Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module
NASA Technical Reports Server (NTRS)
Edgecombe, John; delaFuente, Horacio; Valle, Gerard
2009-01-01
Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than expected results. This paper will discuss space inflatable structures, damage tolerance analysis, test results, and applicability to the Lunar architecture.
Creep Burst Testing of a Woven Inflatable Module
NASA Technical Reports Server (NTRS)
Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.
2015-01-01
A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.
Hatch Integration Testing of a NASA TransHab Derivative Woven Inflatable Module
NASA Technical Reports Server (NTRS)
Edgecombe, John; Valle, Gerald
2009-01-01
Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures are also perceived to carry additional risk because they are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. The use of inflatable structures for habitation will require large penetrations in the inflatable structure to accommodate hatches and/or windows The Hatch Integration Test is designed to study the structural integrity of an expandable structure with an integrated hatch, and to verify mathematical models of the structure. The TransHab project developed an experimental inflatable module at Johnson Space Center in the 1990's. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS).
Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.
2014-01-01
Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.
2007-08-01
Diameter ........................................................... 13 Figure 14: Braid Angle...must be resisted, and Beta which is the bias angle of the braid . This equation is specific to a fabric that is braided and not woven. Figure 14...shows what the bias angle in a braided fabric. Figure 14: Braid Angle Because braided fabrics are stronger than woven for air beams, braided
A design pathfinder with material correlation points for inflatable systems
NASA Astrophysics Data System (ADS)
Fulcher, Jared Terrell
The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures. KEYWORDS: Nonlinear Finite Element, Inflatable Structures, Gossamer Space Systems, Photogrammetry Measurements, Coated Woven Fabric.
Evaluation Report of the Double Wall Air Inflated MUST Shelter Made from Three Dimensional Fabric
1975-10-22
II Natick laboratory Test Results on Spray Coated 3-D Woven Fabric iWST Shelter Casing Material ......... 29 11 3-D Casing Fabric D1mensions, as Woven...of yarns shoi . be achieved before spraying. 3.1.3 The casing surface should be inspected afhir each of the first several spray coats for pinholes in...Coated Fabric Casing Material After two days of drying time, a three-foot-wide portion was cut off from one end of a sprayed casing . Part of this coated
Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test
NASA Technical Reports Server (NTRS)
James, George H.; Grygier, Michael; Selig, Molly M.
2015-01-01
Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.
Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes
NASA Technical Reports Server (NTRS)
Krause, David L.; Bartolotta, Paul A.
2001-01-01
Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.
Modern Advances in Ablative TPS
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2013-01-01
Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
NASA Technical Reports Server (NTRS)
Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James
2015-01-01
An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing tends to neutralize the annual sinusoidal displacement pattern. Study indicates that applied load, environmental effects, mechanical strength, coefficient of thermal expansion, and hygroscopic properties of webbings are fundamental requirements for quantifying accurate creep displacements and behaviors over multiple year time periods. Results from a study of the environmental effects on long-term creep displacement data of Kevlar and Vectran woven webbings are presented to increase the knowledge base of webbing materials and to enhance designs of inflatable space structures for long-duration space missions.
Air-Inflated Fabric Structures
2006-11-05
environmental exposure to ultraviolet rays, moisture, fire, chemicals, etc. Coating such as urethane, PVC (polyvinyl chloride), neoprene, EPDM (ethylene...tests on rubber -coated, plain-woven fabrics and established that the initial shear response was dominated by the coating and with increased shearing...Farboodmanesh, S., Chen, J., Mead, J. L., White, K., "Effect of Construction on Mechanical Behavior of Fabric Reinforced Rubber ," Rubber Division
Advanced Structural and Inflatable Hybrid Spacecraft Module
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)
2001-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)
2003-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2011 CFR
2011-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2012 CFR
2012-10-01
... an inflatable bag assembly. A seat-belt pre-tensioner contains similar hazardous materials and is... manufacturer has submitted each design type air bag inflator, air bag module, or seat-belt pretensioner to a... or pretensioner design type for which approval is sought and details on the complete package. The...
Oscillations in the CMB from Axion Monodromy Inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flauger, Raphael; /Texas U.; McAllister, Liam
2011-12-01
We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axionmore » monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.« less
A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.
Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua
2018-06-01
A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.
Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series
NASA Technical Reports Server (NTRS)
Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil
2014-01-01
To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
The Potential for Imaging in Situ Damage in Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Anastasi, Robert F.; Seebo, Jeffrey P.; Studor, George; McMakin, Douglas L.; Nellums, Robert; Winfree, William P.
2007-01-01
NASA is investigating the use of inflatable habitat structures for orbital transfer and planetary applications. Since space structures are vulnerable to damage from micrometeoroid and orbital debris, it is important to investigate means of detecting such damage. This study is an investigation into methods for performing non-destructive evaluation (NDE) on inflatable habitat modules. Results of this work showed that various electromagnetic imaging modalities from microwaves to terahertz imaging have the greatest potential for a viable, portable, NDE tool which could possibly be deployed aboard an inflatable habitat module.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
... Communication Requirements for the Safe Transportation of Air Bag Inflators, Air Bag Modules, and Seat-Belt... Regulations applicable to air bag inflators, air bag modules, and seat-belt pretensioners. The proposed... classified as a [[Page 17395
Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard
2000-01-01
The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.
ERIC Educational Resources Information Center
Bannister, Rosella
This publication suggests classroom activities and resources on inflation for use in secondary and adult/community education. Objectives are to enable students to: identify and analyze varying points of view and policy proposals on inflation; apply the decision-making process to various alternatives regarding inflation; and achieve a broader…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Communication Requirements for the Safe Transportation of Air Bag Inflators, Air Bag Modules, and Seat-Belt... Materials Regulations applicable to air bag inflators, air bag modules, and seat-belt pretensioners. The... amending the current approval and documentation requirements for a material classified as a UN3268 air bag...
Personnel occupied woven envelope robot
NASA Technical Reports Server (NTRS)
Wessling, Francis; Teoh, William; Ziemke, M. Carl
1988-01-01
The Personnel Occupied Woven Envelope Robot (POWER) provides an alternative to extravehicular activity (EVA) of space suited astronauts and/or use of long slender manipulator arms such as are used in the Shuttle Remote Manipulator System. POWER provides the capability for a shirt sleeved astronaut to perform such work by entering a control pod through air locks at both ends of an inflated flexible bellows (access tunnel). The exoskeleton of the tunnel is a series of six degrees of freedom (Six-DOF) articulated links compressible to 1/6 of their fully extended length. The operator can maneuver the control pod to almost any location within about 50 m of the base attachment to the space station. POWER can be envisioned as a series of hollow Six-DOF manipulator segments or arms wherein each arm grasps the shoulder of the next arm. Inside the hollow arms ia a bellow-type access tunnel. The control pod is the fist of the series of linked hollow arms. The fingers of the fist are conventional manipulator arms under direct visual control of the nearby operator in the pod. The applications and progress to date of the POWER system is given.
Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration
NASA Technical Reports Server (NTRS)
Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.
2014-01-01
INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.
Hubble induced mass after inflation in spectator field models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Tomohiro; Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp
2016-12-01
Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature andmore » the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.« less
Integrated fiber optic structural health sensors for inflatable space habitats
NASA Astrophysics Data System (ADS)
Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.
2017-04-01
Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.
Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.
2015-01-01
NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..
Inflatable habitation for the lunar base
NASA Technical Reports Server (NTRS)
Roberts, M.
1992-01-01
Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described.
Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.
49 CFR 172.101 - Purpose and use of hazardous materials table.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Forbidden Forbidden A 48, 87, 126 I Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 1.4G UN0503 II 1.4G 161 None 62 None Forbidden 75 kg 02 Air bag inflators, or Air bag modules, or Seat-belt pretensioners. 9 UN3268 III 9 160 166 166 166 25 kg 100 kg A Air, compressed 2.2 UN1002 2.2 78 306, 307 302 302...
Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.
Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei
2008-10-29
In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.
NASA Astrophysics Data System (ADS)
Rahnev, I.; Rimini, G.
2017-10-01
The equilibrium of the masses and the mechanical properties between the warp and the weft is a determining factor for the quality of the woven fabrics. When the fabric has a multi-layered structure and is designed for protective clothing, the uniform distribution of the elastical resistance acquires a paramount importance for the consumer properties. Isotropy in the sense of absolute equalising of the properties between the base and the weft evaluates the achieved optimum cohesion between the weaving threads and directs the weaving cycle settings. The possible variation of the ratio between the elastic modules of the warp and the weft, depending on the weft spacing and the warp tension, is the basic idea of this article.
NASA Astrophysics Data System (ADS)
Mileti, Sandro; Guarrera, Giuseppe; Marchetti, Mario; Ferrari, Giorgio; Nebiolo, Marco; Augello, Gerlando; Bitetti, Grazia; Carnà, Emiliano; Marranzini, Andrea; Mazza, Fabio
2006-07-01
The future space exploration missions aim to reduce the costs associated with design, fabrication and launch for ISS, Moon and Mars modules, while simultaneously increasing the useful volume. Flexible and inflatable structures offer many advantages over conventional structures for space applications. Principal among the advantages is the ability to package these structures into small volumes for launch. Design maturation and the development of advanced materials and fabrication processes have made the concept of an inflatable module achievable in the near future. The Multipurpose Expandable Module (FLECS) Project sponsored by ASI (Italian Space Agency) whose prime contractor is Alcatel Alenia Space Italia, links the conventional and traditional technology of modules with the innovative solutions of inflatable technology. This project emphasizes on demonstrating the capability in using inflatable technology on space structures aiming to substitute the conventional modules in future manned missions. FLECS has been designed using advanced textiles and films in order to guarantee the structural reliability necessary for the deployment and packaging configurations. A non-linear structural analysis has been conducted using several numerical codes that simulate the deployed structural characteristics achieving also the damping resistance during the packaging. All the materials used for the flexible parts have been selected through a series of mechanical tests in order to validate the more appropriate ones for the mission. The multi-layer pneumatic retention bladder and the intermediate restraint layer are composed of polymer sheets, ortho-fabrics and elastomers like polyurethanes. The External protection shield is configured using several layers of impact absorption materials and also several layers of space environment (UV, IR, atomic oxygen) protection materials such as Kapton, Mylar and Nextel. The validation of the fabrics, the films and the final prototype assembly are tested in the Space Environment Simulator (SAS), located in the SASLab laboratory of the Aerospace Engineering Department of the “La Sapienza” University of Rome.
Primordial anisotropies in gauged hybrid inflation
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan
2014-05-01
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
Evading the Lyth bound in hybrid natural inflation
NASA Astrophysics Data System (ADS)
Hebecker, A.; Kraus, S. C.; Westphal, A.
2013-12-01
Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.
West, Phillip B.
2006-01-17
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
NASA Technical Reports Server (NTRS)
Mohammed, Anil
2011-01-01
This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.
Method and apparatus for coupling seismic sensors to a borehole wall
West, Phillip B.
2005-03-15
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Explosive dome eruptions modulated by periodic gas-driven inflation
Johnson, Jeffrey B.; Lyons, John; Andrews, B. J.; Lees, J.M.
2014-01-01
Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice's conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes.
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Lazarides, George; Wagstaff, Jacques M.
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly red despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97-0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.
Cosmic microwave background power asymmetry from non-Gaussian modulation.
Schmidt, Fabian; Hui, Lam
2013-01-04
Non-Gaussianity in the inflationary perturbations can couple observable scales to modes of much longer wavelength (even superhorizon), leaving as a signature a large-angle modulation of the observed cosmic microwave background power spectrum. This provides an alternative origin for a power asymmetry that is otherwise often ascribed to a breaking of statistical isotropy. The non-Gaussian modulation effect can be significant even for typical ~10(-5) perturbations while respecting current constraints on non-Gaussianity if the squeezed limit of the bispectrum is sufficiently infrared divergent. Just such a strongly infrared-divergent bispectrum has been claimed for inflation models with a non-Bunch-Davies initial state, for instance. Upper limits on the observed cosmic microwave background power asymmetry place stringent constraints on the duration of inflation in such models.
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for woven plastic bags. 178.518 Section...-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated woven...
Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji
2002-09-01
This study examined the effects of the position and the number of woven glass fibers on the flexural strength, flexural modulus, and toughness of reinforced denture base resin. The woven glass fiber consisted of 1-4 laminated sheets. Chemical curing was used to polymerize three types of 4-mm-thick test specimens: fibers in compresrion, fibers in the center, and fibers in tension. Unreinforced specimens were produced as controls. A three-point flexural test was performed and the woven glass fiber content was calculated after the woven glass fiber was fired. The best results were obtained when the woven glass fiber was incorporated outside the base resin under tension, thereby increasing the flexural strength and flexural modulus. Furthermore, the denture base resin reinforced with woven glass fiber was made tougher by increasing the number of woven glass fibers incorporated into the portion under tension.
Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimopoulos, Konstantinos; Wagstaff, Jacques M.; Lazarides, George, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: lazaride@eng.auth.gr, E-mail: j.wagstaff@lancaster.ac.uk
2012-02-01
It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly redmore » despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97–0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.« less
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
NASA Astrophysics Data System (ADS)
Huang, Qing-Guo; Pi, Shi
2018-04-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.
2008-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment designed to search for the polarized imprint of gravitational waves from cosmic inflation. The discovery of such a signal would provide direct evidence for inflation, and its characterization would provide a means to explore energy scales orders of magnitude larger than any conceivable particle accelerator. PIPER will consist of two cryogenic telescopes-one for each of the Q and U Stokes parameters. Each will use a variable-delay polarization modulator (VPM) as its first element. This architecture is designed to minimize both T->B and E->B systematics. The detectors will be four 32x40 arrays of BUG detectors, utilizing transition-edge sensors and time-domain multiplexing. Each flight will observe approximately 25% of the sky at a single frequency. Additional flights will increase the frequency coverage.
Disorder in the early universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Daniel, E-mail: drgreen@cita.utoronto.ca
2015-03-01
Little is known about the microscopic physics that gave rise to inflation in our universe. There are many reasons to wonder if the underlying description requires a careful arrangement of ingredients or if inflation was the result of an essentially random process. At a technical level, randomness in the microphysics of inflation is closely related to disorder in solids. We develop the formalism of disorder for inflation and investigate the observational consequences of quenched disorder. We find that a common prediction is the presence of additional noise in the power spectrum or bispectrum. At a phenomenological level, these results canmore » be recast in terms of a modulating field, allowing us to write the quadratic maximum likelihood estimator for this noise. Preliminary constraints on disorder can be derived from existing analyses but significant improvements should be possible with a dedicated treatment.« less
NASA Astrophysics Data System (ADS)
Fei, Jie; Zhang, Chao; Luo, Dan; Cui, Yali; Li, Hejun; Lu, Zhaoqing; Huang, Jianfeng
2018-03-01
A series of TiO2 nanorods were successfully grown on woven carbon fiber by hydrothermal method to reinforce the resin composite. The TiO2 nanorods improved the mechanical interlocking among woven carbon fibers and resin matrix, resulting in better fibers/resin interfacial bonding. Compared with desized-woven carbon fiber, the uniform TiO2 nanorods array resulted in an improvement of 84.3% and 73.9% in the tensile and flexural strength of the composite. However, the disorderly TiO2 nanorods on woven carbon fiber leaded to an insignificant promotion of the mechanical strength. The enhanced performance of well-proportioned TiO2 nanorods-woven carbon fiber was also reflected in the nearly 56% decrease of wear rate, comparing to traditional woven carbon fiber reinforced composite.
Mechanical properties of woven glass fiber-reinforced composites.
Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji
2006-06-01
The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...: Certain Woven Electric Blankets From the People's Republic of China AGENCY: Import Administration... electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). FOR FURTHER... Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales at Less...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-04
..., style, pattern, or weave construction, including but not limited to single-faced satin, double-faced... DEPARTMENT OF COMMERCE International Trade Administration [A-583-844] Narrow Woven Ribbons With Woven Selvedge From Taiwan: Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import...
Piscitella, Roger R.
1987-01-01
In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven...
Code of Federal Regulations, 2012 CFR
2012-07-01
... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
...-AA90 Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short Supply Procedures... for the purpose of withdrawing regulations pertaining to imports of cotton woven fabric and short... ``Comments on proposed Withdrawal of Regulations Pertaining to Imports of Cotton Woven Fabric and Short...
Code of Federal Regulations, 2013 CFR
2013-07-01
... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven...
Code of Federal Regulations, 2010 CFR
2010-07-01
... tissue, filter, non-woven, and paperboard from purchased pulp subcategory. 430.120 Section 430.120... PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.120 Applicability; description of the tissue, filter, non-woven, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... Blankets from the People's Republic of China: Amended Final Determination of Sales at Less Than Fair Value... than fair value (``LTFV'') in the antidumping investigation of certain woven electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). See Certain Woven Electric Blankets...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
..., style, pattern, or weave construction, including but not limited to single-faced satin, double-faced... DEPARTMENT OF COMMERCE International Trade Administration [A-583-844, A-570-952] Narrow Woven Ribbons With Woven Selvedge From Taiwan and the People's Republic of China: Antidumping Duty Orders AGENCY...
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for woven plastic bags. 178.518 Section... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.518 Standards for woven plastic bags. (a) The following are identification codes for woven plastic bags: (1) 5H1 for an unlined or non-coated...
Piscitella, Roger R.
1987-05-05
In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Department selected two respondents for review, Precious Planet Ribbons & Bows Co., Ltd. (``Precious Planet'') and Hubschercorp. On January 24, 2012, Precious Planet timely withdrew its request for an...\\ See Letter from Precious Planet to the Secretary of Commerce, ``Narrow Woven Ribbons With Woven...
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.; Ade, Peter A. R.; Benford, Dominic J.; Bennett, Charles L.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinderks, James;
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is it balloon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (C-N-113). Each flight will be configured for a single frequency, but in order to aid in the removal of the polarized foreground signal due to Galactic dust, the filters will be changed between flights. In this way, the CMB polarization at a total of four different frequencies (200, 270, 350, and 600 GHz) will be, measured on large angular scales. PIPER consists of a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 x 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the linear Stokes parameter to which the telescope is sensitive. There are several advantages to this architecture. First, by modulating at the front of the optics, instrumental polarization is unmodulated and is therefore cleanly separated from source polarization. Second, by implementing this system with the appropriate symmetry, systematic effects can be further mitigated. In the PIPER design, many of the. systematics are manifest in the unmeasured linear Stokes parameter for each telescope and this can be separated from the desired signal. Finally, the modulation cycle never mixes the Q and U linear Stokes parameters, and thus residuals in the modulation do not twist the observed polarization vector. This is advantageous because measuring the angle of linear polarization is critical for separating the inflationary signal from other polarized components.
Influence of Fibre Architecture on Impact Damage Tolerance in 3D Woven Composites
NASA Astrophysics Data System (ADS)
Potluri, P.; Hogg, P.; Arshad, M.; Jetavat, D.; Jamshidi, P.
2012-10-01
3D woven composites, due to the presence of through-thickness fibre-bridging, have the potential to improve damage tolerance and at the same time to reduce the manufacturing costs. However, ability to withstand damage depends on weave topology as well as geometry of individual tows. There is an extensive literature on damage tolerance of 2D prepreg laminates but limited work is reported on the damage tolerance of 3D weaves. In view of the recent interest in 3D woven composites from aerospace as well as non-aerospace sectors, this paper aims to provide an understanding of the impact damage resistance as well as damage tolerance of 3D woven composites. Four different 3D woven architectures, orthogonal, angle interlocked, layer-to-layer and modified layer-to-layer structures, have been produced under identical weaving conditions. Two additional structures, Unidirectional (UD) cross-ply and 2D plain weave, have been developed for comparison with 3D weaves. All the four 3D woven laminates have similar order of magnitude of damage area and damage width, but significantly lower than UD and 2D woven laminates. Damage Resistance, calculated as impact energy per unit damage area, has been shown to be significantly higher for 3D woven laminates. Rate of change of CAI strength with impact energy appears to be similar for all four 3D woven laminates as well as UD laminate; 2D woven laminate has higher rate of degradation with respect to impact energy. Undamaged compression strength has been shown to be a function of average tow waviness angle. Additionally, 3D weaves exhibit a critical damage size; below this size there is no appreciable reduction in compression strength. 3D woven laminates have also exhibited a degree of plasticity during compression whereas UD laminates fail instantly. The experimental work reported in this paper forms a foundation for systematic development of computational models for 3D woven architectures for damage tolerance.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2012-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the polarization of the cosmic microwave background. PIPER combines cold (1.5 K) optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. A series of flights alternating between northern and southern hemisphere launch sites will produce maps in Stokes I, Q, U, and V parameters at frequencies 200, 270, 350, and 600 GHz (wavelengths 1500, 1100, 850, and 500 microns) covering 85% of the sky. We describe the PIPER instrument and discuss the current status and expected science returns from the mission.
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
Is inflation from unwinding fluxes IIB?
NASA Astrophysics Data System (ADS)
Gautason, Fridrik Freyr; Schillo, Marjorie; Van Riet, Thomas
2017-03-01
In this paper we argue that the mechanism of unwinding inflation is naturally present in warped compactifications of type IIB string theory with local throats. The unwinding of flux is caused by its annihilation against branes. The resulting inflaton potential is linear with periodic modulations. We initiate an analysis of the inflationary dynamics and cosmological observables, which are highly constrained by moduli stabilization. For the simplified model of single-Kähler Calabi-Yau spaces we find that many, though not all of the consistency constraints can be satisfied. Particularly, in this simple model geometric constraints are in tension with obtaining the observed amplitude of the scalar power spectrum. However, we do find 60 efolds of inflation with a trans-Planckian field excursion which offers the hope that slightly more complicated models can lead to a fully consistent explicit construction of large field inflation of this kind.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-08
..., polyester, rayon, polypropylene, and polyethylene teraphthalate), metal threads and/or metalized yarns, or... original length as defined in the (HTSUS, Section XI, Note 13) or rubber thread; (4) Narrow woven ribbons... comprised at least 85 percent by weight of threads having a denier of 225 or higher; (9) Narrow woven...
Superhydrophobic Superoleophobic Woven Fabrics (Preprint)
2011-06-01
AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical
Coated woven materials and method of preparation
McCreary, William J.; Carroll, David W.
1981-01-01
Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is the following: Woven materials are coated with materials, for example with metals or with pyrolytic carbon, which materials are deposited in Chemical Vapor Deposition (CVD) reactions using a fluidized bed so that the porosity of the woven material is retained and so that the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.
Primordial Inflation Polarization Explorer: Status and Plans
NASA Technical Reports Server (NTRS)
Kogut, Alan
2009-01-01
The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
Kamthan, Shweta; Gomes, James; Roychoudhury, Pradip K
2014-08-01
Spin-filters have been primarily used for producing therapeutic proteins from mammalian cells. However, disposability and/or high filter clogging of the existing spin-filter systems affect the process economy and productivity. Hence, to address these drawbacks a reusable dual spin-filter module for perfusion culture of adherent and non-adherent mammalian cells was designed. Two non-woven Bombyx mori silk layers were used as filter screen; the outer layer was conducive to cell attachment whilst the inner was non-conducive. Adherent cells can be cultured either in suspended mode using its inner single module or as monolayer of cells using its dual concentric module. We achieved 30 % higher urokinase productivity as compared to the stainless-steel spin-filter during perfusion experiments of adherent human kidney cells in suspended mode. This was due to the hydrophobic and negatively-charged silk screen that allows clog-free perfusion culture for prolonged periods.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... include natural or other non-man-made fibers; be of any color, style, pattern, or weave construction..., jacquard, or a combination of two or more colors, styles, patterns, and/or weave constructions; have been... of Sales at Less Than Fair Value: Narrow Woven Ribbons with Woven Selvedge from Taiwan AGENCY: Import...
75 FR 53711 - Narrow Woven Ribbons With Woven Selvedge From China and Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... Woven Ribbons With Woven Selvedge From China and Taiwan Determinations On the basis of the record \\1... U.S.C. 1673d(b)) (the Act), that an industry in the United States is threatened with material injury... (19 U.S.C. 1673d(b)), that an industry in the United States is threatened with material injury by...
