DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q
2014-03-26
Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
2014-01-01
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243
An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing.
Pang, Calver; Ibrahim, Amel; Bulstrode, Neil W; Ferretti, Patrizia
2017-06-01
The global burden of disease associated with wounds is an increasingly significant public health concern. Current treatments are often expensive, time-consuming and limited in their efficacy in chronic wounds. The challenge of overcoming current barriers associated with wound care requires innovative management techniques. Regenerative medicine is an emerging field of research that focuses on the repair, replacement or regeneration of cells, tissues or organs to restore impaired function. This article provides an overview of the pathophysiology of wound healing and reviews the latest evidence on the application of the principal components of regenerative medicine (growth factors, stem cell transplantation, biomaterials and tissue engineering) as therapeutic targets. Improved knowledge and understanding of the pathophysiology of wound healing has pointed to new therapeutic targets. Regenerative medicine has the potential to underpin the design of specific target therapies in acute and chronic wound healing. This personalised approach could eventually reduce the burden of disease associated with wound healing. Further evidence is required in the form of large animal studies and clinical trials to assess long-term efficacy and safety of these new treatments. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities
Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A.
2017-01-01
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea. PMID:28604651
Wound-Healing Studies in Cornea and Skin: Parallels, Differences and Opportunities.
Bukowiecki, Anne; Hos, Deniz; Cursiefen, Claus; Eming, Sabine A
2017-06-12
The cornea and the skin are both organs that provide the outer barrier of the body. Both tissues have developed intrinsic mechanisms that protect the organism from a wide range of external threats, but at the same time also enable rapid restoration of tissue integrity and organ-specific function. The easy accessibility makes the skin an attractive model system to study tissue damage and repair. Findings from skin research have contributed to unravelling novel fundamental principles in regenerative biology and the repair of other epithelial-mesenchymal tissues, such as the cornea. Following barrier disruption, the influx of inflammatory cells, myofibroblast differentiation, extracellular matrix synthesis and scar formation present parallel repair mechanisms in cornea and skin wound healing. Yet, capillary sprouting, while pivotal in proper skin wound healing, is a process that is rather associated with pathological repair of the cornea. Understanding the parallels and differences of the cellular and molecular networks that coordinate the wound healing response in skin and cornea are likely of mutual importance for both organs with regard to the development of regenerative therapies and understanding of the disease pathologies that affect epithelial-mesenchymal interactions. Here, we review the principal events in corneal wound healing and the mechanisms to restore corneal transparency and barrier function. We also refer to skin repair mechanisms and their potential implications for regenerative processes in the cornea.
The Role of Mesenchymal Stem Cells in the Regenerative Wound Healing Phenotype.
Balaji, Swathi; Keswani, Sundeep G; Crombleholme, Timothy M
2012-08-01
Mesenchymal stem cells (MSCs) are key to regenerative wound healing. MSCs have spatial memory and respond to local environment. MSCs orchestrate wound repair by: (1) structural repair via cellular differentiation; (2) immune-modulation; (3) secretion of growth factors that drive neovascularization and re-epithelialization; and (4) mobilization of resident stem cells. Autologous bone-marrow-derived cells and MSCs demonstrate improved healing and tissue-integrity in animal models and clinical trials. However, the effects are variable and the mechanisms of MSC-mediated wound healing are not fully understood. The mammalian MSC niche and signaling sequences and factors affecting their homing, differentiation, viability, and safety need to be characterized to get full benefits of MSC cellular therapy. MSCs can be isolated from bone-marrow, and less-invasive tissues such as adipose, gingiva, muscle, and umbilical cord, with similar functional effects. However, isolation, culture conditions, and markers used to identify and trace the lineage of these MSCs have not been standardized, which is crucial to determine the extent to which MSCs act as multipotent stem cells or sources of secreted factors in wounds. In chronic nonhealing wounds, where efficacy of conventional therapies is unsatisfactory, autotransplantation of MSCs could accelerate wound healing, promote regeneration and restoration of tissue integrity, and reduce recurrence of wounds at characteristically predisposed sites. Regenerative medicine and novel wound therapies using autologous stem cells holds great promise for clinical management of difficult wounds. The ideal candidate stem cells can be used to repopulate the wound bed to mediate appropriate epidermal and dermal regeneration and promote efficient wound repair, while modulating the immune system to prevent infection.
Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing.
Woodley, David T
2017-01-01
Human skin wounds heal largely by reparative wound healing rather than regenerative wound healing. Human skin wounds heal with scarring and without pilosebaceous units or other appendages. Dermal fibroblasts come from 2 distinct lineages of cells that have distinct cell markers and, more importantly, distinct functional abilities. Human skin wound healing largely involves the dermal fibroblast lineage from the reticular dermis and not the papillary dermis. If scientists could find a way to stimulate the dermal fibroblast lineages from the papillary dermis in early wound healing, perhaps human skin wounds could heal without scarring and with skin appendages. Copyright © 2016 Elsevier Inc. All rights reserved.
Human acellular dermal wound matrix: evidence and experience.
Kirsner, Robert S; Bohn, Greg; Driver, Vickie R; Mills, Joseph L; Nanney, Lillian B; Williams, Marie L; Wu, Stephanie C
2015-12-01
A chronic wound fails to complete an orderly and timely reparative process and places patients at increased risk for wound complications that negatively impact quality of life and require greater health care expenditure. The role of extracellular matrix (ECM) is critical in normal and chronic wound repair. Not only is ECM the largest component of the dermal skin layer, but also ECM proteins provide structure and cell signalling that are necessary for successful tissue repair. Chronic wounds are characterised by their inflammatory and proteolytic environment, which degrades the ECM. Human acellular dermal matrices, which provide an ECM scaffold, therefore, are being used to treat chronic wounds. The ideal human acellular dermal wound matrix (HADWM) would support regenerative healing, providing a structure that could be repopulated by the body's cells. Experienced wound care investigators and clinicians discussed the function of ECM, the evidence related to a specific HADWM (Graftjacket(®) regenerative tissue matrix, Wright Medical Technology, Inc., licensed by KCI USA, Inc., San Antonio, TX), and their clinical experience with this scaffold. This article distills these discussions into an evidence-based and practical overview for treating chronic lower extremity wounds with this HADWM. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H
2016-04-15
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W.; Wolf, Matthew T.; Fan, Hongni; Tam, Ada J.; Patel, Chirag H.; Luber, Brandon S.; Wang, Hao; Wagner, Kathryn R.; Powell, Jonathan D.; Housseau, Franck; Pardoll, Drew M.
2016-01-01
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4–dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. PMID:27081073
Plastic Surgery Challenges in War Wounded II: Regenerative Medicine
Valerio, Ian L.; Sabino, Jennifer M.; Dearth, Christopher L.
2016-01-01
Background: A large volume of service members have sustained complex injuries during Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). These injuries are complicated by contamination with particulate and foreign materials, have high rates of bacterial and/or fungal infections, are often composite-type defects with massive soft tissue wounds, and usually have multisystem involvement. While traditional treatment modalities remain a mainstay for optimal wound care, traditional reconstruction approaches alone may be inadequate to fully address the scope and magnitude of such massive complex wounds. As a result of these difficult clinical problems, the use of regenerative medicine therapies, such as autologous adipose tissue grafting, stem cell therapies, nerve allografts, and dermal regenerate templates/extracellular matrix scaffolds, is increased as adjuncts to traditional reconstructive measures. Basic and Clinical Science Advances: The beneficial applications of regenerative medicine therapies have been well characterized in both in vitro studies and in vivo animal studies. The use of these regenerative medicine techniques in the treatment of combat casualty injuries has been increasing throughout the recent war conflicts. Clinical Care Relevance: Military medicine has shown positive results when utilizing certain regenerative medicine modalities in treating complex war wounds. As a result, multi-institution clinical trials are underway to further evaluate these observations and reconstruction measures. Conclusion: Successful combat casualty wound care often requires a combination of traditional aspects of the reconstructive ladder/elevator with adoption of various regenerative medicine therapies. Due to the recent OIF/OEF conflicts, a high volume of combat casualties have benefited from adoption of regenerative medicine therapies and increased access to innovative clinical trials. Furthermore, many of these patients have had long-term follow-up to report on clinical outcomes that substantiate current treatment paradigms and concepts within regenerative medicine, reconstructive, and rehabilitation care. These results are applicable to not only combat casualty care but also to nonmilitary patients. PMID:27679752
Fraser, John K; Hicok, Kevin C; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution ® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing.
Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management
Chicharro-Alcántara, Deborah; Damiá-Giménez, Elena; Carrillo-Poveda, José M.; Peláez-Gorrea, Pau
2018-01-01
The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process. PMID:29346333
Freisinger, Chrissy; Rindy, Julie; Golenberg, Netta; Frecentese, Grace; Gibson, Angela; Eliceiri, Kevin W
2018-01-01
Tissue injury leads to early wound-associated reactive oxygen species (ROS) production that mediate tissue regeneration. To identify mechanisms that function downstream of redox signals that modulate regeneration, a vimentin reporter of mesenchymal cells was generated by driving GFP from the vimentin promoter in zebrafish. Early redox signaling mediated vimentin reporter activity at the wound margin. Moreover, both ROS and vimentin were necessary for collagen production and reorganization into projections at the leading edge of the wound. Second harmonic generation time-lapse imaging revealed that the collagen projections were associated with dynamic epithelial extensions at the wound edge during wound repair. Perturbing collagen organization by burn wound disrupted epithelial projections and subsequent wound healing. Taken together our findings suggest that ROS and vimentin integrate early wound signals to orchestrate the formation of collagen-based projections that guide regenerative growth during efficient wound repair. PMID:29336778
Fraser, John K.; Hicok, Kevin C.; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M.
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing. PMID:24761343
Chemokine Involvement in Fetal and Adult Wound Healing
Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.
2015-01-01
Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680
Jafari, Paris; Muller, Camillo; Grognuz, Anthony; Applegate, Lee Ann; Raffoul, Wassim; di Summa, Pietro G; Durand, Sébastien
2017-05-13
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome.
Jafari, Paris; Muller, Camillo; Grognuz, Anthony; Applegate, Lee Ann; Raffoul, Wassim; di Summa, Pietro G.; Durand, Sébastien
2017-01-01
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome. PMID:28505080
Peng, Yan; Huang, Sha; Wu, Yan; Cheng, Biao; Nie, Xiaohu; Liu, Hongwei; Ma, Kui; Zhou, Jiping; Gao, Dongyun; Feng, Changjiang; Yang, Siming; Fu, Xiaobing
2013-12-15
Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.
Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L
2010-10-01
Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.
Platelet-rich fibrin: a boon in regenerative endodontics.
Rebentish, Priyanka D; Umashetty, Girish; Kaur, Harpreet; Doizode, Trupthi; Kaslekar, Mithun; Chowdhury, Shouvik
2016-12-01
Research into regenerative dentistry has contributed momentum to the field of molecular biology. Periapical surgery aims at removing periapical pathology to achieve complete wound healing and regeneration of bone and periodontal tissue. Regenerative endodontic procedures are widely being added to the current armamentarium of pulp therapy procedures. The regenerative potential of platelets has been deliberated. Platelet-rich fibrin (PRF) is a wonderful tissue-engineering product and has recently gained much popularity due its promising results in wound healing bone induction. The features of this product are an attribute of platelets which, after cellular interactions, release growth factors and have shown application in diverse disciplines of dentistry. This paper is intended to shed light onto the various prospects of PRF and to provide clinical insight into regenerative endodontic therapy.
Events of wound healing/regeneration in the canine supraalveolar periodontal defect model.
Dickinson, Douglas P; Coleman, Brandon G; Batrice, Nathan; Lee, Jaebum; Koli, Komal; Pennington, Cathy; Susin, Cristiano; Wikesjö, Ulf M E
2013-05-01
The objective of this research was to elucidate early events in periodontal wound healing/regeneration using histological and immunohistochemical techniques. Routine critical-size, supraalveolar, periodontal defects including a space-providing titanium mesh device were created in 12 dogs. Six animals received additional autologous blood into the defect prior to wound closure. One animal from each group was killed for analysis at 2, 5, 9, 14 days, and at 4 and 8 weeks. Both groups behaved similarly. Periodontal wound healing/regeneration progressed through three temporal phases. Early phase (2-5 days): heterogeneous clot consolidation and cell activation in the periodontal ligament (PDL) and trabecular bone was associated with PDL regeneration and formation of a pre-osteoblast population. Intermediate phase (9-14 days): cell proliferation (shown by PCNA immunostaining)/migration led to osteoid/bone, PDL and cementum formation. Late phase (4-8 weeks): primarily characterized by tissue remodelling/maturation. Fibrous connective tissue from the gingival mucosa entered the wound early, competing with regeneration. By day 14, the wound space was largely filled with regenerative and reparative tissues. Activation of cellular regenerative events in periodontal wound healing/regeneration is rapid; the general framework for tissue formation is broadly outlined within 14 days. Most bone formation apparently originates from endosteally derived pre-osteoblasts; the PDL possibly acting as a supplementary source, with a primary function likely being regulatory/homeostatic. Blood accumulation at the surgical site warrants exploration; supplementation may be beneficial. © 2012 John Wiley & Sons A/S.
Ogle, Molly E; Krieger, Jack R; Tellier, Liane E; McFaline-Figueroa, Jennifer; Temenoff, Johnna S; Botchwey, Edward A
2018-04-09
The immune response to biomaterial implants critically regulates functional outcomes such as vascularization, transplant integration/survival, and fibrosis. To create "immunologically smart" materials, the host-material response may be engineered to optimize the recruitment of pro-regenerative leukocyte subsets which mature into corresponding wound-healing macrophages. We have recently identified a unique feature of pro-regenerative Ly6C low monocytes that is a higher expression of both the bioactive lipid receptor sphingosine-1-phosphate receptor 3 (S1PR3) and the stromal derived factor-1α (SDF-1α) receptor CXCR4. Therefore, we designed a bifunctional hydrogel to harnesses a mechanistic synergy between these signaling axes to enhance the recruitment of endogenous pro-regenerative monocytes. To overcome the challenge of codelivering two physiochemically distinct molecules-a large hydrophilic protein and hydrophobic small molecule-we engineered a dual affinity hydrogel that exploits the growth factor affinity of a heparin derivative (Hep -N ) and lipid chaperone activity of albumin. The sphingosine analog FTY720 and SDF-1α are successfully loaded and coreleased from the Hep -N -functionalized PEG-DA hydrogels while maintaining bioactivity. Placement of these hydrogels into a murine partial thickness skin wound demonstrates that corelease of FTY720 and SDF-1α yields superior recruitment of myeloid cells to the implant interface compared to either factor alone. Although in vivo delivery of FTY720 or SDF-1α individually promotes the enhanced recruitment of Ly-6C low anti-inflammatory monocytes, codelivery enhances the early accumulation and persistence of the differentiated wound healing CD206 + macrophages in the tissue surrounding the gel. Co-delivery similarly promoted the synergistic expansion of vasculature adjacent to the implant, a key step in tissue healing. Taken together, these findings suggest that the combination of chemotactic molecules may provide additional maturation signals to the infiltrating leukocytes to facilitate macrophage transition and vascular network expansion, thus, ultimately, potentiating tissue repair. The coupling of multiple pro-regenerative biological cues provides a foundation for more fine-tuned immunoregenerative modulation to facilitate tissue repair.
The mammalian blastema: regeneration at our fingertips
Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling
2015-01-01
Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871
Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia
2015-01-01
A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management. PMID:28793497
Tissue Engineering and Regenerative Repair in Wound Healing
Hu, Michael S.; Maan, Zeshaan N.; Wu, Jen-Chieh; Rennert, Robert C.; Hong, Wan Xing; Lai, Tiffany S.; Cheung, Alexander T. M.; Walmsley, Graham G.; Chung, Michael T.; McArdle, Adrian; Longaker, Michael T.; Lorenz, H. Peter
2014-01-01
Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration. PMID:24788648
Platelet-rich plasma to improve the bio-functionality of biomaterials.
Anitua, Eduardo; Tejero, Ricardo; Alkhraisat, Mohammad H; Orive, Gorka
2013-04-01
Growth factors and cytokines are active players in controlling the different stages of wound healing and tissue regeneration. Recent trends in personalized regenerative medicine involve using patient's own platelet-rich plasma for stimulating wound healing and tissue regeneration. This technology provides a complex cocktail of growth factors and even a fibrin scaffold with multiple biologic effects. In the last few years, an increasing number of studies provide evidence of the potential of combining platelet-rich plasma with different biomaterials in order to improve their properties, including handling, administration, bioactivity, and level of osseointegration, among others. In this review, we discuss the use of platelet-rich plasma as an alternative, easy, cost-effective, and controllable strategy for the release of high concentrations of many endogenous growth factors. Additionally, we provide an overview of the current progress and future directions of research combining different types of biomaterials with platelet-rich plasma in tissue engineering and regenerative medicine.
Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds
Buckley, Gemma; Wong, Jason; Metcalfe, Anthony D; Ferguson, Mark W J
2012-01-01
The MRL/MpJ mouse displays the rare ability amongst mammals to heal injured ear tissue without scarring. Numerous studies have shown that the formation of a blastema-like structure leads to subsequent tissue regeneration in this model, indicating many parallels with amphibian limb regeneration and mammalian embryogenesis. We have recently shown that the MRL/MpJ mouse also possesses an enhanced capacity for peripheral nerve regeneration within the ear wound. Indeed, nerves are vital for the initial phase of blastema formation in the amphibian limb. In this study we investigated the capacity for wound regeneration in a denervated ear. The left ears of MRL/MpJ mice and C57BL/6 (a control strain known to have a poorer regenerative capacity) were surgically denervated at the base via an incision and nerve transection, immediately followed by a 2-mm ear punch wound. Immunohistochemical analysis showed a lack of neurofilament expression in the denervated ear wound. Histology revealed that denervation prevented blastema formation and chrondrogenesis, and also severely hindered normal healing, with disrupted re-epithelialisation, increasing wound size and progressive necrosis towards the ear tip. Denervation of the ear obliterated the regenerative capacity of the MRL/MpJ mouse, and also had a severe negative effect on the ear wound repair mechanisms of the C57BL/6 strain. These data suggest that innervation may be important not only for regeneration but also for normal wound repair processes. PMID:22066944
Honey: an effective regenerative medicine product in wound management.
Martinotti, Simona; Bucekova, Marcela; Majtan, Juraj; Ranzato, Elia
2018-05-10
Honey has successfully been used in treatment of a broad spectrum of injuries including burns and non-healing wounds. It acts as antibacterial and anti-biofilm agent with anti/pro-inflammatory properties. However, besides these traditional properties, recent evidence suggests that honey is also an immunomodulator in wound healing and contains several bee and plant-derived components that may speed up the wound healing and tissue regeneration process. Identifying their exact mechanism of action allows better understanding of honey healing properties and promotes its wider translation into clinical practice. This review will discuss the physiological basis for the use of honey in wound management, its current clinical uses, as well as the potential role of honey bioactive compounds in dermal regenerative medicine and tissue re-modelling. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cytoskeletal Regulation of Dermal Regeneration
Strudwick, Xanthe L.; Cowin, Allison J.
2012-01-01
Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair. PMID:24710556
Dean, Wendy
2011-11-01
The wars in Iraq and Afghanistan have resulted in the most severe survivable war injuries ever seen in prolonged conflict. The Armed Forces Institute of Regenerative Medicine (AFIRM) was conceived as a way to deliver solutions to the existing gaps in military trauma care. The AFIRM is a collaborative effort between the Department of Defense, academia and private industry to accelerate the development of critically needed technology for the treatment of severely wounded warriors, and to restore to meaningful form and function those who have followed orders into harm's way.
Guo, R; Merkel, A R; Sterling, J A; Davidson, J M; Guelcher, S A
2015-12-01
The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/β-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design strategies and applications of tissue bioadhesives.
Mehdizadeh, Mohammadreza; Yang, Jian
2013-03-01
In the past two decades tissue adhesives and sealants have revolutionized bleeding control and wound healing. This paper focuses on existing tissue adhesive design, their structure, functioning mechanism, and their pros and cons in wound management. It also includes the latest advances in the development of new tissue adhesives as well as the emerging applications in regenerative medicine. We expect that this paper will provide insightful discussion on tissue bioadhesive design and lead to innovations for the development of the next generation of tissue bioadhesives and their related biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guerrero-Juarez, Christian F; Astrowski, Aliaksandr A; Murad, Rabi; Dang, Christina T; Shatrova, Vera O; Astrowskaja, Aksana; Lim, Chae Ho; Ramos, Raul; Wang, Xiaojie; Liu, Yuchen; Lee, Hye-Lim; Pham, Kim T; Hsi, Tsai-Ching; Oh, Ji Won; Crocker, Daniel; Mortazavi, Ali; Ito, Mayumi; Plikus, Maksim V
2018-06-01
Large excisional wounds in mice prominently regenerate new hair follicles (HFs) and fat, yet humans are deficient for this regenerative behavior. Currently, wound-induced regeneration remains a clinically desirable, but only partially understood phenomenon. We show that large excisional wounds in rats across seven strains fail to regenerate new HFs. We compared wound transcriptomes between mice and rats at the time of scab detachment, which coincides with the onset of HF regeneration in mice. In both species, wound dermis and epidermis share core dermal and epidermal transcriptional programs, respectively, yet prominent interspecies differences exist. Compared with mice, rat epidermis expresses distinct transcriptional and epigenetic factors, markers of epidermal repair, hyperplasia, and inflammation, and lower levels of WNT signaling effectors and regulators. When recombined on the surface of excisional wounds with vibrissa dermal papillae, partial-thickness skin grafts containing distal pelage HF segments, but not interfollicular epidermis, readily regenerated new vibrissa-like HFs. Together, our findings establish rats as a nonregenerating rodent model for excisional wound healing and suggest that low epidermal competence and associated transcriptional profile may contribute to its regenerative deficiency. Future comparison between rat and mouse may lend further insight into the mechanism of wounding-induced regeneration and causes for its deficit. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Reconstitution of full-thickness skin by microcolumn grafting.
Tam, Joshua; Wang, Ying; Vuong, Linh N; Fisher, Jeremy M; Farinelli, William A; Anderson, R Rox
2017-10-01
In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
The neonate versus adult mammalian immune system in cardiac repair and regeneration.
Sattler, Susanne; Rosenthal, Nadia
2016-07-01
The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.
Current Concepts in Tissue Engineering: Skin and Wound.
Tenenhaus, Mayer; Rennekampff, Hans-Oliver
2016-09-01
Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.
Recent advances in electrospun nanofibers for wound healing.
Chen, Shixuan; Liu, Bing; Carlson, Mark A; Gombart, Adrian F; Reilly, Debra A; Xie, Jingwei
2017-06-01
Electrospun nanofibers represent a novel class of materials that show great potential in many biomedical applications including biosensing, regenerative medicine, tissue engineering, drug delivery and wound healing. In this work, we review recent advances in electrospun nanofibers for wound healing. This article begins with a brief introduction on the wound, and then discusses the unique features of electrospun nanofibers critical for wound healing. It further highlights recent studies that have used electrospun nanofibers for wound healing applications and devices, including sutures, multifunctional dressings, dermal substitutes, engineered epidermis and full-thickness skin regeneration. Finally, we finish with conclusions and future perspective in this field.
Engineering dextran-based scaffolds for drug delivery and tissue repair
Sun, Guoming; Mao, Jeremy J
2015-01-01
Owing to its chemically reactive hydroxyl groups, dextran can be modified with different functional groups to form spherical, tubular and 3D network structures. The development of novel functional scaffolds for efficient controlled release and tissue regeneration has been a major research interest, and offers promising therapeutics for many diseases. Dextran-based scaffolds are naturally biodegradable and can serve as bioactive carriers for many protein biomolecules. The reconstruction of the in vitro microenvironment with proper signaling cues for large-scale tissue regenerative scaffolds has yet to be fully developed, and remains a significant challenge in regenerative medicine. This paper will describe recent advances in dextran-based polymers and scaffolds for controlled release and tissue engineering. Special attention is given to the development of dextran-based hydrogels that are precisely manipulated with desired structural properties and encapsulated with defined angiogenic growth factors for therapeutic neovascularization, as well as their potential for wound repair. PMID:23210716
The Quest toward limb regeneration: a regenerative engineering approach
Laurencin, Cato T.; Nair, Lakshmi S.
2016-01-01
The Holy Grail to address the clinical grand challenge of human limb loss is to develop innovative strategies to regrow the amputated limb. The remarkable advances in the scientific understanding of regeneration, stem cell science, material science and engineering, physics and novel surgical approaches in the past few decades have provided a regenerative tool box to face this grand challenge and address the limitations of human wound healing. Here we discuss the convergence approach put forward by the field of Regenerative Engineering to use the regenerative tool box to design and develop novel translational strategies to limb regeneration. PMID:27047679
Early Induction of NRF2 Antioxidant Pathway by RHBDF2 Mediates Rapid Cutaneous Wound Healing
Hosur, Vishnu; Burzenski, Lisa M.; Stearns, Timothy M.; Farley, Michelle L.; Sundberg, John P.; Wiles, Michael V.; Shultz, Leonard D.
2017-01-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15 min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15 min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. PMID:28268192
Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.
Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D
2017-04-01
Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Bioactive Molecule Delivery Systems for Dentin-pulp Tissue Engineering.
Shrestha, Suja; Kishen, Anil
2017-05-01
Regenerative endodontic procedures use bioactive molecules (BMs), which are active signaling molecules that initiate and maintain cell responses and interactions. When applied in a bolus form, they may undergo rapid diffusion and denaturation resulting in failure to induce the desired effects on target cells. The controlled release of BMs from a biomaterial carrier is expected to enhance and accelerate functional tissue engineering during regenerative endodontic procedures. This narrative review presents a comprehensive review of different polymeric BM release strategies with relevance to dentin-pulp engineering. Carrier systems designed to allow the preprogrammed release of BMs in a spatial- and temporal-controlled manner would aid in mimicking the natural wound healing process while overcoming some of the challenges faced in clinical translation of regenerative endodontic procedures. Spatial- and temporal-controlled BM release systems have become an exciting option in dentin-pulp tissue engineering; nonetheless, further validation of this concept and knowledge is required for their potential clinical translation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Concise Review: Fetal Membranes in Regenerative Medicine: New Tricks from an Old Dog?
2017-01-01
Abstract The clinical application of the fetal membranes dates back to nearly a century. Their use has ranged from superficial skin dressings to surgical wound closure. The applications of the fetal membranes are constantly evolving, and key to this is the uncovering of multiple populations of stem and stem‐like cells, each with unique properties that can be exploited for regenerative medicine. In addition to pro‐angiogenic and immunomodulatory properties of the stem and stem‐like cells arising from the fetal membranes, the dehydrated and/or decellularized forms of the fetal membranes have been used to support the growth and function of other cells and tissues, including adipose‐derived mesenchymal stem cells. This concise review explores the biological origin of the fetal membranes, a history of their use in medicine, and recent developments in the use of fetal membranes and their derived stem and stem‐like cells in regenerative medicine. Stem Cells Translational Medicine 2017;6:1767–1776 PMID:28834402
Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H
2015-01-01
The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287
Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates
Seifert, Ashley W.; Monaghan, James R.; Voss, S. Randal; Maden, Malcolm
2012-01-01
While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair. PMID:22485136
Tyler, Sheena E B
2017-01-01
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.
Tyler, Sheena E. B.
2017-01-01
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them. PMID:28928669
Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J
2017-07-01
Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Long-term Effects of Combat Ready Clamp Application to Control Junctional Hemorrhage in Swine
2014-01-01
wounds were equally affected in the CRoC-treated and control groups and showed only normal regenerative changes. Muscle (peroneus tertius) fiber ...full function in 3 days ( p 0.001). At 2 weeks, muscle strength of CRoC-applied legs was diminished ( p G 0.05 vs. baselines or controls). Injury...necrosis of lumbar muscles with significant disabilities. CONCLUSION: Two-hour inguinal application of CRoC caused mild and reversible ischemic injuries
Wilms Tumor 1b defines a wound-specific sheath cell subpopulation associated with notochord repair
Lopez-Baez, Juan Carlos; Zeng, Zhiqiang; Brunsdon, Hannah; Salzano, Angela; Brombin, Alessandro; Wyatt, Cameron; Rybski, Witold; Huitema, Leonie F A; Dale, Rodney M; Kawakami, Koichi; Englert, Christoph; Chandra, Tamir; Schulte-Merker, Stefan
2018-01-01
Regenerative therapy for degenerative spine disorders requires the identification of cells that can slow down and possibly reverse degenerative processes. Here, we identify an unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor (WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+ cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the site of injury is maintained even into adult stages in developing vertebrae, which form in an untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult intervertebral discs, the identification of novel subpopulations may have important implications for regenerative spine disorder treatments. PMID:29405914
Assessment of Regenerative Capacity in the Dolphin
2012-06-30
markers and stem cell related genes. Cultured cells were also cryogenically frozen for autologous and allogeneic cell therapy treatment of dolphin skin...Regenerative Cells, Marine Mammals, Atlantic Bottlenose Dolphin, Autologous Cell Therapy , Allogeneic Cell Therapy 16. SECURITY CLASSIFICATION OF...cultured ASCs will be used as autologous cellular therapy for dolphin skin wounds. Finally, the cells will be tested for immunogenicity to develop an
Ex vivo regenerative effects of a spring water.
Nicoletti, Giovanni; Saler, Marco; Pellegatta, Tommaso; Tresoldi, Marco Mario; Bonfanti, Viola; Malovini, Alberto; Faga, Angela; Riva, Federica
2017-12-01
Previous experiments by our group have indicated the regenerative effects of a spring water (Comano), which was possibly associated with the native non-pathogenic bacterial flora. The present study aimed to confirm these regenerative properties in a human ex vivo experimental model in the context of physiological wound healing. Human 6-mm punch skin biopsies harvested during plastic surgery sessions were injured in their central portion to induce skin loss and were cultured in either conventional medium (controls) or medium powder reconstituted with filtered Comano spring water (treated samples). At 24, 48 and 72 h the specimens were observed following staining with hematoxylin and eosin, Picrosirius Red, orcein and anti-proliferating cell nuclear antigen. Compared with the controls, the treated samples exhibited reduced overall cell infiltration, evidence of fibroblasts, stimulation of cell proliferation and collagen and elastic fiber regeneration. In the spring water, in addition to 12 resident non-pathogenic bacterial strains exhibiting favorable metabolic activities, more unknown non-pathogenic species are being identified by genomic analysis. In the present study, the efficacy of this 'germ-free', filtered spring water in wound regeneration was indicated. Thus, the Comano spring water microbiota should be acknowledged for its regenerative properties.
Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M
2010-01-15
The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.
Anttonen, Tommi; Belevich, Ilya; Laos, Maarja; Herranen, Anni; Jokitalo, Eija; Brakebusch, Cord; Pirvola, Ulla
2017-01-01
Wound healing in the inner ear sensory epithelia is performed by the apical domains of supporting cells (SCs). Junctional F-actin belts of SCs are thin during development but become exceptionally thick during maturation. The functional significance of the thick belts is not fully understood. We have studied the role of F-actin belts during wound healing in the developing and adult cochlea of mice in vivo . We show that the thick belts serve as intracellular scaffolds that preserve the positions of surviving cells in the cochlear sensory epithelium. Junctions associated with the thick F-actin belts did not readily disassemble during wound healing. To compensate for this, basolateral membranes of SCs participated in the closure of surface breach. Because not only neighboring but also distant SCs contributed to wound healing by basolateral protrusions, this event appears to be triggered by contact-independent diffusible signals. In the search for regulators of wound healing, we inactivated RhoA in SCs, which, however, did not limit wound healing. RhoA inactivation in developing outer hair cells (OHCs) caused myosin II delocalization from the perijunctional domain and apical cell-surface enlargement. These abnormalities led to the extrusion of OHCs from the epithelium. These results demonstrate the importance of stability of the apical domain, both in wound repair by SCs and in development of OHCs, and that only this latter function is regulated by RhoA . Because the correct cytoarchitecture of the cochlear sensory epithelium is required for normal hearing, the stability of cell apices should be maintained in regenerative and protective interventions.
Armed Forces Institute of Regenerative Medicine Annual Report 2011
2012-01-01
using the bacterium Lactobacillus plantarum for infected burn wounds could effectively abolish pseudo- monal (and possibly other) infections and...of biophotonic signal from Pseudomonas only (blue) versus Pseudomonas pretreated with Lactobacillus (pink). Probiotic treatment with L. plantarum ...probiotic therapy for infected burn wounds using Lactobacillus decreased the length and severity of pathogenic infection and also decreased
Adipose Tissue-Derived Stromal Cells for Wound Healing.
Goodarzi, Parisa; Alavi-Moghadam, Sepideh; Sarvari, Masoumeh; Tayanloo Beik, Akram; Falahzadeh, Khadijeh; Aghayan, Hamidreza; Payab, Moloud; Larijani, Bagher; Gilany, Kambiz; Rahim, Fakher; Adibi, Hossein; Arjmand, Babak
2018-06-02
Skin as the outer layer covers the body. Wounds can affect this vital organ negatively and disrupt its functions. Wound healing as a biological process is initiated immediately after an injury. This process consists of three stages: inflammation, proliferation, remodeling. Generally, these three stages occur continuously and timely. However, some factors such as infection, obesity and diabetes mellitus can interfere with these stages and impede the normal healing process which results in chronic wounds. Financial burden on both patients and health care systems, negative biologic effect on the patient's general health status and reduction in quality of life are a number of issues which make chronic wounds as a considerable challenge. During recent years, along with advances in the biomedical sciences, various surgical and non-surgical therapeutic methods have been suggested. All of these suggested treatments have their own advantages and disadvantages. Recently, cell-based therapies and regenerative medicine represent promising approaches to wound healing. Accordingly, several types of mesenchymal stem cells have been used in both preclinical and clinical settings for the treatment of wounds. Adipose-derived stromal cells are a cost-effective source of mesenchymal stem cells in wound management which can be easily harvest from adipose tissues through the less invasive processes with high yield rates. In addition, their ability to secrete multiple cytokines and growth factors, and differentiation into skin cells make them an ideal cell type to use in wound treatment. This is a concise overview on the application of adipose-derived stromal cells in wound healing and their role in the treatment of chronic wounds.
Patil, Pritam S; Fountas-Davis, Natalie; Huang, He; Michelle Evancho-Chapman, M; Fulton, Judith A; Shriver, Leah P; Leipzig, Nic D
2016-05-01
In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology. This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers studying wound healing, metabolomics, applied biomaterials and regenerative medicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration
Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.
2012-01-01
The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771
Chan, John D; Zhang, Dan; Liu, Xiaolong; Zarowiecki, Magdalena; Berriman, Matthew; Marchant, Jonathan S
2017-06-01
The robust regenerative capacity of planarian flatworms depends on the orchestration of signaling events from early wounding responses through the stem cell enacted differentiative outcomes that restore appropriate tissue types. Acute signaling events in excitable cells play an important role in determining regenerative polarity, rationalized by the discovery that sub-epidermal muscle cells express critical patterning genes known to control regenerative outcomes. These data imply a dual conductive (neuromuscular signaling) and instructive (anterior-posterior patterning) role for Ca 2+ signaling in planarian regeneration. Here, to facilitate study of acute signaling events in the excitable cell niche, we provide a de novo transcriptome assembly from the planarian Dugesia japonica allowing characterization of the diverse ionotropic portfolio of this model organism. We demonstrate the utility of this resource by proceeding to characterize the individual role of each of the planarian voltage-operated Ca 2+ channels during regeneration, and demonstrate that knockdown of a specific voltage operated Ca 2+ channel (Ca v 1B) that impairs muscle function uniquely creates an environment permissive for anteriorization. Provision of the full transcriptomic dataset should facilitate further investigations of molecules within the planarian voltage-gated channel portfolio to explore the role of excitable cell physiology on regenerative outcomes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessment of Regenerative Capacity in the Dolphin
2011-10-10
surface markers. Cultured cells were also cryogenically frozen for future cell therapy treatment of dolphin skin wounds. Gene array analysis on the...Mammals, Atlantic Bottlenose Dolphin, Autologous Cell Therapy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...cellular therapy for dolphin skin wounds. Finally, the cells will be tested for immunogenicity to develop an allogeneic (same species, universal
Matrix regeneration agents improve wound healing in non-stressed human corneal epithelial cells.
Robciuc, A; Arvola, R P J; Jauhiainen, M; Holopainen, J M
2018-04-01
PurposeMatrix regenerating agents (RGTAs) emerged as promising in vivo wound-healing agents. These agents could prove beneficial for the treatment of dry eye disease-associated corneal micro-erosions; therefore, we aimed to evaluate the wound healing efficacy of regenerative agents (RGTAs or serum) in an in vitro model of hyperosmolarity (HO) stressed and non-stressed human corneal epithelial cells.Patients and methodsThe migration and proliferation induced by the regenerative agents was evaluated using an in vitro scratch wound assay and brome-deoxy-uridine incorporation. The inflammatory profile and effects of osmoregulators were also investigated. The two-tailed paired t-test calculated the statistical significance, with P-value<0.05 considered significant.ResultsThe most efficient inducer of re-epithelization was 2% serum, followed closely by 2% RGTA with an average improvement in cell migration of 1.8- and 1.4-fold, respectively, when compared with the non-treated control. Hyperosmolar stress significantly reduced the restorative effects of both serum and RGTAs; these effects were, however, neutralized by the osmoregulator betaine.ConclusionThese findings suggest that RGTAs could provide efficient treatment for dry-eye associated corneal micro-lesions if ocular surface HO is neutralized.
Gerlach, Jörg C; Johnen, Christa; Ottomann, Christian; Ottoman, Christian; Bräutigam, Kirsten; Plettig, Jörn; Belfekroun, Claudia; Münch, Sandra; Hartmann, Bernd
2011-03-01
There is a therapeutic gap for patients with deep partial thickness wounds (Grade IIb) of moderate size that were initially not treated with split- or mesh grafting to avoid overgrafting, but developed delayed wound healing around two weeks after injury--at which time grafting is typically not indicated anymore. Delayed wound healing is often associated with esthetically unsatisfactory results and sometimes functional problems. An innovative cell isolation method for cell spray transplantation at the point of care, which eliminates cell culture prior to treatment, was implemented for this population of burn patients in our center. Autologous skin cell spray transplantation was initiated by taking healthy skin. The dermal/epidermal layers were separated using enzymatic digestion with 40 min dispase application, followed by 15 min trypsin application for basal kerationcyte isolation, 7 min cell washing by centrifugation, followed by transferring the cells for spraying into Ringer lactate solution. The procedure was performed on site in a single session immediately following the biopsy. After sharp wound debridement, cells were immediately transplanted by deposition with a cell sprayer for even distribution of the cell suspension. Eight patients were treated (mean age 30.3 years, mean burn total body surface area 14%, mean Abbreviated Burn Severity Index (5 points). The mean time to complete re-epithelialization was 12.6 days. All patients exhibited wound healing with improved esthetic and functional quality. Our initial experience for the use of non-cultured cells using a two-enzyme approach with cell washing suggests shortened time for wound closure, suggesting that the method may potentially avoid longer-term complications.
Plastic Surgery Challenges in War Wounded I: Flap-Based Extremity Reconstruction
Sabino, Jennifer M.; Slater, Julia; Valerio, Ian L.
2016-01-01
Scope and Significance: Reconstruction of traumatic injuries requiring tissue transfer begins with aggressive resuscitation and stabilization. Systematic advances in acute casualty care at the point of injury have improved survival and allowed for increasingly complex treatment before definitive reconstruction at tertiary medical facilities outside the combat zone. As a result, the complexity of the limb salvage algorithm has increased over 14 years of combat activities in Iraq and Afghanistan. Problem: Severe poly-extremity trauma in combat casualties has led to a large number of extremity salvage cases. Advanced reconstructive techniques coupled with regenerative medicine applications have played a critical role in the restoration, recovery, and rehabilitation of functional limb salvage. Translational Relevance: The past 14 years of war trauma have increased our understanding of tissue transfer for extremity reconstruction in the treatment of combat casualties. Injury patterns, flap choice, and reconstruction timing are critical variables to consider for optimal outcomes. Clinical Relevance: Subacute reconstruction with specifically chosen flap tissue and donor site location based on individual injuries result in successful tissue transfer, even in critically injured patients. These considerations can be combined with regenerative therapies to optimize massive wound coverage and limb salvage form and function in previously active patients. Summary: Traditional soft tissue reconstruction is integral in the treatment of war extremity trauma. Pedicle and free flaps are a critically important part of the reconstructive ladder for salvaging extreme extremity injuries that are seen as a result of the current practice of war. PMID:27679751
In-vivo monitoring rat skin wound healing using nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Chen, Jing; Guo, Chungen; Zhang, Fan; Xu, Yahao; Zhu, Xiaoqin; Xiong, Shuyuan; Chen, Jianxin
2014-11-01
Nonlinear optical microscopy (NLOM) was employed for imaging and evaluating the wound healing process on rat skin in vivo. From the high-resolution nonlinear optical images, the morphology and distribution of specific biological markers in cutaneous wound healing such as fibrin clot, collagens, blood capillaries, and hairs were clearly observed at 1, 5 and 14 days post injury. We found that the disordered collagen in the fibrin clot at day 1 was replaced by regenerative collagen at day 5. By day 14, the thick collagen with well-network appeared at the original margin of the wound. These findings suggested that NLOM is ideal for noninvasively monitoring the progress of wound healing in vivo.
