in mice inactivation of the clock gene Period1 profoundly changes innate routine behaviour programmes like those necessary for courtship, nest building, exploration and learning. These results in wild-type and Period1 mutant mice, together with earlier findings on courtship behaviour in wild-type and period-mutant Drosophila melanogaster, suggest a conserved role of Period-genes on innate routine behaviour. Additionally, both per-mutant flies and Period1-mutant mice display spatial learning and memory deficits. The profound influence of Period1 on routine behaviour programmes in mice, including female partner choice, may be independent of its function as a circadian clock gene, since Period1-deficient mice display normal circadian behaviour.
Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light?
Hamblin, Michael R; Huang, Ying-Ying; Heiskanen, Vladimir
2018-06-08
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress towards wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light emitting diodes (LEDs) are being explored. The almost complete lack of side-effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review will cover some of these studies and a recent number of papers that have applied PBM to so-called "model organisms". These models include flies (Drosophila), worms (C. elegans), fish (zebrafish), and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biological effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light". This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Biology of Healthy Aging and Longevity.
Carmona, Juan José; Michan, Shaday
2016-01-01
As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness, vitality, and health. This review summarizes key molecular mechanisms underlying the biology of healthy aging and longevity.
Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi
2017-01-01
The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages. PMID:28302989
Murakami, Takumi; Segawa, Takahiro; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi
2017-03-31
The community structure of bacteria associated with the glacier ice worm Mesenchytraeus solifugus was analyzed by amplicon sequencing of 16S rRNA genes and their transcripts. Ice worms were collected from two distinct glaciers in Alaska, Harding Icefield and Byron Glacier, and glacier surfaces were also sampled for comparison. Marked differences were observed in bacterial community structures between the ice worm and glacier surface samples. Several bacterial phylotypes were detected almost exclusively in the ice worms, and these bacteria were phylogenetically affiliated with either animal-associated lineages or, interestingly, clades mostly consisting of glacier-indigenous species. The former included bacteria that belong to Mollicutes, Chlamydiae, Rickettsiales, and Lachnospiraceae, while the latter included Arcicella and Herminiimonas phylotypes. Among these bacteria enriched in ice worm samples, Mollicutes, Arcicella, and Herminiimonas phylotypes were abundantly and consistently detected in the ice worm samples; these phylotypes constituted the core microbiota associated with the ice worm. A fluorescence in situ hybridization analysis showed that Arcicella cells specifically colonized the epidermis of the ice worms. Other bacterial phylotypes detected in the ice worm samples were also abundantly recovered from the respective habitat glaciers; these bacteria may be food for ice worms to digest or temporary residents. Nevertheless, some were overrepresented in the ice worm RNA samples; they may also function as facultative gut bacteria. Our results indicate that the community structure of bacteria associated with ice worms is distinct from that in the associated glacier and includes worm-specific and facultative, glacier-indigenous lineages.
Rogan, M T; Craig, P S; Hide, G; Heath, S; Pickles, A; Storey, D M
2007-03-01
Wood mice Apodemus sylvaticus were trapped each September over a 13-year period, from 1993 to 2005, in a wooded area adjacent to Malham Tarn, Yorkshire, UK. Plagiorchis muris was found to be the dominant intestinal trematode and occurred in every year of sampling, with an overall prevalence of 16.9%. This appears to be the first record of P. muris in A. sylvaticus within the UK. The mean worm burden was 2.03 and the distribution of the parasite within mice was typically overdispersed. No difference in prevalence relative to host sex was evident although there was a higher prevalence of 21.9% in larger older mice compared with 9.1% in juveniles, which probably relates to a greater foraging activity in older mice. Annual prevalence values of P. muris infections varied significantly over the study period with higher prevalences being associated with years with a high spring/summer rainfall. The second intermediate hosts for P. muris include a variety of aquatic insect larvae and it is likely that the higher rainfall may result in the occurrence of temporary water bodies suitable for the development of insect larvae.
Weinkopff, Tiffany; de Oliveira, Camila I.; de Carvalho, Augusto M.; Hauyon-La Torre, Yazmin; Muniz, Aline C.; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne
2014-01-01
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes. PMID:24421912
75 FR 57738 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... neurological tissue and cells from mice, zebrafish, and fruit flies. The properties of the materials being...- geochemical and bio-engineering research. Many of the processes of interest are at or near the nano-scale so...
Sun, Yaning; Yolitz, Jason; Alberico, Thomas; Sun, Xiaoping; Zou, Sige
2014-02-01
Many nutraceuticals and pharmaceuticals have been shown to promote healthspan and lifespan. However, the mechanisms underlying the beneficial effects of prolongevity interventions and the time points at which interventions should be implemented to achieve beneficial effects are not well characterized. We have previously shown that a cranberry-containing nutraceutical can promote lifespan in worms and flies and delay age-related functional decline of pancreatic cells in rats. Here we investigated the mechanism underlying lifespan extension induced by cranberry and the effects of short-term or life stage-specific interventions with cranberry on lifespan in Drosophila. We found that lifespan extension induced by cranberry was associated with reduced phosphorylation of ERK, a component of oxidative stress response MAPK signaling, and slightly increased phosphorylation of AKT, a component of insulin-like signaling. Lifespan extension was also associated with a reduced level of 4-hydroxynonenal protein adducts, a biomarker of lipid oxidation. Moreover, lifespan extension induced by cranberry was partially suppressed by knockdown of SOD2, a major mitochondrial superoxide scavenger. Furthermore, cranberry supplementation was administered in three life stages of adult flies, health span (3-30 days), transition span (31-60 days) and senescence span (61 days to the end when all flies died). Cranberry supplementation during any of these life stages extended the remaining lifespan relative to the non-supplemented and life stage-matched controls. These findings suggest that cranberry supplementation is sufficient to promote longevity when implemented during any life stage, likely through reducing oxidative damage. Published by Elsevier Inc.
PTH promotes allograft integration in a calvarial bone defect
Sheyn, Dmitriy; Yakubovich, Doron Cohn; Kallai, Ilan; Su, Susan; Da, Xiaoyu; Pelled, Gadi; Tawackoli, Wafa; Cook-Weins, Galen; Schwarz, Edward M.; Gazit, Dan; Gazit, Zulma
2013-01-01
Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones. Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and micro–computed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes. Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in Allograft + PTH–treated mice comparing to Allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the Allograft + PTH–treated animals. In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment. PMID:24131143
21 CFR 520.905a - Fenbendazole suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... worms (adults and 4th-stage larvae)—barberpole worm (Haemonchus contortus and H. placei) and small stomach worm (Trichostongylus axei); intestinal worms (adults and 4th-stage larvae)—hookworm (Bunostonmum... control of stomach worm (4th stage inhibited larvae/type II ostertagiasis), Ostertagia ostertagi, and...
21 CFR 520.905a - Fenbendazole suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... worms (adults and 4th-stage larvae)—barberpole worm (Haemonchus contortus and H. placei) and small stomach worm (Trichostongylus axei); intestinal worms (adults and 4th-stage larvae)—hookworm (Bunostonmum... control of stomach worm (4th stage inhibited larvae/type II ostertagiasis), Ostertagia ostertagi, and...
Cutaneous Emergence of Eustrongylides in Two Persons from South Sudan
Eberhard, Mark L.; Ruiz-Tiben, Ernesto
2014-01-01
Two large, living worms were collected as they emerged from the lower limb of each of two persons in South Sudan. The worms were observed by staff of the South Sudan Guinea Worm Eradication Program during surveillance activities in communities at-risk for cases of Guinea worm disease (dracunculiasis). The worms measured 7 and 8 cm in length and were identified as fourth-stage larvae of Eustrongylides. This is the first report of such worms emerging from the skin; all five previous reports of human infection involved surgical removal of worms from the peritoneal cavity. PMID:24379241
The construction of an EST database for Bombyx mori and its application
Mita, Kazuei; Morimyo, Mitsuoki; Okano, Kazuhiro; Koike, Yoshiko; Nohata, Junko; Kawasaki, Hideki; Kadono-Okuda, Keiko; Yamamoto, Kimiko; Suzuki, Masataka G.; Shimada, Toru; Goldsmith, Marian R.; Maeda, Susumu
2003-01-01
To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into ≈11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5–11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes. PMID:14614147
Microfluidic platform integrated with worm-counting setup for assessing manganese toxicity
Zhang, Beibei; Li, Yinbao; He, Qidi; Qin, Jun; Yu, Yanyan; Li, Xinchun; Zhang, Lin; Yao, Meicun; Liu, Junshan; Chen, Zuanguang
2014-01-01
We reported a new microfluidic system integrated with worm responders for evaluating the environmental manganese toxicity. The micro device consists of worm loading units, worm observing chambers, and a radial concentration gradient generator (CGG). Eight T-shape worm loading units of the micro device were used to load the exact number of worms into the corresponding eight chambers with the assistance of worm responders and doorsills. The worm responder, as a key component, was employed for performing automated worm-counting assay through electric impedance sensing. This label-free and non-invasive worm-counting technique was applied to the microsystem for the first time. In addition, the disk-shaped CGG can generate a range of stepwise concentrations of the appointed chemical automatically and simultaneously. Due to the scalable architecture of radial CGG, it has the potential to increase the throughput of the assay. Dopaminergic (DAergic) neurotoxicity of manganese on C. elegans was quantitatively assessed via the observation of green fluorescence protein-tagged DAergic neurons of the strain BZ555 on-chip. In addition, oxidative stress triggered by manganese was evaluated by the quantitative fluorescence intensity of the strain CL2166. By scoring the survival ratio and stroke frequency of worms, we characterized the dose- and time-dependent mobility defects of the manganese-exposed worms. Furthermore, we applied the microsystem to investigate the effect of natural antioxidants to protect manganese-induced toxicity. PMID:25538805
Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury
Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.
2015-01-01
Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781
Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.
Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten; Fang, Evandro; Aon, Miguel; González-Reyes, José A; Cortassa, Sonia; Kaushik, Susmita; Gonzalez-Freire, Marta; Patel, Bindi; Wahl, Devin; Ali, Ahmed; Calvo-Rubio, Miguel; Burón, María I; Guiterrez, Vincent; Ward, Theresa M; Palacios, Hector H; Cai, Huan; Frederick, David W; Hine, Christopher; Broeskamp, Filomena; Habering, Lukas; Dawson, John; Beasley, T Mark; Wan, Junxiang; Ikeno, Yuji; Hubbard, Gene; Becker, Kevin G; Zhang, Yongqing; Bohr, Vilhelm A; Longo, Dan L; Navas, Placido; Ferrucci, Luigi; Sinclair, David A; Cohen, Pinchas; Egan, Josephine M; Mitchell, James R; Baur, Joseph A; Allison, David B; Anson, R Michael; Villalba, José M; Madeo, Frank; Cuervo, Ana Maria; Pearson, Kevin J; Ingram, Donald K; Bernier, Michel; de Cabo, Rafael
2016-06-14
Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions. Published by Elsevier Inc.
Schistosoma mansoni: vaccination of mice with 10-krad-irradiated, cryopreserved schistosomules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, F.A.; Stirewalt, M.A.; Leef, J.L.
1984-06-01
Protection against a Schistosoma mansoni cercarial challenge was evaluated in mice immunized with a vaccine composed of 10-krad-irradiated, cryopreserved schistosomules. The level of resistance induced in C57B1/6 or NMRI (CV) mice increased with the number of schistosomules injected. Up to 83% reduction in challenge worm burden was achieved when 5000 schistosomules were injected per mouse. Intramuscular injection of the vaccine was superior to subcutaneous. Multiple immunizations, up to 3 at 4-week intervals, did not increase the resistance induced by a single immunization. A high level of protection developed in as little as 2 weeks and was maintained through at leastmore » 12 weeks postimmunization. The vaccine irradiated with 10 krad from either a 60-cobalt or 137-cesium source induced equivalent levels of resistance, and no differences were found in the immunogenicity of vaccines comprised of organisms irradiated as cercariae or as 1- to 3-hr-old schistosomules. These findings are basic to the development of a cryopreserved, live vaccine against schistosomiasis of humans or domestic animals.« less
Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele
2016-01-01
The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amelio, F.; Kraft, L.M.; D'Antoni-D'Amelio, E.
1984-01-01
Effects of high energy, heavy particle (HZE) radiation were studied in the brain of the fruit fly (Drosophila melanogaster) exposed to argon (40Ar) or krypton (84Kr) ions. In the flies exposed to argon the fluence ranged from 6 X 10(4) to 8 X 10(7) particles/cm2. The insects were killed 35 days after exposure. Extensive tissue fragmentation was observed at the higher fluence employed. At fluences ranging from 5 X 10(6) (one hit/two cell bodies) to 9 X 10(4) (one hit/90 cell bodies) particles/cm2, swelling of the neuronal cytoplasm and focally fragmented membranes was observed. Marked increase of glial lamellae aroundmore » nerve cell processes was seen at fluences ranging from one hit/six to one hit/135 cell bodies. In the flies irradiated with krypton, the fluences employed were 5.8 X 10(3) and 2.2 X 10(6) particles/cm2. Acute and late effects were evaluated. In the flies killed 36 hours after exposure (acute effects) to either fluence, glycogen particles were found in the neuroglial compartment. The granules were no longer present in flies killed 35 days later (late effects). From these studies it appears that the Drosophila brain is a useful model to investigate radiation damage to mature neurons, neuroglia, and therefore, to the glio-neuronal metabolic unit. In a separate study, the synaptic profiles of the neuropil in layers II-III of the frontal cerebral cortex of anesthesized adult LAFl mice were quantitatively appraised after exposure to argon (40Ar) particles. The absorbed dose ranged from 0.05 to 5 gray (Gy) plateau. It was determined that the sodium pentobarbital anesthesia per se results in a significant decrease in synaptic profile length one day after anesthetization, with return to normal values after 2-28 days. Irradiation with 0.05-5 Gy argon particles significantly inhibited the synaptic shortening effect of anesthesia at one day after exposure.« less
NASA Technical Reports Server (NTRS)
Green, James L.; Sisson, Patricia L.
1989-01-01
Given here is an overview analysis of the Father Christmas Worm, a computer worm that was released onto the DECnet Internet three days before Christmas 1988. The purpose behind the worm was to send an electronic mail message to all users on the computer system running the worm. The message was a Christmas greeting and was signed 'Father Christmas'. From the investigation, it was determined that the worm was released from a computer (node number 20597::) at a university in Switzerland. The worm was designed to travel quickly. Estimates are that it was copied to over 6,000 computer nodes. However, it was believed to have executed on only a fraction of those computers. Within ten minutes after it was released, the worm was detected at the Space Physics Analysis Network (SPAN), NASA's largest space and Earth science network. Once the source program was captured, a procedural cure, using the existing functionality of the computer operating systems, was quickly devised and distributed. A combination of existing computer security measures, the quick and accurate procedures devised to stop copies of the worm from executing, and the network itself, were used to rapidly provide the cure. These were the main reasons why the worm executed on such a small percentage of nodes. This overview of the analysis of the events concerning the worm is based on an investigation made by the SPAN Security Team and provides some insight into future security measures that will be taken to handle computer worms and viruses that may hit similar networks.
Design and analysis of SEIQR worm propagation model in mobile internet
NASA Astrophysics Data System (ADS)
Xiao, Xi; Fu, Peng; Dou, Changsheng; Li, Qing; Hu, Guangwu; Xia, Shutao
2017-02-01
The mobile Internet has considerably facilitated daily life in recent years. However, it has become the breeding ground for lots of new worms, including the Bluetooth-based worm, the SMS/MMS-based worm and the Wi-Fi-based worm. At present, Wi-Fi is widely used for mobile devices to connect to the Internet. But it exposes these devices to the dangerous environment. Most current worm propagation models aim to solve the problems of computer worms. They cannot be used directly in the mobile environment, particularly in the Wi-Fi scenario, because of the differences between computers and mobile devices. In this paper, we propose a worm propagation model in the Wi-Fi environment, called SEIQR (Susceptible-Exposed-Infectious- Quarantined-Recovered). In the model, infected nodes can be quarantined by the Wi-Fi base station, and a new state named the Quarantined state (Q) is established to represent these infected nodes. Based on this model, we present an effective method to inhibit the spread of the Wi-Fi-based worms. Furthermore, related stabilities of the worm-free and endemic equilibriums are studied based on the basic reproduction number R0. The worm-free equilibrium is locally and globally asymptotically stable if R0 < 1, whereas the endemic equilibrium is locally asymptotically stable if R0 < 1. Finally, we evaluate the performance of our model by comprehensive experiments with different infection rates and quarantine rates. The results indicate that our mechanism can combat the worms propagated via Wi-Fi.
Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans.
Bass, Timothy M; Weinkove, David; Houthoofd, Koen; Gems, David; Partridge, Linda
2007-10-01
It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals. In Drosophila, lifespan extension by DR is associated with a reduction in fecundity. However, a slight increase in fecundity was reported upon treatment with resveratrol, suggesting a mode of action at least partially distinct from that of DR. To probe this mechanism further, we initiated a new study of the effects of resveratrol on Drosophila. We saw no significant effects on lifespan in seven independent trials. We analysed our resveratrol and found that its structure was normal, with no oxidative modifications. We therefore re-tested the effects of resveratrol in C. elegans, in both wild-type and sir-2.1 mutant worms. The results were variable, with resveratrol treatment resulting in slight increases in lifespan in some trials but not others, in both wild type and sir-2.1 mutant animals. We postulate that the effect of resveratrol upon lifespan in C. elegans could reflect induction of phase 2 drug detoxification or activation of AMP kinase.
Towards global Guinea worm eradication in 2015: the experience of South Sudan.
Awofeso, Niyi
2013-08-01
For centuries, the Guinea worm parasite (Dracunculus medinensis) has caused disabling misery, infecting people who drink stagnant water contaminated with the worm's larvae. In 2012, there were 542 cases of Guinea worm reported globally, of which 521 (96.1%) were reported in South Sudan. Protracted civil wars, an inadequate workforce, neglect of potable water provision programs, suboptimal Guinea worm surveillance and case containment, and fragmented health systems account for many of the structural and operational factors encumbering South Sudan's Guinea worm eradication efforts. This article reviews the impacts of six established Guinea worm control strategies in South Sudan: (1) surveillance to determine actual caseload distribution and trends in response to control measures; (2) educating community members from whom worms are emerging to avoid immersing affected parts in sources of drinking water; (3) filtering potentially contaminated drinking water using cloth filters or filtered drinking straws; (4) treating potentially contaminated surface water with the copepod larvicide temephos (Abate); (5) providing safe drinking water from boreholes or hand-dug wells; and (6) containment of transmission through voluntary isolation of each patient to prevent contamination of drinking water sources, provision of first aid, and manual extraction of the worm. Surveillance, community education, potable water provision, and case containment remain weak facets of the program. Abate pesticide is not a viable option for Guinea worm control in South Sudan. In light of current case detection and containment trends, as well as capacity building efforts for Guinea worm eradication, South Sudan is more likely to eradicate Guinea worm by 2020, rather than by 2015. The author highlights areas in which substantial improvements are required in South Sudan's Guinea worm eradication program, and suggests improvement strategies. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Wallace, W.G.; Lopez, G.R.; Levinton, J.S.
1998-01-01
It has been demonstrated that the deposit-feeding oligochaete Limnodrilus hoffmeisteri inhabiting Foundry Cove (FC), a severely cadmium (Cd)-contaminated cove located on the Hudson River, New York, USA, has evolved resistance to Cd. In this study we investigate how this resistance influences Cd trophic transfer from this oligochaete to the grass shrimp Palaemonetes pugio. Cadmium-resistant worms collected from FC and nonresistant worms collected from an adjacent unpolluted site were investigated for differences in Cd tolerance, accumulation, subcellular distribution and bioavailability to shrimp. FC worms were more tolerant of Cd, surviving twice as long as worms from the unpolluted site during a toxicity bioassay. The 7 d concentration factor of Cd-resistant worms was 4 times greater than that of nonresistant worms (2020 vs 577). There were also differences between worm populations with respect to subcellular Cd distributions. Cd-resistant worms produced metallothionein-like proteins (MT) as well as metal-rich granules (MRG) for Cd storage and detoxification; nonresistant worms only produced MT. These differences in subcellular Cd distributions led to large differences in Cd bioavailability to shrimp; shrimp fed Cd-resistant worms absorbed 21% of the ingested Cd, while those fed nonresistant worms absorbed roughly 4 times that amount (~75%). These absorption efficiencies were in good agreement with the proportions of Cd bound to the worm's most biologically available subcellular fractions (i.e. the cytosol and organelles). Although Cd-resistant worms predominantly stored the toxic metal in biologically unavailable MRG, their increased accumulation of Cd would still result in substantial trophic transfer to shrimp because of the storage of Cd in the biologically available fractions. This work demonstrates that the evolution of Cd resistance can have profound implications for Cd bioavailability and cycling within aquatic ecosystems.
2012-01-01
Background Praziquantel (PZQ) is an isoquinoline derivative (2-cyclohexylcarbonyl-1, 2, 3, 6, 7, 11b-hexahydro-4H-pyrazino{2,1-a}-isoquinoline-4-one), and is currently the drug of choice for all forms of schistosomiasis. Silymarin, a standardized milk thistle extract, of which silibinin is the main component, is known for its hepatoprotective, anti-inflammatory, antioxidant activities, and hepatocyte regeneration. This study investigates the anti-inflammatory/anti-fibrotic effects of silymarin and/or PZQ on schistosomal hepatic fibrosis. Methods Schistosoma mansoni-infected mice were divided into two large groups (I & II), each with four subgroups and were run in parallel. (i) Infected untreated; (ii) treated with silymarin, starting from the 4th (3 weeks before PZQ therapy) or 12th (5 weeks after PZQ therapy) weeks post infection (PI); (iii) treated with PZQ in the 7th week PI; and (iv) treated with silymarin, as group (ii) plus PZQ as group (iii). Comparable groups of uninfected mice run in parallel with the infected groups. Mice of groups I and II were killed 10 and 18 weeks PI, respectively. Hepatic content of hydroxyproline (HYP), serum levels and tissue expression of matrix metalloproteinase-2 (MMP-2), transforming growth factor-β1 (TGF-β1) and number of mast cells were determined. In addition, parasitological, biochemical and histological parameters that reflect disease severity and morbidity were examined. Results Silymarin caused a partial decrease in worm burden; hepatic tissue egg load, with an increase in percentage of dead eggs; modulation of granuloma size, with significant reduction of hepatic HYP content; tissue expression of MMP-2, TGF-β1; number of mast cells, with conservation of hepatic reduced glutathione (GSH). PZQ produced complete eradication of worms, eggs and alleviated liver inflammation and fibrosis. The best results were obtained, in most parameters studied, in groups of mice treated with silymarin in addition to PZQ. Conclusions Our results point to silymarin as a promising anti-inflammatory and anti-fibrotic agent; it could be introduced as a therapeutic tool with PZQ in the treatment of schistosomal liver fibrosis, but further studies on mechanisms of silymarin and PZQ in chronic liver diseases may shed light on developing therapeutic methods in clinical practice. PMID:22236605
70 years of radiation genetics: Fruit flies, mice and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahamson, S.
1997-03-01
Radiation protection`s function is to protect society from the potential hazards that might occur through the human use of radiation, whether it be from energy production, medical uses or other sources of exposure. To do so, various scientific bodies are called upon to develop risk estimates which will provide society with adequate protection to the adverse effects of radiation, as best we can understand those adverse affects. Geneticists have the added burden, in that they must attempt to provide protection not only to the offspring of the present generation but also for all subsequent generations. While most of us havemore » difficulty in thinking of effects that might be manifest only one or two generations into the future, some have projected potential risks for 50 to 100 generations. Here the author reviews work on fruit flies and mice, and studies of human exposures, which has provided much of the foundational information upon which geneticists can derive conclusions with regard to radiation protection questions.« less
Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms.
Karlsson, Maja V; Marshall, Stuart; Gouin, Todd; Boxall, Alistair B A
2016-04-01
The present study investigated the route and degree of uptake of 2 ionizable pharmaceuticals (diclofenac and fluoxetine) and 1 ionizable compound used in personal care products (triclosan) into the sediment-dwelling worm Lumbriculus variegatus. Studies were done on complete worms ("feeding") and worms where the head was absent ("nonfeeding") using (14) C-labeled ingredients. Biota sediment accumulation factors (BSAF), based on uptake of (14) C, for feeding worms increased in the order fluoxetine (0.3) < diclofenac (0.5) < triclosan (9), which is correlated with a corresponding increase in log octanol-water partition coefficient. Biota sediment accumulation factor estimates are representative of maximum values because the degree of biotransformation in the worms was not quantified. Although no significant differences were seen between the uptake of diclofenac and that of fluoxetine in feeding and nonfeeding worms, uptake of the more hydrophobic antimicrobial, triclosan, into the feeding worms was significantly greater than that in the nonfeeding worms, with the 48-h BSAF for feeding worms being 36% higher than that for the nonfeeding worms. The results imply that dietary uptake contributes to the uptake of triclosan, which may be a result of the high hydrophobicity of the compound. Models that estimate exposure of ionizable substances may need to consider uptake from both the water column and food, particularly when assessing risks from dynamic exposures to organic contaminants. © 2015 SETAC.
Zhang, Zhifei; Yang, Jing; Wei, Junfei; Yang, Yaping; Chen, Xiaoqin; Zhao, Xi; Gu, Yuan; Cui, Shijuan; Zhu, Xinping
2011-01-01
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. PMID:21750743
Fonseca, Cristina T; Pacífico, Lucila G G; Barsante, Michele M; Rassi, Tatiana; Cassali, Geovanni D; Oliveira, Sérgio C
2006-08-01
Schistosomiasis is an endemic disease that affects 200 million people worldwide. DNA-based vaccine is a promising strategy to induce protective immunity against schistosomiasis, since both humoral and cellular immune responses are involved in parasite elimination. In this study, we evaluated the ability of Sm14 cDNA alone or in association with a plasmid expressing murine interleukin (IL)-12 to induce protection against challenge infection. Mice were immunized with four doses of the DNA vaccine and the levels of protection were determined by worm burden recovery after challenge infection. Specific antibody production to rSm14 was determined by ELISA, and cytokine production was measured in splenocyte culture supernatants stimulated with rSm14 and in bronchoalveolar lavage of vaccinated mice after challenge infection. DNA immunization with pCI/Sm14 alone induced 40.5% of worm reduction. However, the use of pCI/IL-12 as adjuvant to pCI/Sm14 immunization failed to enhance protection against challenge infection. Protection induced by pCI/Sm14 immunization correlates with specific IgG antibody production against Sm14, Th1 type of immune response with high levels of interferon (IFN)-gamma and low levels of IL-4 in splenocyte culture supernatants and in bronchoalveolar lavage after challenge infection. IL-12 co-administration with pCI/Sm14 induced a significant production of nitric oxide in splenocyte culture supernatants and also lymphocyte suppression, with reduced percentage of T cells producing IFN-gamma and tumor necrosis factor-alpha.
The skin is an important bulwark of acquired immunity against intestinal helminths
Obata-Ninomiya, Kazushige; Ishiwata, Kenji; Tsutsui, Hidemitsu; Nei, Yuichiro; Yoshikawa, Soichiro; Kawano, Yohei; Minegishi, Yoshiyuki; Ohta, Nobuo; Watanabe, Naohiro; Kanuka, Hirotaka
2013-01-01
Once animals have experienced a helminthic infection, they often show stronger protective immunity against subsequent infections. Although helminthic infections are well known to elicit Th2-type immune responses, it remains ill-defined where and how acquired protection is executed. Here we show that skin-invading larvae of the intestinal helminth Nippostrongylus brasiliensis are surrounded by skin-infiltrating cells and are prevented from migrating out of infected skin during the second but not the first infection. B cell– or IgE receptor FcεRI–deficient mice showed impaired larval trapping in the skin. Selective ablation of basophils, but not mast cells, abolished the larval trapping, leading to increased worm burden in the lung and hence severe lung injury. Skin-infiltrating basophils produced IL-4 that in turn promoted the generation of M2-type macrophages, leading to the larval trapping in the skin through arginase-1 production. Basophils had no apparent contribution to worm expulsion from the intestine. This study thus reveals a novel mode of acquired antihelminth immunity, in which IgE-armed basophils mediate skin trapping of larvae, thereby limiting lung injury caused by larval migration. PMID:24166714
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.