How to Remedy the η-problem of SUSY GUT hybrid inflation via vector backreaction
NASA Astrophysics Data System (ADS)
Lazarides, George
2012-07-01
It is shown that, in supergravity models of inflation where the gauge kinetic function of a gauge field is modulated by the inflaton, we can obtain a new inflationary attractor solution, in which the roll-over of the inflaton suffers additional impedance due to the vector field backreaction. As a result, directions of the scalar potential which, due to strong Kähler corrections, become too steep and curved to normally support slow-roll inflation can now naturally do so. This solves the infamous η problem of inflation in supergravity and also keeps the spectral index of the curvature perturbation mildly red despite η of order unity. This mechanism is applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the curvature perturbation is found to be 0.97 - 0.98, in excellent agreement with data. The gauge field can act as vector curvaton generating statistical anisotropy in the curvature perturbation. However, this anisotropy could be possibly observable only if the gauge coupling constant is unnaturally small.
NASA Technical Reports Server (NTRS)
Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio
2012-01-01
This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.
Particle production of vector fields: Scale invariance is attractive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Jacques M.; Dimopoulos, Konstantinos
2011-01-15
In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statisticalmore » anisotropy in the curvature perturbation, which may well be observable in the near future.« less
Bigelow Expandable Activity Module (BEAM) Monitoring System
NASA Technical Reports Server (NTRS)
Wells, Nathan
2017-01-01
What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.
Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment
2012-10-01
5.5 µg BMP-2, it was largely disorganized, woven bone with non-osseous soft tissue interspersed. The highest 4 dose (11 µg) of BMP-2, in contrast...various doses of BMP-2. Top row: 16x magnification Bottom row: 100x magnification N= new cortex M= marrow T=trabecular bone F= fibrous tissue ...areas of cartilagenous tissue (figure 5) it was clear that substantial areas of cartilage remained in the defects treated with 5.5 µg BMP-2. These may
Piscitella, R.R.
1984-07-16
This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.
Composite metal foil and ceramic fabric materials
Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.
1992-03-24
The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.
NASA Astrophysics Data System (ADS)
Xie, Wan-Chen; Guo, Xu-Yi; Yan, Tao; Zhang, Shang-Yong
2017-09-01
This article is based on the structure of three-dimensional angle-interlock longitudinal.The 3-layer, 5-layer, 7-layer and 9-layer of angle-interlock 3D fabrics are woven on sample weaving machine respectively with the 1500D Kevlar fiber twist filament produced by United States DuPont. At the same time, Kevlar plain weave fabric is woven, and three, five, seven and nine layers’ fabric are to be compared. In the process of VARTM composite technology, epoxy resin is matrix material, acetone is diluent, triethylene tetramine is curing agent and the five different fabrics are the reinforced materials respectively. Finally, eight different three-dimensional woven fabric composites were prepared. In this paper, the tensile properties of eight kinds of three-dimensional woven fabric composites were tested respectively.Finally, it is concluded that the five-layer angle-interlock woven fabric prepared by Kevlar fiber shows the best tensile property.
Beauty is distractive: particle production during multifield inflation
NASA Astrophysics Data System (ADS)
Battefeld, Diana; Battefeld, Thorsten; Byrnes, Christian; Langlois, David
2011-08-01
We consider a two-dimensional model of inflation, where the inflationary trajectory is ``deformed'' by a grazing encounter with an Extra Species/Symmetry Point (ESP) after the observable cosmological scales have left the Hubble radius. The encounter entails a sudden production of particles, whose backreaction causes a bending of the trajectory and a temporary decrease in speed, both of which are sensitive to initial conditions. This ``modulated'' effect leads to an additional contribution to the curvature perturbation, which can be dominant if the encounter is close. We compute associated non-Gaussianities, the bispectrum and its scale dependence as well as the trispectrum, which are potentially detectable in many cases. In addition, we consider a direct modulation of the coupling to the light field at the ESP via a modulaton field, a mixed scenario whereby the modulaton is identified with a second inflaton, and an extended Extra Species Locus (ESL); all of these scenarios lead to similar additional contributions to observables. We conclude that inflaton interactions throughout inflation are strongly constrained if primordial non-Gaussianities remain unobserved in current experiments such as PLANCK. If they are observed, an ESP encounter leaves additional signatures on smaller scales which may be used to identify the model.
Coated woven materials and method of preparation
McCreary, W.J.; Carroll, D.W.
Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is by coating with materials, with metals or with pyrolytic carbon. Materials are deposited in Chemical Vapor Deposition (CND) reactions using a fluidized bed so that the porosity of the woven materials is retained and the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.
Method for production of carbon nanofiber mat or carbon paper
Naskar, Amit K.
2015-08-04
Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.
Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.
Xiang, Chunhui; Frey, Margaret W
2016-04-07
Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.
Zena, Lucas A; Leite, Cléo A C; Longhini, Leonardo S; Dias, Daniel P M; da Silva, Glauber S F; Hartzler, Lynn K; Gargaglioni, Luciane H; Bícego, Kênia C
2017-11-23
Beat-to-beat variation in heart rate (f H ) has been used as a tool for elucidating the balance between sympathetic and parasympathetic modulation of the heart. A portion of the temporal changes in f H is evidenced by a respiratory influence (cardiorespiratory interaction) on heart rate variability (HRV) with heartbeats increasing and decreasing within a respiratory cycle. Nevertheless, little is known about respiratory effects on HRV in lower vertebrates. By using frequency domain analysis, we provide the first evidence of a ventilatory component in HRV similar to mammalian respiratory sinus arrhythmia in an amphibian, the toad Rhinella schneideri. Increases in the heartbeats arose synchronously with each lung inflation cycle, an intermittent breathing pattern comprised of a series of successive lung inflations. A well-marked peak in the HRV signal matching lung inflation cycle was verified in toads whenever lung inflation cycles exhibit a regular rhythm. The cardiac beat-to-beat variation evoked at the moment of lung inflation accounts for both vagal and sympathetic influences. This cardiorespiratory interaction may arise from interactions between central and peripheral feedback mechanisms governing cardiorespiratory control and may underlie important cardiorespiratory adjustments for gas exchange improvement especially under extreme conditions like low oxygen availability.
49 CFR 178.518 - Standards for woven plastic bags.
Code of Federal Regulations, 2011 CFR
2011-10-01
... plastic bag; (2) 5H2 for a sift-proof woven plastic bag; and (3) 5H3 for a water-resistant woven plastic... other equally strong method of closure. (3) Bags, sift-proof, 5H2 must be made sift-proof by appropriate...
Non-woven PGA/PVA fibrous mesh as an appropriate scaffold for chondrocyte proliferation.
Rampichová, M; Koštáková, E; Filová, E; Prosecká, E; Plencner, M; Ocheretná, L; Lytvynets, A; Lukáš, D; Amler, E
2010-01-01
Non-woven textile mesh from polyglycolic acid (PGA) was found as a proper material for chondrocyte adhesion but worse for their proliferation. Neither hyaluronic acid nor chitosan nor polyvinyl alcohol (PVA) increased chondrocyte adhesion. However, chondrocyte proliferation suffered from acidic byproducts of PGA degradation. However, the addition of PVA and/or chitosan into a wet-laid non-woven textile mesh from PGA improved chondrocyte proliferation seeded in vitro on the PGA-based composite scaffold namely due to a diminished acidification of their microenvironment. This PVA/PGA composite mesh used in combination with a proper hydrogel minimized the negative effect of PGA degradation without dropping positive parameters of the PGA wet-laid non-woven textile mesh. In fact, presence of PVA and/or chitosan in the PGA-based wet-laid non-woven textile mesh even advanced the PGA-based wet-laid non-woven textile mesh for chondrocyte seeding and artificial cartilage production due to a positive effect of PVA in such a scaffold on chondrocyte proliferation.
Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats
Xiang, Chunhui; Frey, Margaret W.
2016-01-01
Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397
Rapid roll inflation with conformal coupling
NASA Astrophysics Data System (ADS)
Kofman, Lev; Mukohyama, Shinji
2008-02-01
Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.
Crew Training - Apollo IX (Egress) - Gulf
1968-11-20
S68-50960 (20 Nov. 1968) --- The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Apollo Command Module Boilerplate 1102 was used in the training. In life raft is astronaut David R. Scott, command module pilot. Egressing the boilerplate is astronaut Russell L. Schweickart, lunar module pilot. Still inside boilerplate, out of view, is astronaut James A. McDivitt, commander. A team of MSC swimmers assisted in the exercise. The inflated bags were used to upright the boilerplate prior to egress.
Crew Training - Apollo IX (Egress) - Gulf
1968-11-20
S68-50977 (20 Nov. 1968) --- The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Apollo Command Module Boilerplate 1102 was used in the training. Egressing the boilerplate is astronaut David R. Scott, command module pilot. Inside the boilerplate, out of view, are astronauts James A. McDivitt, commander; and Russell L. Schweickart, lunar module pilot. A team of MSC swimmers assisted in the exercise. The inflated bags were used to upright the boilerplate prior to egress.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2006 (Public Law 109-434). Cotton Shirts means men's and boys' cotton shirts made from woven fabric... means a person or entity that cuts and sews men's and boys' cotton woven shirts in the United States... suitable for use in making men's and boys' cotton woven shirts. Tariff Rate Quota Year means a calendar...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 2006 (Public Law 109-434). Cotton Shirts means men's and boys' cotton shirts made from woven fabric... means a person or entity that cuts and sews men's and boys' cotton woven shirts in the United States... suitable for use in making men's and boys' cotton woven shirts. Tariff Rate Quota Year means a calendar...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 2006 (Public Law 109-434). Cotton Shirts means men's and boys' cotton shirts made from woven fabric... means a person or entity that cuts and sews men's and boys' cotton woven shirts in the United States... suitable for use in making men's and boys' cotton woven shirts. Tariff Rate Quota Year means a calendar...
75 FR 51482 - Woven Electric Blankets From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... From China Determination On the basis of the record \\1\\ developed in the subject investigation, the... injured by reason of imports from China of woven electric blankets, provided for in subheading 6301.10.00... notification of a preliminary determination by Commerce that imports of woven electric blankets from China were...
7 CFR 3201.15 - Bedding, bed linens, and towels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...
7 CFR 2902.15 - Bedding, bed linens, and towels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...
7 CFR 3201.15 - Bedding, bed linens, and towels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...
7 CFR 3201.15 - Bedding, bed linens, and towels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... group of woven cloth products used as coverings on a bed. Bedding includes products such as blankets, bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding. (3) Towels are woven cloth products used primarily for drying and wiping. (b) Minimum biobased content. The...
The influence of FLiNaK salt impregnation on the mechanical properties of a 2D woven C/C composite
NASA Astrophysics Data System (ADS)
Zhang, Dongsheng; Xia, Huihao; Yang, Xinmei; Feng, Shanglei; Song, Jinliang; Zhou, Xingtai
2017-03-01
Impregnating of molten LiF-NaF-KF salt (LiF-NaF-KF: 46.5-11.5-42 mol%, FLiNaK) into a 2D woven C/C composite was performed at 650 °C under different pressure. The weight gain and mechanical properties change of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution into the 2D woven C/C composite was observed by X-ray computed tomography (X-ray CT) and scanning electron microscopy. The results showed that the weight gain of the 2D woven C/C composite increased with increasing impregnating pressure. In X-ray CT images, FLiNaK salt was distributed into the open pores and fissures among fiber bundles and neighboring plies. The interlaminar shear strength, compressive strength, and flexural strength of the 2D woven C/C composite increased with the increase of weight gain. The influence of FLiNaK salt impregnation on the mechanical properties was attributed to the coupling effect of re-densification of FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite.
Apollo experience report: Command module uprighting system
NASA Technical Reports Server (NTRS)
White, R. D.
1973-01-01
A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.
NASA Technical Reports Server (NTRS)
Pedley, M. D.; Mayeaux, B.
2001-01-01
A viewgraph presentation gives an overview of the materials selection for the TransHab, the habitation module on the International Space Station (ISS). Details are given on the location of TransHab on the ISS, the multilayer inflatable shell that surrounds the module, the materials requirements (including information on the expected thermal environment), the materials selection challenges, the bladder materials requirements and testing, and meteoroid/debris shielding material.
Fritz, M; Rinaldi, G
2008-01-01
Systolic blood pressure (SBP) is still measured in rats by the tail-cuff method, allowing readings when pulse/flow disappears during cuff inflation and reappears during deflation, separated by a compression interval. Although cuff deflation is habitually used to estimate SBP, we found cuff deflation-cuff inflation pressure to be usually negative, indicating that cuff deflation pressure < cuff inflation pressure. SBP was measured in 226 male Wistar and SHR utilizing compression intervals of different durations, and also pharmacological interventions intended to modulate the cuff deflation-cuff inflation cycle. Direct, simultaneous intravascular measurements were also performed in some animals. With compression interval congruent with 15 s, cuff deflation-cuff inflation was--6 +/- 0.6 mmHg in 73 Wistar and--6 +/- 1.4 mmHg in 51 SHR. Lengthening compression interval up to 4 min increased cuff deflation-cuff inflation pressure significantly to--27 +/- 3 mmHg in Wistar and to - 31 +/- 5 mmHg in SHR, suggesting accumulation of a vasodilating mediator. This increase of cuff deflation-cuff inflation pressure was prevented by papaverine (totally in Wistar, partially in SHR), indicating its dependence on vasodilatory capacity. Adrenergic blockade decreased cuff deflation-cuff inflation pressure to--13 +/- 5 mmHg (P < 0.05) in SHR, but had no effect in Wistar rats. Injection of L-NAME decreased cuff deflation-cuff inflation pressure to--5 +/- 2 mmHg (P < 0.05) in Wistar rats but was ineffective in SHR. Simultaneous measurements by tail-cuff method and carotid cannulation revealed that the cuff inflation most accurately estimated the intravascular SBP. 1) Cuff inflation measurements should be considered representative of SBP, as cuff deflation can underestimate SBP depending on compression interval duration, 2) nitric oxide accumulation due to flow deprivation is the main cause of SBP underestimation by cuff deflation in Wistar, and 3) in SHR, nitric oxide effects were minimal, and sympathetic activation plus physical factors seemed to predominate in the determining the outcome of measurements.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-18
.... (``Guangzhou Complacent''); Ningbo Huarui Import & Export Co., Ltd.; Ningbo Jinfeng Thread & Ribbon Co. Ltd... limited to nylon, polyester, rayon, polypropylene, and polyethylene teraphthalate), metal threads and/or... 13) or rubber thread; (4) narrow woven ribbons of a kind used for the manufacture of typewriter or...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... the People's Republic of China: Final Results of Second Antidumping Duty Administrative Review AGENCY... from the People's Republic of China (``PRC''). See Laminated Woven Sacks From the People's Republic of... to these reviews are addressed in the ``Laminated Woven Sacks from the People's Republic of China...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... any color, style, pattern, or weave construction, including but not limited to single-faced satin..., styles, patterns, and/or weave constructions; Have been subjected to, or composed of materials that have... DEPARTMENT OF COMMERCE International Trade Administration [C-570-953] Narrow Woven Ribbons With...
Recent advancements in mechanical characterisation of 3D woven composites
NASA Astrophysics Data System (ADS)
Saleh, Mohamed Nasr; Soutis, Constantinos
2017-12-01
Three dimensional (3D) woven composites have attracted the interest of academia and industry thanks to their damage tolerance characteristics and automated fabric manufacturing. Although much research has been conducted to investigate their out-of-plane "through thickness" properties, still their in-plane properties are not fully understood and rely on extensive experimentation. To date, the literature lacks an inclusive summary of the mechanical characterisation for 3D woven composites. Therefore, the objective of this paper is to provide a comprehensive review of the available research studies on 3D woven composites mechanical characterisation, with less emphasis on the out-of-plane response, but an in-depth review of the in-plane response "un-notched vs. notched". The paper highlights the knowledge gap in the literature of 3D woven composites, suggesting opportunities for future research in this field and a room for improvement in utilising Non-Destructive Techniques (NDT), such as Digital Image Correlation (DIC), Acoustic Emission (AE) and X-ray Computed Tomography (CT), for observing damage initiation and evolution in 3D woven composites that could be used to calibrate and evaluate analytical and numerical models.
NASA Astrophysics Data System (ADS)
Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong
2017-12-01
In this paper, a numerical model which incorporates the oxidation damage model and the finite element model of 2D plain woven composites is presented for simulation of the oxidation behaviors of 2D plain woven C/SiC composite under preloading oxidation atmosphere. The equal proportional reduction method is firstly proposed to calculate the residual moduli and strength of unidirectional C/SiC composite. The multi-scale method is developed to simulate the residual elastic moduli and strength of 2D plain woven C/SiC composite. The multi-scale method is able to accurately predict the residual elastic modulus and strength of the composite. Besides, the simulated residual elastic moduli and strength of 2D plain woven C/SiC composites under preloading oxidation atmosphere show good agreements with experimental results. Furthermore, the preload, oxidation time, temperature and fiber volume fractions of the composite are investigated to show their influences upon the residual elastic modulus and strength of 2D plain woven C/SiC composites.
Mechanical and Tear Properties of Fabric/Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1998-01-01
Films reinforced with woven fabrics are being considered for the development of a material suitable for long duration scientific balloons under a program managed by the National Aeronautics and Space Administration (NASA). Recently developed woven fabrics provide a relatively high strength to weight ratio compared to standard homogenous films. Woven fabrics also have better crack propagation resistance and rip stop capabilities when compared to homogenous lightweight, high strength polymeric films such as polyester and nylon. If joining is required, such as in the case of scientific balloons, woven fabrics have the advantage over polymeric thin films to utilize traditional textile methods as well as other techniques including hot sealing, adhesion, and ultrasonic means. Woven fabrics, however, lack the barrier properties required for helium filled scientific balloons, therefore lamination with homogenous films is required to provide the gas barrier capabilities required in these applications.
NASA Astrophysics Data System (ADS)
Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor
2018-04-01
In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.
A non-orthogonal material model of woven composites in the preforming process
Zhang, Weizhao; Ren, Huaqing; Liang, Biao; ...
2017-05-04
Woven composites are considered as a promising material choice for lightweight applications. An improved non-orthogonal material model that can decouple the strong tension and weak shear behaviour of the woven composite under large shear deformation is proposed for simulating the preforming of woven composites. The tension, shear and compression moduli in the model are calibrated using the tension, bias-extension and bending experiments, respectively. The interaction between the composite layers is characterized by a sliding test. The newly developed material model is implemented in the commercial finite element software LS-DYNA® and validated by a double dome study.
Automatic measurement for dimensional changes of woven fabrics based on texture
NASA Astrophysics Data System (ADS)
Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei
2014-01-01
Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.
Lee, Ji Hye; Bae, Yeon Su; Kim, Su Jin; Song, Dae Woong; Park, Young Hwan; Bae, Do Gyu; Choi, Jin Hyun; Um, In Chul
2018-01-01
Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days. Copyright © 2017 Elsevier B.V. All rights reserved.
Schellenberg, Anne; Ross, Robin; Abagnale, Giulio; Joussen, Sylvia; Schuster, Philipp; Arshi, Annahit; Pallua, Norbert; Jockenhoevel, Stefan; Gries, Thomas; Wagner, Wolfgang
2014-01-01
Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds. PMID:24728045
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... merchandise anti-circumvention inquiry to determine whether laminated woven sacks printed with two colors in... Circumvention (Printed Ink Colors) dated March 25, 2011. \\5\\ See Laminated Woven Sacks From the People's... to an exterior ply of paper that is suitable for high quality print graphics; \\6\\ printed with three...
USDA-ARS?s Scientific Manuscript database
The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... No. 120117047-2421-02] RIN 0625-AA90 Final Withdrawal of Regulations Pertaining to Imports of Cotton... final rule withdrawing regulations pertaining to imports of cotton woven fabric and short supply procedures. Both sets of regulations are obsolete: The tariff quota on cotton woven fabric expired in 2009...
Bending Behavior of Plain-Woven Fabric Air Beams: Fluid-Structure Interaction Approach
2006-09-01
hoses . The warp yarns were aligned in the longitudinal direction of the fire hose and the weft yams, orthogonal to the warp yams, were aligned in the...both terms. Plain-woven air beams typically operate at low-pressure levels (less than those for triaxial-woven or braided air beams) because of safety
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... may: Also include natural or other non-man-made fibers; Be of any color, style, pattern, or weave..., twill, jacquard, or a combination of two or more colors, styles, patterns, and/or weave constructions... DEPARTMENT OF COMMERCE International Trade Administration [A-570-952] Narrow Woven Ribbons With...
Mechanical Behavior of Fabric-Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi S.
1999-01-01
Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.
The mechanical response of woven Kevlar fabric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, W.E.
1991-01-01
Woven Kevlar fabrics exhibit a number of beneficial mechanical properties which include strength, flexibility, and relatively low density. The desire to engineer or design Kevlar fabrics for specific applications has stimulated interest in the development of theoretical models which relate their effective mechanical properties to specific aspects of the fabric morphology and microstructure. In this work the author provides a theoretical investigation of the large deformation elastic response of a plane woven Kevlar fabric and compares these theoretical results with experimental data obtained from uniaxially loaded Kevlar fabrics. The theoretical analysis assumes the woven fabric to be a regular networkmore » of orthogonal interlaced yarns and the individual yarns are modeled as extensible elastica, thus coupling stretching and bending effects at the outset. This comparison of experiment with theory indicates that the deformation of woven fabric can be quite accurately predicted by modeling the individual yarns as extensible elastica. 2 refs., 1 fig.« less
Physical properties of recycled PET non-woven fabrics for buildings
NASA Astrophysics Data System (ADS)
Üstün Çetin, S.; Tayyar, A. E.
2017-10-01
Recycled fibers have been commonly used in non-woven production technology for engineering applications such as textile engineering and civil engineering. Nonwovens including recycled fibers can be utilized in insulation, roofing and floor separation applications. In this study, physical performance properties such as drape, bending resistance, tensile strength, and breaking elongation values of non-woven fabrics consisting of v-PET (virgin) and r-PET (recycled) fibers in five different blend ratios are examined comparatively. The test results indicated that r-PET can be used in non-wovens for civil engineering applications such as insulation, roofing and floor separation fulfilling the acceptable quality level values.
Mechanical Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy; Ellis, David L.; Miner, Robert V.
1997-01-01
The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical testing as well as micromechanical modeling. While the literature is replete with experimental and modeling efforts for woven and braided polymer matrix composites, little work has been done on woven and braided MMC's. Thus, the development and understanding of woven MMC's is at an early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as space power radiator panels. The experimental portion of this investigation consists of monotonic and cyclic tension, compression, and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti), and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix interfacial bonding. The analytical modeling effort utilizes an approach in which a local micromechanical model is embedded in a global micromechanical model. This approach differs from previously developed analytical models for woven composites in that a true repeating unit cell is analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently idealized to allow efficient geometric discretization and efficient execution.
Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah
2016-01-01
Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value. PMID:27829059
Drifting oscillations in axion monodromy
Flauger, Raphael; McAllister, Liam; Silverstein, Eva; ...
2017-10-31
In this paper, we study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effectsmore » of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. Finally, we use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.« less
NASA Astrophysics Data System (ADS)
Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza
2017-01-01
The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.
Failure criterion of glass fabric reinforced plastic laminates
NASA Technical Reports Server (NTRS)
Haga, O.; Hayashi, N.; Kasuya, K.
1986-01-01
Failure criteria are derived for several modes of failure (in unaxial tensile or compressive loading, or biaxial combined tensile-compressive loading) in the case of closely woven plain fabric, coarsely-woven plain fabric, or roving glass cloth reinforcements. The shear strength in the interaction formula is replaced by an equation dealing with tensile or compressive strength in the direction making a 45 degree angle with one of the anisotropic axes, for the uniaxial failure criteria. The interaction formula is useful as the failure criterion in combined tension-compression biaxial failure for the case of closely woven plain fabric laminates, but poor agreement is obtained in the case of coarsely woven fabric laminates.