Stromal Progenitor Cells in Mitigation of Non-Hematopoietic Radiation Injuries
Kulkarni, Shilpa; Wang, Timothy C.; Guha, Chandan
2016-01-01
Purpose of review Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries. Recent findings We have developed stem cell based therapies for the mitigation of acute radiation syndrome (ARS) and radiation-induced gastrointestinal syndrome (RIGS). This is a promising option because of the robustness of standardized isolation and transplantation of stromal cells protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet derived growth factors (PDGF), keratinocyte growth factor (KGF), R-spondins (Rspo), and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases. Summary This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and epithelium, (d) and secrete regenerative and immunomodulatory paracrine signals to control inflammation, ulceration, wound healing and fibrosis. PMID:28462013
van den Broek, Lenie J.; Kroeze, Kim L.; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C.; Niessen, Frank B.; Middelkoop, Esther; Scheper, Rik J.
2014-01-01
Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell–cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006–9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation factors. Our findings have implications for the choice of cell type (ASC or dermal fibroblast) to be used in regenerative medicine strategies and indicate the importance of taking into account interactions with the wound bed when developing advanced therapies for difficult-to-close cutaneous wounds. PMID:23980822
Mesenchymal Stem Cells: A Multimodality Option for Wound Healing.
Hanson, Summer E
2012-08-01
Although significant resources are invested in wound care and healing annually, chronic wounds remain a major medical problem as they often present a more difficult challenge than the underlying disease. Current treatment options include a multitude of dressing materials, topical agents including antibiotics, enzymatic debriders, and growth factors, mechanical debridement, and optimization of medical comorbidities. Even under optimal circumstances, the healing process leads to some form of fibrosis and scarring. Studies suggest that mesenchymal stem/stromal cells (MSCs) isolated from these diverse tissues possess similar biological characteristics, differentiation potential, and immunological properties. Enthusiasm about MSCs for use in reconstruction and regenerative medicine has been fueled by evidence that these cells possess the ability to participate in the tissue repair process through a variety of paracrine mechanisms affecting tissue regeneration and inflammation. Recent advances in stem cell immunobiology have led to increased interest in MSCs as a new therapeutic modality to address chronic wounds and other inflammatory pathology. A thorough understanding of the immunobiology of MSCs is necessary to realize the complement of pathological processes that could be affected by MSC-based therapy. The novel methods reviewed here are highly promising, with the collective goal of identifying new therapeutic approaches to wound healing that are broadly applicable to many chronic diseases, and can safely accelerate the transition of basic research findings into clinical advances in many areas of regenerative medicine and reconstructive surgery.
Zhao, Pan; Sui, Bing-Dong; Liu, Nu; Lv, Ya-Jie; Zheng, Chen-Xi; Lu, Yong-Bo; Huang, Wen-Tao; Zhou, Cui-Hong; Chen, Ji; Pang, Dan-Lin; Fei, Dong-Dong; Xuan, Kun; Hu, Cheng-Hu; Jin, Yan
2017-10-01
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing
2016-01-01
ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375
Kleinbeck, Kyle R.; Bader, Rebecca A.; Kao, Weiyuan John
2013-01-01
In situ photopolymerized semi-interpenetrating networks (sIPNs) composed of poly(ethylene glycol) and gelatin are promising multifunctional matrices for a regenerative medicine approach to dermal wound treatment. In addition to previously demonstrated efficacy in critical defects, sIPNs also function as drug delivery matrices for compounds loaded as either soluble or covalently linked components. Simultaneous release of silver sulfadiazine and bupivacaine from the sIPN would provide multiple-hit management of dermal wounds that minimizes infection, and manages pain along with sIPN absorption of exudates and facilitation of epidermal regrowth. We characterized the release of soluble silver sulfadiazine and bupivacaine and compared it with an established release model. Efficacy of released silver sulfadiazine was confirmed in vitro on Staphylococcus aureus, methicillin resistant S. aureus, and Pseudomonas aeruginosa. Bupivacaine loaded without silver sulfadiazine showed incomplete release, whereas simultaneous loading with silver sulfadiazine facilitated 100% bupivacaine release. Silver sulfadiazine released at 98% without bupivacaine and 96% with bupivacaine. Silver sulfadiazine released onto bacterial cultures inhibited all three strains dose dependently. sIPNs effectively release bupivacaine and silver sulfadiazine while maintaining the antimicrobial activity of silver sulfadiazine. Drug loaded sIPNs have potential to improve wound management by providing multi-drug delivery along with an effective wound treatment. PMID:19060724
A cellular, molecular, and pharmacological basis for appendage regeneration in mice
Leung, Thomas H.; Snyder, Emily R.; Liu, Yinghua; Wang, Jing; Kim, Seung K.
2015-01-01
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1–Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. PMID:26494786
Dynamic Reciprocity in the Wound Microenvironment
Schultz, Gregory S.; Davidson, Jeffrey M.; Kirsner, Robert S.; Bornstein, Paul; Herman, Ira M.
2011-01-01
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction amongst cells and their surrounding microenvironment. In the review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but cellular differentiation, migration, proliferation, and survival during tissue development, including e.g. embryogenesis, angiogenesis, as well as during pathologic processes including cancer diabetes, hypertension and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology, which may be understood within the DR framework. The implications of applying the principles of dynamic reciprocity to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered. PMID:21362080
2014-01-01
Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5: 953–964. 61. Koh , T. J., and L. A. DiPietro. 2011. Inflammation and wound healing: the role...of the macrophage. Expert Rev. Mol. Med. 13: e23. 62. Mirza, R., L. A. DiPietro, and T. J. Koh . 2009. Selective and specific macrophage ablation is... Raman spectroscopic mapping. Wound Repair Regen. 18: 409–416. 66. Forsberg, J. A., E. A. Elster, R. C. Andersen, E. Nylen, T. S. Brown, M. W. Rose, A
The hair follicle bulge: a niche for adult stem cells.
Pasolli, Hilda Amalia
2011-08-01
Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment--the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.
Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier
Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.
2015-01-01
Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652
Simon, S; Smith, A J
2014-03-01
Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.
Possible Mechanism for Denervation Effect on Wound Healing
1990-05-23
on wound healing and tissue regener- ation. The system of tissue repair under investigation is the regenerating limb of the axolotl , in which growth...tissues. Before experiments of this nature can be undertaken, axolotl transferlin and antibodies against this factor had to be produced so that...immunoassays could be developed to measure this protein in nerves, regenerating limbs, and other tissues fr m axolotls . These goals were accomplished in the
2010-01-01
multi-system organ failure, and remote organ injury at sites such as the lung, liver , small intestines, and brain, representing major causes of...inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound...healing, multi-system organ failure and increased mortality. Methods: In this study, we examined the impact of thermal injury -induced systemic
Massie, Isobel; Levis, Hannah J; Daniels, Julie T
2014-10-01
Limbal epithelial stem cell deficiency can cause blindness but may be treated by human limbal epithelial cell (hLE) transplantation, normally on human amniotic membrane. Clinical outcomes using amnion can be unreliable and so we have developed an alternative tissue equivalent (TE), RAFT (Real Architecture for 3D Tissue), which supports hLE expansion, and stratification when airlifted. Human limbal fibroblasts (hLF) may be incorporated into RAFT TEs, where they support overlying hLE and improve phenotype. However, the impact of neither airlifting nor hLF on hLE function has been investigated. hLE on RAFT TEs (±hLF and airlifting) were wounded using heptanol and re-epithelialisation (fluorescein diacetate staining), and percentage putative stem cell marker p63α and proliferative marker Ki67 expression (wholemount immunohistochemistry), measured. Airlifted, hLF- RAFT TEs were unable to close the wound and p63α expression was 7 ± 0.2% after wounding. Conversely, non-airlifted, hLF- RAFT TEs closed the wound within 9 days and p63α expression was higher at 22 ± 5% (p < 0.01). hLE on both hLF- and hLF+ RAFT TEs (non-airlifted) closed the wound and p63α expression was 26 ± 8% and 36 ± 3% respectively (ns). Ki67 expression by hLE increased from 1.3 ± 0.5% before wounding to 7.89 ± 2.53% post-wounding for hLF- RAFT TEs (p < 0.01), and 0.8 ± 0.08% to 17.68 ± 10.88% for hLF+ RAFT TEs (p < 0.05), suggesting that re-epithelialisation was a result of proliferation. These data suggest that neither airlifting nor hLF are necessarily required to maintain a functional epithelium on RAFT TEs, thus simplifying and shortening the production process. This is important when working towards clinical application of regenerative medicine products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds
Marfia, Giovanni; Navone, Stefania Elena; Di Vito, Clara; Ughi, Nicola; Tabano, Silvia; Miozzo, Monica; Tremolada, Carlo; Bolla, Gianni; Crotti, Chiara; Ingegnoli, Francesca; Rampini, Paolo; Riboni, Laura; Gualtierotti, Roberta; Campanella, Rolando
2015-01-01
abstract Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing. In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies. Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging. Current and future treatment approaches are discussed with an emphasis on recent advances. PMID:26652928
Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei
2015-11-01
Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.
Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.
Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M
2016-01-01
The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.
Summary of: Regenerative endodontics.
Clark, Stephen J
2014-03-01
Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.
The Effect of Lipoaspirates on Human Keratinocytes.
Kim, Bong-Sung; Gaul, Charel; Paul, Nora E; Dewor, Manfred; Stromps, Jan-Philipp; Hwang, Soo Seok; Nourbakhsh, Mahtab; Bernhagen, Jürgen; Rennekampff, Hans-Oliver; Pallua, Norbert
2016-09-01
One increasingly important trend in plastic, reconstructive, and aesthetic surgery is the use of fat grafts to improve cutaneous wound healing. In clinical practice, lipoaspirates (adipose tissue harvested by liposuction) are re-injected in a procedure called lipofilling. Previous studies, however, mainly evaluated the regenerative effect of isolated adipocytes, adipose-derived stem cells, and excised en bloc adipose tissue on keratinocytes, whereas no study to date has examined the effect of lipoaspirates. The authors aimed to investigate differences in the regenerative property of en bloc adipose tissue and lipoaspirates on keratinocytes. Human keratinocytes, lipoaspirates, and en bloc adipose tissue from 36 healthy donors were isolated. In vitro proliferation, differentiation, migration, stratification, and wound healing of keratinocyte monolayers were measured. Furthermore, secreted levels of VEGF, bFGF, IGF-1, MMP-9, and MIF were detected by ELISA. Migration, proliferation, and wound healing of keratinocytes were increased by lipoaspirates. Interestingly, the effect of lipoaspirates on keratinocyte proliferation was significantly higher than by en bloc adipose tissue after 5 days. The differentiation of keratinocytes was equally attenuated by lipoaspirates and en bloc adipose tissue. Stratification of keratinocyte layers was enhanced by lipoaspirates and en bloc fat when compared to controls. Lipoaspirates secrete higher levels of bFGF, whereas higher levels of VEGF and IGF-1 are released by en bloc adipose tissue. We show that lipoaspirates and en bloc adipose tissue have a regenerative effect on keratinocytes. One reason for the higher effect of lipoaspirates on keratinocyte proliferation may be the secretion of different cytokines. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W
2016-02-01
Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.
Brena-Molina, Ana; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Tamay de Dios, Lenin; Gómez-García, Ricardo; Reyes-Frías, Ma. de Lourdes; Rodríguez-Rodríguez, Lourdes; Garciadiego-Cázares, David; Lugo-Martínez, Haydée; Ibarra, Clemente
2015-01-01
Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries. PMID:26418201
The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds
Turner, Neill J.; Badylak, Stephen F.
2015-01-01
Significance: Injuries to the skin as a result of illness or injury, particularly chronic nonhealing wounds, present a major healthcare problem. Traditional wound care approaches attempt to control the underlying causes, such as infection and ischemia, while the application of wound dressings aims to modify a poorly healing wound environment into a microenvironment more closely resembling an acute wound allowing the body to heal the wound naturally. Recent Advances: Regenerative medicine approaches, such as the use of biologic scaffold materials comprising an intact extracellular matrix (ECM) or individual components of the ECM, are providing new therapeutic options that focus upon the provision of biochemical cues that alter the wound microenvironment to facilitate rapid restoration of normal skin architecture. Critical Issues: The incidence of chronic nonhealing wounds continues to increase. For example, between 15% and 20% of diabetics are likely to develop chronic, nonhealing foot wounds creating an increasing burden on healthcare systems worldwide. Future Directions: Developing a thorough understanding of wound microenvironment and the mechanisms by which biologic scaffolds work in vivo has the potential to markedly improve outcomes in the clinical translation for the treatment of chronic wounds. PMID:26244105
Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds.
Chandra, Prafulla K; Ross, Christina L; Smith, Leona C; Jeong, Seon S; Kim, Jaehyun; Yoo, James J; Harrison, Benjamin S
2015-01-01
Oxygen generating biomaterials represent a new trend in regenerative medicine that aims to generate and supply oxygen at the site of requirement, to support tissue healing and regeneration. To enhance the healing of dermal wounds, we have developed a highly portable, in situ oxygen generating wound dressings that uses sodium percarbonate (SPO) and calcium peroxide (CPO) as chemical oxygen sources. The dressing continuously generated oxygen for more than 3 days, after which it was replaced. In the in vivo testing on porcine full-thickness porcine wound model, the SPO/CPO dressing showed enhanced wound healing during the 8 week study period. Quantitative measurements of wound healing related parameters, such as wound closure, reepithelialization, epidermal thickness and collagen content of dermis showed that supplying oxygen topically using the SPO/CPO dressing significantly accelerated the wound healing. An increase in neovascularization, as determined using Von Willebrand factor (vWF) and CD31 staining, was also observed in the presence of SPO/CPO dressing. This novel design for a wound dressing that contains oxygen generating biomaterials (SPO/CPO) for supplying topical oxygen, may find utility in treating various types of acute to chronic wounds. © 2015 by the Wound Healing Society.
A cellular, molecular, and pharmacological basis for appendage regeneration in mice.
Leung, Thomas H; Snyder, Emily R; Liu, Yinghua; Wang, Jing; Kim, Seung K
2015-10-15
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. © 2015 Leung et al.; Published by Cold Spring Harbor Laboratory Press.
Preventing Vision Loss from Blast Injuries with Regenerative Biomaterial
2013-08-01
4 2.1: Task 1: Irritation response to silk films….……………………………………... 4 2.2: Task 2: Abrasive wound assessment...protein for use on the ocular surface. Over 6 million Americans sustain traumatic injuries each year from both accidents and surgical procedures. In...addition, eye injury is the number one cause of field evacuation in the military. Corneal wounds cause intense pain and may lead to blindness
Methylene Blue Assay for Estimation of Regenerative Re-Epithelialization In Vivo.
Milyavsky, Maresha; Dickie, Renee
2017-02-01
The rapidity with which epithelial cells cover a wound surface helps determine whether scarring or scar-less healing results. As methylene blue is a vital dye that is absorbed by damaged tissue but not undamaged epidermis, it can be used to assess wound closure. We sought to develop a quantitative methylene blue exclusion assay to estimate the timeframe for re-epithelialization in regenerating appendages in zebrafish and axolotls, two classic model systems of regeneration. Following application of methylene blue to the amputation plane and extensive washing, the regenerating tail was imaged in vivo until staining was no longer visible. The percent area of the amputation plane positive for methylene blue, representing the area of the amputation plane not yet re-epithelialized, was measured for each time point. The loss of methylene blue occurred rapidly, within ~2.5 h in larval and juvenile axolotls and <1 h in adult zebrafish, consistent with high rates of re-epithelialization in these models of regeneration. The assay allows simple, rapid estimation of the time course for regenerative re-epithelialization without affecting subsequent regenerative ability. This technique will permit comparison of re-epithelialization across different strains and stages, as well as under the influence of various pharmacological inhibitors that affect regeneration.
Adolph, Elizabeth J.; Hafeman, Andrea E.; Davidson, Jeffrey M.; Nanney, Lillian B.; Guelcher, Scott A.
2011-01-01
Injectable scaffolds present compelling opportunities for wound repair and regeneration due to their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound width and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable polyurethane biocomposite scaffold that enhances cutaneous wound healing in a rat model. PMID:22105887
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-01-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H2O in CCl4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration. PMID:28587348
Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun
2017-06-01
Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4 )-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2 O in CCl 4 -intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4 -intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4- intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro . The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration.
Effect of laser irradiation for healing of the skin-muscle wounds of animals
NASA Astrophysics Data System (ADS)
Lapina, Victoria A.; Veremei, Eduard I.; Pancovets, Evgeniy A.
2000-05-01
The purpose of our investigation was to study the medical effect of low-intensity laser influence on healing of skin- muscle wounds of agricultural animals. We used the laser radiation of low intensity for cub's therapy: to sucking-pigs after herniotomy and castration, to cattle cubs after skin- muscle wounds. The animals were kept under clinical observation up to their recovery. The recuperation dynamic was observed by changing of blood quotients, leukograms, sizes of inflammatory edema, general behavior of animals. The positive dynamic of blood quotients of the experimental animal groups was really higher than that in control. The analysis of wound healing after laser influence shows that wound surface of experimental group was to a great extent smaller in comparison with control group of animals. So, these facts testify about anti-inflammatory action of laser radiation, which hastens regenerative and rehabilitative processes. Analysis of the obtained experimental data has revealed the positive influence of laser irradiation on the dynamics of wound adhesion of agricultural animals.
Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V
2017-01-20
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.
Micro/Nanostructured Films and Adhesives for Biomedical Applications.
Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung
2015-12-01
The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.
Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V.
2017-01-01
Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology. PMID:28117680
Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments
Junker, Johan P.E.; Kamel, Rami A.; Caterson, E.J.; Eriksson, Elof
2013-01-01
Significance Successful treatment of wounds relies on precise control and continuous monitoring of the wound-healing process. Wet or moist treatment of wounds has been shown to promote re-epithelialization and result in reduced scar formation, as compared to treatment in a dry environment. Recent Advances By treating wounds in a controlled wet environment, delivery of antimicrobials, analgesics, other bioactive molecules such as growth factors, as well as cells and micrografts, is allowed. The addition of growth factors or transplantation of cells yields the possibility of creating a regenerative wound microenvironment that favors healing, as opposed to excessive scar formation. Critical Issues Although several manufacturers have conceived products implementing the concept of moist wound healing, there remains a lack of commercial translation of wet wound-healing principles into clinically available products. This can only be mitigated by further research on the topic. Future Directions The strong evidence pointing to the favorable healing of wounds in a wet or moist environment compared to dry treatment will extend the clinical indications for this treatment. Further advances are required to elucidate by which means this microenvironment can be optimized to improve the healing outcome. PMID:24587972
Guo, Rui; Chai, Linlin; Chen, Liang; Chen, Wenguang; Ge, Liangpeng; Li, Xiaoge; Li, Hongli; Li, Shirong; Cao, Chuan
2015-06-01
Epidermal stem cells could contribute to skin repair through the migration of cells from the neighboring uninjured epidermis, infundibulum, hair follicle, or sebaceous gland. However, little is known about the factors responsible for the complex biological processes in wound healing. Herein, we will show that the attracting chemokine, SDF-1/CXCR4, is a major regulator involved in the migration of epidermal stem cells during wound repair. We found that the SDF-1 levels were markedly increased at the wound margins following injury and CXCR4 expressed in epidermal stem cells and proliferating epithelial cells. Blocking the SDF-1/CXCR4 axis resulted in a significant reduction in epidermal stem cell migration toward SDF-1 in vitro and delayed wound healing in vivo, while an SDF-1 treatment enhanced epidermal stem cell migration and proliferation and accelerated wound healing. These results provide direct evidence that SDF-1 promotes epidermal stem cell migration, accelerates skin regeneration, and makes the development of new regenerative therapeutic strategies for wound healing possible.
Platelet gel: a new therapeutic tool with great potential
Piccin, Andrea; Di Pierro, Angela M.; Canzian, Lucia; Primerano, Marco; Corvetta, Daisy; Negri, Giovanni; Mazzoleni, Guido; Gastl, Günther; Steurer, Michael; Gentilini, Ivo; Eisendle, Klaus; Fontanella, Fabrizio
2017-01-01
Chronic wounds, such as diabetic foot ulcers, represent a serious clinical problem for patients and clinicians. Management of these wounds has a strong economic impact worldwide. Complications resulting from injuries are a frequent cause of morbidity and mortality. Chronic wounds lead to infections, painful dressings and prolonged hospitalisation. This results in poor patient Quality of Life and in high healthcare costs. Platelet concentrates (PC) are defined as autologous or allogeneic platelet derivatives with a platelet concentration higher than baseline. PC are widely used in different areas of Regenerative Medicine in order to enhance wound healing processes; they include platelet-rich plasma (PRP), platelet gel (PG), platelet-rich fibrin (PRF), serum eye drops (E-S), and PRP eye drops (E-PRP). This review highlights the use of platelet-rich plasma (PRP) and platelet gel (PG) preparation for clinical use. PMID:27483482
FOREIGN BODY REACTION TO BIOMATERIALS
Anderson, James M.; Rodriguez, Analiz; Chang, David T.
2008-01-01
The foreign body reaction composed of macrophages and foreign body giant cells is the end-stage response of the inflammatory and wound healing responses following implantation of a medical device, prosthesis, or biomaterial. A brief, focused overview of events leading to the foreign body reaction is presented. The major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events. These events in the foreign body reaction include protein adsorption, monocyte/macrophage adhesion, macrophage fusion to form foreign body giant cells, consequences of the foreign body response on biomaterials, and cross-talk between macrophages/foreign body giant cells and inflammatory/wound healing cells. Biomaterial surface properties play an important role in modulating the foreign body reaction in the first two to four weeks following implantation of a medical device, even though the foreign body reaction at the tissue/material interface is present for the in vivo lifetime of the medical device. An understanding of the foreign body reaction is important as the foreign body reaction may impact the biocompatibility (safety) of the medical device, prosthesis, or implanted biomaterial and may significantly impact short- and long-term tissue responses with tissue-engineered constructs containing proteins, cells, and other biological components for use in tissue engineering and regenerative medicine. Our perspective has been on the inflammatory and wound healing response to implanted materials, devices, and tissue-engineered constructs. The incorporation of biological components of allogeneic or xenogeneic origin as well as stem cells into tissue-engineered or regenerative approaches opens up a myriad of other challenges. An in depth understanding of how the immune system interacts with these cells and how biomaterials or tissue-engineered constructs influences these interactions may prove pivotal to the safety, biocompatibility, and function of the device or system under consideration. PMID:18162407
Barhanpurkar-Naik, Amruta; Mhaske, Suhas T; Pote, Satish T; Singh, Kanupriya; Wani, Mohan R
2017-07-14
Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards subcutaneously implanted matrigel-releasing-SDF-1α in immunocompromised mice. The present study demonstrates for the first time that IL-3 has an important role in enhancing the migration of human MSCs through regulation of the CXCR4/SDF-1α axis. These findings suggest a potential role of IL-3 in improving the efficacy of MSCs in regenerative cell therapy.
NASA Astrophysics Data System (ADS)
Lange-Asschenfeldt, Bernhard; Alborova, Alena; Krüger-Corcoran, Daniela; Patzelt, Alexa; Richter, Heike; Sterry, Wolfram; Kramer, Axel; Stockfleth, Eggert; Lademann, Jürgen
2009-09-01
Epidermal wound healing is a complex and dynamic regenerative process necessary to reestablish skin integrity. Fluorescence confocal laser scanning microscopy (FLSM) is a noninvasive imaging technique that has previously been used for evaluation of inflammatory and neoplastic skin disorders in vivo and at high resolution. We employed FLSM to investigate the evolution of epidermal wound healing noninvasively over time and in vivo. Two suction blisters were induced on the volar forearms of the study participants, followed by removal of the epidermis. To study the impact of wound ointment on the process of reepithelization, test sites were divided into two groups, of which one test site was left untreated as a negative control. FLSM was used for serial/consecutive evaluations up to 8 days. FLSM was able to visualize the development of thin keratinocyte layers developing near the wound edge and around hair follicles until the entire epidermis has been reestablished. Wounds treated with the wound ointment were found to heal significantly faster than untreated wounds. This technique allows monitoring of the kinetics of wound healing noninvasively and over time, while offering new insights into the potential effects of topically applied drugs on the process of tissue repair.
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R B S; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety.
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R. B. S.; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S.
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety. PMID:28769790
Reconstitution of full‐thickness skin by microcolumn grafting
Wang, Ying; Vuong, Linh N.; Fisher, Jeremy M.; Farinelli, William A.; Anderson, R. Rox
2016-01-01
Abstract In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long‐standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm‐scale, full‐thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring. Fresh human skin microcolumns were used to reconstitute skin in wounds on immunodeficient mice. The restored skin recapitulated many key features of normal human skin tissue, including epidermal architecture, diverse skin cell populations, adnexal structures and sweat production in response to cholinergic stimulation. These promising preclinical results suggest that harvesting and grafting of microcolumns may be useful for reconstituting fully functional skin in human wounds, without donor site morbidity. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. PMID:27296503
Hale, Alexander James
2017-01-01
ABSTRACT Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a−/− ptpn11b−/− zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functional signaling role, requiring its catalytic activity and SH2 domains but not the two C-terminal tyrosine phosphorylation sites. Surprisingly, expression of Shp2a variants with increased and reduced catalytic activity, respectively, rescued caudal fin fold regeneration to similar extents. Expression of mmp9 and junbb, indicative of formation of the wound epidermis and distal blastema, respectively, suggested that these processes occurred in ptpn11a−/− ptpn11b−/− zebrafish embryos. However, cell proliferation and MAPK phosphorylation were reduced. Pharmacological inhibition of MEK1 in wild-type zebrafish embryos phenocopied loss of Shp2. Our results suggest an essential role for Shp2a–mitogen-activated protein kinase (MAPK) signaling in promoting cell proliferation during zebrafish embryo caudal fin fold regeneration. PMID:29203641
Dermal wound healing processes with curcumin incorporated collagen films.
Gopinath, D; Ahmed, M Rafiuddin; Gomathi, K; Chitra, K; Sehgal, P K; Jayakumar, R
2004-05-01
The wound healing process involves extensive oxidative stress to the system, which generally inhibits tissue remodeling. In the present study, an improvement in the quality of wound healing was attempted by slow delivery of antioxidants like curcumin from collagen, which also acts as a supportive matrix for the regenerative tissue. Curcumin incorporated collagen matrix (CICM) treated groups were compared with control and collagen treated rats. Biochemical parameters and histological analysis revealed that increased wound reduction, enhanced cell proliferation and efficient free radical scavenging in CICM group. The higher shrinkage temperature of CICM films suggests increased hydrothermal stability when compared to normal collagen films. Spectroscopic studies revealed that curcumin was bound to the collagen without affecting its triple helicity. Further we adopted the antioxidant assay using 2,2'-azobisisobutyronitrile to assess in vitro antioxidant activity of CICM. The antioxidant studies indicated that CICM quenches free radicals more efficiently. This study provides a rationale for the topical application of CICM as a feasible and productive approach to support dermal wound healing.
Castleberry, Steven A.; Golberg, Alexander; Sharkh, Malak Abu; Khan, Saiqa; Almquist, Benjamin D.; Austen, William G.; Yarmush, Martin L.; Hammond, Paula T.
2017-01-01
Wound healing is an incredibly complex biological process that often results in thickened collagen-enriched healed tissue called scar. Cutaneous scars lack many functional structures of the skin such as hair follicles, sweat glands, and papillae. The absence of these structures contributes to a number of the long-term morbidities of wound healing, including loss of function for tissues, increased risk of re-injury, and aesthetic complications. Scar formation is a pervasive factor in our daily lives; however, in the case of serious traumatic injury, scars can create long-lasting complications due to contraction and poor tissue remodeling. Within this report we target the expression of connective tissue growth factor (CTGF), a key mediator of TGFβ pro-fibrotic response in cutaneous wound healing, with controlled local delivery of RNA interference. Through this work we describe both a thorough in vitro analysis of nanolayer coated sutures for the controlled delivery of siRNA and its application to improve scar outcomes in a third-degree burn induced scar model in rats. We demonstrate that the knockdown of CTGF significantly altered the local expression of αSMA, TIMP1, and Col1a1, which are known to play roles in scar formation. The knockdown of CTGF within the healing burn wounds resulted in improved tissue remodeling, reduced scar contraction, and the regeneration of papillary structures within the healing tissue. This work adds support to a number of previous reports that indicate CTGF as a potential therapeutic target for fibrosis. Additionally, we believe that the controlled local delivery of siRNA from ultrathin polymer coatings described within this work is a promising approach in RNA interference that could be applied in developing improved cancer therapies, regenerative medicine, and fundamental scientific research. PMID:27108403
Jeschke, Marc G; Sadri, Ali-Reza; Belo, Cassandra; Amini-Nik, Saeid
2017-04-01
Due to the poor regenerative capacity of adult mammalian skin, there is a need to develop effective skin substitutes for promoting skin regeneration after a severe wound. However, the complexity of skin biology has made it difficult to enable perfect regeneration of skin. Thus, animal models are being used to test potential skin substitutes. Murine models are valuable but their healing process involves dermal contraction. We have developed a device called a dome that is able to eliminate the contraction effect of rodent skin while simultaneously housing a bioengineered skin graft. The dome comes in two models, which enables researchers to evaluate the cells that contribute in wound healing from neighboring intact tissue during skin healing/regeneration. This protocol simplifies grafting of skin substitutes, eliminates the contraction effect of surrounding skin, and summarizes a simple method for animal surgery for wound healing and skin regeneration studies.
Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji
2011-12-01
Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.
Novel Locally Active Estrogens Accelerate Cutaneous Wound Healing-Part 2.
Brufani, Mario; Rizzi, Nicoletta; Meda, Clara; Filocamo, Luigi; Ceccacci, Francesca; D'Aiuto, Virginia; Bartoli, Gabriele; Bella, Angela La; Migneco, Luisa M; Bettolo, Rinaldo Marini; Leonelli, Francesca; Ciana, Paolo; Maggi, Adriana
2017-05-31
Estrogen deprivation is associated with delayed healing, while estrogen replacement therapy (ERT) accelerates acute wound healing and protects against development of chronic wounds. However, current estrogenic molecules have undesired systemic effects, thus the aim of our studies is to generate new molecules for topic administration that are devoid of systemic effects. Following a preliminary study, the new 17β-estradiol derivatives 1 were synthesized. The estrogenic activity of these novel compounds was evaluated in vitro using the cell line ERE-Luc B17 stably transfected with an ERE-Luc reporter. Among the 17β-estradiol derivatives synthesized, compounds 1e and 1f showed the highest transactivation potency and were therefore selected for the study of their systemic estrogenic activity. The study of these compounds in the ERE-Luc mouse model demonstrated that both compounds lack systemic effects when administered in the wound area. Furthermore, wound-healing experiments showed that 1e displays a significant regenerative and anti-inflammatory activity. It is therefore confirmed that this class of compounds are suitable for topical administration and have a clear beneficial effect on wound healing.
Mechanical cues in orofacial tissue engineering and regenerative medicine.
Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W
2015-01-01
Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.
Onesti, Maria Giuseppina; Carella, Sara; Maruccia, Michele; Marchese, Cinzia; Fino, Pasquale; Scuderi, Nicolò
2012-01-01
In neonatal intensive care units, extravasation is one of the most common injuries occurring in infants as a complication of infusion therapy. These very preterm infants have immature skin which is easily damaged. They often require a longer duration of intravenous therapy, and obtaining intravenous access can be difficult. An invasive treatment should be avoided, whenever possible, particularly for very immature infants. In our Special Operative Unit for ulcers and difficult-to-heal wounds, University of Rome, we successfully treated a premature neonate, who experienced extravasation of hypertonic fluid, using dermal substitutes and products of regenerative medicine.
Armed Forces Institute of Regenerative Medicine
2009-01-01
constructs healed faster than controls and were able to self -organize into skin that appeared almost identical to normal mouse skin. Research...mouse model using the device. They also determined that printed constructs healed faster than controls and were able to self - organize into skin...iiiAFIRM Annual Report 2009 IV Scarless Wound Healing IV-1 Background
Macrophages are required to coordinate mouse digit tip regeneration.
Simkin, Jennifer; Sammarco, Mimi C; Marrero, Luis; Dawson, Lindsay A; Yan, Mingquan; Tucker, Catherine; Cammack, Alex; Muneoka, Ken
2017-11-01
In mammals, macrophages are known to play a major role in tissue regeneration. They contribute to inflammation, histolysis, re-epithelialization, revascularization and cell proliferation. Macrophages have been shown to be essential for regeneration in salamanders and fish, but their role has not been elucidated in mammalian epimorphic regeneration. Here, using the regenerating mouse digit tip as a mammalian model, we demonstrate that macrophages are essential for the regeneration process. Using cell-depletion strategies, we show that regeneration is completely inhibited; bone histolysis does not occur, wound re-epithelialization is inhibited and the blastema does not form. Although rescue of epidermal wound closure in the absence of macrophages promotes blastema accumulation, it does not rescue cell differentiation, indicating that macrophages play a key role in the redifferentiation of the blastema. We provide additional evidence that although bone degradation is a component, it is not essential to the overall regenerative process. These findings show that macrophages play an essential role in coordinating the epimorphic regenerative response in mammals. © 2017. Published by The Company of Biologists Ltd.
Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.
Wu, Xiuwen; Ren, Jianan; Li, Jieshou
2012-05-01
The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.
Wound Healing Angiogenesis: Innovations and Challenges in Acute and Chronic Wound Healing
Demidova-Rice, Tatiana N.; Durham, Jennifer T.; Herman, Ira M.
2012-01-01
Background Formation of new blood vessels, by either angiogenesis or vasculogenesis, is critical for normal wound healing. Major processes in neovascularization include (i) growth-promoting or survival factors, (ii) proteolytic enzymes, (iii) activators of multiple differentiated and progenitor cell types, and (iv) permissible microenvironments. A central aim of wound healing research is to “convert” chronic, disease-impaired wounds into those that will heal. The problem Reduced ability to re-establish a blood supply to the injury site can ultimately lead to wound chronicity. Basic/Clinical Science Advances (1) Human fetal endothelial progenitor cells can stimulate wound revascularization and repair following injury, as demonstrated in a novel mouse model of diabetic ischemic healing. (2) Advances in bioengineering reveal exciting alternatives by which wound repair may be facilitated via the creation of vascularized microfluidic networks within organ constructs created ex vivo for wound implantation. (3) A “personalized” approach to regenerative medicine may be enabled by the identification of protein components present within individual wound beds, both chronic and acute. Clinical Care Relevance Despite the development of numerous therapies, impaired angiogenesis and wound chronicity remain significant healthcare problems. As such, innovations in enhancing wound revascularization would lead to significant advances in wound healing therapeutics and patient care. Conclusion Insights into endothelial progenitor cell biology together with developments in the field of tissue engineering and molecular diagnostics should not only further advance our understanding of the molecular mechanisms regulating wound repair but also offer innovative solutions to promote the healing of chronic and acute wounds in vivo. PMID:24527273
Stasch, Tilman; Hoehne, Julius; Huynh, Tuan; De Baerdemaeker, Randy; Grandel, Siegfried; Herold, Christian
2015-12-01
The application of autologous lipotransfer (fat grafting, lipofilling) in reconstructive surgery is steadily becoming more popular as evidence of the regenerative and reparative effects of fat becomes better known. The authors investigated the use of autologous lipotransfer for treatment of chronic diabetic and other foot and lower limb ulcers. Twenty-six patients with nonhealing wounds were treated with surgical débridement and autologous lipotransfer (using the débridement and autologous lipotransfer method). The mean age of the wounds before intervention was 16.7 months. Wound size after débridement averaged 5.1 ± 2.6 cm2. On average, 7.1 ± 3.3 cc of lipoaspirate was transferred into the wound area. Twenty-two of 25 wounds (88 percent) healed completely within a mean of 68.0 ± 33.0 days. A reduction of wound size by 50 percent was achieved after an average of 4 weeks. In one patient with an ulcer within particularly scarred tissues on the lower limb, a repeated session of lipotransfer led to complete wound healing after another 4 weeks. The authors describe a simple and useful technique to improve wound healing in diabetic feet and chronic lower limb ulcers with a background of peripheral vascular disease, where other interventional options to achieve wound healing have failed.
Wound healing potential of adipose tissue stem cell extract.
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung; Im, Wooseok; Kim, Manho
2017-03-25
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed was examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.
Wound Dressings and Comparative Effectiveness Data
Sood, Aditya; Granick, Mark S.; Tomaselli, Nancy L.
2014-01-01
Significance: Injury to the skin provides a unique challenge, as wound healing is a complex and intricate process. Acute wounds have the potential to move from the acute wound to chronic wounds, requiring the physician to have a thorough understanding of outside interventions to bring these wounds back into the healing cascade. Recent Advances: The development of new and effective interventions in wound care remains an area of intense research. Negative pressure wound therapy has undoubtedly changed wound care from this point forward and has proven beneficial for a variety of wounds. Hydroconductive dressings are another category that is emerging with studies underway. Other modalities such as hyperbaric oxygen, growth factors, biologic dressings, skin substitutes, and regenerative materials have also proven efficacious in advancing the wound-healing process through a variety of mechanisms. Critical Issues: There is an overwhelming amount of wound dressings available in the market. This implies the lack of full understanding of wound care and management. The point of using advanced dressings is to improve upon specific wound characteristics to bring it as close to “ideal” as possible. It is only after properly assessing the wound characteristics and obtaining knowledge about available products that the “ideal” dressing may be chosen. Future Directions: The future of wound healing at this point remains unknown. Few high-quality, randomized controlled trials evaluating wound dressings exist and do not clearly demonstrate superiority of many materials or categories. Comparative effectiveness research can be used as a tool to evaluate topical therapy for wound care moving into the future. Until further data emerge, education on the available products and logical clinical thought must prevail. PMID:25126472
Injury-induced immune responses in Hydra.
Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte
2014-08-01
The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong
2018-03-15
Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of EPCs can be highly maintained and promoted by the CPB scaffold. Moreover, CPB/EPC constructs effectively stimulated the regeneration of diabetic wounds with satisfactory vascularization and better healing outcomes in a full-thickness wound model, suggesting that the highly efficient delivery of EPCs to wound site facilitates angiogenesis and further leads to wound healing. The high angiogenic capacity and excellent healing ability make CPB/EPC constructs highly competitive in cell-based therapeutic products for efficient wound repair application. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].
Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V
2010-01-01
The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.
Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review.
Miron, Richard J; Fujioka-Kobayashi, Masako; Bishara, Mark; Zhang, Yufeng; Hernandez, Maria; Choukroun, Joseph
2017-02-01
The growing multidisciplinary field of tissue engineering aims at predictably regenerating, enhancing, or replacing damaged or missing tissues for a variety of conditions caused by trauma, disease, and old age. One area of research that has gained tremendous awareness in recent years is that of platelet-rich fibrin (PRF), which has been utilized across a wide variety of medical fields for the regeneration of soft tissues. This systematic review gathered all the currently available in vitro, in vivo, and clinical literature utilizing PRF for soft tissue regeneration, augmentation, and/or wound healing. In total, 164 publications met the original search criteria, with a total of 48 publications meeting inclusion criteria (kappa score = 94%). These studies were divided into 7 in vitro, 11 in vivo, and 31 clinical studies. In summary, 6 out of 7 (85.7%) and 11 out of 11 (100%) of the in vitro and in vivo studies, respectively, demonstrated a statistically significant advantage for combining PRF to their regenerative therapies. Out of the remaining 31 clinical studies, a total of 8 reported the effects of PRF in a randomized clinical trial, with 5 additional studies (13 total) reporting appropriate controls. In those clinical studies, 9 out of the 13 studies (69.2%) demonstrated a statistically relevant positive outcome for the primary endpoints measured. In total, 18 studies (58% of clinical studies) reported positive wound-healing events associated with the use of PRF, despite using controls. Furthermore, 27 of the 31 clinical studies (87%) supported the use of PRF for soft tissue regeneration and wound healing for a variety of procedures in medicine and dentistry. In conclusion, the results from the present systematic review highlight the positive effects of PRF on wound healing after regenerative therapy for the management of various soft tissue defects found in medicine and dentistry.