2000-07-01
The Write One, Run Many (WORM) site (worm.csirc.net) is the on-line home of the WORM language and is hosted by the Criticality Safety Information Resource Center (CSIRC) (www.csirc.net). The purpose of this web site is to create an on-line community for WORM users to gather, share, and archive WORM-related information. WORM is an embedded, functional, programming language designed to facilitate the creation of input decks for computer codes that take standard ASCII text files as input. A functional programming language is one that emphasizes the evaluation of expressions, rather than execution of commands. The simplest and perhaps most common examplemore » of a functional language is a spreadsheet such as Microsoft Excel. The spreadsheet user specifies expressions to be evaluated, while the spreadsheet itself determines the commands to execute, as well as the order of execution/evaluation. WORM functions in a similar fashion and, as a result, is very simple to use and easy to learn. WORM improves the efficiency of today's criticality safety analyst by allowing: (1) input decks for parameter studies to be created quickly and easily; (2) calculations and variables to be embedded into any input deck, thus allowing for meaningful parameter specifications; (3) problems to be specified using any combination of units; and (4) complex mathematically defined models to be created. WORM is completely written in Perl. Running on all variants of UNIX, Windows, MS-DOS, MacOS, and many other operating systems, Perl is one of the most portable programming languages available. As such, WORM works on practically any computer platform.« less
Normal vision can compensate for the loss of the circadian clock
Schlichting, Matthias; Menegazzi, Pamela; Helfrich-Förster, Charlotte
2015-01-01
Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY. PMID:26378222
Worm-stars and half-worms: Novel dangers and novel defense.
Hodgkin, Jonathan; Clark, Laura C; Gravato-Nobre, Maria J
2014-01-01
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of "worm-star" aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Vermin. 354.245 Section 354.245 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... exclude flies, rats, mice, and other vermin from the official plant. Dogs, cats, and other pets shall be...
Kapan, Neval; Lushchak, Oleh V; Luo, Jiangnan; Nässel, Dick R
2012-12-01
Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in Drosophila. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and Dilp transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of Dilp2 and 5 in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult Drosophila.
Hildreth, Blake Eason; Williams, Michelle M; Dembek, Katarzyna A; Hernon, Krista M; Rosol, Thomas J; Toribio, Ramiro E
2015-12-01
Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ≤ 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P < 0.0001). The total amount of bone observed histologically increased in both groups at 2 and 4 weeks (P ≤ 0.002); however, PTHrP 1-34 exceeded time-matched controls (P ≤ 0.044). A positive linear relationship existed between the percentage of trabecular bone and (1) total bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI.
Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.
2013-01-01
Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705
de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I
2013-01-01
Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.
Ichimura, Yohei; Asano, Yoshihide; Akamata, Kaname; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Toyama, Tetsuo; Tada, Yayoi; Sugaya, Makoto; Sato, Shinichi; Kadono, Takafumi
2015-12-01
Progranulin is a growth factor that is active in wound repair and is an antagonist of tumor necrosis factor (TNF) receptors, regulating fibroblast activation, angiogenesis, and inflammation. Because long-standing activation of gene programs related to wound healing is a hallmark of systemic sclerosis (SSc), we sought to investigate the role of progranulin in SSc. Progranulin expression levels in human and murine skin samples were determined by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. The role of progranulin in fibroblast activation was examined using a gene-silencing technique. Progranulin levels in serum obtained from 60 patients with SSc and 16 healthy control subjects were determined by enzyme-linked immunosorbent assay. Progranulin expression was increased in SSc dermal fibroblasts compared with normal dermal fibroblasts, both in vivo and in vitro. Transcription factor Fli-1, a deficiency of which is involved in the activation of SSc dermal fibroblasts, served as a potent repressor of the progranulin gene, and Fli-1(+/-) mice and bleomycin-treated wild-type mice exhibited up-regulated expression of progranulin in dermal fibroblasts. SSc dermal fibroblasts were resistant to the antifibrotic effect of TNF, but this resistance was reversed by gene silencing of progranulin. Serum progranulin levels were elevated in patients with early diffuse cutaneous SSc (dcSSc), especially in those with inflammatory skin symptoms, and were positively correlated with the C-reactive protein level. Progranulin overproduction due to Fli-1 deficiency may contribute to the constitutive activation of SSc dermal fibroblasts by antagonizing the antifibrotic effect of TNF. Progranulin may also be involved in the inflammatory process associated with progressive skin sclerosis in early dcSSc. © 2015, American College of Rheumatology.
Abdel-Lateef, Ezzat El-Sayed; Rabia, Ibrahim Aly; El-Sayed, Mortada Mohamed; Abdel-Hameed, El-Sayed Saleh
2018-04-10
The in vivo antischistosomal activities of Carica papaya L. extracts were evaluated and the characterization of the active secondary metabolites of the defatted methanolic extract was performed using HPLC-ESI-MS. The plant fruit powders were extracted with 85% methanol and fractionated using organic solvents. The in vivo antischistosomal effects of the methanolic extracts and its fractions, as well as the assessment of the relationship between the antischistosomal activity of these plant extracts and oxidative stress, was determined. In addition, the defatted methanolic extract was characterized by HPLC-ESI-MS analysis. The number of worms, ova, and the Oogram pattern displayed typical Schistosoma mansoni pathology 8 weeks after infection in mice. Treatment of the infected group with the defatted methanolic extracts significantly decreased worm burden, immature ova and mature ova, while increasing the percentage of dead ova in vivo. The butanol fraction was the most effective fraction reducing worm burden by 77%, ova count in the intestine by 76% and in the liver by 80%, and significantly decreased immature and mature ova ( P <0.001) compared to the infected group. Additionally, the defatted methanolic extracts improved the reduced glutathione and malondialdehyde levels in hepatic tissues in the treated groups compared to the infected group. The HPLC-ESI-MS analysis of the Carica papaya defatted methanolic extract revealed the presence of several polyphenolic compounds. Carica papaya fruit extracts are rich with phenolic acids and flavonoids and show a significant effect against S. mansoni infections which may be used alternative to PZQ as anti-schistosomal drug against schistosomiasis. © Georg Thieme Verlag KG Stuttgart · New York.
21 CFR 520.45b - Albendazole paste.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (Fasciola hepatica); heads and segments of tapeworms (Moniezia benedeni, M. expansa); adult and 4th stage larvae of stomach worms (brown stomach worms including 4th stage inhibited larvae (Ostertagia ostertagi); barberpole worm (Haemonchus contortus, H. placei); small stomach worm (Trichostrongylus axei)); adult and 4th...
The Proteome Folding Project: Proteome-scale prediction of structure and function
Drew, Kevin; Winters, Patrick; Butterfoss, Glenn L.; Berstis, Viktors; Uplinger, Keith; Armstrong, Jonathan; Riffle, Michael; Schweighofer, Erik; Bovermann, Bill; Goodlett, David R.; Davis, Trisha N.; Shasha, Dennis; Malmström, Lars; Bonneau, Richard
2011-01-01
The incompleteness of proteome structure and function annotation is a critical problem for biologists and, in particular, severely limits interpretation of high-throughput and next-generation experiments. We have developed a proteome annotation pipeline based on structure prediction, where function and structure annotations are generated using an integration of sequence comparison, fold recognition, and grid-computing-enabled de novo structure prediction. We predict protein domain boundaries and three-dimensional (3D) structures for protein domains from 94 genomes (including human, Arabidopsis, rice, mouse, fly, yeast, Escherichia coli, and worm). De novo structure predictions were distributed on a grid of more than 1.5 million CPUs worldwide (World Community Grid). We generated significant numbers of new confident fold annotations (9% of domains that are otherwise unannotated in these genomes). We demonstrate that predicted structures can be combined with annotations from the Gene Ontology database to predict new and more specific molecular functions. PMID:21824995
Sukoff Rizzo, Stacey J; Crawley, Jacqueline N
2017-02-08
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
EFFECTS OF SIZE FRACTIONATED AMBIENT PM SAMPLES ON INDUCTION OF PULMONARY ALLERGY IN MICE
There is increasing evidence that exposure to certain air pollutants including ozone and diesel exhaust can enhance allergic sensitization to allergens. Previous work from our laboratory has shown that exposure to residual oil fly ash or its associated transition metals can ...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The paper presents results of research on the adverse health effects associated with exposure to airborne particulate matter. Pulmonary inflammatory responses were examined in CDI mice after intratracheal instillation of 25 or 100 micrograms of ultrafine (<0.2 micrometers), fine ...
ERIC Educational Resources Information Center
Flannery, Maura C.
1997-01-01
Addresses the most popular models currently being chosen for biological research and the reasons behind those choices. Among the current favorites are zebra fish, fruit flies, mice, monkeys, and yeast. Concludes with a brief examination of the ethical issues involved, and why some animals may need to be replaced in research with model systems.…
Jacques, Camille; Lamoureux, François; Baud’huin, Marc; Calleja, Lidia Rodriguez; Quillard, Thibaut; Amiaud, Jérôme; Tirode, Franck; Rédini, Françoise; Bradner, James E.; Heymann, Dominique; Ory, Benjamin
2016-01-01
Ewing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor. Finding a way to directly target EWS-Fli1 remains a central therapeutic approach to eradicate this aggressive cancer. Here we demonstrate that treating Ewing Sarcoma cells with JQ1(+), a BET bromodomain inhibitor, represses directly EWS-Fli1 transcription as well as its transcriptional program. Moreover, the Chromatin Immuno Precipitation experiments demonstrate for the first time that these results are a consequence of the depletion of BRD4, one of the BET bromodomains protein from the EWS-Fli1 promoter. In vitro, JQ1(+) treatment reduces the cell viability, impairs the cell clonogenic and the migratory abilities, and induces a G1-phase blockage as well as a time- and a dose-dependent apoptosis. Furthermore, in our in vivo model, we observed a tumor burden delay, an inhibition of the global vascularization and an increase of the mice overall survival. Taken together, our data indicate that inhibiting the BET bromodomains interferes with EWS-FLi1 transcription and could be a promising strategy in the Ewing tumors context. PMID:27006472
High-Fidelity Modeling of Computer Network Worms
2004-06-22
plots the propagation of the TCP-based worm. This execution is among the largest TCP worm models simulated to date at packet-level. TCP vs . UDP Worm...the mapping of the virtual IP addresses to honeyd’s MAC address in the proxy’s ARP table. The proxy server listens for packets from both sides of...experimental setup, we used two ntium-4 ThinkPad , and an IBM Pentium-III ThinkPad ), running the proxy server and honeyd respectively. The Code Red II worm
Ewing Sarcoma Cells Secrete EWS/Fli-1 Fusion mRNA via Microvesicles
Tsugita, Masanori; Yamada, Nami; Noguchi, Shunsuke; Yamada, Kazunari; Moritake, Hiroshi; Shimizu, Katsuji; Akao, Yukihiro; Ohno, Takatoshi
2013-01-01
Tumours defined as Ewing sarcoma (ES) constitute a group of highly malignant neoplasms that most often affect children and young adults in the first 2 decades of life. The EWS/Fli-1 fusion gene, a product of the translocation t(11;22) (q24; 12), is detected in 95% of ES patients. Recently, it was validated that cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids, and that these MVs contain a selected set of tumor-related proteins and high levels of mRNAs and miRNAs. In this present study, we detected the Ewing sarcoma-specific EWS/Fli-1 mRNA in MVs from the culture medium of ES cell lines carrying t(11;22) (q24; 12). Also, we detected this fusion gene in approximately 40% of the blood samples from mice inoculated with xenografts of TC135 or A673 cells. These findings indicate the EWS/Fli-1 mRNA in MVs might be a new non-invasive diagnostic marker for specific cases of Ewing sarcoma. PMID:24124617
Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila.
Brandt, Tobias; Mourier, Arnaud; Tain, Luke S; Partridge, Linda; Larsson, Nils-Göran; Kühlbrandt, Werner
2017-07-12
Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies ( Drosophila melanogaster ) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.
Soy undecapeptide induces Drosophila hind leg grooming via dopamine receptor.
Karim, M Rezaul; Yanagawa, Aya; Ohinata, Kousaku
2018-05-15
β-Conglycinin α subunit (323-333) [βCGα(323-333)] is an exogenous neuromodulating undecapeptide found from enzymatic digest of β-conglycinin, a soy major storage protein by mice behavior tests. We investigated effect of βCGα(323-333) on Drosophila behavior. Oral administration of βCGα(323-333) in Drosophila increased hind leg grooming, which may act through specific sets of neurons. It was reported that dopamine receptor (DopR) meditates hind leg grooming, and we tested involvement of DopR in βCGα(323-333)-induced hind leg grooming by using DopR knockout flies. In the wild type but not in the DopR-knockout flies, βCGα(323-333) increased hind leg grooming. These results suggest that βCGα(323-333) induces hind leg grooming via activating the DopR. This is the first report showing that exogenously administered peptide changes fly behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.
Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans†
Hulme, S. Elizabeth; Shevkoplyas, Sergey S.; McGuigan, Alison P.; Apfeld, Javier; Fontana, Walter
2011-01-01
This article describes the fabrication of a microfluidic device for the liquid culture of many individual nematode worms (Caenorhabditis elegans) in separate chambers. Each chamber houses a single worm from the fourth larval stage until death, and enables examination of a population of individual worms for their entire adult lifespans. Adjacent to the chambers, the device includes microfluidic worm clamps, which enable periodic, temporary immobilization of each worm. The device made it possible to track changes in body size and locomotion in individual worms throughout their lifespans. This ability to perform longitudinal measurements within the device enabled the identification of age-related phenotypic changes that correlate with lifespan in C. elegans. PMID:20162234
Hulme, S Elizabeth; Whitesides, George M
2011-05-16
This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (<1000 cells), transparent, and genetically tractable. Despite its simplicity, the worm exhibits complex phenotypes associated with multicellularity: the worm has differentiated cells and organs, it ages and has a well-defined lifespan, and it is capable of learning and remembering. This Review argues that the balance between simplicity and complexity in the worm will make it a useful tool in determining the relationship between molecular-scale phenomena and organism-level phenomena, such as aging, behavior, cognition, and disease. Following an introduction to worm biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Balqis, Ummu; Hambal, Muhammad; Rinidar; Athaillah, Farida; Ismail; Azhar; Vanda, Henni; Darmawi
2017-07-01
The objective of this research was to in vitro evaluate the cuticular surface damage of Ascaridia galli adult worms treated with ethanolic extract of betel nuts Veitchia merrillii . Phytochemical screening was done using FeCl 3 , Wagner and Dragendorff reagents, NaOH, MgHCl, and Liebermann-Burchard reaction test. Amount of 16 worms were segregated into four groups with three replicates. Four worms of each group submerged into phosphate buffered saline, 25 mg/ml, and 75 mg/ml crude ethanolic extract of V. merrillii , and 15 mg/ml albendazole. The effect of these extract was observed 40 h after incubation as soon as worms death. The worms were sectioned transversally and were explored for any cuticular histopathological changes in their body surface under microscope. We found that the ethanolic extract of V. merrillii betel nuts contains tannins, alkaloids, flavonoids, triterpenoids, and saponins. The ethanolic extract of betel nuts V. merrillii induces surface alterations caused cuticular damage of A. galli adult worms. We concluded that ethanolic extract of betel nuts V. merrillii possess anthelmintic activity caused cuticular damage of A. galli adult worms.
A calibration mechanism based on worm drive for space telescope
NASA Astrophysics Data System (ADS)
Chong, Yaqin; Li, Chuang; Xia, Siyu; Zhong, Peifeng; Lei, Wang
2017-08-01
In this paper, a new type of calibration mechanism based on worm drive is presented for a space telescope. This calibration mechanism based on worm drive has the advantages of compact size and self-lock. The mechanism mainly consists of thirty-six LEDs as the light source for flat calibration, a diffuse plate, a step motor, a worm gear reducer and a potentiometer. As the main part of the diffuse plate, a PTFE tablet is mounted in an aluminum alloy frame. The frame is fixed on the shaft of the worm gear, which is driven by the step motor through the worm. The shaft of the potentiometer is connected to that of the worm gear to measure the rotation angle of the diffuse plate through a flexible coupler. Firstly, the calibration mechanism is designed, which includes the LEDs assembly design, the worm gear reducer design and the diffuse plate assembly design. The counterweight blocks and two end stops are also designed for the diffuse plate assembly. Then a modal analysis with finite element method for the diffuse plate assembly is completed.
Tang, Chun-Lian; Yang, Jin; Cheng, Liang-Yu; Cheng, Lan-Fang; Liu, Zhi-Ming
2017-10-01
The effect of anti-CD25 monoclonal antibody (anti-CD25 mAb) on the protection efficacy of Schistosoma japonicum 26 kDa GST (glutathione-S-transferase) vaccine was evaluated. Mice were immunized with GST before infection with S. japonicum cercariae and then injected with anti-CD25 mAb. The worm reduction rate was promoted from 24.18% in mice with GST immunization to 47.09% in mice with GST plus anti-CD25 mAb. Compared with the control group, the percentages of splenic CD4 + CD25 + Foxp3 + regulatory T cells (Tregs) were significantly lower after administration of anti-CD25 mAb; meanwhile, elevated levels of IFN-γ and IL-2 were secreted by splenocytes. These results indicate that the poor protective efficacy of the GST vaccine against S. japonicum results from the presence of CD4 + CD25 + Foxp3 + Tregs, while anti-CD25 mAb can partially block CD4 + CD25 + Foxp3 + Tregs and thus enhance the protective efficacy of the GST vaccine.
Therapeutic effects of Allium sativum and Allium cepa in Schistosoma mansoni experimental infection.
Mantawy, Mona Mohamed; Ali, Hanan Farouk; Rizk, Maha Zaki
2011-01-01
The effects of both garlic (Allium sativum) and onion (Allium cepa) on some biochemical parameters in Schistosoma mansoni infected mice individually and mixed either with or without the currently used drug, praziquantel (PZQ) were investigated. These involved some immunological parameters, namely IgM, IgG, interleukins 2 and 6 (IL-2 and 6) and tumor necrosis factor (TNF-α), some antioxidant enzymes [catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX)]. In addition, parasitological and histopathological investigations were performed. No changes were observed in the normal control mice treated with dry extract of onion or garlic, individually or mixed, with or without PZQ, compared to the normal healthy control group. Infection with S. mansoni showed an increase in IgG, IgM, IL-2, IL-6, TNF-α and catalase enzyme, accompanied with a decrease in GPX and SOD antioxidant enzyme activities. Remarkable amelioration was noticed in the levels of all the measured parameters in S. mansoni infected mice after administration of the studied extracts. Moreover a significant reduction in worm burden, hepatic and intestinal eggs and oogram count was noticed which was reflected in normalization of liver architecture.
Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.
Vidal, Dora Elva; Horne, Alex John
2003-09-01
Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.
Blazer, V.S.; Waldrop, T.B.; Schill, W.B.; Densmore, Christine L.; Smith, D.
2003-01-01
Eastern Tubifex tubifex worms were exposed to Myxobolus cerebralis spores at 9, 13, 17, and 20 C in 1-L jars that contained sand, mud, or leaf litter as substrata. Beginning 60 days after exposure, water from each jar was filtered daily and examined for the presence of waterborne triactinomyxon spores (TAMs). On discovering a single TAM from an experimental jar, 48 T. tubifex worms from that jar were placed individually into 24-well plates. Spores released from individual infected T. tubifex worms were quantified to determine the first day of TAM release from infected worms, the infection rate, the total number of TAMs released per worm, and the duration of release. No TAMs were found in any of the jars incubated at 20 C or in uninfected, control worms at any temperature. The total number of TAMs released by infected worms in mud and sand was highest at 13 C compared with other temperatures. Infection rates among individual worms increased with temperature between 9 and 17 C. Higher temperatures (up to 17 C) induced earlier TAM releases among infected worms, and substratum did not influence this production parameter. The average duration of TAM release decreased as the temperature increased from 9 to 17 C, and there was a significant effect of substratum in the groups maintained at 13 and 17 C. In all temperature treatments between 9 and 17 C, the duration of release was least in the worms maintained in leaf litter, as was the total number of TAMs released during the experimental period and the median number of TAMs per production day.
Hodgkin, Jonathan; Félix, Marie-Anne; Clark, Laura C.; Stroud, Dave; Gravato-Nobre, Maria J.
2013-01-01
Summary The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine [1, 2], while others attack via its external surface [1, 3–6]. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses [7, 8]. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated “worm-stars.” Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection [6]. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi [4]. PMID:24206844
Hodgkin, Jonathan; Félix, Marie-Anne; Clark, Laura C; Stroud, Dave; Gravato-Nobre, Maria J
2013-11-04
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M
2011-11-15
Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.
Uddin, Md Hafiz; Li, Shunyu; Jin, Yan; Choi, Min-Ho; Jang, Ja June; Hong, Sung-Tae
2016-06-01
Clonorchis sinensis is a Group-I bio-carcinogen, associated with cholangiocarcinoma (CCA). The hamster is the only experimental model of C. sinensis-mediated CCA, but we oblige another animal model. The present study intended to develop a C. sinensis (Cs) mediated CCA model using C3H/He mice, co-stimulated with N-nitrosodimethyl-amine (NDMA) and dicyclanil (DC). The mice were divided into 8 groups with different combinations of Cs, NDMA, and DC. Six months later the mice were sacrificed and subjected to gross and histopathological examination. The body weights were significantly reduced among the groups treated with 2 or more agents (eg. Cs+NDMA, Cs+DC, NDMA+DC, and Cs+NDMA+DC). In contrast, liver weight percentages to body weight were increased in above groups by 4.1% to 4.7%. A Change of the spleen weight was observed only in Cs+NDMA group. Though C. sinensis infection is evident from hyperplastic changes, only 1 worm was recovered. T wo mice, 1 from Cs and the other from Cs+DC group, showed mass forming lesions; 1 (281.2 mm(3)) from the Cs group was a hepatocellular adenoma and the other (280.6 mm(3)) from the Cs+DC group was a cystic mass (peliosis). Higher prevalence of gray-white nodules was observed in Cs group (42.9%) followed by Cs+NDMA+DC group (21.4%). The mice of the Cs+NDMA+DC group showed hyper-proliferation of the bile duct with fibrotic changes. No characteristic change for CCA was recognized in any of the groups. In conclusion, C3H/He mice produce no CCA but extensive fibrosis when they are challenged by Cs, NDMA, and DC together.
Zhao, Aiping; McDermott, Joseph; Urban, Joseph F; Gause, William; Madden, Kathleen B; Yeung, Karla Au; Morris, Suzanne C; Finkelman, Fred D; Shea-Donohue, Terez
2003-07-15
IL-4 and IL-13 promote gastrointestinal worm expulsion in part through effects on nonlymphoid cells, such as intestinal smooth muscle cells. The roles of Stat6 in IL-4-, IL-13-, and parasitic nematode-induced effects on small intestinal smooth muscle contractility were investigated in BALB/c wild-type and Stat6-deficient mice treated with a long-lasting formulation of recombinant mouse IL-4 (IL-4C) or IL-13 for 7 days. Separate groups of BALB/c mice were infected with Nippostrongylus brasiliensis or were drug-cured of an initial Heligmosomoides polygyrus infection and later reinfected. Infected mice were studied 9 and 12 days after inoculation, respectively. Segments of jejunum were suspended in an organ bath, and responses to nerve stimulation and to acetylcholine and substance P in the presence and absence of tetradotoxin, a neurotoxin, were determined. Both IL-4 and IL-13 increased smooth muscle responses to nerve stimulation in wild-type mice, but the effects were greater in IL-13-treated mice and were absent in IL-13-treated Stat6-deficient mice. Similarly, hypercontractile responses to nerve stimulation in H. polygyrus- and N. brasiliensis-infected mice were dependent in part on Stat6. IL-13, H. polygyrus, and N. brasiliensis, but not IL-4, also increased contractility to acetylcholine by mechanisms that involved Stat6 and enteric nerves. These studies demonstrate that both IL-4 and IL-13 promote intestinal smooth muscle contractility, but by different mechanisms. Differences in these effects correlate with differences in the relative importance of these cytokines in the expulsion of enteric nematode parasites.
Uddin, Md. Hafiz; Li, Shunyu; Jin, Yan; Choi, Min-Ho; Jang, Ja June; Hong, Sung-Tae
2016-01-01
Clonorchis sinensis is a Group-I bio-carcinogen, associated with cholangiocarcinoma (CCA). The hamster is the only experimental model of C. sinensis-mediated CCA, but we oblige another animal model. The present study intended to develop a C. sinensis (Cs) mediated CCA model using C3H/He mice, co-stimulated with N-nitrosodimethyl-amine (NDMA) and dicyclanil (DC). The mice were divided into 8 groups with different combinations of Cs, NDMA, and DC. Six months later the mice were sacrificed and subjected to gross and histopathological examination. The body weights were significantly reduced among the groups treated with 2 or more agents (eg. Cs+NDMA, Cs+DC, NDMA+DC, and Cs+NDMA+DC). In contrast, liver weight percentages to body weight were increased in above groups by 4.1% to 4.7%. A Change of the spleen weight was observed only in Cs+NDMA group. Though C. sinensis infection is evident from hyperplastic changes, only 1 worm was recovered. T wo mice, 1 from Cs and the other from Cs+DC group, showed mass forming lesions; 1 (281.2 mm3) from the Cs group was a hepatocellular adenoma and the other (280.6 mm3) from the Cs+DC group was a cystic mass (peliosis). Higher prevalence of gray-white nodules was observed in Cs group (42.9%) followed by Cs+NDMA+DC group (21.4%). The mice of the Cs+NDMA+DC group showed hyper-proliferation of the bile duct with fibrotic changes. No characteristic change for CCA was recognized in any of the groups. In conclusion, C3H/He mice produce no CCA but extensive fibrosis when they are challenged by Cs, NDMA, and DC together. PMID:27417082
Ishikawa, N; Horii, Y; Oinuma, T; Suganuma, T; Nawa, Y
1994-01-01
The aim of this study was to examine the role of T cells on the alteration of terminal sugars of goblet cell mucins in the small intestinal mucosa of parasitized rats and to clarify the biological significance of the altered mucins in the mucosal defence against intestinal helminths. For this purpose, Nippostrongylus brasiliensis adult worms obtained from donor rats at 7 ('normal' worms) or 13 days ('damaged' worms) post-infection were implanted intraduodenally into euthymic and hypothymic (rnu/rnu) rats. Expulsion of implanted normal worms and associated goblet cell changes were extremely delayed in hypothymic recipients compared with euthymic recipients. In contrast, intraduodenally implanted damaged worms were expelled by day 5 regardless of the strains. Around the time of expulsion of implanted damaged worms, euthymic recipients showed both goblet cell hyperplasia and alteration of mucins, whereas hypothymic rats showed only the latter. Dexamethasone treatment completely abolished goblet cell changes of both strains of recipients. To clarify the importance of the constitutional changes of goblet cell mucins in mucosal defence, euthymic rats were primed by implantation of damaged worms to induce goblet cell changes, and then 3 or 5 days later they were challenged by implantation with normal worms. The results show that when goblet cell changes were induced by priming with damaged worms, recipient rats could completely prevent the establishment of normal worms. When hypothymic rats were primed and challenged in the same manner, a similar but slightly less preventive effect was observed. Such a protective effect of altered mucins seems to be selective because priming of euthymic rats with damaged N. brasiliensis did not affect the establishment of Strongyloides venezuelensis. These results suggest that: (1) once N. brasiliensis adult worms are 'damaged' by the host's T-cell-dependent immune mechanisms, they can induce alteration of sugar residues of goblet cell mucins via host-mediated, T-cell-independent processes; (2) the expression of such altered mucins is highly effective not only in causing expulsion of established damaged worms but also in preventing establishment of normal worms; and (3) the preventive effect of altered mucins is selective against parasite species. Images Figure 2 Figure 4 PMID:8206520
The occurrence of gizzard worms in Canada geese
Herman, C.M.; Wehr, E.E.
1954-01-01
Amidostomum anseris, a roundworm which occurs under the horny lining of the gizzard in birds, is a widely distributed parasite in Canada geese. It is also reported from snow geese (Chen hyperborea). Although the extent of erosion of the gizzard wall by these worms is not precisely correlated with the number of worms present, it is usually severe in Canada geese when 150 or more worms are present. Gizzard worm infection is considered a contributing factor to low weights, poor condition and to losses among the Canada geese which winter at the Pea Island National Wildlife Refuge in North Carolina. The mean number of gizzard worms per bird is considerably higher for Pea Island than for areas where winter losses have not been reported.
Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan
2014-01-01
SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482
Problem-Solving Test: Targeted Gene Disruption
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2008-01-01
Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…
Balqis, Ummu; Hambal, Muhammad; Rinidar; Athaillah, Farida; Ismail; Azhar; Vanda, Henni; Darmawi
2017-01-01
Aim: The objective of this research was to in vitro evaluate the cuticular surface damage of Ascaridia galli adult worms treated with ethanolic extract of betel nuts Veitchia merrillii. Materials and Methods: Phytochemical screening was done using FeCl3, Wagner and Dragendorff reagents, NaOH, MgHCl, and Liebermann–Burchard reaction test. Amount of 16 worms were segregated into four groups with three replicates. Four worms of each group submerged into phosphate buffered saline, 25 mg/ml, and 75 mg/ml crude ethanolic extract of V. merrillii, and 15 mg/ml albendazole. The effect of these extract was observed 40 h after incubation as soon as worms death. The worms were sectioned transversally and were explored for any cuticular histopathological changes in their body surface under microscope. Results: We found that the ethanolic extract of V. merrillii betel nuts contains tannins, alkaloids, flavonoids, triterpenoids, and saponins. The ethanolic extract of betel nuts V. merrillii induces surface alterations caused cuticular damage of A. galli adult worms. Conclusion: We concluded that ethanolic extract of betel nuts V. merrillii possess anthelmintic activity caused cuticular damage of A. galli adult worms. PMID:28831213
Inequalities in body size among mermithid nematodes parasitizing earwigs.
Maure, Fanny; Poulin, Robert
2016-12-01
Variation among body sizes of adult parasitic worms determines the relative genetic contribution of individuals to the next generation as it affects the effective parasite population size. Here, we investigate inequalities in body size and how they are affected by intensity of infection in Mermis nigrescens (Mermithidae: Nematoda) parasitizing the European earwig Forficula auricularia in New Zealand. Among a population of pre-adult worms prior to their emergence from the host, we observed only modest inequalities in body length; however, among worms sharing the same individual host, inequalities in body sizes decreased with increasing intensity of infection. Thus, the more worms occurred in a host, the more the second-longest, third-longest and even fourth-longest worms approached the longest worm in body length. This pattern, also known from another mermithid species, suggests that worms sharing the same host may have infected it roughly simultaneously, when the host encountered a clump of eggs in the environment. Thus, the life history and mode of infection of the parasite may explain the modest inequalities in the sizes achieved by pre-adult worms, which are lower than those reported for endoparasitic helminths of vertebrates.
Nieves, Elsa; Buelvas, Neudo; Rondón, Maritza; González, Néstor
2010-01-01
Leishmaniasis is a vector-borne disease transmitted by the intradermal inoculation of Leishmania (Kinetoplastida: Trypanosomatidae) promastigotes together with saliva during the bite of an infected sand fly. The salivary glands were compared from two vector species, Lutzomyia ovallesi (Ortiz,1952) and Lutzomyia migonei (França,1920) (Diptera: Psychodidae). Protein profiles by SDS PAGE of salivary glands were compared among species as well as their development at several times post feeding. First, mice were immunized to salivary proteins by exposure to biting by L. ovallesi and of L. migonei. Antibodies in these mice against salivary gland-specific proteins were evaluated by immunoblotting. No apparent change was revealed in the kinetic expression of salivary proteins induced by the different physiological states post feeding. Qualitative and quantitative variations were detected in16-18 polypeptides with molecular weights ranging from 6 to 180 kDa. Species-specific proteins were demonstrated for L. migonei and L. ovallesi. In addition, antibodies against salivary gland specific proteins were found in mice immunized by the saliva of both species. Basic information was obtained concerning the nature of salivary gland proteins of L. migonei and L. ovallesi. This information helps to elucidate the role of salivary proteins and their potential as effective tools in screening risk factors in human and other vertebrate hosts.
Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis
Dkhil, Mohamed A; Bauomy, Amira A; Diab, Marwa SM; Al-Quraishy, Saleh
2015-01-01
In recent years, gold nanoparticles (AuNPs) have become the focus of much attention in biomedical research, especially in the context of nanomedicine, due to their distinctive physicochemical properties. The current study was planned to assess the effect of three dose levels of AuNPs on the gene expression, histology, and oxidative stress status of Schistosoma mansoni-infected mice liver. Inoculation of mice with 100 μL AuNPs at different doses (0.25, 0.5, and 1 mg/kg mice body weight) twice on day 46 and day 49 postinfection reduced the total worm burden, the egg load in the liver, and the granuloma size. AuNPs also appeared to decrease the activities of malondialdehyde and nitric oxide significantly, and increase the level of glutathione compared to the infected untreated group. Concomitantly, AuNPs ameliorated the inflammatory response by decreasing the mRNA expression of interleukin-1β, interleukin-6, tumor necrosis factor-α, interferon-γ, and inducible nitric oxide synthase. These consistent molecular, histopathological, and biochemical data suggest that AuNPs could ameliorate infection-induced damage in the livers of mice. Our results indicated that AuNPs are effective anti-schistosomal and antioxidant agents. Further confirmation of the role of nanogold as an anti-schistosomal agent, as well as its mechanism of action, requires further studies to be undertaken in the future. PMID:26719689
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Nava, Alessandro; Fan, Qi; Fuentes, Alfonso
2002-01-01
New geometry of face worm gear drives with conical and cylindrical worms is proposed. The generation of the face worm-gear is based on application of a tilted head-cutter (grinding tool) instead of application of a hob applied at present. The generation of a conjugated worm is based on application of a tilted head-cutter (grinding tool) as well. The bearing contact of the gear drive is localized and is oriented longitudinally. A predesigned parabolic function of transmission errors for reduction of noise and vibration is provided. The stress analysis of the gear drive is performed using a three-dimensional finite element analysis. The contacting model is automatically generated. The developed theory is illustrated with numerical examples.
Baliban, Scott M.; Yang, Mingjun; Ramachandran, Girish; Curtis, Brittany; Shridhar, Surekha; Laufer, Rachel S.; Wang, Jin Y.; Van Druff, John; Higginson, Ellen E.; Hegerle, Nicolas; Varney, Kristen M.; Galen, James E.; Tennant, Sharon M.; Lees, Andrew; MacKerell, Alexander D.; Levine, Myron M.; Simon, Raphael
2017-01-01
Invasive infections associated with non-typhoidal Salmonella (NTS) serovars Enteritidis (SE), Typhimurium (STm) and monophasic variant 1,4,[5],12:i:- are a major health problem in infants and young children in sub-Saharan Africa, and currently, there are no approved human NTS vaccines. NTS O-polysaccharides and flagellin proteins are protective antigens in animal models of invasive NTS infection. Conjugates of SE core and O-polysaccharide (COPS) chemically linked to SE flagellin have enhanced the anti-COPS immune response and protected mice against fatal challenge with a Malian SE blood isolate. We report herein the development of a STm glycoconjugate vaccine comprised of STm COPS conjugated to the homologous serovar phase 1 flagellin protein (FliC) with assessment of the role of COPS O-acetyls for functional immunity. Sun-type COPS conjugates linked through the polysaccharide reducing end to FliC were more immunogenic and protective in mice challenged with a Malian STm blood isolate than multipoint lattice conjugates (>95% vaccine efficacy [VE] versus 30–43% VE). Immunization with de-O-acetylated STm-COPS conjugated to CRM197 provided significant but reduced protection against STm challenge compared to mice immunized with native STm-COPS:CRM197 (63–74% VE versus 100% VE). Although OPS O-acetyls were highly immunogenic, post-vaccination sera that contained various O-acetyl epitope-specific antibody profiles displayed similar in vitro bactericidal activity when equivalent titers of anti-COPS IgG were assayed. In-silico molecular modeling further indicated that STm OPS forms a single dominant conformation, irrespective of O-acetylation, in which O-acetyls extend outward and are highly solvent exposed. These preclinical results establish important quality attributes for an STm vaccine that could be co-formulated with an SE-COPS:FliC glycoconjugate as a bivalent NTS vaccine for use in sub-Saharan Africa. PMID:28388624
Baliban, Scott M; Yang, Mingjun; Ramachandran, Girish; Curtis, Brittany; Shridhar, Surekha; Laufer, Rachel S; Wang, Jin Y; Van Druff, John; Higginson, Ellen E; Hegerle, Nicolas; Varney, Kristen M; Galen, James E; Tennant, Sharon M; Lees, Andrew; MacKerell, Alexander D; Levine, Myron M; Simon, Raphael
2017-04-01
Invasive infections associated with non-typhoidal Salmonella (NTS) serovars Enteritidis (SE), Typhimurium (STm) and monophasic variant 1,4,[5],12:i:- are a major health problem in infants and young children in sub-Saharan Africa, and currently, there are no approved human NTS vaccines. NTS O-polysaccharides and flagellin proteins are protective antigens in animal models of invasive NTS infection. Conjugates of SE core and O-polysaccharide (COPS) chemically linked to SE flagellin have enhanced the anti-COPS immune response and protected mice against fatal challenge with a Malian SE blood isolate. We report herein the development of a STm glycoconjugate vaccine comprised of STm COPS conjugated to the homologous serovar phase 1 flagellin protein (FliC) with assessment of the role of COPS O-acetyls for functional immunity. Sun-type COPS conjugates linked through the polysaccharide reducing end to FliC were more immunogenic and protective in mice challenged with a Malian STm blood isolate than multipoint lattice conjugates (>95% vaccine efficacy [VE] versus 30-43% VE). Immunization with de-O-acetylated STm-COPS conjugated to CRM197 provided significant but reduced protection against STm challenge compared to mice immunized with native STm-COPS:CRM197 (63-74% VE versus 100% VE). Although OPS O-acetyls were highly immunogenic, post-vaccination sera that contained various O-acetyl epitope-specific antibody profiles displayed similar in vitro bactericidal activity when equivalent titers of anti-COPS IgG were assayed. In-silico molecular modeling further indicated that STm OPS forms a single dominant conformation, irrespective of O-acetylation, in which O-acetyls extend outward and are highly solvent exposed. These preclinical results establish important quality attributes for an STm vaccine that could be co-formulated with an SE-COPS:FliC glycoconjugate as a bivalent NTS vaccine for use in sub-Saharan Africa.
Kaminsky, Ronald; Rufener, Lucien; Bouvier, Jacques; Lizundia, Regina; Schorderet Weber, Sandra; Sager, Heinz
2013-08-01
Worm infections can cause severe harm and death to both humans and numerous domestic and wild animals. Despite the fact that there are many beneficial worm species, veterinarians, physicians and parasitologists have multiple reasons to combat parasitic worms. The pros and cons of various approaches for the discovery of new control methods are discussed, including novel anthelmintics, vaccines and genetic approaches to identify novel drug and vaccine targets. Currently, the mainstay of worm control remains chemotherapy and prophylaxis. The importance of knowledgeable and wise use of the available anthelmintics is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.
Periorbital dirofilariasis—Clinical and imaging findings: Live worm on ultrasound
Gopinath, Thandre N; Lakshmi, K P; Shaji, P C; Rajalakshmi, P C
2013-01-01
Ocular dirofilariasis is a zoonotic filariasis caused by nematode worm,Dirofilaria. We present a case of dirofilariasis affecting the upper eyelid in a 2-year-old child presenting as an acutely inflammed cyst, from southern Indian state of Kerala. Live adult worm was surgically removed and confirmed to be Dirofilaria repens. Live worm showing continuous movement was seen on the pre-operative high-resolution ultrasound. Ultrasound can be helpful in pre-operative identification of live worm. Imaging findings reported in literature are very few. We describe the clinical, ultrasound, and magnetic resonance imaging (MRI) findings. PMID:23803483
Stewart, Alex; Lowe, Ann; Smales, Lesley; Bajer, Anna; Bradley, Jan; Dwużnik, Dorota; Franssen, Frits; Griffith, Jack; Stuart, Peter; Turner, Cyan; Zaleśny, Grzegorz; Behnke, Jerzy M
2018-03-01
Syphacia stroma (von Linstow, 1884) Morgan, 1932 and Syphacia frederici Roman, 1945 are oxyurid nematodes that parasitize two murid rodents, Apodemus sylvaticus and Apodemus flavicollis, on the European mainland. Only S. stroma has been recorded previously in Apodemus spp. from the British Isles. Despite the paucity of earlier reports, we identified S. frederici in four disparate British sites, two in Nottinghamshire, one each in Berkshire and Anglesey, Wales. Identification was based on their site in the host (caecum and not small intestine), on key morphological criteria that differentiate this species from S. stroma (in particular the tail of female worms) and by sequencing two genetic loci (cytochrome C oxidase 1 gene and a section of ribosomal DNA). Sequences derived from both genetic loci of putative British S. frederici isolates formed a tight clade with sequences from continental worms known to be S. frederici, clearly distinguishing these isolates from S. stroma which formed a tight clade of its own, distinct from clades representative of Syphacia obvelata from Mus and S. muris from Rattus. The data in this paper therefore constitute the first record of S. frederici from British wood mice, and confirm the status of this species as distinct from both S. obvelata and S. stroma.
Mistry, Rupal; Kounatidis, Ilias; Ligoxygakis, Petros
2017-01-01
Resident gut bacteria are constantly influencing the immune system, yet the role of the immune system in shaping microbiota composition during an organism’s life span has remained unclear. Experiments in mice have been inconclusive due to differences in husbandry schemes that led to conflicting results. We used Drosophila as a genetically tractable system with a simpler gut bacterial population structure streamlined genetic backgrounds and established cross schemes to address this issue. We found that, depending on their genetic background, young flies had microbiota of different diversities that converged with age to the same Acetobacteraceae-dominated pattern in healthy flies. This pattern was accelerated in immune-compromised flies with higher bacterial load and gut cell death. Nevertheless, immune-compromised flies resembled their genetic background, indicating that familial transmission was the main force regulating gut microbiota. In contrast, flies with a constitutively active immune system had microbiota readily distinguishable from their genetic background with the introduction and establishment of previously undetectable bacterial families. This indicated the influence of immunity over familial transmission. Moreover, hyperactive immunity and increased enterocyte death resulted in the highest bacterial load observed starting from early adulthood. Cohousing experiments showed that the microenvironment also played an important role in the structure of the microbiota where flies with constitutive immunity defined the gut microbiota of their cohabitants. Our data show that, in Drosophila, constitutively active immunity shapes the structure and density of gut microbiota. PMID:28413160
Worm Gear With Hydrostatic Engagement
NASA Technical Reports Server (NTRS)
Chaiko, Lev I.
1994-01-01
In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.
Dai, Caili; Yan, Zhihu; You, Qing; Du, Mingyong; Zhao, Mingwei
2014-01-01
Through the descriptive and rheological characterization of worm-like micelles formed by N-hexadecyl-N-methylpyrrolidinium bromide and sodium laurate, the formation and properties of the worm-like micelles were affected by the concentrations of sodium laurate and temperature. Additionally, cryogenic transmission electron microscopy images further validated the formation of worm-like micelles. PMID:25019152
Launch, flight, and recovery. [Apollo 17 Biological Cosmic Ray Experiment
NASA Technical Reports Server (NTRS)
Look, B. C.; Tremor, J. W.; Barrows, W. F.; Zabower, H. R.; Winter, D. L.; Shillinger, G. H.; Harrison, G. A.; Philpott, D. E.; Suri, K.; Platt, W. T.
1975-01-01
The final phase to fly five pocket mice in the Apollo XVII command module was carried out at the NASA Kennedy Space Center. Upon completion of the 13-d space flight, the package was removed from the spacecraft and, after having been purged with an oxygen-helium gas mixture, was flown to American Samoa. Four of the five mice were recovered alive from the package. Analysis of the mouse that died during the flight revealed several factors that could have contributed to its death, the chief of which was massive hemorrhage in its middle ear cavities.
Gashaw, Fikru; Aemero, Mulugeta; Legesse, Mengistu; Petros, Beyene; Teklehaimanot, Tilahun; Medhin, Girmay; Berhe, Nega; Mekonnen, Yalemtsehay; Erko, Berhanu
2015-10-31
Schistosomiasis is endemic in Ethiopia and previously unknown transmission foci have been reported from time to time in different parts of the country. Further surveys are required in areas where endemicity of the disease is not known to cover them with control program if transmission is taking place. This study, therefore, aims to assess the magnitude of schistosomiasis mansoni and soil-transmitted helminthiasis in Maksegnit and Enfranz Towns, northwestern Ethiopia. Cross-sectional parasitological and malacological surveys were conducted in three schools found in Maksegnit and Enfranz Towns. Stool specimens were collected from 550 randomly selected school children (age range 5 to 17 years) and processed for microscopic examination using Kato-Katz method (single smear per stool sample). Malacological survey was conducted in Gumara and Garno Rivers found in the study areas. Biomphalaria pfeifferi snails collected from the two rivers were individually exposed to artificial light in order to induce cercarial shedding. Laboratory-bred Swiss albino mice were exposed to the cercariae and definite identification of the schistosome species was made based on morphology. The overall prevalence of S. mansoni infection was found to be 49%; however, it varied by schools, with Selam having 60.7%, and Maksegnit Number 1 and 2 having 45.8 and 39.6%, respectively. The respective mean intensity of S. mansoni infection among school children in Selam, Maksegnit Number 1 and Maksegnit Number 2 Schools were 243, 194 and 183 eggs per gram of stool (epg). In all the study areas there was no difference in prevalence of S. mansoni infection in relation to age, however, the prevalence varied by sex, with males having highest prevalence (54.5% vs 44.1%) (p = 0.012). Adult S. mansoni worms were harvested from mice exposed to cercariae shed from B. pfeifferi on the 6(th) week post-exposure. The prevalence of Ascaris lumbricoides single infection was 16.5% while its co-infection with S. mansoni was 18.2%. Infections of young children, findings of schistosome infected snails, establishment of mice infection and harvesting adult worms from the lab-bred mice confirm that autochthonous transmission is taking place in the study areas. Hence, preventive chemotherapy with praziquantel should be put in place, complemented with other measures such as provision of sanitary facilities and health education, to control morbidity and transmission of schistosomiasis and soil-transmitted helminthiasis in the study areas.
Worm Burden-Dependent Disruption of the Porcine Colon Microbiota by Trichuris suis Infection
Wu, Sitao; Li, Robert W.; Li, Weizhong; Beshah, Ethiopia; Dawson, Harry D.; Urban, Joseph F.
2012-01-01
Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection. PMID:22532855
Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.
Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda
2017-09-13
This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.
Value-Range Analysis of C Programs
NASA Astrophysics Data System (ADS)
Simon, Axel
In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.
Mobile Transactional Modelling: From Concepts to Incremental Knowledge
NASA Astrophysics Data System (ADS)
Launders, Ivan; Polovina, Simon; Hill, Richard
In 1988, Robert T. Morris exploited a so-called buffer-overflow bug in finger (a dæmon whose job it is to return information on local users) to mount a denial-of-service attack on hundreds of VAX and Sun-3 computers [159]. He created what is nowadays called a worm; that is, a crafted stream of bytes that, when sent to a computer over the network, utilises a buffer-overflow bug in the software of that computer to execute code encoded in the byte stream. In the case of a worm, this code will send the very same byte stream to other computers on the network, thereby creating an avalanche of network traffic that ultimately renders the network and all computers involved in replicating the worm inaccessible. Besides duplicating themselves, worms can alter data on the host that they are running on. The most famous example in recent years was the MSBlaster32 worm, which altered the configuration database on many Microsoft Windows machines, thereby forcing the computers to reboot incessantly. Although this worm was rather benign, it caused huge damage to businesses who were unable to use their IT infrastructure for hours or even days after the appearance of the worm. A more malicious worm is certainly conceivable [187] due to the fact that worms are executed as part of a dæmon (also known as "service" on Windows machines) and thereby run at a privileged level, allowing access to any data stored on the remote computer. While the deletion of data presents a looming threat to valuable information, even more serious uses are espionage and theft, in particular because worms do not have to affect the running system and hence may be impossible to detect.
De-worming school children and hygiene intervention.
Luong, T V
2003-06-01
Helminths or worm infestations refer to worms that live as parasites in the human body and are a fundamental cause of disease associated with health and nutrition problems beyond gastrointestinal tract disturbances. Globally, over 3.5 billion people are infected with intestinal worms, of which 1.47 billion are with roundworm, 1.3 billion people with hookworm and 1.05 billion with whipworm. School children aged 5 - 15 years suffer the highest infection rate and worm burden that attributes to poor sanitation and hygiene. About 400 million school-age children are infected with roundworm, whipworm and hookworm worldwide, a large proportion of whom are found in the East Asia region (Cambodia, China, Lao PDR, Thailand and Vietnam). These parasites consume nutrients from children they infect, thus retarding their physical development. They destroy tissues and organs, cause abdominal pain, diarrhoea, intestinal obstruction, anaemia, ulcers and other health problems. All of these consequences of infection can slow cognitive development and thus impair learning. De-worming school children by anthelmintic drug treatment is a curative approach for expelling the heavy worm load. However, drug therapy alone is only a short-term measure of reducing worm infection and re-infection is frequent. Control measures through improved sanitation, hygiene and de-worming are needed to prevent infection and re-infection. UNICEF has supported many governments in this (and other) regions to assist in the provision of water supply and sanitary facilities and intensive hygiene education in many schools through the Water, Environment and Sanitation (WES) programme. The UNICEF supported school sanitation and hygiene education (SSHE) programme, and other programmes, could effectively enhance behaviour change in children to break the routes of worm transmission and other waterborne diseases.
Mouse Drawer System (MDS): An autonomous hardware for supporting mice space research
NASA Astrophysics Data System (ADS)
Liu, Y.; Biticchi, R.; Alberici, G.; Tenconi, C.; Cilli, M.; Fontana, V.; Cancedda, R.; Falcetti, G.
2005-08-01
For the scientific community the ability of flying mice under weightless conditions in space, compared to other rodents, offers many valuable advantages. These include the option of testing a wide range of wild-type and mutant animals, an increased animal number for flight, and a reduced demand on shuttle resources and crew time. In this study, we describe a spaceflight hardware for mice, the Mouse Drawer System (MDS). MDS can interface with Space Shuttle middeck and International Space Station Express Rack. It consists of Mice Chamber, Liquid Handling Subsystem, Food Delivery Subsystem, Air Conditioning Subsystem, Illumination Subsystem, Observation Subsystem and Payload Control Unit. It offers single or paired containment for 6-8 mice with a mean weight of 40 grams/mouse for a period of up to 3 months. Animal tests were conducted in a MDS breadboard to validate the biocompatibility of various subsystems. Mice survived in all tests of short and long duration. Results of blood parameters, histology and air/waste composition analysis showed that MDS subsystems meet the NIH guidelines for temperature, humidity, food and water access, air quality, odour and waste management.
Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.
Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan
2017-09-01
Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
ATP Synthase, a Target for Dementia and Aging?
Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R
2018-02-01
Advancing age is the biggest risk factor for development for the major life-threatening diseases in industrialized nations accounting for >90% of deaths. Alzheimer's dementia (AD) is among the most devastating. Currently approved therapies fail to slow progression of the disease, providing only modest improvements in memory. Recently reported work describes mechanistic studies of J147, a promising therapeutic molecule previously shown to rescue the severe cognitive deficits exhibited by aged, transgenic AD mice. Apparently, J147 targets the mitochondrial alpha-F1-ATP synthase (ATP5A). Modest inhibition of the ATP synthase modulates intracellular calcium to activate AMP-activated protein kinase to inhibit mammalian target of rapamycin, a known mechanism of lifespan extension from worms to mammals.
A worm of one's own: how helminths modulate host adipose tissue function and metabolism.
Guigas, Bruno; Molofsky, Ari B
2015-09-01
Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. Copyright © 2015 Elsevier Ltd. All rights reserved.
A worm of one’s own: how helminths modulate host adipose tissue function and metabolism
Guigas, Bruno; Molofsky, Ari B.
2015-01-01
Parasitic helminths have co-existed with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of ‘Western’ diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. PMID:25991556
A genetic analysis of Trichuris trichiura and Trichuris suis from Ecuador.
Meekums, Hayley; Hawash, Mohamed B F; Sparks, Alexandra M; Oviedo, Yisela; Sandoval, Carlos; Chico, Martha E; Stothard, J Russell; Cooper, Philip J; Nejsum, Peter; Betson, Martha
2015-03-19
Since the nematodes Trichuris trichiura and T. suis are morphologically indistinguishable, genetic analysis is required to assess epidemiological cross-over between people and pigs. This study aimed to clarify the transmission biology of trichuriasis in Ecuador. Adult Trichuris worms were collected during a parasitological survey of 132 people and 46 pigs in Esmeraldas Province, Ecuador. Morphometric analysis of 49 pig worms and 64 human worms revealed significant variation. In discriminant analysis morphometric characteristics correctly classified male worms according to host species. In PCR-RFLP analysis of the ribosomal Internal Transcribed Spacer (ITS-2) and 18S DNA (59 pig worms and 82 human worms), nearly all Trichuris exhibited expected restriction patterns. However, two pig-derived worms showed a "heterozygous-type" ITS-2 pattern, with one also having a "heterozygous-type" 18S pattern. Phylogenetic analysis of the mitochondrial large ribosomal subunit partitioned worms by host species. Notably, some Ecuadorian T. suis clustered with porcine Trichuris from USA and Denmark and some with Chinese T. suis. This is the first study in Latin America to genetically analyse Trichuris parasites. Although T. trichiura does not appear to be zoonotic in Ecuador, there is evidence of genetic exchange between T. trichiura and T. suis warranting more detailed genetic sampling.
Mwanga, Joseph R; Kaatano, Godfrey M; Siza, Julius E; Chang, Su Young; Ko, Yunsuk; Kullaya, Cyril M; Nsabo, Jackson; Eom, Keeseon S; Yong, Tai-Soon; Chai, Jong-Yil; Min, Duk-Young; Rim, Han-Jong; Changalucha, John M
2015-10-01
Schistosomiasis and intestinal worm infections are widespread diseases of public health importance in Tanzania. A study on perceptions and practices related to schistosomiasis and intestinal worm infections was undertaken among a community population of Kome Island in Sengerema District, north-western Tanzania, where intestinal schistosomiasis and intestinal worm infections are endemic. Schistosomiasis and intestinal worm-related perceptions and practices were assessed before and 3 years after implementation of a participatory hygiene and sanitation transformation (PHAST) intervention as a control measure. Data were obtained from baseline and post-intervention knowledge, attitudes, and practices (KAP) questionnaire surveys conducted twice in 2009 and 2012 among 82 individuals aged ≥15 years. We found significant increases in respondents' knowledge of the cause, transmission, symptoms, health consequences, and prevention of schistosomiasis and intestinal worm infections after PHAST intervention. The increase in respondents' knowledge on almost all aspects of the said infections was translated into actions to control schistosomiasis and intestinal worm infections. This has not been achieved by chance, but due to well-designed and locally-adapted PHAST intervention. We conclude that despite criticisms, PHAST approach is still useful in empowering communities to control water, sanitation, and hygiene related infectious diseases such as schistosomiasis and intestinal worm infections.
Mech, L.D.
2008-01-01
Examination of 110 Mink (Mustela vison) carcasses from 1998 through 2007 indicated that the giant kidney worm, Dioctophyma renale, occurred in Pine and Kanabec Counties of eastern Minnesota with annual prevalences of 0-92%. Worm prevalence increased from 20% in 1999 to 92% in 2001 and decreased to 6% in 2005. During 2000 to 2007, no worms were found in Mink from Anoka and Chisago Counties (n = 54), and in 2000, none in 107 Mink from LeSeur, Freeborn, Redwood, Brown and Watonwan Counties. Changes in kidney worm prevalence were positively related to trapping success, considered an index of Mink density.
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-13
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.
Metals and terrestrial earthworms (Annelida: Oligochaeta)
Beyer, W.N.
1981-01-01
The toxicity of metals to earthworms and the residues of metals found in earthworms are reviewed. Meta 1 concentrations are rarely high enough to be toxic to worms, but copper may reduce populations in orchards heavily treated with fungicides and in soil contaminated with pig wastes. The metals in some industrial sewage sludges may interfere with using sludge in vermiculture. Storage ratios (the concentration of a metal in worms divided by the concentration in soil) tend to be highest in infertile soil and lowest in media rich in organic matter, such as sewage sludge. Cadmium, gold, and selenium are highly concentrated by worms. Lead concentrations in worms may be very high, but are generally lower than concentrations in soil. Body burdens of both copper and zinc seem to be regulated by worms. Because worms are part of the food webs of many wildlife species, and also because they are potentially valuable feed supplements for domestic animals, the possible toxic effects of cadmium and other metals should be studied. Worms can make metals more available to food webs and can redistribute them in soil.
Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription
Yu, Lin; Daniels, Joseph P.; Wu, Huihui; Wolf, Matthew J.
2015-01-01
Organ hypertrophy can result from enlargement of individual cells or from cell proliferation or both. Activating mutations in the serine-threonine kinase Raf cause cardiac hypertrophy and contribute to Noonan syndrome in humans. Cardiac-specific expression of activated Raf also causes hypertrophy in Drosophila melanogaster. We found that Yorkie (Yki), a transcriptional coactivator in the Hippo pathway that regulates organ size, is required for Raf-induced cardiac hypertrophy in flies. Although aberrant activation of Yki orthologs stimulates cardiac hyperplasia in mice, cardiac-specific expression of an activated mutant form of Yki in fruit flies caused cardiac hypertrophy without hyperplasia. Knockdown of Yki caused cardiac dilation without loss of cardiomyocytes and prevented Raf-induced cardiac hypertrophy. In flies, Yki-induced cardiac hypertrophy required the TEA domain–containing transcription factor Scalloped, and, in mammalian cells, expression of mouse RafL613V, an activated form of Raf with a Noonan syndrome mutation, increased Yki-induced Scalloped activity. Furthermore, overexpression of Tgi (a Tondu domain–containing Scalloped-binding corepressor) in the fly heart abrogated Yki- or Raf-induced cardiac hypertrophy. Thus, crosstalk between Raf and Yki occurs in the heart and can influence Raf-mediated cardiac hypertrophy. PMID:25650441
The key role of growth hormone — insulin — IGF-1 signaling in aging and cancer
Anisimov, Vladimir N.; Bartke, Andrzej
2014-01-01
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients. PMID:23434537
A homolog of Drosophila grainy head is essential for epidermal integrity in mice.
Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M
2005-04-15
The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.
1992-09-01
example, grain size had no effect , while the number of worms added to each expo- sure vessel was critical. Direct transfer from 30 ppt to salinities !515... Effect of Salinity on Juvenile Worms ..................... 13 Effect of Ammonia on Juvenile Worms .................... 14 Resistance of Juvenile Worms to...experimental design used to evaluate salinity effects . Preliminary experiments indicated that nominal ammonia concentrations (0, 2.5, 5.0, 10, 20, and
The research of hourglass worm dynamic balancing simulation based on SolidWorks motion
NASA Astrophysics Data System (ADS)
Wang, Zhuangzhuang; Yang, Jie; Liu, Pingyi; Zhao, Junpeng
2018-02-01
Hourglass worm is extensively used in industry due to its characteristic of heavy-load and a large reduction ratio. Varying sizes of unbalanced mass distribution appeared in the design of a single head worm. With machines developing towards higher speed and precision, the vibration and shock caused by the unbalanced mass distribution of rotating parts must be considered. Therefore, the balance grade of these parts must meet higher requirements. A method based on theoretical analysis and SolidWorks motion software simulation is presented in this paper; the virtual dynamic balance simulation test of the hourglass worm was carried out during the design of the product, so as to ensure that the hourglass worm meet the requirements of dynamic balance in the design process. This can effectively support the structural design of the hourglass worm and provide a way of thinking and designing the same type of products.
Nirmala, Intan R; Trees; Suwarni; Pramono, Mochammad S
2017-06-01
The sago worm Rhynchophorus ferrugineus is a nutritious food source found in the remaining parts of a sago palm trunk after the removal of sago starch by farmers. The effort to increase sago worm consumption is investigated in an intervention study among children aged <5 years. Children aged 1-5 years were allocated to a sago worm inclusive diet (n=10) and to a control group eating a usual diet, but without sago worms (n=13). Snacks were served once per day (100 g) for 45 days and designed to contain similar amounts of vegetables (carrots and long beans) and other ingredients including rice, sticky rice, cassava, sweet potato, banana, or tofu with or without sago worms. Food preference was ascertained by interview. Anthropometric measurements were taken at baseline and the endpoint. After mixing all food stuffs into one product for instance nasi gurih, protein and fat content in the intervention group was higher compared to control group (8.8 g and 7.3 g vs 4.7 g and 0.5 g respectively). In the intervention group receiving complementary feeding with sago worms, children's height changed minimally as did the control group (0.3 vs 0.2 cm); no difference was observed between the groups regarding weight or height. Sago worm consumption can diversify the diet through usage in various dishes, so improving its overall nutritional quality. Worm addition in an intervention program does not compromise, but maintains nutritional value. Local use adds affordability and sustainability to the food and health systems in a sago-consuming culture, so contributing to food security.
Roussel, Nicolas; Sprenger, Jeff; Tappan, Susan J; Glaser, Jack R
2014-01-01
The behavior of the well-characterized nematode, Caenorhabditis elegans (C. elegans), is often used to study the neurologic control of sensory and motor systems in models of health and neurodegenerative disease. To advance the quantification of behaviors to match the progress made in the breakthroughs of genetics, RNA, proteins, and neuronal circuitry, analysis must be able to extract subtle changes in worm locomotion across a population. The analysis of worm crawling motion is complex due to self-overlap, coiling, and entanglement. Using current techniques, the scope of the analysis is typically restricted to worms to their non-occluded, uncoiled state which is incomplete and fundamentally biased. Using a model describing the worm shape and crawling motion, we designed a deformable shape estimation algorithm that is robust to coiling and entanglement. This model-based shape estimation algorithm has been incorporated into a framework where multiple worms can be automatically detected and tracked simultaneously throughout the entire video sequence, thereby increasing throughput as well as data validity. The newly developed algorithms were validated against 10 manually labeled datasets obtained from video sequences comprised of various image resolutions and video frame rates. The data presented demonstrate that tracking methods incorporated in WormLab enable stable and accurate detection of these worms through coiling and entanglement. Such challenging tracking scenarios are common occurrences during normal worm locomotion. The ability for the described approach to provide stable and accurate detection of C. elegans is critical to achieve unbiased locomotory analysis of worm motion. PMID:26435884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorfman, D.
Earthworms can live in soils containing high quantities of mercury, lead, and zinc. The worms (Lumbricus terrestris) concentrate these heavy metals in their tissues. The use of these worms to reduce the quantities of mercury and other heavy metals in soils may be practical. In July, 1993, a preliminary study was made using earthworms and soils with differing amounts of mercury, The quantities were 0.0 grams, 0.5 grams, and 1.0 grams of mercury as mercuric chloride. Earthworms were placed into these soils for two or more weeks, then harvested. The worms were rinsed with deionized water, then dissolved in nitricmore » acid. Each sample was prepared for analysis with the addition of HNO{sub 3}, H{sub 2}SO{sub 4}, potassium permanganate, and hydrozylamine hydrochloride. A Jerome Instrument gold foil analyzer was used to determine levels of mercury after volatilizing the sample with stannous chloride. Worms exposed to contaminated soils remove 50 to 1,400 times as much mercury as do worms in control soils. In a hypothetical case, a site contaminated with one pound of mercury, 1,000 to 45,000 worms would be required to reduce mercury levels to background levels in the soil (about 250 ppb). After harvesting worms in contaminated soil they could be dried (90% of their weight is water), and the mercury regained by chemical processes. Soil conducive to earthworm survival is required. This includes a well aerated loamy soil, proper pH (7.0), and periodic watering and feeding. There are several methods of harvesting worms, including flooding and electricity. Large numbers of worms can be obtained from commercial growers.« less
Spermidine: a novel autophagy inducer and longevity elixir.
Madeo, Frank; Eisenberg, Tobias; Büttner, Sabrina; Ruckenstuhl, Christoph; Kroemer, Guido
2010-01-01
Spermidine is a ubiquitous polycation that is synthesized from putrescine and serves as a precursor of spermine. Putrescine, spermidine and spermine all are polyamines that participate in multiple known and unknown biological processes. Exogenous supply of spermidine prolongs the life span of several model organisms including yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans) and flies (Drosophila melanogaster) and significantly reduces age-related oxidative protein damage in mice, indicating that this agent may act as a universal anti-aging drug. Spermidine induces autophagy in cultured yeast and mammalian cells, as well as in nematodes and flies. Genetic inactivation of genes essential for autophagy abolishes the life span-prolonging effect of spermidine in yeast, nematodes and flies. These findings complement expanding evidence that autophagy mediates cytoprotection against a variety of noxious agents and can confer longevity when induced at the whole-organism level. We hypothesize that increased autophagic turnover of cytoplasmic organelles or long-lived proteins is involved in most if not all life span-prolonging therapies.
Burrowing by small polychaetes - mechanics, behavior and muscle structure of Capitella sp.
Grill, Susann; Dorgan, Kelly M
2015-05-15
Worms of different sizes extend burrows through muddy sediments by fracture, applying dorso-ventral forces that are amplified at the crack tip. Smaller worms displace sediments less than larger worms and therefore are limited in how much force they can apply to burrow walls. We hypothesized that small worms would exhibit a transition in burrowing mechanics, specifically a lower limit in body size for the ability to burrow by fracture, corresponding with an ontogenetic transition in muscle morphology. Kinematics of burrowing in a mud analog, external morphology and muscle arrangement were examined in juveniles and adults of the small polychaete Capitella sp. We found that it moves by peristalsis, and no obvious differences were observed among worms of different sizes; even very small juveniles were able to burrow through a clear mud analog by fracture. Interestingly, we found that in addition to longitudinal and circular muscles needed for peristaltic movements, left- and right-handed helical muscles wrap around the thorax of worms of all sizes. We suggest that in small worms helical muscles may function to supplement forces generated by longitudinal muscles and to maintain hydrostatic pressure, enabling higher forces to be exerted on the crack wall. Further research is needed, however, to determine whether surficial sediments inhabited by small worms fail by fracture or plastically deform under forces of the magnitudes applied by Capitella sp. © 2015. Published by The Company of Biologists Ltd.
Ede, Alison Okorie; Nwaokoro, Joakin Chidozie; Iwuala, C C; Amadi, A N; Akpelu, Ugochinyere Alvana
2014-10-01
Guinea worm is a parasite found in unprotected drinking water sources, causes considerable morbidity and loss of agricultural production among rural people. The study was to determine the current status of Guinea worm infection in Ezza North and to evaluate the impact of control measures on guinea worm infection. A total of 200 individuals in Ezza North Southeastern, Nigeria were examined for guinea worm infection. A standardized questionnaire was used to determine the effect of potable water on guinea worm eradication/control, the source of drinking water, information on the knowledge, attitude, symptom management practices, availability of health facilities and boreholes installation status. The instrument for data collection was well constructed, validated and reliable tested questionnaire by an expert. Data obtained was analyzed using Epi-Info model 3.4 versions. Results of a study indicated majority of the respondents 195 (97.5 %) have access to safe drinking water supply which indicated no case of Guinea worm infection. The active use of potable water supply was found among the age group of 20-30 years 71 (35.5 %) and higher in male (57.5 %) than females (42.5 %). The drastic reduction of Guinea worm infection to zero (0) level in Ezza North were due to multiple factors as health education, availability of functional boreholes, presence of health centers for immediate treatment if any case discovered.
Promoting positive health behaviours--'tooth worm' phenomenon and its implications.
Gao, X L; Hsu, C Y S; Xu, Y C; Loh, T; Koh, D; Hwarng, H B
2012-03-01
'Tooth worm' is a traditional belief about the pathogen of dental caries (tooth decay). Nevertheless, in our previous study, parental 'tooth worm' belief was linked to a reduced caries risk of their children. This study aimed to further characterize the impact of parental 'tooth worm' belief on their children's caries experience and its psychobehavioural mechanisms. analytic observational study. Thirteen randomly selected kindergartens in Singapore. 1,782 preschoolers aged 3-6 years. Each child received an oral examination and microbiological tests. Parents completed a self-administered questionnaire on their socio-demographic background, oral health knowledge/attitude and child's oral health habits. Multivariate analysis confirmed a reduced chance of 'high caries rate' (number of affected teeth > 2) among children whose parents held the 'tooth worm' belief (Odds Ratio = 0.41; 95% Confidence Interval = 0.19-0.89). With such perception among parents, children brushed their teeth more frequently (p = 0.042). Since no difference in oral hygiene was observed, the health benefit of the "tooth worm" perception may be acquired through the delivery of fluoride (an agent with proven anti-caries effect) during frequent toothbrushing episodes. This study revealed a 'tooth worm' phenomenon, indicating that parental 'tooth worm' belief is associated with early establishment of regular toothbrushing habit and reduction of dental caries in children. This phenomenon and its psychobehavioural mechanisms, enriching our understanding of oral health behaviours, have implications for effective health education.
The impact of various distance between axes of worm gear on torque value. Worm gear test stand
NASA Astrophysics Data System (ADS)
Sobek, M.; Baier, A.; Grabowski, Ł.
2017-08-01
Transferring both rotational and translational movements in systems used in the automotive industry is a very important and complex issue. In addition, the situation becomes much more difficult and complicated when the design of the transition system requires a high precision of operation as well as a well definite and long operating life. Such requirements are imposed on all components of today’s motor vehicles. However, particular attention is paid to the elements that directly or indirectly affect the safety of persons traveling in the vehicle. Such components are undoubtedly components included as parts of the steering system of the vehicle. Power steering systems have been present in motor vehicles for more than a century. They go through continuous metamorphosis and they are getting better and better. Current power steering systems are based on an electric motor and some kind of transmission. Depending on the position of the drive relative to the steering column, different configurations of the transmission are used. This article will cover issues related to tests of power steering gearing using a worm drive. The worm drive is a very specific example of a propulsion system that uses twisted axles. Normally, in this type of transition you can find two gear units with the axis mounted with a 90° angle between. The components of the worm drive are a worm and a worm gear, also called a worm wheel. In terms of the geometrical form, the worm resembles a helical spur gear. The shape of the worm is similar to the shape of a screw with a trapezoidal thread. A correct matching of these two components ensures proper operation of the entire transmission. Incorrect positioning of the components in relation to each other can significantly reduce the lifetime of the drive unit, and also lead to abnormal work, eg by raising the noise level. This article describes a test method of finding the appropriate distance between the axles of both worm drive units by testing the torque change during gear operation.
Tang, F; Xu, L; Yan, R; Song, X; Li, X
2013-03-01
Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).
Protein quality of insects as potential ingredients for dog and cat foods.
Bosch, Guido; Zhang, Sheng; Oonincx, Dennis G A B; Hendriks, Wouter H
2014-01-01
Insects have been proposed as a high-quality, efficient and sustainable dietary protein source. The present study evaluated the protein quality of a selection of insect species. Insect substrates were housefly pupae, adult house cricket, yellow mealworm larvae, lesser mealworm larvae, Morio worm larvae, black soldier fly larvae and pupae, six spot roach, death's head cockroach and Argentinean cockroach. Reference substrates were poultry meat meal, fish meal and soyabean meal. Substrates were analysed for DM, N, crude fat, ash and amino acid (AA) contents and for in vitro digestibility of organic matter (OM) and N. The nutrient composition, AA scores as well as in vitro OM and N digestibility varied considerably between insect substrates. For the AA score, the first limiting AA for most substrates was the combined requirement for Met and Cys. The pupae of the housefly and black soldier fly were high in protein and had high AA scores but were less digestible than other insect substrates. The protein content and AA score of house crickets were high and similar to that of fish meal; however, in vitro N digestibility was higher. The cockroaches were relatively high in protein but the indispensable AA contents, AA scores and the in vitro digestibility values were relatively low. In addition to the indices of protein quality, other aspects such as efficiency of conversion of organic side streams, feasibility of mass-production, product safety and pet owner perception are important for future dog and cat food application of insects as alternative protein source.
Maternal hookworm modifies risk factors for childhood eczema: results from a birth cohort in Uganda
Mpairwe, Harriet; Ndibazza, Juliet; Webb, Emily L; Nampijja, Margaret; Muhangi, Lawrence; Apule, Barbara; Lule, Swaib; Akurut, Hellen; Kizito, Dennison; Kakande, Mohammed; Jones, Frances M; Fitzsimmons, Colin M; Muwanga, Moses; Rodrigues, Laura C; Dunne, David W; Elliott, Alison M
2014-01-01
Background Worms may protect against allergy. Early-life worm exposure may be critical, but this has not been fully investigated. Objectives To investigate whether worms in pregnancy and in early childhood are associated with childhood eczema incidence. Methods The Entebbe Mother and Baby Study, an anthelminthic treatment trial, enrolled pregnant women between 2003 and 2005 in Uganda. Mothers were investigated for worms during pregnancy and children annually. Eczema was doctor-diagnosed from birth to age five years. A planned observational analysis was conducted within the trial cohort to investigate associations between worms and eczema. Results Data for 2345 live-born children were analysed. Hookworm was the most prevalent maternal worm (45%). Childhood worms were less prevalent. Eczema incidence was 4.68/100 person-years. Maternal hookworm was associated with reduced eczema incidence [adjusted hazard ratio (95% confidence interval), p-value: 0.71(0.51–0.99), 0.04] and modified effects of known risk factors for eczema: Dermatophagoides-specific IgE in children was positively associated with eczema incidence if the mother had no hookworm [2.72(1.11–6.63), 0.03], but not if the mother had hookworm [0.41(0.10–1.69), 0.22], interaction p-value = 0.03. Similar interactions were seen for maternal history of eczema {[2.87(1.31–6.27, 0.008) vs. [0.73(0.23–2.30), 0.60], interaction p-value = 0.05}, female gender {[1.82(1.22–2.73), 0.004 vs. [0.96(0.60–1.53), 0.87], interaction p-value = 0.04} and allergen-specific IgE. ChildhoodTrichuris trichiura and hookworm were inversely associated with eczema. Conclusions Maternal hookworm modifies effects of known risk factors for eczema. Mechanisms by which early-life worm exposures influence allergy need investigation. Worms or worm products, and intervention during pregnancy have potential for primary prevention of allergy. PMID:25171741
Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua).
Zuo, S; Barlaup, L; Mohammadkarami, A; Al-Jubury, A; Chen, D; Kania, P W; Buchmann, K
2017-10-01
Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.
Walter, Klaudia; Fulford, Anthony J C; McBeath, Rowena; Joseph, Sarah; Jones, Frances M; Kariuki, H Curtis; Mwatha, Joseph K; Kimani, Gachuhi; Kabatereine, Narcis B; Vennervald, Birgitte J; Ouma, John H; Dunne, David W
2006-10-15
In schistosomiasis endemic areas, children are very susceptible to postchemotherapy reinfection, whereas adults are relatively resistant. Different studies have reported that schistosome-specific IL-4 and IL-5 responses, or posttreatment worm-IgE levels, correlate with subsequent low reinfection. Chemotherapy kills i.v. worms providing an in vivo Ag challenge. We measured anti-worm (soluble worm Ag (SWA) and recombinant tegumental Ag (rSm22.6)) and anti-egg (soluble egg Ag) Ab levels in 177 Ugandans (aged 7-50) in a high Schistosoma mansoni transmission area, both before and 7 wk posttreatment, and analyzed these data in relation to whole blood in vitro cytokine responses at the same time points. Soluble egg Ag-Ig levels were unaffected by treatment but worm-IgG1 and -IgG4 increased, whereas worm-IgE increased in many but not all individuals. An increase in worm-IgE was mainly seen in >15-year-olds and, unlike in children, was inversely correlated to pretreatment infection intensities, suggesting this response was associated both with resistance to pretreatment infection, as well as posttreatment reinfection. The increases in SWA-IgE and rSm22.6-IgE positively correlated with pretreatment Th2 cytokines, but not IFN-gamma, induced by SWA. These relationships remained significant after allowing for the confounding effects of pretreatment infection intensity, age, and pretreatment IgE levels, indicating a link between SWA-specific Th2 cytokine responsiveness and subsequent increases in worm-IgE. An exceptionally strong relationship between IL-5 and posttreatment worm-IgE levels in < 15-year-olds suggested that the failure of younger children to respond to in vivo Ag stimulation with increased levels of IgE, is related to their lack of pretreatment SWA Th2 cytokine responsiveness.
Brown, Marishka K; Strus, Ewa; Naidoo, Nirinjini
2017-07-01
Social isolation has a multitude of negative consequences on human health including the ability to endure challenges to the immune system, sleep amount and efficiency, and general morbidity and mortality. These adverse health outcomes are conserved in other social species. In the fruit fly Drosophila melanogaster, social isolation leads to increased aggression, impaired memory, and reduced amounts of daytime sleep. There is a correlation between molecules affected by social isolation and those implicated in sleep in Drosophila. We previously demonstrated that acute sleep loss in flies and mice induced the unfolded protein response (UPR), an adaptive signaling pathway. One mechanism indicating UPR upregulation is elevated levels of the endoplasmic reticular chaperone BiP/GRP78. We previously showed that BiP overexpression in Drosophila led to increased sleep rebound. Increased rebound sleep has also been demonstrated in socially isolated (SI) flies. D. melanogaster were used to study the effect of social isolation on cellular stress. SI flies displayed an increase in UPR markers; there were higher BiP levels, increased phosphorylation of the translation initiation factor eIF2α, and increased splicing of xbp1. These are all indicators of UPR activation. In addition, the effects of isolation on the UPR were reversible; pharmacologically and genetically altering sleep in the flies modulated the UPR. The reduction in sleep observed in SI flies is a cellular stressor that results in UPR induction. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society]. All rights reserved. For permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Inn, Yong Woo; Sukhadia, Ashish M.
2017-05-01
In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.
Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks
Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei
2017-01-01
WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator’s mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost. PMID:28098748
Paris-Palacios, Séverine; Mosleh, Yahia Y; Almohamad, Mohamad; Delahaut, Laurence; Conrad, Arnaud; Arnoult, Fabrice; Biagianti-Risbourg, Sylvie
2010-06-01
Tubifex is the only animal reported to respond with autotomy to contamination. This response of contaminated worm is understood as a mode of metal excretion. Few data concern the potential of organic compounds to induce tubifex autotomy. The objective of this study was to investigate if autotomy can be induced by a herbicide isoproturon (IP) and be related to the way of excretion. Isoproturon accumulation in worm tissues and its effect on tubifex mortality, autotomy and regeneration rates were analysed after 4 and 7 days of exposure to the herbicide and also when worms were replaced for 10 days in clean water. IP accumulated in the same way in all parts of the worm body but IP metabolite rates were significantly higher in the posterior part of the worm. Thus the loss of the posterior part allows the worm to eliminate an important amount of pesticide. Autotomy has a population importance and is related to the degree of worm contamination so it may become an interesting biomarker. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan
2017-09-01
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.
Sherri, Nour; Salloum, Noor; Mouawad, Carine; Haidar-Ahmad, Nathaline; Shirinian, Margret; Rahal, Elias A
2018-01-01
Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.
Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.
2017-01-01
Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802
Lifted worm algorithm for the Ising model
NASA Astrophysics Data System (ADS)
Elçi, Eren Metin; Grimm, Jens; Ding, Lijie; Nasrawi, Abrahim; Garoni, Timothy M.; Deng, Youjin
2018-04-01
We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using the lifting technique. We study the dynamic critical behavior of an energylike observable on both the complete graph and toroidal grids, and compare our findings with reversible algorithms such as the Prokof'ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves the dynamic exponent of the energylike observable on the complete graph and leads to a significant constant improvement on toroidal grids.
Jatsa, Hermine Boukeng; Russo, Remo Castro; Pereira, Cintia Aparecida de Jesus; Aguilar, Edenil Costa; Garcia, Cristiana Couto; Araújo, Emília Souza; Oliveira, Jailza Lima Rodrigues; Rodrigues, Vanessa Fernandes; de Oliveira, Vinícius Gustavo; Alvarez-Leite, Jacqueline Isaura; Braga, Fernão Castro; Louis-Albert Tchuem Tchuente; Kamtchouing, Pierre; Negrão-Corrêa, Deborah Aparecida; Teixeira, Mauro Martins
2016-03-02
Sida pilosa Retz (Malvaceae) is a plant used in Africa for the treatment of intestinal helminthiasis, lower abdominal pains and dysmenorrhea. In order to determine the potential use of S. pilosa in the treatment of schistosomiasis mansoni, we evaluated the schistosomicidal, antioxidant and anti-fibrotic properties of the aqueous extract and the n-butanol fraction of its aerial parts. S. pilosa aqueous extract (SpAE) at 100, 200 and 400mg/kg and n-butanol fraction (SpBF) at 50, 100 and 200mg/kg were administered per os to Schistosoma mansoni-infected mice for 4 weeks. Praziquantel (100mg/kg × 5 days) was used as reference drug. After sacrifice, worm burden and egg count, transaminases and proteins levels were evaluated. Malondialdehyde (MDA), lipid hydroperoxydes (LOOH), catalase (CAT), superoxide dismutase (SOD), eosinophil peroxidase (EPO) and myeloperoxidase (MPO) were also measured. The anti-fibrotic effect of the plant was evaluated by the determination of hydroxyproline and γ-interferon (IFN-γ). The treatment of S. mansoni-infected mice by SpAE or SpBF resulted in a moderate reduction of worm burden and egg load in the liver and intestine. Both SpAE and SpBF significantly reversed the increasing liver proteins, MDA, LOOH and CAT levels induced by the infection. Moreover, SOD activity was improved by SpAE and SpBF. Schistosomiasis mansoni considerably increased the EPO (p<0.001) and MPO activities (p<0.001). SpAE treatment significantly reduced EPO and MPO activities at all doses. SpBF failed to reduce the increasing MPO and decreased EPO only at the highest dose. S. mansoni-infection induced an increase in hydroxyproline content (p<0.001) and a decrease in IFN-γ level (p<0.001). Both SpAE and SpBF significantly reduced hepatic hydroxyproline content, while only SpAE (p<0.05) improved IFN-γ level. These results suggest that the liver pathology in schistosomiasis mansoni is improved by S. pilosa aqueous extract, which disclosed a moderate schistosomicidal, but strong antioxidant and anti-fibrotic activities. The n-butanol fraction was however less active than the aqueous extract. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M
2017-07-01
Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.
Aborgiba, Mustafa; Kostić, Jovana; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Elbahi, Samia; Knežević-Vukčević, Jelena; Lenhardt, Mirjana; Paunović, Momir; Gačić, Zoran; Vuković-Gačić, Branka
2016-01-01
Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism. Copyright © 2015 Elsevier B.V. All rights reserved.
Deleterious effects of neuronal accumulation of glycogen in flies and mice.
Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J
2012-08-01
Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. Copyright © 2012 EMBO Molecular Medicine.
Deleterious effects of neuronal accumulation of glycogen in flies and mice
Duran, Jordi; Tevy, María Florencia; Garcia-Rocha, Mar; Calbó, Joaquim; Milán, Marco; Guinovart, Joan J
2012-01-01
Under physiological conditions, most neurons keep glycogen synthase (GS) in an inactive form and do not show detectable levels of glycogen. Nevertheless, aberrant glycogen accumulation in neurons is a hallmark of patients suffering from Lafora disease or other polyglucosan disorders. Although these diseases are associated with mutations in genes involved in glycogen metabolism, the role of glycogen accumulation remains elusive. Here, we generated mouse and fly models expressing an active form of GS to force neuronal accumulation of glycogen. We present evidence that the progressive accumulation of glycogen in mouse and Drosophila neurons leads to neuronal loss, locomotion defects and reduced lifespan. Our results highlight glycogen accumulation in neurons as a direct cause of neurodegeneration. PMID:22549942
Unearthing the Phylogenetic Roots of Sleep
Allada, Ravi; Siegel, Jerome M.
2010-01-01
Why we sleep remains one of the enduring unanswered questions in biology. At its core, sleep can be defined behaviorally as a homeostatically regulated state of reduced movement and sensory responsiveness. The cornerstone of sleep studies in terrestrial mammals, including humans, has been the measurement of coordinated changes in brain activity during sleep measured using the electroencephalogram (EEG). Yet among a diverse set of animals, these EEG sleep traits can vary widely and, in some cases, are absent, raising questions as to whether they define a universal, or even essential, feature of sleep. Over the past decade, behaviorally defined sleep-like states have been identified in a series of genetic model organisms, including fish, flies and worms. Genetic analyses in these systems are revealing a remarkable conservation in the underlying mechanisms controlling sleep behavior. Taken together, these studies suggest an ancient origin for sleep and raise the possibility that model organism genetics may reveal the molecular mechanisms that guide sleep and wake. PMID:18682212
Flies, worms and the Free Radical Theory of ageing.