Surdu, Lilioara; Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana
2014-01-01
This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes.
Stelescu, Maria Daniela; Manaila, Elena; Nicula, Gheorghe; Iordache, Ovidiu; Dinca, Laurentiu Christian; Berechet, Mariana-Daniela; Vamesu, Mariana; Gurau, Dana
2014-01-01
This paper presents the improvement of the antimicrobial character of woven fabrics based on cotton. The woven fabrics were cleaned in oxygen plasma and treated by padding with silver chloride and titanium dioxide particles. The existence of silver and titanium on woven fabrics was evidenced by electronic microscope images (SEM, EDAX) and by flame atomic absorption spectrophotometry. The antimicrobial tests were performed with two fungi: Candida albicans and Trichophyton interdigitale. The obtained antimicrobial effect was considerably higher compared to the raw fabrics. Treatment of dyed fabrics with a colloidal solution based on silver chloride and titanium dioxide particles does not considerably influence colour resistance of dyes. PMID:25276112
Item Description: ISS TransHab Restraint Sample and Photo Documentation
NASA Technical Reports Server (NTRS)
Adams, Constance
2000-01-01
The yellow strap seen in the display is a piece of the main restraint layer of a test article for the ISS TransHab spacecraft, First conceived as a technology which is capable of supporting a [human] crew of six on an extended space journey such as the six-month trip to Mars, TransHab (short for "Transit habitat") is the first space inflatable module ever designed. As this text is written it is being considered as a replacement for the Habitation module on the International Space Station (ISS). It constitutes a major breakthrough both in technology and in tectonics: capable of tight packaging at light weight for efficient launch, the vehicle can then be inflated to its full size on orbit via its own inflation tanks. This is made possible by the separation of its main structural elements from its pressure-shell. In other words, all spacecraft flown to date have been of an exoskeletal type---i.e., its hard outer shell acts both as a pressure container and as its main channel for structural loading This includes the ISS, which is currently under construction in Low Earth Orbit [275 miles above the Earth]. By contrast TransHab is the first endoskeletal space Habitat, consisting of a dual system: a light, reconfigurable central structure of graphite composite and a multilayered, deployable pressure shell.
A survey of surface structures and subsurface developments for lunar bases
NASA Technical Reports Server (NTRS)
Hypes, Warren D.; Wright, Robert L.
1990-01-01
Concepts proposed for lunar-base structures and shelters include those fabricated on earth, fabricated locally using lunar materials, and developed from subsurface features. Early bases may rely on evolutionary growth using Space Station modules and nodes covered with regolith for protection against thermal and radiative stresses. Expandable/inflatable shelters used alone on the surface or in conjunction with subselene (beneath the lunar surface) features and spent portions of the Space Shuttle's fuel tanks offer early alternatives. More mature lunar bases may need larger volumes provided by erectable buildings, hybrid inflatable/rigid spheres, modular concrete buildings using locally derived cement, or larger subselene developments.
Modeling Woven Polymer Matrix Composites with MAC/GMC
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M. (Technical Monitor)
2000-01-01
NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) is used to predict the elastic properties of plain weave polymer matrix composites (PMCs). The traditional one step three-dimensional homogertization procedure that has been used in conjunction with MAC/GMC for modeling woven composites in the past is inaccurate due to the lack of shear coupling inherent to the model. However, by performing a two step homogenization procedure in which the woven composite repeating unit cell is homogenized independently in the through-thickness direction prior to homogenization in the plane of the weave, MAC/GMC can now accurately model woven PMCs. This two step procedure is outlined and implemented, and predictions are compared with results from the traditional one step approach and other models and experiments from the literature. Full coupling of this two step technique with MAC/ GMC will result in a widely applicable, efficient, and accurate tool for the design and analysis of woven composite materials and structures.
NASA Astrophysics Data System (ADS)
Apriyono, Arwan; Sumiyanto, Gusmawan, Dadan Deri
2017-03-01
This study presents the application of woven waste tires as soft clay subgrade reinforcement for preventing highway structural failure, reducing construction cost and minimizing environmental hazards associated with the increasingly large amount of waste tires in Indonesia. To his end, we performed experiments using five stripe distance variations of woven tires - i.e. 2, 2.5, 3, 3.5 and 4 cm. Five soft clay samples were made and each was reinforced using each of these woven tires. The California Bearing Ratio (CBR) test was conducted on each softclay sample and the CBR value was determined from the stress on the displacement of 0.10 and 0.20 inch. The correlation between CBR value and strip distance was used to infer the optimum woven tires strip distance, indicated by the largest CBR value. The result suggests that the strip distance of 3 cm is optimum with corresponding CBR value of ˜20%, which is 115% increase compared to softclay without reinforcement.
NASA Technical Reports Server (NTRS)
Kumose, M.; Gentz, M.; Rupnowski, P.; Armentrout, D.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
A major limitation of woven fiber/polymer matrix composite systems is the inability of these materials to resist intralaminar and interlaminar damage initiation and propagation under shear-dominated biaxial loading conditions. There are numerous shear test methods for woven fabric composites, each with its own advantages and disadvantages. Two techniques, which show much potential, are the Iosipescu shear and +/- 45 deg tensile tests. In this paper, the application of these two tests for the room and high temperature failure analyses of woven graphite/polyimide composites is briefly evaluated. In particular, visco-elastic micro, meso, and macro-stress distributions in a woven eight harness satin (8HS) T650/PMR-15 composite subjected to these two tests are presented and their effect on the failure process of the composite is evaluated. Subsequently, the application of the Iosipescu tests to the failure analysis of woven composites with medium (T650) and high (M40J and M60J) modulus graphite fibers and PMR-15 and PMR-II-50 polyimide resins is discussed. The composites were tested as-supplied and after thermal conditioning. The effect of temperature and thermal conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
NASA Astrophysics Data System (ADS)
Ratim, S.; Bonnia, N. N.; Surip, S. N.
2012-07-01
The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...
2016-01-06
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
Mitchell, N J; Evans, D S; Kerr, A
1978-01-01
Conventional loose-weave cotton operating garments were compared with clothing of a non-woven fabric to test their efficacy in reducing the dispersal of skin bacteria into theatre air. When men wore operating suits made of the non-woven fabric dispersal of skin bacteria was reduced by 72%. When all the operating-theatre staff wore suits and dresses of this fabric air bacterial counts during operating sessions were reduced by 55%; no reduction occurred when the fabric was worn by only the scrubbed team. The lowest levels of microbial contamination of the air in the operating theatre occurred when both the unscrubbed and scrubbed theatre staff wore clothes of non-woven fabric. PMID:630302
NASA Technical Reports Server (NTRS)
Arnold, James O.; Peterson, Keith H.; Yount, Bryan C.; Schneider, Nigel; Chavez-Garcia, Jose
2013-01-01
Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.
Effect of a non-woven fabric covering on the residual activity of pendimethalin in lettuce and soil.
Jursík, Miroslav; Kováčová, Jana; Kočárek, Martin; Hamouzová, Kateřina; Soukup, Josef
2017-05-01
Lettuce (Lactuca sativa L.) is a crop that is very sensitive to herbicide contamination owing to its short growing season. The use of long-residual herbicides and non-woven fabric coverings could therefore influence pendimethalin concentrations in soil and lettuce. The pendimethalin half-life in soil ranged between 18 and 85 days and was mainly affected by season (i.e. weather), and especially by soil moisture. Pendimethalin degradation in soil was slowest under dry conditions. A longer pendimethalin half-life was observed under the non-woven fabric treatment, but the effect of varying application rate was not significant. Pendimethalin residue concentrations in lettuce heads were significantly influenced by pendimethalin application rate and by non-woven fabric cover, especially at the lettuce's early growth stages. The highest pendimethalin concentration at final harvest was determined in lettuce grown on uncovered plots treated with pendimethalin at an application rate of 1200 g ha -1 (7-38 µg kg -1 ). Depending on growing season duration and weather conditions, pendimethalin concentrations in lettuce grown under non-woven fabric ranged from 0 to 21 µg kg -1 . Use of transparent non-woven fabric cover with lettuce can help to reduce application rates of soil herbicides and diminish the risk of herbicide contamination in the harvested vegetables. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition.
Zhang, Shen; Zhang, Xin; Cai, Qing; Wang, Bo; Deng, Xuliang; Yang, Xiaoping
2010-12-01
Woven bone, as the initial form of bone tissue, is always found in developing and repairing bone. It is thought of as a temporary scaffold for the deposition of osteogenic cells and the laying down of lamellar bone. Thus, we hypothesize that a matrix which resembles the architecture and components of woven bone can provide an osteoblastic microenvironment for bone cell growth and new bone formation. In this study, woven-bone-like beta-tricalcium phosphate (β-TCP)/collagen scaffolds were fabricated by sol-gel electrospinning and impregnating methods. Optimization studies on sol-gel synthesis and electrospinning process were conducted respectively to prepare pure β-TCP fibers with dimensions close to mineralized collagen fibrils in woven bone. The collagen-coating layer prepared by impregnation had an adhesive role that held the β-TCP fibers together, and resulted in rapid degradation and matrix mineralization in in vitro tests. MG63 osteoblast-like cells seeded on the resultant scaffolds showed three-dimensional (3D) morphologies, and merged into multicellular layers after 7 days culture. Cytotoxicity test further revealed that extracts from the resultant scaffolds could promote the proliferation of MG63 cells. Therefore, the woven-bone-like matrix that we constructed favored the attachment and proliferation of MG63 cells in three dimensions. It has great potential ability to shorten the time of formation of new bone.
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are Astronauts William A. Anders, lunar module pilot; James A. Lovell Jr., command module pilot; and Frank Borman, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted with the training exercise.
Lexan Linear Shaped Charge Holder with Magnets and Backing Plate
NASA Technical Reports Server (NTRS)
Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.
2013-01-01
A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.
Influence of ordering change on the optical and thermal properties of inflation polyethylene films
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius
2011-04-01
Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.
Infiltration behaviour of liquids over fibres or woven
NASA Astrophysics Data System (ADS)
Martinez, M. A.; Abenojar, J.; Enciso, B.; Lopez de Armentia, S.
2018-05-01
The high porosity of fabrics and fibres have hindered the study of the interaction between fluids and those kind of materials. In order to understand penetration mechanisms of polymeric matrices or woven sealing, some properties such as wettability or capillarity must be analysed. The fluid speed through some woven could be compared with metallic meshes in those is easy to determine pores size. In this work it is tried to solve these problems from a theoretical point of view by using hydrostatic laws and capillarity effect.
Analysis of woven fabrics for reinforced composite materials
NASA Technical Reports Server (NTRS)
Dow, Norris F.; Ramnath, V.; Rosen, B. Walter
1987-01-01
The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.
1985-06-01
certain polymer fibres may defibrillate through exposure to fatigae loading and 20severe environments and subsequently also fail by fibre...fibre by weight than two non-woven plies.- The laminates were stored in a controlled environment at 230C and 652 relative humidity for at least 3 months...instability triggered by the defibrillation . tn fatisue the resin and the fibre/matrix interface become damaged ind are len able to support the fibres, thus
Woven ribbon cable for cryogenic instruments
NASA Astrophysics Data System (ADS)
Cunningham, C. R.; Hastings, P. R.; Strachan, J. M. D.
Robust woven ribbon cables are described for connecting sensors at low temperatures to higher temperature systems. Woven cables have several advantages over conventional wiring or flat ribbon cables in cryostats: heat sinking is easier; twisted pairs may be used; and miniature multi-way connectors are easily incorporated. Their use is demonstrated in making connections from 131 bolometers in two arrays mounted in a dilution refrigerator at 100 mK. Thermal and electrical properties are discussed, as are other possible applications in cryogenic instruments.
The Primordial Inflation Polarization Explorer: Science from Circular Polarization Measurements
NASA Astrophysics Data System (ADS)
Switzer, Eric; Ade, P.; Benford, D. J.; Bennett, C. L.; Chuss, D. T.; Dotson, J. L.; Eimer, J.; Fixsen, D. J.; Halpern, M.; Hinshaw, G. F.; Irwin, K.; Jhabvala, C.; Johnson, B.; Kogut, A. J.; Lazear, J.; Mirel, P.; Moseley, S. H.; Staguhn, J.; Tucker, C. E.; Weston, A.; Wollack, E.
2014-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne CMB polarimeter designed to constrain the B-mode signature of cosmological inflation. Sequential one-day flights from Northern- and Southern- Hemisphere sites will yield maps of Stokes I, Q, U and V at 200, 270, 350 and 600 GHz over 85% of the sky. The full optical path is cooled to 1.5 K by liquid helium in the ARCADE bucket dewar, and a variable-delay polarization modulator (VPM) at the front of the optics modulates the polarization response. Independent Q and U cameras each have two 32x40 Transition Edge Sensor array receivers. In addition to its primary inflationary science goal, PIPER will also measure the circular (Stokes V) polarization to a depth similar to that of the primary linear polarization. The circular polarization has received relatively little attention in large-area surveys, with constraints from the 1980’s and recent results by the Milan Polarimeter. Astrophysical circular polarization is generally tied to the presence of magnetic fields, either in relativistic plasmas or Zeeman splitting of resonances. These effects are thought to be undetectable at PIPER's frequencies and resolution, despite the depth. The expectation of a null result makes the deep Stokes V map a good cross-check for experimental systematics. More fundamentally, the fact that the sky is expected to be dark in Stokes V makes it a sector sensitive to processes such as Lorentz-violating terms in the standard model or magnetic fields in the CMB era.
16 CFR 1611.31 - Terms defined.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., which is woven, knitted, felted or otherwise produced from any natural or man-made fiber, or substitute... include those fabrics having fancy woven, knitted or flock printed surfaces. (h) The term raised surface...
40 CFR 430.126 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.126 Pretreatment standards for...-integrated mills where filter and non-woven papers are produced from purchased pulp] Pollutant or pollutant...
40 CFR 430.127 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.127 Pretreatment standards for... effluent limitations. Subpart L [PSNS for non-integrated mills where filter and non-woven papers are...
40 CFR 430.127 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.127 Pretreatment standards for... effluent limitations. Subpart L [PSNS for non-integrated mills where filter and non-woven papers are...
40 CFR 430.126 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.126 Pretreatment standards for...-integrated mills where filter and non-woven papers are produced from purchased pulp] Pollutant or pollutant...
40 CFR 430.127 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.127 Pretreatment standards for... effluent limitations. Subpart L [PSNS for non-integrated mills where filter and non-woven papers are...
Ivanova, Tatiana V; Baier, Grit; Landfester, Katharina; Musin, Eduard; Al-Bataineh, Sameer A; Cameron, David C; Homola, Tomáš; Whittle, Jason D; Sillanpää, Mika
2015-09-01
Active dressings that based on fabric materials are an area of interest for the treatment of wounds. Poly(l-lactide) nanoparticles containing the antimicrobial agent octenidine can be controllably lysed by toxins released by pathogenic bacteria thus releasing antimicrobial material in response to the presence of the bacterial toxins and so counteracting the infection. We developed an integrated engineering solution that allows for the stable immobilisation of nanoparticles on non-woven fabrics. The process involves coating nanoparticles on non-woven polymer surfaces by using an inkjet printing process. In order to improve the adhesion and retention of the nanoparticles on the fabric, surface pretreatment of the non-woven fabric using plasma jet treatment can be applied to increase its surface energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cross-stiffened continuous fiber structures
NASA Technical Reports Server (NTRS)
Ewen, John R.; Suarez, Jim A.
1993-01-01
Under NASA's Novel Composites for Wing and Fuselage Applications (NCWFA) program, Contract NAS1-18784, Grumman is evaluating the structural efficiency of graphite/epoxy cross-stiffened panel elements fabricated using innovative textile preforms and cost effective Resin Transfer Molding (RTM) and Resin Film Infusion (RFI) processes. Two three-dimensional woven preform assembly concepts have been defined for application to a representative window belt design typically found in a commercial transport airframe. The 3D woven architecture for each of these concepts is different; one is vertically woven in the plane of the window belt geometry and the other is loom woven in a compressed state similar to an unfolded eggcrate. The feasibility of both designs has been demonstrated in the fabrication of small test element assemblies. These elements and the final window belt assemblies will be structurally tested, and results compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
NASA Astrophysics Data System (ADS)
Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.
2018-05-01
Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.
Storage of Maize in Purdue Improved Crop Storage (PICS) Bags
2017-01-01
Interest in using hermetic technologies as a pest management solution for stored grain has risen in recent years. One hermetic approach, Purdue Improved Crop Storage (PICS) bags, has proven successful in controlling the postharvest pests of cowpea. This success encouraged farmers to use of PICS bags for storing other crops including maize. To assess whether maize can be safely stored in PICS bags without loss of quality, we carried out laboratory studies of maize grain infested with Sitophilus zeamais (Motshulsky) and stored in PICS triple bags or in woven polypropylene bags. Over an eight month observation period, temperatures in the bags correlated with ambient temperature for all treatments. Relative humidity inside PICS bags remained constant over this period despite the large changes that occurred in the surrounding environment. Relative humidity in the woven bags followed ambient humidity closely. PICS bags containing S. zeamais-infested grain saw a significant decline in oxygen compared to the other treatments. Grain moisture content declined in woven bags, but remained high in PICS bags. Seed germination was not significantly affected over the first six months in all treatments, but declined after eight months of storage when infested grain was held in woven bags. Relative damage was low across treatments and not significantly different between treatments. Overall, maize showed no signs of deterioration in PICS bags versus the woven bags and PICS bags were superior to woven bags in terms of specific metrics of grain quality. PMID:28072835
Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin
2017-10-15
Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to synergize the multiple cell interaction and mechanical stimulation for promoting tendon regeneration. Tendon grafts are essential for the treatment of various tendon-related conditions due to the inherently poor healing capacity of native tendon tissues. In this study, we combined electrospun nanofiber yarns with textile manufacturing strategies to fabricate nanofibrous woven biotextiles with hierarchical features, aligned fibrous topography, and sufficient mechanical properties as tendon tissue engineered scaffolds. Comparing to traditional electrospun random or aligned meshes, our novel nanofibrous woven fabrics possess strong tensile and suture-retention strengths and larger pore size. We also demonstrated that the incorporation of tendon cells and vascular cells promoted the tenogenic differentiation of the engineered tendon constructs, especially under dynamic stretch. This study not only presents a novel tissue engineered tendon scaffold fabrication technique but also provides a useful strategy to promote tendon differentiation and regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures
NASA Astrophysics Data System (ADS)
Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.
2018-03-01
Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.
Wang, Yuling; Zhang, Xinfu; Wang, Ran; Bai, Yingxin; Liu, Chenglian; Yuan, Yongbing; Yang, Yingjie; Yang, Shaolan
2017-01-01
Preharvest bagging is a simple, grower-friendly and safe physical protection technique commonly applied to many fruits, and the application of different fruit bags can have various effects. To explore the molecular mechanisms underlying the fruit quality effects of different bagging treatments, digital gene expression (DGE) profiling of bagged and unbagged ‘Chili’ (Pyrus bretschneideri Rehd.) pear pericarp during development was performed. Relative to unbagged fruit, a total of 3022 and 769 differentially expressed genes (DEGs) were detected in the polyethylene (PE)-bagged and non-woven fabric-bagged fruit, respectively. DEGs annotated as photosynthesis-antenna proteins and photosynthesis metabolism pathway were upregulated in non-woven fabric-bagged fruit but downregulated in the PE-bagged fruit. Non-woven fabric bagging inhibited lignin synthesis in ‘Chili’ pear pericarp by downregulating DEGs involved in phenylpropanoid biosynthesis; consequently, the fruit lenticels in non-woven fabric-bagged fruit were smaller than those in the other treatments. The results indicate that the non-woven fabric bagging method has a positive effect on the appearance of ‘Chili’ pear fruit but neither of the two bagging treatments is conducive to the accumulation of soluble sugar. PMID:28280542
Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong
2017-10-11
The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.
NASA Astrophysics Data System (ADS)
Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.
2017-12-01
To clarify the evolution of damage for typical carbon woven fabric/epoxy laminates exposed to lightning strike, artificial lightning testing on carbon woven fabric/epoxy laminates were conducted, damage was assessed using visual inspection and damage peeling approaches. Relationships between damage size and action integral were also elucidated. Results showed that damage appearance of carbon woven fabric/epoxy laminate presents circular distribution, and center of the circle located at the lightning attachment point approximately, there exist no damage projected area dislocations for different layers, visual damage territory represents maximum damage scope; visible damage can be categorized into five modes: resin ablation, fiber fracture and sublimation, delamination, ablation scallops and block-shaped ply-lift; delamination damage due to resin pyrolysis and internal pressure exist obvious distinguish; project area of total damage is linear with action integral for the same type specimens, that of resin ablation damage is linear with action integral, but no correlation with specimen type, for all specimens, damage depth is linear with logarithm of action integral. The coupled thermal-electrical model constructed is capable to simulate the ablation damage for carbon woven fabric/epoxy laminates exposed to simulated lightning current through experimental verification.
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
Wessling, F. C.
1988-01-01
The Personnel Occupied Woven Envelope Robot (POWER) concept has evolved over the course of the study. The goal of the project was the development of methods and algorithms for solid modeling for the flexible robot arm.
40 CFR 430.126 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.126 Pretreatment... limitations. Subpart L [PSES for non-integrated mills where filter and non-woven papers are produced from...
40 CFR 430.126 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.126 Pretreatment... limitations. Subpart L [PSES for non-integrated mills where filter and non-woven papers are produced from...
40 CFR 430.126 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.126 Pretreatment... limitations. Subpart L [PSES for non-integrated mills where filter and non-woven papers are produced from...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., pyrotechnic for technical purposes” as specified in Special Provision 161 (see § 172.102 of this subchapter... Class 9 material. (4) Shipments to recycling or waste disposal facilities. When offered for domestic...) of this section. However, when these articles are shipped to a recycling facility, the word “Recycled...
49 CFR 173.166 - Air bag inflators, air bag modules and seat-belt pretensioners.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., pyrotechnic for technical purposes” as specified in Special Provision 161 (see § 172.102 of this subchapter... Class 9 material. (4) Shipments to recycling or waste disposal facilities. When offered for domestic...) of this section. However, when these articles are shipped to a recycling facility, the word “Recycled...
Development of deployable structures for large space platform systems. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1983-01-01
The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules.
Micromechanical Modeling of Woven Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity, residual stresses, and imperfect fiber-matrix debonding, reasonably good qualitative and quantitative correlation is achieved between model and experiment.
NASA Technical Reports Server (NTRS)
Higgins, John E.; Pelham, Larry
2008-01-01
This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.
Effect of natural weathering conditions on the dynamic behavior of woven aramid composites
NASA Astrophysics Data System (ADS)
Kaya, A. I.; Kısa, M.; Özen, M.
2018-02-01
In this study, aging of woven aramid/epoxy composites under different natural conditions were studied. Composite beams were manufactured by Vacuum Assisted Resin Infusion Method (VARIM). Composites were cut into specimen according to ASTM D3039 and vibration tests. Elastic moduli of reference composites were found according to ASTM D3039 standard. Validation of methodology was performed numerically in Ansys software before aging process. An algorithm, which is predicated on FFT (Fast Fourier Transforms), was composed in Matlab to process output of vibration analysis data so as to identify natural frequencies of beams. Composites were aged for 12 months and various natural weathering aging conditions effects on woven aramid composite beams were surveyed through vibration analysis with 3 months interval. Five specimens of woven aramid beams were considered for dynamic tests and effect of aging on first three natural frequencies were determined.
Mechanisms of compressive failure in woven composites and stitched laminates
NASA Technical Reports Server (NTRS)
Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.