Yannas, IV; Tzeranis, D; So, PT
2018-01-01
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20–125 μm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 μ α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell–scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies. PMID:26694657
Andorko, James I.
2017-01-01
Abstract Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune‐stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties—size, shape, chemical functionality—impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system—B and T cell lymphocytes—to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications. PMID:28932817
Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin
Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf
2013-01-01
There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889
Pearce, F B; Richardson, K A
2017-01-02
Bilateral axillary hidradenitis is a chronic, suppurative, and scarring disease that is most effectively treated by complete excision of all hair-bearing tissues. We assessed our staged procedure for excision and placement of a split-thickness skin graft for bilateral axillary hidradenitis in terms of costs, outcomes, and timing of excision. An IRB approved retrospective case analysis was performed on patients that underwent bilateral axillary hidradenitis skin excision with eventual placement of split-thickness skin grafting using the current LSUHSC/University Health hidradenitis surgical treatment protocol. Using ICD-9 codes (705.83) and CPT codes (11041, 11042, 11451, 11600, 11601, 11602, 11603, 11604) we reviewed cases performed at our institution from 1 January 2008 to 24 Febuary 2014 and we selected patients based on bilateral axillary involvement (alone) and >1 year history of active disease. Patients were excluded if resection of tissue encompassed regions outside of the immediately adjacent axillary. A total of seven patients matching criteria for bilateral axillary hidradenitis were selected for analysis. Clinical course, cost and surgical techniques were assessed. Of the seven patients, six required admission throughout their treatment due to lack of funding making use of negative pressure wound therapy at home not possible. These patients stayed an average of 10 days with a mean hospital charge of $35,178 and a mean hospital provider charge of $10,019. No recurrence was demonstrated. All patients attained full range of motion, post grafting. No patient required a further operation due to graft failure. Split-thickness skin grafting without use of bilayer dermal regenerative templates yielded definitive results with acceptable cosmesis and functionality, without the added cost of treatments such as a bilayer dermal regenerative template.
Lan, Rongpei; Geng, Hui; Hwang, Yoon; Mishra, Pramod; Skloss, Wayne L.; Sprague, Eugene A.; Saikumar, Pothana; Venkatachalam, Manjeri
2010-01-01
We describe the fabrication and use of an in vitro wounding device that denudes cultured epithelium in patterns designed to leave behind strips or islands of cells sufficiently narrow or small to ensure that all remaining cells become rapidly activated and then migrate, dedifferentiate and proliferate in near synchrony. The design ensures that signals specific to regenerating cells do not become diluted by quiescent differentiated cells that are not affected by wound induced activation. The device consists of a flat circular disk of rubber engraved to produce alternating ridges and grooves in patterns of concentric circles or parallel lines. The disk is mounted at the end of a pneumatically controlled piston assembly. Application of controlled pressure and circular or linear movement of the disk on cultures produced highly reproducible wounding patterns. The near synchronous regenerative activity of cell bands or islands permitted the collection of samples large enough for biochemical studies to sensitively detect alterations involving mRNA for several early response genes and protein phosphorylation in major signaling pathways. The method is versatile, easy to use and reproducible, and should facilitate biochemical, proteomic and genomic studies of wound induced regeneration of cultured epithelium. PMID:20230600
Frykberg, Robert G; Driver, Vickie R; Carman, Donna; Lucero, Brenda; Borris-Hale, Cathy; Fylling, Carelyn P; Rappl, Laurie M; Clausen, Peter A
2010-06-01
Chronic wounds are characterized by a long inflammatory phase that hinders regenerative wound healing. The purpose of this prospective case series was to evaluate how a physiologically relevant concentration of an autologous platelet-rich plasma (PRP) gel affects initial wound healing trajectories of chronic, nonhealing wounds of various etiologies and in different care settings. Using convenience sampling methods, 49 patients (average age: 60.6 years, SD 14.7) with 65 nonhealing wounds (mean duration 47.8 weeks, range 3 to 260) at eight long-term acute care (LTAC) hospitals and three outpatient foot or wound clinics who were prescribed PRP gel for their nonhealing wound were enrolled. The majority of patients had low albumin, hematocrit, and/or hemoglobin levels. After wound assessments and measurements were obtained and the gel prepared, a skin barrier was applied to the periwound skin and the gel applied and protected with cover dressings. The most common wounds were pressure ulcers (n = 21), venous ulcers (n = 16) and diabetic foot ulcers (n = 14). Mean wound area and volume were 19 cm2 (SD 29.4) and 36.2 cm3 (SD 77.7), respectively. Following a mean of 2.8 (SD 2.4) weeks with 3.2 (SD 2.2) applications, reductions in wound volume (mean 51%, SD 43.1), area (39.5%, SD 41.2), undermining (77.8%, SD 28.9), and sinus tract/tunneling (45.8%, SD 40.2) were observed. For all wound etiologies, 97% of wounds improved. The results of this study suggest the application of this PRP gel can reverse nonhealing trends in chronic wounds.
Learning from regeneration research organisms: The circuitous road to scar free wound healing
Erickson, Jami R.; Echeverri, Karen
2018-01-01
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans. PMID:29179946
Down-regulate of Djrfc2 causes tissues hypertrophy during planarian regeneration.
Guo, Qi; Zhao, Guixia; Ni, Jiajia; Guo, Yanan; Zhang, Yizhe; Tian, Qingnan; Zhang, Shoutao
2017-11-25
Planarians are an ideal model organism for regeneration research due to their amazing ability to regenerate. DNA replication is crucial for genome stability. Replication factor C (RFC), which is a replication factor C-like complex and plays an important role during DNA replication in eukaryotes, has been reported as a wound response factor during planarian regeneration. However, how RFC controls regeneration in planarians by regulating DNA replication remains to be explained. Here, we used a two-dimensional electrophoresis (2-DE) proteomic approach to identify differentially expressed proteins in intact and regenerated planarians. Approximately 132 protein spots showed differences between intact and regenerative tissues. We selected 21 significantly expressed protein spots and processed them using TOF MS analysis. Finally, we cloned three of these candidate genes (Djhsp70, Djrfc2, Djfaim), focusing on the function of Djrfc2 during regeneration. We found that the distribution of Djrfc2 tends toward the wound site. RNA interference (RNAi) of Djrfc2 increases the number of dividing cells and the expression level of planarian neoblast marker genes, which may result in hyper-proliferation. Our studies use an available approach to directly study the regeneration dynamic at the protein level and provide further evidence to support a function of Djrfc2 in planarian regeneration. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Li, Joanne; Pincu, Yair; Marjanovic, Marina; Bower, Andrew J.; Chaney, Eric J.; Jensen, Tor; Boppart, Marni D.; Boppart, Stephen A.
2016-08-01
Impaired skin wound healing is a significant comorbid condition of diabetes, which often results in nonhealing diabetic ulcers due to poor peripheral microcirculation, among other factors. The effectiveness of the regeneration of adipose-derived stem cells (ADSCs) and muscle-derived stem cells (MDSCs) was assessed using an integrated multimodal microscopy system equipped with two-photon fluorescence and second-harmonic generation imaging. These imaging modalities, integrated in a single platform for spatial and temporal coregistration, allowed us to monitor in vivo changes in the collagen network and cell dynamics in a skin wound. Fluorescently labeled ADSCs and MDSCs were applied topically to the wound bed of wild-type and diabetic (db/db) mice following punch biopsy. Longitudinal imaging demonstrated that ADSCs and MDSCs provided remarkable capacity for improved diabetic wound healing, and integrated microscopy revealed a more organized collagen remodeling in the wound bed of treated mice. The results from this study verify the regenerative capacity of stem cells toward healing and, with multimodal microscopy, provide insight regarding their impact on the skin microenvironment. The optical method outlined in this study, which has the potential for in vivo human use, may optimize the care and treatment of diabetic nonhealing wounds.
Mast Cells Regulate Wound Healing in Diabetes
Tellechea, Ana; Leal, Ermelindo C.; Kafanas, Antonios; Auster, Michael E.; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M.; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C.
2016-01-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516
Qu, Feini; Pintauro, Michael P.; Haughan, Joanne; Henning, Elizabeth A.; Esterhai, John L.; Schaer, Thomas P.; Mauck, Robert L.; Fisher, Matthew B.
2014-01-01
Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. PMID:25477175
Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice
Demyanenko, Ilya A.; Zakharova, Vlada V.; Ilyinskaya, Olga P.; Vasilieva, Tamara V.; Fedorov, Artem V.; Skulachev, Vladimir P.
2017-01-01
Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes. PMID:28761623
Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice.
Demyanenko, Ilya A; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Fedorov, Artem V; Manskikh, Vasily N; Zinovkin, Roman A; Pletjushkina, Olga Yu; Chernyak, Boris V; Skulachev, Vladimir P; Popova, Ekaterina N
2017-01-01
Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db - /db - mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α -smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.
Advances in skin regeneration: application of electrospun scaffolds.
Norouzi, Mohammad; Boroujeni, Samaneh Moghadasi; Omidvarkordshouli, Noushin; Soleimani, Masoud
2015-06-03
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gueldner, Jennifer; Zhang, Fan; Zechmann, Bernd; Bruce, Erica D
2017-09-01
Non-gaseous oxygen therapeutics are emerging technologies in regenerative medicine that aim to sidestep the undesirable effects seen in traditional oxygen therapies, while enhancing tissue and wound regeneration. Using a novel oxygenating therapeutic (Ox66™) several in vitro models including fibroblast and keratinocyte monocultures were evaluated for potential drug toxicity, the ability of cells to recover after chemical injury, and cell migration after scratch assay. It was determined that in both cell lines, there was no significant cytotoxicity found after independent treatment with Ox66™. Similarly, after DMSO-induced chemical injury, the health parameters of cells treated with Ox66™ were improved when compared to their untreated counterparts. Particles were also characterized using scanning electron microscopy and electron dispersive spectroscopy both individually and in conjunction with fibroblast growth. The data in this study showed that the novel wound healing therapeutic has potential in advancing the treatment of various types of acute and chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioinspired porous membranes containing polymer nanoparticles for wound healing.
Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca
2014-12-01
Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. © 2014 Wiley Periodicals, Inc.
Lead-acid batteries for micro- and mild-hybrid applications
NASA Astrophysics Data System (ADS)
Valenciano, J.; Fernández, M.; Trinidad, F.; Sanz, L.
Car manufactures have announced the launch in coming months of vehicles with reduced emissions due to the introduction of new functions like stop-start and regenerative braking. Initial performance request of automotive lead-acid batteries are becoming more and more demanding and, in addition to this, cycle life with new accelerated ageing profiles are being proposed in order to determine the influence of the new functions on the expected battery life. This paper will show how different lead-acid battery technologies comply with these new demands, from an improved version of the conventional flooded SLI battery to the high performance of spiral wound valve-regulated lead-acid (VRLA) battery. Different approaches have been studied for improving conventional flooded batteries, i.e., either by the addition of new additives for reducing electrolyte stratification or by optimisation of the battery design to extend cycling life in partial state of charge conditions. With respect to VRLA technology, two different battery designs have been compared. Spiral wound design combines excellent power capability and cycle life under different depth of discharge (DoD) cycling conditions, but flat plate design outperform the latter in energy density due to better utilization of the space available in a prismatic enclosure. This latter design is more adequate for high end class vehicles with high electrical energy demand, whereas spiral wound is better suited for high power/long life demand of commercial vehicle. High temperature behaviour (75 °C) is rather poor for both designs due to water loss, and then VRLA batteries should preferably be located out of the engine compartment.
Xu, Kedi; Cantu, David Antonio; Fu, Yao; Kim, Jaehyup; Zheng, Xiaoxiang; Hematti, Peiman; Kao, W. John
2013-01-01
Mesenchymal stromal/stem cells (MSCs) are considered promising cellular therapeutics in the fields of tissue engineering and regenerative medicine. MSCs secrete high concentrations of immunomodulatory cytokines and growth factors, which exert paracrine effects on infiltrating immune and resident cells of the wound microenvironment that could favorably promote healing after acute injury. However, better spatial delivery and improved retention at the site of injury are two factors that could improve the clinical application of MSCs. In this study, we utilized thiol-ene Michael-type addition for rapid encapsulation of MSCs within a gelatin/poly(ethylene glycol) biomatrix; this biomatrix was also applied as a provisional dressing to full-thickness wounds in Sprague-Dawley rats. The three-way interaction of MSCs, gelatin/poly(ethylene glycol) biomatrices, and host immune cells and adjacent resident cells of the wound microenvironment favorably modulated wound progression and host response. In this model we observed attenuated immune cell infiltration, lack of foreign giant cell (FBGC) formation, accelerated wound closure and re-epithelialization, as well as enhanced neovascularization and granulation tissue formation by 7 days. The MSC-entrapped gelatin/poly(ethylene glycol) biomatrix localized the presentation of MSCs adjacent to the wound microenvironment and thus, mediated early resolution of inflammatory events and facilitated proliferative phases in wound healing. PMID:23811217
Chu, Jing; Shi, Panpan; Yan, Wenxia; Fu, Jinping; Yang, Zhi; He, Chengmin; Deng, Xiaoyuan; Liu, Hanping
2018-05-24
Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing. Natural and artificial acellular dermal matrix (ADM) scaffolds with spatially organized collagen fibers can provide a suitable architecture and environment for cell attachment and proliferation. Here, a novel collagen-nanomaterial-drug hybrid scaffold was constructed from GO-PEG-mediated quercetin (GO-PEG/Que)-modified ADM (ADM-GO-PEG/Que). The resulting unique and versatile hybrid scaffold exhibited multiple advantages, including the following: a biocompatible, cell-adhesive surface for accelerating mesenchymal stem cell (MSC) attachment and proliferation; superior stability and adjustability of the conduction potential of quercetin for inducing the differentiation of MSCs into adipocytes and osteoblasts; and a biodegradable nanofiber interface for promoting collagen deposition and angiogenesis in diabetic wound repair. This study provides new prospects for the design of innovative GO-PEG-based collagen hybrid scaffolds for application in efficient therapeutic drug delivery, stem cell-based therapies, tissue engineering and regenerative medicine.
Wound healing potential of adipose tissue stem cell extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, You Kyung; Ban, Jae-Jun; Lee, Mijung
Adipose tissue stem cells (ATSCs) are considered as a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using stem cells, intercellular molecule exchange by stem cell secretory factors showed beneficial effects by reducing tissue damage and augmentation of endogenous repair. Delayed cutaneous wound healing is implicated in many conditions such as diabetes, aging, stress and alcohol consumption. However, the effects of cell-free extract of ATSCs (ATSC-Ex) containing secretome on wound healing process have not been investigated. In this study, ATSC-Ex was topically applied on the cutaneous wound and healing speed wasmore » examined. As a result, wound closure was much faster in the cell-free extract treated wound than control wound at 4, 6, 8 days after application of ATSC-Ex. Dermal fibroblast proliferation, migration and extracellular matrix (ECM) production are critical aspects of wound healing, and the effects of ATSC-Ex on human dermal fibroblast (HDF) was examined. ATSC-Ex augmented HDF proliferation in a dose-dependent manner and migration ability was enhanced by extract treatment. Representative ECM proteins, collagen type I and matrix metalloproteinase-1, are significantly up-regulated by treatment of ATSC-Ex. Our results suggest that the ATSC-Ex have improving effect of wound healing and can be the potential therapeutic candidate for cutaneous wound healing. - Highlights: • Topical application of ATSC-Ex results in faster wound closure than normal wound in vivo. • ATSC-Ex enhances dermal fibroblast proliferation, migration and extracellular matrix production. • This study suggests that ATSC-Ex is an effective source to augment wound healing.« less
Platelet-Rich Plasma Peptides: Key for Regeneration
Sánchez-González, Dolores Javier; Méndez-Bolaina, Enrique; Trejo-Bahena, Nayeli Isabel
2012-01-01
Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine. PMID:22518192
Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs
Borenstein, Jeffrey T.; Megley, Katie; Wall, Kimberly; Pritchard, Eleanor M.; Truong, David; Kaplan, David L.; Tao, Sarah L.; Herman, Ira M.
2010-01-01
One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.
Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.
Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan
2016-01-01
Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. © 2015 by the Wound Healing Society.
A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.
Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A
2017-01-05
Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.
Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara
2017-01-09
Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment.
Pritchard, Michele T.; McCracken, Jennifer M.
2016-01-01
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted. PMID:26302807
The Role of Stem Cell Therapeutics in Wound Healing: Current Understanding and Future Directions.
Sorice, Sarah; Rustad, Kristine C; Li, Alexander Y; Gurtner, Geoffrey C
2016-09-01
Chronic wounds present unique challenges for healthcare providers as they place patients at increased risk for various morbidities and mortality. Advances in wound care technology have expanded the treatment options available for wound management, but few products fully address the underlying core deficiencies responsible for the development of poorly healing wounds. In the future, addressing these derangements will undoubtedly play a key role in the treatment of these patients. Broad enthusiasm has surrounded the field of stem cell biology, which has shown great promise in repairing damaged tissues across numerous disease phenotypes. In this review, we provide a comprehensive review of the literature and evaluate the present landscape of wound therapeutics while discussing the rationales and allure behind stem cell-based products. We further propose 2 challenges that remain as new stem cell-based therapies are being developed and as this technology moves toward clinical translation. Given the relatively young age of this newer technology in wound healing, numerous challenges continue to surround its effective use including identifying the ideal population of stem cells to use and determining the optimal cell delivery method. However, significant forward progress has been made, with several clinical trials beginning to demonstrate reliable clinical benefit. The upward trajectory of stem cell technologies provides an exciting opportunity to positively impact patient outcomes through the controlled application of regenerative cell-based therapy.
Qu, Feini; Pintauro, Michael P; Haughan, Joanne E; Henning, Elizabeth A; Esterhai, John L; Schaer, Thomas P; Mauck, Robert L; Fisher, Matthew B
2015-01-01
Repair of dense connective tissues in adults is limited by their intrinsic hypocellularity and is exacerbated by a dense extracellular matrix (ECM) that impedes cellular migration to and local proliferation at the wound site. Conversely, healing in fetal tissues occurs due in part to an environment conducive to cell mobility and division. Here, we investigated whether the application of a degradative enzyme, collagenase, could reprogram the adult wound margin to a more fetal-like state, and thus abrogate the biophysical impediments that hinder migration and proliferation. We tested this concept using the knee meniscus, a commonly injured structure for which few regenerative approaches exist. To focus delivery and degradation to the wound interface, we developed a system in which collagenase was stored inside poly(ethylene oxide) (PEO) electrospun nanofibers and released upon hydration. Through a series of in vitro and in vivo studies, our findings show that partial digestion of the wound interface improves repair by creating a more compliant and porous microenvironment that expedites cell migration to and/or proliferation at the wound margin. This innovative approach of targeted manipulation of the wound interface, focused on removing the naturally occurring barriers to adult tissue repair, may find widespread application in the treatment of injuries to a variety of dense connective tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Halaidych, Oleh V; Freund, Christian; van den Hil, Francijna; Salvatori, Daniela C F; Riminucci, Mara; Mummery, Christine L; Orlova, Valeria V
2018-05-08
Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds
Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman
2014-01-01
Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836
[Local impact of antiseptic medical textile on tissues of organism].
Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V
2013-07-01
Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.
Baseline tests of the AM General DJ-5E electruck electric delivery van
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Tryon, H. B.; Sargent, N. B.
1977-01-01
An electric quarter ton truck designed for use as a postal delivery vehicle was tested to characterize the state of the art of electric vehicles. Vehicle performance test results are presented. It is powered by a single-module, 54 volt industrial battery through a silicon controlled rectifier continuously adjustable controller with regenerative braking applied to a direct current compound wound motor.
Learning from regeneration research organisms: The circuitous road to scar free wound healing.
Erickson, Jami R; Echeverri, Karen
2018-01-15
The skin is the largest organ in the body and plays multiple essential roles ranging from regulating temperature, preventing infection and ultimately defining who we are physically. It is a highly dynamic organ that constantly replaces the outermost cells throughout life. However, when faced with a major injury, human skin cannot restore a significant lesion to its original functionality, instead a reparative scar is formed. In contrast to this, many other species have the unique ability to regenerate full thickness skin without formation of scar tissue. Here we review recent advances in the field that shed light on how the skin cells in regenerative species react to injury to prevent scar formation versus scar forming humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Chitin Scaffolds in Tissue Engineering
Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi
2011-01-01
Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928
Wound Models for Periodontal and Bone Regeneration: the role of biological research
Sculean, Anton; Chapple, Iain L.C.; Giannobile, William V.
2015-01-01
The ultimate goal of periodontal therapy remains the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and to reestablish and sustain a heath promoting biofilm from one characterised by dysbiosis. This volume discusses the multiple facets of a transition during the late 1960’s to the present day, towards regenerative therapies founded upon a clearer understanding of the biophysiology of normal structure and function, rather than empiricism. This introductory manuscript provides an overview on the requirements of appropriate in-vitro laboratory models (e.g. cell culture), of pre-clinical (i.e. animal) models and human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration, but also suffer from a uni-dimensional and simplistic approach that does not account for the complexities of the in vivo situation, where multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches, but outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase. PMID:25867976
Biohydrogels for the In Vitro Re-construction and In Situ Regeneration of Human Skin
NASA Astrophysics Data System (ADS)
Korkina, Liudmila; Kostyuk, Vladimir; Guerra, Liliana
Natural and synthetic biohydrogels are of great interest for the development of innovative medicinal and cosmetic products feasible for the treatment of numerous skin diseases and age-related changes in skin structure and function. Here, the characteristics of bio-resorbable hydrogels as scaffolds for the in vitro re-construction of temporary skin substitutes or full skin equivalents for further transplantation are reviewed. Another fast developing area of regenerative medicine is the in situ regeneration of human skin. The approach is mainly applicable to activate and facilitate the skin regeneration process and angiogenesis in chronic wounds with impaired healing. In this case, extracellular matrix resembling polymers are used to stimulate cell growth, adhesion, and movement. Better results could be achieved by activation of biocompatible hydrogels either with proteins (growth factors, adhesion molecules or/and cytokines) or with allogenic skin cells producing and releasing these molecules. Hydrogels are widely applied as carriers of low molecular weight substances with antioxidant, anti-inflammatory, anti-ageing, and wound healing action. Incorporation of these substances into hydrogels enhances their penetration through the skin barrier and prevents their destruction by oxidation. Potential roles of hydrogel-based products for modern dermatology and cosmetology are also discussed.
Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells.
Wu, Xunwei; Scott, Larry; Washenik, Ken; Stenn, Kurt
2014-12-01
The goal of regenerative medicine is to reconstruct fully functional organs from tissue culture expanded human cells. In this study, we report a method for human reconstructed skin (hRSK) when starting with human cells. We implanted tissue culture expanded human epidermal and dermal cells into an excision wound on the back of immunodeficient mice. Pigmented skin covered the wound 4 weeks after implantation. Hair shafts were visible at 12 weeks and prominent at 14 weeks. Histologically, the hRSK comprises an intact epidermis and dermis with mature hair follicles, sebaceous glands and most notably, and unique to this system, subcutis. Morphogenesis, differentiation, and maturation of the hRSK mirror the human fetal process. Human antigen markers demonstrate that the constituent cells are of human origin for at least 6 months. The degree of new skin formation is most complete when using tissue culture expanded cells from fetal skin, but it also occurs with expanded newborn and adult cells; however, no appendages formed when we grafted both adult dermal and epidermal cells. The hRSK system promises to be valuable as a laboratory model for studying biological, pathological, and pharmaceutical problems of human skin.
Ear wound regeneration in the African spiny mouse Acomys cahirinus
Matias Santos, Dino; Rita, Ana Martins; Casanellas, Ignasi; Brito Ova, Adélia; Araújo, Inês Maria; Power, Deborah
2016-01-01
Abstract While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four‐millimeter‐diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention. PMID:27499879
Held, Manuel; Engelke, Anne-Sophie; Tolzmann, Dascha Sophie; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Rothenberger, Jens
2016-09-01
There is a high prevalence of superficial wounds such as partial-thickness burns. Treatment of these wounds frequently includes temporary application of wound dressings. The aim of this study was to compare a newly developed collagen matrix with commonly used temporary skin dressings for treatment of partial-thickness skin defects. Through a skin dermatome, 42 standardized superficial skin defects were generated on the back of 28 adult male Lewis rats. The wounds were treated with a synthetic wound dressing (Suprathel, Polymedics Innovations Inc, Woodstock, GA) (n = 14), a biosynthetic skin dressing (Biobrane, Smith & Nephew, Hull, UK) (n = 14), or a newly developed bovine collagen matrix, Collagen Cell Carrier (Viscofan BioEngineering, Weinheim, Germany) (n = 14). Biomechanical properties of the skin were determined and compared every 10 days over a 3-month period of using the Cutometer MPA 580 (Courage + Khazaka Electronic GmbH, Cologne, Germany). As opposed to healthy skin, statistically significant differences were detected between days 10 and 30, and between days 60 and 80, for calculated elasticity (Ue), firmness of skin (R0), and overall elasticity (R8). After 3 months, no statistically significant differences in skin elasticity were detected between the different wound dressings. The presented results give an opportunity to compare the wound dressings used for treatment with respect to skin elasticity and reveal the potential of the bovine collagen matrix in the treatment of superficial skin defects; therefore the results facilitate further evaluation of collagen matrix in surgical applications and regenerative medicine.
Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria
2014-01-01
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins. PMID:25251412
Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria
2014-01-01
Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological treatment for wound-healing and tissue regeneration in dolphins.
Oral-Facial Tissue Reconstruction in the Regenerative Axolotl.
Charbonneau, Andre M; Roy, Stephane; Tran, Simon D
2016-12-01
Absence of large amounts of orofacial tissues caused by cancerous resections, congenital defects, or trauma results in sequelae such as dysphagia and noticeable scars. Oral-neck tissue regeneration was studied in the axolotl (regenerative amphibian) following a 2.5-mm punch biopsy that simultaneously removed skin, connective tissue, muscle, and cartilage in the tongue and intermandibular region. The untreated wound was studied macroscopically and histologically at 17 different time points ranging from 0 to180 days (N = 120 axolotls). At 12 hr, the wound's surface was smoothened and within 1mm, internal lingual muscular modifications occurred; at the same distance, between days 4-7 lingual muscle degradation was complete. Immunofluorescence indicates complete keratinocytes migration by 48 hr. These cells with epidermal Leydig cells, appearing yellow, lead the chin's deep tissue outgrowth until its closure on the 14th day. Regeneration speeds varied and peaked in time for each tissue, (1) deep chin 84.3 μm/hr from 24 to 96 hr, (2) superficial chin 71.1 μm/hr from 7-14 days, and (3) tongue 86.0 μm/hr between 48 hr and 7 days. Immunofluorescence to Col IV showed basement membrane reconnected between days 30-45 coinciding with the chin's dermal tissue's surface area recovery. New muscle appeared at 21 days and was always preceded by the formation of a collagen bed. Both chin tissues regain all surface area and practically all components while the lingual structure lacks some content but is generally similar to the original. The methodology and high-resolution observations described here are the first of its kind for this animal model and could serve as a basis for future studies in oral and facial regenerative research. © 2017 Wiley Periodicals, Inc.
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Rubin, Nicole; Harrison, Michael R.; Krainock, Michael; Kim, Richard; Lien, Ching-Ling
2016-01-01
Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models. PMID:27132022
Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya
2015-12-01
The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.
Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide
2015-03-04
production of acellular dermal matrices for clinical use . Wound Repair Regen 12, 276, 2004. 40. Movasaghi, Z., Rehman, S., and Rehman, I.U. Fourier...Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide Jennifer L. Wehmeyer, PhD, Shanmugasundaram Natesan, PhD...and Robert J. Christy, PhD Numerous techniques have been reported for preparing and sterilizing amniotic membrane (AM) for use in clinical
Solomon, Raji Viola; Faizuddin, Umrana; Guniganti, Sushma Shravani; Waghray, Shefali
2015-01-01
Regenerative endodontic procedures are biologically based procedures which deal with the regeneration of pulp-like tissue, more idealistically the pulp-dentin complex. The regeneration of this pulp-dentin complex in an infected necrotic tooth with an open apex is possible only when the canal is effectively disinfected. Though there are various procedures for treating open apex ranging from Ca(OH) 2 apexification, mineral trioxide aggregate apexification and surgical approach, regeneration of tissues has always taken superior hand over the repair of tissues. The mechanics behind the regenerative endodontic procedures is that despite the tooth being necrotic, some pulp tissue can survive apically which under favorable conditions proliferate to aid in the process of regeneration. In the past 2 decades, an increased understanding of the physiological roles of platelets in wound healing and after tissue injury has led to the idea of using platelets as therapeutic tools in the field regenerative endodontics. In the present case report with an open apex, high sterilization protocol is followed using triple antibiotic paste as intra-canal medicament, followed which platelet rich fibrin is used as the regenerative material of choice. Over an 18-month follow-up period, clinically patient is asymptomatic and radiographically there is complete regression of the periapical lesion and initiation of the root end closure.
Platelet-rich-fibrin: A novel root coverage approach
Anilkumar, K.; Geetha, A.; Umasudhakar; Ramakrishnan, T; Vijayalakshmi, R; Pameela, E.
2009-01-01
Treatment of gingival recession has become an important therapeutic issue due to increasing cosmetic demand. Multiple surgical procedures have been developed to obtain predictable esthetic root coverage. More specifically, after periodontal regenerative surgery, the aim is to achieve complete wound healing and regeneration of the periodontal unit. A recent innovation in dentistry is the preparation and use of platelet-rich plasma (PRP), a concentrated suspension of the growth factors, found in platelets. These growth factors are involved in wound healing and postulated as promoters of tissue regeneration. This paper reports the use of PRF membrane for root coverage on the labial surfaces of the mandibular anterior teeth. This was accomplished using laterally displaced flap technique with platelet rich fibrin (PRF) membrane at the recipient site. PMID:20376243
Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.
Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S
2013-03-01
Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.
Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi
2015-03-01
Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. Copyright © 2014 Elsevier Inc. All rights reserved.
Fearmonti, Regina M
2016-07-01
Epidermal skin grafting presents an alternative to traditional autografts since only epidermal skin is harvested from the donor site. Split-thickness skin grafts are associated with difficulties at the donor site, including excessive pain, delayed healing, fluid loss, and unsatisfactory cosmetic results - all exacerbated in patients with comorbidities. A new automated epidermal harvesting tool (CelluTome Epidermal Harvesting System, KCI, an Acelity company, San Antonio, TX) involves concurrent application of heat and suction to normal skin to produce epidermal grafts. This article outlines the author's experience using this automated epidermal harvesting tool to harvest epidermal grafts and apply them on 23 chronic lower extremity wounds of patients with multiple comorbidities. Vacuum and heat were applied until epidermal microdomes were formed (30-45 minutes); an epidermal microdome array was collected onto a transfer dressing and applied over the wound. The automated harvesting tool yielded viable epithelium with every use. In addition to the epidermal skin graft, 16 of 23 wounds (70%) received adjunctive wound treatment, including negative pressure wound therapy, hyperbaric oxygen therapy, and/or regenerative tissue matrix. The average reepithelialization rate was 88.1% during a mean follow-up period of 76.4 days; no use of an anesthetic/operating room was required for the procedure. All donor sites were completely healed within 2 weeks without complications or scarring. Epidermal skin grafting provided a simplified, office-based grafting option with no donor site morbidity, and assisted in closure or size reduction of chronic wounds in this series.
Mast Cells Regulate Wound Healing in Diabetes.
Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis
2016-07-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes. PMID:29534073
Botusan, Ileana Ruxandra; Zheng, Xiaowei; Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan
2018-01-01
IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.
Ertl, Juliane; Pichlsberger, Melanie; Tuca, Alexandru-Cristian; Wurzer, Paul; Fuchs, Jakob; Geyer, Stefan H; Maurer-Gesek, Barbara; Weninger, Wolfgang J; Pfeiffer, Dagmar; Bubalo, Vladimir; Parvizi, Daryousch; Kamolz, Lars-Peter; Lang, Ingrid
2018-05-01
Mesenchymal stem/stromal cells derived from human term placentas (PMSCs) are novel therapeutic agents and more topical than ever. Here we evaluated the effects of three types of PMSCs on wound healing in an in vivo mouse model: Amnion-derived MSCs (AMSCs), blood vessel-derived MSCs (BV-MSCs) from the chorionic plate and Wharton's jelly-derived MSCs (WJ-MSCs) from the umbilical cord. We topically applied PMSCs onto skin wounds in mice using the dermal substitute Matriderm ® as carrier and evaluated wound healing parameters. In addition, we investigated the effects of all PMSC types under co-application with placental endothelial cells (PLECs). After 8 days, we compared the percent of wound closure and the angiogenic potential between all groups. AMSCs, BV-MSCs and WJ-MSCs significantly induced a faster healing and a higher number of blood vessels in the wound when compared to controls (Matriderm ® -alone). PLECs did not further improve the advantageous effects of PMSC-treatment. Quantitative data and 3D analysis by high resolution episcopic microscopy confirmed a lower density of vessels in Matriderm ® /PMSCs/PLECs co-application compared to Matriderm ® /PMSCs treatment. Results indicate that all three PMSC types exert similar beneficial effects on wound closure and neovascularization in our mouse model. Using Matriderm ® as carrier for PMSCs propagates rapid cell migration towards the wound area that allows a fast and clinically practicable method for stem cell application. These promising effects warrant further investigation in clinical trials. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effectiveness of a Crocus sativus Extract on Burn Wounds in Rats.
Alemzadeh, Esmat; Oryan, Ahmad
2018-05-23
Crocus sativus is a spice with various pharmacological properties. Crocin, picrocrocin, and safranal are the main compositions of saffron that have recently been considered in the therapy of many diseases. High-performance liquid chromatography analysis revealed presence of these compounds in our saffron extract. This study was carried out to evaluate the effect of saffron on burn wound healing at an in vivo model. Saffron was topically applied on burn wounds in rats; the percentage of wound closure, wound contraction, and the levels of main cytokines and growth factors were measured. The saffron extract was also applied to evaluate the proliferation and migration of human dermal fibroblast (HDF) cells using in vitro scratch assay and resulted in active proliferation and migration of the HDF cells in a dose-dependent manner. A clear enhanced healing was observed in the saffron-treated wounds compared to the silver sulfadiazine and negative control groups. Decreased expression of interleukin-1 β and transforming growth factor- β 1 (TGF- β 1) during the inflammatory phase demonstrated the role of saffron in promoting wound healing. In addition, enhanced TGF- β 1 expression during the proliferative phase and basic fibroblast growth factor during the remodeling phase represented regenerative and anti-scarring role of saffron, respectively. Our histological and biochemical findings also confirmed that saffron significantly stimulated burn wound healing by modulating healing phases. Therefore, saffron can be an optimal option in promoting skin repair and regeneration. Application of this herbal medicinal drug should be encouraged because of its availability and negligible side effects. Georg Thieme Verlag KG Stuttgart · New York.
Extracellular Matrix Degradation and Remodeling in Development and Disease
Lu, Pengfei; Takai, Ken; Weaver, Valerie M.; Werb, Zena
2011-01-01
The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine. PMID:21917992
Aydogdu, Mehmet Onur; Altun, Esra; Crabbe-Mann, Maryam; Brako, Francis; Koc, Fatma; Ozen, Gunes; Kuruca, Serap Erdem; Edirisinghe, Ursula; Luo, C J; Gunduz, Oguzhan; Edirisinghe, Mohan
2018-05-27
Electrospun nanofibrous scaffolds are promising regenerative wound dressing options but have yet to be widely used in practice. The challenge is that nanofibre productions rely on bench-top apparatuses, and the delicate product integrity is hard to preserve before reaching the point of need. Timing is critically important to wound healing. The purpose of this investigation is to produce novel nanofibrous scaffolds using a portable, hand-held "gun", which enables production at the wound site in a time-dependent fashion, thereby preserving product integrity. We select bacterial cellulose, a natural hydrophilic biopolymer, and polycaprolactone, a synthetic hydrophobic polymer, to generate composite nanofibres that can tune the scaffold hydrophilicity, which strongly affects cell proliferation. Composite scaffolds made of 8 different ratios of bacterial cellulose and polycaprolactone were successfully electrospun. The morphological features and cell-scaffold interactions were analysed using scanning electron microscopy. The biocompatibility was studied using Saos-2 cell viability test. The scaffolds were found to show good biocompatibility and allow different proliferation rates that varied with the composition of the scaffolds. A nanofibrous dressing that can be accurately moulded and standardised via the portable technique is advantageous for wound healing in practicality and in its consistency through mass production. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Creation of a Bioengineered Skin Flap Scaffold with a Perfusable Vascular Pedicle.
Jank, Bernhard J; Goverman, Jeremy; Guyette, Jacques P; Charest, Jon M; Randolph, Mark; Gaudette, Glenn R; Gershlak, Joshua R; Purschke, Martin; Javorsky, Emilia; Nazarian, Rosalynn M; Leonard, David A; Cetrulo, Curtis L; Austen, William G; Ott, Harald C
2017-07-01
Full-thickness skin loss is a challenging problem due to limited reconstructive options, demanding 75 million surgical procedures annually in the United States. Autologous skin grafting is the gold standard treatment, but results in donor-site morbidity and poor aesthetics. Numerous skin substitutes are available on the market to date, however, none truly functions as full-thickness skin due to lack of a vascular network. The creation of an autologous full-thickness skin analogue with a vascular pedicle would result in a paradigm shift in the management of wounds and in reconstruction of full-thickness skin defects. To create a clinically relevant foundation, we generated an acellular skin flap scaffold (SFS) with a perfusable vascular pedicle of clinically relevant size by perfusion decellularization of porcine fasciocutaneous flaps. We then analyzed the yielded SFS for mechanical properties, biocompatibility, and regenerative potential in vitro and in vivo. Furthermore, we assessed the immunological response using an in vivo model. Finally, we recellularized the vascular compartment of an SFS and reconnected it to a recipient's blood supply to test for perfusability. Perfusion decellularization removed all cellular components with preservation of native extracellular matrix composition and architecture. Biaxial testing revealed preserved mechanical properties. Immunologic response and biocompatibility assessed via implantation and compared with native xenogenic skin and commercially available dermal substitutes revealed rapid neovascularization and complete tissue integration. Composition of infiltrating immune cells showed no evidence of allorejection and resembled the inflammatory phase of wound healing. Implantation into full-thickness skin defects demonstrated good tissue integration and skin regeneration without cicatrization. We have developed a protocol for the generation of an SFS of clinically relevant size, containing a vascular pedicle, which can be utilized for perfusion decellularization and, ultimately, anastomosis to the recipient vascular system after precellularization. The observed favorable immunological response and good tissue integration indicate the substantial regenerative potential of this platform.
Kirschning, Andreas; Dibbert, Nick; Dräger, Gerald
2018-01-26
Hydrogels have emerged as a highly interdisciplinary topic as they play a significant role for a vast number of applications. They have been studied extensively as materials for contact lenses, wound dressing and as filler material in soft-tissue augmentation, in which classical polymer backbones such as hydroxyethylmethacrylate (HEMA) are typically employed. More recently, polysaccharides have received attention, particularly in the fields of regenerative medicine and tissue engineering, as ideal candidate materials for artificial extracellular matrices (ECM). The polysaccharides of choice are dextran, alginate, chitosan, hyaluronic acid and pullulan and in order to obtain suitable hydrogels from these polysaccharides, controlled chemical functionalization is of critical importance. This short review summarizes recent developments in the chemical derivatization of polysaccharides to pave the way for crosslinking and to decorate individual polysaccharide chains with bioactive ligands. The report covers convergent and divergent protocols for crosslinking, as well strategies for bisfunctionalization of polysaccharides. Additionally, information on biological properties and biomedical applications are covered. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidisciplinary approaches to stimulate wound healing.