Clancy, David; Birdsall, John
2013-01-01
Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Basic Helix-Loop-Helix Transcription Factor Gene Family Phylogenetics and Nomenclature
Skinner, Michael K.; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H.
2010-01-01
A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes [1]. All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281
Motif-based analysis of large nucleotide data sets using MEME-ChIP
Ma, Wenxiu; Noble, William S; Bailey, Timothy L
2014-01-01
MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928
Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K
2016-08-17
The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.
Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition.
Kumari, Pooja; Aeschimann, Florian; Gaidatzis, Dimos; Keusch, Jeremy J; Ghosh, Pritha; Neagu, Anca; Pachulska-Wieczorek, Katarzyna; Bujnicki, Janusz M; Gut, Heinz; Großhans, Helge; Ciosk, Rafal
2018-04-19
RNA-binding proteins regulate all aspects of RNA metabolism. Their association with RNA is mediated by RNA-binding domains, of which many remain uncharacterized. A recently reported example is the NHL domain, found in prominent regulators of cellular plasticity like the C. elegans LIN-41. Here we employ an integrative approach to dissect the RNA specificity of LIN-41. Using computational analysis, structural biology, and in vivo studies in worms and human cells, we find that a positively charged pocket, specific to the NHL domain of LIN-41 and its homologs (collectively LIN41), recognizes a stem-loop RNA element, whose shape determines the binding specificity. Surprisingly, the mechanism of RNA recognition by LIN41 is drastically different from that of its more distant relative, the fly Brat. Our phylogenetic analysis suggests that this reflects a rapid evolution of the domain, presenting an interesting example of a conserved protein fold that acquired completely different solutions to RNA recognition.
Sleep-Active Neurons: Conserved Motors of Sleep
Bringmann, Henrik
2018-01-01
Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588
Language -- the barrier and the bridge between science and public.
Radford, T
2001-08-01
What does modern science tell people? That life is ultimately DNA, and DNA is genes, and genes are just so many bits of Lego, little building blocks manipulated by Nature for 3.8 thousand billion years, rather economically, so that much the same genes pop up in a nematode worm, a fruit fly, a lettuce, and a thriller writer. And that genes can be transferred from one species, or genus, or phylum, or even one kingdom to another. That is why there is unease, and newspapers reflect that unease, they do not create it. By helping people confront that unease, they probably help people come to terms with it. In the course of history, people have felt pretty uneasy about blood transfusion, heart transplants, test tube babies, and AIDS, and over the years, have calmed down considerably about each, to the advantage of both society and science. It will be the same for the human genome project, in a while.
The UNC-45 Myosin Chaperone: From Worms to Flies to Vertebrates
Lee, Chi F.; Melkani, Girish C.; Bernstein, Sanford I.
2014-01-01
UNC-45 is a UCS domain protein that is critical for myosin stability and function. It likely aides in folding myosin during cellular differentiation and maintenance and protects myosin from denaturation during stress. Invertebrates have a single unc-45 gene that is expressed in both muscle and non-muscle tissues. Vertebrates possess one gene expressed in striated muscle (unc-45b) and one that is more generally expressed (unc-45a). Structurally, UNC-45 is composed of a series of alpha-helices connected by loops. It has an N-terminal TPR domain that binds to Hsp90 and a central domain composed of armadillo repeats. Its C-terminal UCS domain, which is also comprised of helical armadillo repeats, interacts with myosin. In this review, we present biochemical, structural and genetic analyses of UNC-45 in Caenorhabditis elegans, Drosophila melanogaster and various vertebrates. Further, we provide insights into UNC-45 functions, its potential mechanism of action and its roles in human disease. PMID:25376491
Mondoux, Michelle A.; Love, Dona C.; Ghosh, Salil K.; Fukushige, Tetsunari; Bond, Michelle; Weerasinghe, Gayani R.; Hanover, John A.; Krause, Michael W.
2011-01-01
In a variety of organisms, including worms, flies, and mammals, glucose homeostasis is maintained by insulin-like signaling in a robust network of opposing and complementary signaling pathways. The hexosamine signaling pathway, terminating in O-linked-N-acetylglucosamine (O-GlcNAc) cycling, is a key sensor of nutrient status and has been genetically linked to the regulation of insulin signaling in Caenorhabditis elegans. Here we demonstrate that O-GlcNAc cycling and insulin signaling are both essential components of the C. elegans response to glucose stress. A number of insulin-dependent processes were found to be sensitive to glucose stress, including fertility, reproductive timing, and dauer formation, yet each of these differed in their threshold of sensitivity to glucose excess. Our findings suggest that O-GlcNAc cycling and insulin signaling are both required for a robust and adaptable response to glucose stress, but these two pathways show complex and interdependent roles in the maintenance of glucose–insulin homeostasis. PMID:21441213
USDA-ARS?s Scientific Manuscript database
Lumbricus terrestris L. (the dew worm) forages, mates and migrates on the soil surface during the night. Its distribution covers a broad latitudinal gradient and variation in day length conditions. Since soil-surface activity is crucial for the survival and reproduction of dew worms, it is conceivab...
Angelopoulou, Roxani; Lavranos, Giagkos; Manolakou, Panagiota
2008-03-20
Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history.
Buys, David J; Stojak, Amber R; Stiteler, William; Baker, Tyler F
2015-01-01
Benthic invertebrate communities were assessed after the December 2008 release of approximately 4.1 million m(3) coal fly ash from a disposal dredge cell at the Tennessee Valley Authority (TVA) Kingston Fossil Plant on Watts Bar Reservoir in Roane County, Tennessee, USA. Released ash filled the adjacent embayments and the main channel of the Emory River, migrating into reaches of the Emory, Clinch, and Tennessee Rivers. Dredging was completed in summer 2010, and the benthic community sampling was conducted in December 2010. This study is part of a series that supported an Ecological Risk Assessment for the Kingston site. Benthic invertebrate communities were sampled at transects spread across approximately 20 miles of river that includes both riverine and reservoirlike conditions. Community composition was assessed on a grab sample and transect basis across multiple cross-channel transects to gain an understanding of the response of the benthic community to a fly ash release of this magnitude. This assessment used invertebrate community metrics, similarity analysis, geospatial statistics, and correlations with sediment chemistry and habitat. The community composition was reflective of a reservoir system, with dominant taxa being insect larva, bivalves, and aquatic worms. Most community metric results were similar for ash-impacted areas and upstream reference areas. Variation in the benthic community was correlated more with habitat than with sediment chemistry or residual ash. Other studies have reported that a benthic community can take several years to a decade to recover from ash or ash-related constituents. Although released ash undoubtedly had some initial impacts on the benthic community in this study, the severity of these effects appears to be limited to the initial smothering of the organisms followed by a rapid response and the initial start of recovery postdredging. © 2014 SETAC.
Effect of time on migration of Oesophagostomum spp. and Hyostrongylus rubidus out of agar-gel.
Nosal, P; Christensen, C M; Nansen, P
1998-01-01
The agar-gel migration technique has previously been described, however, aspects regarding the effect of timing on worm migration needed further scrutiny. In the first experiment, pigs inoculated with Oesophagostomum dentatum were slaughtered simultaneously and their intestines stored at 21-23 degrees C until processed pairwise 2, 4, 6, 8, 12 and 18 h after slaughter. More than 95% of the worms migrated out of the agar if processed within 6 h. In the second experiment, intestines were treated immediately after slaughter and the migratory speed of adult worms or 4th-stage larvae of O. dentatum or O. quadrispinulatum, or adult Hyostrongylus rubidus were studied. For both Oesophagostomum species, more than 90% of the worms were recovered within 1 h. H. rubidus was significantly slower; however, approximately 98% of the worms had migrated out of the agar-gel by 20 h. This information is essential in planning experiments where recovery of live worms is of value.
Hairworm anti-predator strategy: a study of causes and consequences.
Ponton, F; Lebarbenchon, C; Lefèvre, T; Thomas, F; Duneau, D; Marché, L; Renault, L; Hughes, D P; Biron, D G
2006-11-01
One of the most fascinating anti-predator responses displayed by parasites is that of hairworms (Nematomorpha). Following the ingestion of the insect host by fish or frogs, the parasitic worm is able to actively exit both its host and the gut of the predator. Using as a model the hairworm, Paragordius tricuspidatus, (parasitizing the cricket Nemobius sylvestris) and the fish predator Micropterus salmoïdes, we explored, with proteomics tools, the physiological basis of this anti-predator response. By examining the proteome of the parasitic worm, we detected a differential expression of 27 protein spots in those worms able to escape the predator. Peptide Mass Fingerprints of candidate protein spots suggest the existence of an intense muscular activity in escaping worms, which functions in parallel with their distinctive biology. In a second step, we attempted to determine whether the energy expended by worms to escape the predator is traded off against its reproductive potential. Remarkably, the number of offspring produced by worms having escaped a predator was not reduced compared with controls.
Zain, Mariani Mohd; Yahaya, Zary Shariman; Him, Nik Ahmad Irwan Izzauddin Nik
2016-11-01
To date, the ivermectin resistance in nematode parasites has been reported and many studies are carried out to determine the causes of this problem. A free-living Caenorhabditis elegans is used as a model system for this study to investigate the response of C. elegans to ivermectin exposure by using larval development assay. Worms were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24, 48, 72, and 96 hours until the worms become adults. Results indicated that worms' growth began to be affected by ivermectin at a concentration of 5 ng/mL, while at the concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to control worms. Further study of the protein expression in C. elegans should be done to investigate the up-regulated and down-regulated proteins involve in ivermectin resistance.
WormQTL—public archive and analysis web portal for natural variation data in Caenorhabditis spp
Snoek, L. Basten; Van der Velde, K. Joeri; Arends, Danny; Li, Yang; Beyer, Antje; Elvin, Mark; Fisher, Jasmin; Hajnal, Alex; Hengartner, Michael O.; Poulin, Gino B.; Rodriguez, Miriam; Schmid, Tobias; Schrimpf, Sabine; Xue, Feng; Jansen, Ritsert C.; Kammenga, Jan E.; Swertz, Morris A.
2013-01-01
Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype–phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers. PMID:23180786
WormQTL--public archive and analysis web portal for natural variation data in Caenorhabditis spp.
Snoek, L Basten; Van der Velde, K Joeri; Arends, Danny; Li, Yang; Beyer, Antje; Elvin, Mark; Fisher, Jasmin; Hajnal, Alex; Hengartner, Michael O; Poulin, Gino B; Rodriguez, Miriam; Schmid, Tobias; Schrimpf, Sabine; Xue, Feng; Jansen, Ritsert C; Kammenga, Jan E; Swertz, Morris A
2013-01-01
Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype-phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers.
Preflight studies on tolerance of pocket mice to oxygen and heat. III - Effects on eyes
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Corbett, R. L.; Black, S.; Takahashi, A.; Leaffer, D.
1975-01-01
A study was made of the eyes of eight pocket mice exposed to oxygen at partial pressures of 8, 10, or 12 psi over a period of 7 d. At the termination of the exposure, the animals were decompressed to sea-level O2, either immediately or over a period of 30, 60, or 90 min. No pathological changes were found in any of the eyes, except in the retina of one of the animals exposed to 12 psi O2. Here, only a single rod photoreceptor was found damaged, an observation not regarded as significant. Hence, an oxygen partial pressure as high as 12 psi in the canister in which pocket mice were expected to fly on Apollo XVII would probably have no deleterious effect on the eyes of the animals.
Kopper, Jamie J; Patterson, Jon S; Mansfield, Linda S
2015-09-15
Trichuris muris infected C57BL/6 mice are a frequently studied model of immune mediated resistance to helminths. Our objective was to characterize dose-dependent gastrointestinal (GI) disease and pathology due to Trichuris in C57BL/6 mice with varying degrees of IL-10 sufficiency. These mice can serve as a model for other animals (dogs, cattle) and humans where IL-10 polymorphisms have been associated with disease susceptibility and may affect susceptibility to whipworm. C57BL/6 IL-10(+/+), IL-10(+/-) and IL-10(-/-) mice were infected with T. muris (J strain) in a dose response study. T. muris produced dose-dependent disease in IL-10(-/-) mice. Ninety percent of mice receiving the high dose (75 ova) had severe disease necessitating early euthanasia, while the medium dose (50 ova) resulted in 100% early euthanasia of males/75% of females, and the low dose (25 ova) in 100% early euthanasia of males/25% of females. Having some IL-10 as in heterozygotes did not rescue all infected mice from effects of the high dose. 2/21 IL-10(-/-), 1/17 IL-10(+/-), and 0/17 IL-10(+/+) mice in the high dose group had severe peritonitis and extra-intestinal bacteria confirmed by fluorescent 16S rDNA analysis of peritoneal organ surfaces. Three of twenty one IL-10(-/-) had demonstrable extra-intestinal T. muris adults. Although free from viral pathogens, 12/21 IL-10(-/-), 6/17 IL-10(+/-), and 4/17 IL-10(+/+) infected mice had hepatitis, while control mice of all genotypes did not. Mice had evidence of inflammation of serosal surfaces of liver, spleen and GI tract even when extraintestinal Trichuris were not found. Blinded histopathology scoring revealed that even when infected IL-10(-/-) mice displayed few, if any, clinical signs, levels of gut inflammation did not vary significantly from those mice euthanized early due to severe disease. To examine whether antibiotics or corticosteroids could reverse severe disease and lesions, IL-10(-/-) mice infected with T. muris were treated with metronidazole or prednisolone prior to and throughout 40 days of infection. Mice given prednisolone had severe disease and lesions with the highest mortality rate. Mice given metronidazole had a significantly lower mortality rate than those given prednisolone, but GI lesions were of similar severity and distribution including peritonitis. Mortality was associated with extraintestinal worms and bacteria and further supported a role for enteric bacteria in this pathogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
DDS, 4,4′-diaminodiphenylsulfone, extends organismic lifespan
Keam, Bhumsuk; Choi, Jung Min; Cho, Yunje; Hyun, Soonsil; Park, Sang Chul; Lee, Junho
2010-01-01
DDS, 4,4′-diaminodiphenylsulfone, is the most common drug prescribed to treat Hansen disease patients. In addition to its antibacterial activity, DDS has been reported to be involved in other cellular processes that occur in eukaryotic cells. Because DDS treatment significantly enhances the antioxidant activity in humans, we examined its effect on lifespan extension. Here we show that DDS extends organismic lifespan using Caenorhabditis elegans as a model system. DDS treatment caused a delay in aging and decreased the levels of a mitochondrial complex. The oxygen consumption rate was also significantly lowered. Consistent with these data, paraquat treatment evoked less reactive oxygen species in DDS-treated worms, and these worms were less sensitive to paraquat. Interestingly enough, all of the molecular events caused by DDS treatment were consistently reproduced in mice treated with DDS for 3 mo and in the C2C12 muscle cell line. Structural prediction identified pyruvate kinase (PK) as a protein target of DDS. Indeed, DDS bound and inhibited PK in vitro and inhibited it in vivo, and a PK mutation conferred extended lifespan of C. elegans. Supplement of pyruvate to the media protected C2C12 cells from apoptosis caused by paraquat. Our findings establish the significance of DDS in lowering reactive oxygen species generation and extending the lifespan, which renders the rationale to examining the possible effect of DDS on human lifespan extension. PMID:20974969
Ogunremi, Oladele; Benjamin, Jane; MacDonald, Lily; Schimpf, Robert
2008-12-01
Newly developed serological tests for diagnosing parelaphostrongylosis in cervids, using the excretory-secretory products (ES) of the infective larvae of Parelaphostrongylus tenuis in enzyme-linked immunosorbent assays (ELISAs), have demonstrable superiority over the traditional method of larval recovery and microscopic identification. To generate a source of ELISA antigen by genetic engineering, we created a complementary DNA (cDNA) expression library by the reverse transcription of mRNA of P. tenuis adult worms, and ligation with the vector lambda-ZAP II. The library was screened using antisera produced in mice by immunization with a somatic antigen preparation of adult worms. Seventeen clones were isolated, sequenced, and checked for similarity to other DNA sequences in GenBank. A previously identified parasite gene encoding an aspartyl protease inhibitor (API) was isolated from the cDNA library, subcloned and expressed using the pET expression vector to produce a glutathione S transferase (GST)-His-S.Tag-P. tenuis API fusion protein (molecular weight = 63 kDa). An enzyme-linked immunosorbent assay utilizing the API fusion protein as the coating antigen was used to serologically diagnose all white-tailed deer (WTD, 10 out of 10) that had been inoculated with 6 - 150 L3 P. tenuis, indicating that the antigen may be a useful serodiagnostic antigen for P. tenuis infection in this cervid species.
Cao, Yan; Zhao, Bin; Han, Yanhui; Zhang, Juan; Li, Xuezhen; Qiu, Chunhui; Wu, Xiujuan; Hong, Yang; Ai, Dezhou; Lin, Jiaojiao; Fu, Zhiqiang
2013-01-01
Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR) plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% (P < 0.01) of worm reduction and 40.38–44.51% (P < 0.01) of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects. PMID:23509820
From Flowers to Worms: Understanding Nature's Cycle.
ERIC Educational Resources Information Center
Texas Child Care, 1995
1995-01-01
Gardening helps children learn how plants sprout, grow, bloom, and then wither away, leaving seeds behind. Participating in this natural process allows children to experience the stages of life. Suggested gardening activities include studying dandelions, focusing on culture for garden plant selection, and constructing a worm box or worm terrarium…
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Well formed. (2) Free From: (i) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv...) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv) Freezing injury; (v) Internal...) Carefully packed; (v) Fairly clean; and, (vi) Not badly misshapen. (2) Free From: (i) Worm holes; (ii...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Well formed. (2) Free From: (i) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv...) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv) Freezing injury; (v) Internal...) Carefully packed; (v) Fairly clean; and, (vi) Not badly misshapen. (2) Free From: (i) Worm holes; (ii...
Local structure of numerically generated worm hole spacetime.
NASA Astrophysics Data System (ADS)
Siino, M.
The author investigates the evolution of the apparent horizons in a numerically gererated worm hole spacetime. The behavior of the apparent horizons is affected by the dynamics of the matter field. By using the local mass of the system, he interprets the evolution of the worm hole structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: (i) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv) Freezing injury; (v...) Carefully packed; (v) Clean; and, (vi) Fairly well formed. (2) Free From: (i) Worm holes; (ii) Broken skins..., (vi) Not badly misshapen. (2) Free From: (i) Worm holes; (ii) Broken skins which are not healed; (iii...
Code of Federal Regulations, 2012 CFR
2012-01-01
...: (i) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv) Freezing injury; (v...) Carefully packed; (v) Clean; and, (vi) Fairly well formed. (2) Free From: (i) Worm holes; (ii) Broken skins..., (vi) Not badly misshapen. (2) Free From: (i) Worm holes; (ii) Broken skins which are not healed; (iii...
Code of Federal Regulations, 2010 CFR
2010-01-01
...: (i) Worm holes; (ii) Broken skins which are not healed; (iii) Sunscald; (iv) Freezing injury; (v...) Carefully packed; (v) Clean; and, (vi) Fairly well formed. (2) Free From: (i) Worm holes; (ii) Broken skins..., (vi) Not badly misshapen. (2) Free From: (i) Worm holes; (ii) Broken skins which are not healed; (iii...
USDA-ARS?s Scientific Manuscript database
Nondestructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed in order to detect worms on fresh-cut lettuce. The optimal wavebands for detecting worms on fresh-cut lettuce were investigated using the one-way ANOVA analysis and correlation analysis. The worm detec...
Ogamdi, S O; Onwe, F
2001-01-01
The incidence and the prevalence of Guinea worm disease, a major cause of disability and a frequent cause of serious permanent deformity, were both drastically reduced in Ohaukwu Local Government Communities, with the provision (through bore holes) of a safer form of drinking water. Since 1986, the Carter Center program has been working to eradicate Guinea worm. The bore holes were dug through the Wasatan Project, a Japanese-funded grant awarded to the Enugu State Ministry of Health to help provide safer drinking water in the local communities. Bore holes were dug in several communities in Ohaukwu Local Government Areas between January 1991 and June 1991. The number of Guinea worm cases in the selected communities was ascertained and recorded by health workers. There was more than a 90% reduction in the number of Guinea worm (Dracunculus medinensis) cases after one year. Data collection began in June 1991, shortly after the completion of bore holes in the selected communities. By December 1998, when one of the villages was spot checked for Guinea worm infection, no active case was found. There is a need for post evaluation of all the villages studied to determine the current prevalence of Guinea worm disease.
Microfluidic Devices in Advanced Caenorhabditis elegans Research.
Muthaiyan Shanmugam, Muniesh; Subhra Santra, Tuhin
2016-08-02
The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide.
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-05-10
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents.
Durability Characteristics Analysis of Plastic Worm Wheel with Glass Fiber Reinforced Polyamide
Kim, Gun-Hee; Lee, Jeong-Won; Seo, Tae-Il
2013-01-01
Plastic worm wheel is widely used in the vehicle manufacturing field because it is favorable for weight lightening, vibration and noise reduction, as well as corrosion resistance. However, it is very difficult for general plastics to secure the mechanical properties that are required for vehicle gears. If the plastic resin is reinforced by glass fiber in the fabrication process of plastic worm wheel, it is possible to achieve the mechanical properties of metallic material levels. In this study, the mechanical characteristic analysis of the glass-reinforced plastic worm wheel, according to the contents of glass fiber, is performed by analytic and experimental methods. In the case of the glass fiber-reinforced resin, the orientation and contents of glass fibers can influence the mechanical properties. For the characteristic prediction of plastic worm wheel, computer-aided engineering (CAE) analysis processes such as structural and injection molding analysis were executed with the polyamide resin reinforcement glass fiber (25 wt %, 50 wt %). The injection mold for fabricating the prototype plastic worm wheel was designed and made to reflect the CAE analysis results. Finally, the durability of prototype plastic worm wheel fabricated by the injection molding process was evaluated by the experimental method and the characteristics according to the glass fiber contents. PMID:28809248
Payload Processing for Mice Drawer System
NASA Technical Reports Server (NTRS)
Brown, Judy
2007-01-01
Experimental payloads flown to the International Space Station provide us with valuable research conducted in a microgravity environment not attainable on earth. The Mice Drawer System is an experiment designed by Thales Alenia Space Italia to study the effects of microgravity on mice. It is designed to fly to orbit on the Space Shuttle Utilization Logistics Flight 2 in October 2008, remain onboard the International Space Station for approximately 100 days and then return to earth on a following Shuttle flight. The experiment apparatus will be housed inside a Double Payload Carrier. An engineering model of the Double Payload Carrier was sent to Kennedy Space Center for a fit check inside both Shuttles, and the rack that it will be installed in aboard the International Space Station. The Double Payload Carrier showed a good fit quality inside each vehicle, and Thales Alenia Space Italia will now construct the actual flight model and continue to prepare the Mice Drawer System experiment for launch.
Kapoor, Pratibha; Hayes, Yumiko O; Jarrell, Leslie T; Bellinger, Dwight A; Thomas, Rhiannon D; Lawson, Gregory W; Arkema, Jaclyn D; Fletcher, Craig A; Nielsen, Judith N
2017-01-01
The entry of infectious agents in rodent colonies occurs despite robust sentinel monitoring programs, strict quarantine measures, and stringent biosecurity practices. In light of several outbreaks with Aspiculuris tetraptera in our facilities, we investigated the presence of anthelmintic resistance and the use of exhaust air dust (EAD) PCR for early detection of A. tetraptera infection. To determine anthelmintic resistance, C57BL/6, DBA/2, and NCr nude mice were experimentally inoculated with embryonated A. tetraptera ova harvested from enzootically infected mice, followed by treatment with 150 ppm fenbendazole in feed, 150 ppm fenbendazole plus 5 ppm piperazine in feed, or 2.1 mg/mL piperazine in water for 4 or 8 wk. Regardless of the mouse strain or treatment, no A. tetraptera were recovered at necropsy, indicating the lack of resistance in the worms to anthelmintic treatment. In addition, 10 of 12 DBA/2 positive-control mice cleared the A. tetraptera infection without treatment. To evaluate the feasibility of EAD PCR for A. tetraptera, 69 cages of breeder mice enzootically infected with A. tetraptera were housed on a Tecniplast IVC rack as a field study. On day 0, 56% to 58% of the cages on this rack tested positive for A. tetraptera by PCR and fecal centrifugation flotation (FCF). PCR from EAD swabs became positive for A. tetraptera DNA within 1 wk of placing the above cages on the rack. When these mice were treated with 150 ppm fenbendazole in feed, EAD PCR reverted to pinworm-negative after 1 mo of treatment and remained negative for an additional 8 wk. The ability of EAD PCR to detect few A. tetraptera positive mice was investigated by housing only 6 infected mice on another IVC rack as a field study. The EAD PCR from this rack was positive for A. tetraptera DNA within 1 wk of placing the positive mice on it. These findings demonstrate that fenbendazole is still an effective anthelmintic and that EAD PCR is a rapid, noninvasive assay that may be a useful diagnostic tool for antemortem detection of A. tetraptera infection, in conjunction with fecal PCR and FCF. PMID:28535863
Effectiveness of copper oxide wire particles for Haemonchus contortus control in sheep.
Knox, M R
2002-04-01
To assess the efficacy of copper oxide wire particles (COWP) for the control of H contortus infections in grazing sheep. In experiment 1, 40 worm-free Merino hoggets (11 to 12 months of age) were divided into four equal groups and allocated to separate 0.8 ha pasture plots. Two groups then received 2.5 g COWP whereas the other two groups were untreated. From 1 week after COWP treatment all lambs received a weekly infection of 2000 H contortus larvae. At week 8, six sheep from the untreated group were then allocated to two groups and treated with either 2.5 or 5.0 g of COWP to establish therapeutic efficacy of treatment. Experiment 2 followed a similar protocol but was conducted with 40 worm-free Merino lambs (3 to 4 months of age) and no assessment of therapeutic efficacy was made. In experiment 1 no significant difference in faecal worm egg counts was observed between treatments and faecal worm egg counts remained less than 3000 epg in all animals. Total worm counts were reduced by 37% by COWP treatment (P = 0.055). Both 2.5 g and 5.0 g doses of COWP at 8 weeks of infection reduced faecal worm egg counts by > 85% with the higher dose giving an earlier response to treatment. In experiment 2, faecal worm egg counts at 4 and 6 weeks were reduced by more than 90% in the COWP treated lambs and worm numbers were 54% lower after 6 weeks when all remaining untreated lambs had to be treated for haemonchosis. Mean faecal worm egg counts in the COWP lambs remained below 3500 epg and clinical disease did not develop in the majority of lambs before the end of the experiment at 10 weeks. Treatment with COWPs appears to have the potential to reduce establishment and worm fecundity of Haemonchus spp for an extended period and may offer livestock producers a supplementary means of reducing larval contamination of pasture particularly in areas where anthelmintic resistance is a problem and copper supplementation is likely to be beneficial.
A Tissue-Specific Approach to the Analysis of Metabolic Changes in Caenorhabditis elegans
Pujol, Claire; Ipsen, Sabine; Brodesser, Susanne; Mourier, Arnaud; Tolnay, Markus; Frank, Stephan; Trifunović, Aleksandra
2011-01-01
The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens. PMID:22162770
WORM - WINDOWED OBSERVATION OF RELATIVE MOTION
NASA Technical Reports Server (NTRS)
Bauer, F.
1994-01-01
The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.
An Unusual Foreign Body in the Urinary Bladder Mimicking a Parasitic Worm
Schmitt, Bryan H.; Feder, Marc T.; Rokke, Denise L.; Moyer, Thomas P.
2012-01-01
We report an unusual case of a foreign body removed from the urinary bladder of a 63-year-old male which mimicked a parasitic worm. The foreign body was identified as an artificial fishing worm by morphological comparison to a similar commercially produced product and by infrared spectrum analysis. PMID:22535991
Kar, Soumya K.; Jansman, Alfons J. M.; Benis, Nirupama; Ramiro-Garcia, Javier; Schokker, Dirkjan; Kruijt, Leo; Stolte, Ellen H.; Taverne-Thiele, Johanna J.; Smits, Mari A.; Wells, Jerry M.