1992-01-01
Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
1996-05-24
S77-E-5089 (25 May 1996) --- Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an Electronic Still Camera (ESC) snapshot inside the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour. In upper left is the view port which crew members had used for viewing and photographing operations with the Spartan 207/Inflatable Antenna Experiment (IAE). Thomas has his hand on an aft-bulkhead-mounted locker. The Space Experiment Facility (SEF), designed and managed by the University of Alabama, is just behind his left shoulder.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
..., polypropylene, and polyethylene teraphthalate), metal threads and/or metalized yarns, or any combination thereof... Le Quan Enterprise Enterprise Co., Ltd./Novelty Handicrafts Co., Co., Ltd. Ltd. Shienq Huong...
40 CFR 430.125 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and... of 5.0 to 9.0 at all times. Subpart L [NSPS for non-integrated mills where filter and non-woven...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.124 Effluent limitations... for non-integrated mills where filter and non-woven papers are produced from purchased pulp] Pollutant...
40 CFR 430.125 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE CATEGORY Tissue, Filter, Non-Woven, and... of 5.0 to 9.0 at all times. Subpart L [NSPS for non-integrated mills where filter and non-woven...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.122 Effluent limitations... times. Subpart L [BPT effluent limitations for non-integrated mills where filter and non-woven papers...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.124 Effluent... effluent limitations for non-integrated mills where filter and non-woven papers are produced from purchased...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.124 Effluent limitations... for non-integrated mills where filter and non-woven papers are produced from purchased pulp] Pollutant...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.122 Effluent limitations... times. Subpart L [BPT effluent limitations for non-integrated mills where filter and non-woven papers...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.124 Effluent... effluent limitations for non-integrated mills where filter and non-woven papers are produced from purchased...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Tissue, Filter, Non-Woven, and Paperboard From Purchased Pulp Subcategory § 430.124 Effluent... effluent limitations for non-integrated mills where filter and non-woven papers are produced from purchased...
Code of Federal Regulations, 2013 CFR
2013-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2012 CFR
2012-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2011 CFR
2011-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2014 CFR
2014-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
NASA Technical Reports Server (NTRS)
Pipes, R. B.; Wilson, D. W.
1984-01-01
Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.
29 CFR 1926.604 - Site clearing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this canopy structure shall be of not less than 1/8-inch steel plate or 1/4-inch woven wire mesh with... be covered with not less than 1/4-inch woven wire mesh with openings no greater than 1 inch. (b...
29 CFR 1926.604 - Site clearing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this canopy structure shall be of not less than 1/8-inch steel plate or 1/4-inch woven wire mesh with... be covered with not less than 1/4-inch woven wire mesh with openings no greater than 1 inch. (b...
NASA Astrophysics Data System (ADS)
Torun, Ahmet R.; Mountasir, Adil; Hoffmann, Gerald; Cherif, Chokri
2013-06-01
3D textile preforms offer a high potential to increase mechanical properties of composites and/or decrease manufacturing costs. Within the scope of this study, production principles were developed for complex spacer preforms and integrated stiffeners. These principles were applied through technological further development of the well-known face-to-face and terry weaving techniques. Various woven preforms were produced with Glass fibre/Polypropylene (GF/PP) Commingled yarns, however, the technology is suitable for any type of reinforcement yarns. U-shaped woven spacer preform was consolidated into a sandwich composite component for lightweight applications.
Veisi, H; Choobineh, A R; Ghaem, H
2016-04-01
Musculoskeletal disorders (MSDs) are among important health problems in working population. Because of performing difficult physical activities, hand-woven shoe-sole makers are at risk of developing various types of MSDs. To determine the prevalence of musculoskeletal symptoms in different body areas of hand-woven shoe-sole makers, assess workers' postures and workstations, evaluate ergonomic and individual factors associated with MSDs, and develop guidelines for designing hand-woven shoe-sole making workstation. In this cross-sectional study, the prevalence of MSDs symptoms and their risk factors were studied among 240 hand-woven shoe-sole makers. Working posture and workstations were ergonomically assessed as well. The data were collected through interviewing and using Nordic musculoskeletal questionnaire and by direct observation of posture using RULA method. Logistic regression analysis was used to determine risk factors associated with MSDs symptoms. The prevalence and severity of MSDs symptoms were high among the study population. Ergonomic factors including daily working time, working posture, and force exertion, as well as individual factors, such as age, job tenure, and education were significantly associated with MSDs symptoms. It seems that the majority of ergonomics shortcomings originate from poorly designed workstation. Some general guidelines for designing shoe-sole making workstation are presented.
Kasuga, Eriko; Kawakami, Yoshiyuki; Matsumoto, Takehisa; Hidaka, Eiko; Oana, Kozue; Ogiwara, Naoko; Yamaki, Dai; Sakurada, Tsukasa; Honda, Takayuki
2011-01-01
Background Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”. Methods Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains. Results The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours. Conclusion Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric. PMID:21931489
Lightweight Helmet For Eye/Balance Studies
NASA Technical Reports Server (NTRS)
Mcstravick, M. Catherine; Proctor, David R.; Wood, Scott J.
1988-01-01
Lightweight helmet serves as mounting platform for stimulus and sensor modules in experiments on role of vestibulo-ocular reflex in motion sickness and space-adaptation syndrome. Fitted liner and five inflatable air bladders stabilize helmet with respect to subject's head. Personal bite board attached to chin-bar assembly makes hard palate in subject's mouth serve as final position reference for helmet.
40 CFR 410.40 - Applicability; description of the woven fabric finishing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the woven fabric finishing subcategory. 410.40 Section 410.40 Protection of Environment ENVIRONMENTAL PROTECTION... proofing, soil repellency application and a special finish application. ...
The Primordial Inflation Explorer (PIXIE)
NASA Technical Reports Server (NTRS)
Kogut, Alan; Chuss, David T.; Dotson, Jessie; Dwek, Eli; Fixsen, Dale J.; Halpern, Mark; Hinshaw, Gary F.; Meyer, Stephan; Moseley, S. Harvey; Seiffert, Michael D.;
2014-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. Multiple levels of symmetry and signal modulation combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 µK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than 10(exp -3) at 5 standard deviations. In addition, PIXIE will measure the absolute frequency spectrum to constrain physical processes ranging from inflation to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture with an emphasis on the expected level of systematic error suppression.
Nobre, Aline Araújo; Carvalho, Marilia Sá; Griep, Rosane Härter; Fonseca, Maria de Jesus Mendes da; Melo, Enirtes Caetano Prates; Santos, Itamar de Souza; Chor, Dora
2017-08-17
To compare two methodological approaches: the multinomial model and the zero-inflated gamma model, evaluating the factors associated with the practice and amount of time spent on leisure time physical activity. Data collected from 14,823 baseline participants in the Longitudinal Study of Adult Health (ELSA-Brasil - Estudo Longitudinal de Saúde do Adulto ) have been analysed. Regular leisure time physical activity has been measured using the leisure time physical activity module of the International Physical Activity Questionnaire. The explanatory variables considered were gender, age, education level, and annual per capita family income. The main advantage of the zero-inflated gamma model over the multinomial model is that it estimates mean time (minutes per week) spent on leisure time physical activity. For example, on average, men spent 28 minutes/week longer on leisure time physical activity than women did. The most sedentary groups were young women with low education level and income. The zero-inflated gamma model, which is rarely used in epidemiological studies, can give more appropriate answers in several situations. In our case, we have obtained important information on the main determinants of the duration of leisure time physical activity. This information can help guide efforts towards the most vulnerable groups since physical inactivity is associated with different diseases and even premature death.
An innovative attached-growth biological system for purification of pond water.
Chang, Chia-Yuan; Chang, Jing-Song; Chen, Chien-Min; Chiemchaisri, Chart; Vigneswaran, Saravanamuthu
2010-03-01
This study applied the non-woven material from used diaper as the carrier for bio-film process to purify the recycled water from a landscape pond at the Tainan City Municipal Culture Center (TCMCC), Taiwan. An on-site system was installed and the experiment was accomplished through three stages in 192 days with different time periods of 70 days, 63 days, and 59 days, respectively. The results showed that the non-woven media is functional for SS removal. The average SS removal of stages 1, 2, and 3 were 91%, 96%, and 95%, respectively. The highest SCOD removal efficiency of 90% occurred at stage 3. A significant color improvement of the pond water was achieved through this non-woven bio-carrier treatment system. Whole system can be without any maintenance for 139 days. The result indicated that the non-woven medium system was with a great potential in treating and recycling the pond water with stable operation and satisfactory removal performance. 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sevkat, Ercan
The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The experimentally obtained force-time histories, strain-time histories and damage patterns of impacted composites are compared with Finite element results. The results indicate that LS-DYNA could simulate the impact responses with sufficient accuracy once proper material models and boundary conditions are defined.
Personnel occupied woven envelope robot
NASA Technical Reports Server (NTRS)
Wessling, F. C.
1986-01-01
The use of nonmetallic or fabric structures for space application is considered. The following structures are suggested: (1) unpressurized space hangars; (2) extendable tunnels for soft docking; and (3) manned habitat for space stations, storage facilities, and work structures. The uses of the tunnel as a passageway: for personnel and equipment, eliminating extravehicular activity, for access to a control cabin on a space crane and between free flyers and the space station are outlined. The personnal occupied woven envelope robot (POWER) device is shown. The woven envelope (tunnel) acts as part of the boom of a crane. Potential applications of POWER are outlined. Several possible deflection mechanisms and design criteria are determined.
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, S.J.; Groves, S.E.
1998-06-02
An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.
Interface structure for hub and mass attachment in flywheel rotors
Deteresa, Steven J.; Groves, Scott E.
1998-06-02
An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.
Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter
1993-01-01
In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.
Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.
1993-01-26
In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.
Investigation of Woven Characteristics on Electromagnetic Shielding Behaviour
NASA Astrophysics Data System (ADS)
Javadi Toghchi, M.; Loghin, C.; Cristian, I.; Campagne, C.; Bruniaux, P.; Cayla, A.
2018-06-01
Textiles have been highly applied for electromagnetic shielding purposes due to the increasing concern about health issues caused by human exposure to radiation. Properties of conductive yarn, fabric structure, and garment design have extreme effects on the electromagnetic behaviour and comfort of the final product. Lots of electromagnetic shielding textiles are made of metallic yarns regarding their high electrical conductivity. Therefore, some researchers have worked on electromagnetic shielding textiles made of metals. For example; the shielding effectiveness of woven fabrics made of hybrid yarns containing stainless steel wire was investigated. As discussed earlier, the fabric structure has significant effects on electromagnetic protection. Consequently, woven samples were produced using two different commercial electroconductive yarns (PA12 coated with Ag and Inox) to investigate the effects of the fabric structure. The main purpose was to define the best pattern among three basic woven patterns leads to the highest electromagnetic shielding. Moreover, the different weft yarn densities were applied to examine the effects of yarn density on the level of electromagnetic shielding. The electromagnetic shielding effectiveness of all the 2-layer samples was evaluated in the frequency range from 0.8 to10 GHz in an anechoic chamber. The woven sample with higher yarn density of PA12 coated with Ag yarns shows higher protection against radiation. To conclude, the results show that the yarn properties play the main role in shielding as well as yarn density and fabric pattern.
NASA Astrophysics Data System (ADS)
Belakova, D.; Seile, A.; Kukle, S.; Plamus, T.
2018-04-01
Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
"Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
2004-01-01
The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.
Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander
NASA Technical Reports Server (NTRS)
Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard
1989-01-01
The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.
Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor
Wyatt, Douglas E.
2001-01-01
A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.
Fabrication and testing of large size nickel-zinc cells
NASA Technical Reports Server (NTRS)
Klein, M.
1977-01-01
The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.
Woven graphite epoxy composite test specimens with glass buffer strips
NASA Technical Reports Server (NTRS)
Bonnar, G. R.; Palmer, R. J.
1982-01-01
Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.
75 FR 11557 - Woven Electric Blankets From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final phase... States is materially retarded, by reason of less-than-fair-value imports from China of woven electric... blankets from the People's Republic of China are being sold in the United States at less than fair value...
Immobilization of lysozyme on cotton fabrics; synthesis, characterization, and activity
USDA-ARS?s Scientific Manuscript database
Uncontrolled hemorrhage is the leading cause of death on the battlefield and second leading cause of death in civilian trauma. Recent animal testing using a lethal arterial injury model compared a variety of woven and non woven products with granular products, and found only one product (WoundStat) ...
Evaluation of Materials and Concepts for Aircraft Fire Protection
NASA Technical Reports Server (NTRS)
Anderson, R. A.; Price, J. O.; Mcclure, A. H.; Tustin, E. A.
1976-01-01
Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... companies: (1) Apex Ribbon; (2) Apex Trimmings Inc. (d.b.a. Papillon Ribbon & Bow (Canada)) (Apex Trimmings... an administrative review for the following companies: (1) Apex Ribbon; (2) Apex Trimmings; (3...; (2) Apex Trimmings; (3) Hubschercorp; (4) [[Page 14964
USDA-ARS?s Scientific Manuscript database
The traditional technology of producing cotton woven fabrics is comprised of about 20 mechanical and chemical processes that generally are costly, slow, inefficient, and environmentally somewhat unfriendly. A modern system, using fewer preparatory processes, of fabricating hydro-entangled cotton and...
75 FR 68394 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U. S. Small Business... Flat Dipped Rubber/Plastic Gloves, under North American Industry Classification System (NAICS) code... Rule for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves under PSC 9999...
75 FR 52789 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... for Woven and Knit impregnated with Flat Dipped Rubber/Plastic Gloves. SUMMARY: The U.S. Small... for woven and knit impregnated with flat dipped rubber/plastic gloves, under the North American... Dipped Rubber/Plastic Gloves manufacturers. If granted, the waiver would allow otherwise qualified small...
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James;
2014-01-01
The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.
NASA Astrophysics Data System (ADS)
Sahoo, Sushree S.; Singh, Vijay K.; Panda, Subrata K.
2015-02-01
Flexural behaviour of cross ply laminated woven Glass/Epoxy composite plate has been investigated in this article. Flexural responses are examined by a three point bend test and tensile test carried out on INSTRON 5967 and Universal Testing Machine INSTRON 1195 respectively. The finite element model is developed in ANSYS parametric design language code and discretised using an eight nodded structural shell element. Convergence behaviour of the simulation result has been performed and validated by comparing the results with experimental values. The effects of various parameters such as side-to-thickness ratio, modular ratio on flexural behaviour of woven Glass/Epoxy laminated composite plate are discussed in details.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... Fair Value AGENCY: Import Administration, International Trade Administration, Department of Commerce... Department'') published the final determination of sales at less than fair value (``LTFV'') in the... Republic of China: Final Determination of Sales at Less Than Fair Value, 75 FR 41808 (July 19, 2010...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-18
... their manufacturing processes, as well as their purchases of ribbons from unaffiliated suppliers. Also..., polypropylene, and polyethylene teraphthalate), metal threads and/or metalized yarns, or any combination thereof... in the Harmonized Tariff Schedule of the United States (HTSUS), Section XI, Note 13) or rubber thread...
Exploring Concepts from Abstract Algebra Using Variations of Generalized Woven Figure Eights
ERIC Educational Resources Information Center
Taylor, Tara; Knoll, Eva; Landry, Wendy
2016-01-01
Students often struggle with concepts from abstract algebra. Typical classes incorporate few ways to make the concepts concrete. Using a set of woven paper artifacts, this paper proposes a way to visualize and explore concepts (symmetries, groups, permutations, subgroups, etc.). The set of artifacts used to illustrate these concepts is derived…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
...) Multicolor Inc.; (7) Novelty Handicrafts Co., Ltd.; (8) Pacific Imports; (9) Papillon Ribbon & Bow (Canada... Lion Ribbon Company, Inc., for the following companies: (1) Apex Ribbon; (2) Apex Trimmings; (3) FinerRibbon.com ; (4) Hsien Chan Enterprise Co., Ltd.; (5) Hubschercorp; (6) Intercontinental Skyline; (7...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... the People's Republic of China: Final Results of Antidumping Duty Administrative Review; 2011-2012...'') from the People's Republic of China (``PRC''). The period of review (``POR'') is August 1, 2011... the ``Final Results of Review'' section below. \\1\\ See Laminated Woven Sacks From the People's...
Improving on army field gauze for lethal vascular injuries: a progress report
USDA-ARS?s Scientific Manuscript database
Uncontrolled hemorrhage is the leading cause of death on the battlefield and second leading cause of death in civilian trauma. Recent animal testing using a lethal arterial injury model compared a variety of woven and non woven products with granular products, and found only one product (WoundStat)...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
49 CFR 178.710 - Standards for flexible IBCs.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Definitions for flexible IBCs: (1) Flexible IBCs consist of a body constructed of film, woven plastic, woven... body of the IBC or formed from a continuation of the IBC body material. (c) Construction requirements... in previous use. (7) When flexible IBCs are filled, the ratio of height to width may not be more than...
78 FR 36749 - Determination Under the African Growth and Opportunity Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... Benin. Articles must be ornamented in characteristic Benin or regional folk style. An article may not... synthetic fibers. Hand-woven on manually operated looms then hand or machine stitched. There [[Page 36750...-woven in manually operated looms then machine stitched together to form a wider substrate. This is a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
...: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: On June 4..., Hubschercorp. On June 4, 2012, the Department published in the Federal Register the preliminary results of... FR 32938 (June 4, 2012) (Preliminary Results). In July 2012, we received a case brief from...
Deployable robotic woven wire structures and joints for space applications
NASA Technical Reports Server (NTRS)
Shahinpoor, MO; Smith, Bradford
1991-01-01
Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.
Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
1999-01-01
A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
NASA Astrophysics Data System (ADS)
Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.
2018-04-01
The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.
Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.
García-Rodríguez, J; Martínez-Reina, J
2017-02-01
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.
Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics
NASA Astrophysics Data System (ADS)
Erol, Galip Ozan
Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover, mesoscopic unit cell finite elements are coupled with a design-of-experiments method to systematically identify the important yarn material properties for the macroscale response of various weave architectures. To demonstrate the macroscopic length scale approach, two new material models for woven fabrics were developed. The Planar Material Model (PMM) utilizes two important deformation mechanisms in woven fabrics: (1) yarn elongation, and (2) relative yarn rotation due to shear loads. The yarns' uniaxial tensile response is modeled with a nonlinear spring using constitutive relations while a nonlinear rotational spring is implemented to define fabric's shear stiffness. The second material model, Sawtooth Material Model (SMM) adopts the sawtooth geometry while recognizing the biaxial nature of woven fabrics by implementing the interactions between the yarns. Material properties/parameters required by both PMM and SMM can be directly determined from standard experiments. Both macroscopic material models are implemented within an explicit finite element code and validated by comparing to the experiments. Then, the developed macroscopic material models are compared under various loading conditions to determine their accuracy. Finally, the numerical models developed in the mesoscopic and macroscopic length scales are linked thus demonstrating the new systematic design framework involving linked mesoscopic and macroscopic length scale modeling approaches. The approach is demonstrated with both Planar and Sawtooth Material Models and the simulation results are verified by comparing the results obtained from meso and macro models.
The Art of African Senufo Cloth
ERIC Educational Resources Information Center
Dalton, Jane
2009-01-01
The Senufo people create paintings on hand-woven fabric using natural fibers, natural dyes made from leaves, and mud dug from the roots of trees. The fabric of the Senufo is woven in strips approximately six-to-eight inches wide, and sewn together to make a larger fabric for painting. The stylized drawings painted on the cloth are of masked…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... ovens used in wet-laid non-woven fiber mat manufacturing operations when nitrogen containing resins or other additives are used. These two actions affect NOx sources operating in the Dallas Fort-Worth (DFW... include low-temperature drying ovens and curing ovens used in wet-laid, non-woven fiber mat manufacturing...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... (``BOPP'') or to an exterior ply of paper that is suitable for high quality print graphics; \\4\\ printed... suitable for high quality print graphics,'' as used herein, means paper having an ISO brightness of 82 or... high quality print graphics. Effective July 1, 2007, laminated woven sacks are classifiable under...
2014-11-01
such as orthogonal (Z- fiber) weave, layer-to-layer, and angle interlock. Figure 1 provides an example of 2 different types of 3-D woven structures...o.~os~~~o. t Deflection (in) (c) 90° Orientation 18 6.4 LCC Test Specimen Failure Analysis LCC posttest failure analysis was conducted
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
... Agreements (``CITA'') has determined that certain woven yarn-dyed fabrics of lyocell and cotton, as specified...'') for BWA, Inc. (``BWA'') Corporation for certain woven yarn-dyed fabrics of lyocell and cotton. On July... Fabrics of Lyocell and Cotton HTS Subheading: 5516.13.0000, 5516.43.00 Fiber Content: 55-85% standard...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... comments should be submitted electronically to www.regulations.gov , docket number USTR-2012-0031. If you...); Light-Walled Rectangular Pipe and Tube (C-570-915); Laminated Woven Sacks (C-570-917); Certain New... Rectangular Pipe and Tube (A-570-916); Laminated Woven Sacks (A-570-914); Certain New Pneumatic Off-The-Road...
Doubly Curved Composite Sandwich Panels for Hybrid Composite/Metal Ship Structures
2009-08-15
twill with a surface weight of 298 g/m2, Owens Corning Knytex WR24-5x4 woven roving at 815 g/m , and Owens Corning M-8610 continuous filament mat at...Kilburn. 24. Thermoforming Technical Bulletin, Diab website. 42 25. Owens Corning . Kyntex Woven Rovings Technical Data Sheet. One Owens Corning Parkway
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... colors printed in register at two different print stations. However, the artwork, by use of a screen...-circumvention inquiry is laminated woven sacks produced with two ink colors printed in register and a screening... have adapted the screening process to create graphics that appear to have three or more distinct colors...
Magnetic properties of electrospun non-woven superconducting fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas
2016-03-15
Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi{sub 2}Sr{sub 2}CaCuO{sub 8} (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigatedmore » by electron microscopy.« less
Micromechanical Characterization and Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Pham, John T.; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials can be simultaneously used for thermal protection and as structural load bearing members during the entry, descent and landing operations. In order to ensure successful thermal and structural performance during the atmospheric entry, it is important to characterize the properties of these materials, once they have been subjected to entry like conditions. The present paper focuses on mechanical characteristics of pre-and post arc-jet tested woven TPS samples at different scales. It also presents the observations from scanning electron microscope and computed tomography images, and explains the changes in microstructure after being subjected to combined thermal-mechanical loading environments.
Failure models for textile composites
NASA Technical Reports Server (NTRS)
Cox, Brian
1995-01-01
The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.
Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Ellerby, D.; Stackpoole, M..; Peterson, K.; Gage, P.; Beerman, A.; Blosser, M.; Chinnapongse, R.; Dillman, R.; Feldman, J.;
2013-01-01
Heat-shield for Extreme Entry Technology (HEEET) project is based on the 3-D Woven TPS, an emerging innovative and game changing technology funded by SMD and STMD to fill the ablative TPS gap that exists currently for reaching the depths of Saturn and Venus. Woven TPS technology will address the challenges currently faced by the Venus, Saturn, and higher speed sample return mission Science community due to lack of availability of the only TPS, namely Carbon Phenolic and enable the Science community to move forward with proposals in this decade with Woven TPS. This presentation describes the approach in maturing the technology in the next three years enabling NF-4 mission proposers to address the challenges of Venus, Saturn or higher speed sample return missions.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Xin, Binjie
2016-08-01
Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
NASA Technical Reports Server (NTRS)
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.;
2015-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development
NASA Astrophysics Data System (ADS)
Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dünner, R.; Essinger-Hileman, T.; Eimer, J.; Fluxa, P.; Gothe, D.; Halpern, M.; Harrington, K.; Hilton, G.; Hinshaw, G.; Hubmayr, J.; Iuliano, J.; Marriage, T. A.; Miller, N.; Moseley, S. H.; Mumby, G.; Petroff, M.; Reintsema, C.; Rostem, K.; U-Yen, K.; Watts, D.; Wagner, E.; Wollack, E. J.; Xu, Z.; Zeng, L.