Businaro, Rita; Corsi, Mariangela; Di Raimo, Tania; Marasco, Sergio; Laskin, Debra L; Salvati, Bruno; Capoano, Raffaele; Ricci, Serafino; Siciliano, Camilla; Frati, Giacomo; De Falco, Elena
2016-08-01
New civil wars and waves of terrorism are causing crucial social changes, with consequences in all fields, including health care. In particular, skin injuries are evolving as an epidemic issue. From a physiological standpoint, although wound repair takes place more rapidly in the skin than in other tissues, it is still a complex organ to reconstruct. Genetic and clinical variables, such as diabetes, smoking, and inflammatory/immunological pathologies, are also important risk factors limiting the regenerative potential of many therapeutic applications. Therefore, optimization of current clinical strategies is critical. Here, we summarize the current state of the field by focusing on stem cell therapy applications in wound healing, with an emphasis on current clinical approaches being developed. These involve protocols for the ex vivo expansion of adipose tissue-derived mesenchymal stem cells by means of a patented Good Manufacturing Practice-compliant platelet lysate. Combinations of multiple strategies, including genetic modifications and stem cells, biomimetic scaffolds, and novel vehicles, such as nanoparticles, are also discussed as future approaches. © 2016 New York Academy of Sciences.
Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces
NASA Astrophysics Data System (ADS)
Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo
2016-02-01
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Advancing biomaterials of human origin for tissue engineering
Chen, Fa-Ming; Liu, Xiaohua
2015-01-01
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials. PMID:27022202
Kamran, Zach; Zellner, Katie; Kyriazes, Harry; Kraus, Christine M; Reynier, Jean-Baptiste; Malamy, Jocelyn E
2017-12-19
All animals have mechanisms for healing damage to the epithelial sheets that cover the body and line internal cavities. Epithelial wounds heal either by cells crawling over the wound gap, by contraction of a super-cellular actin cable ("purse string") that surrounds the wound, or some combination of the two mechanisms. Both cell crawling and purse string closure of epithelial wounds are widely observed across vertebrates and invertebrates, suggesting early evolution of these mechanisms. Cnidarians evolved ~600 million years ago and are considered a sister group to the Bilateria. They have been much studied for their tremendous regenerative potential, but epithelial wound healing has not been characterized in detail. Conserved elements of wound healing in bilaterians and cnidarians would suggest an evolutionary origin in a common ancestor. Here we test this idea by characterizing epithelial wound healing in live medusae of Clytia hemisphaerica. We identified cell crawling and purse string-mediated mechanisms of healing in Clytia epithelium that appear highly analogous of those seen in higher animals, suggesting that these mechanisms may have emerged in a common ancestor. Interestingly, we found that epithelial wound healing in Clytia is 75 to >600 times faster than in cultured cells or embryos of other animals previously studied, suggesting that Clytia may provide valuable clues about optimized healing efficiency. Finally, in Clytia, we show that damage to the basement membrane in a wound gap causes a rapid shift between the cell crawling and purse string mechanisms for wound closure. This is consistent with work in other systems showing that cells marginal to a wound choose between a super-cellular actin cable or lamellipodia formation to close wounds, and suggests a mechanism underlying this decision. 1. Cell crawling and purse string mechanisms of epithelial wound healing likely evolved before the divergence of Cnidaria from the bilaterian lineage ~ 600mya 2. In Clytia, the choice between cell crawling and purse string mechanisms of wound healing depends on interactions between the epithelial cells and the basement membrane.
Citrate chemistry and biology for biomaterials design.
Ma, Chuying; Gerhard, Ethan; Lu, Di; Yang, Jian
2018-05-04
Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.
Three-dimensional printing for craniomaxillofacial regeneration.
Gaviria, Laura; Pearson, Joseph J; Montelongo, Sergio A; Guda, Teja; Ong, Joo L
2017-10-01
Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.
Three-dimensional printing for craniomaxillofacial regeneration
2017-01-01
Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth. PMID:29142862
Shi, Hui; Xu, Xiao; Zhang, Bin; Xu, Jiahao; Pan, Zhaoji; Gong, Aihua; Zhang, Xu; Li, Rong; Sun, Yaoxiang; Yan, Yongmin; Mao, Fei; Qian, Hui; Xu, Wenrong
2017-01-01
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) are suggested as a promising therapeutic tool in regenerative medicine, however, their efficacy requires improvement. Small molecules and drugs come up to be a convenient strategy in regulating stem cells fate and function. Here, we evaluated 3,3′-diindolylmethane (DIM), a natural small-molecule compound involved in the repairing effects of hucMSCs on a deep second-degree burn injury rat model. HucMSCs primed with 50 μM of DIM exhibited desirable repairing effects compared with untreated hucMSCs. DIM enhanced the stemness of hucMSCs, which was related to the activation of Wnt/β-catenin signaling. β-catenin inhibition impaired the healing effects of DIM-primed hucMSCs (DIM-hucMSCs) in vivo. Moreover, we demonstrated that DIM upregulated Wnt11 expression in hucMSC-derived exosomes. Wnt11 knockdown inhibited β-catenin activation and stemness induction in DIM-hucMSCs and abrogated their therapeutic effects in vivo. Thus, our findings indicate that DIM promotes the stemness of hucMSCs through increased exosomal Wnt11 autocrine signaling, which provides a novel strategy for improving the therapeutic effects of hucMSCs on wound healing. PMID:28529644
Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman
2016-02-01
Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization. Copyright © 2013 John Wiley & Sons, Ltd.
Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.
Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J
2009-07-01
Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.
Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem
Fawzy El-Sayed, Karim M.; Dörfer, Christof E.
2016-01-01
The human gingiva, characterized by its outstanding scarless wound healing properties, is a unique tissue and a pivotal component of the periodontal apparatus, investing and surrounding the teeth in their sockets in the alveolar bone. In the last years gingival mesenchymal stem/progenitor cells (G-MSCs), with promising regenerative and immunomodulatory properties, have been isolated and characterized from the gingival lamina propria. These cells, in contrast to other mesenchymal stem/progenitor cell sources, are abundant, readily accessible, and easily obtainable via minimally invasive cell isolation techniques. The present review summarizes the current scientific evidence on G-MSCs' isolation, their characterization, the investigated subpopulations, the generated induced pluripotent stem cells- (iPSC-) like G-MSCs, their regenerative properties, and current approaches for G-MSCs' delivery. The review further demonstrates their immunomodulatory properties, the transplantation preconditioning attempts via multiple biomolecules to enhance their attributes, and the experimental therapeutic applications conducted to treat multiple diseases in experimental animal models in vivo. G-MSCs show remarkable tissue reparative/regenerative potential, noteworthy immunomodulatory properties, and primary experimental therapeutic applications of G-MSCs are very promising, pointing at future biologically based therapeutic techniques, being potentially superior to conventional clinical treatment modalities. PMID:27313628
Gradient biomaterials and their influences on cell migration
Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou
2012-01-01
Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610
2013-01-01
Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing. PMID:23547542
Zhang, Wei; Chen, Longkun; Chen, Jialin; Wang, Lingshuang; Gui, Xuexian; Ran, Jisheng; Xu, Guowei; Zhao, Hongshi; Zeng, Mengfeng; Ji, Junfeng; Qian, Li; Zhou, Jianda; Ouyang, Hongwei; Zou, Xiaohui
2017-05-01
Due to its excellent biological and mechanical properties, silk fibroin has been intensively explored for tissue engineering and regenerative medicine applications. However, lack of translational evidence has hampered its clinical application for tissue repair. Here a silk fibroin film is developed and its translational potential is investigated for skin repair by performing comprehensive preclinical and clinical studies to fully evaluate its safety and effectiveness. The silk fibroin film fabricated using all green chemistry approaches demonstrates remarkable characteristics, including transmittance, fluid handling capacity, moisture vapor permeability, waterproofness, bacterial barrier properties, and biocompatibility. In vivo rabbit full-thickness skin defect study shows that the silk fibroin film effectively reduces the average wound healing time with better skin regeneration compared with the commercial wound dressings. Subsequent assessment in porcine model confirms its long-term safety and effectiveness for full-thickness skin defects. Finally, a randomized single-blind parallel controlled clinical trial with 71 patients shows that the silk fibroin film significantly reduces the time to wound healing and incidence of adverse events compared to commercial dressing. Therefore, the study provides systematic preclinical and clinical evidence that the silk fibroin film promotes wound healing thereby establishing a foundation towards its application for skin repair and regeneration in the clinic. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Controlled local drug delivery strategies from chitosan hydrogels for wound healing.
Elviri, Lisa; Bianchera, Annalisa; Bergonzi, Carlo; Bettini, Ruggero
2017-07-01
The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications. A detailed overview of their behavior in terms of controlled drug delivery, divided by drug categories, and efficacy was provided and critically discussed. Expert opinion: The need to establish and exploit the advantages of natural biomaterials in combination with active compounds is playing a pivotal role in the regenerative medicine fields. The challenges posed by the many variables affecting tissue repair and regeneration need to be standardized and adhere to recognized guidelines to improve the quality of evidence in the wound healing process. Currently, different methodologies are followed to prepare innovative scaffold formulations and structures. Innovative technologies such as 3D printing or bio-electrospray are promising to create chitosan-based scaffolds with finely controlled structures with customizable shape porosity and thickness. Chitosan scaffolds could be designed in combination with a variety of polysaccharides or active compounds with selected and reproducible spacial distribution, providing active wound dressing with highly tunable controlled drug delivery.
Seebeck, Florian; März, Martin; Meyer, Anna-Wiebke; Reuter, Hanna; Vogg, Matthias C.; Stehling, Martin; Mildner, Karina; Zeuschner, Dagmar; Rabert, Franziska
2017-01-01
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. PMID:28137894
The early fracture hematoma and its potential role in fracture healing.
Kolar, Paula; Schmidt-Bleek, Katharina; Schell, Hanna; Gaber, Timo; Toben, Daniel; Schmidmaier, Gerhard; Perka, Carsten; Buttgereit, Frank; Duda, Georg N
2010-08-01
Research regarding the potency and potential of the fracture hematoma has begun to receive increasing attention. However, currently there is a paucity of relevant literature on the capability and composition of the fracture hematoma. This review briefly summarizes the regenerative fracture healing process and the close interplay between the skeletal and immune systems. The role of immune cells in wound healing is also discussed to clarify their involvement in immunological processes during regeneration. We attempt to describe the current state of knowledge regarding the fracture hematoma as the initial stage of the regenerative process of fracture healing. The review discusses how a better understanding of immune reactions in the hematoma may have implications for bone tissue engineering strategies. We conclude the review by emphasizing how additional investigations of the initial phase of healing will allow us to better differentiate between deleterious and beneficial aspects of inflammation, thereby facilitating improved fracture treatment strategies.
Wound models for periodontal and bone regeneration: the role of biologic research.
Sculean, Anton; Chapple, Iain L C; Giannobile, William V
2015-06-01
The ultimate goals of periodontal therapy remain the complete regeneration of those periodontal tissues lost to the destructive inflammatory-immune response, or to trauma, with tissues that possess the same structure and function, and the re-establishment of a sustainable health-promoting biofilm from one characterized by dysbiosis. This volume of Periodontology 2000 discusses the multiple facets of a transition from therapeutic empiricism during the late 1960s, toward regenerative therapies, which is founded on a clearer understanding of the biophysiology of normal structure and function. This introductory article provides an overview on the requirements of appropriate in vitro laboratory models (e.g. cell culture), of preclinical (i.e. animal) models and of human studies for periodontal wound and bone repair. Laboratory studies may provide valuable fundamental insights into basic mechanisms involved in wound repair and regeneration but also suffer from a unidimensional and simplistic approach that does not account for the complexities of the in vivo situation, in which multiple cell types and interactions all contribute to definitive outcomes. Therefore, such laboratory studies require validatory research, employing preclinical models specifically designed to demonstrate proof-of-concept efficacy, preliminary safety and adaptation to human disease scenarios. Small animal models provide the most economic and logistically feasible preliminary approaches but the outcomes do not necessarily translate to larger animal or human models. The advantages and limitations of all periodontal-regeneration models need to be carefully considered when planning investigations to ensure that the optimal design is adopted to answer the specific research question posed. Future challenges lie in the areas of stem cell research, scaffold designs, cell delivery and choice of growth factors, along with research to ensure appropriate gingival coverage in order to prevent gingival recession during the healing phase. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Preliminary power train design for a state-of-the-art electric vehicle
NASA Technical Reports Server (NTRS)
Mighdoll, P.; Hahn, W. F.
1978-01-01
Power train designs which can be implemented within the current state-of-the-art were identified by means of a review of existing electric vehicles and suitable off-the-shelf components. The affect of various motor/transmission combinations on vehicle range over the SAE J227a schedule D cycle was evaluated. The selected, state-of-the-art power train employs a dc series wound motor, SCR controller, variable speed transmission, regenerative braking, drum brakes and radial ply tires. Vehicle range over the SAE cycle can be extended by approximately 20% by the further development of separately excited, shunt wound DC motors and electrical controllers. Approaches which could improve overall power train efficiency, such as AC motor systems, are identified. However, future emphasis should remain on batteries, tires and lightweight structures if substantial range improvements are to be achieved.
Characterization and role of the immune response during ligament healing
NASA Astrophysics Data System (ADS)
Chamberlain, Connie S.
Scar formation of ligaments after rupture remains a great challenge. Ligament healing involves a complex, coordinated series of events that form a neo-ligament, which is more disorganized and fibrotic in character than the native tissue. The repair process may extend from months to years, and the injured ligament never fully recovers its original mechanical properties. With little intrinsic healing potential, ruptures of the anterior cruciate ligament (ACL) are usually reconstructed. The "healed" tissues, however, do not regenerate native tissues or recapitulate their mechanical function. ACL grafts often lengthen (incidents range from 40-100%) and their strength can drop by ˜50% after remodeling. Reconstructed knees are often less stable and fail to restore normal joint kinematics. Our overall goal is to improve healing, making ligaments more regenerative. The first 2 studies characterized ligament healing in a spatial and temporal manner over 28 days. The experiments demonstrated creeping substitution and the potential role of the immune system to control the repair and/or regenerative process. From these studies, macrophages were identified as significant players during healing. Macrophages paralleled creeping substitution, were abundant within the healing ligament, and potentially played a destructive role via matrix phagocytosis. The role of macrophages during early ligament healing was then evaluated using liposome-encapsulated clodronate to inhibit phagocytosing macrophages. Clodronate attenuated the early infiltration of macrophages, resulting in delayed structural and functional healing. Macrophage re-infiltration into the wound resulted in continued ligament healing. These results suggested that early inhibition of phagocytosing macrophages is detrimental to ligament healing. The final experiment evaluated the effects of interleukin-4 on ligament healing. Interleukin-4 (IL-4) is reported to stimulate the Th2 lymphocyte/M2 macrophage pathway, reducing inflammation and stimulating remodeling. IL-4 dose- and time-dependently stimulated early ligament regeneration but was unable to maintain the response during later healing. In summary, this work demonstrated the association between the immune cells and ligament healing, indicating a potential for obtaining a more regenerative response by modulating the immune response in a time, dose, and spatial manner.
Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes
Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357
Effect of platelet lysate on human cells involved in different phases of wound healing.
Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
Zondag, Lisa E; Rutherford, Kim; Gemmell, Neil J; Wilson, Megan J
2016-02-16
Regenerative capacity differs greatly between animals. In vertebrates regenerative abilities are highly limited and tissue or organ specific. However the closest related chordate to the vertebrate clade, Botrylloides leachi, can undergo whole body regeneration (WBR). Therefore, research on WBR in B. leachi has focused on pathways known to be important for regeneration in vertebrates. To obtain a comprehensive vision of this unique process we have carried out the first de novo transcriptome sequencing for multiple stages of WBR occurring in B. leachi. The identified changes in gene expression during B. leachi WBR offer novel insights into this remarkable ability to regenerate. The transcriptome of B. leachi tissue undergoing WBR were analysed using differential gene expression, gene ontology and pathway analyses. We observed up-regulation in the expression of genes involved in wound healing and known developmental pathways including WNT, TGF-β and Notch, during the earliest stages of WBR. Later in WBR, the expression patterns in several pathways required for protein synthesis, biogenesis and the organisation of cellular components were up-regulated. While the genes expressed early on are characteristic of a necessary wound healing response to an otherwise lethal injury, the subsequent vast increase in protein synthesis conceivably sustains the reestablishment of the tissue complexity and body axis polarity within the regenerating zooid. We have, for the first time, provided a global overview of the genes and their corresponding pathways that are modulated during WBR in B. leachi.
zic-1 Expression in Planarian Neoblasts after Injury Controls Anterior Pole Regeneration
Vásquez-Doorman, Constanza; Petersen, Christian P.
2014-01-01
Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth. PMID:24992682
Thomasova, Dana; Mulay, Shrikant R; Bruns, Hauke; Anders, Hans-Joachim
2012-01-01
Murine double minute-2 (MDM2) is an intracellular molecule with multiple biologic functions. It serves as a negative regulator of p53 and thereby limits cell cycle arrest and apoptosis. Because MDM2 blockade suppresses tumor cell growth in vitro and in vivo, respective MDM2 inhibition is currently evaluated as anti-cancer therapy in clinical trials. However, the anti-proliferative effects of MDM2 inhibition also impair regenerative cell growth upon tissue injury. This was so far documented for tubular repair upon postischemic acute kidney injury and might apply to wound healing responses in general. Furthermore, MDM2 has numerous p53-independent effects. As a new entry, MDM2 was identified to act as a co-transcription factor for nuclear factor-kappa-light-enhancer of activated B cells (NF-κB) at cytokine promoters. This explains the potent anti-inflammatory effects of MDM2 inhibitors in vitro and in vivo. For example, the NF-κB-antagonistic and p53-agonistic activities of MDM2 inhibitors elicit potent therapeutic effects on experimental lymphoproliferative autoimmune disorders such as systemic lupus erythematosus. In this review, we discuss the classic p53-dependent, the recently discovered p53-independent, and the NF-κB-agonistic biologic functions of MDM2. We describe its complex regulatory role on p53 and NF-κB signaling and name areas of research that may help to foresee previously unexpected effects or potential alternative indications of therapeutic MDM2 blockade. PMID:23308042
Perspective: Neuroregenerative Nutrition.
Steindler, Dennis A; Reynolds, Brent A
2017-07-01
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan). © 2017 American Society for Nutrition.
Moghadam, Sara E; Ebrahimi, Samad N; Salehi, Peyman; Moridi Farimani, Mahdi; Hamburger, Matthias; Jabbarzadeh, Ehsan
2017-09-08
Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3- O -β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica , followed by an analysis of the biological effects of myricetin-3- O -β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3- O -β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3- O -β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3- O -β-rhamnoside and chlorogenic acid.
Moghadam, Sara E.; Ebrahimi, Samad N.; Salehi, Peyman; Farimani, Mahdi Moridi; Hamburger, Matthias; Jabbarzadeh, Ehsan
2017-01-01
Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 μg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 μg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid. PMID:28885580
Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay
2014-04-01
Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.
Abuqarn, Mehtap; Allmeling, Christina; Amshoff, Inga; Menger, Bjoern; Nasser, Inas; Vogt, Peter M; Reimers, Kerstin
2011-07-01
Urodele amphibians are exceptional in their ability to regenerate complex body structures such as limbs. Limb regeneration depends on a process called dedifferentiation. Under an inductive wound epidermis terminally differentiated cells transform to pluripotent progenitor cells that coordinately proliferate and eventually redifferentiate to form the new appendage. Recent studies have developed molecular models integrating a set of genes that might have important functions in the control of regenerative cellular plasticity. Among them is Msx1, which induced dedifferentiation in mammalian myotubes in vitro. Herein, we screened for interaction partners of axolotl Msx1 using a yeast two hybrid system. A two hybrid cDNA library of 5-day-old wound epidermis and underlying tissue containing more than 2×10⁶ cDNAs was constructed and used in the screen. 34 resulting cDNA clones were isolated and sequenced. We then compared sequences of the isolated clones to annotated EST contigs of the Salamander EST database (BLASTn) to identify presumptive orthologs. We subsequently searched all no-hit clone sequences against non redundant NCBI sequence databases using BLASTx. It is the first time, that the yeast two hybrid system was adapted to the axolotl animal model and successfully used in a screen for proteins interacting with Msx1 in the context of amphibian limb regeneration. 2011 Elsevier B.V. All rights reserved.
Synthetic Hydrogels for Human Intestinal Organoid Generation and Colonic Wound Repair
Cruz-Acuña, Ricardo; Quirós, Miguel; Farkas, Attila E.; Dedhia, Priya H.; Huang, Sha; Siuda, Dorothée; García-Hernández, Vicky; Miller, Alyssa J.; Spence, Jason R.; Nusrat, Asma; García, Andrés J.
2017-01-01
In vitro differentiation of human intestinal organoids (HIOs) from pluripotent stem cells is an unparalleled system for creating complex, multi-cellular 3D structures capable of giving rise to tissue analogous to native human tissue. Current methods for generating HIOs rely on growth in an undefined tumor-derived extracellular matrix (ECM), which severely limits use of organoid technologies for regenerative and translational medicine. Here, we developed a fully defined, synthetic hydrogel based on a four-armed, maleimide-terminated poly(ethylene glycol) macromer that supports robust and highly reproducible in vitro growth and expansion of HIOs such that 3D structures are never embedded in tumor-derived ECM. We also demonstrate that the hydrogel serves as an injectable HIO vehicle that can be delivered into injured intestinal mucosa resulting in HIO engraftment and improved colonic wound repair. Together, these studies show proof-of-concept that HIOs may be used therapeutically to treat intestinal injury. PMID:29058719
Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming
2013-01-01
Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545
Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine
Lorden, Elizabeth R.; Levinson, Howard M.; Leong, Kam W.
2013-01-01
Regenerative medicine has the potential to drastically change the field of health care from reactive to preventative and restorative. Exciting advances in stem cell biology and cellular reprogramming have fueled the progress of this field. Biochemical cues in the form of small molecule drugs, growth factors, zinc finger protein transcription factors and nucleases, transcription activator-like effector nucleases, monoclonal antibodies, plasmid DNA, aptamers, or RNA interference agents can play an important role to influence stem cell differentiation and the outcome of tissue regeneration. Many of these biochemical factors are fragile and must act intracellularly at the molecular level. They require an effective delivery system, which can take the form of a scaffold (e.g. hydrogels and electrospun fibers), carrier (viral and nonviral), nano- and micro-particle, or genetically modified cell. In this review, we will discuss the history and current technologies of drug, protein and gene delivery in the context of regenerative medicine. Next we will present case examples of how delivery technologies are being applied to promote angiogenesis in non-healing wounds or prevent angiogenesis in age related macular degeneration. Finally, we will conclude with a brief discussion of the regulatory pathway from bench-to-bedside for the clinical translation of these novel therapeutics. PMID:25787742
Cacialli, Pietro; Palladino, Antonio; Lucini, Carla
2018-06-01
Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.
Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration
NASA Astrophysics Data System (ADS)
Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris
2017-02-01
Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.
Efficient Purification and Optimization of Wnt3a, a Novel Therapeutic for Tissue Regeneration
NASA Astrophysics Data System (ADS)
Madhav, D.; Helms, J.; Dhamdhere, G.
2012-12-01
Wnt is a secreted protein that is present naturally in the body. When an organism is injured the amount of Wnt in the affected area increases. This protein acts as an activator of adult stem cells and signals them to begin differentiating and proliferating. This stem cell response augments the ongoing efforts of injured cells to heal faster by becoming the cells that were damaged by the injury. Adult stem cells play a great role in the healing of wounds, but as organisms age the amount of stem cells in their body decreases. This decrease, in effect, slows the healing of injuries because no stem cells are present to help the regenerative efforts of the body. The Wnt protein induces these stem cells not only to differentiate and proliferate, but also to self-replicate. The ability of Wnt to induce adult stem cells to self -replicate gives us an option to use the protein as a potential tissue regenerative drug. Post-translational Wnt has a lipid modification that makes the protein insoluble in water. To overcome this we fuse the protein with a liposome. A liposome is a lipid sphere with an aqueous center and a phospholipid membrane. The Wnt protein does not lose its function when joined with a liposome. Using this knowledge we can develop a viable means to inject the Wnt protein directly into organisms. The big problem now is to make enough purified Wnt to manufacture on a large scale.
Cianci, Eleonora; Recchiuti, Antonio; Trubiani, Oriana; Diomede, Francesca; Marchisio, Marco; Miscia, Sebastiano; Colas, Romain A.; Dalli, Jesmond; Serhan, Charles N.
2016-01-01
Unresolved inflammation and tissue destruction are underlying mechanisms of periodontitis, which is linked to dysregulated polymorphonuclear neutrophil (PMN) functions. Lipoxin A4 (LXA4) is a specialized proresolving lipid mediator (SPM) that dampens excessive inflammation, promotes resolution, and protects from leukocyte-mediated tissue damage. Human periodontal ligament stem cells (hPDLSCs) represent key players during tissue regeneration and may contribute to resolution of inflammation; thus, they may represent a promising tool in regenerative dentistry. In the present study, we investigated the actions of hPDLSCs on PMN apoptosis and antimicrobial functions, and determined the impact of LXA4 on hPDLSCs. hPDLSCs significantly reduced apoptosis and stimulated microbicidal activity of human PMNs, via both cell-cell interactions and paracrine mechanisms. Lipid mediator metabololipidomics analysis demonstrated that hPDLSCs biosynthesize SPMs, including resolvin D1, D2, D5, and D6; protectin D1; maresins; and LXB4; as well as prostaglandins D2, E2, and F2α. LXA4 significantly enhanced proliferation, migration, and wound healing capacity of hPDLSCs through the activation of its cognate receptor ALX/FPR2, expressed on hPDLSCs. Together, these results demonstrate that hPDLSCs modulate PMN functions, and provide the first evidence that stem cells generate SPM and that the LXA4-ALX/FPR2 axis regulates regenerative functions of hPDLSCs by a novel receptor-mediated mechanism. Significance These findings uncovered unappreciated features of stem cells from the periodontal ligament, supporting the notion that these cells may act as master regulators of pathophysiological events through the release of mediators that promote the resolution of inflammation and bacterial killing. The study also demonstrated that it is possible to modulate important functions of periodontal stem cells using lipoxin A4, a potent endogenous stop signal of inflammation. Thus, this study revealed an unappreciated anti-inflammatory proregenerative circuit that may be exploited to combat periodontal pathologies using resident stem cells. Moreover, the data may represent a more general template to explain the immunomodulatory functions of stem cells. PMID:26607175
Verification test of the Battronic Truck Volta Electric Pickup. Report for Jul 80-Jan 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowgiallo, E.J. Jr; Snellings, I.R.; Chapman, R.D.
1982-04-01
The Volta Pickup is an electric 1/2-ton truck manufactured by the Battronic Truck Co. It was tested by MERADCOM at Fort Belvoir, Virginia as part of a Department of Energy project to verify conformity to performance standards of electric vehicles. The verification test results are presented in this report. The Volta Pickup is powered by 24 6-V lead-acid batteries, has a 38 hp series wound d.c. motor, SCR chopper controller, regenerative braking, and a 2-speed Helical gear transmission.
Baseline tests of the EVA change-of-pace coupe electric passenger vehicle
NASA Technical Reports Server (NTRS)
Bozek, J. M.; Maslowski, E. A.; Dustin, M. O.
1977-01-01
The EVA Change-of-Pace Coupe, is an electric passenger vehicle, to characterize the state-of-the-art of electric vehicles. The EVA Change-of-Pace Coupe is a four passenger sedan that has been coverted to an electric vehicle. It is powered by twenty 6 volt traction batteries through a silicon controlled rectifier chopper controller actuated by a foot throttle to change the voltage applied to the series wound, direct current motor. Braking is accomplished with a vacuum assist hydraulic braking system. Regenerative braking is also provided.
Nanotechnology applications in plastic and reconstructive surgery: a review.
Parks, Joe; Kath, Melissa; Gabrick, Kyle; Ver Halen, Jon Peter
2012-01-01
Although nanotechnology is a relatively young field, there are already countless biomedical applications. Plastic and reconstructive surgery has significantly benefited from nanoscale refinements of diagnostic and therapeutic techniques. Plastic surgery is an incredibly diverse specialty, encompassing craniofacial surgery, hand surgery, cancer/trauma/congenital reconstruction, burn care, and aesthetic surgery. In particular, wound care, topical skin care, implant and prosthetic design, tissue engineering, regenerative medicine, and drug delivery have all been influenced by advances in nanotechnology. Nanotechnology will continue to witness growth and expansion of its biomedical applications, especially those in plastic surgery.
Therapeutic potential of nanoceria in regenerative medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Soumen; Chigurupati, Srinivasulu; Dowding, Janet
Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging or trauma. Advancement of tissue engineering requires innovation in the field of 3D scaffolding, and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates which can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceriamore » permits a small dose to remain catalytically active for extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.« less
Growth factor-functionalized silk membranes support wound healing in vitro.
Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S
2017-08-16
Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.
Chen, Lei; Xing, Qi; Zhai, Qiyi; Tahtinen, Mitchell; Zhou, Fei; Chen, Lili; Xu, Yingbin; Qi, Shaohai; Zhao, Feng
2017-01-01
Split thickness skin graft (STSG) implantation is one of the standard therapies for full thickness wound repair when full thickness autologous skin grafts (FTG) or skin flap transplants are inapplicable. Combined transplantation of STSG with dermal substitute could enhance its therapeutic effects but the results remain unsatisfactory due to insufficient blood supply at early stages, which causes graft necrosis and fibrosis. Human mesenchymal stem cell (hMSC) sheets are capable of accelerating the wound healing process. We hypothesized that pre-vascularized hMSC sheets would further improve regeneration by providing more versatile angiogenic factors and pre-formed microvessels. In this work, in vitro cultured hMSC cell sheets (HCS) and pre-vascularized hMSC cell sheets (PHCS) were implanted in a rat full thickness skin wound model covered with an autologous STSG. Results demonstrated that the HCS and the PHCS implantations significantly reduced skin contraction and improved cosmetic appearance relative to the STSG control group. The PHCS group experienced the least hemorrhage and necrosis, and lowest inflammatory cell infiltration. It also induced the highest neovascularization in early stages, which established a robust blood micro-circulation to support grafts survival and tissue regeneration. Moreover, the PHCS grafts preserved the largest amount of skin appendages, including hair follicles and sebaceous glands, and developed the smallest epidermal thickness. The superior therapeutic effects seen in PHCS groups were attributed to the elevated presence of growth factors and cytokines in the pre-vascularized cell sheet, which exerted a beneficial paracrine signaling during wound repair. Hence, the strategy of combining STSG with PHCS implantation appears to be a promising approach in regenerative treatment of full thickness skin wounds.
Corneal Nerves in Health and Disease
Shaheen, Brittany; Bakir, May; Jain, Sandeep
2013-01-01
Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuro-regenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuro-regenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367
Delivery of growth factors for tissue regeneration and wound healing.
Koria, Piyush
2012-06-01
Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.
Striated Muscle Function, Regeneration, and Repair
Shadrin, I.Y.; Khodabukus, A.; Bursac, N.
2016-01-01
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751
A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1996-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.
A novel unitized regenerative proton exchange membrane fuel cell
NASA Technical Reports Server (NTRS)
Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.
1995-01-01
A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
Tail regeneration and other phenomena of wound healing and tissue restoration in lizards.
Jacyniak, Kathy; McDonald, Rebecca P; Vickaryous, Matthew K
2017-08-15
Wound healing is a fundamental evolutionary adaptation with two possible outcomes: scar formation or reparative regeneration. Scars participate in re-forming the barrier with the external environment and restoring homeostasis to injured tissues, but are well understood to represent dysfunctional replacements. In contrast, reparative regeneration is a tissue-specific program that near-perfectly replicates that which was lost or damaged. Although regeneration is best known from salamanders (including newts and axolotls) and zebrafish, it is unexpectedly widespread among vertebrates. For example, mice and humans can replace their digit tips, while many lizards can spontaneously regenerate almost their entire tail. Whereas the phenomenon of lizard tail regeneration has long been recognized, many details of this process remain poorly understood. All of this is beginning to change. This Review provides a comparative perspective on mechanisms of wound healing and regeneration, with a focus on lizards as an emerging model. Not only are lizards able to regrow cartilage and the spinal cord following tail loss, some species can also regenerate tissues after full-thickness skin wounds to the body, transections of the optic nerve and even lesions to parts of the brain. Current investigations are advancing our understanding of the biological requirements for successful tissue and organ repair, with obvious implications for biomedical sciences and regenerative medicine. © 2017. Published by The Company of Biologists Ltd.
The anatomy and histology of caudal autotomy and regeneration in lizards.
Gilbert, Emily A B; Payne, Samantha L; Vickaryous, Matthew K
2013-01-01
Abstract Caudal autotomy-the ability to self-detach the tail-is a dramatic adaptation common to many structural-grade lizards. For most species, tail loss is followed by the equally dramatic phenomenon of tail regeneration. Here we review the anatomy and histology of caudal autotomy and regeneration in lizards, drawing heavily from research published over the past 2 decades. The autotomous tail is characterized by various structural adaptations, which act to minimize blood loss and trauma to adjacent tissues. The early phase of wound healing involves a leukocytic response but limited inflammation. Reepithelialization via a specialized wound epithelium is not only critical for scar-free healing but also necessary for subsequent tissue patterning and regenerative outgrowth. Regeneration begins with the formation of the blastema, a mass of proliferating mesenchymal-like cells. As the blastema expands, it is invaded by blood vessels and the spinal cord. Whereas the replacement tail outwardly resembles the original appendage, it differs in several notable respects, including the tissue composition and organization of the skeleton, muscular system, and spinal cord. Increasingly, the lizard tail is being recognized among biomedical scientists as an important model for the study of wound healing and multitissue restoration.
Therapeutic potential of electromagnetic fields for tissue engineering and wound healing.
Saliev, T; Mustapova, Z; Kulsharova, G; Bulanin, D; Mikhalovsky, S
2014-12-01
Ability of electromagnetic fields (EMF) to stimulate cell proliferation and differentiation has attracted the attention of many laboratories specialized in regenerative medicine over the past number of decades. Recent studies have shed light on bio-effects induced by the EMF and how they might be harnessed to help control tissue regeneration and wound healing. Number of recent reports suggests that EMF has a positive impact at different stages of healing. Processes impacted by EMF include, but are not limited to, cell migration and proliferation, expression of growth factors, nitric oxide signalling, cytokine modulation, and more. These effects have been detected even during application of low frequencies (range: 30-300 kHz) and extremely low frequencies (range: 3-30 Hz). In this regard, special emphasis of this review is the applications of extremely low-frequency EMFs due to their bio-safety and therapeutic efficacy. The article also discusses combinatorial effect of EMF and mesenchymal stem cells for treatment of neurodegenerative diseases and bone tissue engineering. In addition, we discuss future perspectives of application of EMF for tissue engineering and use of metal nanoparticles activated by EMF for drug delivery and wound dressing. © 2014 John Wiley & Sons Ltd.
Zhao, Yannan; Tang, Fengwu; Xiao, Zhifeng; Han, Guang; Wang, Nuo; Yin, Na; Chen, Bing; Jiang, Xianfeng; Yun, Chen; Han, Wanjun; Zhao, Changyu; Cheng, Shixiang; Zhang, Sai; Dai, Jianwu
2017-01-01
Regeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI. In this study, eight patients with chronic complete SCI were enrolled to examine the safety and efficacy of implanting NeuroRegen scaffold with human umbilical cord mesenchymal stem cells (hUCB-MSCs). Using intraoperative neurophysiological monitoring, we identified and surgically resected scar tissues to eliminate the inhibitory effect of glial scarring on nerve regeneration. We then implanted NeuroRegen scaffold loaded with hUCB-MSCs into the resection sites. No adverse events (infection, fever, headache, allergic reaction, shock, perioperative complications, aggravation of neurological status, or cancer) were observed during 1 year of follow-up. Primary efficacy outcomes, including expansion of sensation level and motor-evoked potential (MEP)-responsive area, increased finger activity, enhanced trunk stability, defecation sensation, and autonomic neural function recovery, were observed in some patients. Our findings suggest that combined application of NeuroRegen scaffold and hUCB-MSCs is safe and feasible for clinical therapy in patients with chronic SCI. Our study suggests that construction of a regenerative microenvironment using a scaffold-based strategy may be a possible future approach to SCI repair. PMID:28185615
Saura-Mas, S; Lloret, F
2007-03-01
Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.
Craniofacial Wound Healing with Photobiomodulation Therapy: New Insights and Current Challenges.
Arany, P R
2016-08-01
The fundamental pathophysiologic response for the survival of all organisms is the process of wound healing. Inadequate or lack of healing constitutes the etiopathologic basis of many oral and systemic diseases. Among the numerous efforts to promote wound healing, biophotonics therapies have shown much promise. Advances in photonic technologies and a better understanding of light-tissue interactions, from parallel biophotonics fields such as in vivo optical imaging and optogenetics, are spearheading their popularity in biology and medicine. Use of high-dose lasers and light devices in dermatology, ophthalmology, oncology, and dentistry are now popular for specific clinical applications, such as surgery, skin rejuvenation, ocular and soft tissue recontouring, and antitumor and antimicrobial photodynamic therapy. However, a less well-known clinical application is the therapeutic use of low-dose biophotonics termed photobiomodulation (PBM) therapy, which is aimed at alleviating pain and inflammation, modulating immune responses, and promoting wound healing and tissue regeneration. Despite significant volumes of scientific literature from clinical and laboratory studies noting the phenomenological evidence for this innovative therapy, limited mechanistic insights have prevented rigorous and reproducible PBM clinical protocols. This article briefly reviews current evidence and focuses on gaps in knowledge to identify potential paths forward for clinical translation with PBM therapy with an emphasis on craniofacial wound healing. PBM offers a novel opportunity to examine fundamental nonvisual photobiological processes as well as develop innovative clinical therapies, thereby presenting an opportunity for a paradigm shift from conventional restorative/prosthetic approaches to regenerative modalities in clinical dentistry. © International & American Associations for Dental Research 2016.
Balaji, Swathi; Moles, Chad M.; Bhattacharya, Sukanta S.; LeSaint, Maria; Dhamija, Yashu; Le, Louis D.; King, Alice; Kidd, Mykia; Bouso, Muhammad F.; Shaaban, Aimen; Crombleholme, Timothy M.; Bollyky, Paul; Keswani, Sundeep G.
2015-01-01
Background Anti-inflammatory cytokine interleukin (IL)-10 has been shown to induce regenerative healing in postnatal wounds. A viral homolog of IL-10 produced by human cytomegalovirus (CMV IL-10) similarly generates potent immunoregulatory effects, but its effects on wound healing have not been investigated. Currently, there are limited cost-effective methods of screening vulnerary therapeutics. Taken together, we aim to develop and validate a novel human ex vivo dermal wound model and hypothesize that CMV IL-10 will enhance dermal wound healing. Methods Full-thickness circular (6-mm) explants were taken from surgical skin samples and 3-mm full-thickness wounds were created. Explants were embedded in collagen I matrix and maintained in specially formulated media with the epidermis at air–liquid interface, and treated with human IL-10 or CMV IL-10 (200 ng/mL). The viability of cultured explants was validated by histology and lactate dehydrogenase (LDH) activity. Epithelial gap, epithelial height, basal keratinocyte migration, vascular endothelial growth factor levels, and neovascularization were measured at days 3 and 7 to determine IL-10 effects on wound healing. Results Culture explants at day 7 appeared similar to fresh skin in morphology, cell, and vessel density. By day 14, the epidermis separated from the dermis and the cell density diminished. Day 7 wounds appeared viable with advancing epithelial and basal keratinocyte migration with no evidence of necrosis. Cytotoxicity analysis via the quantification of LDH revealed no differences between controls and treated groups. There was a slight increase in the quantity of LDH in media at day 3; however, this decreased at day 5 and continued to decline up to day 21. CMV IL-10 treatment resulted in a significant decrease in the epithelial gap and an increase in epithelial height. There were no differences in the rates of basal keratinocyte migration at day 7 between treated and control groups. Interestingly, human IL-10 increased vascular endothelial growth factor expression and neovascularization compared with controls. Conclusions The human ex vivo wound model provides a simple and viable design to study dermal wound healing. Both IL-10 homologs demonstrate vulnerary effects. The viral homolog demonstrates enhanced effects on wound closure compared with human IL-10. These data represent a novel tool that can be used to screen therapeutics, such as CMV IL-10, before preclinical studies. PMID:24814764
Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John
2017-03-15
Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds. Copyright © 2017. Published by Elsevier Ltd.
Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta
2016-01-01
Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103
NASA Astrophysics Data System (ADS)
Felgueiras, H. P.; Amorim, M. T. P.
2017-10-01
Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.
Regenerative Rehabilitation – a New Future?
Perez-Terzic, Carmen; Childers, Martin K.