2017-01-01
Dietary protein sources can have profound effects on host-microbe interactions in the gut that are critically important for immune resilience. However more knowledge is needed to assess the impact of different protein sources on gut and animal health. Thirty-six wildtype male C57BL/6J mice of 35 d age (n = 6/group; mean ± SEM body weight 21.9 ± 0.25 g) were randomly assigned to groups fed for four weeks with semi synthetic diets prepared with one of the following protein sources containing (300 g/kg as fed basis): soybean meal (SBM), casein, partially delactosed whey powder, spray dried plasma protein, wheat gluten meal and yellow meal worm. At the end of the experiment, mice were sacrificed to collect ileal tissue to acquire gene expression data, and mammalian (mechanistic) target of rapamycin (mTOR) activity, ileal digesta to study changes in microbiota and serum to measure cytokines and chemokines. By genome-wide transcriptome analysis, we identified fourteen high level regulatory genes that are strongly affected in SBM-fed mice compared to the other experimental groups. They mostly related to the mTOR pathway. In addition, an increased (P < 0.05) concentration of granulocyte colony-stimulating factor was observed in serum of SBM-fed mice compared to other dietary groups. Moreover, by 16S rRNA sequencing, we observed that SBM-fed mice had higher (P < 0.05) abundances of Bacteroidales family S24-7, compared to the other dietary groups. We showed that measurements of genome-wide expression and microbiota composition in the mouse ileum reveal divergent responses to diets containing different protein sources, in particular for a diet based on SBM. PMID:29149221
Antifilarial and Antibiotic Activities of Methanolic Extracts of Melaleuca cajuputi Flowers
Al-Abd, Nazeh M.; Nor, Zurainee Mohamed; Mansor, Marzida; Hasan, MS; Kassim, Mustafa
2016-01-01
We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis. PMID:27417081
Worm epidemics in wireless ad hoc networks
NASA Astrophysics Data System (ADS)
Nekovee, Maziar
2007-06-01
A dramatic increase in the number of computing devices with wireless communication capability has resulted in the emergence of a new class of computer worms which specifically target such devices. The most striking feature of these worms is that they do not require Internet connectivity for their propagation but can spread directly from device to device using a short-range radio communication technology, such as WiFi or Bluetooth. In this paper, we develop a new model for epidemic spreading of these worms and investigate their spreading in wireless ad hoc networks via extensive Monte Carlo simulations. Our studies show that the threshold behaviour and dynamics of worm epidemics in these networks are greatly affected by a combination of spatial and temporal correlations which characterize these networks, and are significantly different from the previously studied epidemics in the Internet.
de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.
2013-01-01
Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology. PMID:23326613
2017-01-01
Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor worms. PMID:28260814
Expression of a unique drug-resistant Hsp90 ortholog by the nematode Caenorhabditis elegans.
David, Cynthia L; Smith, Harold E; Raynes, Deborah A; Pulcini, Elizabeth J; Whitesell, Luke
2003-01-01
In all species studied to date, the function of heat shock protein 90 (Hsp90), a ubiquitous and evolutionarily conserved molecular chaperone, is inhibited selectively by the natural product drugs geldanamycin (GA) and radicicol. Crystal structures of the N-terminal region of yeast and human Hsp90 have revealed that these compounds interact with the chaperone in a Bergerat-type adenine nucleotide-binding fold shared throughout the gyrase, Hsp90, histidine kinase mutL (GHKL) superfamily of adenosine triphosphatases. To better understand the consequences of disrupting Hsp90 function in a genetically tractable multicellular organism, we exposed the soil-dwelling nematode Caenorhabditis elegans to GA under a variety of conditions designed to optimize drug uptake. Mutations in the gene encoding C elegans Hsp90 affect larval viability, dauer development, fertility, and life span. However, exposure of worms to GA produced no discernable phenotypes, although the amino acid sequence of worm Hsp90 is 85% homologous to that of human Hsp90. Consistent with this observation, we found that solid phase-immobilized GA failed to bind worm Hsp90 from worm protein extracts or when translated in a rabbit reticulocyte lysate system. Further, affinity precipitation studies using chimeric worm-vertebrate fusion proteins or worm C-terminal truncations expressed in reticulocyte lysate revealed that the conserved nucleotide-binding fold of worm Hsp90 exhibits the novel ability to bind adenosine triphosphate but not GA. Despite its unusual GA resistance, worm Hsp90 appeared fully functional when expressed in a vertebrate background. It heterodimerized with its vertebrate counterpart and showed no evidence of compromising its essential cellular functions. Heterologous expression of worm Hsp90 in tumor cells, however, did not render them GA resistant. These findings provide new insights into the nature of unusual N-terminal nucleotide-binding fold of Hsp90 and suggest that target-related drug resistance is unlikely to emerge in patients receiving GA-like chemotherapeutic agents.
Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu
2014-01-01
The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131
Wang, Caiqin; Lei, Huali; Tian, Yanli; Shang, Mei; Wu, Yinjuan; Li, Ye; Zhao, Lu; Shi, Mengchen; Tang, Xin; Chen, Tingjin; Lv, Zhiyue; Huang, Yan; Tang, Xiaoping; Yu, Xinbing; Li, Xuerong
2017-05-25
Long-term infections by Clonorchis sinensis are associated with cholangitis, cholecystitis, liver fibrosis, cirrhosis, and even liver cancer. Molecules from the worm play vital roles in disease progress. In the present study, we identified and explored molecular characterization of C. sinensis granulin (CsGRN), a growth factor-like protein from C. sinensis excretory/secretory products (CsESPs). The encoding sequence and conserved domains of CsGRN were identified and analysed by bioinformatics tools. Recombinant CsGRN (rCsGRN) protein was expressed in Escherichia coli BL21 (DE3). The localisation of CsGRN in adult worms and Balb/c mice infected with C. sinensis was investigated by immunofluorescence and immunohistochemistry, respectively. Stable CsGRN-overexpressed cell lines of hepatoma cells (PLC-GRN cells) and cholangiocarcinoma cells (RBE-GRN cells) were constructed by transfection of eukaryotic expression plasmid of pEGFP-C1-CsGRN. The effects on cell migration and invasion of CsGRN were assessed through the wound-healing assay and transwell assay. The levels of matrix metalloproteinase 2 and 9 (MMP2 and MMP9) in PLC-GRN or RBE-GRN cells were detected by real-time PCR (qRT-PCR). The levels of E-cadherin, vimentin, N-cadherin, zona occludens proteins (ZO-1), β-catenin, phosphorylated ERK (p-ERK) and phosphorylated AKT (p-AKT) were analysed by Western blotting. CsGRN, including the conserved GRN domains, was confirmed to be a member of the granulin family. CsGRN was identified as an ingredient of CsESPs. CsGRN was localised in the tegument and testes of the adult worm. Furthermore, it appeared in the cytoplasm of hepatocytes and biliary epithelium cells from infected Balb/c mouse. The enhancement of cell migration and invasion of PLC-GRN and RBE-GRN cells were observed. In addition, CsGRN upregulated the levels of vimentin, N-cadherin, β-catenin, MMP2 and MMP9, while it downregulated the level of ZO-1 in PLC-GRN/RBE-GRN cells. In total proteins of liver tissue from rCsGRN immunised Balb/c mice, vimentin level decreased, while E-cadherin level increased when compared with the control groups. Meanwhile, the levels of p-ERK reached a peak at 4 weeks post immunisation and the level of p-AKT did at 2 weeks after immunisation. The encoding sequence and molecular characteristics of CsGRN were identified. As a member of granulin superfamily, CsGRN induced mesenchymal characteristics of PLC and RBE cells and was found to regulate the activities of the downstream molecules of the ERK and PI3K/AKT signalling pathways, which could contribute to the enhancement of cell migration and invasion.
Social behaviour and collective motion in plant-animal worms.
Franks, Nigel R; Worley, Alan; Grant, Katherine A J; Gorman, Alice R; Vizard, Victoria; Plackett, Harriet; Doran, Carolina; Gamble, Margaret L; Stumpe, Martin C; Sendova-Franks, Ana B
2016-02-24
Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary principle by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by comparing them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local interactions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun-exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages. © 2016 The Author(s).
Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; Dubay, Shelli A.
2015-01-01
The meningeal worm (Parelaphostrongylus tenuis) is a nematode parasite that commonly infects white-tailed deer (Odocoileus virginianus; WTD) throughout the deciduous forest biome and deciduous-coniferous ecotone of eastern and central North America; the species is not known to occur west of the grassland biome of central North America. We used county-specific prevalence data to evaluate potential effects of landscape and climatologic factors on the spatial distribution of meningeal worm infection in South Dakota, US. Probability of infection increased 4-fold between eastern and western South Dakota and 1.3-fold for each 1-cm increase in summer precipitation. Sixty-three percent of WTD had only a single worm in the cranium. Expansion of meningeal worm infection across western South Dakota may be inherently low due to the combined effects of arid climate and potential attributes of the Missouri River that limit regional movements by infected WTD. Use of landscape genetic analyses to identify potential relationships between landscape features and population genetic structure of infected deer and parasites may contribute to a greater understanding of regional heterogeneity in meningeal worm infection rates across South Dakota, particularly in counties adjacent to the Missouri River. Future research evaluating heterogeneity in prevalence and intensity of infection between fawn and yearling deer, and the potential role of yearling male deer as dispersal agents of meningeal worms across the Missouri River, also is warranted.
Community assembly of the worm gut microbiome
NASA Astrophysics Data System (ADS)
Gore, Jeff
It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.
Vanhoorne, Bart; Decock, Wim; Vranken, Sofie; Lanssens, Thomas; Dekeyzer, Stefanie; Verfaille, Kevin; Horton, Tammy; Kroh, Andreas; Hernandez, Francisco; Mees, Jan
2018-01-01
The World Register of Marine Species (WoRMS) celebrated its 10th anniversary in 2017. WoRMS is a unique database: there is no comparable global database for marine species, which is driven by a large, global expert community, is supported by a Data Management Team and can rely on a permanent host institute, dedicated to keeping WoRMS online. Over the past ten years, the content of WoRMS has grown steadily, and the system currently contains more than 242,000 accepted marine species. WoRMS has not yet reached completeness: approximately 2,000 newly described species per year are added, and editors also enter the remaining missing older names–both accepted and unaccepted–an effort amounting to approximately 20,000 taxon name additions per year. WoRMS is used extensively, through different channels, indicating that it is recognized as a high-quality database on marine species information. It is updated on a daily basis by its Editorial Board, which currently consists of 490 taxonomic and thematic experts located around the world. Owing to its unique qualities, WoRMS has become a partner in many large-scale initiatives including OBIS, LifeWatch and the Catalogue of Life, where it is recognized as a high-quality and reliable source of information for marine taxonomy. PMID:29624577
Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus.
Murakami, Takumi; Segawa, Takahiro; Bodington, Dylan; Dial, Roman; Takeuchi, Nozomu; Kohshima, Shiro; Hongoh, Yuichi
2015-03-01
The glacier ice worm, Mesenchytraeus solifugus, is a unique annelid, inhabiting only snow and ice in North American glaciers. Here, we analyzed the taxonomic composition of bacteria associated with M. solifugus based on the 16S rRNA gene. We analyzed four fixed-on-site and 10 starved ice worm individuals, along with glacier surface samples. In total, 1341 clones of 16S rRNA genes were analyzed for the ice worm samples, from which 65 bacterial phylotypes (99.0% cut-off) were identified. Of these, 35 phylotypes were closely related to sequences obtained from their habitat glacier and/or other components of cryosphere; whereas three dominant phylotypes were affiliated with animal-associated lineages of the class Mollicutes. Among the three, phylotype Ms-13 shared less than 89% similarity with database sequences and was closest to a gut symbiont of a terrestrial earthworm. Using fluorescence in situ hybridization, Ms-13 was located on the gut wall surface of the ice worms. We propose a novel genus and species, 'Candidatus Vermiplasma glacialis', for this bacterium. Our results raise the possibility that the ice worm has exploited indigenous glacier bacteria, while several symbiotic bacterial lineages have maintained their association with the ice worm during the course of adaptive evolution to the permanently cold environment. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
In vitro antischistosomal activity of venom from the Egyptian snake Cerastes cerastes.
Hassan, Ehssan Ahmed; Abdel-Rahman, Mohamed Ahmed; Ibrahim, Mohamed Moussa; Soliman, Maha Farid Mohamed
2016-01-01
We studied the potential in vitro antischistosomal activity of Cerastes cerastes venom on adult Schistosoma mansoni worms. Live specimens of the horned viper snake, C. cerastes were collected from the Aswan Governorate (Egypt). Venom was collected from snakes by manual milking. Worms of S. mansoni were obtained from infected hamsters by perfusion and isolated from blood using phosphate buffer. Mortality rates of worms were monitored after 3 days of exposure to snake venom at LC50 and various sublethal concentrations (10, 5, 2.5µg/ml). Scanning electron microscopy was used to investigate tegumental changes in treated worms after exposure to LC50 doses of venom. The LC50 of C. cerastes venom was 21.5µg/ml. The effect of C. cerastes venom on Schistosoma worms varied according to their sex. The mortality rate of male and female worms after 48-h exposure was 83.3% and 50%, respectively. LC50 of C. cerastes venom induced mild to severe tegumental damage in Schistosoma worms in the form of destruction of the oral sucker, shrinkage and erosion of the tegument, and loss of some tubercle spines. The present study demonstrated that C. cerastes venom exerts potential in vitro antischistosomal activity in a time and dose-dependent manner. These results may warrant further investigations to develop novel schistosomicidal agents from C. cerastes snake venom.
Grunting for worms: reactions of Diplocardia to seismic vibrations
M.A. Callaham
2009-01-01
Harvesting earthworms by a practice called 'worm grunting' is a widespread and profitable business in the southeastern USA. Although a variety of techniques are used, most involve rhythmically scraping a wooden stake driven into the ground, with a fiat metal object. A common assumption is that vibrations cause the worms to surface, but this phenomenon has not...
USDA-ARS?s Scientific Manuscript database
Caenorhabditis elegans secretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, perception of which enables worms to gauge depletion of food or a high worm population density. As a result, worms enter the dauer state, a specific developmental stage capable of surviv...
Worms in the College Classroom: More than Just a Composting Demonstration
ERIC Educational Resources Information Center
Kelley, Rebecca L.
2010-01-01
Although worm bins have been used by K-12 and nonformal educators for decades, there is little evidence of their use in postsecondary education. The ease of use, maintenance, affordability, portability, and diversity of scientific concepts that can be demonstrated with a worm bin make it a valuable tool in college science classrooms. The purpose…
Brain trauma and autophagy: What flies and mice can teach us about conserved responses.
Ratliff, Eric P; Barekat, Ayeh; Lipinski, Marta M; Finley, Kim D
2016-11-01
Drosophila models have been successfully used to identify many genetic components that affect neurodegenerative disorders. Recently, there has been a growing interest in identifying innate and environmental factors that influence the individual outcomes following traumatic brain injury (TBI). This includes both severe TBI and more subtle, mild TBI (mTBI), which is common in people playing contact sports. Autophagy, as a clearance pathway, exerts protective effects in multiple neurological disease models. In a recent publication, we highlighted the development of a novel repetitive mTBI system using Drosophila, which recapitulates several phenotypes associated with trauma in mammalian models. In particular, flies subjected to mTBI exhibit an acute impairment of the macroautophagy/autophagy pathway that is restored 1 wk following traumatic injury exposure. These phenotypes closely resemble temporary autophagy defects observed in a mouse TBI model. Through these studies, we also identified methods to directly assess autophagic responses in the fly nervous system and laid the groundwork for future studies designed to identify genetic, epigenetic and environmental factors that have an impact on TBI outcomes.
Zöllner, Stefan K; Selvanathan, Saravana P; Graham, Garrett T; Commins, Ryan M T; Hong, Sung Hyeok; Moseley, Eric; Parks, Sydney; Haladyna, Jessica N; Erkizan, Hayriye V; Dirksen, Uta; Hogarty, Michael D; Üren, Aykut; Toretsky, Jeffrey A
2017-10-03
Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G 2 -M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Analysis of salivary transcripts and antigens of the sand fly Phlebotomus arabicus
Hostomská, Jitka; Volfová, Věra; Mu, Jianbing; Garfield, Mark; Rohoušová, Iva; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C
2009-01-01
Background Sand fly saliva plays an important role in blood feeding and Leishmania transmission as it was shown to increase parasite virulence. On the other hand, immunity to salivary components impedes the establishment of infection. Therefore, it is most desirable to gain a deeper insight into the composition of saliva in sand fly species which serve as vectors of various forms of leishmaniases. In the present work, we focused on Phlebotomus (Adlerius) arabicus, which was recently shown to transmit Leishmania tropica, the causative agent of cutaneous leishmaniasis in Israel. Results A cDNA library from salivary glands of P. arabicus females was constructed and transcripts were sequenced and analyzed. The most abundant protein families identified were SP15-like proteins, ParSP25-like proteins, D7-related proteins, yellow-related proteins, PpSP32-like proteins, antigen 5-related proteins, and 34 kDa-like proteins. Sequences coding for apyrases, hyaluronidase and other putative secreted enzymes were also represented, including endonuclease, phospholipase, pyrophosphatase, amylase and trehalase. Mass spectrometry analysis confirmed the presence of 20 proteins predicted to be secreted in the salivary proteome. Humoral response of mice bitten by P. arabicus to salivary antigens was assessed and many salivary proteins were determined to be antigenic. Conclusion This transcriptomic analysis of P. arabicus salivary glands is the first description of salivary proteins of a sand fly in the subgenus Adlerius. Proteomic analysis of P. arabicus salivary glands produced the most comprehensive account in a single sand fly species to date. Detailed information and phylogenetic relationships of the salivary proteins are provided, expanding the knowledge base of molecules that are likely important factors of sand fly-host and sand fly-Leishmania interactions. Enzymatic and immunological investigations further demonstrate the value of functional transcriptomics in advancing biological and epidemiological research that can impact leishmaniasis. PMID:19555500
Photodynamic inactivation using curcuminoids and Photogem on caenorhabditis elegans
NASA Astrophysics Data System (ADS)
Albuquerque, Yulli R.; Pratavieira, Sebastião.; Bagnato, Vanderlei S.; Inada, Natalia M.; Souza, Larissa M.; Afonso, Ana; de Souza, Clovis W. O.; Oliveira, Kleber T.; Anibal, Fernanda F.
2018-02-01
Resistance to various anthelmintic drugs is reported in many animals and can become a severe problem for human and animal health. In this study, Photogem® and three curcuminoids compounds (curcumin, demethoxycurcumin, bisdemethoxycurcumin) were used as photosensitizers in the photodynamic inactivation (PDI) in the helminth model Caenorhabditis elegans to investigate the ability of this procedure to worm life cycle. Initially, the presence and location of the photosensitizers in the worm's body were verified by fluorescence confocal microscopy. Curcumin was deposited in the digestive tract and Photogem® along the body of the animal in the incubation time of 12 hours with the photosensitizer. Subsequently, a PDI procedure using a LED device was performed to illuminate the worms treated with the photosensitizers. The worms were observed by optical microscopy until 48 hours after the PDI to verify the changes in motility, the presence of eggs and larvae and the number of live worms. Curcuminoids tested separately and in combination and two light doses of 30 J/m2 no changes were observed in the life cycle of the worm at concentrations of 2 mM and 1 mM. However, in treatment with Photogem® and a light dose of 100 J/m2 a reduction in motility and reproduction of the worm with 0.2 mg/mL was observed after 6 hours of exposure, in addition to the death of most worms at concentrations of 6, 4, and 2 mg/mL. We suggest, therefore, that photodynamic inactivation with Photogem® may present an anthelmintic effect against C. elegans, but there is a need for studies on helminths with parasitic activity.
Nissen, Sofie; Al-Jubury, Azmi; Hansen, Tina V A; Olsen, Annette; Christensen, Henrik; Thamsborg, Stig M; Nejsum, Peter
2012-08-13
The whipworms Trichuris trichiura and Trichuris suis in humans and pigs, respectively, are believed to be two different species yet closely related. Morphologically, adult worms, eggs and larvae of the two species are indistinguishable. The aim of this study was to examine the genetic variation of Trichuris sp. mainly recovered from natural infected pigs and humans. Worm material isolated from humans and pigs living in the same geographical region in Uganda were analyzed by PCR, cloning and sequencing. Measurements of morphometric characters were also performed. The analysis of the ITS-2 (internal transcribed spacer) region showed a high genetic variation in the human-derived worms with two sequence types, designated type 1 and type 2, differing with up to 45%, the type 2 being identical to the sequence found in pig-derived worms. A single human-derived worm showed exclusively the type 2-genotype (T. suis-type) and three cases of 'heterozygote' worms in humans were identified. However, the analysis showed that sympatric Trichuris primarily assorted with host origin. Sequence analysis of a part of the genetically conserved β-tubulin gene confirmed two separate populations/species but also showed that the 'heterozygote' worms had a T. suis-like β-tubulin gene. A PCR-RFLP on the ITS-2 region was developed, that could distinguish between worms of the pig, human and 'heterozygote' type. The data suggest that Trichuris in pigs and humans belong to two different populations (i.e. are two different species). However, the data presented also suggest that cross-infections of humans with T. suis takes place. Further studies on sympatric Trichuris populations are highly warranted in order to explore transmission dynamics and unravel the zoonotic potential of T. suis. Copyright © 2012 Elsevier B.V. All rights reserved.
[Efficacy evaluation of epsiprantel (Cestex) against Echinococcus mutilocularis in dogs and cats].
Eckert, J; Thompson, R C; Bucklar, H; Bilger, B; Deplazes, P
2001-01-01
Helminth-free dogs and cats were experimentally infected with protoscoleces of Echinococcus multilocularis and used in controlled trials for efficacy evaluation of the cestodicide epsiprantel. In two separate trials each 4 dogs were treated at day 20 post infection (p.i.) with average oral dosages of 5.1 (4.9-5.3) and 5.4 (5.2-5.8) mg/kg body weight (b.w.) epsiprantel, respectively, and necropsied at day 24 p.i. Among each 4 dogs of the two untreated control groups all animals were infected and had high intestinal worm burdens with averages of 33.575 and 100.725 E. multilocularis specimens per animal (individual worm burdens in group Ib 59,500-149,800, group IIb 20,500-43,200); in the two groups of treated dogs the average worm burdens were reduced by 99.6 and 99.9%. Among 8 treated dogs 4 were helminth-free, the other 4 had residual worm burdens (10-70 in 3 dogs, 1480 in 1 dog). In each 5 cats single oral treatments with average doses of 2.7 (2.7-2.8) and 5.5 (5.5-5.5) mg/kg b.w. epsiprantel were 100% effective against E. multilocularis 20 days p.i. and eliminated the worm burdens from all 10 animals. In the untreated group of 5 cats the average worm burden was 2864 per animal (individual worm burdens 20-6830). Side effects of the drug treatment were not observed. The results of the study show that in single therapeutic dosages recommended by the producer (dogs 5.5 mg, cats 2.75 mg/kg b.w.) epsiprantel eliminates E. multilocularis to over 99% or completely, but residual worm burdens may persist in some animals.
Wang, B; Mastro, V C; McLane, W H
2000-12-01
As part of the eradication program for recent introductions of the longhorned beetle Anoplophora glabripennis (Motschulsky) in the United States, wood from infested trees is chipped and incinerated. Two tests were conducted to evaluate the efficiency of chipping wood from infested trees on the survival of the beetle. In the first test, plastic worms were used as surrogates for larvae of the beetle. Plastic worms of different sizes were placed in holes drilled in logs of sugar maple, Acer saccharum Marsh. In a second test, in addition to plastic worms, we used different instars and pupae of gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae); larvae of the beetle Phyllophaga annina Lewis (Coleoptera: Scarabaeidae); and larvae of an unidentified weevil (Coleoptera: Curculionidae). Although chipping did not result in an obvious damage to all plastic worms, it did kill all larvae and pupae of insects placed in holes of maple logs. The overall recovery rate (percent recovered) for the plastic worms was 96% in the first (1997) test, and 71 and 98% for 10 and 40 mm long plastic worms in the second (1998) test, respectively. Logistic regression analysis of the data from the first experiment indicates that larger worms receive more severe damage. Size of logs did not have a significant effect on the level of damage received by plastic worms. All recovered insects were severely damaged after chipping logs and we could not determine recovery rates. Results of the two tests indicate that chipping wood from infested trees without incineration of the resulting chips provides a highly effective method for destroying wood inhabiting insect pests such as A. glabripennis. The elimination of incineration saves considerable resources while effectively eliminating risks associated with movements of wood containing living wood-boring insects.
Operation of an aquatic worm reactor suitable for sludge reduction at large scale.
Hendrickx, Tim L G; Elissen, Hellen H J; Temmink, Hardy; Buisman, Cees J N
2011-10-15
Treatment of domestic waste water results in the production of waste sludge, which requires costly further processing. A biological method to reduce the amount of waste sludge and its volume is treatment in an aquatic worm reactor. The potential of such a worm reactor with the oligochaete Lumbriculus variegatus has been shown at small scale. For scaling up purposes, a new configuration of the reactor was designed, in which the worms were positioned horizontally in the carrier material. This was tested in a continuous experiment of 8 weeks where it treated all the waste sludge from a lab-scale activated sludge process. The results showed a higher worm growth rate compared to previous experiments with the old configuration, whilst nutrient release was similar. The new configuration has a low footprint and allows for easy aeration and faeces collection, thereby making it suitable for full scale application. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dietary and microbiome factors determine longevity in Caenorhabditis elegans
Sánchez-Blanco, Adolfo; Rodríguez-Matellán, Alberto; González-Paramás, Ana; González-Manzano, Susana; Kim, Stuart K.; Mollinedo, Faustino
2016-01-01
Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxidation state yet live shorter than coQ-less B. subtilis fed worms. We showed that mutations affecting longevity for E. coli fed worms do not always lead to similar effects when worms are fed B. subtilis. We propose that coQ supplementation by the E. coli diet alters the worm cellular REDOX homeostasis, thus decreasing longevity. Our results highlight the importance of microbiome factors in longevity, argue that antioxidant supplementation can be detrimental, and suggest that the C. elegans standard E. coli diet can alter the effect of signaling pathways on longevity. PMID:27510225
Face Gear Drive with Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis
NASA Technical Reports Server (NTRS)
Litvin, Faydor L.; Fuentes, Alfonso; Zanzi, Claudio; Pontiggia, Matteo; Handschuh, Robert F. (Technical Monitor)
2002-01-01
A face gear drive with a spur involute pinion is considered. The generation of the face gear is based on application of a grinding or cutting worm whereas the conventional method of generation is based on application of an involute shaper. An analytical approach is proposed for the determination of: (1) the worm thread surface; (2) avoidance of singularities of the worm thread surface, (air) dressing of the worm; and (3) determination of stresses of the face-gear drive. A computer program for simulation of meshing and contact of the pinion and face-gear has been developed. Correction of machine-tool settings is proposed for reduction of the shift of the bearing contact caused by misalignment. An automatic development of the model of five contacting teeth has been proposed for stress analysis. Numerical examples for illustration of the developed theory are provided.
Hoving, Jennifer C.; Nieuwenhuizen, Natalie; McSorley, Henry J.; Ndlovu, Hlumani; Bobat, Saeeda; Kimberg, Matti; Kirstein, Frank; Cutler, Anthony J.; DeWals, Benjamin; Cunningham, Adam F.; Brombacher, Frank
2013-01-01
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection. PMID:24204255
Cortés, Alba; Muñoz-Antolí, Carla; Álvarez-Izquierdo, María; Sotillo, Javier; Esteban, J Guillermo; Toledo, Rafael
2018-04-01
Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.