2016-08-01
The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe ˜ 70 % of the sky. A variable-delay polarization modulator provides modulation of the polarization at ˜ 10 Hz to suppress the 1/ f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... whether laminated woven sacks printed with two colors in register and with the use of a screening process... two ink colors printed in register and a screening process \\1\\ which allows for one of the original inks to print on the sacks in a different shade than the original ink color. Specifically, Petitioners...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
..., fusing, gumming or waxing), and with or without wire running lengthwise along the longitudinal edges of... accessed directly on the Internet at http://ia.ita.doc.gov/frn/ . The paper copy and electronic version of... Information In the event that the ITC issues a final negative injury determination, this notice will serve as...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... one-to-one commitment for cotton and man-made fiber woven trousers exported from Nicaragua to the... one-to-one commitment for cotton and man-made fiber trousers. Section 1634(c)(2) of the Pension... exports of cotton and man-made fiber woven trousers entered under the TPL, Nicaragua would export to the...
7 CFR 319.37-5 - Special foreign inspection and certification requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... solanacearum race 3 biovar 2 and all problems in the production site have been addressed and corrected to the... plastic canvas, or other closely woven cloth) so as to prevent access by the pine shoot beetle. (2) From... covered (such as with plastic canvas, or other closely woven cloth) so as to prevent access by pine shoot...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... Type I, Style 20 nails, whether collated or in bulk, and whether or not galvanized.'' See Appendix II...). Further, it is consistent with our past practice. See Narrow Woven Ribbons With Woven Selvedge From the..., collation material, head style, shank style, and heat treatment. U.S. Price In accordance with section 772(a...
Yang, Tingting; Wang, Wen; Zhang, Hongze; Li, Xinming; Shi, Jidong; He, Yijia; Zheng, Quan-shui; Li, Zhihong; Zhu, Hongwei
2015-11-24
Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.
NASA Astrophysics Data System (ADS)
Hiche, Cristobal; Liu, Kuang C.; Seaver, Mark; Wei, Jun; Chattopadhyay, Aditi
2009-03-01
Woven fiber composites are currently being investigated due to their advantages over other materials, making them suitable for low weight, high stiffness, and high interlaminar fracture toughness applications such as missiles, body armor, satellites, and many other aerospace applications. Damage characterization of woven fabrics is a complex task due to their tendency to exhibit different failure modes based on the weave configuration, orientation, ply stacking and other variables. A multiscale model is necessary to accurately predict progressive damage. The present research is an experimental study on damage characterization of three different woven fiber laminates under low energy impact using Fiber Bragg Grating (FBG) sensors and flash thermography. A correlation between the measured strain from FBG sensors and the damaged area obtained from flash thermography imaging has been developed. It was observed that the peak strain in the fabrics were strongly dependent on the weave geometry and decreased at different rates as damage area increased due to dissimilar failure modes. Experimental observations were validated with the development of a multiscale model. A FBG sensor placement model was developed which showed that FBG sensor location and orientation plays a key role in the sensing capabilities of strain on the samples.
NASA Astrophysics Data System (ADS)
Dalal, M.; Goumairi, O.; El Malik, A.
2017-10-01
Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement
Radiation properties of two types of luminous textile devices containing plastic optical fibers
NASA Astrophysics Data System (ADS)
Selm, Bärbel; Rothmaier, Markus
2007-05-01
Luminous textiles have the potential to satisfy a need for thin and flexible light diffusers for treatment of intraoral cancerous tissue. Plastic optical fibers (POF) with diameters of 250 microns and smaller are used to make the textiles luminous. Usually light is supplied to the optical fiber at both ends. On the textile surface light emission occurs in a woven structure via damaged straight POFs, whereas the embroidered structure radiates the light out of macroscopically bent POFs. We compared the optical properties of these two types of textile diffusers using red light laser for the embroidery and light emitting diode (LED) for the woven structure as light sources, and found efficiencies for the luminous areas of the two samples of 19 % (woven) and 32 % (embroidery), respectively. It was shown that the efficiency can be greatly improved using an aluminium backing. Additional scattering layers lower the fluence rate by around 30 %. To analyse the homogeneity we took a photo of the illuminated surface using a 3CCD camera and found, for both textiles, a slightly skewed distribution of the dark and bright pixels. The interquartile range of brightness distribution of the embroidery is more than double as the woven structure.
Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs
Soliman, Eslam; Kandil, Usama; Reda Taha, Mahmoud
2014-01-01
This investigation examines the role of carboxyl functionalized multi-walled carbon nanotubes (COOH-MWCNTs) in the on- and off-axis flexure and the shear responses of thin carbon woven fabric composite plates. The chemically functionalized COOH-MWCNTs were used to fabricate epoxy nanocomposites and, subsequently, carbon woven fabric plates to be tested on flexure and shear. In addition to the neat epoxy, three loadings of COOH-MWCNTs were examined: 0.5 wt%, 1.0 wt% and 1.5 wt% of epoxy. While no significant statistical difference in the flexure response of the on-axis specimens was observed, significant increases in the flexure strength, modulus and toughness of the off-axis specimens were observed. The average increase in flexure strength and flexure modulus with the addition of 1.5 wt% COOH-MWCNTs improved by 28% and 19%, respectively. Finite element modeling is used to demonstrate fiber domination in on-axis flexure behavior and matrix domination in off-axis flexure behavior. Furthermore, the 1.5 wt% COOH-MWCNTs increased the toughness of carbon woven composites tested on shear by 33%. Microstructural investigation using Fourier Transform Infrared Spectroscopy (FTIR) proves the existence of chemical bonds between the COOH-MWCNTs and the epoxy matrix. PMID:28788698
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.
2004-01-01
An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Astrophysics Data System (ADS)
Gandilo, Natalie; Ade, Peter; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph; Fixsen, Dale J.; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Alan J.; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel H.; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; tucker, carole; Wollack, Edward
2017-01-01
We present an overview of PIPER, the Primordial Inflation Polarization Explorer. PIPER is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. PIPER's first science flight will be in June 2017 from Palestine, Texas.
Manufacture and performance of carbon/epoxy 3-D woven composites
NASA Technical Reports Server (NTRS)
Brandt, J.; Drechsler, K.; Mohamed, Mansour; Gu, PU
1992-01-01
This paper evaluates 3-D orthogonal woven carbon/epoxy composites. Preforms were manufactured on an automatic 3-D weaving machine developed at N.C. State University. Matrix infiltration was conducted at MBB Central Laboratories. Testing was carried out at both locations and the joint results will be reported. The properties investigated include: interlaminar shear strength, compression, compression after impact, bending, tensile and penetration resistance. The 3-D orthogonal woven composites were compared with laminated and other 3-D composites made with preforms having interlock structure. C-scans were used to examine the quality of infiltration and the damage area after impact. The performance of the composites made from the 3-D orthogonal preforms showed superior properties compared to the other composites. The penetration resistance test showed unexpectedly very good performance.
Failure analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...
Code of Federal Regulations, 2010 CFR
2010-10-01
... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...
Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites
2016-09-01
continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode
ERIC Educational Resources Information Center
Miller, Mary E.
WOVEN (Women's Ohio Volunteer Employment Network), is directed at changing the low representation of women in decision making positions in public service. Women comprise more than a third of the work force in the State of Ohio; yet they have typically held the low level, low paying jobs. A 1973 status report on women in State government revealed…
75 FR 11908 - Narrow Woven Ribbons With Woven Selvedge From China and Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... INTERNATIONAL TRADE COMMISSION [Investigations Nos. 701-TA-467 (Final) and 731-TA-1164-1165 (Final... investigation No. 701-TA-467 (Final) under section 705(b) of the Tariff Act of 1930 (19 U.S.C. 1671d(b)) (the... to be submitted at the public hearing are governed by sections 201.6(b)(2), 201.13(f), and 207.24 of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... Review The Department made no changes to the rate assigned in the Preliminary Results. As a result of our....20 Assessment Rates The Department shall determine, and U.S. Customs and Border Protection (CBP... the rate of 137.20 percent of the entered value.\\3\\ \\3\\ See 19 CFR 351.212(b)(1). We intend to issue...
Creation of Woven Structures Impacting Self-cleaning Superoleophobicity
NASA Astrophysics Data System (ADS)
Lim, Jihye
For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.
NASA Technical Reports Server (NTRS)
Kogut, Alan J.; Fixsen, D. J.; Chuss, D. T.; Dotson, J.; Dwek, E.; Halpern, M.; Hinshaw, G. F.; Meyer, S. M.; Moseley, S. H.; Seiffert, M. D.;
2011-01-01
The Primordial Inflation Explorer (PIXIE) is a concept for an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. Rhe proposed instrument can map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10..3 at 5 standard deviations. The rich PIXIE data set can also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.
Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage.
Chai, Zhisheng; Zhang, Nannan; Sun, Peng; Huang, Yi; Zhao, Chuanxi; Fan, Hong Jin; Fan, Xing; Mai, Wenjie
2016-10-05
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design. The "threads" (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.
Code of Federal Regulations, 2013 CFR
2013-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...
Code of Federal Regulations, 2012 CFR
2012-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...
Long-term follow-up of aneurysms treated electively with woven stent-assisted coiling.
Cheung, Nicholas K; Chiu, Albert Hy; Cheung, Andrew K; Wenderoth, Jason D
2017-12-15
Preliminary short-term results for stent-assisted coil embolization (SACE) using woven/braided stents have been promising. However, evidence supporting mid- to long-term efficacy and durability is lacking. To report the long-term results for the durability of elective intracranial aneurysms treated with woven stents. Between May 2012 and May 2015, 98 consecutive patients with 103 aneurysms underwent elective woven SACE across three Australian neurovascular centres. All patients had immediate, 6- and 18-month clinical and radiological follow-up. Radiological assessment was performed with modified Raymond-Roy occlusion scores based on angiography results, while clinical assessment was based on the modified Rankin Scale. Six-month follow-up was available in 100 aneurysms, and an 18-month follow-up in 97 aneurysms. Total occlusion rates of 82% were achieved at inception, 82% at 6 months, and 90% at 18 months. Satisfactory occlusion with small neck remnants was present in 17% at inception, 16% at 6 months, and 9% at 18 months. Good neurological outcomes were achieved in 95% at 18 months. Intraprocedural thromboembolic events were recorded in 3% and delayed events in 1% (all in patients taking clopidogrel). Aneurysm recurrence occurred in one patient (1%). Technical complications occurred in 5%. The total complication rate was 10%. Woven SACE is safe, efficacious, and durable at long-term 18-month follow-up, with very low recurrence and re-treatment rates. Preliminary results appear better than those for traditional laser-cut stents. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Micromechanics of fatigue in woven and stitched composites
NASA Technical Reports Server (NTRS)
Cox, B. N.; Carter, W. C.; Dadkhah, M. S.; Morris, W. L.
1994-01-01
The goals of this research program were to: (1) determine how microstructural factors, especially the architecture of reinforcing fibers, control stiffness, strength, and fatigue life in 3D woven composites; (2) identify mechanisms of failure; (3) model composite stiffness; (4) model notched and unnotched strength; and (5) model fatigue life. We have examined a total of eleven different angle and orthogonal interlock woven composites. Extensive testing has revealed that these 3D woven composites possess an extraordinary combination of strength, damage tolerance, and notch insensitivity in compression and tension and in monotonic and cyclic loading. In many important regards, 3D woven composites far outstrip conventional 2D laminates or stitched laminates. Detailed microscopic analysis of damage has led to a comprehensive picture of the essential mechanisms of failure and how they are related to the reinforcement geometry. The critical characteristics of the weave architecture that promote favorable properties have been identified. Key parameters are tow size and the distributions in space and strength of geometrical flaws. The geometrical flaws should be regarded as controllable characteristics of the weave in design and manufacture. In addressing our goals, the simplest possible models of properties were always sought, in a blend of old and new modeling concepts. Nevertheless, certain properties, especially regarding damage tolerance, ultimate failure, and the detailed effects of weave architecture, require computationally intensive stochastic modeling. We have developed a new model, the 'binary model,' to carry out such tasks in the most efficient manner and with faithful representation of crucial mechanisms. This is the final report for contract NAS1-18840. It covers all work from April 1989 up to the conclusion of the program in January 1993.
Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja
2015-05-01
This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling the Elastic Modulus of 2D Woven CVI SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.
NASA Astrophysics Data System (ADS)
Vorontsov, V.; Pichkhadze, K.; Polyakov, A.
2002-01-01
Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...
Code of Federal Regulations, 2013 CFR
2013-10-01
... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...
Code of Federal Regulations, 2014 CFR
2014-10-01
... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... respond to the Department's request for information, we have drawn an adverse inference in selecting from...; and (3) a table of authorities.\\4\\ Case and rebuttal briefs should be filed using IA ACCESS.\\5\\ \\3\\ See 19 CFR 351.309(d). \\4\\ See 19 CFR 351.309(c)(2) and (d)(2). \\5\\ See 19 CFR 351.303. Pursuant to 19...
Numerical analysis of projectile impact in woven texile structures
NASA Technical Reports Server (NTRS)
Roylance, D.
1977-01-01
Computer codes were developed for simulating the dynamic fracture and viscoelastic constitutive response due to stress wave interaction and reflections caused by ballistic impact on woven textiles. The method, which was developed for use in the design and analysis of protection devices for personnel armor, has potential for use in studies of rotor blade burst containment at high velocity. Alterations in coding required for burst containment problems are discussed.
Ultrasound – A new approach for non-woven scaffolds investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khramtsova, E. A.; Morokov, E. S.; Levin, V. M.
2016-05-18
In this study we verified the method of impulse acoustic microscopy as a tool for scaffold evaluation in tissue engineering investigation. Cellulose diacetate (CDA) non-woven 3D scaffold was used as a model object. Scanning electron microscopy and optical microscopy were used as reference methods in order to realize feasibility of acoustic microscopy method in a regenerative medicine field. Direct comparison of the different methods was carried out.
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION
Petersen, Richard; Liu, Perng-Ru
2016-01-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001). PMID:27642198
NASA Astrophysics Data System (ADS)
Ismail, Al Emran; Mat Noor, Fazimah; Mohamad, Zaleha; Amran Madlan, Mohd; Zulafif Rahim, M.; Rasidi Ibrahim, M.; Ahmad, Sufizar; Nasrull Abdol Rahman, Mohd; Salleh, Salihatun Md; Sadikin, Azmahani; Mahzan, Shahruddin; Nor, Nik Hisyamudin Muhd
2017-10-01
This paper presents the effect of triggering angles constructed on the top of hybrid woven kenaf/aluminium hollow cylinders on the energy absorption performances. The crushing performances of aluminium tubes can be found widely in open literature. However, lack number of work on the hybridizing the aluminium tubes with woven kenaf fibre is found. Woven kenaf mats are produced and bathed with polymeric resin before they are wrapped around the aluminium tubes twice. Different fibre orientations, ±θ° are used where θ = 0, 15, 30 and 45. Once the hybrid composite hardened, one of their end are chamfered using different angles of 0°, 30°, 45° and 60°. The tubes are quasi-statically compressed in order to obtain their force-displacement responses and crashworthiness parameters are extracted and discussed with the relation of fibre orientations and chamfering angles. It is found that the chamfering angles are only affected the force-displacement curves during the first stage of elastic deformation whereas there is no obvious effect in the second stage. However, varying the fibre orientations are slightly increased the force-displacement curves especially when the fibre is orientated with 30°. Based on the fracture mechanism observations, most of composite experienced large fragmentation indicating that the composites absorbed the crushing energy ineffectively.
3D-WOVEN FIBER-REINFORCED COMPOSITE FOR CAD/CAM DENTAL APPLICATION.
Petersen, Richard; Liu, Perng-Ru
2016-05-01
Three-dimensional (3D)-woven noncrimp fiber-reinforced composite (FRC) was tested for mechanical properties in the two principal directions of the main XY plane and compared to different Computer-Aided-Design/Computer-Aided-Machining (CAD/CAM) Dental Materials. The Dental Materials included ceramic with Vitablock Mark II®, ProCAD®, InCeram® Spinel, InCeram® Alumina and InCeram® Zirconia in addition to a resin-based 3M Corp. Paradigm® particulate-filled composite. Alternate material controls included Coors 300 Alumina Ceramic and a tungsten carbide 22% cobalt cermet. The 3D-woven FRC was vacuum assisted resin transfer molding processed as a one-depth-thickness ~19-mm preform with a vinyl-ester resin and cut into blocks similar to the commercial CAD/CAM Dental Materials. Mechanical test samples prepared for a flexural three-point span length of 10.0 mm were sectioned for minimum-depth cuts to compare machinability and fracture resistance between groups. 3D-woven FRC improved mechanical properties with significant statistical differences over all CAD/CAM Dental Materials and Coors Alumina Ceramic for flexural strength (p<0.001), resilience (p<0.05), work of fracture (p<0.001), strain energy release (p<0.05), critical stress intensity factor (p<0.001) and strain (p<0.001).
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...
Code of Federal Regulations, 2013 CFR
2013-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...
Code of Federal Regulations, 2012 CFR
2012-10-01
... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA Technical Reports Server (NTRS)
Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.
2014-01-01
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.
46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...
46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...
Joint Battery Industry Sector Study.
1994-08-31
Electric Vehicle R&D Programs ..... 122 Table 8-20 North American Nickel Cadmium R&D Playes ........................... 124 Table 8- 21 North American...in a sealed nickel cadmium battery are made of 21 I I’I non-woven (felt) nylon. In vented nickel cadmium cells, the separator is usually woven or non...and Space3 ~ ~~~Company____________ ________ ____ Table 8- 21 . North American Nickel Hydrogen R&D Players IN Duracell NASA Johnson Space Center Texas
Quiet Supersonic Platform (QSP) Materials and Structures Focus Group Meeting, 26 June 2001
2001-07-01
variety of size scales. Woven metal microtubes offer efficient heat -transfer capability. An inexpensive approach to creating lattice structures uses...because of their light weight and as heat exchangers , by using a metal with high thermal conductivity to draw heat into the lattice, where it can...tubes woven into metal sheets, which are then stacked, sprayed with a transient liquid-phase sintering/bonding agent, and heated . The result is a
2017-05-22
velocity impact of 2-D woven fabric panels displacement response with various interlaminar enhancements ............................... 7 Fig. 3 Low...various interlaminar enhancements ............. 9 Fig. 8 Low-velocity impact displacement response for 3-D TPU interlayer composites...The results for the impact testing of the panels with 2-D woven glass fabrics are provided in Figs. 2–6 for displacement versus time, energy versus
Polyoxometalate-based Supramolecular Gel
He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun
2013-01-01
Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013
Impact behaviour of auxetic Kevlar®/ epoxy composites
NASA Astrophysics Data System (ADS)
Yang, S.; Chalivendra, V. B.; Kim, Y. K.
2017-10-01
Experimental study was performed to investigate fracture and impact properties of novel Auxetic Kevlar® laminated composites. For comparison, standard Kevlar® woven composites with and without polyurethane surface treatment were also considered in this study. For these three composites, short nylon fibers of two different fiber lengths and three different fiber densities were flocked between laminates. Vacuum infusion process along with optimized compaction was employed to fabricate composites. The double cantilever beam configuration was used to investigate the fracture properties. The Auxetic Kevlar® composites showed a significant improvement of 225% in fracture toughness compared to regular woven Kevlar® composites. Furthermore, the initiation toughness was increased by 577% with the application of flocking in Auxetic Kevlar®. During impact testing, the Auxetic Kevlar® reinforced composites showed a significant reduction in damaged area compared to woven counterpart. On the other hand, the reduction in damaged area influenced the reduction in impact energy absorption.
Analytical assessment of woven fabrics under vertical stabbing - The role of protective clothing.
Hejazi, Sayyed Mahdi; Kadivar, Nastaran; Sajjadi, Ali
2016-02-01
Knives are being used more commonly in street fights and muggings. Therefore, this work presents an analytical model for woven fabrics under vertical stabbing loads. The model is based on energy method and the fabric is assumed to be unidirectional comprised of N layers. Thus, the ultimate stab resistance of fabric was determined based on structural parameters of fabric and geometrical characteristics of blade. Moreover, protective clothing is nowadays considered as a strategic branch in technical textile industry. The main idea of the present work is improving the stab resistance of woven textiles by using metal coating method. In the final, a series of vertical stabbing tests were conducted on cotton, polyester and polyamide fabrics. Consequently, it was found that the model predicts with a good accuracy the ultimate stab resistance of the sample fabrics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Methods of making wind turbine rotor blades
Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew
2008-04-01
A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Brewer, David N.; Sreeramesh, Kalluri
2005-01-01
Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength, and strain at failure) of two variants of a woven SiC/SiC composite, manufactured during two separate time periods (9/99 and 1/01), were determined at 1038 and 1204 C by conducting tensile tests on specimens machined from plates. Continuous cycling fatigue tests (R = 0.05) and 20 cpm) were also conducted at the same two temperatures on specimens from both composites. In this study, average tensile properties, 95% confidence intervals associated with the tensile properties, and geometric mean fatigue lives of both composite materials are compared. The observed similarities and differences in the tensile properties are highlighted and an attempt is made to understand the relationship, if any, between the tensile properties and the fatigue behaviors of the two woven composites.
Debonding characteristics of adhesively bonded woven Kevlar composites
NASA Technical Reports Server (NTRS)
Mall, S.; Johnson, W. S.
1988-01-01
The fatigue damage mechanism of an adhesively bonded joint between fabric reinforced composite adherends was investigated with cracked-lap-shear specimens. Two bonded systems were studied: fabric Kevlar 49/5208 epoxy adherends bonded together with either EC 3445 or FM-300 adhesive. For each bonded system, two specimen geometries were tested. In all specimens tested, fatigue damage occurred in the form of cyclic debonding; however, the woven Kevlar specimens gave significantly slower debond growth rates and higher fracture toughness than previously found in the nonwoven adherend specimens. The surfaces for the woven adherends were not smooth; rather, they had regular crests (high spots) and troughs (low spots) due to the weave pattern. Radiographs of the specimens and examination of their failure surfaces revealed that fiber bridging occurred between the crests of the two adherends in the debonded region. The observed improvements in debond growth resistance and static fracture toughness are attributed to this bridging.
Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems
NASA Technical Reports Server (NTRS)
Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.
2013-01-01
NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing failure modes because z-fibers in the through-thickness direction provided extra reinforcement to hold material layers together. Therefore, the benefit of using a 3D weave architecture was shown to alleviate failure modes experienced by a 2D laminate sample of similar material composition. In summary this poster reviews the thermal response performance comparisons drawn between a 3D Woven TPS sample and 2D Carbon Phenolic samples after performing rigorous heating experiments in the mARC facility at NASA Ames. Although the mARC Facility is still in its developmental stages, researchers expect similar trends in failure modes observed from large scale arc jet facilities. This work helps demonstrate the viability of 3D Woven TPSs as a new TPS option for future atmospheric entry missions.
Apollo 7 prime crew during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The prime crew of the first manned Apollo space mission, Apollo 7, participates in water egress training in the Gulf of Mexico. In hatch of the Apollo egress trainer (command module) is Astronaut Walter M. Schirra Jr., Sitting in life raft are Astronauts Walter Cunningham (on left) and Donn F. Eisele. A team of Manned Spaceflight Center swimmers assisted with the training exercise. The inflated bags were used to upright the trainer prior to egress.
Apollo 7 prime crew during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The prime crew of the first manned Apollo space mission, Apollo 7, participates in water egress training in the Gulf of Mexico. Left to right, are Astronauts Walter M. Schirra Jr. (stepping into life raft); Donn F. Eisele, and Walter Cunningham. They have just egressed the Apollo Command Module Boilerplate 1102, and are awaiting helicopter pickup. Inflated bags were used to upright the boilerplate. Manned Spaceflight Center swimmers assisted in the training exercise.
Crew Training - Apollo IX (Egress) - Gulf
1968-11-20
S68-50967 (20 Nov. 1968) --- The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Apollo Command Module (CM) Boilerplate 1102 was used in the training. Egressing boilerplate is astronaut James A. McDivitt, commander. In life raft are astronauts Russell L. Schweickart (on left), lunar pilot; and David R. Scott, command pilot. A team of MSC swimmers assisted in the exercise. The inflated bags were used to upright the boilerplate prior to egress.