2014-01-01
Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future healthcare, the roll-out of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of “regenerative rehabilitation” brings radical innovations at the forefront of healthcare blueprints. PMID:25310603
Using stem cell biology to study and treat ophthalmologic and oculoplastic diseases
Wu, Albert Y.; Daniel, Michael G.
2017-01-01
With the rapid growth of the stem cell biology field, the prospect of regenerative medicine across multiple tissue types comes closer to reality. Several groundbreaking steps paved the way for applying stem cell biology to the several subfields within ophthalmology and oculoplastic surgery. These steps include the use of stem cell transplants as well as studies of various ophthalmologic pathologies at the molecular level. The necessity of stem cell transplant is readily apparent, having already been used for several studies such as artificial lacrimal gland design and eyelid reconstruction. Investigating the stem cell biology behind oncological diseases of the eye has also developed recently, such as with the identification of specific markers to label cancer stem cells in orbital adenoid cystic carcinoma. The advent of induced pluripotent stem cells led to a burst of productivity in the field of regenerative medicine, making it possible to take a patient's own cells, reprogram them, and use them to either study patient-specific pathology in vitro or use them for eventual patient specific therapeutics. Patient-specific adipose-derived stem cells (ASCs) have been used for a variety of treatments, such as wound healing and burn therapies. As the fields of stem cell biology and regenerative medicine continue to progress, its use will become a mainstay of patient-specific cell therapies in the future. PMID:29018761
Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells
Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan
2016-01-01
Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets. PMID:25797152
Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation.
Moritz, Chet T; Ambrosio, Fabrisia
2017-07-01
The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue engineering technologies hold the possibility of becoming the standard of care for a multitude of diseases and injuries. Advances in regenerative biology reveal novel molecular and cellular targets, with potential to optimize tissue healing and functional recovery, thereby refining rehabilitation clinical practice. The purpose of this review is to (1) highlight the potential for synergy between the fields of regenerative medicine and rehabilitation, a convergence of disciplines known as regenerative rehabilitation; (2) provide translational examples of regenerative rehabilitation within the context of neuromuscular injuries and diseases; and (3) offer recommendations for ways to leverage activity dependence via combined therapy and technology, with the goal of enhancing long-term recovery. The potential clinical benefits of regenerative rehabilitation will likely become a critical aspect in the standard of care for many neurological and musculoskeletal disorders.
The Pharmacology of Regenerative Medicine
Saul, Justin M.; Furth, Mark E.; Andersson, Karl-Erik
2013-01-01
Regenerative medicine is a rapidly evolving multidisciplinary, translational research enterprise whose explicit purpose is to advance technologies for the repair and replacement of damaged cells, tissues, and organs. Scientific progress in the field has been steady and expectations for its robust clinical application continue to rise. The major thesis of this review is that the pharmacological sciences will contribute critically to the accelerated translational progress and clinical utility of regenerative medicine technologies. In 2007, we coined the phrase “regenerative pharmacology” to describe the enormous possibilities that could occur at the interface between pharmacology, regenerative medicine, and tissue engineering. The operational definition of regenerative pharmacology is “the application of pharmacological sciences to accelerate, optimize, and characterize (either in vitro or in vivo) the development, maturation, and function of bioengineered and regenerating tissues.” As such, regenerative pharmacology seeks to cure disease through restoration of tissue/organ function. This strategy is distinct from standard pharmacotherapy, which is often limited to the amelioration of symptoms. Our goal here is to get pharmacologists more involved in this field of research by exposing them to the tools, opportunities, challenges, and interdisciplinary expertise that will be required to ensure awareness and galvanize involvement. To this end, we illustrate ways in which the pharmacological sciences can drive future innovations in regenerative medicine and tissue engineering and thus help to revolutionize the discovery of curative therapeutics. Hopefully, the broad foundational knowledge provided herein will spark sustained conversations among experts in diverse fields of scientific research to the benefit of all. PMID:23818131
Thompson, William R.; Scott, Alexander; Loghmani, M. Terry; Ward, Samuel R.
2016-01-01
Achieving functional restoration of diseased or injured tissues is the ultimate goal of both regenerative medicine approaches and physical therapy interventions. Proper integration and healing of the surrogate cells, tissues, or organs introduced using regenerative medicine techniques are often dependent on the co-introduction of therapeutic physical stimuli. Thus, regenerative rehabilitation represents a collaborative approach whereby rehabilitation specialists, basic scientists, physicians, and surgeons work closely to enhance tissue restoration by creating tailored rehabilitation treatments. One of the primary treatment regimens that physical therapists use to promote tissue healing is the introduction of mechanical forces, or mechanotherapies. These mechanotherapies in regenerative rehabilitation activate specific biological responses in musculoskeletal tissues to enhance the integration, healing, and restorative capacity of implanted cells, tissues, or synthetic scaffolds. To become future leaders in the field of regenerative rehabilitation, physical therapists must understand the principles of mechanobiology and how mechanotherapies augment tissue responses. This perspective article provides an overview of mechanotherapy and discusses how mechanical signals are transmitted at the tissue, cellular, and molecular levels. The synergistic effects of physical interventions and pharmacological agents also are discussed. The goals are to highlight the critical importance of mechanical signals on biological tissue healing and to emphasize the need for collaboration within the field of regenerative rehabilitation. As this field continues to emerge, physical therapists are poised to provide a critical contribution by integrating mechanotherapies with regenerative medicine to restore musculoskeletal function. PMID:26637643
25th anniversary article: supramolecular materials for regenerative medicine.
Boekhoven, Job; Stupp, Samuel I
2014-03-19
In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jain, Rishabh; Agarwal, Ankit; Kierski, Patricia R.; Schurr, Michael J.; Murphy, Christopher J.; McAnulty, Jonathan F.; Abbott, Nicholas L.
2012-01-01
The development of versatile methods that provide spatial and temporal control over the presentation of physical and biochemical cues on wound beds can lead to new therapeutic approaches that expedite wound healing by favorably influencing cellular behaviors. Towards that goal, we report that native chemical functional groups presented by wound beds can be utilized for direct covalent attachment of polymeric microbeads. Specifically, we demonstrated the covalent attachment of maleimide-functionalized and catechol-functionalized microbeads, made of either polystyrene (non-degradable) or poly(lactic-co-glycolic acid) ((PLGA), degradable), to sulfhydryl and amine groups present on porcine dermis used here as an ex vivo model wound bed. A pronounced increase (10–70 fold) in the density and persistence of the covalently reactive microbeads was observed relative to microbeads that adsorb via non-covalent interactions. Complementary characterization of the surface chemistry of the ex vivo wound beds using Raman microspectroscopy provides support for our conclusion that the increased adherence of the maleimide-functionalized beads results from their covalent bond formation with sulfhydryl groups on the wound bed. The attachment of maleimide-functionalized microbeads to wounds created in live wild-type and diabetic mice led to observations of differential immobilization of microbeads on them and were consistent with anticipated differences in the presentation of sulfhydryl groups on the two different wound types. Finally, the incorporation of maleimide-functionalized microbeads in wounds created in wild-type mice did not impair the rate of wound closure relative to an untreated wound. Overall, the results presented in this paper enable a general and facile approach to the engineering of wound beds in which microbeads are covalently immobilized to wound beds. Such immobilized microbeads could be used in future studies to release bioactive factors (e.g., antimicrobial agents or growth factors) and/or introduce topographical cues that promote cell behaviors underlying healing and wound closure. PMID:23088838
Satoh, Akira; Bryant, Susan V; Gardiner, David M
2012-06-15
The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
Regenerative medicine blueprint.
Terzic, Andre; Harper, C Michel; Gores, Gregory J; Pfenning, Michael A
2013-12-01
Regenerative medicine, a paragon of future healthcare, holds unprecedented potential in extending the reach of treatment modalities for individuals across diseases and lifespan. Emerging regenerative technologies, focused on structural repair and functional restoration, signal a radical transformation in medical and surgical practice. Regenerative medicine is poised to provide innovative solutions in addressing major unmet needs for patients, ranging from congenital disease and trauma to degenerative conditions. Realization of the regenerative model of care predicates a stringent interdisciplinary paradigm that will drive validated science into standardized clinical options. Designed as a catalyst in advancing rigorous new knowledge on disease causes and cures into informed delivery of quality care, the Mayo Clinic regenerative medicine blueprint offers a patient-centered, team-based strategy that optimizes the discovery-translation-application roadmap for the express purpose of science-supported practice advancement.
Guiding tissue regeneration with ultrasound in vitro and in vivo
NASA Astrophysics Data System (ADS)
Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.
2015-05-01
Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.
Kocic, H; Arsic, I; Stankovic, M; Tiodorovic, D; Ciric, V; Kocic, G
2017-01-01
Semi-essential amino acid L-arginine may be of fundamental importance in various intracellular and intercellular pathways related to skin repair and wound healing. Our current study was aimed to explore the effect of L-arginine on skin fibroblast (L929) signaling pathways involved in cell proliferation (Akt-pAkt kinase, Erk/pErk1/2 kinase, JNK/pJNK kinase and pStat-1), apoptosis (Bcl2 and Bax) and immune defense (NF-κB and CD26). Significant upregulation of Erk (p<0.011), pErk (p<0.017) and JNK (p<0.002) was documented, while the rise was not significant for pJNK kinase. The Akt/pAkt signaling pathway did not change significantly for the above-mentioned time and dose, while pStat-1 was significantly down regulated (p<0.011). The exposure of skin fibroblasts to L-arginine increased anti-apoptotic Bcl2/Bax stoichiometry ratio (p<0.05), obtained by calculation of their individual quantities. L-arginine was able to elicit NF-κB signaling through the increase of p65 active subunit level (p<0.004), while CD26 surface antigen level was not significantly changed. In conclusion, the exposure of skin fibroblasts to L-arginine may help in maintaining and stimulating skin fibroblast proliferative, anti-apoptotic and immune defense function. Therefore, the proposed L-arginine dose may be used for tissue regeneration application, which would be of importance in regenerative medicine, skin rejuvenation approaches and wound healing.
Kant, Marius; Baerveldt, Ewout M.; Florencia, Edwin; Mourits, Sabine; de Ridder, Dick; Laman, Jon D.; van der Fits, Leslie; Prens, Errol P.
2011-01-01
Psoriasis is characterized by hyperproliferation of keratinocytes and by infiltration of activated Th1 and Th17 cells in the (epi)dermis. By expression microarray, we previously found the GATA3 transcription factor significantly downregulated in lesional psoriatic skin. Since GATA3 serves as a key switch in both epidermal and T helper cell differentiation, we investigated its function in psoriasis. Because psoriatic skin inflammation shares many characteristics of epidermal regeneration during wound healing, we also studied GATA3 expression under such conditions. Psoriatic lesional skin showed decreased GATA3 mRNA and protein expression compared to non-lesional skin. GATA3 expression was also markedly decreased in inflamed skin of mice with a psoriasiform dermatitis induced with imiquimod. Tape-stripping of non-lesional skin of patients with psoriasis, a standardized psoriasis-triggering and skin regeneration-inducing technique, reduced the expression of GATA3. In wounded skin of mice, low GATA3 mRNA and protein expression was detected. Taken together, GATA3 expression is downregulated under regenerative and inflammatory hyperproliferative skin conditions. GATA3 expression could be re-induced by successful narrow-band UVB treatment of both human psoriasis and imiquimod-induced psoriasiform dermatitis in mice. The prototypic Th2 cytokine IL-4 was the only cytokine capable of inducing GATA3 in skin explants from healthy donors. Based on these findings we argue that GATA3 serves as a key regulator in psoriatic inflammation, keratinocyte hyperproliferation and skin barrier dysfunction. PMID:21611195
Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D
2016-11-01
Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.
Baseline tests of the power-train electric delivery van
NASA Technical Reports Server (NTRS)
Lumannick, S.; Dustin, M. O.; Bozek, J. M.
1977-01-01
Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.
Fu, X B
2016-01-01
Great achievements in the study of tissue repair and regeneration have been made, and many of these successes have been shown to be beneficial to the patients in recent years. However, perfect tissue repair and regeneration of damaged tissues and organs remain to be great challenges in the management of trauma and diseases. Based on the progress in developmental biology in animals and advances in stem cell biology, it is possible to attain the aim of perfect repair and regeneration by means of somatic cell reprogramming and different inducing techniques.
Synthetic organs for regenerative medicine.
Pedersen, Roger A; Mascetti, Victoria; Mendjan, Sasha
2012-06-14
Differentiating tissue stem cells can self-assemble into structures that strikingly resemble functional organ subunits. Translating this insight to regenerative medicine presents several challenges. Copyright © 2012 Elsevier Inc. All rights reserved.
Functionalized Nanostructures with Application in Regenerative Medicine
Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.
2012-01-01
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186
Three-Dimensional Printing and Cell Therapy for Wound Repair.
van Kogelenberg, Sylvia; Yue, Zhilian; Dinoro, Jeremy N; Baker, Christopher S; Wallace, Gordon G
2018-05-01
Significance: Skin tissue damage is a major challenge and a burden on healthcare systems, from burns and other trauma to diabetes and vascular disease. Although the biological complexities are relatively well understood, appropriate repair mechanisms are scarce. Three-dimensional bioprinting is a layer-based approach to regenerative medicine, whereby cells and cell-based materials can be dispensed in fine spatial arrangements to mimic native tissue. Recent Advances: Various bioprinting techniques have been employed in wound repair-based skin tissue engineering, from laser-induced forward transfer to extrusion-based methods, and with the investigation of the benefits and shortcomings of each, with emphasis on biological compatibility and cell proliferation, migration, and vitality. Critical issues: Development of appropriate biological inks and the vascularization of newly developed tissues remain a challenge within the field of skin tissue engineering. Future Directions: Progress within bioprinting requires close interactions between material scientists, tissue engineers, and clinicians. Microvascularization, integration of multiple cell types, and skin appendages will be essential for creation of complex skin tissue constructs.
Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.
Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris
2015-06-01
Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine
Hacker, Michael C.; Nawaz, Hafiz Awais
2015-01-01
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications. PMID:26610468
Multi-Functional Macromers for Hydrogel Design in Biomedical Engineering and Regenerative Medicine.
Hacker, Michael C; Nawaz, Hafiz Awais
2015-11-19
Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.
A review of the regenerative endodontic treatment procedure
Lee, Bin-Na; Moon, Jong-Wook; Chang, Hoon-Sang; Hwang, In-Nam; Oh, Won-Mann
2015-01-01
Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment. PMID:26295020
Arciola, Carla Renata; Vigani, Barbara; Crivelli, Barbara; Moro, Paola; Marrubini, Giorgio; Sorrenti, Milena; Catenacci, Laura; Bruni, Giovanna; Chlapanidas, Theodora; Lucarelli, Enrico; Perteghella, Sara
2017-01-01
Some natural compounds have recently been widely employed in wound healing applications due to their biological properties. One such compound is sericin, which is produced by Bombix mori, while active polyphenols, polysaccharides and proteins are synthetized by Chlorella vulgaris and Arthrospira platensis microalgae. Our hypothesis was that sericin, as an optimal bioactive polymeric carrier for microencapsulation process, could also improve the regenerative effect of the microalgae. A solvent-free extraction method and spray drying technique were combined to obtain five formulations, based on algal extracts (C. vulgaris and A. platensis, Chl and Art, respectively) or silk sericin (Ser) or their mixtures (Chl-Ser and Art-Ser). The spray drying was a suitable method to produce microspheres with similar dimensions, characterized by collapsed morphology with a rough surface. Art and Art-Ser showed higher antioxidant properties than other formulations. All microspheres resulted in cytocompatibility on fibroblasts until 1.25 mg/mL and promoted cell migration and the complete wound closure; this positive effect was further highlighted after treatment with Art and Art-Ser. To our surprize the combination of sericin to Art did not improve the microalgae extract efficacy, at least in our experimental conditions. PMID:28832540
Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis
Manieri, Nicholas A.; Mack, Madison R.; Himmelrich, Molly D.; Worthley, Daniel L.; Hanson, Elaine M.; Eckmann, Lars; Wang, Timothy C.; Stappenbeck, Thaddeus S.
2015-01-01
Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I2 (PGI2) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair. PMID:26280574
Manieri, Nicholas A; Mack, Madison R; Himmelrich, Molly D; Worthley, Daniel L; Hanson, Elaine M; Eckmann, Lars; Wang, Timothy C; Stappenbeck, Thaddeus S
2015-09-01
Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I₂ (PGI₂) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.
Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation
Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.
2011-01-01
Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819
Development of hydrogels for regenerative engineering.
Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali
2017-05-01
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Balaji, Swathi; Moles, Chad M; Bhattacharya, Sukanta S; LeSaint, Maria; Dhamija, Yashu; Le, Louis D; King, Alice; Kidd, Mykia; Bouso, Muhammad F; Shaaban, Aimen; Crombleholme, Timothy M; Bollyky, Paul; Keswani, Sundeep G
2014-07-01
Anti-inflammatory cytokine interleukin (IL)-10 has been shown to induce regenerative healing in postnatal wounds. A viral homolog of IL-10 produced by human cytomegalovirus (CMV IL-10) similarly generates potent immunoregulatory effects, but its effects on wound healing have not been investigated. Currently, there are limited cost-effective methods of screening vulnerary therapeutics. Taken together, we aim to develop and validate a novel human ex vivo dermal wound model and hypothesize that CMV IL-10 will enhance dermal wound healing. Full-thickness circular (6-mm) explants were taken from surgical skin samples and 3-mm full-thickness wounds were created. Explants were embedded in collagen I matrix and maintained in specially formulated media with the epidermis at air-liquid interface, and treated with human IL-10 or CMV IL-10 (200 ng/mL). The viability of cultured explants was validated by histology and lactate dehydrogenase (LDH) activity. Epithelial gap, epithelial height, basal keratinocyte migration, vascular endothelial growth factor levels, and neovascularization were measured at days 3 and 7 to determine IL-10 effects on wound healing. Culture explants at day 7 appeared similar to fresh skin in morphology, cell, and vessel density. By day 14, the epidermis separated from the dermis and the cell density diminished. Day 7 wounds appeared viable with advancing epithelial and basal keratinocyte migration with no evidence of necrosis. Cytotoxicity analysis via the quantification of LDH revealed no differences between controls and treated groups. There was a slight increase in the quantity of LDH in media at day 3; however, this decreased at day 5 and continued to decline up to day 21. CMV IL-10 treatment resulted in a significant decrease in the epithelial gap and an increase in epithelial height. There were no differences in the rates of basal keratinocyte migration at day 7 between treated and control groups. Interestingly, human IL-10 increased vascular endothelial growth factor expression and neovascularization compared with controls. The human ex vivo wound model provides a simple and viable design to study dermal wound healing. Both IL-10 homologs demonstrate vulnerary effects. The viral homolog demonstrates enhanced effects on wound closure compared with human IL-10. These data represent a novel tool that can be used to screen therapeutics, such as CMV IL-10, before preclinical studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Chou, Yu-Hsiang; Yang, Yi-Hsin; Kuo, Hsiao-Ching; Ho, Kun-Yen; Wang, Wen-Chen; Hu, Kai-Fang
2017-10-01
The effect of periodontal surgery on patients' quality of life was investigated. Sixty patients received regenerative surgery or resective osseous surgery. Oral health-related quality of life and health-related quality of life instruments were used to assess the participants' quality of life before surgery and 4 weeks after surgery. Periodontal surgery can improve patients' quality of life by alleviating the physical pain and psychological discomfort. The scores were lower (more favorable) in the regenerative surgery group, and the functional limitations of the regenerative surgery group improved substantially compared with those of the resective osseous surgery group (P = 0.0421). The patients' oral health-related quality of life scores improved significantly after periodontal surgery. Clinicians can take advantage of the positive functional oral health-related quality of life impacts of regenerative surgery. Copyright © 2017. Published by Elsevier Taiwan.
Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu
2012-01-01
Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319
Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.
Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer
2017-01-01
Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Greising, Sarah M.; Dearth, Christopher L.; Corona, Benjamin T.
2017-01-01
Volumetric muscle loss (VML) is a complex and heterogeneous problem due to significant traumatic or surgical loss of skeletal muscle tissue. The consequences of VML are substantial functional deficits in joint range of motion and skeletal muscle strength, resulting in life long dysfunction and disability. Traditional physical medicine and rehabilitation paradigms do not address the magnitude of force loss due to VML and related musculoskeletal co-morbidities. Recent advancements in regenerative medicine have set forth encouraging and emerging therapeutic options for VML injuries. There is significant potential that combined rehabilitative and regenerative therapies can restore limb and muscle function following VML injury in a synergistic manner. This review presents the current state of the VML field, spanning clinical and preclinical literature, with particular focus on rehabilitation and regenerative medicine in addition to their synergy. Moving forward, multidisciplinary collaboration between clinical and research fields is encouraged in order to continue to improve the treatment of VML injuries and specifically address the encompassing physiology, pathology, and specific needs of this patient population. PMID:27825146
Terzic, Andre; Nelson, Timothy J
2013-07-01
The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
China's landscape in regenerative medicine.
Tang, Xin; Qin, Hua; Gu, Xiaosong; Fu, Xiaobing
2017-04-01
Regenerative medicine is a burgeoning interdisciplinary research field that can impact healthcare by offering new therapeutic strategies to replace or regenerate human cells, tissues, or organs with the ultimate goal of restoring or establishing normal human functions. The past decade has seen significant progress of regenerative medicine in China, the world's most populous developing country. With government backing, the progress in regenerative medicine is driven by increasing medical demands of people, accompanied by the economic growth, population aging, and lifestyle change in China. Although regenerative medicine encompasses many components, tissue engineering and stem cell technology are generally considered the two key players. In this review article, we outline the representative achievements in the research and application of tissue engineering, stem cell technology, and other regenerative medical strategies attained by various research groups in China, and highlight the major contributions and features of several outstanding studies made by leading Chinese researchers. Where possible, we discuss the unique opportunities and challenges for advancement of regenerative medicine in China. It is our hope that this review will stimulate new research directions for regenerative medicine in general, and encourage strategic collaborations between the east and the west in particular, so that the clinical translation of regenerative medicine can be accelerated to benefit mankind. Copyright © 2017 Elsevier Ltd. All rights reserved.
Circadian rhythms accelerate wound healing in female Siberian hamsters
Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.
2017-01-01
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755
Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.
2016-01-01
Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. PMID:26702129
Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C
2016-02-01
Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency, diverse cytokine profile, and ease of harvest via liposuction. Alternative approaches to classical suction-assisted liposuction are gaining popularity; however, little evidence exists regarding the impact of different liposuction methods on the regenerative functionality of ASCs. Human ASC characteristics and regenerative capacity were assessed when harvested via ultrasound-assisted (UAL) versus standard suction-assisted liposuction. ASCs obtained via UAL were of equal quality when directly compared with the current gold standard harvest method. UAL is an adjunctive source of fully functional mesenchymal stem cells for applications in basic research and clinical therapy. ©AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowgiallo, E.J. Jr; Snellings, I.R.; Chapman, R.D.
1982-04-01
The Lectric Leopard manufactured by U.S. Electricar Corporation was tested at MERADCOM as part of the Department of Energy project to verify conformity to performance standards of electric vehicles. The Leopard is a standard Fiat Strada sedan which has been converted to an electric vehicle. It is powered by 16 6-V batteries through a silicon-controlled rectifier (SCR) Controller to a 23-hp series-wound d.c. motor. It is equipped with a five-speed manual transmission, power-assisted disc brakes in the front and drum brakes in the rear. It is not equipped with regenerative braking.
Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.
2015-08-01
Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less
Nano-bio compatibility of PEGylated reduced graphene oxide on mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Syama, S.; Aby, C. P.; Maekawa, Toru; Sakthikumar, D.; Mohanan, P. V.
2017-06-01
Graphene, with its unique physico-chemical properties, has found widespread biomedical application. It is used as a carrier for drug or gene delivery, photothermal therapy, bioimaging, in antibacterial agents and for the development of biosensors. Besides this, graphene has the scope to be used for wound healing, tissue engineering and regenerative medicine. In the present study, polyethylene-glycol-(PEG)ylated reduced graphene oxide (PrGO) was synthesized, characterized, and its interaction with mouse bone marrow mesenchymal stem cells (MSCs) was studied. in vitro cytotoxicity and differentiation study showed PrGO neither induced toxicity nor impaired the differentiation potential of the stem cells. PrGO was effectively internalized by MSCs and distributed throughout the cytoplasm. None of the PrGO was seen in the nucleus. Although it seems to induce increased reactive oxygen species (ROS) production inside the cell, no change in cell proliferation or cellular function was observed. Hence it is recommended that the synthesized PrGO is applicable for tissue engineering, and can also be used as a substrate platform for stem cell culture and differentiation.
Tumor suppressors: enhancers or suppressors of regeneration?
Pomerantz, Jason H.; Blau, Helen M.
2013-01-01
Tumor suppressors are so named because cancers occur in their absence, but these genes also have important functions in development, metabolism and tissue homeostasis. Here, we discuss known and potential functions of tumor suppressor genes during tissue regeneration, focusing on the evolutionarily conserved tumor suppressors pRb1, p53, Pten and Hippo. We propose that their activity is essential for tissue regeneration. This is in contrast to suggestions that tumor suppression is a trade-off for regenerative capacity. We also hypothesize that certain aspects of tumor suppressor pathways inhibit regenerative processes in mammals, and that transient targeted modification of these pathways could be fruitfully exploited to enhance processes that are important to regenerative medicine. PMID:23715544
Babo, Pedro S; Reis, Rui L; Gomes, Manuela E
2016-11-01
Hyaluronic acid is the main polysaccharide present in the connective tissue. Besides its structural function as backbone of the extracellular matrix, hyaluronic acid plays staple roles in several biological processes including the modulation of inflammation and wound healing processes. The application of hyaluronic acid in regenerative medicine, either as cells and/or drug/growth factors delivery vehicles, relies on its ability to be cross-linked using a plethora of reactions, producing stable hydrogels. In this work, we propose a novel method for the production of hyaluronic acid microparticles that presents several advantages over others that have been used. Basically, droplets of hyaluronic acid solution produced with a nozzle are collected in an isopropanol dehydration bath, and stabilized after crosslinking with adipic acid dihydrazide, using a cabodiimide-based chemistry. The size and morphology of the hyaluronic acid microparticles produced by this method varied with the molecular weight and concentration of the hyaluronic acid solution, the nozzle chamber pressure, the distance between the nozzle and the crosslinking solution, and the number of crosslinking steps. The degree of crosslinking of the hyaluronic acid microparticles produced was tunable and allowed to control the rate of the degradation promoted by hyaluronidase. Moreover, the particles were loaded with platelet lysate, a hemoderivative rich in cytokines with interest for regenerative medicine applications. The hyaluronic acid microparticles showed potential to bind selectively to positively charged molecules, as the factors present in the platelet lysate. It is envisioned that these can be further released in a sustained manner by ion exchange or by the degradation of the hyaluronic acid microparticles matrix promoted by extracellular matrix remodeling. © The Author(s) 2016.
Maintenance of sweat glands by stem cells located in the acral epithelium.
Ohe, Shuichi; Tanaka, Toshihiro; Yanai, Hirotsugu; Komai, Yoshihiro; Omachi, Taichi; Kanno, Shohei; Tanaka, Kiyomichi; Ishigaki, Kazuhiko; Saiga, Kazuho; Nakamura, Naohiro; Ohsugi, Haruyuki; Tokuyama, Yoko; Atsumi, Naho; Hisha, Hiroko; Yoshida, Naoko; Kumano, Keiki; Yamazaki, Fumikazu; Okamoto, Hiroyuki; Ueno, Hiroo
2015-10-23
The skin is responsible for a variety of physiological functions and is critical for wound healing and repair. Therefore, the regenerative capacity of the skin is important. However, stem cells responsible for maintaining the acral epithelium had not previously been identified. In this study, we identified the specific stem cells in the acral epithelium that participate in the long-term maintenance of sweat glands, ducts, and interadnexal epidermis and that facilitate the regeneration of these structures following injury. Lgr6-positive cells and Bmi1-positive cells were found to function as long-term multipotent stem cells that maintained the entire eccrine unit and the interadnexal epidermis. However, while Lgr6-positive cells were rapidly cycled and constantly supplied differentiated cells, Bmi1-positive cells were slow to cycle and occasionally entered the cell cycle under physiological conditions. Upon irradiation-induced injury, Bmi1-positive cells rapidly proliferated and regenerated injured epithelial tissue. Therefore, Bmi1-positive stem cells served as reservoir stem cells. Lgr5-positive cells were rapidly cycled and maintained only sweat glands; therefore, we concluded that these cells functioned as lineage-restricted progenitors. Taken together, our data demonstrated the identification of stem cells that maintained the entire acral epithelium and supported the different roles of three cellular classes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Stem Cells Applications in Regenerative Medicine and Disease Therapeutics
2016-01-01
Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation. PMID:27516776
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease
Hickson, LaTonya J.; Eirin, Alfonso; Lerman, Lilach O.
2016-01-01
Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. PMID:26924058
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease.
Hickson, LaTonya J; Eirin, Alfonso; Lerman, Lilach O
2016-04-01
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Citrate-Based Biomaterials and Their Applications in Regenerative Engineering
Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.
2015-01-01
Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046
In vitro effects of direct current electric fields on adipose-derived stromal cells.
Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B
2010-06-18
Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Regenerative Life Support Evaluation
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Thompson, C. D.
1977-01-01
This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.
Greising, Sarah M; Dearth, Christopher L; Corona, Benjamin T
2016-01-01
Volumetric muscle loss (VML) is a complex and heterogeneous problem due to significant traumatic or surgical loss of skeletal muscle tissue. The consequences of VML are substantial functional deficits in joint range of motion and skeletal muscle strength, resulting in life-long dysfunction and disability. Traditional physical medicine and rehabilitation paradigms do not address the magnitude of force loss due to VML and related musculoskeletal comorbidities. Recent advancements in regenerative medicine have set forth encouraging and emerging therapeutic options for VML injuries. There is significant potential that combined rehabilitative and regenerative therapies can restore limb and muscle function following VML injury in a synergistic manner. This review presents the current state of the VML field, spanning clinical and preclinical literature, with particular focus on rehabilitation and regenerative medicine in addition to their synergy. Moving forward, multidisciplinary collaboration between clinical and research fields is encouraged in order to continue to improve the treatment of VML injuries and specifically address the encompassing physiology, pathology, and specific needs of this patient population. This is a work of the US Government and is not subject to copyright protection in the USA. Foreign copyrights may apply. Published by S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Barej, Michał; Bzdak, Adam; Gutowski, Paweł
2018-03-01
The wounded nucleon and quark emission functions are extracted for different centralities in d +Au collisions at √{s }=200 GeV using Monte Carlo simulations and experimental data. The shape of the emission function depends on centrality in the wounded nucleon model, whereas it is practically universal (within uncertainties) in the wounded quark model. Predictions for d Nc h/d η distributions in p +Au and 3He+Au collisions are presented.
Wound care in the neonatal intensive care unit.
Fox, Miriam D
2011-01-01
The skin is a vital organ with key protective functions. Infants in the NICU are at risk for skin injury because of developmental immaturity and intensive care treatments. When skin injury occurs, the neonatal nurse is challenged to provide wound care to optimize functional and cosmetic healing. Optimal wound care requires basic knowledge of the mechanisms of injury, physiology of wound healing, host factors affecting wound healing, and wound assessment. This knowledge provides the basis for determining appropriate wound treatment, including dressing selection. Attention to pain issues associated with wound care is difficult because of the infant's developmental stage, but is essential because of the potentially negative life-long impact of pain. The premature infant's propensity for skin stripping limits the selection of appropriate dressing, as does the paucity of research examining wound care products in this population.
Ardeshirpour, Farhad; Hurliman, Elisabeth; Wendelschafer-Crabb, Gwen; McAdams, Brian; Hilger, Peter A; Kennedy, William R; Lassig, Amy Anne D; Brenner, Michael J
2017-09-01
Wound healing influences both the cosmetic and functional outcomes of facial surgery. Study of cutaneous innervation may afford insight into patients' preoperative wound healing potential and aid in their selection of appropriate surgical procedures. To present the quantitative and qualitative differences of epidermal nerve fibers (ENFs), neurotransmitters, vasculature, and mast cells in facial skin among patients after primary and revision rhytidectomies. This pilot study collected cutaneous specimens from 8 female patients aged 42 to 66 years who underwent primary rhytidectomy (n = 5) and revision rhytidectomy (n = 3) at Centennial Lakes Surgery Center, Edina, Minnesota, from July 2010 to March 2014. Tissue was processed for confocal/epifluorescence microscopy and indirect immunofluorescent localization of several neural and tissue antigens as well as basement membrane and mast cell markers. Primary rhytidectomy vs revision rhytidectomy with selection of a small area of redundant, otherwise disposed of tissue anterior to the tragus for ENF study. Demographic characteristics included smoking status; 10-point rating scales for facial sensation, pain, and paresthesias; and confocal/epifluorescence microscopy to quantify ENFs, neurotransmitters, vasculature, and mast cells. Patients in the primary rhytidectomy group had a mean (SD) of 54.4 (31.6) ENFs/mm (range, 14.2-99.2 ENFs/mm), and those in the revision rhytidectomy group had a mean (SD) of 18.6 (5.8) ENFs/mm (range, 13.8-25.0 ENFs/mm). A patient in the primary rhytidectomy group was a 25-pack-year smoker and had 14.2 ENFs/mm, the lowest in both groups. In addition to these structural neural changes, functional neural changes in revision rhytidectomy samples included qualitative changes in normal neural antigen prevalence (substance P, calcitonin gene-related peptide, and vasoactive intestinal peptide). Capillary loops appeared less robust and were less common in dermal papilla among samples from both the primary and revision groups, and mast cells were more degranulated. No differences were found in subjective, self-reported postoperative facial sensation. Previous skin elevation was associated with decreased epidermal nerve fiber density and qualitative changes in dermal nerves, capillaries, and mast cells in a clinical sample of patients undergoing rhytidectomy. Future research is needed to determine whether histological findings predict wound healing and to better understand the effects of surgery on regenerative capacity of epidermal nerve fibers. NA.
Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential
Pieber, Thomas Rudolf
2017-01-01
It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration. PMID:28286525
Bone Repair Cells for Craniofacial Regeneration
Pagni, G; Kaigler, D; Rasperini, G; Avila-Ortiz, G; Bartel, R; Giannobile, WV
2012-01-01
Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both Somatic and Stem Cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice. PMID:22433781
Angiogenesis is inhibitory for mammalian digit regeneration
Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong
2014-01-01
Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862
Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi
2018-04-13
The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.
Bioelectric modulation of macrophage polarization
NASA Astrophysics Data System (ADS)
Li, Chunmei; Levin, Michael; Kaplan, David L.
2016-02-01
Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.
Transition theory and its relevance to patients with chronic wounds.
Neil, J A; Barrell, L M
1998-01-01
A wound, in the broadest sense, is a disruption of normal anatomic structure and function. Acute wounds progress through a timely and orderly sequence of repair that leads to the restoration of functional integrity. In chronic wounds, this timely and orderly sequence goes awry. As a result, people with chronic wounds often face not only physiological difficulties but emotional ones as well. The study of body image and its damage as a result of a chronic wound fits well with Selder's transition theory. This article describes interviews with seven patients with chronic wounds. The themes that emerged from those interviews were compared with Selder's theory to describe patients' experience with chronic wounds as a transition process that can be identified and better understood by healthcare providers.
Romero-Cerecero, Ofelia; Zamilpa, Alejandro; Díaz-García, Edgar Rolando; Tortoriello, Jaime
2014-10-28
Among the main causes affecting the wound healing process, we find diabetes mellitus, which is due to the occurrence of a prolonged inflammation phase, defects in angiogenesis, and a diminution in fibroblast proliferation. The species Ageratina pichinchensis has been utilized in Mexican traditional medicine for the treatment of skin wounds. Pharmacological models have demonstrated that an extract obtained from this species improves wound healing and, through a clinical study, it was evidenced that the extract (in a pharmaceutical form) is effective in the treatment of patients with chronic venous ulcers. The 7-O-(β-D-glucopyranosyl)-galactin compound was recently identified as responsible for the pharmacological activity. The objective of the present study was to evaluate the wound healing activity of an aqueous extract and another hexane-ethyl acetate extract from Ageratina pichinchensis (both standardized in the active compound) in a diabetic foot ulcer rat model, as well as evaluating the possible genotoxic effects produced by the same species. Rats with streptozotocin-induced diabetes were submitted (under anesthesia with pentobarbital) to a circular lesion on the skin (excisional) on the rear of the paw. All animals were topically treated daily until healing. 5-methyl-1 phenyl-2-(1H) Pyridone was used as a positive control treatment. Once the wound was healed, a skin sample was obtained and utilized for histopathological analysis. The possible genotoxic effects produced by the extract, in a model of spermatozoid viability and morphology, were evaluated. The results showed that 100% of animals treated with Ageratina pichinchensis extracts presented wound healing between days 4 and 11 of treatment, while in the positive control group (treated with 5-methyl-1 phenyl-2-(1H) pyridone) and in the negative control group (vehicle), only 70% and 40%, respectively, exhibited wound healing at day 11. Histological analysis demonstrated evidences of an active regenerative process in animals that received the extracts, in addition to that in the study, the effects of the plant extracts that could be compatible with genotoxicity were not observed. Aqueous and hexane-ethyl acetate extracts of the aerial parts of Ageratina pichinchensis (standardized in its content of 7-O-(β-D-glucopyranosyl)-galactin), consistently improve wound healing induced on the skin of rats with streptozotocin-induced diabetes. The capacity was evidenced of the extracts to promote histological tissue regeneration, without exhibiting genotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rethinking Regenerative Medicine: A Macrophage-Centered Approach
Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.
2014-01-01
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693
Bhatia, Ayesha; O'Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T; Li, Wei
2016-01-01
Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5-treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing.
Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon
2015-01-01
Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477
3D bioprinting of functional human skin: production and in vivo analysis.
Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L
2016-12-05
Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.
Bioprinting for stem cell research
Tasoglu, Savas; Demirci, Utkan
2012-01-01
Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439
Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies
Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya
2015-01-01
Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described. PMID:26273309
Zhou, Xin; Wang, He; Zhang, Jimin; Li, Xuemei; Wu, Yifan; Wei, Yongzhen; Ji, Shenglu; Kong, Deling; Zhao, Qiang
2017-05-01
Wound healing dressings are increasingly needed clinically due to the large number of skin damage annually. Nitric oxide (NO) plays a key role in promoting wound healing, thus biomaterials with NO-releasing property receive increasing attention as ideal wound dressing. In present study, we prepared a novel functional wound dressing by combining electrospun poly(ε-caprolactone) (PCL) nonwoven mat with chitosan-based NO-releasing biomaterials (CS-NO). As-prepared PCL/CS-NO dressing released NO sustainably under the physiological conditions, which was controlled by the catalysis of β-galactosidase. In vivo wound healing characteristics were further evaluated on full-thickness cutaneous wounds in mice. Results showed that PCL/CS-NO wound dressings remarkably accelerated wound healing process through enhancing re-epithelialization and granulation formation and effectively improved the organization of regenerated tissues including epidermal-dermal junction, which could be ascribed to the pro-angiogenesis, immunomodulation, and enhanced collagen synthesis provided by the sustained release of NO. Therefore, PCL/CS-NO may be a promising candidate for wound dressings, especially for the chronic wound caused by the ischemia. Serious skin damage caused by trauma, surgery, burn or chronic disease has become one of the most serious clinical problems. Therefore, there is an increasing demand for ideal wound dressing that can improve wound healing. Due to the vital role of nitric oxide (NO), we developed a novel functional wound dressing by combining electrospun polycaprolactone (PCL) mat with NO-releasing biomaterial (CS-NO). The sustained release of NO from PCL/CS-NO demonstrated positive effects on wound healing, including pro-angiogenesis, immunomodulation, and enhanced collagen synthesis. Hence, wound healing process was remarkably accelerated and the organization of regenerated tissues was effectively improved as well. Taken together, PCL/CS-NO dressing may be a promising candidate for wound treatment, especially for the chronic wound caused by the ischemia. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
San Miguel-Ruiz, José E; García-Arrarás, José E
2007-10-18
All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds. Other species, such as echinoderms, posses a striking repair capability that can include the replacement of entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of organ regeneration, particularly in animals where loss and regeneration of complex structures is a programmed natural event, is similar to wound healing. We have now used the sea cucumber Holothuria glaberrima to address this question. Animals were lesioned by making a 3-5 mm transverse incision between one of the longitudinal muscle pairs along the bodywall. Lesioned tissues included muscle, nerve, water canal and dermis. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in cellular and tissue elements during repair were evaluated using classical dyes, immmuohistochemistry and phalloidin labeling. In addition, the temporal and spatial distribution of cell proliferation in the animals was assayed using BrdU incorporation. We found that cellular events associated with wound healing in H. glaberrima correspond to those previously shown to occur during intestinal regeneration. These include: (1) an increase in the number of spherule-containing cells, (2) remodeling of the extracellular matrix, (3) formation of spindle-like structures that signal dedifferentiation of muscle cells in the area flanking the lesion site and (4) intense cellular division occurring mainly in the coelomic epithelium after the first week of regeneration. Our data indicate that H. glaberrima employs analogous cellular mechanisms during wound healing and organ regeneration. Thus, it is possible that regenerative limitations in some organisms are due either to the absence of particular mechanisms associated with repair or the inability of activating the repair process in some tissues or stages.