Manchang, T K; Ajonina-Ekoti, I; Ndjonka, D; Eisenbarth, A; Achukwi, M D; Renz, A; Brattig, N W; Liebau, E; Breloer, M
2015-05-01
Onchocerca volvulus is a tissue-dwelling, vector-borne nematode parasite of humans and is the causative agent of onchocerciasis or river blindness. Natural infections of BALB/c mice with Litomosoides sigmodontis and of cattle with Onchocerca ochengi were used as models to study the immune responses to O. volvulus-derived recombinant proteins (OvALT-2, OvNLT-1, Ov103 and Ov7). The humoral immune response of O. volvulus-infected humans against OvALT-2, OvNLT-1 and Ov7 revealed pronounced immunoglobulin G (IgG) titres which were, however, significantly lower than against the lysate of O. volvulus adult female worms. Sera derived from patients displaying the hyperreactive form of onchocerciasis showed a uniform trend of higher IgG reactivity both to the single proteins and the O. volvulus lysate. Sera derived from L. sigmodontis-infected mice and from calves exposed to O. ochengi transmission in a hyperendemic area also contained IgM and IgG1 specific for O. volvulus-derived recombinant proteins. These results strongly suggest that L. sigmodontis-specific and O. ochengi-specific immunoglobulins elicited during natural infection of mice and cattle cross-reacted with O. volvulus-derived recombinant antigens. Monitoring O. ochengi-infected calves over a 26-month period, provided a comprehensive kinetic of the humoral response to infection that was strictly correlated with parasite load and occurrence of microfilariae.
Removal of Thelazia callipaeda from the subconjunctival space.
Yagi, T; Sasoh, M; Kawano, T; Ito, K; Uji, Y; Ando, K
2007-01-01
To report the finding of Thelazia callipaeda within the human subconjunctival space. An 81-year-old man with a history of traumatic conjunctival laceration that occurred 2 years previously had white worms in the subconjunctival space of his right eye. Five worms were removed from the subconjunctival space via a local peritomy, since there was no conjunctival laceration noted during the examination. These worms were identified as T callipaeda. T callipaeda cannot dig holes in the ocular wall due to the lack of hooks or sharp spines within the mouth. Therefore, the authors speculate that these worms entered the subconjunctival space through a conjunctival laceration that had occurred 2 years previously.
Orthotic arm joint. [for use in mechanical arms
NASA Technical Reports Server (NTRS)
Dane, D. H. (Inventor)
1974-01-01
An improved orthopedic (orthotic) arm joint that can be used in various joint of mechanical arms is described. The arm joints includes a worm, which is coupled to an electric motor for rotating a worm gear carried within a rotatable housing. The worm gear is supported on a thrust bearing and the rotatable housing is supported on a radial thrust bearing. A bolt extends through the housing, bearings, and worm gear for securing the device together. A potentiometer extends through the bolt, and is coupled to the rotatable housing for rotating therewith, so as to produce an electrical signal indicating the angular position of the rotatable housing.
Dracunculiasis (guinea worm disease).
Greenaway, Chris
2004-02-17
Dracunculiasis (guinea worm disease) is a parasitic disease that is limited to remote, rural villages in 13 sub-Saharan African countries that do not have access to safe drinking water. It is one the next diseases targeted for eradication by the World Health Organization. Guinea worm disease is transmitted by drinking water containing copepods (water fleas) that are infected with Dracunculiasis medinensis larvae. One year after human ingestion of infected water a female adult worm emerges, typically from a lower extremity, producing painful ulcers that can impair mobility for up to several weeks. This disease occurs annually when agricultural activities are at their peak. Large proportions of economically productive individuals of a village are usually affected simultaneously, resulting in decreased agricultural productivity and economic hardship. Eradication of guinea worm disease depends on prevention, as there is no effective treatment or vaccine. Since 1986, there has been a 98% reduction in guinea worm disease worldwide, achieved primarily through community-based programs. These programs have educated local populations on how to filter drinking water to remove the parasite and how to prevent those with ulcers from infecting drinking-water sources. Complete eradication will require sustained high-level political, financial and community support.
Guinea worm infection in northern Nigeria: reflections on a disease approaching eradication.
Greenwood, Brian; Greenwood, Alice; Bradley, Andrew
2017-05-01
Global eradication of the guinea worm (Dracunculus medinensis) is near, although perhaps delayed a little by the discovery of a transmission cycle in dogs. It is therefore an appropriate time to reflect on the severe impact of this infection on the life of the communities where it was endemic prior to the start of the global eradication programme in 1981. From 1971 to 1974, we conducted a series of unpublished studies on guinea worm in a group of villages in Katsina State, northern Nigeria, where the infection was highly endemic. These studies demonstrated the high rate of infection in affected communities, the frequent recurrence of the infection in some subjects and the long-standing disability that remained in some infected individuals. Immunological studies showed a high level of immediate hypersensitivity to adult worm and larval antigens but a downregulation of Th1-type T-cell responses to worm antigens. Freeing communities such as those described in this article from the scourge of guinea worm infection for good will be an important public health triumph. © 2017 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
Nawa, Yukifumi; de la Cruz-Otero, María del Carmen; Zazueta-Ramos, Magda Luz; Bojórquez-Contreras, Angel; Sicairos-Félix, Josefina; Campista-León, Samuel; Torres-Montoya, Edith Hilario; Sánchez-Gonzalest, Sergio; Guzmán-Loreto, Roberto; Delgado-Vargas, Francisco; Díaz-Camacho, Sylvia Páz
2009-08-01
Gnathostoma turgidum is a nematode that parasitizes the stomach of opossums, Didelphis virginiana. Despite its wide distribution in the Americas, its natural life cycle is poorly understood. Recently, we found an endemic area for G. turgidum infection in Sinaloa, Mexico (Diaz-Camacho et al., 2009). Based on sporadic surveys for several years, the prevalence was apparently high in summer and extremely low in winter. To confirm that this is really a seasonal variance, we conducted a longitudinal survey on G. turgidum infection in opossums from November 2007 to November 2008. The results showed amazing seasonal changes in the prevalence, with synchronized migration and maturation of worms in opossums. Between February and March, many juvenile worms, with occasional AL3, were found in the liver, but no worms were found in the stomach. Mature adult worms began to appear in the stomach around April and rapidly increased in number toward July, when all worms resided in the stomach. Then, the worms disappeared almost completely by November. These results suggest that G. turgidum is an annual parasite of the opossum, D. virginiana, in Mexico.
Carrara, V S; Vieira, S C H; de Paula, R G; Rodrigues, V; Magalhães, L G; Cortez, D A G; Da Silva Filho, A A
2014-09-01
Dichloromethane and aqueous fractions from leaves and stems of Piper arboreum Aubl., P. aduncum L., P. amalago L., P. crassinervium H.B. & K., P. diospyrifolium Kunth, P. hispidum Sw. and P. xylosteoides (Kunth) Steud. were tested against adult worms of Schistosoma mansoni. The in vitro activity was evaluated in terms of mortality, number of separated worms and number of worms with reduced motor activity. Most dichloromethane fractions from all Piper species showed moderate schistosomicidal activity, but aqueous fractions were not active. The dichloromethane fraction of P. amalago leaves (at 100 μg/ml) showed the highest activity, resulting in worm mortality, the separation of worm pairs and reduced motor activity. Chromatographic fractionation of the dichloromethane fraction of P. amalago leaves led to the isolation of its major compound, which was also tested against adults of S. mansoni. The isolated piperamide N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine, at 100 μ m, resulted in the mortality of all adult worms after 24 h of incubation. The findings suggest that species of Piper are potential sources of schistosomicidal compounds.
Jacques, Christopher N.; Jenks, Jonathan A.; Klaver, Robert W.; Dubay, Shelli A.
2017-01-01
Few studies have evaluated how wetland and forest characteristics influence the prevalence of meningeal worm (Parelaphostrongylus tenuis) infection of deer throughout the grassland biome of central North America. We used previously collected, county-level prevalence data to evaluate associations between habitat characteristics and probability of meningeal worm infection in white-tailed deer (Odocoileus virginianus) across eastern South Dakota, US. The highest-ranked binomial regression model for detecting probability of meningeal worm infection was spring temperature + summer precipitation + percent wetland; weight of evidence (wi=0.71) favored this model over alternative models, though predictive capability was low (Receiver operating characteristic=0.62). Probability of meningeal worm infection increased by 1.3- and 1.6-fold for each 1-cm and 1-C increase in summer precipitation and spring temperature, respectively. Similarly, probability of infection increased 1.2-fold for each 1% increase in wetland habitat. Our findings highlight the importance of wetland habitat in predicting meningeal worm infection across eastern South Dakota. Future research is warranted to evaluate the relationships between climatic conditions (e.g., drought, wet cycles) and deer habitat selection in maintaining P. tenuis along the western boundary of the parasite.
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework. PMID:26713449
Razzaq, Misbah; Ahmad, Jamil
2015-01-01
Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.
Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)
NASA Astrophysics Data System (ADS)
Carey, D. A.; Farrington, J. W.
1989-08-01
Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.
NASA Astrophysics Data System (ADS)
Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya
In animals, we must infer the pain level from experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. To establish C.elegans as a model for pain research, we propose for the first time a quantitative model that allows inference of a thermal nociceptive stimulus level from the behavior of an individual worm. We apply controlled levels of pain by locally heating worms with an infrared laser and capturing the subsequent behavior. We discover that the behavioral response is a product of stereotypical behavior and a nonlinear function of the strength of stimulus. The same stereotypical behavior is observed in normal, anesthetized and mutated worms. From this result we build a Bayesian model to infer the strength of laser stimulus from the behavior. This model allows us to measure the efficacy of anaesthetization and mutation by comparing the inferred strength of stimulus. Based on the measured nociceptive escape of over 200 worms, our model is able to significantly differentiate normal, anaesthetized and mutated worms with 40 worm samples. This work was partially supported by NSF Grant No. IOS/1208126 and HFSP Grant No. RGY0084/.
Santos, Patrícia d‘Emery Alves; de Lorena, Virgínia Maria Barros; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; do Nascimento, Wheverton Ricardo Correia; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; de Souza, Valdênia Maria Oliveira
2016-01-01
Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants. PMID:26872339
Santos, Patrícia d'Emery Alves; Lorena, Virgínia Maria Barros de; Fernandes, Érica de Souza; Sales, Iana Rafaela Fernandes; Nascimento, Wheverton Ricardo Correia do; Gomes, Yara de Miranda; Albuquerque, Mônica Camelo Pessoa de Azevedo; Costa, Vlaudia Maria Assis; Souza, Valdênia Maria Oliveira de
2016-02-01
Schistosoma mansoni antigens in the early life alter homologous and heterologous immunity during postnatal infections. We evaluate the immunity to parasite antigens and ovalbumin (OA) in adult mice born/suckled by schistosomotic mothers. Newborns were divided into: born (BIM), suckled (SIM) or born/suckled (BSIM) in schistosomotic mothers, and animals from noninfected mothers (control). When adults, the mice were infected and compared the hepatic granuloma size and cellularity. Some animals were OA + adjuvant immunised. We evaluated hypersensitivity reactions (HR), antibodies levels (IgG1/IgG2a) anti-soluble egg antigen and anti-soluble worm antigen preparation, and anti-OA, cytokine production, and CD4+FoxP3+T-cells by splenocytes. Compared to control group, BIM mice showed a greater quantity of granulomas and collagen deposition, whereas SIM and BSIM presented smaller granulomas. BSIM group exhibited the lowest levels of anti-parasite antibodies. For anti-OA immunity, immediate HR was suppressed in all groups, with greater intensity in SIM mice accompanied of the remarkable level of basal CD4+FoxP3+T-cells. BIM and SIM groups produced less interleukin (IL)-4 and interferon (IFN)-g. In BSIM, there was higher production of IL-10 and IFN-g, but lower levels of IL-4 and CD4+FoxP3+T-cells. Thus, pregnancy in schistosomotic mothers intensified hepatic fibrosis, whereas breastfeeding diminished granulomas in descendants. Separately, pregnancy and breastfeeding could suppress heterologous immunity; however, when combined, the responses could be partially restored in infected descendants.
Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity
Sun, Liou Y.; Longo, Valter
2013-01-01
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the “healthspan” is also extended with delays in cognitive decline and in the onset of age-related disease. The role of hormones homologous to insulin-like growth factor (IGF, an important mediator of GH actions) in the control of aging and lifespan is evolutionarily conserved from worms to mammals with some homologies extending to unicellular yeast. The combination of reduced GH, IGF-I, and insulin signaling likely contributes to extended longevity in GH or GH receptor-deficient organisms. Diminutive body size and reduced fecundity of GH-deficient and GH-resistant mice can be viewed as trade-offs for extended longevity. Mechanisms responsible for delayed aging of GH-related mutants include enhanced stress resistance and xenobiotic metabolism, reduced inflammation, improved insulin signaling, and various metabolic adjustments. Pathological excess of GH reduces life expectancy in men as well as in mice, and GH resistance or deficiency provides protection from major age-related diseases, including diabetes and cancer, in both species. However, there is yet no evidence of increased longevity in GH-resistant or GH-deficient humans, possibly due to non-age-related deaths. Results obtained in GH-related mutant mice provide striking examples of mutations of a single gene delaying aging, reducing age-related disease, and extending lifespan in a mammal and providing novel experimental systems for the study of mechanisms of aging. PMID:23589828
Anti Leishmania activity of Lucilia sericata and Calliphora vicina maggots in laboratory models.
Sanei-Dehkordi, Alireza; Khamesipour, Ali; Akbarzadeh, Kamran; Akhavan, Amir Ahmad; Mir Amin Mohammadi, Akram; Mohammadi, Younes; Rassi, Yavar; Oshaghi, Mohammad Ali; Alebrahim, Zahra; Eskandari, Seyed Ebrahim; Rafinejad, Javad
2016-11-01
Use of sterile fly larvae (maggots) of blow flies for the treatment of many different types of skin and soft tissue wounds is called Maggot debridement therapy (MDT). The larvae of blow flies secrete a broad spectrum of compounds with diverse mechanisms of action in the gut and salivary glands called excretion/secretion (ES) products which showed to have antimicrobial activities against Gram negative and positive bacteria. Cutaneous leishmaniasis (CL) which is the common form of leishmaniasis is difficult to treat. In this study, the effect of ES from 2 nd and 3 rd stages of L. sericata and C. vicina larvae on in vitro Leishmania major amastigote growth in macrophage was evaluated. The effect of ES on Leishmania growth was estimated by assessing the rate of macrophage infection and the number of amastigotes per infected macrophages. In addition, the anti Leishmania activities of larval and ES of L. sericata and C. vicina on the skin lesion induced by L. major infection was evaluated in susceptible BALB/c mice. The results showed that ES of both flies reduced the number of infected macrophages; 2.6 and 1.5-fold using L. sericata ES and C. vicina ES, respectively, and inhibited amastigotes growth in macrophages; 2.03 and 1.36-fold by L. sericata ES and C. vicina ES, respectively as compared to the control group. The results showed that L. sericata ES was significantly more effective than C. vicina ES to inhibit in vitro L. major amastigotes growth, The size of lesion was significantly smaller in BALB/c mice treated with L. sericata ES than treated with C. vicina ES. The results of in vivo experiments suggested that pre-treatment with ES derived from L. sericata may have some protective effects on the development of L. major lesion. Therefore, it seems that maggot ES might be considered as a possible candidate for the treatment of cutaneous leishmaniasis. Copyright © 2016 Elsevier Inc. All rights reserved.
1981-05-15
temperatures for 30 min-. Cool to 45 - 48°C. Aseptically add 25 ml of packed, human blood cells or 50 ml of defibrinated rabbit or sheep blood. Mix...now included in var. palaearctica, is reported to ferment glycerol but not maltose (Kunitsa et al., 1972). Growth in litmus milk is scant; slight...muskrats, water rats, beavers, squirrels;, woodclhocks, sheep , mice, voles and game birds as well as biting insects (usuallv ticks or deer flies
Cytochrome b 5 reductase and the control of lipid metabolism and healthspan.
Martin-Montalvo, Alejandro; Sun, Yaning; Diaz-Ruiz, Alberto; Ali, Ahmed; Gutierrez, Vincent; Palacios, Hector H; Curtis, Jessica; Siendones, Emilio; Ariza, Julia; Abulwerdi, Gelareh A; Sun, Xiaoping; Wang, Annie X; Pearson, Kevin J; Fishbein, Kenneth W; Spencer, Richard G; Wang, Miao; Han, Xianlin; Scheibye-Knudsen, Morten; Baur, Joe A; Shertzer, Howard G; Navas, Placido; Villalba, Jose Manuel; Zou, Sige; Bernier, Michel; de Cabo, Rafael
2016-01-01
Cytochrome b 5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.
Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha Tt; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave Nt; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard
2016-10-13
Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.
Javaheri, Tahereh; Kazemi, Zahra; Pencik, Jan; Pham, Ha TT; Kauer, Maximilian; Noorizadeh, Rahil; Sax, Barbara; Nivarthi, Harini; Schlederer, Michaela; Maurer, Barbara; Hofbauer, Maximillian; Aryee, Dave NT; Wiedner, Marc; Tomazou, Eleni M; Logan, Malcolm; Hartmann, Christine; Tuckermann, Jan P; Kenner, Lukas; Mikula, Mario; Dolznig, Helmut; Üren, Aykut; Richter, Günther H; Grebien, Florian; Kovar, Heinrich; Moriggl, Richard
2016-01-01
Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer. PMID:27735950
Worm Disease Profile of Primary School Children
NASA Astrophysics Data System (ADS)
Hartati; Destriani; Victoria, A. R.
2018-01-01
The result of an elementary study of relations between disease symptoms and signs with the wormy occurrence child at Elementary School in Ilir Barat II Subdistrict of Palembang in concerned in this research amount to 200 people from the population of 4200 people of a child in elementary school. The result indicates that the child roommates infested worm marked with a few symptoms like passion eat to Decrease the puking pain in the home of stomach after eating, diarrhea, defecate with the mucus and bleed the purities at the anus before controlled from some worm type of there no difference having a meaning between child roommates worm infested with the child roommates do not infest worm (P > 0.05). Symptom vomit got more amount by having a meaning a child by infested is Trichuris (RO > 2.669, P < 0/005). The result of infested Tricuris generate the more amount of symptoms lust to eat to Decrease by having a meaning of Compared to the which do not infest Trichuris (RO = 3.772; CI 95% = 1.214 to 11.726; P = 0.016) symptoms lust to eat to Decrease and more amount diarrhea got at Infest oxyuris with the special sign of purities at nighttime anus (RO = 0.557; 85% CI = 0.166 to 2.168). The risk of the happening of unfavorable nutrition According to BB / U and Also TB / U growing niche to more amount (having a meaning) at child roommates worm infested by a child Compared to the which do not infest worm.
Stevens, Richard; Kerans, B.L.; Lemmon, J. C.; Rasmussen, Charlotte
2001-01-01
The aquatic oligochaete Tubifex tubifex is an obligate host of Myxobolus cerebralis, the causative agent of salmonid whirling disease. Tubifex tubifex can become infected by ingesting myxospores ofM. cerebralis that have been released into sediments upon death and decomposition of infected salmonids. Infected worms release triactinomyxons into the water column that then infect salmonids. How the dose of myxospores ingested by T. tubifex influences parasite proliferation and the worm host are not well understood. Using replicated laboratory experiments, we examined how differing doses of myxospores (50, 500, 1,000 per worm) influenced triactinomyxon production and biomass, abundance, and individual weight of 2 geographically distinct populations of T. tubifex. Worm populations produced differing numbers of triactinomyxons, but, within a population, the production did not differ among myxospore doses. At the lowest myxospore dose, 1 worm population produced 45 times more triactinomyxons than myxospores received, whereas the other produced only 6 times more triactinomyxons than myxospores. Moreover, total T. tubifex biomass, abundance, and individual weight were lower among worms receiving myxospores than in myxospore-free controls. Thus, T. tubifex populations differ in ability to support the replication of M. cerebralis, and infection has measurable consequences on fitness of the worm host. These results suggest that variability in whirling disease severity observed in wild salmonid populations may partially be attributed to differences in T. tubifex populations.
Identification of animal behavioral strategies by inverse reinforcement learning.
Yamaguchi, Shoichiro; Naoki, Honda; Ikeda, Muneki; Tsukada, Yuki; Nakano, Shunji; Mori, Ikue; Ishii, Shin
2018-05-01
Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM) and isothermal migration (IM). With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.
Hughes, Bryan G.; Hekimi, Siegfried
2011-01-01
Impairments of various aspects of mitochondrial function have been associated with increased lifespan in various model organisms ranging from Caenorhabditis elegans to mice. For example, disruption of the function of the ‘Rieske’ iron-sulfur protein (RISP) of complex III of the mitochondrial electron transport chain can result in increased lifespan in the nematode worm C. elegans. However, the mechanisms by which impaired mitochondrial function affects aging remain under investigation, including whether or not they require decreased electron transport. We have generated knock-in mice with a loss-of-function Risp mutation that is homozygous lethal. However, heterozygotes (Risp+/P224S) were viable and had decreased levels of RISP protein and complex III enzymatic activity. This decrease was sufficient to impair mitochondrial respiration and to decrease overall metabolic rate in males, but not females. These defects did not appear to exert an overtly deleterious effect on the health of the mutants, since young Risp+/P224S mice are outwardly normal, with unaffected performance and fertility. Furthermore, biomarkers of oxidative stress were unaffected in both young and aged animals. Despite this, the average lifespan of male Risp+/P224S mice was shortened and aged Risp+/P224S males showed signs of more rapidly deteriorating health. In spite of these differences, analysis of Gompertz mortality parameters showed that Risp heterozygosity decreased the rate of increase of mortality with age and increased the intrinsic vulnerability to death in both sexes. However, the intrinsic vulnerability was increased more dramatically in males, which resulted in their shortened lifespan. For females, the slower acceleration of age-dependent mortality results in significantly increased survival of Risp+/P224S mice in the second half of lifespan. These results demonstrate that even relatively small perturbations of the mitochondrial electron transport chain can have significant physiological effects in mammals, and that the severity of those effects can be sex-dependent. PMID:22028811
Dixon, Helen; Little, Matthew C.; Else, Kathryn J.
2010-01-01
Trichuris muris is a laboratory model for the human whipworm Trichuris trichiura which infects approximately 1 billion people in tropical and sub-tropical countries. The development of a vaccine would control trichuriasis by promoting the acquisition of immunity during childhood, thereby reducing faecal egg output by the community into their environment. Resistance to T. muris, defined as expulsion of the parasite prior to patency, requires the development of a T helper 2 (Th2) response during a primary infection. To our knowledge this is the first study to describe the protective immune response in the peripheral lymph nodes (PLN), mesenteric lymph nodes (MLN) and colonic mucosa following s.c. vaccination against T. muris. Susceptible AKR mice were either vaccinated with T. muris excretory–secretory product (ES) in incomplete Freund’s adjuvant (IFA) (ES/IFA) or injected with PBS in IFA (PBS/IFA) and for protection experiments were infected with embryonated infective T. muris eggs 10 days later. The ES/IFA vaccine induced the proliferation of PLN cells and their production of Th2 cytokines and the Th1-associated cytokine IFN-γ. Following a challenge infection, the ES/IFA vaccination offered susceptible mice complete protection. While MLN-derived IFN-γ was produced by infected mice following either ES/IFA vaccination or PBS/IFA, the protection of susceptible mice by ES/IFA was characterised by the production of MLN-derived Th2 cytokines. Goblet cell hyperplasia and the influx and alternative activation of macrophages were observed locally in the gut post-challenge infection. The rate of epithelial turnover did not appear to be increased by vaccination, suggesting that there are differences in the mechanisms of expulsion between ‘natural resistance’ and ‘vaccinated resistance’. High levels of serum IgG1 and cell-bound IgG1 in the colon of mice protected by the ES/IFA vaccine suggest that antibody may be involved in vaccination-induced worm expulsion. PMID:19968992
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-01-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-12-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. © The Author 2015. Published by Oxford University Press.
Time course of pulmonary burden in mice exposed to residual oil fly ash
Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N.; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo
2014-01-01
Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously. PMID:25309454
Time course of pulmonary burden in mice exposed to residual oil fly ash.
Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; Dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo
2014-01-01
Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.
Ockenfels, Brittany; Michael, Edwin; McDowell, Mary Ann
2014-10-01
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice.
2007-02-01
antisense RNA for suppressing gene expression in nematode worms (Caenorhabditis elegans) 2. This was followed by the introduction of dsRNA into worms...When single-stranded antisense RNA and double stranded RNA was introduced into worms, they found that dsRNA was more effective than either strand...RISC ( RNA -induced silencing complex), which contains helicase activity that unwinds the two strands 3 of RNA molecules, allowing the antisense
Worms Eat My Garbage. How To Set Up and Maintain a Worm Composting System. First Edition.
ERIC Educational Resources Information Center
Appelhof, Mary
This book is a resource for parents and teachers who want to teach about recycling and composting by setting up and maintaining a worm composting system. It is designed to be a detailed yet simple manual of vermicomposting. The manual covers the basics of vermicomposting and answers such questions as where to store a composting container, what…
NASA Astrophysics Data System (ADS)
Tee, Ling Fei; Neoh, Hui-min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman
2017-11-01
Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity lead to higher expression of non-coding RNA genes, which may play an epigenetic role in the worms during longer terms of microgravity exposure.
Aslan, Hamide; Dey, Ranadhir; Meneses, Claudio; Castrovinci, Philip; Jeronimo, Selma Maria Bezerra; Oliva, Gætano; Fischer, Laurent; Duncan, Robert C.; Nakhasi, Hira L.; Valenzuela, Jesus G.; Kamhawi, Shaden
2013-01-01
Background. Visceral leishmaniasis (VL) is transmitted by sand flies. Protection of needle-challenged vaccinated mice was abrogated in vector-initiated cutaneous leishmaniasis, highlighting the importance of developing natural transmission models for VL. Methods. We used Lutzomyia longipalpis to transmit Leishmania infantum or Leishmania donovani to hamsters. Vector-initiated infections were monitored and compared with intracardiac infections. Body weights were recorded weekly. Organ parasite loads and parasite pick-up by flies were assessed in sick hamsters. Results. Vector-transmitted L. infantum and L. donovani caused ≥5-fold increase in spleen weight compared with uninfected organs and had geometric mean parasite loads (GMPL) comparable to intracardiac inoculation of 107–108 parasites, although vector-initiated disease progression was slower and weight loss was greater. Only vector-initiated L. infantum infections caused cutaneous lesions at transmission and distal sites. Importantly, 45.6%, 50.0%, and 33.3% of sand flies feeding on ear, mouth, and testicular lesions, respectively, were parasite-positive. Successful transmission was associated with a high mean percent of metacyclics (66%–82%) rather than total GMPL (2.0 × 104–8.0 × 104) per midgut. Conclusions. This model provides an improved platform to study initial immune events at the bite site, parasite tropism, and pathogenesis and to test drugs and vaccines against naturally acquired VL. PMID:23288926
Martín-Martín, Inés
2013-01-01
Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs. PMID:24171166
NASA Astrophysics Data System (ADS)
Fytilis, N.; Lamb, R.; Kerans, B.; Stevens, L.; Rizzo, D. M.
2011-12-01
Fish diseases are often caused by waterborne parasites, making them ideal systems for modeling the non-linear relationships between disease dynamics, stream dwelling oligochaete communities and geochemical features. Myxobolus cerebralis, the causative agent of whirling disease in salmonid fishes, has been a major contributor to the loss of wild rainbow trout populations in numerous streams within the Intermountain West. The parasite alternates between an invertebrate and vertebrate host, being transmitted between the sediment feeding worm Tubifex tubifex (T.tubifex) and salmonid fishes. Worm community biodiversity and abundance are influenced by biogeochemical features and have been linked to disease severity in fish. The worm (T.tubifex) lives in communities with 3-4 other types of worms in stream sediments. Unfortunately, taxonomic identification of oligochaetes is largely dependent on morphological characteristics of sexually mature adults. We have collected and identified ~700 worms from eight sites using molecular genetic probes and a taxonomic key. Additionally, ~1700 worms were identified using only molecular genetic probes. To facilitate distinguishing among tubificids, we developed two multiplex molecular genetic probe-based quantitative polymerase reaction (qPCR) assays to assess tubificid communities in the study area. Similar qPCR techniques specific for M.cerebralis used to determine if individual worms were infected with the parasite. We show how simple Bayesian analysis of the qPCR data can predict the worm community structure and reveal relationships between biodiversity of host communities and host-parasite dynamics. To our knowledge, this is the first study that combines molecular data of both the host and the parasite to examine the effects of host community structure on the transmission of a parasite. Our work can be extended to examine the links between worm community structure and biogeochemical features using molecular genetics and Bayesian statistics to assist in identifying new nonlinear relationships and suggest new subsets of input parameters. Future work includes the development of a new complex systems tool capable of assimilating biological DNA sequence data and biogeochemical features using artificial neural networks and Bayesian analysis. The methodologies developed here helped mine the relationships between biodiversity of host communities and host-parasite dynamics. The results from our study will be useful to managers and researchers for assessing the risk of whirling disease in drainages where tubificid community composition data are needed. This collaboration between modelers, field ecologists and geneticists will prove useful in modeling efforts and will enable more effective, high-volume hypothesis generation. The ability to characterize areas of high whirling disease risk is essential for improving our understanding of the dynamics of M.cerebralis such that appropriate management strategies can be implemented.