Enveloping Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)
2018-01-01
An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...
Code of Federal Regulations, 2010 CFR
2010-10-01
... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...
Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo
Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal
2017-01-01
In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878
Human friendly architectural design for a small Martian base
NASA Astrophysics Data System (ADS)
Kozicki, J.; Kozicka, J.
2011-12-01
The manned mission to Mars is expected to last almost three years. A human factor must be taken seriously into account in such a long-term mission. A big comfortable habitat can help to overcome sociopsychological problems, that occur in ICEs (Isolated and Confined Environments). Authors have come forward to this issue and have developed a Martian base design as a human friendly habitat. The project is based on researches of extreme conditions on Mars, architecture in ICEs and contemporary building technologies. The base consists of five modules: a Central Module (CM), an Agriculture Dome (AD), a Residential Dome (RD), a Laboratory Dome (LD) and a Garage (G). Each element has its own functional purpose. The CM is a metal capsule similar to the Reference Mission module (RM, NASA, 1997). Domes are inflatable multilayer structures, which interiors are "open planned". Interiors can be arranged and divided into rooms by using modular partition walls designed by authors.
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Design and analysis of a novel latch system implementing fiber-reinforced composite materials
NASA Astrophysics Data System (ADS)
Guevara Arreola, Francisco Javier
The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline in the load-displacement slopes while the percentage of glass fiber increased. In the other hand, results showed that a detent made of only glass fiber layers was preferable than a carbon-glass fiber hybrid detent due to the high stresses shown in carbon fiber layers. Ultimately, forkbolt and detent were redesigned according to their functionality and test results. It was observed that the new design was stiffer than the original by showing a steeper load-displacement curve. Subsequently, an experimental procedure was performed in order to correlate computational model results. Fiber-reinforced composite forkbolt and detent were waterjet cut from a composite laminate manufactured by Vacuum Assisted Resin Transfer Molding (VART) process. Then, samples were tested according to the computational model. Six testing sample combinations of forkbolt and detent were tested including the top three woven iterations forkbolts from the computational model paired with woven and unidirectional glass fiber detents. Test results showed a stiffness drop of 15% when the carbon fiber percentage decreases from 100% to 75%. Also, it was observed that woven glass fiber detent was superior to the unidirectional glass fiber detent by presenting a forkbolt-detent stiffness 38% higher. Moreover, the new design of forkbolt and detent were tested showing a stiffness increment of 29%. Furthermore, it was observed that fiber-reinforced composite forkbolt and detent did not reach the desired load of 5000 N. However, the redesigned forkbolt made of 100% woven carbon fiber and the redesign detent made of 100% woven glass fiber were close to reach that load. The design review based on test results performed (DRBTR) showed that components did not fail where the computational model concluded to be the areas with the highest maximum principal stress. In contrast to the computational model, all samples failed at the contact area between forkbolt and detent.
Improving UV Resistance of High Performance Fibers
NASA Astrophysics Data System (ADS)
Hassanin, Ahmed
High performance fibers are characterized by their superior properties compared to the traditional textile fibers. High strength fibers have high modules, high strength to weight ratio, high chemical resistance, and usually high temperature resistance. It is used in application where superior properties are needed such as bulletproof vests, ropes and cables, cut resistant products, load tendons for giant scientific balloons, fishing rods, tennis racket strings, parachute cords, adhesives and sealants, protective apparel and tire cords. Unfortunately, Ultraviolet (UV) radiation causes serious degradation to the most of high performance fibers. UV lights, either natural or artificial, cause organic compounds to decompose and degrade, because the energy of the photons of UV light is high enough to break chemical bonds causing chain scission. This work is aiming at achieving maximum protection of high performance fibers using sheathing approaches. The sheaths proposed are of lightweight to maintain the advantage of the high performance fiber that is the high strength to weight ratio. This study involves developing three different types of sheathing. The product of interest that need be protected from UV is braid from PBO. First approach is extruding a sheath from Low Density Polyethylene (LDPE) loaded with different rutile TiO2 % nanoparticles around the braid from the PBO. The results of this approach showed that LDPE sheath loaded with 10% TiO2 by weight achieved the highest protection compare to 0% and 5% TiO2. The protection here is judged by strength loss of PBO. This trend noticed in different weathering environments, where the sheathed samples were exposed to UV-VIS radiations in different weatheromter equipments as well as exposure to high altitude environment using NASA BRDL balloon. The second approach is focusing in developing a protective porous membrane from polyurethane loaded with rutile TiO2 nanoparticles. Membrane from polyurethane loaded with 4% rutile TiO2 nanoparticles showed excellent protection of braid from PBO. Only 7.5% strength loss was observed. To optimize the degree of protection of the sheath loaded with UV blocker particles, computational models were developed to optimize the protective layer thickness/weight and the amount of UV particles that provide the maximum protection with lightest weight of the protective layer and minimum amount of UV particles. The simulated results were found to be higher that the experimental results due to the tendency of nanoparticles to be agglomerated in real experiments. The third approach to achieve a maximum protection with the minimum weight added is constructing a sleeve from SpectraRTM (Ultra High Molecular Weight Polyethylene (UHMWPE) high performance fiber), which is known to resist UV, woven fabric. Covering the braid from PBO fiber with Spectra RTM woven fabric provide hybrid structure with two compatible components that can share the load and thus maintain the high strength to weight ratio. Although the SpectraRTM fabric had maximum cover factor, 20 % of visible light and about 15 % of UV were able to penetrate the fabric. This transmittance of UV-VIS light negatively affected the protection performance of the SpectraRTM woven fabric layer. It is thought that SpectraRTM fabric be coated with a thin layer (mentioned earlier) containing UV blocker for additional protection while maintain strength contribution to the hybrid structure. To maximize the strength to weight ratio of the hybrid structure (with core from PBO braid and sheath from SpectraRTM woven fabric) an established finite element model was utilized. The theoretical results using the finite element theory indicated that by controlling the bending rigidity of the filling yarn of the SpectraRTM fabric, the extension at peak load of woven fabric in warp direction (loading direction) could be controlled to match the braid extension at peak load. The match in the extension at peak load of the two components of the hybrid structure allowed the maximum strength to weight ratio. Thus, the SpectraRTM woven layer could achieve both the protection from UV and the load share in the hybrid structure.
2013-06-01
vicinity of new patches. Fiber -reinforced polymer (FRP) composite wrapping systems have been evolving over the last 20 years and are now a viable...material is a woven glass fiber pre-impregnated with moisture-activated resins that cure underwater after being put in place. Figure 4. ICPW...wrap system The FRP composite wrap material that was selected is Aqua Wrap Type G- 05, a woven glass fiber pre-impregnated with moisture-activated
The Effect of Strike Face Geometry on the Dynamic Delamination of Composite Back Plates
2015-01-01
behind the ceramic (Zuogang et al. 2010). In many cases, Kevlar , S-2 glass, ultra-high-molecular-weight polyethylene, or a similar high- performance...composite laminate is used as the strike face backing or “backer”. The latter will be the focus in this report. Woven fabrics have interlacing fibers...over other weaves. Woven fabrics also have better fracture toughness than unidirectional and cross- ply laminates (Kim and Sham 2000). However, a
Oscillating-flow regenerator test rig: Woven screen and metal felt results
NASA Technical Reports Server (NTRS)
Gedeon, D.; Wood, J. G.
1992-01-01
We present correlating expressions, in terms of Reynolds or Peclet numbers, for friction factors, Nusselt numbers, enhanced axial conduction ratios, and overall heat flux ratios in four porous regenerator samples representative of stirling cycle regenerators: two woven screen samples and two random wire samples. Error estimates and comparison of data with others suggest our correlations are reliable, but we need to test more samples over a range of porosities before our results will become generally useful.
Mechanical Characterization of 3D Woven Carbon Composite
2017-09-18
Woven Carbon/Glass Hybrid Spar Cap for Wind Turbine Rotor Blade,” Journal of Solar Engineering: Volume 128, November 2006, pp. 562-573. 2. In Tenax...A86AD439 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that strength, strain and modulus be reported to three significant...0.05 Strain Gage Model / Batch No. : CEA-06-250UW-350 / A86AD438 Lead Wire Resistance (Ω, nominal) : 1 Significance : ASTM D7078 specifies that
New knitted fabric concepts for denim products
NASA Astrophysics Data System (ADS)
Marmaralı, A.; Ertekin, G.; Oğlakcıoğlu, N.; Kertmen, M.; Seçil Aydın, İ.
2017-10-01
“Denim” like knitted fabric is a new trend combining the appearance of woven denim with the knitted structures’ characteristics such as flexibility, softness, wrinkle resistance, user-friendliness, and comfortable. According to the requirements of markets, it can be obviously seen that, this fabric will be a new era for denim industry which can be competitive with woven denim garments. This study presents general information and literature survey about denim production, knitted denim structures and their characteristics.
The elastic properties of woven polymeric fabric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, W.E.
1989-01-01
The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.
ERIC Educational Resources Information Center
Murtha, Judith Rush
The purpose of this study was to write a computer program that would not only output a color pattern weave to a cathode ray tube (CRT), but would also analyze a painted design and output a printed diagram that would show how to set up a loom in order to produce the woven design. The first of seven chapters describes the problem and the intent of…
Thermal Expansion Measurements of Polymer Matrix Composites and Syntactics
1992-04-01
828 (Shell Chemical) epoxy combined with 50.0 PBW EPON® V-40 polyamide curing agent (Shell Chemical) and Owens Corning (E-780) polyester combined 1...with 24 oz. woven roving with an Owens Corning 463 finish. " A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish, nominally...wet polyester resin ( Owens Corning E-780) and subsequently processing the composites using the standard vacuum bag cure cycle for this polyester
Optimization, Alternative Materials and Improvements in Body Armor Shields
2007-05-10
performance structures such as protective clothing , bullet-proof vests and helmets due to their high-specific strength and stiffness. The ballistic...regard each layer of the woven composite as made of weft and warp yarns, and divide each yam into 3D solid elements. It is found that the frame...0.25 mm thick layers is modeled as an orthotropic material. Even though the woven composite armor is made of yams and each yarn is made of fibers
Precipitation Coating of Monazite on Woven Ceramic Fibers: 1. Feasibility (Postprint)
2007-02-01
08 Aug 2006. Paper contains color . 14. ABSTRACT Monazite coatings were deposited on woven cloths and tows of NextelTM 610 fibers by heterogeneous...by dissolving concentrated phosphoric acid ( Fish - er Scientific Co., Pittsburgh, PA) or a combination of lantha- num nitrate (Aldrich Chemical Co...Boccaccini, P. Karapappas, J. M. Marijuan, and C. Kaya, ‘‘ TiO2 Coat- ings on Silicon Carbide Fiber Substrates by Electrophoretic Deposition,’’ J.Mater. Sci
Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric
NASA Astrophysics Data System (ADS)
Zhou, Hongtao; Xiao, Xueliang; Qian, Kun; Zhang, Kun; Zhang, Diantang
2018-05-01
With three sets of yarns interwoven in plane for angle-interlock structure, triaxial woven fabric (TWF) is a unique and perfect construction material for products subjected to multi-directional loads, as compared to classic fabrics of orthogonal structure. Finite-element analysis (FEA) and experimental methods are applied to study the out-of-plane deformation (OPD) behaviors of TWF and plain woven fabric (PWF). Among this, the yarn cross section, path and woven structure are obtained using optical microscopy, the related parameters are input to finite element model (FEM) for simulating the OPD behavior. This paper presents a detailed analysis on out-of-plane deformation behavior of TWF and PWF by the finite element method and experiment. In consideration of the comparability, TWF and PWF are designed and prepared with the same yarns and areal density (g/m2). The deformation profile, maximum stress and maximum deflection of TWF and PWF are obtained by FEA and experiment. It has been found that the maximum deflection and maximum stress of TWF is smaller than that of PWF under the same uniform negative pressure, both FEA and experiment. Furthermore, the stress distribution of TWF is more evenly than that of PWF, indicating that TWF exhibited superior isotropy in comparison with PWF for one more directional set of yarns in undertaking the OPD.
Antibacterial activity of combination of synthetic and biopolymer non-woven structures.
Bhullar, Sukhwinder K; Özsel, Burcak Kaya; Yadav, Ramesh; Kaur, Ginpreet; Chintamaneni, Meena; Buttar, Harpal S
2015-12-01
Fibrous structures and synthetic polymer blends offer potential usages in making biomedical devices, textiles used in medical practices, food packaging, tissue engineering, environmental applications and biomedical arena. These products are also excellent candidates for building scaffolds to grow stem cells for implantation, to make tissue engineering grafts, to make stents to open up blood vessels caused by atherosclerosis or narrowed by blood clots, for drug delivery systems for micro- to nano-medicines, for transdermal patches, and for healing of wounds and burn care. The current study was designed to evaluate the antimicrobial activity of woven and non-woven forms of nano- and macro-scale blended polymers having biocompatible and biodegradable characteristics. The antimicrobial activity of non-woven fibrous structures created with the combination of synthetic and biopolymer was assessed using Gram-negative, Gram-positive bacteria, such as Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Enterobacter aerogenes using pour plate method. Structural evaluation of the fabricated samples was performed by Fourier transform infrared spectroscopy. Broad spectrum antibacterial activities were found from the tested materials consisting of polyvinyl alcohol (PVA) with chitosan and nylon-6 combined with chitosan and formic acid. The combination of PVA with chitosan was more bactericidal or bacteriostatic than that of nylon-6 combined with chitosan and formic acid. PVA combination with chitosan appears to be a broad-spectrum antimicrobial agent.
Fibrous composite material for textile heart valve design: in vitro assessment.
Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic
2018-04-17
With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.
Analysis and Ground Testing for Validation of the Inflatable Sunshield in Space (ISIS) Experiment
NASA Technical Reports Server (NTRS)
Lienard, Sebastien; Johnston, John; Adams, Mike; Stanley, Diane; Alfano, Jean-Pierre; Romanacci, Paolo
2000-01-01
The Next Generation Space Telescope (NGST) design requires a large sunshield to protect the large aperture mirror and instrument module from constant solar exposure at its L2 orbit. The structural dynamics of the sunshield must be modeled in order to predict disturbances to the observatory attitude control system and gauge effects on the line of site jitter. Models of large, non-linear membrane systems are not well understood and have not been successfully demonstrated. To answer questions about sunshield dynamic behavior and demonstrate controlled deployment, the NGST project is flying a Pathfinder experiment, the Inflatable Sunshield in Space (ISIS). This paper discusses in detail the modeling and ground-testing efforts performed at the Goddard Space Flight Center to: validate analytical tools for characterizing the dynamic behavior of the deployed sunshield, qualify the experiment for the Space Shuttle, and verify the functionality of the system. Included in the discussion will be test parameters, test setups, problems encountered, and test results.
NASA Astrophysics Data System (ADS)
Tackley, P. J.
2004-12-01
Inflatable devices are frequently used in advertising in order to grab the attention of consumers: one sees, for example, 20 foot tall inflatable drink containers, inflatable cell phones, inflatable bubble gum packets, as well as blimps wafting majestically over major sports events. More usefully, inflatable representations of scientifically-interesting items are widely available, including astronauts, space shuttles, dinosaurs and globes and can help to build and inspire the interest of the general public, and in particular children, in such ideas. How can such concepts be adapted to improve poster presentations? Possibility one is to use relevant existing commercially-available inflatables to dress the poster: skeletons, astronauts, globes and so forth. More exciting is to develop custom inflatables that represent three-dimensional renderings of objects that the poster is describing. Examples of individual objects might be an inflatable slab, inflatable avalanche, inflatable plume, or it's larger cousin, the 10 foot high inflatable superplume or 20 foot high inflatable megaplume. More elaborately, inflatables might represent isosurfaces in three-dimensional spherical convection, although other fabrication methods may be more suitable. More simply, inflatable spheres could be imprinted with the planform of convection, geoid, or other spherical fields of geophysical interest. Finally, it should be possible to put an entire poster on an inflatable object, possibly small ones (balloons) to hand out. A major concern, however, is that the presenter may use such techniques to inflate their scientific findings, or to present overblown ideas.
Apollo 7 prime crew during water egress training in Gulf of Mexico
1968-08-05
S68-46605 (5 Aug. 1968) --- The prime crew of the first manned Apollo mission (Spacecraft 101/Saturn 205) participates in water egress training in the Gulf of Mexico. Left to right, are astronauts Walter M. Schirra Jr. (stepping into life raft), Donn F. Eisele, and Walter Cunningham. They have just egressed Apollo Command Module Boilerplate 1102, and are awaiting helicopter pickup. Inflated bags were used to upright the boilerplate. MSC swimmers assisted in the training exercise.
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
1968-10-19
S68-53223 (19 Oct. 1968) --- The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are astronauts William A. Anders, lunar module pilot; and Frank Borman, commander. A team of MSC swimmers assisted with the training exercise.
Apollo 7 prime crew during water egress training in Gulf of Mexico
1968-08-05
S68-42197 (5 Aug. 1968) --- The prime crew of the first manned Apollo space mission, Apollo 7, participates in water egress training in the Gulf of Mexico. In hatch of the Apollo egress trainer (command module) is astronaut Walter M. Schirra Jr. Sitting in life raft are astronauts Walter Cunningham (on left) and Donn F. Eisele. A team of MSC swimmers assisted with the training exercise. The inflated bags were used to upright the trainer prior to egress.
Kim, In Ae; Rhee, Sang-Hoon
2017-07-01
This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...
A Non Rigid Reusable Surface Insulation Concept for the Space Shuttle Thermal Protection System
NASA Technical Reports Server (NTRS)
Alexander, J. G.
1973-01-01
A reusable thermal protection system concept was developed for the space shuttle that utilizes a flexible, woven ceramic mat insulation beneath an aerodynamic skin and moisture barrier consisting of either a dense ceramic coating or a super alloy metallic foil. The resulting heat shield material has unique structural characteristics. The shear modulus of the woven mat is very low such that bending and membrane loads introduced into the underlying structural panel remain isolated from the surface skin.
Distributed Spacing Stochastic Feature Selection and its Application to Textile Classification
2011-09-01
Spandex, (b) 65% Polyester / 35% Cot- ton vs 94% Polyester / 6% Spandex, (c) 65% Polyester / 35% Cotton vs 100% Cotton , and (d) 65% Polyester / 35% Cotton ...3-29 3.10. This is an example of the final feature selection process for 100% Cotton Woven, with acceptable distributed spacing set to a 35...3-40 4.1. Representative samples from the 12 class textile data set: 65% Polyester 35% Cotton Woven (red), 80% Nylon 20% Spandex Knit (green), 97
Dielectric Properties of Polymer Matrix Composites Prepared from Conductive Polymer Treated Fabrics
1992-02-01
JPS 09827 finish. The doping agent used was anthraquinone-2 sulfonic acid. (3) A 5 x 5 S2-glass 24 oz. woven roving with an Owens Corning 463 finish...x- I S2-glass 27 oz. woven roving with an Owens Corning 933 finish, nominally equiv- alent to the JPS 09827 finish. The doping agent used was...were fabricated by laminating the layers of Fabric with wet polyester resin ( Owens Corning E-780) and subsequently processing the com- posites using the
NASA Astrophysics Data System (ADS)
Bhaskar, V. Vijaya; Srinivas, Kolla
2017-07-01
Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.
Li, Longbiao
2016-01-01
In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs) at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5. PMID:28773544
Wearable woven supercapacitor fabrics with high energy density and load-bearing capability.
Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei
2017-10-30
Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g -1 or 3.6 mWh cm -3 , high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.
Physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics
NASA Astrophysics Data System (ADS)
Kim, S. J.; Song, M. K.; Seo, K. O.; Kim, H. A.
2017-10-01
This study investigated different physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics. ZrC and Al2O3 imbedded heat storage PET filaments were spun on the pilot spinning equipment, respectively. Various physical properties of ceramic imbedded fabrics made of ZrC and Al2O3 imbedded filaments were measured and compared with those of the regular PET woven fabric. The surface temperatures of the ZrC and Al2O3 imbedded fabrics were higher than that of the regular fabric. Water absorption rate of ceramic imbedded fabrics was better than that of the regular fabric and drying property was inferior to that of regular fabric. Breathability by water vapour resistance(Ref) of ZrC imbedded fabric was superior to that of regular fabric. Heat keepability rates of the ceramic imbedded fabrics were higher than that of the regular fabrics, which revealed a good heat storage property of the ZrC/Al2O3 imbedded fabrics.
NASA Astrophysics Data System (ADS)
Li, L. B.
2018-05-01
The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.
Assessment of damage in 'green' composites
NASA Astrophysics Data System (ADS)
Malinowski, Paweł H.; Ostachowicz, Wiesław M.; Touchard, Fabienne; Boustie, Michel; Chocinski-Arnault, Laurence; Pascual Gonzalez, Pedro; Berthe, Laurent; de Vasconcellos, Davi; Sorrentino, Luigi
2017-04-01
The behaviour of eco-composites, when subjected to laser or mechanical impact loadings, is not well known yet. A research was proposed looking at the behaviour of `green' and synthetic composites under impact loading. The study was focused on composites reinforced with short, medium and long fibres. Short fibre composites were made of spruce fibres and ABS. The fibres were used both as received and after a thermal treatment. Another set of samples was made of 60 mm-long flax fibres. Two types of thermoplastic polymers were used as matrices: polypropylene and polylactide. Also a woven eco-composite was investigated. It was made of plain woven hemp fabric impregnated with epoxy resin. A fully synthetic woven composite, used as reference laminate for comparison with `green' composites, was prepared by using a plain weave woven glass fabric impregnated with epoxy resin. Mechanical impacts were performed by means of a falling dart impact testing machine. The specimens were tested at different impact energy levels (from 1J to 5J) by keeping constant the mass of the impactor and varying the drop height. Laser impact tests were performed by means of a high power laser shock facility. All the samples were tested at six different laser shock intensities, keeping constant the shock diameter and the pulse duration. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, X-ray micro-tomography and microscopic observations. Different damage detection thresholds for each material and technique were obtained.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
NASA Tech Briefs, February 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include: Calibration Test Set for a Phase-Comparison Digital Tracker; Wireless Acoustic Measurement System; Spiral Orbit Tribometer; Arrays of Miniature Microphones for Aeroacoustic Testing; Predicting Rocket or Jet Noise in Real Time; Computational Workbench for Multibody Dynamics; High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube; Gratings and Random Reflectors for Near-Infrared PIN Diodes; Optically Transparent Split-Ring Antennas for 1 to 10 GHz; Ice-Penetrating Robot for Scientific Exploration; Power-Amplifier Module for 145 to 165 GHz; Aerial Videography From Locally Launched Rockets; SiC Multi-Chip Power Modules as Power-System Building Blocks; Automated Design of Restraint Layer of an Inflatable Vessel; TMS for Instantiating a Knowledge Base With Incomplete Data; Simulating Flights of Future Launch Vehicles and Spacecraft; Control Code for Bearingless Switched- Reluctance Motor; Machine Aided Indexing and the NASA Thesaurus; Arbitrating Control of Control and Display Units; Web-Based Software for Managing Research; Driver Code for Adaptive Optics; Ceramic Paste for Patching High-Temperature Insulation; Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape; Protective Skins for Aerogel Monoliths; Code Assesses Risks Posed by Meteoroids and Orbital Debris; Asymmetric Bulkheads for Cylindrical Pressure Vessels; Self-Regulating Water-Separator System for Fuel Cells; Self-Advancing Step-Tap Drills; Array of Bolometers for Submillimeter- Wavelength Operation; Delta-Doped CCDs as Detector Arrays in Mass Spectrometers; Arrays of Bundles of Carbon Nanotubes as Field Emitters; Staggering Inflation To Stabilize Attitude of a Solar Sail; and Bare Conductive Tether for Decelerating a Spacecraft.