Ward, C; Lucas, M; Piris, J; Collier, J; Chapel, H
2008-09-01
Patients with common variable immunodeficiency disorders are monitored for liver function test abnormalities. A proportion of patients develop deranged liver function and some also develop hepatomegaly. We investigated the prevalence of abnormalities and types of liver disease, aiming to identify those at risk and determine outcomes. The local primary immunodeficiency database was searched for patients with a common variable immunodeficiency disorder and abnormal liver function and/or a liver biopsy. Patterns of liver dysfunction were determined and biopsies reviewed. A total of 47 of 108 patients had deranged liver function, most commonly raised alkaline phosphatase levels. Twenty-three patients had liver biopsies. Nodular regenerative hyperplasia was found in 13 of 16 with unexplained pathology. These patients were more likely to have other disease-related complications of common variable immunodeficiency disorders, in particular non-coeliac (gluten insensitive) lymphocytic enteropathy. However, five had no symptoms of liver disease and only one died of liver complications. Nodular regenerative hyperplasia is a common complication of common variable immunodeficiency disorders but was rarely complicated by portal hypertension.
Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment
Xiao, Yun; Ahadian, Samad
2017-01-01
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960
Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds.
Lönnqvist, Susanna; Emanuelsson, Peter; Kratz, Gunnar
2015-01-01
Chronic wounds are one of the greatest challenges for the healthcare system. Today, a plethora of dressings are used in the treatment of these wounds, each with specific influence on the wound environment. Due to differences in the permeability of the dressings the use will result in differences in the pH balance in the wound bed. However, little is known about how changes in the pH in the wound environment affect the different phases of the healing process. The aim of the present study was to investigate the effects of acidic pH on the regeneration phase by studying keratinocyte function in vitro and re-epithelialisation in an in vitro model of human skin. In vitro assays showed reduced viability and migration rates in human keratinocytes when pH was lowered. Real time PCR revealed differential expression of genes related to wound healing and environmental impairment. Tissue culture showed no re-epithelialisation of wounds subjected to pH 5.0 and moderate re-epithelialisation at pH 6.0, compared to controls at pH 7.4. The results indicate that lowering pH down to pH 5.0 in wounds is counterproductive in aspect of keratinocyte function which is crucial for successful wound healing.
Two sides of the same coin: stem cells in cancer and regenerative medicine.
Ilmer, Matthias; Vykoukal, Jody; Recio Boiles, Alejandro; Coleman, Michael; Alt, Eckhard
2014-07-01
Multipotent stromal cells (MSCs) derived from bone marrow, adipose tissue, cord blood, and other origins have recently received much attention as potential therapeutic agents with beneficial immunomodulatory and regenerative properties. In their native tissue environment, however, such cells also appear to have essential functions in building and supporting tumor microenvironments, providing metastatic niches, and maintaining cancer hallmarks. Here, we consider the varied roles of these tissue-resident stroma-associated cells, synthesize recent and emerging discoveries, and discuss the role, potential, and clinical applications of MSCs in cancer and regenerative medicine.-Ilmer, M., Vykoukal, J., Recio Boiles, A., Coleman, M., Alt, E. Two sides of the same coin: stem cells in cancer and regenerative medicine. © FASEB.
Expression and Function of Connexin 43 in Human Gingival Wound Healing and Fibroblasts
Tarzemany, Rana; Jiang, Guoqiao; Larjava, Hannu; Häkkinen, Lari
2015-01-01
Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva. PMID:25584940
Inhibition of IRF8 Negatively Regulates Macrophage Function and Impairs Cutaneous Wound Healing.
Guo, Yuanyuan; Yang, Zhiyin; Wu, Shan; Xu, Peng; Peng, Yinbo; Yao, Min
2017-02-01
The inflammatory response is essential for normal cutaneous wound healing. Macrophages, as critical inflammatory cells, coordinate inflammation and angiogenesis phases during wound healing. It has been reported that the transcription factor interferon regulatory factor 8 (IRF8), a member of the IRF family, plays a critical role in the development and function of macrophages and is associated with inflammation. However, the role of IRF8 in cutaneous wound healing and its underlying mechanism remain elusive. Through immunohistochemical (IHC) staining, we showed that IRF8 is involved in the wound repair process in mice and patients. Furthermore, we ascertain that the repression of IRF8 by small interfering RNA (siRNA) leads to delayed wound healing. To explore the mechanism by which IRF8 impacts wound healing, we observed its effect on macrophage-related mediators by IHC or real-time PCR. The results demonstrated that the inhibition of IRF8 decreases the mRNA expression of inflammatory mediators associated with M1 macrophage (il-1b, il-6, inos, and tnf-a) but no impact on M2 macrophage-related mediators (arg-1, mrc-1, and il-10) and the number of macrophages in the wounds. Furthermore, the inhibition of IRF8 induced apoptosis in the wounds. In summary, this study demonstrates that the down-regulation of IRF8 in the wound leads to impaired wound healing possibly through the regulation of macrophage function and apoptosis in skin wound.
Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure
Finosh, G.T.; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed. PMID:23507781
Finosh, G T; Jayabalan, Muthu
2012-01-01
Regeneration of myocardium through regenerative therapy and tissue engineering is appearing as a prospective treatment modality for patients with end-stage heart failure. Focusing on this area, this review highlights the new developments and challenges in the regeneration of myocardial tissue. The role of various cell sources, calcium ion and cytokine on the functional performance of regenerative therapy is discussed. The evolution of tissue engineering and the role of tissue matrix/scaffold, cell adhesion and vascularisation on tissue engineering of cardiac tissue implant are also discussed.
Moreira, Maria E; Markovchick, Vincent J
2007-08-01
Wound management makes up an important part of the emergency physician's practice. Understanding the physiology of wound healing and the patient and wound factors affecting this process is essential for the proper treatment of wounds. There are many options available for wound closure. Each modality has its benefits and its drawbacks, and some are appropriate only for certain types of wounds. The goal is to achieve the best functional and cosmetically appealing scar while avoiding complications.
Bhatia, Ayesha; O’Brien, Kathryn; Chen, Mei; Wong, Alex; Garner, Warren; Woodley, David T.; Li, Wei
2016-01-01
Burn injuries are a leading cause of morbidity including prolonged hospitalization, disfigurement, and disability. Currently there is no Food and Drug Administration-approved burn therapeutics. A clinical distinction of burn injuries from other acute wounds is the event of the so-called secondary burn wound progression within the first week of the injury, in which a burn expands horizontally and vertically from its initial boundary to a larger area. Therefore, an effective therapeutics for burns should show dual abilities to prevent the burn wound progression and thereafter promote burn wound healing. Herein we report that topically applied F-5 fragment of heat shock protein-90α is a dual functional agent to promote burn wound healing in pigs. First, F-5 prevents burn wound progression by protecting the surrounding cells from undergoing heat-induced caspase 3 activation and apoptosis with increased Akt activation. Accordingly, F-5–treated burn and excision wounds show a marked decline in inflammation. Thereafter, F-5 accelerates burn wound healing by stimulating the keratinocyte migration-led reepithelialization, leading to wound closure. This study addresses a topical agent that is capable of preventing burn wound progression and accelerating burn wound healing. PMID:27382602
Current overview on challenges in regenerative endodontics
Bansal, Ramta; Jain, Aditya; Mittal, Sunandan
2015-01-01
Introduction: Regenerative endodontics provides hope of converting the non-vital tooth into vital once again. It focuses on substituting traumatized and pathological pulp with functional pulp tissue. Current regenerative procedures successfully produce root development but still fail to re-establish real pulp tissue and give unpredictable results. There are several drawbacks that need to be addressed to improve the quality and efficiency of the treatment. Aim: The aim of this review article is to discuss major priorities that ought to be dealt before applications of regenerative endodontics flourish the clinical practice. Materials and Methods: A web-based research on MEDLINE was done using filter terms Review, published in the last 10 years and Dental journals. Keywords used for research were “regenerative endodontics,” “dental stem cells,” “growth factor regeneration,” “scaffolds,” and “challenges in regeneration.” This review article screened about 150 articles and then the relevant information was compiled. Results: Inspite of the impressive growth in regenerative endodontic field, there are certain loopholes in the existing treatment protocols that might sometimes result in undesired and unpredictable outcomes. Conclusion: Considerable research and development efforts are required to improve and update existing regenerative endodontic strategies to make it an effective, safe, and biological mode to save teeth. PMID:25657518
Bioprinting is changing regenerative medicine forever.
Collins, Scott Forrest
2014-12-01
3D printing, or solid freeform fabrication, applied to regenerative medicine brings technologies from several industries together to help solve unique challenges in both basic science and tissue engineering. By more finely organizing cells and supporting structures precisely in 3D space, we will gain critical knowledge of cell-cell communications and cell-environment interactions. As we increase the scale, we will move toward complex tissue and organ structures where several cell phenotypes will functionally and structurally interact, thus recapitulating the form and function of native tissues and organs.
Capilla, Amalia; Karachentsev, Dmitry; Patterson, Rachel A.; Hermann, Anita; Juarez, Michelle T.; McGinnis, William
2017-01-01
The epidermis serves as a protective barrier in animals. After epidermal injury, barrier repair requires activation of many wound response genes in epidermal cells surrounding wound sites. Two such genes in Drosophila encode the enzymes dopa decarboxylase (Ddc) and tyrosine hydroxylase (ple). In this paper we explore the involvement of the Toll/NF-κB pathway in the localized activation of wound repair genes around epidermal breaks. Robust activation of wound-induced transcription from ple and Ddc requires Toll pathway components ranging from the extracellular ligand Spätzle to the Dif transcription factor. Epistasis experiments indicate a requirement for Spätzle ligand downstream of hydrogen peroxide and protease function, both of which are known activators of wound-induced transcription. The localized activation of Toll a few cell diameters from wound edges is reminiscent of local activation of Toll in early embryonic ventral hypoderm, consistent with the hypothesis that the dorsal–ventral patterning function of Toll arose from the evolutionary cooption of a morphogen-responsive function in wound repair. Furthermore, the combinatorial activity of Toll and other signaling pathways in activating epidermal barrier repair genes can help explain why developmental activation of the Toll, ERK, or JNK pathways alone fail to activate wound repair loci. PMID:28289197
Identification and Functional Analysis of Healing Regulators in Drosophila
Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique
2015-01-01
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. PMID:25647511
Runx2 contributes to the regenerative potential of the mammary epithelium.
Ferrari, Nicola; Riggio, Alessandra I; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C; Smalley, Matthew J; Sansom, Owen J; Morris, Joanna; Cameron, Ewan R; Blyth, Karen
2015-10-22
Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling.
Runx2 contributes to the regenerative potential of the mammary epithelium
Ferrari, Nicola; Riggio, Alessandra I.; Mason, Susan; McDonald, Laura; King, Ayala; Higgins, Theresa; Rosewell, Ian; Neil, James C.; Smalley, Matthew J.; Sansom, Owen J.; Morris, Joanna; Cameron, Ewan R.; Blyth, Karen
2015-01-01
Although best known for its role in bone development and associated structures the transcription factor RUNX2 is expressed in a wide range of lineages, including those of the mammary gland. Previous studies have indicated that Runx2 can regulate aspects of mammary cell function and influence the properties of cancer cells. In this study we investigate the role of Runx2 in the mammary stem/progenitor population and its relationship with WNT signalling. Results show that RUNX2 protein is differentially expressed throughout embryonic and adult development of the murine mammary gland with high levels of expression in mammary stem-cell enriched cultures. Importantly, functional analysis reveals a role for Runx2 in mammary stem/progenitor cell function in in vitro and in vivo regenerative assays. Furthermore, RUNX2 appears to be associated with WNT signalling in the mammary epithelium and is specifically upregulated in mouse models of WNT-driven breast cancer. Overall our studies reveal a novel function for Runx2 in regulating mammary epithelial cell regenerative potential, possibly acting as a downstream target of WNT signalling. PMID:26489514
Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.
Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V
2018-02-27
Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.
Cell-based and biomaterial approaches to connective tissue repair
NASA Astrophysics Data System (ADS)
Stalling, Simone Suzette
Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in vitro as well as in a subcutaneous mouse model. Stable MA-MC hydrogels, of varying weight percentages, demonstrated tunable swelling and mechanical properties in the absence of cytotoxic degradation products. In vivo, 6wt% MA-MC hydrogels maintained their shape and mechanical integrity while eliciting a minimal inflammatory response; highly desirable properties for soft tissue reconstruction. These cellulose-based photopolymerizable hydrogels can be further optimized for drug delivery and tissue engineering applications to enhance wound repair.
Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P
2015-05-09
The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles. This work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications.
Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.
Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won
2017-01-01
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Batool, Fareeha; Strub, Marion; Petit, Catherine; Bugueno, Isaac Maximiliano; Bornert, Fabien; Clauss, François; Kuchler-Bopp, Sabine; Benkirane-Jessel, Nadia
2018-01-01
This review encompasses different pre-clinical bioengineering approaches for periodontal tissues, maxillary jaw bone, and the entire tooth. Moreover, it sheds light on their potential clinical therapeutic applications in the field of regenerative medicine. Herein, the electrospinning method for the synthesis of polycaprolactone (PCL) membranes, that are capable of mimicking the extracellular matrix (ECM), has been described. Furthermore, their functionalization with cyclosporine A (CsA), bone morphogenetic protein-2 (BMP-2), or anti-inflammatory drugs’ nanoreservoirs has been demonstrated to induce a localized and targeted action of these molecules after implantation in the maxillary jaw bone. Firstly, periodontal wound healing has been studied in an induced periodontal lesion in mice using an ibuprofen-functionalized PCL membrane. Thereafter, the kinetics of maxillary bone regeneration in a pre-clinical mouse model of surgical bone lesion treated with BMP-2 or BMP-2/Ibuprofen functionalized PCL membranes have been analyzed by histology, immunology, and micro-computed tomography (micro-CT). Furthermore, the achievement of innervation in bioengineered teeth has also been demonstrated after the co-implantation of cultured dental cell reassociations with a trigeminal ganglia (TG) and the cyclosporine A (CsA)-loaded poly(lactic-co-glycolic acid) (PLGA) scaffold in the jaw bone. The prospective clinical applications of these different tissue engineering approaches could be instrumental in the treatment of various periodontal diseases, congenital dental or cranio-facial bone anomalies, and post-surgical complications. PMID:29772691
Periodontal regeneration in gingival recession defects.
Trombelli, L
1999-02-01
Surgical treatment of gingival recession defects aims at obtaining soft tissue coverage of exposed root surfaces and/or augmentation of gingival tissue dimensions. A variety of protocols have been developed to manage these clinical problems. Since one goal of periodontal therapy is the regeneration of the lost attachment apparatus of the tooth, full restoration of defect should be accomplished following mucogingival procedures. This implies regeneration of all periodontal structures, including formation of new cementum with inserting connective tissue fibers, alveolar bone regeneration and recreation of a functional and aesthetic morphology of the mucogingival complex. Animal and human histological studies have shown that healing at gingiva-root interface following pedicle flaps or free soft tissue grafts generally includes a long junctional epithelium with varying amounts of a new connective tissue attachment in the most apical aspect of the covered root surface. Limited bone regeneration has been observed. Adjunctive use of root conditioning agents and cell excluding, wound-stabilizing devices may amplify regenerative outcomes. Changes in the amount of keratinized tissue, which can significantly affect the aesthetic outcome of treatment, have been shown to depend on the interactions among various tissues involved in the healing process and the selected surgical procedure.
Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio
2011-01-01
In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.
Wolf, Michael; Lossdörfer, Stefan; Römer, Piero; Bastos Craveiro, Rogerio; Deschner, James; Jäger, Andreas
2014-01-01
High mobility group box protein-1 (HMGB1) is mainly recognized as a chemoattractant for macrophages in the initial phase of host response to pathogenic stimuli. However, recent findings provide evidence for anabolic properties in terms of enhanced proliferation, migration, and support of wound healing capacity of mesenchymal cells suggesting a dual role of the cytokine in the regulation of immune response and subsequent regenerative processes. Here, we examined potential anabolic effects of HMGB1 on human periodontal ligament (PDL) cells in the regulation of periodontal remodelling, for example, during orthodontic tooth movement. Preconfluent human PDL cells (hPDL) were exposed to HMGB1 protein and the influence on proliferation, migration, osteogenic differentiation, and biomineralization was determined by MTS assay, real time PCR, immunofluorescence cytochemistry, ELISA, and von Kossa staining. HMGB1 protein increased hPDL cell proliferation, migration, osteoblastic marker gene expression, and protein production as well as mineralized nodule formation significantly. The present findings support the dual character of HMGB1 with anabolic therapeutic potential that might support the reestablishment of the structural and functional integrity of the periodontium following periodontal trauma such as orthodontic tooth movement. PMID:25525297
Cardiac muscle regeneration: lessons from development
Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.
2011-01-01
The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131
Integrating Microtissues in Nanofiber Scaffolds for Regenerative Nanomedicine
Keller, Laetitia; Wagner, Quentin; Offner, Damien; Eap, Sandy; Musset, Anne-Marie; Arruebo, Manuel; Kelm, Jens M.; Schwinté, Pascale; Benkirane-Jessel, Nadia
2015-01-01
A new generation of biomaterials focus on smart materials incorporating cells. Here, we describe a novel generation of synthetic nanofibrous implant functionalized with living microtissues for regenerative nanomedicine. The strategy designed here enhances the effectiveness of therapeutic implants compared to current approaches used in the clinic today based on single cells added to the implant. PMID:28793604
Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels.
Grim, Joseph C; Marozas, Ian A; Anseth, Kristi S
2015-12-10
Hydrogels have emerged as promising scaffolds in regenerative medicine for the delivery of biomolecules to promote healing. However, increasing evidence suggests that the context that biomolecules are presented to cells (e.g., as soluble verses tethered signals) can influence their bioactivity. A common approach to deliver biomolecules in hydrogels involves physically entrapping them within the network, such that they diffuse out over time to the surrounding tissues. While simple and versatile, the release profiles in such system are highly dependent on the molecular weight of the entrapped molecule relative to the network structure, and it can be difficult to control the release of two different signals at independent rates. In some cases, supraphysiologically high loadings are used to achieve therapeutic local concentrations, but uncontrolled release can then cause deleterious off-target side effects. In vivo, many growth factors and cytokines are stored in the extracellular matrix (ECM) and released on demand as needed during development, growth, and wound healing. Thus, emerging strategies in biomaterial chemistry have focused on ways to tether or sequester biological signals and engineer these bioactive scaffolds to signal to delivered cells or endogenous cells. While many strategies exist to achieve tethering of peptides, protein, and small molecules, this review focuses on photochemical methods, and their usefulness as a mild reaction that proceeds with fast kinetics in aqueous solutions and at physiological conditions. Photo-click and photo-caging methods are particularly useful because one can direct light to specific regions of the hydrogel to achieve spatial patterning. Recent methods have even demonstrated reversible introduction of biomolecules to mimic the dynamic changes of native ECM, enabling researchers to explore how the spatial and dynamic context of biomolecular signals influences important cell functions. This review will highlight how two photochemical methods have led to important advances in the tissue regeneration community, namely the thiol-ene photo-click reaction for bioconjugation and photocleavage reactions that allow for the removal of protecting groups. Specific examples will be highlighted where these methodologies have been used to engineer hydrogels that control and direct cell function with the aim of inspiring their use in regenerative medicine. Copyright © 2015 Elsevier B.V. All rights reserved.
[PERSONALIZED APPROACH TO PATIENT WITH CHRONIC WOUND IN FAMILY MEDICINE].
Sinožić, T; Katić, M; Kovačević, J
2016-01-01
It can be said that the occurrence and development of wounds, healing, delayed healing, and the notion of chronic wound are some of the basic characteristics of all living beings. When it comes to people, there are a number of processes that take place during wound healing, and even under ideal circumstances, they create a functionally less valuable skin tissue, along with structural and functional changes. Fibrosis in the form of hypertrophic scars and keloids, contractures and adhesions are examples of excessive healing. Microcirculation is significantly different from healthy skin circulation with consequential formation of local hypoxia and stagnation in lymph flow with edema. Poor functionality of the scar tissue, particularly in the areas exposed to stronger forces, can cause forming of wounds. Such wounds are hard to heal despite the inexistence of other possible reasons for delayed healing, precisely because of their poor functionality and placement. The presence of wound requiring long-term treatment affects all areas of patient life and leads to decline in the quality of life. Exemplified by case presentation of a patient with post-traumatic wound in the scar area, in our office we showed a model of care based on the principle of overall personalized care with the biopsychosocial approach. Diagnostic and therapeutic procedures included wound assessment, biofilm and lymphedema detection, assessment of the patient’s psychosocial status, risk factors for wound healing, vascular ultrasound diagnostics, carboxytherapy as specialized adjuvant therapy, use of modern wound dressings, and compression therapy. Supportive psychotherapy was conducted in positive communication environment during treatment. In this way, in an atmosphere of cooperation with the patient, it was possible not only to influence the process of wound healing as the primary objective, but also to improve the quality of the patient’s life, as well as to influence our professional satisfaction with the results achieved. Family doctors are involved in the care of chronic wound patients as part of the multidisciplinary team of experts. Additional specific knowledge and skills are required for such care in order to ensure overall quality care as a supplement of the existing knowledge, skills and working experience in family medicine.
Tseng, Scheffer C G
2016-04-01
Human limbal palisade of Vogt is an ideal model for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation is a common manifestation of limbal stem cell deficiency, which is the major cause of corneal blindness, and presents as a threat to the success of transplanted limbal epithelial stem cells. Clinical studies have shown that the efficacy of transplantation of limbal epithelial stem cells can be augmented by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring, and antiangiogenic action to promote wound healing. Review of published data to determine the molecular action mechanism explaining how AM exerts the aforementioned therapeutic actions. From the water-soluble extract of cryopreserved AM, we have biochemically purified one novel matrix component termed heavy chain (HC)-hyaluronan (HA)/pentraxin 3 (PTX3) as the key relevant tissue characteristic responsible for the aforementioned AM's efficacy. Heavy chain-HA is a complex formed by a covalent linkage between HA and HC1 of inter-α-trypsin inhibitor (IαI) by tumor necrosis factor-stimulated gene-6 (TSG-6). This complex may then be tightly associated with PTX3 to form HC-HA/PTX3 complex. Besides exerting an anti-inflammatory, antiscarring, and antiangiogenic effects, HC-HA/PTX3 complex also uniquely maintains limbal niche cells to support the quiescence of limbal epithelial stem cells. We envision that HC-HA/PTX3 purified from AM can be used as a unique substrate to refine ex vivo expansion of limbal epithelial stem cells by maintaining stem cell quiescence, self-renewal and fate decision. Furthermore, it can also be deployed as a platform to launch new therapeutics in regenerative medicine by mitigating nonresolving inflammation and reinforcing the well-being of stem cell niche.
Martin, Kyle J.; Rasch, Liam J.; Cooper, Rory L.; Johanson, Zerina; Fraser, Gareth J.
2016-01-01
Teeth and denticles belong to a specialized class of mineralizing epithelial appendages called odontodes. Although homology of oral teeth in jawed vertebrates is well supported, the evolutionary origin of teeth and their relationship with other odontode types is less clear. We compared the cellular and molecular mechanisms directing development of teeth and skin denticles in sharks, where both odontode types are retained. We show that teeth and denticles are deeply homologous developmental modules with equivalent underlying odontode gene regulatory networks (GRNs). Notably, the expression of the epithelial progenitor and stem cell marker sex-determining region Y-related box 2 (sox2) was tooth-specific and this correlates with notable differences in odontode regenerative ability. Whereas shark teeth retain the ancestral gnathostome character of continuous successional regeneration, new denticles arise only asynchronously with growth or after wounding. Sox2+ putative stem cells associated with the shark dental lamina (DL) emerge from a field of epithelial progenitors shared with anteriormost taste buds, before establishing within slow-cycling cell niches at the (i) superficial taste/tooth junction (T/TJ), and (ii) deep successional lamina (SL) where tooth regeneration initiates. Furthermore, during regeneration, cells from the superficial T/TJ migrate into the SL and contribute to new teeth, demonstrating persistent contribution of taste-associated progenitors to tooth regeneration in vivo. This data suggests a trajectory for tooth evolution involving cooption of the odontode GRN from nonregenerating denticles by sox2+ progenitors native to the oral taste epithelium, facilitating the evolution of a novel regenerative module of odontodes in the mouth of early jawed vertebrates: the teeth. PMID:27930309
Non-pathogenic microflora of a spring water with regenerative properties.
Nicoletti, Giovanni; Corbella, Marta; Jaber, Omar; Marone, Piero; Scevola, Daniele; Faga, Angela
2015-11-01
The Comano spring water (Comano, Italy) has been demonstrated to improve skin regeneration, not only by increasing keratinocyte proliferation and migration, but also by modulating the regenerated collagen and elastic fibers in the dermis. However, such biological properties may not be entirely explained by its mineral composition only. As the non-pathogenic bacterial populations have demonstrated an active role in different biological processes, the potential presence of non-pathogenic bacterial species within the Comano spring water was investigated in order to identify any possible correlation between these bacterial populations and the demonstrated biological properties of this water. The water was collected at the spring using an aseptic procedure and multiple cultures were carried out. A total of 9 different strains were isolated, which were Aeromonas hydrophila , Brevundimonas vesicularis , Chromobacterium violaceum , Citrobacter youngae , Empedobacter brevis , Pantoea agglomerans , Pseudomonas putida , Pseudomonas stutzeri and Streptococcus mitis . All the isolated bacterial strains, although showing a rare potential virulence, demonstrated peculiar and favorable metabolic attitudes in controlling environmental pollution. The therapeutical effects of certain spring waters are currently being proven as correlated not only to their peculiar mineral composition, but also to the complex activity of their resident non-pathogenic bacterial populations. Although the present study provided only preliminary data, some of the non-pathogenic bacterial populations that were identified in the Comano spring water are likely to produce molecular mediators with a role in the wound healing process that, thus far, remain unknown. Numerous other unknown bacterial species, comprehensively termed DNA-rich 'dark matter', are likely to contribute to the Comano water regenerative properties as well. Therefore, the non-pathogenic bacterial populations of the Comano spring water are possibly credited for its demonstrated regenerative properties.
Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William
2013-01-01
After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905
Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial.
Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K
2015-09-29
Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in surgeries because of its superior handling characteristics as well as its suturability to the wound bed. The goal of the study is to demonstrate generation as well as provide detailed characterization of relevant properties of L-PRF that underlie its clinical success.
Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury
Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi
2010-01-01
Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652
Petrof, Gabriela; Abdul-Wahab, Alya; McGrath, John A.
2014-01-01
Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing. PMID:24890834
Li, Jingjing; Zhang, Siwei
2016-01-01
Abstract Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration. PMID:27800170
Stem cell regenerative potential for plastic and reconstructive surgery.
Boháč, Martin; Csöbönyeiová, Mária; Kupcová, Ida; Zamborský, Radoslav; Fedeleš, Jozef; Koller, Ján
2016-12-01
Stem cells represent heterogeneous population of undifferentiated cells with unique characteristics of long term self renewal and plasticity. Moreover, they are capable of active migration to diseased tissues, secretion of different bioactive molecules, and they have immunosuppressive potential as well. They occur in all tissues through life and are involved in process of embryogenesis and regeneration. During last decades stem cells attracted significant attention in each field of medicine, including plastic and reconstructive surgery. The main goal of the present review article is to present and discuss the potential of stem cells and to provide information about their safe utilization in chronic wounds and fistulae healing, scar management, breast reconstruction, as well as in bone, tendon and peripheral nerve regeneration.
Skin Wound Healing: An Update on the Current Knowledge and Concepts.
Sorg, Heiko; Tilkorn, Daniel J; Hager, Stephan; Hauser, Jörg; Mirastschijski, Ursula
2017-01-01
The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. Although wound healing mechanisms and specific cell functions in wound repair have been delineated in part, many underlying pathophysiological processes are still unknown. The purpose of the following update on skin wound healing is to focus on the different phases and to brief the reader on the current knowledge and new insights. Skin wound healing is a complex process, which is dependent on many cell types and mediators interacting in a highly sophisticated temporal sequence. Although some interactions during the healing process are crucial, redundancy is high and other cells or mediators can adopt functions or signaling without major complications. © 2016 S. Karger AG, Basel.
An electrospun scaffold integrating nucleic acid delivery for treatment of full thickness wounds
Kobsa, Serge; Kristofik, Nina J.; Sawyer, Andrew J.; Bothwell, Alfred L.M.; Kyriakides, Themis R.; Saltzman, W. Mark
2013-01-01
We developed a multi-functional construct capable of controlled delivery of bioactive substances that can improve wound repair by supporting the intrinsic ability of the skin to heal. We synthesized electrospun scaffolds—composed of a blend of the degradable polymers poly(L-lactide) (PLA) or polycaprolactone (PCL)—that produce highly efficient non-viral in vivo gene delivery to cells in the wound bed, provide a protective barrier during early wound healing, and support cell migration and growth. This multi-functional material was tested for its influence on wound healing: scaffolds were loaded with plasmids encoding keratinocyte growth factor (KGF) and applied to full thickness wounds in mice. Compared to scaffolds with control plasmids, animals receiving the KGF plasmid-loaded scaffold produced significant enhancements in wound healing, which was quantified by improvements in the rate of wound re-epithelialization, keratinocyte proliferation, and granulation response. Further, we quantified the expression level of endogenous and plasmid-derived KGF in wound samples: qRT-PCR on wound sections revealed a correlation between the levels of plasmid-derived protein expression and histological analysis of wound healing, revealing an inverse relationship between the expression level of exogenous KGF and the size of the unhealed epithelial layer in wounds. Our findings suggest that engineered nanofiber PLA/PCL scaffolds are capable of highly efficient controlled DNA delivery and are promising materials for treatment of cutaneous wounds. PMID:23453058
NASA Astrophysics Data System (ADS)
Sitnikov, D. S.; Ilina, I. V.; Kosheleva, N. V.; Khramova, Yu V.; Filatov, M. A.; Semenova, M. L.; Zurina, I. M.; Gorkun, A. A.; Saburina, I. N.
2018-01-01
Laser microsurgery has enabled us to make highly precise and delicate processing of living biological specimens. We present the results of using femtosecond (fs) laser pulses in assisted reproductive technologies. Femtosecond laser dissection of outer shells of embryos (so-called laser-assisted hatching) as well as laser-mediated detachment of the desired amount of trophectoderm cells (so-called embryo biopsy) required for preimplantaion genetic diagnosis were successfully performed. The parameters of laser radiation were optimized so as to efficiently perform embryo biopsy and preserve the viability of the treated embryos. Effects of application of fs-laser radiation in the infrared (1028 nm) and visible (514 nm) wavelength ranges were studied. We also applied laser microsurgery to develop a new simple reproducible model for studying repair and regeneration in vitro. Nanosecond laser pulses were applied to perform localized microdissection of cell spheroids. After microdissection, the edges of the wound surface opened, the destruction of the initial spheroid structure was observed in the wound area, with surviving cells changing their shape into a round one. It was shown that the spheroid form partially restored in the first six hours with subsequent complete restoration within seven days due to remodeling of surviving cells.
Is nanotechnology the key to unravel and engineer biological processes?
Navarro, Melba; Planell, Josep A
2012-01-01
Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.
Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase
Siddiqi, Sailay; Sussman, Mark A
2014-01-01
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924
Gene delivery in tissue engineering and regenerative medicine.
Fang, Y L; Chen, X G; W T, Godbey
2015-11-01
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle. © 2014 Wiley Periodicals, Inc.
Samsonraj, Rebekah M.; Raghunath, Michael; Nurcombe, Victor; Hui, James H.
2017-01-01
Abstract Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self‐renewal and differentiation into tissue‐specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age‐related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone‐forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173–2185 PMID:29076267
Management of gunshot wounds to the mandible.
Peleg, Michael; Sawatari, Yoh
2010-07-01
The gunshot wound to the mandible is a unique traumatic injury. The resultant injury from the gunshot wound is diverse because of the variability of the projectile, motion, velocity, and tissue characteristics. When a high-velocity projectile strikes the mandible, often times the wound will consist of a severely comminuted mandible surrounded by nonvital soft tissues and the implantation of multiple foreign bodies. This represents a challenge for the treating surgeon. The anatomy and function of the mandible make it such that the care of the gunshot wound requires a combination of trauma and reconstructive surgeries. There are varying techniques advocated for the management of gunshot wound to the face. However, for the comminuted mandible fracture sustained from a gunshot wound, an approach involving the fabrication of an occlusal splint, intermaxillary fixation, aggressive debridement of hard and soft tissues, and immediate reconstruction with a titanium plate is a comprehensive approach that can restore the appropriate function and contour of the patient. At the Division of Oral and Maxillofacial Surgery, University of Miami, this approach to the comminuted mandible fracture secondary to the gunshot wound has led to the effective management of this specific subset of injury. The complication rate is comparable with the current literature and provides an advantage as a 1-stage management to restore appropriate function and cosmesis to the patient.
Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures.
Bieback, Karen
2013-10-01
Mesenchymal stromal cells (MSC) emerged as highly attractive in cell-based regenerative medicine. Initially thought to provide cells capable of differentiation towards mesenchymal cell types (osteoblasts, chondrocytes, adipocytes etc.), by and by potent immunoregulatory and pro-regenerative activities have been discovered, broadening the field of potential applications from bone and cartilage regeneration to wound healing and treatment of autoimmune diseases. Due to the limited frequency in most tissue sources, ex vivo expansion of MSC is required compliant with good manufacturing practice (GMP) guidelines to yield clinically relevant cell doses. Though, still most manufacturing protocols use fetal bovine serum (FBS) as cell culture supplement to isolate and to expand MSC. However, the high lot-to-lot variability as well as risk of contamination and immunization call for xenogenic-free culture conditions. In terms of standardization, chemically defined media appear as the ultimate achievement. Since these media need to maintain all key cellular and therapy-relevant features of MSC, the development of chemically defined media is still - albeit highly investigated - only in its beginning. The current alternatives to FBS rely on human blood-derived components: plasma, serum, umbilical cord blood serum, and platelet derivatives like platelet lysate. Focusing on quality aspects, the latter will be addressed within this review.
Platelet Lysate as Replacement for Fetal Bovine Serum in Mesenchymal Stromal Cell Cultures
Bieback, Karen
2013-01-01
Summary Mesenchymal stromal cells (MSC) emerged as highly attractive in cell-based regenerative medicine. Initially thought to provide cells capable of differentiation towards mesenchymal cell types (osteoblasts, chondrocytes, adipocytes etc.), by and by potent immunoregulatory and pro-regenerative activities have been discovered, broadening the field of potential applications from bone and cartilage regeneration to wound healing and treatment of autoimmune diseases. Due to the limited frequency in most tissue sources, ex vivo expansion of MSC is required compliant with good manufacturing practice (GMP) guidelines to yield clinically relevant cell doses. Though, still most manufacturing protocols use fetal bovine serum (FBS) as cell culture supplement to isolate and to expand MSC. However, the high lot-to-lot variability as well as risk of contamination and immunization call for xenogenic-free culture conditions. In terms of standardization, chemically defined media appear as the ultimate achievement. Since these media need to maintain all key cellular and therapy-relevant features of MSC, the development of chemically defined media is still – albeit highly investigated – only in its beginning. The current alternatives to FBS rely on human blood-derived components: plasma, serum, umbilical cord blood serum, and platelet derivatives like platelet lysate. Focusing on quality aspects, the latter will be addressed within this review. PMID:24273486
Dynamics of asexual reproduction in flatworms
NASA Astrophysics Data System (ADS)
Schoetz, Eva-Maria; Talbot, Jared; Dunkel, Joern
2010-03-01
Planarians (flatworms) are one of the simplest bilaterally symmetric organisms and famous for their extraordinary regenerative capabilities. One can cut a worm in 100 pieces and after a few weeks one obtains 100 new worms that have reconstructed their entire body, including a central nervous system. This amazing regenerative capability is due to a population of stem cells distributed throughout the planarian body. These stem cells do not only allow the worms to heal without scarring after wounding, they also allow for asexual reproduction: Planarians can split themselves in two, and then regenerate the missing body parts within about a week. Naively, one would think that this kind of asexual reproduction could be captured by simple models that describe cell growth in bacteria or other lower organisms. However, we find that there is much more to the story by monitoring >15 generations of many individuals, as well as the long-term behavior (> 9 months) of worm populations under different environmental conditions, such as population density, temperature, and feeding frequency. Surprisingly, we observe that reproduction decreases with increasing food supply, opposite to the relationship between food and reproduction in other asexually reproducing organisms (e.g. bacteria, yeast), and causing obese worms. Finally, our data allows us to address the question of aging in an organism that is thought to be ``forever young''.
Lin, Louis M; Kim, Sahng G; Martin, Gabriela; Kahler, Bill
2018-01-16
Three immature permanent teeth with pulp necrosis and apical periodontitis were treated with regenerative endodontic therapy (RET), which included root canal disinfection with sodium hypochlorite irrigation, intra-canal medication with calcium hydroxide paste, 17% EDTA rinse, induction of periapical bleeding into the canal, collagen matrix and MTA coronal seal, and composite resin restoration of access cavities. After different periods of follow-up, it was observed that continued root maturation, especially apical closure occurred despite persistent apical periodontitis of immature permanent teeth after failed RET. This finding is of interest as the secondary goal of further root maturation occurred despite failure of the primary goal of elimination of clinical symptom/sign and periapical inflammation. The possible biological mechanisms that could allow for further root maturation to occur in spite of persistent root canal infection of immature permanent teeth are discussed. Based on these observations, the biology of wound healing of immature permanent teeth after injury is not fully understood and should be further investigated. This case report demonstrates that whilst further root maturation is considered a successful outcome for teeth treated with RET, the primary objective must be the resolution of the signs and symptoms of apical periodontitis. © 2018 Australian Society of Endodontology Inc.
The Influence of Interleukin-4 on Ligament Healing
Chamberlain, Connie S; Leiferman, Ellen M; Frisch, Kayt E; Wang, Sijian; Yang, Xipei; Brickson, Stacey L; Vanderby, Ray
2011-01-01
Despite a complex cascade of cellular events to reconstruct the damaged extracellular matrix, ligament healing results in a mechanically inferior scarred ligament. During normal healing, granulation tissue expands into any residual normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To control creeping substitution and possibly enhance the repair process, the anti-inflammatory cytokine, interleukin-4 (IL-4) was administered to rats prior to and after rupture of their medial collateral ligaments. In vitro experiments demonstrated a time-dependent effect on fibroblast proliferation after interleukin-4 treatment. In vivo treatments with interleukin-4 (100 ng/ml i.v.) for 5 days resulted in decreased wound size and type III collagen and increased type I procollagen, indicating a more regenerative early healing in response to the interleukin-4 treatment. However, continued treatment of interleukin-4 to day 11 antagonized this early benefit and slowed healing. Together, these results suggest that interleukin-4 influences the macrophages and T-lymphocytes but also stimulates fibroblasts associated with the proliferative phase of healing in a dose-, cell-, and time-dependent manner. Although treatment significantly influenced healing in the first week after injury, interleukin-4 alone was unable to maintain this early regenerative response. PMID:21518087
Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A
2016-11-01
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.
Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes
Ghatak, Subhadip; Chan, Yuk Cheung; Khanna, Savita; Banerjee, Jaideep; Weist, Jessica; Roy, Sashwati; Sen, Chandan K
2015-01-01
Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21Waf1/Cip1. Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21Waf1/Cip1 expression. Adenoviral and pharmacological suppression of p21Waf1/Cip1 in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21Waf1/Cip1. This work upholds p21Waf1/Cip1 as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult. PMID:25896246
From stem to roots: Tissue engineering in endodontics
Kala, M.; Banthia, Priyank; Banthia, Ruchi
2012-01-01
The vitality of dentin-pulp complex is fundamental to the life of tooth and is a priority for targeting clinical management strategies. Loss of the tooth, jawbone or both, due to periodontal disease, dental caries, trauma or some genetic disorders, affects not only basic mouth functions but aesthetic appearance and quality of life. One novel approach to restore tooth structure is based on biology: regenerative endodontic procedure by application of tissue engineering. Regenerative endodontics is an exciting new concept that seeks to apply the advances in tissue engineering to the regeneration of the pulp-dentin complex. The basic logic behind this approach is that patient-specific tissue-derived cell populations can be used to functionally replace integral tooth tissues. The development of such ‘test tube teeth’ requires precise regulation of the regenerative events in order to achieve proper tooth size and shape, as well as the development of new technologies to facilitate these processes. This article provides an extensive review of literature on the concept of tissue engineering and its application in endodontics, providing an insight into the new developmental approaches on the horizon. Key words:Regenerative, tissue engineering, stem cells, scaffold. PMID:24558528
Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S
2016-01-28
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.
The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine
Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.
2009-01-01
Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.
Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I
2018-03-01
Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Demonstration of the Rat Ischemic Skin Wound Model
Sherwood, Jacob; Wu, Mack; Gould, Lisa J.
2015-01-01
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models. PMID:25866964
Demonstration of the rat ischemic skin wound model.
Trujillo, Andrea N; Kesl, Shannon L; Sherwood, Jacob; Wu, Mack; Gould, Lisa J
2015-04-01
The propensity for chronic wounds in humans increases with ageing, disease conditions such as diabetes and impaired cardiovascular function, and unrelieved pressure due to immobility. Animal models have been developed that attempt to mimic these conditions for the purpose of furthering our understanding of the complexity of chronic wounds. The model described herein is a rat ischemic skin flap model that permits a prolonged reduction of blood flow resulting in wounds that become ischemic and resemble a chronic wound phenotype (reduced vascularization, increased inflammation and delayed wound closure). It consists of a bipedicled dorsal flap with 2 ischemic wounds placed centrally and 2 non-ischemic wounds lateral to the flap as controls. A novel addition to this ischemic skin flap model is the placement of a silicone sheet beneath the flap that functions as a barrier and a splint to prevent revascularization and reduce contraction as the wounds heal. Despite the debate of using rats for wound healing studies due to their quite distinct anatomic and physiologic differences compared to humans (i.e., the presence of a panniculus carnosus muscle, short life-span, increased number of hair follicles, and their ability to heal infected wounds) the modifications employed in this model make it a valuable alternative to previously developed ischemic skin flap models.
Giacomelli, Chiara; Natali, Letizia; Nisi, Marco; De Leo, Marinella; Daniele, Simona; Costa, Barbara; Graziani, Filippo; Gabriele, Mario; Braca, Alessandra; Trincavelli, M Letizia; Martini, Claudia
2018-05-11
Adult mesenchymal stem cells (MSCs) play a crucial role in the maintenance of tissue homeostasis and in regenerative processes. Among the different MSC types, the gingiva-derived mesenchymal stem cells (GMSCs) have arisen as a promising tool to promote the repair of damaged tissues secreting trophic mediators that affect different types of cells involved in regenerative processes. Tumour necrosis factor (TNF)-α is one of the key mediators of inflammation that could affect tissue regenerative processes and modify the MSC properties in in-vitro applications. To date, no data have been reported on the effects of TNF-α on GMSC trophic activities and how its modulation with anti-inflammatory agents from natural sources could modulate the GMSC properties. GMSCs were isolated and characterized from healthy subjects. The effects of TNF-α were evaluated on GMSCs and on the well-being of endothelial cells. The secretion of cytokines was measured and related to the modification of GMSC-endothelial cell communication using a conditioned-medium method. The ability to modify the inflammatory response was evaluated in the presence of Ribes nigrum bud extract (RBE). TNF-α differently affected GMSC proliferation and the expression of inflammatory-related proteins (interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β, and cyclooxygenase (COX)-2) dependent on its concentration. A high TNF-α concentration decreased the GMSC viability and impaired the positive cross-talk between GMSCs and endothelial cells, probably by enhancing the amount of pro-inflammatory cytokines in the GMSC secretome. RBE restored the beneficial effects of GMSCs on endothelial viability and motility under inflammatory conditions. A high TNF-α concentration decreased the well-being of GMSCs, modifying their trophic activities and decreasing endothelial cell healing. These data highlight the importance of controlling TNF-α concentrations to maintain the trophic activity of GMSCs. Furthermore, the use of natural anti-inflammatory agents restored the regenerative properties of GMSCs on endothelial cells, opening the way to the use and development of natural extracts in wound healing, periodontal regeneration, and tissue-engineering applications that use MSCs.
Tian, Haibin; Lu, Yan; Laborde, James Monroe; Muhale, Filipe A.; Wang, Quansheng; Alapure, Bhagwat V.; Serhan, Charles N.; Bazan, Nicolas G.
2014-01-01
Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds. PMID:25273880
Hong, Song; Tian, Haibin; Lu, Yan; Laborde, James Monroe; Muhale, Filipe A; Wang, Quansheng; Alapure, Bhagwat V; Serhan, Charles N; Bazan, Nicolas G
2014-12-01
Dysfunction of macrophages (MΦs) in diabetic wounds impairs the healing. MΦs produce anti-inflammatory and pro-resolving neuroprotectin/protectin D1 (NPD1/PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid); however, little is known about endogenous NPD1 biosynthesis by MΦs and the actions of NPD1 on diabetic MΦ functions in diabetic wound healing. We used an excisional skin wound model of diabetic mice, MΦ depletion, MΦs isolated from diabetic mice, and mass spectrometry-based targeted lipidomics to study the time course progression of NPD1 levels in wounds, the roles of MΦs in NPD1 biosynthesis, and NPD1 action on diabetic MΦ inflammatory activities. We also investigated the healing, innervation, chronic inflammation, and oxidative stress in diabetic wounds treated with NPD1 or NPD1-modulated MΦs from diabetic mice. Injury induced endogenous NPD1 biosynthesis in wounds, but diabetes impeded NPD1 formation. NPD1 was mainly produced by MΦs. NPD1 enhanced wound healing and innervation in diabetic mice and promoted MΦs functions that accelerated these processes. The underlying mechanisms for these actions of NPD1 or NPD1-modulated MΦs involved 1) attenuating MΦ inflammatory activities and chronic inflammation and oxidative stress after acute inflammation in diabetic wound, and 2) increasing MΦ production of IL10 and hepatocyte growth factor. Taken together, NPD1 appears to be a MΦs-produced factor that accelerates diabetic wound healing and promotes MΦ pro-healing functions in diabetic wounds. Decreased NPD1 production in diabetic wound is associated with impaired healing. This study identifies a new molecular target that might be useful in development of more effective therapeutics based on NPD1 and syngeneic diabetic MΦs for treatment of diabetic wounds. Copyright © 2014 the American Physiological Society.
Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine
NASA Astrophysics Data System (ADS)
Wan, Ying; Li, Xing; Wang, Shenqi
2016-07-01
Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.
International Space Station Environmental Control and Life Support System Status: 2006 - 2007
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2007-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station Environmental Control and Life Support System Status: 2008 - 2009
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.
2009-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station Environmental Control and Life Support System Status: 2005 - 2006
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2006-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station (ISS) Environmental Control and Life Support System Status: 2003-2004
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory
2004-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
The Hanikoda Method: 3-layered Negative Pressure Wound Therapy in Wound Bed Preparation.
Chik, Ian; Kelly, Enda G; Jarmin, Razman; Imran, Farrah-Hani
2016-10-01
Negative pressure wound therapy is a widely used method of wound dressing with various commercially available brands. The authors created the Hanikoda Method (HM) for effective wound bed preparation or definite wound closure. In this case series, the authors discuss 8 different wound cases that presented to their Plastics Unit from January 2014 to June 2015. Patients with traumatic or infected wounds were selected for treatment with the HM. Selected patients underwent multiple cycles of this method until their wounds were ready for definite wound closure or the wounds had closed by secondary closure. The purpose of any wound dressing is to encourage epithelization while ensuring no factors impede wound healing. An additional benefit is to reduce wound bed size so that it may close by secondary intention or require less skin graft coverage. Each layer of the dressing is described, along with its function in wound bed preparation or in closure. The HM facilitates reduction of wound size, wound bed preparation, and overall management.
Extremity gunshot wound and gunshot fracture in civilian practice.
Hennessy, M J; Banks, H H; Leach, R B; Quigley, T B
1976-01-01
The civilian gunshot wound is a low velocity injury. Temporary cavitation does not occur in the low velocity wound and damage is confined to the projectile pathway. Extensive debridement is not indicated for this injury. Surgical cleansing is used to convert the open, contaminated wound to a clean, closed wound. Reparative and definitive reconstruction then follow to restore form and function with minimized patient hazard.
Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei
2017-09-01
Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.
Stem cell bioprinting for applications in regenerative medicine.
Tricomi, Brad J; Dias, Andrew D; Corr, David T
2016-11-01
Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration
Nam, Yoojun; Lee, Jennifer
2018-01-01
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells. PMID:29765426
Regenerative Endodontics: Barriers and Strategies for Clinical Translation
Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.
2014-01-01
SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543
Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao
2016-01-01
Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.
Design, clinical translation and immunological response of biomaterials in regenerative medicine
NASA Astrophysics Data System (ADS)
Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.
2016-07-01
The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.
The Function of Neuroendocrine Cells in Prostate Cancer
2015-06-20
Comprehensive Cancer Center and 4Broad Center for Regenerative Medicine and Stem Cell Biology, David Geffen School of Medicine at UCLA, 10833 Le Conte... Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine , Los Angeles, California. 2Department of Urology, The First...progress in prostate cancer. Soochou University Annual Translational Medicine Meeting, Suzhou, China, November 2013 21. Prostate Cancer Stem Cells
Hinderer, Svenja; Brauchle, Eva
2015-01-01
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713
Teleost fish as a model system to study successful regeneration of the central nervous system.
Zupanc, Günther K H; Sîrbulescu, Ruxandra F
2013-01-01
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
Imamura, Aya; Ogawa, Miho; Yasukawa, Masato; Yamazaki, Hiromichi; Morita, Ritsuko; Ikeda, Etsuko; Nakao, Kazuhisa; Takano-Yamamoto, Teruko; Kasugai, Shohei; Saito, Masahiro; Tsuji, Takashi
2011-01-01
Donor organ transplantation is currently an essential therapeutic approach to the replacement of a dysfunctional organ as a result of disease, injury or aging in vivo. Recent progress in the area of regenerative therapy has the potential to lead to bioengineered mature organ replacement in the future. In this proof of concept study, we here report a further development in this regard in which a bioengineered tooth unit comprising mature tooth, periodontal ligament and alveolar bone, was successfully transplanted into a properly-sized bony hole in the alveolar bone through bone integration by recipient bone remodeling in a murine transplantation model system. The bioengineered tooth unit restored enough the alveolar bone in a vertical direction into an extensive bone defect of murine lower jaw. Engrafted bioengineered tooth displayed physiological tooth functions such as mastication, periodontal ligament function for bone remodeling and responsiveness to noxious stimulations. This study thus represents a substantial advance and demonstrates the real potential for bioengineered mature organ replacement as a next generation regenerative therapy. PMID:21765896
USDA-ARS?s Scientific Manuscript database
Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and haemostatic phases of wound healing. Hemostasis and inflammation comprise two overlap...
USDA-ARS?s Scientific Manuscript database
Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...
2014-01-01
Background Chronic wounds are associated with a number of deficiencies in critical wound healing processes, including growth factor signaling and neovascularization. Human-derived placental tissues are rich in regenerative cytokines and have been shown in randomized clinical trials to be effective for healing chronic wounds. In this study, PURION® Processed (MiMedx Group, Marietta, GA) dehydrated human amnion/chorion membrane tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for properties to support wound angiogenesis. Methods Angiogenic growth factors were identified in dHACM tissues using enzyme-linked immunosorbent assays (ELISAs), and the effects of dHACM extract on human microvascular endothelial cell (HMVEC) proliferation and production of angiogenic growth factors was determined in vitro. Chemotactic migration of human umbilical vein endothelial cells (HUVECs) toward pieces of dHACM tissue was determined using a standard in vitro transwell assay. Neovascularization of dHACM in vivo was determined utilizing a murine subcutaneous implant model. Results Quantifiable levels of the angiogenic cytokines angiogenin, angiopoietin-2 (ANG-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), heparin binding epidermal growth factor (HB-EGF), hepatocyte growth factor (HGF), platelet derived growth factor BB (PDGF-BB), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were measured in dHACM. Soluble cues promoted HMVEC proliferation in vitro and increased endogenous production of over 30 angiogenic factors by HMVECs, including granulocyte macrophage colony-stimulating factor (GM-CSF), angiogenin, transforming growth factor β3 (TGF-β3), and HB-EGF. 6.0 mm disks of dHACM tissue were also found to recruit migration of HUVECs in vitro. Moreover, subcutaneous dHACM implants displayed a steady increase in microvessels over a period of 4 weeks, indicative of a dynamic intra-implant neovascular process. Conclusions Taken together, these results demonstrate that dHACM grafts: 1) contain angiogenic growth factors retaining biological activity; 2) promote amplification of angiogenic cues by inducing endothelial cell proliferation and migration and by upregulating production of endogenous angiogenic growth factors by endothelial cells; and 3) support the formation of blood vessels in vivo. dHACM grafts are a promising wound care therapy with the potential to promote revascularization and tissue healing within poorly vascularized, non-healing wounds. PMID:24817999
Koob, Thomas J; Lim, Jeremy J; Massee, Michelle; Zabek, Nicole; Rennert, Robert; Gurtner, Geoffrey; Li, William W
2014-01-01
Chronic wounds are associated with a number of deficiencies in critical wound healing processes, including growth factor signaling and neovascularization. Human-derived placental tissues are rich in regenerative cytokines and have been shown in randomized clinical trials to be effective for healing chronic wounds. In this study, PURION® Processed (MiMedx Group, Marietta, GA) dehydrated human amnion/chorion membrane tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for properties to support wound angiogenesis. Angiogenic growth factors were identified in dHACM tissues using enzyme-linked immunosorbent assays (ELISAs), and the effects of dHACM extract on human microvascular endothelial cell (HMVEC) proliferation and production of angiogenic growth factors was determined in vitro. Chemotactic migration of human umbilical vein endothelial cells (HUVECs) toward pieces of dHACM tissue was determined using a standard in vitro transwell assay. Neovascularization of dHACM in vivo was determined utilizing a murine subcutaneous implant model. Quantifiable levels of the angiogenic cytokines angiogenin, angiopoietin-2 (ANG-2), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), heparin binding epidermal growth factor (HB-EGF), hepatocyte growth factor (HGF), platelet derived growth factor BB (PDGF-BB), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were measured in dHACM. Soluble cues promoted HMVEC proliferation in vitro and increased endogenous production of over 30 angiogenic factors by HMVECs, including granulocyte macrophage colony-stimulating factor (GM-CSF), angiogenin, transforming growth factor β3 (TGF-β3), and HB-EGF. 6.0 mm disks of dHACM tissue were also found to recruit migration of HUVECs in vitro. Moreover, subcutaneous dHACM implants displayed a steady increase in microvessels over a period of 4 weeks, indicative of a dynamic intra-implant neovascular process. TAKEN TOGETHER, THESE RESULTS DEMONSTRATE THAT DHACM GRAFTS: 1) contain angiogenic growth factors retaining biological activity; 2) promote amplification of angiogenic cues by inducing endothelial cell proliferation and migration and by upregulating production of endogenous angiogenic growth factors by endothelial cells; and 3) support the formation of blood vessels in vivo. dHACM grafts are a promising wound care therapy with the potential to promote revascularization and tissue healing within poorly vascularized, non-healing wounds.
Rana, Deepti; Ramasamy, Keerthana; Leena, Maria; Jiménez, Constanza; Campos, Javier; Ibarra, Paula; Haidar, Ziyad S; Ramalingam, Murugan
2016-05-01
Stem cell-based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial-based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell-based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554-567, 2016. © 2016 American Institute of Chemical Engineers.
Circadian actin dynamics drive rhythmic fibroblast mobilisation during wound healing
Hoyle, Nathaniel P.; Seinkmane, Estere; Putker, Marrit; Feeney, Kevin A.; Krogager, Toke P.; Chesham, Johanna E.; Bray, Liam K.; Thomas, Justyn M.; Dunn, Ken; Blaikley, John; O’Neill, John S.
2017-01-01
Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping which imparts a ~24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately impact the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse’s active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than night-time wounds. We suggest that circadian regulation of the cytoskeleton influences wound healing efficacy from the cellular to the organismal scale. PMID:29118260
Inflammation and wound healing: The role of the macrophage
Koh, Timothy J.; DiPietro, Luisa Ann
2013-01-01
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602
Hasatsri, Sukhontha; Angspatt, Apichai
2015-01-01
We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170
Wound Healing in Patients With Impaired Kidney Function
Maroz, Natallia; Simman, Richard
2014-01-01
Renal impairment has long been known to affect wound healing. However, information on differences in the spectrum of wound healing depending on the type of renal insufficiency is limited. Acute kidney injury (AKI) may be observed with different wound types. On one hand, it follows acute traumatic conditions such as crush injury, burns, and post-surgical wounds, and on the other hand, it arises as simultaneous targeting of skin and kidneys by autoimmune-mediated vasculitis. Chronic kidney disease (CKD) and end-stage renal disease (ESRD) often occur in older people, who have limited physical mobility and predisposition for developing pressure-related wounds. The common risk factors for poor wound healing, generally observed in patients with CKD and ESRD, include poorly controlled diabetes mellitus, neuropathy, peripheral vascular disease, chronic venous insufficiency, and aging. ESRD patients have a unique spectrum of wounds related to impaired calcium–phosphorus metabolism, including calciphylaxis, in addition to having the risk factors presented by CKD patients. Overall, there is a wide range of uremic toxins: they may affect local mechanisms of wound healing and also adversely affect the functioning of multiple systems. In the present literature review, we discuss the association between different types of renal impairments and their effects on wound healing and examine this association from different aspects related to the management of wounds in renal impairment patients. PMID:26199882
Contaldo, Claudio; Högger, Dominik C; Khorrami Borozadi, Meisam; Stotz, Michael; Platz, Uwe; Forster, Natasha; Lindenblatt, Nicole; Giovanoli, Pietro
2012-07-01
This study aims to quantify by intravital microscopy and histological wound scoring the effect of radial pressure wave treatment (RPWT) on murine incisional wound healing. The dorsal skinfold chamber in mice was used for intravital microscopy, whereby an incisional wound was created within the chamber. RPWT to the wound was carried out using a ballistic pressure wave source (EMS Swiss DolorClast). Animals received a dose of 500 pulses at an energy flux rate of 0.1mJ/mm(2) and a frequency of 3Hz at day 1, 3, 5, 7, 9, and 11 post wounding. RPW treated and untreated ApoE depleted mice (ApoE(-/-)) were compared to normal healing wild type animals (WT). The microcirculation of the wound was analyzed quantitatively in vivo using epi-illumination intravital fluorescence microscopy. Tissue samples were examined ex vivo for wound scoring and immunohistochemistry. Upon RPWT total wound score in ApoE(-/-) mice was increased by 13% (not significant) on day 3, by 37% on day 7 (P<0.05), and by 39% on day 13 (P<0.05) when compared to untreated ApoE(-/-) mice. Improved wound healing was associated with an increase of functional angiogenetic density by 23% (not significant) on day 5, by 36% on day 7 (P<0.05), and by 41% on day 9 (P<0.05). Following RPWT, on day three we observed enhanced expression of capase-3 (2-fold), proliferating cell nuclear antibody (PCNA, 1,6-fold), and endothelial nitric oxide synthase (eNOS, 2.6-fold), all P<0.05. In conclusion repetitive RPWT accelerated wound healing in ApoE(-/-) mice by increasing functional neovascular density. In addition our findings strongly suggest that RPW may facilitate the linear progression of wound healing phases by fostering apoptosis. Copyright © 2012 Elsevier Inc. All rights reserved.
The Double-Edged Sword: Conserved Functions of Extracellular Hsp90 in Wound Healing and Cancer
Hance, Michael W.; Nolan, Krystal D.; Isaacs, Jennifer S.
2014-01-01
Heat shock proteins (Hsps) represent a diverse group of chaperones that play a vital role in the protection of cells against numerous environmental stresses. Although our understanding of chaperone biology has deepened over the last decade, the “atypical” extracellular functions of Hsps have remained somewhat enigmatic and comparatively understudied. The heat shock protein 90 (Hsp90) chaperone is a prototypic model for an Hsp family member exhibiting a duality of intracellular and extracellular functions. Intracellular Hsp90 is best known as a master regulator of protein folding. Cancers are particularly adept at exploiting this function of Hsp90, providing the impetus for the robust clinical development of small molecule Hsp90 inhibitors. However, in addition to its maintenance of protein homeostasis, Hsp90 has also been identified as an extracellular protein. Although early reports ascribed immunoregulatory functions to extracellular Hsp90 (eHsp90), recent studies have illuminated expanded functions for eHsp90 in wound healing and cancer. While the intended physiological role of eHsp90 remains enigmatic, its evolutionarily conserved functions in wound healing are easily co-opted during malignancy, a pathology sharing many properties of wounded tissue. This review will highlight the emerging functions of eHsp90 and shed light on its seemingly dichotomous roles as a benevolent facilitator of wound healing and as a sinister effector of tumor progression. PMID:24805867
Toll-Like Receptor Function in Acute Wounds
Chen, Lin; DiPietro, Luisa A.
2017-01-01
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591
Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui
2018-01-01
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein.
Mesenchymal stem cell therapy for cutaneous radiation syndrome.
Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi
2010-06-01
Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.
Stamm, Anne; Strauß, Sarah; Vogt, Peter; Scheper, Thomas; Pepelanova, Iliyana
2018-04-07
AmbLOXe is a lipoxygenase, which is up-regulated during limb-redevelopment in the Mexican axolotl, Ambystoma mexicanum, an animal with remarkable regeneration capacity. Previous studies have shown that mammalian cells transformed with the gene of this epidermal lipoxygenase display faster migration and wound closure rate during in vitro wound healing experiments. In this study, the gene of AmbLOXe was codon-optimized for expression in Escherichia coli and was produced in the insoluble fraction as protein aggregates. These inclusion bodies or nanopills were shown to be reservoirs containing functional protein during in vitro wound healing assays. For this purpose, functional inclusion bodies were used to coat cell culture surfaces prior cell seeding or were added directly to the medium after cells reached confluence. In both scenarios, AmbLOXe inclusion bodies led to faster migration rate and wound closure, in comparison to controls containing either no AmbLOXe or GFP inclusion bodies. Our results demonstrate that AmbLOXe inclusion bodies are functional and may serve as stable reservoirs of this enzyme. Nevertheless, further studies with soluble enzyme are also necessary in order to start elucidating the exact molecular substrates of AmbLOXe and the biochemical pathways involved in the wound healing effect.
Samsonraj, Rebekah M; Raghunath, Michael; Nurcombe, Victor; Hui, James H; van Wijnen, Andre J; Cool, Simon M
2017-12-01
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Zhu, Bin; Liu, Wenjia; Zhang, Hao; Zhao, Xicong; Duan, Yan; Li, Dehua; Jin, Yan
2017-06-01
Periodontitis is the most common cause of periodontium destruction. Regeneration of damaged tissue is the expected treatment goal. However, the regeneration of a functional periodontal ligament (PDL) insertion remains a difficulty, due to complicated factors. Recently, periodontal ligament stem cells (PDLSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) have been shown to participate in PDL regeneration, both pathologically and physiologically. Besides, interactions affect the biofunctions of different derived cells during the regenerative process. Therefore, the purpose of this study was to discuss the different derived composite cell aggregate (CA) systems of PDLSCs and BMMSCs (iliac-derived or jaw-derived) for periodontium regeneration under regenerative microenvironment reconstruction. Our results showed although all three mono-MSC CAs were compacted and the cells arranged regularly in them, jaw-derived BMMSC (JBMMSC) CAs secreted more extracellular matrix than the others. Furthermore, PDLSC/JBMMSC compound CAs highly expressed ALP, Col-I, fibronectin, integrin-β1 and periostin, suggesting that their biofunction is more appropriate for periodontal structure regeneration. Inspiringly, PDLSC/JBMMSC compound CAs regenerated more functional PDL-like tissue insertions in both nude mice ectopic and minipig orthotopic transplantation. The results indicated that the different derived CAs of PDLSCs/JBMMSCs provided an appropriate regenerative microenvironment facilitating a more stable and regular regeneration of functional periodontium tissue. This method may provide a possible strategy to solve periodontium defects in periodontitis and powerful experimental evidence for clinical applications in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Tissue Engineering Considerations in Dental Pulp Regeneration
Nosrat, Ali; Kim, Jong Ryul; Verma, Prashant; S. Chand, Priya
2014-01-01
Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics. PMID:24396373
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Environmental control and life support technologies for advanced manned space missions
NASA Technical Reports Server (NTRS)
Powell, F. T.; Wynveen, R. A.; Lin, C.
1986-01-01
Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.
The mechanical fingerprint of murine excisional wounds.
Pensalfini, Marco; Haertel, Eric; Hopf, Raoul; Wietecha, Mateusz; Werner, Sabine; Mazza, Edoardo
2018-01-01
A multiscale mechanics approach to the characterization of murine excisional wounds subjected to uniaxial tensile loading is presented. Local strain analysis at a physiological level of tension uncovers the presence of two distinct regions within the wound: i) a very compliant peripheral cushion and ii) a core area undergoing modest deformation. Microstructural visualizations of stretched wound specimens show negligible engagement of the collagen located in the center of a 7-day old wound; fibers remain coiled despite the applied tension, confirming the existence of a mechanically isolated wound core. The compliant cushion located at the wound periphery appears to protect the newly-formed tissue from excessive deformation during the phase of new tissue formation. The early remodeling phase (day 14) is characterized by a restored mechanical connection between far field and wound center. The latter remains less deformable, a characteristic possibly required for cell activities during tissue remodeling. The distribution of fibrillary collagens at these two time points corresponds well to the identified heterogeneity of mechanical properties of the wound region. This novel approach provides new insight into the mechanical properties of wounded skin and will be applicable to the analysis of compound-treated wounds or wounds in genetically modified tissue. Biophysical characterization of healing wounds is crucial to assess the recovery of the skin barrier function and the associated mechanobiological processes. For the first time, we performed highly resolved local deformation analysis to identify mechanical characteristics of the wound and its periphery. Our results reveal the presence of a compliant cushion surrounding a stiffer wound core; we refer to this heterogeneous mechanical behavior as "mechanical fingerprint" of the wound. The mechanical response is shown to progress towards that of the intact skin as healing takes place. Histology and multiphoton microscopy suggest that wounded skin recovers its mechanical function via progressive reconnection of the newly-deposited collagen fibers with the surrounding intact matrix. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Experimental rationale for a procedure for correction of the residual cavity in hydatidectomy].
Biriukov, Iu V; Streliaeva, A V; Sadykov, R V; Lazareva, N B; Sadykov, V M; Chebyshev, N V
2010-01-01
Thirty-six piglets (15 days old) were inoculated with Echinococcus according to the authors' procedure. Hepatic hydatid cyst growth in the piglets was ultrasonographically monitored 3 months after inoculation. In 15 piglets, the size of hepatic hydatid cysts was as high as 6.5 x 8.5 cm 5 months after infection. The cavity of larvocystic fibrous capsule was eliminated, by inverting the resection margins inward with interrupted catgut sutures. For content aspiration, the cystic bed was occasionally drained by a polyvinyl chloride tube with two side holes, which was brought outward through an individual incision. Thesubhepatic area was also drained by a "cigar" tampon through an individual incision. The wound healed in layers, tightly. Marginal resection of the liver was performed to stimulate regenerative processes in the resected area.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.
Čamernik, Klemen; Barlič, Ariana; Drobnič, Matej; Marc, Janja; Jeras, Matjaž; Zupan, Janja
2018-06-01
The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others. However, with aging and in certain disorders of the musculoskeletal system such as osteoarthritis or osteoporosis, this regenerative capacity of MSCs appears to be lost or diverted for the production of other non-functional cell types, such as adipocytes and fibroblasts. In this review, we shed light on the tissue sources and subpopulations of MSCs in the musculoskeletal system that have been identified in animal models, discuss the mechanisms of their anti-inflammatory action as a prerequisite for their tissue regeneration and their current applications in regenerative medicine. While providing up-to-date evidence of the role of MSCs in different musculoskeletal pathologies, in particular in osteoporosis and osteoarthritis, we share some thoughts on their potential as diagnostic markers in musculoskeletal health and disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.
During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less
Reinardy, Helena C.; Emerson, Chloe E.; Manley, Jason M.; Bodnar, Andrea G.
2015-01-01
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions. PMID:26267358
PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.
Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L
2016-03-01
Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.
Kiwanuka, Elizabeth; Cruz, Antonio P
2017-05-01
Lower extremity wounds present a major clinical challenge. This paper introduces a new multistep approach for improved aesthetic and functional outcome for lower extremity wound closure after Mohs micrographic surgery. In this prospective case series, 12 consecutive patients undergoing Mohs micrographic surgery for cutaneous malignancies of the lower extremities underwent closure assisted by elastic bandages, proper positioning with 45° flexion of the knee, buried vertical mattress sutures, and careful eversion, using a premium angled stapler. Assessment of cosmetic outcome was performed by 2 blinded observers, using the Hollander Wound Evaluation Scale. The mean age was 73 ± 9 years with most patients having at least one comorbidity. Six patients (50%) underwent resection of a basal cell carcinoma and 5 patients (42%) underwent resection of a squamous cell carcinoma and 1 patient (8%) underwent resection of a keratoacanthomatous carcinoma. There were no wound complications, and at the 3- to 6-month follow-up, 11 of the 12 wounds (92%) had an optimal Hollander Wound Evaluation Scale score of 6. This new approach to lower extremity wounds provides excellent cosmetic outcome with no reported complications.
Design and testing of a regenerative magnetorheological actuator for assistive knee braces
NASA Astrophysics Data System (ADS)
Ma, Hao; Chen, Bing; Qin, Ling; Liao, Wei-Hsin
2017-03-01
In this paper, a multifunctional magneto-rheological actuator with power regeneration capability, named regenerative magnetorheological actuator (RMRA), is designed for gait assistance in the knee joint. RMRA has motor and magnetorheological (MR) brake parts working in parallel that can harvest energy through regenerative braking. This novel design provides multiple functions with good energy efficiency. The configuration and basic design of the RMRA are first introduced. Then geometrical optimization of the MR brake is conducted based on a parameterized model, and multiple factors are considered in the design objectives: braking torque, weight, and power consumption. After the optimal design is obtained, an RMRA prototype is fabricated and associated driver circuits are designed. Finally, multiple functions of the RMRA, especially three different braking modes, are modeled and tested. Experimental results of RMRA output performances in all working modes match the modeling and simulation. Assistive knee braces with the developed RMRA are promising for future applications in gait assistance and rehabilitation.
Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke.
Luo, Chun-Xia; Lin, Yu-Hui; Qian, Xiao-Dan; Tang, Ying; Zhou, Hai-Hui; Jin, Xing; Ni, Huan-Yu; Zhang, Feng-Yun; Qin, Cheng; Li, Fei; Zhang, Yu; Wu, Hai-Yin; Chang, Lei; Zhu, Dong-Ya
2014-10-01
Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke. Copyright © 2014 the authors 0270-6474/14/3413535-14$15.00/0.
2014-01-01
Background Necrotizing fasciitis (NF) is a rapid progressive infection of the subcutaneous tissue or fascia and may result in large open wounds. The surgical options to cover these wounds are often limited by the patient condition and result in suboptimal functional and cosmetic wound coverage. Dermatotraction can restore the function and appearance of the fasciotomy wound and is less invasive in patients with comorbidities. However, dermatotraction for scarred, stiff NF fasciotomy wounds is often ineffective, resulting in skin necrosis. The authors use extended negative pressure wound therapy (NPWT) as an assist in dermatotraction to close open NF fasciotomy wounds. The authors present the clinical results, followed by a discussion of the clinical basis of extended NPWT-assisted dermatotraction. Methods A retrospective case series of eight patients with NF who underwent open fasciotomy was approved for the study. After serial wound preparation, dermatotraction was applied in a shoelace manner using elastic vessel loops. Next, the extended NPWT was applied over the wound. The sponge was three times wider than the wound width, and the transparent covering drape almost encircled the anatomical wound area. The negative pressure of the NPWT was set at a continuous 100 mmHg by suction barometer. The clinical outcome was assessed based on wound area reduction after treatment and by the achievement of direct wound closure. Results After the first set of extended NPWT-assisted dermatotraction procedures, the mean wound area was significantly decreased (658.12 cm2 to 29.37 cm2; p = 0.002), as five out of eight patients achieved direct wound closure. One patient with a chest wall defect underwent latissimus dorsi musculocutaneous flap coverage, with primary closure of the donor site. Two Fournier’s gangrene patients underwent multiple sets of treatment and finally achieved secondary wound closure with skin grafts. The patients were followed up for 18.3 months on average and showed satisfactory results without wound recurrence. Conclusions Extended NPWT-assisted dermatotraction advances scarred, stiff fasciotomy wound margins synergistically in NF and allows direct closure of the wound without complications. This method can be another good treatment option for the NF patient with large open wounds whose general condition is unsuitable for extensive reconstructive surgery. PMID:24731449
Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective.
Wissing, Tamar B; Bonito, Valentina; Bouten, Carlijn V C; Smits, Anthal I P M
2017-01-01
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
NASA Technical Reports Server (NTRS)
Williams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
Optimizing the Moisture Management Tightrope with Wound Bed Preparation 2015©.
Sibbald, R Gary; Elliott, James A; Ayello, Elizabeth A; Somayaji, Ranjani
2015-10-01
To provide an overview of moisture management and its importance in wound care. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Summarize causes and treatments for moisture balance issues of chronic wounds.2. Recognize the properties of dressings used for treatment for moisture management of chronic wounds and antiseptic agent cytotoxicity.3. Explain study findings of the effectiveness of dressing choices for treatment of chronic wounds. To provide an overview of moisture management and its importance in wound care. The authors evaluate the impact of moisture management for optimal wound care and assess current wound management strategies relating to antisepsis and moist wound healing utilizing the wound bed preparation paradigm 2015 update. The discussion distinguishes the form and function of wound care dressing classes available for optimal moisture management. Moisture management for chronic wounds is best achieved with modern moist interactive dressings if the wound has the ability to heal.
A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis
Golding, Anne; Levin, Michael; Kaplan, David L.
2016-01-01
In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device’s observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies. PMID:27257960
Luo, Zhongli; Zhang, Shuguang
2012-07-07
Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.
Bunyaratavej, P; Wang, H L
2001-02-01
Collagen materials have been utilized in medicine and dentistry because of their proven biocompatability and capability of promoting wound healing. For guided tissue regeneration (GTR) procedures, collagen membranes have been shown to be comparable to non-absorbable membranes with regard to probing depth reduction, clinical attachment gain, and percent of bone fill. Although these membranes are absorbable, collagen membranes have been demonstrated to prevent epithelial down-growth along the root surfaces during the early phase of wound healing. The use of grafting material in combination with collagen membranes seems to improve clinical outcomes for furcation, but not intrabony, defects when compared to the use of membranes alone. Recently, collagen materials have also been applied in guided bone regeneration (GBR) and root coverage procedures with comparable success rates to non-absorbable expanded polytetrafluoroethylene (ePTFE) membranes and conventional subepithelial connective tissue grafts, respectively. Long-term clinical trials are still needed to further evaluate the benefits of collagen membranes in periodontal and peri-implant defects. This article will review the rationale for each indication and its related literature, both in vitro and in vivo studies. The properties that make collagen membranes attractive for use in regenerative therapy will be addressed. In addition, varieties of cross-linking techniques utilized to retard the degradation rate of collagen membranes will be discussed.
Flightless I Expression Enhances Murine Claw Regeneration Following Digit Amputation.
Strudwick, Xanthe L; Waters, James M; Cowin, Allison J
2017-01-01
The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, β-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Bioprosthetic tissue matrices in complex abdominal wall reconstruction.
Broyles, Justin M; Abt, Nicholas B; Sacks, Justin M; Butler, Charles E
2013-12-01
Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author's analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies.
Bioprosthetic Tissue Matrices in Complex Abdominal Wall Reconstruction
Broyles, Justin M.; Abt, Nicholas B.; Sacks, Justin M.
2013-01-01
Background: Complex abdominal defects are difficult problems encountered by surgeons in multiple specialties. Although current evidence supports the primary repair of these defects with mesh reinforcement, it is unclear which mesh is superior for any given clinical scenario. The purpose of this review was to explore the characteristics of and clinical relevance behind bioprosthetic tissue matrices in an effort to better clarify their role in abdominal wall reconstruction. Methods: We reviewed the peer-reviewed literature on the use of bioprosthetic mesh in human subjects. Basic science articles and large retrospective and prospective reviews were included in author’s analysis. The clinical performance and characteristics of 13 bioprosthetic tissue matrices were evaluated. Results: The majority of the products evaluated perform well in contaminated fields, where the risk of wound-healing difficulties is high. Clinical outcomes, which included infection, reherniation, and bulge formation, were variable, and the majority of the studies had a mean follow-up of less than 24 months. Conclusions: Although bioprosthetic matrix has a multitude of indications within the growing field of abdominal wall reconstruction, the functionality, regenerative capacity, and long-term fate of these products have yet to be fully established. Furthermore, the clinical performance, indications, and contraindications for each type of matrix need to be fully evaluated in long-term outcome studies. PMID:25289285
Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum.
Khan, Haroon; Nabavi, Seyed Mohammad; Sureda, Antoni; Mehterov, Nikolay; Gulei, Diana; Berindan-Neagoe, Ioana; Taniguchi, Hiroaki; Atanasov, Atanas G
2017-11-10
Alkaloids are well-studied secondary metabolites, with recent preclinical studies evidencing that many of them exhibit anti-cancer, anti-depressant, anti-nociceptive, anti-inflammatory, anti-pyretic, anti-platelet, anti-oxidant, and anti-bacterial properties. Aconitum is a genus rich of diverse alkaloids. More than 450 alkaloids have been identified in a variety of species. Songorine is a C 20 diterpenoid alkaloid and 12-keto analog of napelline, isolated from Aconitum soongaricum and was associated with a heterogeneous panel of biological functions. However, the bioactivity profile of this natural product has not been reviewed up to now. The present manuscript aims to summarize the most important biological activities associated with songorine administration in preclinical models. The most significant data found in the scientific literature were evaluated in order to summarize the potential clinical utility of songorine in a diverse spectrum of pathologies and conditions. Songorine and its derivatives have many pharmacological effects including anti-arrhythmic, anti-cardiac-fibrillation, excitation of synaptic transmission, anxiolytic effects, anti-nociceptive, anti-inflammatory, anti-arthritis effects, and a regenerative effect in a skin excision wound animal model. Despite its outstanding pharmacotherapeutic potential, songorine has never been tested in clinical trials. Therefore, further evaluation is required to better evaluate its clinical utility. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease
Cruzat, Andrea; Qazi, Yureeda; Hamrah, Pedram
2016-01-01
In vivo confocal microscopy (IVCM) is becoming an indispensable tool for studying corneal physiology and disease. Enabling the dissection of corneal architecture at a cellular level, this technique offers fast and noninvasive in vivo imaging of the cornea with images comparable to that of ex vivo histochemical techniques. Corneal nerves bear substantial relevance to clinicians and scientists alike, given their pivotal roles in regulation of corneal sensation, maintenance of epithelial integrity, and proliferation and promotion of wound healing. Thus, IVCM offers a unique method to study corneal nerve alterations in a myriad of conditions, such as ocular and systemic diseases and following corneal surgery, without altering the tissue microenvironment. Of particular interest has been the correlation of corneal subbasal nerves to their function, which has been studied in normal eyes, contact lens wearers, and patients with keratoconus, infectious keratitis, corneal dystrophies, and neurotrophic keratopathy. Longitudinal studies have applied IVCM to investigate the effects of corneal surgery on nerves, demonstrating their regenerative capacity. IVCM is increasingly important in the diagnosis and management of systemic conditions such as peripheral diabetic neuropathy and, more recently, in ocular diseases. In this review, we outline the principles and applications of IVCM in the study of corneal nerves in various ocular and systemic diseases. PMID:27771327
Platelet-Rich Fibrin Promotes Periodontal Regeneration and Enhances Alveolar Bone Augmentation
Li, Qi; Pan, Shuang; Dangaria, Smit J.; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong
2013-01-01
In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms. PMID:23586051
Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation.