Marine worms (genus Osedax) colonize cow bones
Jones, William J; Johnson, Shannon B; Rouse, Greg W; Vrijenhoek, Robert C
2007-01-01
Bone-eating worms of the genus Osedax colonized and grew on cow bones deployed at depths ranging from 385 to 2893 m in Monterey Bay, California. Colonization occurred as rapidly as two months following deployment of the cow bones, similar to the time it takes to colonize exposed whalebones. Some Osedax females found on the cow bones were producing eggs and some hosted dwarf males in their tubes. Morphological and molecular examinations of these worms confirmed the presence of six Osedax species, out of the eight species presently known from Monterey Bay. The ability of Osedax species to colonize, grow and reproduce on cow bones challenges previous notions that these worms are ‘whale-fall specialists.’ PMID:18077256
Marine worms (genus Osedax) colonize cow bones.
Jones, William J; Johnson, Shannon B; Rouse, Greg W; Vrijenhoek, Robert C
2008-02-22
Bone-eating worms of the genus Osedax colonized and grew on cow bones deployed at depths ranging from 385 to 2893m in Monterey Bay, California. Colonization occurred as rapidly as two months following deployment of the cow bones, similar to the time it takes to colonize exposed whalebones. Some Osedax females found on the cow bones were producing eggs and some hosted dwarf males in their tubes. Morphological and molecular examinations of these worms confirmed the presence of six Osedax species, out of the eight species presently known from Monterey Bay. The ability of Osedax species to colonize, grow and reproduce on cow bones challenges previous notions that these worms are 'whale-fall specialists.'
Staufen2 deficiency leads to impaired response to novelty in mice.
Popper, Bastian; Demleitner, Antonia; Bolivar, Valerie J; Kusek, Gretchen; Snyder-Keller, Abigail; Schieweck, Rico; Temple, Sally; Kiebler, Michael A
2018-04-01
Staufen2 (Stau2) is a double-stranded RNA-binding protein (RBP) involved in posttranscriptional gene expression control in neurons. In flies, staufen contributes to learning and long-term memory formation. To study the impact of mammalian Stau2 on behavior, we generated a novel gene-trap mouse model that yields significant constitutive downregulation of Stau2 (Stau2 GT ). In order to investigate the effect of Stau2 downregulation on hippocampus-dependent behavior, we performed a battery of behavioral assays, i.e. open field, novel object recognition/location (NOR/L) and Barnes maze. Stau2 GT mice displayed reduced locomotor activity in the open field and altered novelty preference in the NOR and NOL paradigms. Adult Stau2 GT male mice failed to discriminate between familiar and newly introduced objects but showed enhanced spatial novelty detection. Additionally, we observed deficits in discriminating different spatial contexts in a Barnes maze assay. Together, our data suggest that Stau2 contributes to novelty preference and explorative behavior that is a driver for proper spatial learning in mice. Copyright © 2018 Elsevier Inc. All rights reserved.
Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.
Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J
2014-06-01
Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.
Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia
Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J
2014-01-01
Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689
McBriarty, G J; Kidd, K A; Burridge, L E
2018-05-01
The polychaete Nereis virens occurs commonly in marine sediments, is widely distributed, and is a popular bait species, as well as a potential replacement for wild-caught fish in commercial fish feed preparations. It is being considered as a potential co-extractive species for culture in integrated multi-trophic aquaculture operations. However, it is not known whether pesticides or drugs used to treat sea lice on farmed salmon, such as emamectin benzoate (EB), would adversely affect cultured or wild worms, because these compounds may persist in the environment. To determine the potential effects of EB to N. virens, bioassays were performed wherein worms were exposed in sand for 30 days to a concentration of 400 µg/kg dw (nominal). While no treatment-related mortality occurred, significant decreases in worm mass and marked behavioral changes (lack of burrowing) were observed in EB-treated sand compared with controls. These lab-based observations suggest a potential hazard to worms at sites where EB treatments have occurred.
Worm-like micelles of CTAB and sodium salicylate under turbulent flow.
Rodrigues, Roberta K; da Silva, Marcelo A; Sabadini, Edvaldo
2008-12-16
Polymers with high molecular weight and worm-like micelles are drag-reducing agents under turbulent flow. However, in contrast to the polymeric systems, the worm-like micelles do not undergo mechanical degradation due to the turbulence, because their macromolecular structure can be spontaneously restored. This very favorable property, together with their drag-reduction capability, offer the possibility to use such worm-like micelles in heating and cooling systems to recirculate water while expending less energy. The formation, growth, and stability of worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were investigated using the self-fluorescence of salicylate ions and the ability of the giant micelles to promote hydrodynamic drag reduction under turbulent flow. The turbulence in solutions of CTAB-Sal was produced within the double-gap cell of a rotational rheometer. Detailed diagrams were obtained for different ratios of Sal and CTAB, which revealed transitions associated with the thermal stability of giant micelles under turbulent flow.
Dracunculiasis (guinea worm disease) in the Bume (Nyangaton) people of South Omo, Ethiopia.
Jemaneh, L; Taticheff, S
1993-07-01
A village-to-village search for active dracunculiasis cases was carried out in an endemic area of the Bume (Nyangaton) tribe of South Omo Region, Ethiopia. A total of 21 cases, of which 6, 5, and 10 had pre-emergent, emergent and complicated Guinea worm disease, respectively, were identified. Twenty-two worms, ranging from 1-3 per patient, were removed mainly from the lower limbs; worm appearance seems to be associated more with the right limb. Adults between the ages of 20-30 years are highly affected and infection appears to be sex-related as 14/21 (66.7%) of the cases are females. Water procured from water-holes drug in dry river beds provides an ideal situation for the transmission of dracunculiasis amongst the tribesmen. The knowledge, attitudes and perceptions of the Bume people towards the disease and the public health significance of dracunculiasis are discussed in relation to the current goal of the national and global Guinea worm eradication programme.
Zain, Mariani Mohd; Yahaya, Zary Shariman; Him, Nik Ahmad Irwan Izzauddin Nik
2016-01-01
To date, the ivermectin resistance in nematode parasites has been reported and many studies are carried out to determine the causes of this problem. A free-living Caenorhabditis elegans is used as a model system for this study to investigate the response of C. elegans to ivermectin exposure by using larval development assay. Worms were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24, 48, 72, and 96 hours until the worms become adults. Results indicated that worms’ growth began to be affected by ivermectin at a concentration of 5 ng/mL, while at the concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to control worms. Further study of the protein expression in C. elegans should be done to investigate the up-regulated and down-regulated proteins involve in ivermectin resistance. PMID:27965734
Quantifiers more or less quantify online: ERP evidence for partial incremental interpretation
Urbach, Thomas P.; Kutas, Marta
2010-01-01
Event-related brain potentials were recorded during RSVP reading to test the hypothesis that quantifier expressions are incrementally interpreted fully and immediately. In sentences tapping general knowledge (Farmers grow crops/worms as their primary source of income), Experiment 1 found larger N400s for atypical (worms) than typical objects (crops). Experiment 2 crossed object typicality with non-logical subject-noun phrase quantifiers (most, few). Off-line plausibility ratings exhibited the crossover interaction predicted by full quantifier interpretation: Most farmers grow crops and Few farmers grow worms were rated more plausible than Most farmers grow worms and Few farmers grow crops. Object N400s, although modulated in the expected direction, did not reverse. Experiment 3 replicated these findings with adverbial quantifiers (Farmers often/rarely grow crops/worms). Interpretation of quantifier expressions thus is neither fully immediate nor fully delayed. Furthermore, object atypicality was associated with a frontal slow positivity in few-type/rarely quantifier contexts, suggesting systematic processing differences among quantifier types. PMID:20640044
Tian, Yu; Li, Zhipeng; Lu, Yaobin
2012-10-01
The study focused on the membrane fouling mitigation observed in a membrane bioreactor (MBR) coupled with worm reactor system. During the operation time of 100 days, the transmembrane pressure (TMP) in the combined system was maintained less than 5 kPa, while the final TMP in the Control-MBR increased to 30 kPa. The changes in properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) after worm predation were investigated by means of various analytical techniques. It was found that due to the worm predation, the reduced amount of EPS was far more than the increased amount of SMP leading to a significant decrease of protein-like substances which were dominant in the membrane foulants. Except for the content decrease, worm predation destroyed the functional groups of simple aromatic proteins and tryptophan protein-like substances in EPS, making them have lower tendency attaching to the membrane in the combined system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Worms Expelled With the Urine From a Bosniak Cyst III of the Left Kidney.
Yang, Jie; Li, Pu; Su, Chuan; Zhang, Jia-Yi; Gu, Min
2016-07-01
An old fishman presented with left lumbago and finding worms in his urine. Type-B ultrasonic inspection and computed tomography scan found a Bosniak cyst III, containing several wire-like elements, in the middle of the left kidney. Expelled worms were confirmed to be Dioctophyma renale. After two courses of albendazole, the man was cured. Copyright © 2016 Elsevier Inc. All rights reserved.
Khabirova, Eleonora; Moloney, Aileen; Marciniak, Stefan J; Williams, Julie; Lomas, David A; Oliver, Stephen G; Favrin, Giorgio; Sattelle, David B; Crowther, Damian C
2014-01-01
The human Aβ peptide causes progressive paralysis when expressed in the muscles of the nematode worm, C. elegans. We have exploited this model of Aβ toxicity by carrying out an RNAi screen to identify genes whose reduced expression modifies the severity of this locomotor phenotype. Our initial finding was that none of the human orthologues of these worm genes is identical with the genome-wide significant GWAS genes reported to date (the "white zone"); moreover there was no identity between worm screen hits and the longer list of GWAS genes which included those with borderline levels of significance (the "grey zone"). This indicates that Aβ toxicity should not be considered as equivalent to sporadic AD. To increase the sensitivity of our analysis, we then considered the physical interactors (+1 interactome) of the products of the genes in both the worm and the white+grey zone lists. When we consider these worm and GWAS gene lists we find that 4 of the 60 worm genes have a +1 interactome overlap that is larger than expected by chance. Two of these genes form a chaperonin complex, the third is closely associated with this complex and the fourth gene codes for actin, the major substrate of the same chaperonin.
Lu, Fong-Mei; Stewart, James; White, John G.
2007-01-01
The utilization of biology research resources, coupled with a “learning by inquiry” approach, has great potential to aid students in gaining an understanding of fundamental biological principles. To help realize this potential, we have developed a Web portal for undergraduate biology education, WormClassroom.org, based on current research resources of a model research organism, Caenorhabditis elegans. This portal is intended to serve as a resource gateway for students to learn biological concepts using C. elegans research material. The driving forces behind the WormClassroom website were the strengths of C. elegans as a teaching organism, getting researchers and educators to work together to develop instructional materials, and the 3 P's (problem posing, problem solving, and peer persuasion) approach for inquiry learning. Iterative assessment is an important aspect of the WormClassroom site development because it not only ensures that content is up-to-date and accurate, but also verifies that it does, in fact, aid student learning. A primary assessment was performed to refine the WormClassroom website utilizing undergraduate biology students and nonstudent experts such as C. elegans researchers; results and comments were used for site improvement. We are actively encouraging continued resource contributions from the C. elegans research and education community for the further development of WormClassroom. PMID:17548872
Gastrointestinal nematode infections in sheep raised in Botucatu, state of São Paulo, Brazil.
Wilmsen, Maurício Orlando; Silva, Bruna Fernanda; Bassetto, César Cristiano; Amarante, Alessandro Francisco Talamini do
2014-01-01
Gastrointestinal nematode infections were evaluated in sheep raised in Botucatu, state of São Paulo, Brazil between April 2008 and March 2011. Every month, two tracer lambs grazing with a flock of sheep were exposed to natural infection with gastrointestinal nematodes for 28 consecutive days. At the end of this period, the lambs were sacrificed for worm counts. Haemonchus contortus presented 100% of prevalence. The seasons exerted no significant influence on the mean intensity of H. contortus, which ranged from 315 worms in November 2010 to 2,5205 worms in January 2011. The prevalence of Trichostrongylus colubriformis was also 100%, with the lowest mean intensity (15 worms) recorded in February 2011 and the highest (9,760 worms) in October 2009. In the case of T. colubriformis, a significant correlation coefficient was found between worm counts vs. rainfall (r = -0.32; P <0.05). Three other nematodes species were found in tracer lambs, albeit in small numbers. Their prevalence and mean intensity (in parenthesis) were as follows: Oesophagostomum columbianum 28% (25.2), Cooperia curticei 7% (4.5) and Trichuris spp. 2% (1). In conclusion, the environmental conditions of the area proved to be highly favorable for the year-round transmission of H. contortus and T. colubriformis.
Hansen, E P; Tejedor, A M; Thamsborg, S M; Alstrup Hansen, T V; Dahlerup, J F; Nejsum, P
2016-05-01
More than 400 million humans are estimated to be infected with the intestinal helminth parasite, Trichuris trichiura. The infection is chronic in nature and high-intensity infection can lead to colitis, anaemia, Trichuris Dysentery Syndrome and reduced cognitive performance. Single doses of 400 mg albendazole or 500 mg mebendazole (MBZ) are used in mass drug administration programmes, but this has been shown to be insufficient. In this study, worm expulsion dynamics are described after MBZ treatment, given as a multi-dose and single-dose treatment in two separate T. trichiura self-infection studies. Worm expulsion dynamics post-treatment showed a similar pattern regardless of the dose regime, with the first worms observed on day 2 and the last worms expelled on days 9 and 13 post-treatment. Establishment of a chronic infection was observed following the inefficient single-dose treatment. The prepatent period was 13-16 weeks in both studies and worms were found to have a lifespan of at least 1 year and 10 months. These self-infection studies provide key information on the chronicity of T. trichiura infections, expulsion dynamics after anthelmintic treatment and the prepatent period, as well as the fecundity of female worms, which was around 18,000 eggs/female per day.
Procyanidins from apples (Malus pumila Mill.) extend the lifespan of Caenorhabditis elegans.
Sunagawa, Tadahiro; Shimizu, Takahiko; Kanda, Tomomasa; Tagashira, Motoyuki; Sami, Manabu; Shirasawa, Takuji
2011-01-01
Apple polyphenols (AP) mainly consist of procyanidins (PC), which are composed of (-)-epicatechins and (+)-catechins. In order to investigate the antiageing effects of PC, we measured the lifespan of CAENORHABDITIS ELEGANS worms treated with PC. Treatment with 65 µg/mL PC extended the mean lifespan of wild-type N2 and FEM-1 worms by 12.1 % and 8.4 %, respectively, i.e., to a similar extent as resveratrol. In addition, treatment with 100 µg/mL AP also significantly prolonged the mean lifespan of the same worms by 12.0 % and 5.3 %, respectively, i.e., to a similar extent as PC. In contrast, treatment with (-)-epicatechin did not extend the lifespan of the worms. PC did not modify the growth, food intake, or fecundity of C. elegans. Treatment with PC did not extend the lifespan of MEV-1 worms, which show excessive oxidative stress, indicating that PC had no antioxidant ability in the MEV-1 mutant. Moreover, treatment with PC had no effect on the longevity of SIR-2.1 worms, which lack the activity of SIR-2, a member of the sirtuin family of NAD (+)-dependent protein deacetylases. These results indicated that PC has SIR-2.1-dependent antiageing effects on C. elegans. © Georg Thieme Verlag KG Stuttgart · New York.
Fujimaki, Y; Kamachi, T; Yanagi, T; Cáceres, A; Maki, J; Aoki, Y
2005-03-01
Twelve extracts of 11 Guatemalan medicinal plants were initially screened in vitro for potential macrofilaricidal activity against Brugia pahangi, a lymphatic dwelling filarial worm, using concentrations from 125 to 1000 microg ml(-1) of each extract that could be dissolved in the culture medium. Of 12 extracts used, the ethanol extract of leaves of Neurolaena lobata showed the strongest activity against the motility of adult worms. Subsequently, the extract of N. lobata was extensively examined in vitro for macro- and micro-filaricidal effects using a series of concentrations of 500, 250, 100, 50 and 10 microg ml(-1). The effects were assessed by worm motility, microfilarial release by female worms and a MTT assay. The effect on the motility of adult worms was observed in a concentration- and time-dependent manner. The time required to stop motility of both sexes of adult worms was 6 h at 500 microg ml(-1), 24 h at 250 microg ml(-1), and 3 days for females and 4 days for males at 100 microg ml(-1). The movement of females ceased at 4 days at a concentration of 50 microg ml(-1) whereas the motility of males was only reduced. The loss of worm's viability was confirmed by the MTT assay and was similar to the motility results. These concentrations, including 10 microg ml(-1), prevented microfilarial release by females in a concentration- and time-dependent manner. Concentrations higher than 100 microg ml(-1) even induced mortality of the microfilariae. The present study suggested that the ethanol extract of Neurolaena lobata has potential macro- and micro-filaricidal activities.
A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans
Song, Pengfei; Dong, Xianke; Liu, Xinyu
2016-01-01
The nematode worm Caenorhabditis elegans has been widely used as a model organism in biological studies because of its short and prolific life cycle, relatively simple body structure, significant genetic overlap with human, and facile/inexpensive cultivation. Microinjection, as an established and versatile tool for delivering liquid substances into cellular/organismal objects, plays an important role in C. elegans research. However, the conventional manual procedure of C. elegans microinjection is labor-intensive and time-consuming and thus hinders large-scale C. elegans studies involving microinjection of a large number of C. elegans on a daily basis. In this paper, we report a novel microfluidic device that enables, for the first time, fully automated, high-speed microinjection of C. elegans. The device is automatically regulated by on-chip pneumatic valves and allows rapid loading, immobilization, injection, and downstream sorting of single C. elegans. For demonstration, we performed microinjection experiments on 200 C. elegans worms and demonstrated an average injection speed of 6.6 worm/min (average worm handling time: 9.45 s/worm) and a success rate of 77.5% (post-sorting success rate: 100%), both much higher than the performance of manual operation (speed: 1 worm/4 min and success rate: 30%). We conducted typical viability tests on the injected C. elegans and confirmed that the automated injection system does not impose significant adverse effect on the physiological condition of the injected C. elegans. We believe that the developed microfluidic device holds great potential to become a useful tool for facilitating high-throughput, large-scale worm biology research. PMID:26958099
Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W.; Poore, Gary C. B.; van Soest, Rob W. M.; Stöhr, Sabine; Walter, T. Chad; Vanhoorne, Bart; Decock, Wim
2013-01-01
The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the scientific community, and anticipate increased taxonomic efficiency and quality control in marine biodiversity research and management. PMID:23505408
AN ORIENTATIONAL RESPONSE TO WEAK GAMMA RADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, F.A. Jr.
1963-10-01
The common planarian worm, Duesia dorotocephsla, displays a significant orientational response to increase in Cs/sup 137/ gamma radiation when the increase is no greater than six times background. The worms are able to distinguish the direction of the weak gamma source, turning away from it, whether it is presented on the right or left side. The response sign is, therefore, the same as that of the response of these negatively phototactic worms to visible light. There is a clear compass-directional relationship of the responsiveness to the experimental gamma radiation. A conspicuous negative response is present when the worms are travelingmore » northward or southward in the earth's field with the gamma change in an east-west axis. No statistically significant mean turning response to the gamma radiation is found when the worms are traveling eastward or westward in the earth's field with the gamma change in a north-south axis. The previously observed annual fluctuation in the character of the monthly orientational rhythm of north-directed worms has been confirmed in an additional year of study. During colder months, the rhythm is monthly; during warmer months it is semi-monthly. There is a semi-monthly fluctuation in the response of Dugesia to weak gamma radiation during mid-morning hours, the worms turning away from the source for four days prior to new end full moon, and toward it for two days following new and full moon. The stronger the field strength, up to 9 times backgound, the larger the amplitude of the rhythm. There is a direct relationship between intensities of gamma radiation between that of background and nine times backgound, and the strength of the negative response of the worms. Evidence suggests that the negative response of Dugesia to a gamma source may be modified by experimental alteration of the natural ambient electrostatic field. Some possible biological significances of this remarkable responsiveness to gamma radiation, and its particular properties, are discussed briefly. (auth)« less
Wang, Sijie Jason; Wang, Zhao-Wen
2013-01-01
A major challenge of neuroscience is to understand the circuit and gene bases of behavior. C. elegans is commonly used as a model system to investigate how various gene products function at specific tissue, cellular, and synaptic foci to produce complicated locomotory and bending behavior. The investigation generally requires quantitative behavioral analyses using an automated single-worm tracker, which constantly records and analyzes the position and body shape of a freely moving worm at a high magnification. Many single-worm trackers have been developed to meet lab-specific needs, but none has been widely implemented for various reasons, such as hardware difficult to assemble, and software lacking sufficient functionality, having closed source code, or using a programming language that is not broadly accessible. The lack of a versatile system convenient for wide implementation makes data comparisons difficult and compels other labs to develop new worm trackers. Here we describe Track-A-Worm, a system rich in functionality, open in source code, and easy to use. The system includes plug-and-play hardware (a stereomicroscope, a digital camera and a motorized stage), custom software written to run with Matlab in Windows 7, and a detailed user manual. Grayscale images are automatically converted to binary images followed by head identification and placement of 13 markers along a deduced spline. The software can extract and quantify a variety of parameters, including distance traveled, average speed, distance/time/speed of forward and backward locomotion, frequency and amplitude of dominant bends, overall bending activities measured as root mean square, and sum of all bends. It also plots worm travel path, bend trace, and bend frequency spectrum. All functionality is performed through graphical user interfaces and data is exported to clearly-annotated and documented Excel files. These features make Track-A-Worm a good candidate for implementation in other labs. PMID:23922769
Hu, Chun-Chih; Wu, Gong-Her; Hua, Tzu-En; Wagner, Oliver I; Yen, Ta-Jen
2018-03-14
We employ model organism Caenorhabditis elegans to effectively study the toxicology of anatase and rutile phase titanium dioxide (TiO 2 ) nanoparticles (NPs). The experimental results show that nematode C. elegans can take up fluorescein isothiocyanate-labeled TiO 2 NPs and that both anatase and rutile TiO 2 NPs can be detected in the cytoplasm of cultured primary neurons imaged by transmission electron microscopy. After TiO 2 NP exposure, these neurons also grow shorter axons, which may be related to the detected impeded worm locomotion behavior. Furthermore, anatase TiO 2 NPs did not affect the worm's body length; however, we determined that a concentration of 500 μg/mL of anatase TiO 2 NPs reduced the worm population by 50% within 72 h. Notably, rutile TiO 2 NPs negatively affect both the body size and worm population. Worms unable to enter the L4 larval stage explain a severe reduction in the worm population at TiO 2 NPs LC 50 /3d. To obtain a better understanding of the cellular mechanisms involved in TiO 2 NP intoxication, DNA microarray assays were employed to determine changes in gene expression in the presence or absence of TiO 2 NP exposure. Our data reveal that three genes (with significant changes in expression levels) were related to metal binding or metal detoxification (mtl-2, C45B2.2, and nhr-247), six genes were involved in fertility and reproduction (mtl-2, F26F2.3, ZK970.7, clec-70, K08C9.7, and C38C3.7), four genes were involved in worm growth and body morphogenesis (mtl-2, F26F2.3, C38C3.7, and nhr-247), and five genes were involved in neuronal function (C41G6.13, C45B2.2, srr-6, K08C9.7, and C38C3.7).
Costello, Mark J; Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W; Poore, Gary C B; van Soest, Rob W M; Stöhr, Sabine; Walter, T Chad; Vanhoorne, Bart; Decock, Wim; Appeltans, Ward
2013-01-01
The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the scientific community, and anticipate increased taxonomic efficiency and quality control in marine biodiversity research and management.
C. elegans positive butanone learning, short-term, and long-term associative memory assays.
Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen
2011-03-11
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (<40 hours), and is dependent on the cAMP Response Element Binding protein (CREB), a transcription factor required for long-term memory across species. Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation. Otsu's method is then used to determine a threshold to separate worms from the background. Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring regions that are above a specified maximum size and taking the median size of the remaining regions. The number of worms is then estimated by dividing the total area identified as occupied by worms by the estimated size of a single worm. We have found that learning and short- and long-term memory can be distinguished, and that these processes share similar key molecules with higher organisms. Our assays can quickly test novel candidate genes or molecules that affect learning and short- or long-term memory in C. elegans that are relevant across species.
Martins, Vicente P.; Morais, Suellen B.; Pinheiro, Carina S.; Assis, Natan R. G.; Figueiredo, Barbara C. P.; Ricci, Natasha D.; Alves-Silva, Juliana; Caliari, Marcelo V.; Oliveira, Sergio C.
2014-01-01
Background The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite. Methodology/Principal Findings In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5–32% reduction in the worm burden, 32.9–43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis. Conclusions/Significance Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process. PMID:24651069
Martins, Vicente P; Morais, Suellen B; Pinheiro, Carina S; Assis, Natan R G; Figueiredo, Barbara C P; Ricci, Natasha D; Alves-Silva, Juliana; Caliari, Marcelo V; Oliveira, Sergio C
2014-03-01
The parasitic flatworm Schistosoma mansoni is a blood fluke that causes schistosomiasis. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control disease is a combination of drug treatment and immunization with an anti-schistosome vaccine. Numerous antigens that are expressed at the interface between the parasite and the mammalian host have been assessed. Among the most promising molecules are the proteins present in the tegument and digestive tract of the parasite. In this study, we evaluated the potential of Sm10.3, a member of the micro-exon gene 4 (MEG-4) family, for use as part of a recombinant vaccine. We confirmed by real-time PCR that Sm10.3 was expressed at all stages of the parasite life cycle. The localization of Sm10.3 on the surface and lumen of the esophageal and intestinal tract in adult worms and lung-stage schistosomula was confirmed by confocal microscopy. We also show preliminary evidence that rSm10.3 induces erythrocyte agglutination in vitro. Immunization of mice with rSm10.3 induced a mixed Th1/Th2-type response, as IFN-γ, TNF-α, and low levels of IL-5 were detected in the supernatant of cultured splenocytes. The protective effect conferred by vaccination with rSm10.3 was demonstrated by 25.5-32% reduction in the worm burden, 32.9-43.6% reduction in the number of eggs per gram of hepatic tissue, a 23.8% reduction in the number of granulomas, an 11.8% reduction in the area of the granulomas and a 39.8% reduction in granuloma fibrosis. Our data suggest that Sm10.3 is a potential candidate for use in developing a multi-antigen vaccine to control schistosomiasis and provide the first evidence for a possible role for Sm10.3 in the blood feeding process.
Avian Schistosomes and Outbreaks of Cercarial Dermatitis
Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa
2015-01-01
SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226
Vegas-Sánchez, M C; Rollán-Landeras, E; García-Rodríguez, J J; Bolás-Fernández, F
2015-09-01
The aim of this study was to assess the effect of infection with the nematode whipworm Trichuris muris on the course of chemically induced acute ulcerative colitis in CBA/J mice, a strain proven to be highly resistant to infection with T. muris. Each mouse was infected with 50 embryonated eggs of T. muris by oral gavage. Acute colitis was triggered by administering 4% dextran sulphate sodium (DSS) in the drinking water for nine consecutive days at different times after infection. Concurrent infection and DSS administration exacerbate the severity of the colitis while favouring the permanence of parasites in the intestine. The induction of ulcerative colitis from days 54 to 62 post-infection (p.i.), when all worms had been expelled, ameliorated the course of the inflammatory disease. When ulcerative colitis was triggered earlier on, from days 27 to 35 p.i., the beneficial effects on inflammatory events were clearly shown with signs of mucosal epithelization and regeneration as early as day 1 after DSS administration. Previous infections by T. muris therefore accelerate recovery from subsequently induced inflammatory bowel disease and such an effect assists the nematode to persist in the intestinal niche.
Lifespan-regulating genes in C. elegans
Uno, Masaharu; Nishida, Eisuke
2016-01-01
The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans. PMID:28721266