NASA Astrophysics Data System (ADS)
Singh, Jai Prakash; Chai, Jing; Hsian Saw, Min; Khoo, Yong Sheng
2017-08-01
Bifacial cells are conventionally measured using gold-plated chuck, which is conductive and reflective. This measurement setup does not portray the actual operating conditions of the bifacial cells in a module. The reflective chuck causes an overestimation of the current due to the cell transmittance for the infrared light. The conductive chuck creates a shorter current flow path in the rear side of the cell and causes an over inflation of the fill factor measurement. In this study, we characterize and quantitatively analyze the difference between the bifacial cell measurements on different mounting chucks and calculate the cell-to-module (CTM) loss. To characterize the optical behavior of the bifacial cell and module, we perform external quantum efficiency, reflectance and transmittance measurements. The electrical behavior of the bifacial cell is studied using in-house developed software Griddler. Using Griddler, we calculate the difference in the fill factor of the bifacial cell due to the measurement using a conductive and non-conductive chuck, and estimate the corresponding CTM resistive losses.
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
PARAS program: Phased array radio astronomy from space
NASA Astrophysics Data System (ADS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-06-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of inflation under the Federal Civil Penalties Inflation Adjustment Act of 1990, as amended. 622.61... civil money penalties by the rate of inflation under the Federal Civil Penalties Inflation Adjustment... is adjusted in accordance with the Federal Civil Penalties Inflation Adjustment Act of 1990, as...
2012-09-01
composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium alloy modeled by a Johnson...material. A multilayered Kevlar woven dry fabric structure is wrapped around the thin aluminum shell to form a soft hybrid fan case. A woven fabric material...debris protection fan case composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium
Investigation of woven composites as potential cryogenic tank materials
NASA Astrophysics Data System (ADS)
Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.
2015-12-01
In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.
Woven TPS Mechanical Property Evaluation
NASA Technical Reports Server (NTRS)
Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.
2013-01-01
Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.
Progress on BN and Doped-BN Coatings on Woven Fabrics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Scott, John M.; Chayka, Paul V.
2001-01-01
A novel, multistep process for applying interface coatings to woven structures using a pulsed CVD process is being evaluated. Borazine (B3N3H6), a neat liquid, and several Si precursors are used in the process to produce BN and SiBN coatings on Hi- Nicalon fabrics and preforms. A three variable, two level, full factorial matrix is proposed to define the influence of processing parameters. Coating morphology, uniformity and chemistry are characterized by field emission scanning electron microscopy (FESEM), energy dispersive (EDS) and Auger spectroscopies.
Comparative evaluation of woven graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Hanagud, S.; Tayebi, A.; Clinton, R. G., Jr.; Nayak, B. M.
1979-01-01
A comparative evaluation of some of the mechanical properties of woven graphite-epoxy composites are discussed. In particular, the types of weaves and the resin contents were chosen for comparison. The types of weaves selected are plain weave, satin weave, and tridirectional weave. The composites made of the fabrics are compared to composites made from unidirectional tapes under static and fatigue loading. During static loading, acoustic emission events were monitored. Also, examinations of fracture surfaces and polished sections both away from the fracture surface, and of virgin specimens under an electron microscope are discussed.
Development of 3D Woven Ablative Thermal Protection Systems (TPS) for NASA Spacecraft
NASA Technical Reports Server (NTRS)
Feldman, Jay D.; Ellerby, Don; Stackpoole, Mairead; Peterson, Keith; Venkatapathy, Ethiraj
2015-01-01
The development of a new class of thermal protection system (TPS) materials known as 3D Woven TPS led by the Entry Systems and Technology Division of NASA Ames Research Center (ARC) will be discussed. This effort utilizes 3D weaving and resin infusion technologies to produce heat shield materials that are engineered and optimized for specific missions and requirements. A wide range of architectures and compositions have been produced and preliminarily tested to prove the viability and tailorability of the 3D weaving approach to TPS.
Planck 2015 results. XX. Constraints on inflation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.
2016-09-01
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = -0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth PR(k) over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.
The Primordial Inflation Explorer (PIXIE)
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2011-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. The differential design and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 uK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r <10(exp -3) at 5 standard deviations. In addition, the rich PIXIE data will constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.
NASA Astrophysics Data System (ADS)
Delorme, Rolland
The generation of electrical energy in Quebec, estimated to 200 TWh, comes from hydroelectric generating stations for 96 % which are at the heart of provincial ecological and economic challenges. An important amount of research has been devoted to improving the hydrodynamic profile of hydraulic turbines to maximize their energy efficiency. However, few studies have focused on the draft tube in hydroelectric power plants, which is the duct where water flows out after crossing the turbine. Recent calculations performed by Alstom Power & Transport Canada Inc. revealed that the shape modulation of the draft tube could increase the hydroelectric generating station performance. The goal of this research was to assess the feasibility of this shape modification in existing draft tubes with inflatable composite membranes. The study consisted first of building an experimental setup to test the inflation of at membranes made up of a fiberglass-reinforced rubber composite. The inflated membranes were digitized with an optical equipment enabling 3D representations of their deflections. The second part of the study aimed at building finite element models reproducing the same experiments and enabling the design of more complicated membranes. The study confirmed the technical feasibility of designing and manufacturing such a membrane for the targeted application. However the large-scale roll-out will require to manufacture 3D membranes with the proper anchoring system. Keywords: reinforced rubber composite, reinforced elastomer composite, textile reinforcement, finite element modeling, mechanical behavior.
Attachment device for an inflatable protective cushion
Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.
1997-11-18
An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.
Attachment device for an inflatable protective cushion
Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.
1998-12-08
An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.
Comments on SUSY Inflation Models on the Brane
NASA Astrophysics Data System (ADS)
Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min
In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.
Alchemical inflation: inflaton turns into Higgs
NASA Astrophysics Data System (ADS)
Nakayama, Kazunori; Takahashi, Fuminobu
2012-11-01
We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.
First-order inflation. [in cosmology
NASA Technical Reports Server (NTRS)
Kolb, Edward W.
1991-01-01
In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.
Stein, Koen; Prondvai, Edina
2014-02-01
We present novel findings on sauropod bone histology that cast doubt on general palaeohistological concepts concerning the true nature of woven bone in primary cortical bone and its role in the rapid growth and giant body sizes of sauropod dinosaurs. By preparing and investigating longitudinal thin sections of sauropod long bones, of which transverse thin sections were published previously, we found that the amount of woven bone in the primary complex has been largely overestimated. Using comparative cellular and light-extinction characteristics in the two section planes, we revealed that the majority of the bony lamina consists of longitudinally organized primary bone, whereas woven bone is usually represented only by a layer a few cells thin in the laminae. Previous arguments on sauropod biology, which have been based on the overestimated amount, misinterpreted formation process and misjudged role of woven bone in the plexiform bone formation of sauropod dinosaurs, are thereby rejected. To explain the observed pattern in fossil bones, we review the most recent advances in bone biology concerning bone formation processes at the cellular and tissue levels. Differentiation between static and dynamic osteogenesis (SO and DO) and the revealed characteristics of SO- versus DO-derived bone tissues shed light on several questions raised by our palaeohistological results and permit identification of these bone tissues in fossils with high confidence. By presenting the methods generally used for investigating fossil bones, we show that the major cause of overestimation of the amount of woven bone in previous palaeohistological studies is the almost exclusive usage of transverse sections. In these sections, cells and crystallites of the longitudinally organized primary bone are cut transversely, thus cells appear rounded and crystallites remain dark under crossed plane polarizers, thereby giving the false impression of woven bone. In order to avoid further confusion in palaeohistological studies, we introduce new osteohistological terms as well as revise widely used but incorrect terminology. To infer the role of woven bone in the bone formation of fast-growing tetrapods, we review some aspects of the interrelationships between the vascularity of bone tissues, basal metabolic rate, body size and growth rate. By putting our findings into the context of osteogenesis, we provide a new model for the diametrical limb bone growth of sauropods and present new implications for the evolution of fast growth in vertebrates. Since biomechanical studies of bone tissues suggest that predominant collagen fibre orientation (CFO) is controlled by endogenous, functional and perhaps phylogenetic factors, the relationship between CFO and bone growth rate as defined by Amprino's rule, which has been the basis for the biological interpretation of several osteohistological features, must be revised. Our findings draw attention to the urgent need for revising widely accepted basic concepts of palaeohistological studies, and for a more integrative approach to bone formation, biomechanics and bone microstructural features of extant and extinct vertebrates to infer life history traits of long extinct, iconic animals like dinosaurs. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faigler, S.; Tal-Or, L.; Mazeh, T.
We present the first case in which the BEER algorithm identified a hot Jupiter in the Kepler light curve, and its reality was confirmed by orbital solutions based on follow-up spectroscopy. The companion Kepler-76b was identified by the BEER algorithm, which detected the BEaming (sometimes called Doppler boosting) effect together with the Ellipsoidal and Reflection/emission modulations (BEER), at an orbital period of 1.54 days, suggesting a planetary companion orbiting the 13.3 mag F star. Further investigation revealed that this star appeared in the Kepler eclipsing binary catalog with estimated primary and secondary eclipse depths of 5 Multiplication-Sign 10{sup -3} andmore » 1 Multiplication-Sign 10{sup -4}, respectively. Spectroscopic radial velocity follow-up observations with Tillinghast Reflector Echelle Spectrograph and SOPHIE confirmed Kepler-76b as a transiting 2.0 {+-} 0.26 M{sub Jup} hot Jupiter. The mass of a transiting planet can be estimated from either the beaming or the ellipsoidal amplitude. The ellipsoidal-based mass estimate of Kepler-76b is consistent with the spectroscopically measured mass while the beaming-based estimate is significantly inflated. We explain this apparent discrepancy as evidence for the superrotation phenomenon, which involves eastward displacement of the hottest atmospheric spot of a tidally locked planet by an equatorial superrotating jet stream. This phenomenon was previously observed only for HD 189733b in the infrared. We show that a phase shift of 10. Degree-Sign 3 {+-} 2. Degree-Sign 0 of the planet reflection/emission modulation, due to superrotation, explains the apparently inflated beaming modulation, resolving the ellipsoidal/beaming amplitude discrepancy. Kepler-76b is one of very few confirmed planets in the Kepler light curves that show BEER modulations and the first to show superrotation evidence in the Kepler band. Its discovery illustrates for the first time the ability of the BEER algorithm to detect short-period planets and brown dwarfs.« less
Health Sector Inflation Rate and its Determinants in Iran: A Longitudinal Study (1995–2008)
TEIMOURIZAD, Abedin; HADIAN, Mohamad; REZAEI, Satar; HOMAIE RAD, Enayatollah
2014-01-01
Abstract Background Health price inflation rate is different from increasing in health expenditures. Health expenditures contain both quantity and prices but inflation rate contains prices. This study aimed to determine the factors that affect the Inflation Rate for Health Care Services (IRCPIHC) in Iran. Methods We used Central Bank of Iran data. We estimated the relationship between the inflation rate and its determinants using dynamic factor variable approach. For this purpose, we used STATA software. Results The study results revealed a positive relationship between the overall inflation as well as the number of dentists and health inflation. However, number of beds and physicians per 1000 people had a negative relationship with health inflation. Conclusion When the number of hospital beds and doctors increased, the competition between them increased, as well, thereby decreasing the inflation rate. Moreover, dentists and drug stores had the conditions of monopoly markets; therefore, they could change the prices easier compared to other health sectors. Health inflation is the subset of growth in health expenditures and the determinants of health expenditures are not similar to health inflation. PMID:26060721
Health Sector Inflation Rate and its Determinants in Iran: A Longitudinal Study (1995-2008).
Teimourizad, Abedin; Hadian, Mohamad; Rezaei, Satar; Homaie Rad, Enayatollah
2014-11-01
Health price inflation rate is different from increasing in health expenditures. Health expenditures contain both quantity and prices but inflation rate contains prices. This study aimed to determine the factors that affect the Inflation Rate for Health Care Services (IRCPIHC) in Iran. We used Central Bank of Iran data. We estimated the relationship between the inflation rate and its determinants using dynamic factor variable approach. For this purpose, we used STATA software. The study results revealed a positive relationship between the overall inflation as well as the number of dentists and health inflation. However, number of beds and physicians per 1000 people had a negative relationship with health inflation. When the number of hospital beds and doctors increased, the competition between them increased, as well, thereby decreasing the inflation rate. Moreover, dentists and drug stores had the conditions of monopoly markets; therefore, they could change the prices easier compared to other health sectors. Health inflation is the subset of growth in health expenditures and the determinants of health expenditures are not similar to health inflation.
Day 3 on the USS Anchorage for the Recovery of Orion
2014-12-03
On the third day of preparations for recovery of Orion, U.S. Navy divers in two rigid hull inflatable boats and two Zodiac boats practice recovery procedures nearby the USS Anchorage in the Pacific Ocean about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the Orion crew module, forward bay cover and parachutes after its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts.
Composite panels based on woven sandwich-fabric preforms
NASA Astrophysics Data System (ADS)
van Vuure, Aart Willem
A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.
Impact of storage environment on the efficacy of hermetic storage bags.
Lane, Brett; Woloshuk, Charles
2017-05-01
Small hermetic bags (50 and 100 kg capacities) used by smallholder farmers in several African countries have proven to be a low-cost solution for preventing storage losses due to insects. The complexity of postharvest practices and the need for ideal drying conditions, especially in the Sub-Sahara, has led to questions about the efficacy of the hermetic bags for controlling spoilage by fungi and the potential for mycotoxin accumulation. This study compared the effects of environmental temperature and relative humidity at two locations (Indiana and Arkansas) on dry maize (14% moisture content) in woven polypropylene bags and Purdue Improved Crop Storage (PICS) hermetic bags. Temperature and relative humidity data loggers placed in the middle of each bag provided profiles of environmental influences on stored grain at the two locations. The results indicated that the PICS bags prevented moisture penetration over the three-month storage period. In contrast, maize in the woven bags increased in moisture content. For both bag types, no evidence was obtained indicating the spread of Aspergillus flavus from colonized maize to adjacent non-colonized maize. However, other storage fungi did increase during storage. The number of infected kernels did not increase in the PICS bags, but the numbers in the woven bags increased significantly. The warmer environment in Arkansas resulted in significantly higher insect populations in the woven bags than in Indiana. Insects in the PICS bags remained low at both locations. This study demonstrates that the PICS hermetic bags are effective at blocking the effects of external humidity fluctuations as well as the spread of fungi to non-infected kernels.
When Parents' Praise Inflates, Children's Self-Esteem Deflates.
Brummelman, Eddie; Nelemans, Stefanie A; Thomaes, Sander; Orobio de Castro, Bram
2017-11-01
Western parents often give children overly positive, inflated praise. One perspective holds that inflated praise sets unattainable standards for children, eventually lowering children's self-esteem (self-deflation hypothesis). Another perspective holds that children internalize inflated praise to form narcissistic self-views (self-inflation hypothesis). These perspectives were tested in an observational-longitudinal study (120 parent-child dyads from the Netherlands) in late childhood (ages 7-11), when narcissism and self-esteem first emerge. Supporting the self-deflation hypothesis, parents' inflated praise predicted lower self-esteem in children. Partly supporting the self-inflation hypothesis, parents' inflated praise predicted higher narcissism-but only in children with high self-esteem. Noninflated praise predicted neither self-esteem nor narcissism. Thus, inflated praise may foster the self-views it seeks to prevent. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Issues on generating primordial anisotropies at the end of inflation
NASA Astrophysics Data System (ADS)
Emami, Razieh; Firouzjahi, Hassan
2012-01-01
We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.
77 FR 65100 - Adjustment of Civil Monetary Penalties for Inflation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... Penalties for Inflation AGENCY: Commodity Futures Trading Commission ACTION: Final rule. SUMMARY: The... civil monetary penalties, to adjust for inflation. This rule sets forth the maximum, inflation-adjusted... Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, William H., E-mail: whkinney@buffalo.edu
We consider observational limits on a proposed model of the string landscape in inflation. In this scenario, effects from the decoherence of entangled quantum states in long-wavelength modes in the universe result in modifications to the Friedmann Equation and a corresponding modification to inflationary dynamics. Previous work [1, 2] suggested that such effects could provide an explanation for well-known anomalies in the Cosmic Microwave Background (CMB), such as the lack of power on large scales and the ''cold spot'' seen by both the WMAP and Planck satellites. In this paper, we compute limits on these entanglement effects from the Planckmore » CMB data combined with the BICEP/Keck polarization measurement, and find no evidence for observable modulations to the power spectrum from landscape entanglement, and no sourcing of observable CMB anomalies. The originally proposed model with an exponential potential is ruled out to high significance. Assuming a Starobinsky-type R {sup 2} inflation model, which is consistent with CMB constraints, data place a 2σ lower bound of b > 6.46 × 10{sup 7} GeV on the Supersymmetry breaking scale associated with entanglement corrections.« less
The Primordial Inflation Polarization ExploreR (PIPER)
NASA Astrophysics Data System (ADS)
Gandilo, Natalie; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to map the large scale polarization of the Cosmic Microwave Background as well as the polarized emission from galactic dust at 200, 270, 350, and 600 GHz, with 21, 15, 14, and 14 arcminutes of angular resolution respectively. PIPER uses twin telescopes with Variable-delay Polarization Modulators to simultaneously map Stokes I, Q, U and V. Cold optics and the lack of a warm window allow the instrument to achieve background limited sensitivity, with mapping speed approximately 10 times faster than a similar instrument with a single ambient-temperature mirror. Over the course of 8 conventional balloon flights from the Northern and Southern hemisphere, PIPER will map 85% of the sky, measuring the B-mode polarization spectrum from the reionization bump to l~300, and placing an upper limit on the tensor-to-scalar ratio of r<0.007. An engineering flight is planned for October 2017 from Fort Sumner, New Mexico, and the first science flight is planned for June 2018 from Palestine, Texas.
Optimization of stent implantation using a high pressure inflation protocol.
Vallurupalli, Srikanth; Bahia, Amit; Ruiz-Rodriguez, Ernesto; Ahmed, Zubair; Hakeem, Abdul; Uretsky, Barry F
2016-01-01
High-pressure inflation is the universal standard for stent deployment but a specific protocol for its use is lacking. We developed a standardized "pressure optimization protocol" (POP) using time to inflation pressure stability as an endpoint for determining the required duration of stent inflation. The primary study purpose was to determine the stent inflation time (IT) in a large patient cohort using the standardized inflation protocol, to correlate various patient and lesion characteristics with IT, and ascertain in an in vitro study the time for pressure accommodation within an inflation system. Six hundred fifteen stent implants in 435 patients were studied. Multivariate analysis was performed to determine predictors of longer ITs. In an in vitro study, various stents and balloons were inflated in air to determine the pressure accommodation time of the inflation system. The mean stent IT was 104 ± 41 sec (range 30-380 sec). Stent length was the only predictor of prolonged stent inflation. The "accommodation time" in vitro of the stent inflation system itself was 33 ± 24 sec. The protocol was safe requiring premature inflation termination in <3% of stent implants. No serious adverse events occurred. Achieving stable inflation pressure requires on average over 100 sec and may require several minutes in individual cases. Stent length increases IT. These results suggest that the widespread practice of rapid inflation/deflation may not be sufficient to fully expand the stent and that the use of a pressure stability protocol will allow for safe, predictable, and more complete stent deployment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
33 CFR 175.23 - Serviceable condition.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (d) of this section, a properly armed inflation mechanism, complete with a full inflation medium cartridge and all status indicators showing that the inflation mechanism is properly armed; (2) Inflatable chambers that are all capable of holding air; (3) Oral inflation tubes that are not blocked, detached, or...
26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...
26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...
Amadou, L; Baoua, I B; Baributsa, D; Williams, S B; Murdock, L L
2016-10-01
We assessed the performance of hermetic triple layer Purdue Improved Crop Storage (PICS) bags for protecting Hibiscus sabdariffa grain against storage insects. The major storage pest in the grain was a bruchid, Spermophagus sp.. When we stored infested H. sabdariffa grain for six months in the woven polypropylene bags typically used by farmers, the Spermophagus population increased 33-fold over that initially present. The mean number of emergence holes per 100 seeds increased from 3.3 holes to 35.4 holes during this time period, while grain held for the same length of time in PICS bags experienced no increase in the numbers of holes. Grain weight loss in the woven control bags was 8.6% while no weight loss was observed in the PICS bags. Seed germination rates of grain held in woven bags for six months dropped significantly while germination of grain held in PICS bags did not change from the initial value. PICS bags can be used to safely store Hibiscus grain after harvest to protect against a major insect pest.
NASA Astrophysics Data System (ADS)
Ruslantsev, A. N.; Portnova, Ya M.; Tairova, L. P.; Dumansky, A. M.
2016-10-01
The polymer binder cracking problem arises while designing and maintaining polymer composite-based aircraft load-bearing members. Some technological methods are used to solve this problem. In particular the injection of nanoagents can block the initiation and growth of microscopic cracks. Crack propagation can also be blocked if the strain energy release is not related with fracturing. One of the possible ways for such energy release is creep. Testing of the anisotropy of the woven carbon fibre reinforced plastic elastic characteristics and creep have been conducted. The samples with different layouts have been made of woven carbon fibre laminate BMI-3/3692 with nanomodified bismaleimide matrix. This matrix has a higher glass transition temperature and improved mechanical properties. The deformation regularities have been analyzed, layer elastic characteristics have been determined. The constitutive equations describing composite material creep have been obtained and its parameters have been defined. Experimental and calculated creep curves have been plotted. It was found that the effects of rheology arise as the direction of load does not match the direction of reinforcing fibres of the material.
Koziol, Mateusz; Figlus, Tomasz
2015-12-14
The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.
Modeling and characterization of through-the-thickness properties of 3D woven composites
NASA Technical Reports Server (NTRS)
Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei
1995-01-01
The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.
Stochastic Nonlinear Response of Woven CMCs
NASA Technical Reports Server (NTRS)
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures
NASA Technical Reports Server (NTRS)
Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David
2013-01-01
Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry
33 CFR 150.507 - How must the operator service inflatable lifesaving appliances?
Code of Federal Regulations, 2010 CFR
2010-07-01
... inflatable lifesaving appliances? 150.507 Section 150.507 Navigation and Navigable Waters COAST GUARD... Specialty Equipment Inflatable Lifesaving Appliances § 150.507 How must the operator service inflatable lifesaving appliances? (a) The operator must service each inflatable liferaft according to 46 CFR subpart 160...
46 CFR 506.3 - Civil monetary penalty inflation adjustment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 9 2010-10-01 2010-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the inflation...
26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Stripped inflation-indexed debt instruments. 1....1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the Treasury's Separate Trading of...
A preliminary structural analysis of space-based inflatable tubular frame structures
NASA Technical Reports Server (NTRS)
Main, John A.; Peterson, Steven W.; Strauss, Alvin M.
1992-01-01
The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed.
Inflation data clustering of some cities in Indonesia
NASA Astrophysics Data System (ADS)
Setiawan, Adi; Susanto, Bambang; Mahatma, Tundjung
2017-06-01
In this paper, it is presented how to cluster inflation data of cities in Indonesia by using k-means cluster method and fuzzy c-means method. The data that are used is limited to the monthly inflation data from 15 cities across Indonesia which have highest weight of donations and is supplemented with 5 cities used in the calculation of inflation in Indonesia. When they are applied into two clusters with k = 2 for k-means cluster method and c = 2, w = 1.25 for fuzzy c-means cluster method, Ambon, Manado and Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). However, if they are applied into two clusters with c=2, w=1.5, Surabaya, Medan, Makasar, Samarinda, Makasar, Manado, Ambon dan Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). Furthermore, when we use two clusters with k=3 for k-means cluster method and c=3, w = 1.25 for fuzzy c-means cluster method, Ambon tends to become member of first cluster (high inflation), Manado and Jayapura tend to become member of second cluster (moderate inflation), other cities tend to become members of third cluster (low inflation). If it is applied c=3, w = 1.5, Ambon, Manado and Jayapura tend to become member of first cluster (high inflation), Surabaya, Bandung, Medan, Makasar, Banyuwangi, Denpasar, Samarinda dan Mataram tend to become members of second cluster (moderate inflation), meanwhile other cities tend to become members of third cluster (low inflation). Similarly, interpretation can be made to the results of applying 5 clusters.