Li, Qi; Pan, Shuang; Dangaria, Smit J; Gopinathan, Gokul; Kolokythas, Antonia; Chu, Shunli; Geng, Yajun; Zhou, Yanmin; Luan, Xianghong
2013-01-01
In the present study we have determined the suitability of platelet-rich fibrin (PRF) as a complex scaffold for periodontal tissue regeneration. Replacing PRF with its major component fibrin increased mineralization in alveolar bone progenitors when compared to periodontal progenitors, suggesting that fibrin played a substantial role in PRF-induced osteogenic lineage differentiation. Moreover, there was a 3.6-fold increase in the early osteoblast transcription factor RUNX2 and a 3.1-fold reduction of the mineralization inhibitor MGP as a result of PRF application in alveolar bone progenitors, a trend not observed in periodontal progenitors. Subcutaneous implantation studies revealed that PRF readily integrated with surrounding tissues and was partially replaced with collagen fibers 2 weeks after implantation. Finally, clinical pilot studies in human patients documented an approximately 5 mm elevation of alveolar bone height in tandem with oral mucosal wound healing. Together, these studies suggest that PRF enhances osteogenic lineage differentiation of alveolar bone progenitors more than of periodontal progenitors by augmenting osteoblast differentiation, RUNX2 expression, and mineralized nodule formation via its principal component fibrin. They also document that PRF functions as a complex regenerative scaffold promoting both tissue-specific alveolar bone augmentation and surrounding periodontal soft tissue regeneration via progenitor-specific mechanisms.
Quantifying Osteogenic Cell Degradation of Silk Biomaterials
Sengupta, Sejuti; Park, Sang-Hyug; Seok, Gil Eun; Patel, Atur; Numata, Keiji; Lu, Chia-Li; Kaplan, David L.
2010-01-01
The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1 while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells vs undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing and physiological state and the ability to better understand the role of different cell types is critical to overall regenerative outcomes. PMID:21105641
Boric Acid Inhibition of Trichophyton rubrum Growth and Conidia Formation.
Schmidt, Martin
2017-12-01
Trichophyton rubrum is a common human dermatophyte that is the causative agent of 80-93% of fungal infections of the skin and nails. While dermatophyte infections in healthy people are easily treatable with over-the-counter medications, such infections pose a higher risk for patients with compromised immune function and impaired regenerative potential. The efficacy of boric acid (BA) for the treatment of vaginal yeast infections prompted an investigation of the effect of BA on growth and morphology of T. rubrum. This is of particular interest since BA facilitates wound healing, raising the possibility that treating athlete's foot with BA, either alone or in combination with other antifungal drugs, would combine the benefits of antimicrobial activity and tissue regeneration to accelerate healing of infected skin. The data presented here show that BA represses T. rubrum growth at a concentration reported to be beneficial for host tissue regeneration. Oxygen exposure increases BA toxicity, and mycelia growing under BA stress avoid colonizing the surface of the growth surface, which leads to a suppression of aerial mycelium growth and surface conidia formation. BA penetrates into solid agar matrices, but the relative lack of oxygen below the substrate surface limits the effectiveness of BA in suppressing growth of embedded T. rubrum cells.
Macrophages: Their Emerging Roles in Bone
Sinder, Benjamin P; Pettit, Allison R; McCauley, Laurie K
2016-01-01
Macrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis. Genetic or pharmacological modulation of macrophages in vivo results in significant bone phenotypes, and these phenotypes depend on which macrophage subsets are altered. Macrophages are also key mediators of osseous wound healing and fracture repair, with distinct roles at various stages of the repair process. A central function of macrophages is their phagocytic ability. Each day, billions of cells die in the body and efferocytosis (phagocytosis of apoptotic cells) is a critical process in both clearing dead cells and recruitment of replacement progenitor cells to maintain homeostasis. Recent data suggest a role for efferocytosis in bone biology and these new mechanisms are outlined. Finally, although macrophages have an established role in primary tumors, emerging evidence suggests that macrophages in bone support cancers which preferentially metastasize to the skeleton. Collectively, this developing area of osteoimmunology raises new questions and promises to provide novel insights into pathophysiologic conditions as well as therapeutic and regenerative approaches vital for skeletal health. PMID:26531055
Shi, Meng; Kretlow, James D.; Spicer, Patrick P.; Tabata, Yasuhiko; Demian, Nagi; Wong, Mark E.; Kasper, F. Kurtis; Mikos, Antonios G.
2011-01-01
An antibiotic-releasing porous polymethylmethacrylate (PMMA) construct was developed to maintain the bony space and prime the wound site in the initial step of a two-stage regenerative medicine approach toward reconstructing significant bony or composite craniofacial tissue defects. Porous polymethylmethacrylate (PMMA) constructs incorporating gelatin microparticles (GMPs) were fabricated by the sequential assembly of GMPs, the antibiotic colistin, and a clinically used bone cement formulation of PMMA powder and methylmethacrylate liquid. PMMA/gelatin/antibiotic constructs with varying gelatin incorporation and drug content were investigated to elucidate the relationship between material composition and construct properties (porosity and drug release kinetics). The porosity of PMMA/gelatin/antibiotic constructs ranged between 7.6±1.8–38.4±1.4% depending on the amount of gelatin incorporated and the drug solution added for gelatin swelling. The constructs released colistin over 10 or 14 days with an average release rate per day above 10 µg/ml. The porosity and in vitro colistin release kinetics of PMMA/gelatin/antibiotic constructs were tuned by varying the material composition and fabrication parameters. This study demonstrates the potential of gelatin-incorporating PMMA constructs as a functional space maintainer for both promoting tissue healing/coverage and addressing local infections, enabling better long-term success of the definitive regenerated tissue construct. PMID:21295086
Chekmareva, I A
2002-02-01
Quantitative and structural functional analysis of granulation tissue cells during treatment with protein-polysaccharide dressing Collahit F was carried out. The preparation effectively cleansed the wound from detritus, prevented secondary infection due to stimulation of the functional activity of macrophages and due to the effect of its antiseptic component (furagin), and stimulated proliferative activity of fibroblasts and granulation tissue microvessels on day 5 of treatment, thus promoting repair processes in the wound.
Simone, Tessa M.; Higgins, Craig E.; Czekay, Ralf-Peter; Law, Brian K.; Higgins, Stephen P.; Archambeault, Jaclyn; Kutz, Stacie M.; Higgins, Paul J.
2014-01-01
Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels. PMID:24669362
Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing
Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz
2013-01-01
Significance This review highlights the critical role of transforming growth factor beta (TGF-β)1–3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1–controlling factors involved in slowing down the healing process upon wound epithelialization. Recent Advances TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. Critical Issues It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. Future Directions One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision. PMID:24527344
Mangum, Lauren H.; Stone, Randolph; Wrice, Nicole L.; Larson, David A.; Florell, Kyle F.; Christy, Barbara A.; Herzig, Maryanne C.; Cap, Andrew P.
2017-01-01
Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95–99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes. PMID:29138638
Kymionis, George D; Liakopoulos, Dimitrios A; Grentzelos, Michael A; Tsoulnaras, Konstantinos I; Detorakis, Efstathios T; Cochener, Béatrice; Tsilimbaris, Miltiadis K
2015-08-01
To evaluate the effect of a regenerative agent (RGTA) [Cacicol20-poly(carboxymethyl glucose sulfate); OTR3, Paris, France] on corneal reepithelialization and pain after corneal cross-linking (CXL) for keratoconus. In this prospective comparative (contralateral) clinical study, patients with bilateral progressive keratoconus underwent CXL treatment. The corneal epithelium during CXL was removed using transepithelial phototherapeutic keratectomy (Cretan protocol). One eye of each patient was randomly instilled with an RGTA (Cacicol20) once a day (study group), whereas the fellow eye was instilled with artificial tears (control group). Patients were examined daily until complete reepithelialization. Postoperative examinations included slit-lamp biomicroscopy to assess the epithelial defect size and subjective evaluation of pain. The study enrolled 18 patients (36 eyes). The mean epithelial defect size for study and control groups was 19.6 ± 4.2 mm versus 21.5 ± 2.8 mm, respectively, at day 1 (P = 0.019) and 6.4 ± 3.4 mm versus 7.9 ± 4.3 mm, respectively, at day 2 (P = 0.014). At day 3 postoperatively, 61.1% of study eyes were fully reepithelialized, compared with 11.1% of control eyes (P = 0.002). RGTA (Cacicol20) instillation seems to result in faster corneal reepithelialization after CXL in this study. However, there was no significant effect in subjective pain/discomfort.
McCusker, Catherine; Bryant, Susan V.
2015-01-01
Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868
Rasperini, Giulio; Acunzo, Raffaele; Barnett, Andrew; Pagni, Giorgio
2013-01-01
The ability to stabilize the blood clot is crucial in achieving predictable periodontal regeneration in infrabony defects. Unfortunately, micromovements may cause degradation of the clot-root interface and result in suboptimal wound healing. Current surgical and suturing techniques are aimed at reducing flap micromovement because flap management is one of the main factors influencing the stability of the clot. The aim of this paper is to describe the use of the soft tissue wall technique to enhance periodontal tissue regeneration outcomes of challenging non-contained infrabony defects. Nine one-wall infrabony defects were treated with a combination of a papilla preservation technique and a coronally advanced flap. Enamel matrix derivative was delivered to the defect, but no bone grafting materials or membranes were employed. Mean 1-year probing depth reduction was 6.3 ± 2.0 mm (P < .001) and mean clinical attachment gain was 7.1 ± 1.0 mm (P < .001). All treated sites showed a mean reduction of exposed root surface equal to 1.0 ± 0.4 mm (P = .05). The results suggest the possibility of improving the regenerative potential of a one-wall infrabony defect by the creation of a stable soft tissue wall while also enhancing the esthetic outcome of the surgical procedure. Further studies with a larger number of patients are needed to support these preliminary data.
Extracellular vesicles and cardiovascular disease therapy
Amosse, Jérémy; Martinez, Maria Carmen
2017-01-01
Cardiovascular disease (CVD) constitutes one of the leading causes of mortality worldwide, therefore representing a major public health concern. Despite recent advances in the treatment of patients with acute myocardial infarction (AMI), such as bypass surgery or percutaneous coronary intervention, pathological cardiac remodeling often predisposes survivors to fatal heart failure. In this context, the proven efficacy of stem cell-regenerative therapies constitutes a promising therapeutic perspective with is nevertheless slow down by safety and ethical concerns. Recent studies have underscored the capacity of stem cell-derived extracellular vesicles (EV) to recapitulate the regenerative properties of their parental cells therefore offering a therapeutic alternative to cell therapy in cardiovascular regenerative medicine. In this article, we review the functional relevance of using stem cell-derived EV as therapeutically agents and detail the identified molecular pathways that they used to exert their effects. We also discuss the advantages of using such an acellular regenerative therapy, in regard with parental stem cells, and address the limitations, which would need to be resolved, before their clinical translation. PMID:29359141
Application of regenerative medicine for kidney diseases.
Yokoo, Takashi; Fukui, Akira; Kobayashi, Eiji
2007-01-01
Following recent advancements of stem cell research, the potential for organ regeneration using somatic stem cells as an ultimate therapy for organ failure has increased. However, anatomically complicated organs such as the kidney and liver have proven more refractory to stem cell-based regenerative techniques. At present, kidney regeneration is considered to require one of two approaches depending on the type of renal failure, namely acute renal failure (ARF) and chronic renal failure (CRF).The kidney has the potential to regenerate itself provided that the damage is not too severe and the kidney's structure remains intact. Regenerative medicine for ARF should therefore aim to activate or support this potent. In cases of the irreversible damage to the kidney, which is most likely in patients with CRF undergoing long-term dialysis, self-renewal is totally lost. Thus, regenerative medicine for CRF will likely involve the establishment of a functional whole kidney de novo. This article reviews the challenges and recent advances in both approaches and discusses the potential approach of these novel strategies for clinical application.
Regenerative Medicine Strategies for Esophageal Repair
Londono, Ricardo
2015-01-01
Pathologies that involve the structure and/or function of the esophagus can be life-threatening. The esophagus is a complex organ comprising nonredundant tissue that does not have the ability to regenerate. Currently available interventions for esophageal pathology have limited success and are typically associated with significant morbidity. Hence, there is currently an unmet clinical need for effective methods of esophageal repair. The present article presents a review of esophageal disease along with the anatomic and functional consequences of each pathologic process, the shortcomings associated with currently available therapies, and the latest advancements in the field of regenerative medicine with respect to strategies for esophageal repair from benchtop to bedside. PMID:25813694
Nimmo, Chelsea M; Shoichet, Molly S
2011-11-16
The click chemistry era has generated a library of versatile "spring-loaded" reactions that offer high yields, regio- and stereospecificity, and outstanding functional group tolerance. These powerful transformations are particularly advantageous for the design of sophisticated biomaterials that require high levels of precision and control, namely, materials that promote tissue regeneration such as hydrogels, 2D functionalized substrates, and 3D biomimetic scaffolds. In this review, the synthesis and application of regenerative biomaterials via click chemistry are summarized. Particular emphasis is placed on the copper(I)-catalyzed alkyne-azide cycloaddition, Diels-Alder cycloadditions, and thiol-click coupling.
Zheng, Ying; Hsieh, Jen-Chih; Escandon, Julia; Cotsarelis, George
2016-01-01
The hair follicle (HF) is a dynamic structure readily accessible within the skin, and contains various pools of stem cells that have a broad regenerative potential during normal homeostasis and in response to injury. Recent discoveries demonstrating the multipotent capabilities of hair follicle stem cells and the easy access to skin tissue make the HF an attractive source for isolating stem cells and their subsequent application in tissue engineering and regenerative medicine. Here, we describe the isolation and purification of hair follicle bulge stem cells from mouse skin, and hair reconstitution assays that allows the functional analysis of multipotent stem cells.
Bioengineered Lacrimal Gland Organ Regeneration in Vivo
Hirayama, Masatoshi; Tsubota, Kazuo; Tsuji, Takashi
2015-01-01
The lacrimal gland plays an important role in maintaining a homeostatic environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and causes ocular discomfort, significant visual disturbances, and a reduced quality of life. Current therapies for dry eye disease, including artificial tear eye drops, are transient and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions during embryogenesis. Lacrimal tissue stem cells have been identified for use in regenerative therapeutic approaches aimed at restoring lacrimal gland functions. Fully functional organ replacement, such as for tooth and hair follicles, has also been developed via a novel three-dimensional stem cell manipulation, designated the Organ Germ Method, as a next-generation regenerative medicine. Recently, we successfully developed fully functional bioengineered lacrimal gland replacements after transplanting a bioengineered organ germ using this method. This study represented a significant advance in potential lacrimal gland organ replacement as a novel regenerative therapy for dry eye disease. In this review, we will summarize recent progress in lacrimal regeneration research and the development of bioengineered lacrimal gland organ replacement therapy. PMID:26264034
Active Nanomaterials to Meet the Challenge of Dental Pulp Regeneration
Keller, Laetitia; Offner, Damien; Schwinté, Pascale; Morand, David; Wagner, Quentin; Gros, Catherine; Bornert, Fabien; Bahi, Sophie; Musset, Anne-Marie; Benkirane-Jessel, Nadia; Fioretti, Florence
2015-01-01
The vitality of the pulp is fundamental to the functional life of the tooth. For this aim, active and living biomaterials are required to avoid the current drastic treatment, which is the removal of all the cellular and molecular content regardless of its regenerative potential. The regeneration of the pulp tissue is the dream of many generations of dental surgeons and will revolutionize clinical practices. Recently, the potential of the regenerative medicine field suggests that it would be possible to achieve such complex regeneration. Indeed, three crucial steps are needed: the control of infection and inflammation and the regeneration of lost pulp tissues. For regenerative medicine, in particular for dental pulp regeneration, the use of nano-structured biomaterials becomes decisive. Nano-designed materials allow the concentration of many different functions in a small volume, the increase in the quality of targeting, as well as the control of cost and delivery of active molecules. Nanomaterials based on extracellular mimetic nanostructure and functionalized with multi-active therapeutics appear essential to reverse infection and inflammation and concomitantly to orchestrate pulp cell colonization and differentiation. This novel generation of nanomaterials seems very promising to meet the challenge of the complex dental pulp regeneration. PMID:28793649
Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja
2015-11-18
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Space Station Environmental Control and Life Support System Status: 2002-2003
NASA Technical Reports Server (NTRS)
Wiliams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
Chemical genetics and regeneration.
Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S
2015-01-01
Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.
Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.
Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi
2014-01-01
MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1(epi-/-) mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.
Chen, Chun-Yuan; Rao, Shan-Shan; Ren, Lu; Hu, Xiong-Ke; Tan, Yi-Juan; Hu, Yin; Luo, Juan; Liu, Yi-Wei; Yin, Hao; Huang, Jie; Cao, Jia; Wang, Zhen-Xing; Liu, Zheng-Zhao; Liu, Hao-Ming; Tang, Si-Yuan; Xu, Ran; Xie, Hui
2018-01-01
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein. PMID:29556344
Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.
Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K
2017-10-24
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
REGENERATIVE TRANSISTOR AMPLIFIER
Kabell, L.J.
1958-11-25
Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.
Engineering Concepts in Stem Cell Research.
Narayanan, Karthikeyan; Mishra, Sachin; Singh, Satnam; Pei, Ming; Gulyas, Balazs; Padmanabhan, Parasuraman
2017-12-01
The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.
Whitlow, Jonathan; Pacelli, Settimio; Paul, Arghya
2017-09-10
With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long-term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in-depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A
2014-11-01
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.
Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis
NASA Astrophysics Data System (ADS)
Kam, Kimberly Renee
Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly impact the field. Due to the rise in micro and nanofabrication techniques borrowed from the advances in the microelectronics industry, previously unattainable nanostructured surfaces on a variety of biomaterials can be generated. We investigated how nanostructured surfaces with varying nanofeature aspect ratios can influence fibrosis. Thus, nanostructured surfaces show substantial progress for therapeutic applications in drug delivery and wound healing.
Anitua, Eduardo; Pino, Ander; Jaen, Pedro; Orive, Gorka
2016-01-01
Optimal skin repair has been a desired goal for many researchers. Recently, plasma rich in growth factors (PRGF) has gained importance in dermatology proving it is beneficial effects in wound healing and cutaneous regeneration. The anti-fibrotic, pro-contractile and photo-protective effect of PRGF on dermal fibroblasts and 3D skin models has been evaluated. The effect against TGFβ1 induced myofibroblast differentiation was tested. Cell contractile activity over collagen gel matrices was analyzed and the effect against UV derived photo-oxidative stress was assessed. The effectiveness of PRGF obtained from young aged and middle aged donors was compared. Furthermore, 3D organotypic skin explants were used as human skin models with the aim of analyzing ex vivo cutaneous preventive and regenerative photo-protection after UV exposure. TGFβ1 induced myofibroblast levels decreased significantly after treatment with PRGF while the contractile activity increased compared to the control group. After UV irradiation, cell survival was promoted while apoptotic and ROS levels were noticeably reduced. Photo-exposed 3D explants showed higher levels of metabolic activity and lower levels of necrosis, cell damage, irritation and ROS formation when treated with PRGF. The histological integrity and connective tissue fibers showed lower signals of photodamage among PRGF injected skin models. No significant differences for the assessed biological outcomes were observed when PRGF obtained from young aged and middle aged donors were compared. These findings suggest that this autologous approach might be useful for antifibrotic wound healing and provide an effective protection against sun derived photo-oxidative stress regardless the age of the patient.
Bas, Esperanza; Goncalves, Stefania; Adams, Michelle; Dinh, Christine T.; Bas, Jose M.; Van De Water, Thomas R.; Eshraghi, Adrien A.
2015-01-01
Conservation of a patient's residual hearing and prevention of fibrous tissue/new bone formation around an electrode array are some of the major challenges in cochlear implant (CI) surgery. Although it is well-known that fibrotic tissue formation around the electrode array can interfere with hearing performance in implanted patients, and that associated intracochlear inflammation can initiate loss of residual hearing, little is known about the molecular and cellular mechanisms that promote this response in the cochlea. In vitro studies in neonatal rats and in vivo studies in adult mice were performed to gain insight into the pro-inflammatory, proliferative, and remodeling phases of pathological wound healing that occur in the cochlea following an electrode analog insertion. Resident Schwann cells (SC), macrophages, and fibroblasts had a prominent role in the inflammatory process in the cochlea. Leukocytes were recruited to the cochlea following insertion of a nylon filament in adult mice, where contributed to the inflammatory response. The reparative stages in wound healing are characterized by persistent neuro-inflammation of spiral ganglion neurons (SGN) and expression of regenerative monocytes/macrophages in the cochlea. Accordingly, genes involved in extracellular matrix (ECM) deposition and remodeling were up-regulated in implanted cochleae. Maturation of scar tissue occurs in the remodeling phase of wound healing in the cochlea. Similar to other damaged peripheral nerves, M2 macrophages and de-differentiated SC were observed in damaged cochleae and may play a role in cell survival and axonal regeneration. In conclusion, the insertion of an electrode analog into the cochlea is associated with robust early and chronic inflammatory responses characterized by recruitment of leukocytes and expression of pro-inflammatory cytokines that promote intracochlear fibrosis and loss of the auditory hair cells (HC) and SGN important for hearing after CI surgery. PMID:26321909
Role of ROS-mediated TGF beta activation in laser photobiomodulation
NASA Astrophysics Data System (ADS)
Arany, Praveen R.; Chen, Aaron Chih-Hao; Hunt, Tristan; Mooney, David J.; Hamblin, Michael
2009-02-01
The ability of laser light to modulate specific biological processes has been well documented but the precise mechanism mediating these photobiological interactions remains an area of intense investigation. We recently published the results of our clinical trial with 30 patients in an oral tooth-extraction wound healing model using a 904nm GaAs laser (Oralaser 1010, Oralia, Konstnaz, Germany), assessing healing parameters using routine histopathology and immunostaining (Arany et al Wound Rep Regen 2007, 15, 866). We observed a better organized healing response in laser irradiated oral tissues that correlated with an increased expression of TGF-beta1 immediately post laser irradiation. Our data suggested the source of latent TGF-beta1 might be from the degranulating platelets in the serum, an abundant source of in vivo latent TGF-beta, in the freshly wounded tissues. Further, we also demonstrated the ability of the low power near-infrared laser irradiation to activate the latent TGF-beta complexes in vitro at varying fluences from 10sec (0.1 J/cm2) to 600secs (6 J/cm2). Using serum we observed two isoforms, namely TGF-beta1 and TGF-beta3, were capable of being activated by laser irradiation using an isoform-specific ELISA and a reporter based (p3TP) assay system. We are presently pursuing the precise photomolecular mechanisms focusing on potential chromophores, wavelength and fluence parameters affecting the Latent TGF-beta activation process in serum. As ROS mediated TGF-beta activation has been previously demonstrated and we are also exploring the role of Laser generated-ROS in this activation process. In summary, we present evidence of a potential molecular mechanism for laser photobiomodulation in its ability to activate latent TGF-beta complexes.
Zebrafish fin and heart: what's special about regeneration?
Sehring, Ivonne M; Jahn, Christopher; Weidinger, Gilbert
2016-10-01
Many organs regenerate well in adult zebrafish, but most research has been directed toward fin and heart regeneration. Cells have been found to remain generally lineage-restricted during regeneration, and proliferative regenerative progenitors can be formed by dedifferentiation from differentiated cells. Recent studies begin to shed light on the molecular underpinnings of differences between development and regeneration. Retinoic acid, BMP and NF-κB signaling are emerging as regulators of cellular dedifferentiation. Reactive oxygen species promote regeneration, and the dynamics of ROS signaling might help explain differences between wound healing and regeneration. Finally, the heart has been added to those organs that require a nerve supply to regenerate, and a trade-off between regeneration and tumor suppression has been proposed to help explain why mammals regenerate poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Diabetes and Wound Angiogenesis.
Okonkwo, Uzoagu A; DiPietro, Luisa A
2017-07-03
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes.
Diabetes and Wound Angiogenesis
Okonkwo, Uzoagu A.; DiPietro, Luisa A.
2017-01-01
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes. PMID:28671607
Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications
Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera
2015-01-01
The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration. PMID:26512657
Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications.
Ojeh, Nkemcho; Pastar, Irena; Tomic-Canic, Marjana; Stojadinovic, Olivera
2015-10-23
The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.
Roles of P21-activated kinases and associated proteins in epithelial wound healing.
Zegers, Mirjam
2008-01-01
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Use of tissue adhesive as a field expedient barrier dressing for hand wounds in disaster responders.
Levy, Matthew J; Tang, Nelson
2014-02-01
Injuries sustained by disaster responders can impede the affected individuals' ability to perform critical functions and often require the redirection of already scarce resources. Soft-tissue injuries to the hand are commonly experienced by disaster workers and even seemingly mild lacerations can pose the potential for significant complications in such hazard-filled environments. In this report, the authors describe their experience utilizing tissue adhesive to create a functional and effective barrier dressing for a hand injury sustained by a responder at the West, Texas USA fertilizer plant explosion. This technique of wound management allowed the patient to continue performing essential onsite functions for a sustained period following the explosion and the subsequent investigative processes. At the 30-day follow-up, the wound was well healed and without complications. This technique proved to be a valuable method of field expedient wound management and is worthy of consideration in similar future circumstances.
Effects of Growth Factors on Dental Stem/ProgenitorCells
Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.
2014-01-01
Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538
Gene expression profiling of intestinal regeneration in the sea cucumber
Ortiz-Pineda, Pablo A; Ramírez-Gómez, Francisco; Pérez-Ortiz, Judit; González-Díaz, Sebastián; Santiago-De Jesús, Francisco; Hernández-Pasos, Josue; Del Valle-Avila, Cristina; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; Tossas, Karen; Méndez-Merced, Ana T; Roig-López, José L; Ortiz-Zuazaga, Humberto; García-Arrarás, José E
2009-01-01
Background Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools. For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. Results In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. Conclusion Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes. PMID:19505337
NASA Astrophysics Data System (ADS)
Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross
2013-05-01
The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be appropriate for examination of the regenerative braking mode according to ADSS. The manoeuvres are also important for investigation of regenerative braking system properties/functionalities that are specified by the legal requirements concerning H/EVs braking systems. The last part of this paper shows simulation results for one of the proposed manoeuvres that explicitly shows the usefulness of the manoeuvre.
[Homicide, suicide or fatal accident?].
Straka, L; Novomeský, F; Stuller, F; Krajovic, J; Macko, V; Malachovský, I; Hamzík, J
2011-04-01
A forensic explanation of womandrinker's death is presented in the article. Exsanguination from multiple cut wounds was cause of death. Origin of wounds was unable to explain due to its atypical character and localisation on body surface. Only a subsequent exact allocation of wounding object made clear biomechanical aspects of wounds. A hard ethanol alteration of psychical, senzorical et motorical functions with strong posttraumatic et toxometabolic changes of the body took share on mechanism of death.
Evaluation of wound healing activity of ferulic acid in diabetic rats.
Ghaisas, Mahesh M; Kshirsagar, Shashank B; Sahane, Rajkumari S
2014-10-01
In diabetic patients, there is impairment in angiogenesis, neovascularisation and failure in matrix metalloproteineases (MMPs), keratinocyte and fibroblast functions, which affects wound healing mechanism. Hence, diabetic patients are more prone to infections and ulcers, which finally result in gangrene. Ferulic acid (FA) is a natural antioxidant found in fruits and vegetables, such as tomatoes, rice bran and sweet corn. In this study, wound healing activity of FA was evaluated in streptozotocin-induced diabetic rats using excision wound model. FA-treated wounds were found to epithelise faster as compared with diabetic wound control group. The hydroxyproline and hexosamine content increased significantly when compared with diabetic wound control. FA effectively inhibited the lipid peroxidation and elevated the catalase, superoxide dismutase, glutathione and nitric oxide levels along with the increase in the serum zinc and copper levels probably aiding the wound healing process. Hence, the results indicate that FA significantly promotes wound healing in diabetic rats. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Antarctic analogs as a testbed for regenerative life support technologies
NASA Technical Reports Server (NTRS)
Roberts, D. R.; Andersen, D. T.; Mckay, C. P.; Wharton, R. A., Jr.; Rummel, J. D.
1991-01-01
The feasibility of using Antarctica as a platform for creating earth-based simulations of regenerative life support systems (LSSs) for future space missions is discussed. The requirements for a bioregenerative LSS and the types of technologies that may be used in such a system are examined. Special attention is given to the objectives and the organization of the NASA's CELSS program for the development of regenerative LSSs to support long-duration human missions in space, largely independent of resupply, in a safe and reliable manner. There are two types of locations on the continent of Antarctica suitable for the placement of simulation facilities: the polar plateau and the ice-free dry valleys. The unique attributes that lend each type of location to very different functions as simulation facilities are discussed.
Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine
Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.
2009-01-01
Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita; Davis, Frank M; denDekker, Aaron; Boniakowski, Anna; Bermick, Jennifer; Obi, Andrea; Moore, Bethany; Henke, Peter K; Kunkel, Steve L; Gallagher, Katherine A
2018-05-01
Wound monocyte-derived macrophage plasticity controls the initiation and resolution of inflammation that is critical for proper healing, however, in diabetes mellitus, the resolution of inflammation fails to occur. In diabetic wounds, the kinetics of blood monocyte recruitment and the mechanisms that control in vivo monocyte/macrophage differentiation remain unknown. Here, we characterized the kinetics and function of Ly6C Hi [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] and Ly6C Lo [Lin - (CD3 - CD19 - NK1.1 - Ter-119 - ) Ly6G - CD11b + ] monocyte/macrophage subsets in normal and diabetic wounds. Using flow-sorted tdTomato -labeled Ly6C Hi monocyte/macrophages, we show Ly6C Hi cells transition to a Ly6C Lo phenotype in normal wounds, whereas in diabetic wounds, there is a late, second influx of Ly6C Hi cells that fail transition to Ly6C Lo . The second wave of Ly6C Hi cells in diabetic wounds corresponded to a spike in MCP-1 (monocyte chemoattractant protein-1) and selective administration of anti-MCP-1 reversed the second Ly6C Hi influx and improved wound healing. To examine the in vivo phenotype of wound monocyte/macrophages, RNA-seq-based transcriptome profiling was performed on flow-sorted Ly6C Hi [Lin - Ly6G - CD11b + ] and Ly6C Lo [Lin - Ly6G - CD11b + ] cells from normal and diabetic wounds. Gene transcriptome profiling of diabetic wound Ly6C Hi cells demonstrated differences in proinflammatory and profibrotic genes compared with controls. Collectively, these data identify kinetic and functional differences in diabetic wound monocyte/macrophages and demonstrate that selective targeting of CD11b + Ly6C Hi monocyte/macrophages is a viable therapeutic strategy for inflammation in diabetic wounds. © 2018 American Heart Association, Inc.
Henshaw, F R; Boughton, P; Lo, L; McLennan, S V; Twigg, S M
2015-01-01
Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r = 0.406; P < 0.001). These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers.
The Hippo pathway in tissue homeostasis and regeneration.
Wang, Yu; Yu, Aijuan; Yu, Fa-Xing
2017-05-01
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Tissue-specific contribution of macrophages to wound healing.
Minutti, Carlos M; Knipper, Johanna A; Allen, Judith E; Zaiss, Dietmar M W
2017-01-01
Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phosphorous-Containing Polymers for Regenerative Medicine
Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.
2014-01-01
Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855
Sicari, Brian M; Dearth, Christopher L; Badylak, Stephen F
2014-01-01
The well-recognized ability of skeletal muscle for functional and structural regeneration following injury is severely compromised in degenerative diseases and in volumetric muscle loss. Tissue engineering and regenerative medicine strategies to support muscle reconstruction have typically been cell-centric with approaches that involve the exogenous delivery of cells with myogenic potential. These strategies have been limited by poor cell viability and engraftment into host tissue. Alternative approaches have involved the use of biomaterial scaffolds as substrates or delivery vehicles for exogenous myogenic progenitor cells. Acellular biomaterial scaffolds composed of mammalian extracellular matrix (ECM) have also been used as an inductive niche to promote the recruitment and differentiation of endogenous myogenic progenitor cells. An acellular approach, which activates or utilizes endogenous cell sources, obviates the need for exogenous cell administration and provides an advantage for clinical translation. The present review examines the state of tissue engineering and regenerative medicine therapies directed at augmenting the skeletal muscle response to injury and presents the pros and cons of each with respect to clinical translation. Copyright © 2013 Wiley Periodicals, Inc.
Topical negative pressure for the treatment of neonatal post-sternotomy wound dehiscence.
Hardwicke, J; Richards, H; Jagadeesan, J; Jones, T; Lester, R
2012-01-01
The use of topical negative pressure (TNP) dressings for sternal wound dehiscence or mediastinitis in the neonatal population is rare. The majority of case reports have focused on wound healing as an endpoint and have not discussed the physiological advantage that TNP dressings may impart with regard to sternal stabilisation, improved respiratory function and early weaning from mechanical ventilation. We present a case of the use of TNP in neonatal post-sternotomy wound dehiscence and mediastinitis, from a UK perspective, with an emphasis on wound healing and physiological optimisation. As well as an improvement in sternal wound healing due to the local effects of the TNP system, serial arterial blood gas analysis revealed a significant improvement in systemic physiological parameters, including a reduction in pCO(2) in the period (days 20-31) after application of TNP (p<0.0001) compared to the period before where simple occlusive dressings were applied. Hydrogen ion concentration also significantly reduced in this period (p=0.0058). The use of the TNP system in association with systemic antibiotics successfully treated the mediastinitis. A sealed, controlled wound environment also allowed ease of nursing and an expedited return to care by the parents. We would recommend the consideration of TNP dressings in similar cases of neonatal and paediatric sternal wound dehiscence. Not only do we observe the local effects of improved wound healing, the systemic effects of improved lung function are also valuable in the early management of such complex cases.
Qi, Weiwei; Yang, Chuan; Dai, Zhiyu; Che, Di; Feng, Juan; Mao, Yuling; Cheng, Rui; Wang, Zhongxiao; He, Xuemin; Zhou, Ti; Gu, Xiaoqiong; Yan, Li; Yang, Xia; Ma, Jian-Xing; Gao, Guoquan
2015-04-01
Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/β-catenin signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
The Innate Immune System in Acute and Chronic Wounds
MacLeod, Amanda S.; Mansbridge, Jonathan N.
2016-01-01
Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464
Approaches to cutaneous wound healing: basics and future directions.
Zeng, Ruijie; Lin, Chuangqiang; Lin, Zehuo; Chen, Hong; Lu, Weiye; Lin, Changmin; Li, Haihong
2018-04-10
The skin provides essential functions, such as thermoregulation, hydration, excretion and synthesis of vitamin D. Major disruptions of the skin cause impairment of critical functions, resulting in high morbidity and death, or leave one with life-changing cosmetic damage. Due to the complexity of the skin, diverse approaches are needed, including both traditional and advanced, to improve cutaneous wound healing. Cutaneous wounds undergo four phases of healing. Traditional management, including skin grafts and wound dressings, is still commonly used in current practice but in combination with newer technology, such as using engineered skin substitutes in skin grafts or combining traditional cotton gauze with anti-bacterial nanoparticles. Various upcoming methods, such as vacuum-assisted wound closure, engineered skin substitutes, stem cell therapy, growth factors and cytokine therapy, have emerged in recent years and are being used to assist wound healing, or even to replace traditional methods. However, many of these methods still lack assessment by large-scale studies and/or extensive application. Conceptual changes, for example, precision medicine and the rapid advancement of science and technology, such as RNA interference and 3D printing, offer tremendous potential. In this review, we focus on the basics of wound treatment and summarize recent developments involving both traditional and hi-tech therapeutic methods that lead to both rapid healing and better cosmetic results. Future studies should explore a more cost-effective, convenient and efficient approach to cutaneous wound healing. Graphical abstract Combination of various materials to create advanced wound dressings.
Cellular Mechanisms of Somatic Stem Cell Aging
Jung, Yunjoon
2014-01-01
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814
``Wounded'' quarks and diquarks in high energy collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Bzdak, A.
2008-03-01
Particle production in Au-Au, Cu-Cu, d-Au, and p-p collisions at 200 GeV c.m. energy are analyzed in the wounded quark-diquark model. Existing data are well reproduced. Emission functions of wounded and unwounded constituents are determined. Implications for the collective evolution of the system are discussed.
Surgical modalities in gunshot wounds of the face.
Firat, Cemal; Geyik, Yilmaz
2013-07-01
Maxillofacial traumas caused by gunshot wounds may cause quite varied defects. The objective of this study was to evaluate the reconstruction methods in 12 patients with gunshot wound-related mandibular and maxillofacial bony and soft tissue defects. Twelve patients who were operated on for maxillofacial gunshot wounds at our clinic between 2002 and 2012 were included in the study. Seven patients were wounded in a suicide attempt, and 5 were wounded as a result of an accident or in assaults. Two patients underwent reconstruction using free fibula osteocutaneous flap, 4 patients received the free radial forearm osteocutaneous flap, 2 patients received costal bone graft, and 3 patients received iliac bone grafts. Satisfactory functional and aesthetic outcomes were achieved in cases where staged secondary reconstruction, balloon treatment, and consecutive fat and steroid injections into the depressed scar areas were applied. In conclusion, the basic goal in maxillofacial reconstruction is the functional and aesthetic reconstruction of the contours. Because it is not easy to get perfect results with only 1 clinical approach or 1 method, the proper timing and reconstruction method should be selected.
Chouhan, Dimple; Chakraborty, Bijayshree; Nandi, Samit K; Mandal, Biman B
2017-01-15
Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapor transmission rate (∼2330gm -2 day -1 ), high elasticity (∼2.6MPa), sustained drug release and antibacterial activity. Functionalized NMSF mats enhanced the proliferation of human dermal fibroblasts and HaCaT cells in vitro as compared to non-functionalized mats (p⩽0.01) showing effective delivery of EGF. Extensive in vivo wound healing assesment demonstrated accelerated wound healing, enhanced re-epithelialization, highly vascularized granulation tissue and higher wound maturity as compared to BMSF based mats. NMSF mats treated wounds showed regulated deposition of mature elastin, collagen and reticulin fibers in the extracellular matrix of skin. Presence of skin appendages and isotropic collagen fibers in the regenerated skin also demonstrated scar-less healing and aesthetic wound repair. A facile fabrication of a ready-to-use bioactive wound dressing capable of concomitantly accelerating the healing process as well as deposition of the extracellular matrix (ECM) to circumvent further scarring complicacies has become a focal point of research. In this backdrop, our present work is based on non-mulberry silk fibroin (NMSF) electrospun antibiotic loaded semi-occlusive mats, mimicking the ECM of skin in terms of morphology, topology, microporous structure and mechanical stiffness. Regulation of ECM deposition and isotropic orientation evinced the potential of the mat as an instructive platform for skin regeneration. The unique peptide motifs of NMSF assisted the augmented recruitment of fibroblast, keratinocytes and endothelial cells leading to accelerated wound healing. Early progression of mature granulation, faster re-epithelialization and angiogenesis in the wounds in in vivo rabbit model forwarded the blended nanofibrous mats of NMSF and PVA ferrying EGF, apt for scarless healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design, Preparation and Activity of Cotton Gauze for Use in Chronic Wound Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J. V.; Yager, Dorne; Bopp, Alvin
We consider the rational design and chemical modification of cotton gauze, which is used widely in chronic wounds, to improve wound dressing fibers for application to chronic wound healing. Cotton gauze may be tailored to more effectively enhance the biochemistry of wound healing. The presence of elevated levels of elastase in non-healing wounds has been associated with the degradation of important growth factors and fibronectin necessary for wound healing. In the healing wound a balance of elastase and antiproteases precludes degradation of beneficial proteins from taking place. Cotton gauze modified to release elastase inhibitors or selectively functionalized to sequester elastasemore » provides a dressing that decreases high levels of destructive elastase in the chronic wounds. Three approaches have been taken to explore the potential of fiber-inhibitors useful in chronic wounds: 1) Formulation of inhibitors on the dressing; 2) Synthesis of elastase recognition sequences on cotton cellulose; and 3) Data presented here on carboxymethylating, and oxidizing textile finishes of cotton gauze to remove elastase from the wound.« less
Valentin-Kahan, Adrián; García-Tejedor, Gabriela B.; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E.; Alvarez-Valin, Fernando
2017-01-01
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. PMID:28223917
Valentin-Kahan, Adrián; García-Tejedor, Gabriela B; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E; Alvarez-Valin, Fernando
2017-01-01
Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans . We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved "regeneration genes" and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.