NASA Technical Reports Server (NTRS)
Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.
2003-01-01
The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.
The construction phase’s influence to the moving ability of cross-sections of woven structure
NASA Astrophysics Data System (ADS)
Inogamdjanov, D.; Daminov, A.; Kasimov, O.
2017-10-01
The purpose of this study is to work out bases to predict properties for single layer flat woven fabrics depending on changes of construction phases. A structural model of cross-section of single layered fabric is described based on the Pierce’s model. Form transformation of the yarn like straight, semi-arch and arch yarn is considered according to the alteration of yarn tension under the theory of Novikov. The value contributions to movement index of warp and weft yarn and their total moving ability in cross-sections at all structure phases of fabric are summarized.
NASA Technical Reports Server (NTRS)
1989-01-01
American Hospital Supply Corporation (AHSC), Baxter Healthcare Corporation's predecessor, used the NASA informational base on contamination control technology to improve industrial contamination control technology. When a study determined that microscopic body particles escaping through tiny "windows" in woven garments worn by workers were the greatest source of contamination, AHSC developed TYVEK. This non-woven material filters 99% of all particulate matter larger than half a micron. Baxter Healthcare added a polyimide coating which seals and ties down any loose fibers, providing greater durability. Stress points along seams have been minimized to make the garment almost tearproof. Micro-Clean 212 garments are individually packaged and disposable.
Bn and Si-Doped Bn Coatings on Woven Fabrics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)
2002-01-01
A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.
Computational micromechanics of woven composites
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang
1991-01-01
The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.
12 CFR 19.240 - Inflation adjustments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b) The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... inflatable portion of the restraint system will rely on sensors to electronically activate the inflator for... inflatable restraint system relies on sensors to electronically activate the inflator for deployment. These sensors could be susceptible to inadvertent activation, causing deployment in a potentially unsafe manner...
Method and apparatus for advancing tethers
Zollinger, W. Thor
1998-01-01
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.
Anisotropic non-gaussianity from rotational symmetry breaking excited initial states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashoorioon, Amjad; Casadio, Roberto; Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna
2016-12-01
If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. Inmore » the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.« less
NASA Technical Reports Server (NTRS)
Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi
1990-01-01
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.
NASA Technical Reports Server (NTRS)
Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi
1990-01-01
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.
INFLATE: INFlate Landing Apparatus Technology
NASA Astrophysics Data System (ADS)
Koryanov, V. V. K.; Da-Poian, V. D. P.
2018-02-01
Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).
NASA Astrophysics Data System (ADS)
Rademacher, L. K.
2017-12-01
The Interdisciplinary Teaching about Earth for a Sustainable Future (InTeGrate) community has developed extensive courses and modules designed for broad adoption into geoscience classrooms in diverse environments. I participated in a three-semester research project designed to test the efficacy of incorporating "high doses" (minimum 3 modules or 18 class periods) of InTeGrate materials into a course, in my case, an introductory environmental science class. InTeGrate materials were developed by groups of instructors from a range of institutions across the US. These materials include an emphasis on systems thinking, interdisciplinary approaches, and sustainability, and those themes are woven throughout the modules. The three semesters included a control in which no InTeGrate materials were used, a pilot in which InTeGrate materials were tested, and a treatment semesters in which tested materials were modified as needed and fully implemented into the course. Data were collected each semester on student attitudes using the InTeGrate Attitudinal Instrument (pre and post), a subset of Geoscience Literacy Exam questions (pre and post), and a series of assessments and essay exam questions (post only). Although results suggest that learning gains were mixed, changes in attitudes pre- and post-instruction were substantial. Changes in attitudes regarding the importance of sustainable employers, the frequency of self-reported individual sustainable actions, and motivation level for creating a sustainable society were observed in the control and treatment semesters, with the treatment semester showing the greatest gains. Importantly, one of the biggest differences between the control and treatment semesters is the reported impact that the course had on influencing students' sustainable behaviors. The treatment semester course impacted students' sustainable behaviors far more than the control semester.
Applicability of Newton's law of cooling in monetary economics
NASA Astrophysics Data System (ADS)
Todorović, Jadranka Đurović; Tomić, Zoran; Denić, Nebojša; Petković, Dalibor; Kojić, Nenad; Petrović, Jelena; Petković, Biljana
2018-03-01
Inflation is a phenomenon which attracts the attention of many researchers. Inflation is not a recent date phenomenon, but it has existed ever since money emerged in world's first economies. With the development of economy and market, inflation developed as well. Today, even though there is a considerable number of research papers on inflation, there is still not enough knowledge about all factors which might cause inflation, and influence its evolution and dynamics. Regression analysis is a powerful statistical tool which might help analyse a vast amount of data on inflation, and provide an answer to the question about the factors of inflation, as well as the way those factors influence it. In this article Newton's Law of Cooling was applied to determine the long-term dynamics of monetary aggregates and inflation in Serbia and Croatia.
Kähler-driven tribrid inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Nolde, David
2012-11-01
We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.
All puffed out: do pufferfish hold their breath while inflated?
McGee, Georgia Evelyn; Clark, Timothy Darren
2014-01-01
The inflation response of pufferfishes is one of the most iconic predator defence strategies in nature. Current dogma suggests that pufferfish inflation represents a breath-holding response, whereby gill oxygen uptake ceases for the duration of inflation and cutaneous respiration increases to compensate. Here, we show that the black-saddled pufferfish (Canthigaster valentini) has an excellent capacity for oxygen uptake while inflated, with uptake rates increasing to five-times that of resting levels. Moreover, we show that this species has negligible capacity for cutaneous respiration, concluding that the gills are the primary site of oxygen uptake while inflated. Despite this, post-deflation recovery of aerobic metabolism took an average of 5.6 h, suggesting a contribution of anaerobic metabolism during pre-inflation activity and during the act of ingesting water to achieve inflation. PMID:25472941
Method and apparatus for advancing tethers
Zollinger, W.T.
1998-06-02
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.
Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil
2005-01-01
Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.
Distinguishing between extra natural inflation and natural inflation after BICEP2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp
2014-08-01
In this paper, we carefully calculated the tensor-to-scalar ratio, the running spectral index, and the running of running spectrum for (extra) natural inflation in order to compare with recent BICEP2 data, PLANCK satellite data and future 21 cm data. We discovered that the prediction for running spectral index and the running of running spectrum in natural inflation is different from that in the case of extra natural inflation. Near future observation for the running spectral index can only provide marginal accuracy which may not allow us distinguishing between extra natural inflation from natural inflation clearly unless the experimental accuracy canmore » be further improved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jiaying; Liang, Biao; Zhang, Weizhao
In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can bemore » modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.« less
Vallittu, P K
2002-05-01
The aim of this study was to investigate the possibility to reinforce the mechanically interlocked veneer of a porcelain-fused-to-metal (PFM) crown by woven glass fibre. A simulated situation to repair a fractured porcelain veneer was used in the experimental test set-up. A brass jig made into the shape of a framework of PFM maxillary central incisor crown with a retentive area at the palatal side of the incisal edge was used. A veneer were made with a restorative hybrid composite on the brass jig (control group). In the test groups, one or two layers of woven polymer pre-impregnated glass fibres (thickness: 0.06 mm/layer) were used by pressing the fibre weaves to the surface of the brass jig. Restorative hybrid composite was applied on the glass fibre weaves. Five veneers were made for all groups and the veneers were not cemented on the test jig. The veneers were loaded from the incisal edge until fracture occurred. The force was measured simultaneously with an acoustic emission analysis (AE) of the fracture propagation. Fracture force values for control veneers were 121 N and for those reinforced with one layer of glass fibres 399 N and for those reinforced with two layers of glass fibres 744 N ANOVA revealed significant difference between the mean values (P=0.003). The AE analysis showed different fracture propagation for the unreinforced and glass fibre reinforced veneers. The results of this study suggests that by placing two layers of woven glass fibres on the retentively shaped metal framework of the PFM crown before applying the restorative composite, considerably higher fracture resistance for the veneer could be obtained.
Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.
De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio
2018-05-01
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...
Code of Federal Regulations, 2011 CFR
2011-10-01
... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...
Gravitational waves from warm inflation
NASA Astrophysics Data System (ADS)
Li, Xi-Bin; Wang, He; Zhu, Jian-Yang
2018-03-01
A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.
Cosmological perturbations and noncommutative tachyon inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Daojun; Li Xinzhou
2004-12-15
The motivation for studying the rolling tachyon and noncommutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbations of the metric and investigate the cosmological perturbations in the commutative and noncommutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian. Although at lowest order the predictions of tachyon inflation are no different than those from standard slow-roll inflation, due to the modified inflationary dynamics there exists modifications to the power spectra of fluctuations generated during inflation. Inmore » the noncommutative tachyon inflation scenario, the stringy noncommutativity of spacetime results in corrections to the primordial power spectrum that lead to a spectral index that is greater than 1 on large scales and less than 1 on small scales as the first-year results of the Wilkinson Microwave Anisotropy Probe indicate.« less
Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.
Toward inflation models compatible with the no-boundary proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Dong-il; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: innocent.yeom@gmail.com
2014-06-01
In this paper, we investigate various inflation models in the context of the no-boundary proposal. We propose that a good inflation model should satisfy three conditions: observational constraints, plausible initial conditions, and naturalness of the model. For various inflation models, we assign the probability to each initial condition using the no-boundary proposal and define a quantitative standard, typicality, to check whether the model satisfies the observational constraints with probable initial conditions. There are three possible ways to satisfy the typicality criterion: there was pre-inflation near the high energy scale, the potential is finely tuned or the inflationary field space ismore » unbounded, or there are sufficient number of fields that contribute to inflation. The no-boundary proposal rejects some of naive inflation models, explains some of traditional doubts on inflation, and possibly, can have observational consequences.« less
Planck 2015 results: XX. Constraints on inflation
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-09-20
In this paper, we present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be n s = 0.968 ± 0.006 and tightly constrain its scale dependence to dn s/ dlnk = -0.003 ± 0.007 when combined with themore » Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r 0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ 2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R 2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth P R(k)over the range of scales 0.008 Mpc -1 ≲ k ≲ 0.1 Mpc -1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | α non - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum finding that the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. Lastly, these results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.« less
Microwave background anisotropies in quasiopen inflation
NASA Astrophysics Data System (ADS)
García-Bellido, Juan; Garriga, Jaume; Montes, Xavier
1999-10-01
Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.
Pseudosmooth tribrid inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur
2012-08-01
We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ``tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.
Inflatable antennas for microwave pwoer transmission
NASA Technical Reports Server (NTRS)
Williams, Geoff
1989-01-01
Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.
Seven lessons from manyfield inflation in random potentials
NASA Astrophysics Data System (ADS)
Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David
2018-01-01
We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the `transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of `approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2–100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the `generic predictions' of single-field inflation can be emergent features of complex inflation models.
System and method of designing a load bearing layer of an inflatable vessel
NASA Technical Reports Server (NTRS)
Spexarth, Gary R. (Inventor)
2007-01-01
A computer-implemented method is provided for designing a restraint layer of an inflatable vessel. The restraint layer is inflatable from an initial uninflated configuration to an inflated configuration and is constructed from a plurality of interfacing longitudinal straps and hoop straps. The method involves providing computer processing means (e.g., to receive user inputs, perform calculations, and output results) and utilizing this computer processing means to implement a plurality of subsequent design steps. The computer processing means is utilized to input the load requirements of the inflated restraint layer and to specify an inflated configuration of the restraint layer. This includes specifying a desired design gap between pairs of adjacent longitudinal or hoop straps, whereby the adjacent straps interface with a plurality of transversely extending hoop or longitudinal straps at a plurality of intersections. Furthermore, an initial uninflated configuration of the restraint layer that is inflatable to achieve the specified inflated configuration is determined. This includes calculating a manufacturing gap between pairs of adjacent longitudinal or hoop straps that correspond to the specified desired gap in the inflated configuration of the restraint layer.
Day 3 on the USS Anchorage for the Recovery of Orion
2014-12-03
On the third day of preparations for recovery of Orion after its splashdown in the Pacific Ocean, the well deck of the USS Anchorage has been filled with water and recovery hardware is in place. U.S. Navy divers have embarked from ship to practice recovery procedures in rigid hull inflatable boats and Zodiac boats. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts.
1996-02-01
The crew assigned to the STS-77 mission included (seated left to right) Curtis L. Brown, pilot; and John H. Casper, commander. Standing, left to right, are mission specialists Daniel W. Bursch, Mario Runco, Marc Garneau (CSA), and Andrew S. W. Thomas. Launched aboard the Space Shuttle Endeavour on May 19, 1996 at 6:30:00 am (EDT), the STS-77 mission carried three primary payloads; the SPACEHAB-4 pressurized research module, the Inflatable Antenna Experiment (IAE) mounted on a Spartan 207 free-flyer, and a suite of four technology demonstration experiments known as Technology Experiments for Advancing Missions in Space (TEAMS).
Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an Electronic Still Camera (ESC) snapshot inside the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour. In upper left is the view port which crew members had used for viewing and photographing operations with the Spartan 207/Inflatable Antenna Experiment (IAE). Thomas has his hand on an aft-bulkhead-mounted locker. The Space Experiment Facility (SEF), designed and managed by the University of Alabama, is just behind his left shoulder.
Construction operations for an early lunar base
NASA Technical Reports Server (NTRS)
Graf, John
1988-01-01
Six construction tasks identified as activities likely to be performed at an early lunar base are described: initializing the habitation module, preparing a landing site, transferring payload off the lander, smoothing roads, constructing the inflatable structure, and excavating for lunar oxygen production. Requirements for each task are given, and a point design capable of meeting the task requirements is described. EVA needs are listed for each task. The equipment used to perform these tasks is described. It is noted that all the tasks can be performed with three common vehicles (a rover, a truck, and an excavator) and some shared equipment.
Study on preparation and mechanical performance of TPU/nonwoven composites
NASA Astrophysics Data System (ADS)
Sun, X. C.; Xi, B. J.
2016-07-01
In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.
Structure and yarn sensor for fabric
Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.
1998-01-01
A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.
Structure and yarn sensor for fabric
Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.
1998-10-20
A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.
The effect of autoclave resterilisation on polyester vascular grafts.
Riepe, G; Whiteley, M S; Wente, A; Rogge, A; Schröder, A; Galland, R B; Imig, H
1999-11-01
polyester grafts are expensive, single-use items. Some manufacturers of uncoated, woven grafts include instructions for autoclave resterilisation to be performed at the surgeon's own request. Others warn against such manipulation. Theoretically, the glass transition point of polyester at 70-80 degrees C and the possible acceleration of hydrolysis suggest that autoclave resterilisation at 135 degrees C might be a problem. a DeBakey Soft Woven Dacron Vascular Prosthesis (Bard) and a Woven Double Velour Dacron Graft (Meadox) were autoclave-resterilised 0 to 20 times, having been weighed before and after sterilisation. Tactile testing was performed. Mechanical properties were examined by probe puncture and single-filament testing, the surface was examined by scanning electron microscopy and the degree of hydrolysis by infra-red spectroscopy. tactile testing revealed a change of feeling with increasing cycles of resterilisation. Investigation of weight, textile strength, single-filament strength, electron microscopy of the surface and infra-red spectroscopy showed no change of the material. changes felt are presumably a surface phenomenon, not measurably affecting strength or chemistry of material after autoclave resterilisation. We therefore feel that it is safe to use once-autoclave-resterilised surplus uncoated polyester grafts, provided that sterility is guaranteed. Copyright 1999 Harcourt Publishers Ltd.
Mechanical Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.
2006-01-01
Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick
2016-09-01
The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content and fabric structure for both impact angles investigated. It is therefore necessary to consider the age of the fabric (which is fabric specific), the fibre type (including blends) and the fabric structure, before interpreting bloodstain patterns. An understanding of this simplified inclined drip stain interaction has been investigated to generate a basis for more complex interactions, such as spatter bloodstains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Inspections § 169.849 Posting placards containing instructions for launching and inflating inflatable... accessible to the ship's company and guests approved placards containing instructions for launching and... determined by the Officer in Charge, Marine Inspection. ...
ERIC Educational Resources Information Center
Aristides
1976-01-01
The other inflation is grade inflation, the label affixed to the indisputable rise in the grade-point averages of undergraduates at public and private, elite and community colleges and universities across the country. The effects of grade inflation upon academic performance were assessed. (Author/RK)
Constant-roll tachyon inflation and observational constraints
NASA Astrophysics Data System (ADS)
Gao, Qing; Gong, Yungui; Fei, Qin
2018-05-01
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
Inflatable Vehicles for In-Situ Exploration of Titan
NASA Technical Reports Server (NTRS)
Jones, J. A.
2001-01-01
Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats. Another branch of space inflatable technology has also considered developing ambient-filled, solar balloons for Mars as well as ambient-filled inflatable rovers. More recently, some of these inflatable technologies have been applied to the outer solar system bodies with the result that there are some rather unique and compelling inflatable mission capabilities for in situ explorations of Titan, Triton, Uranus, and Neptune. Additional information is contained in the original extended abstract.
Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs.
Klingenberg, Claus; Sobotka, Kristina S; Ong, Tracey; Allison, Beth J; Schmölzer, Georg M; Moss, Timothy J M; Polglase, Graeme R; Dawson, Jennifer A; Davis, Peter G; Hooper, Stuart B
2013-05-01
The 2010 ILCOR neonatal resuscitation guidelines do not specify appropriate inflation times for the initial lung inflations in apnoeic newborn infants. The authors compared three ventilation strategies immediately after delivery in asphyxiated newborn lambs. Experimental animal study. Facility for animal research. Eighteen near-term lambs (weight 3.5-3.9 kg) delivered by caesarean section. Asphyxia was induced by occluding the umbilical cord and delaying ventilation onset (10-11 min) until mean carotid blood pressure (CBP) was ≤22 mm Hg. Animals were divided into three groups (n=6) and ventilation started with: (1) inflation times of 0.5 s at a ventilation rate 60/min, (2) five 3 s inflations or (3) a single 30 s inflation. Subsequent ventilation used inflations at 0.5 s at 60/min for all groups. Times to reach a heart rate (HR) of 120 bpm and a mean CBP of 40 mm Hg. Secondary outcome was change in lung compliance. Median time to reach HR 120 bpm and mean CBP 40 mm Hg was significantly shorter in the single 30 s inflation group (8 s and 74 s) versus the 5×3 s inflation group (38 s and 466 s) and the conventional ventilation group (64 s and 264 s). Lung compliance was significantly better in the single 30 s inflation group. A single sustained inflation of 30 s immediately after birth improved speed of circulatory recovery and lung compliance in near-term asphyxiated lambs. This approach for neonatal resuscitation merits further investigation.
NASA Astrophysics Data System (ADS)
Alinea, Allan L.; Kubota, Takahiro
2018-03-01
We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.
Variable-delay Polarization Modulators for the CLASS Telescope
NASA Astrophysics Data System (ADS)
Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.
2014-01-01
The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.
NASA Astrophysics Data System (ADS)
Sofyan, Hizir; Maulia, Eva; Miftahuddin
2017-11-01
A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).
Cook, Jeffrey R; Mhatre, Ajay; Wang, Fen Wei; Uretsky, Barry F
2014-03-01
Optimizing stent deployment is important for both acute- and long-term outcomes. High-pressure balloon inflation is the standard for coronary stent implantation. However, there is no standardized inflation protocol. We hypothesized that prolonged high-pressure balloon inflation until stabilization of inflation pressure is superior to a rapid inflation/deflation sequence for both stent expansion and strut apposition. A high-pressure rapid inflation/deflation sequence was deployed followed by angiography to assure no residual stenosis. Optical coherence tomography (OCT) was then performed followed by prolonged inflation until balloon pressure was stabilized for 30 sec using the same balloon at the same pressure as the rapid sequence. A second OCT run was then done. Thirteen thousand nine hundred thirteen stent struts were evaluated by OCT in 12 patients undergoing successful stenting. Stent expansion improved with prolonged (206 ± 115 sec) vs. rapid (28 ± 17 sec) inflation for both minimal stent diameter (3.0 ± 0.5 vs. 2.75 ± 0.44 mm, P < 0.0001) and area (7.83 ± 2.45 vs. 6.63 ± 1.85 mm(2) , P = 0.0003). The number of malapposed struts decreased (45 ± 41 vs. 88 ± 75, P = 0.005) as did the maximal malapposed strut distance (0.31 ± 0.2 vs. 0.43 ± 0.2 mm, P = 0.0001). Factors related to strut malapposition after rapid inflation included localized asymmetry in 67%, stent underexpansion in 75%, and stent undersizing in 67%. These data demonstrate that prolonged inflation is superior to a rapid inflation/deflation technique for both stent expansion and strut apposition. We recommend for routine stent deployment a prolonged inflation protocol as described above to optimize stent deployment. Copyright © 2012 Wiley Periodicals, Inc.
Topological defects in extended inflation
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.
76 FR 74625 - Civil Monetary Penalties Inflation Adjustment
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
...-2011] RIN 1125-AA69 Civil Monetary Penalties Inflation Adjustment AGENCIES: U.S. Customs and Border... adjust for inflation certain civil monetary penalties assessed under the Immigration and Nationality Act... assessed under the INA. The Federal Civil Penalties Inflation Adjustment Act of 1990 (Adjustment Act...
Grade Inflation in Higher Education: A Comparative Study.
ERIC Educational Resources Information Center
Kolevzon, Michael S.
1981-01-01
Ten departments with high grade inflation rates during a seven-year period were compared with 10 departments within the same university displaying lower grade inflation rates. Higher grade inflation rates were related to perceived increases in the demands placed upon the academicians' role. (Author/MLW)
Nonthermal gravitino production in tribrid inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Dutta, Koushik
2015-10-01
We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.
Attractors, universality, and inflation
NASA Astrophysics Data System (ADS)
Downes, Sean; Dutta, Bhaskar; Sinha, Kuver
2012-11-01
Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.
A smooth exit from eternal inflation?
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, Thomas
2018-04-01
The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.
Stochastic effects in hybrid inflation
NASA Astrophysics Data System (ADS)
Martin, Jérôme; Vennin, Vincent
2012-02-01
Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of the instability point, the potential is very flat and the quantum fluctuations dominate over the classical motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution of the fields and compute the probability distributions of the total number of e-folds and of the inflation exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the quantum diffusion can affect the observable predictions of hybrid inflation.
Deflation of the cosmological constant associated with inflation and dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: geng@phys.nthu.edu.tw, E-mail: chungchi@mx.nthu.edu.tw
2016-06-01
In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.
Structural testing and analysis of a braided, inflatable fabric torus structure
NASA Astrophysics Data System (ADS)
Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.
2017-10-01
Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.
Robustness of inflation to inhomogeneous initial conditions
NASA Astrophysics Data System (ADS)
Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia
2017-09-01
We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K, such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.
Topological inflation with graceful exit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl
We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less
Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft
NASA Technical Reports Server (NTRS)
Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)
2002-01-01
A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.
A picture for the coupling of unemployment and inflation
NASA Astrophysics Data System (ADS)
Safdari, H.; Hosseiny, A.; Vasheghani Farahani, S.; Jafari, G. R.
2016-02-01
The aim of this article is to illustrate the scaling features of two well heard characters in the media; unemployment and inflation. We carry out a scaling analysis on the coupling between unemployment and inflation. This work is based on the wavelet analysis as well as the detrended fluctuation analysis (DFA). Through our analysis we state that while unemployment is time scale invariant, inflation is bi-scale. We show that inflation possess a five year time scale where it experiences different behaviours before and after this scale period. This behaviour of inflation provides basis for the coupling to inherit the stated time interval. Although inflation is bi-scale, it is unemployment that shows a strong multifractality feature. Owing to the cross wavelet analysis we provide a picture that illustrates the dynamics of coupling between unemployment and inflation regarding intensity, direction, and scale. The fact of the matter is that the coupling between inflation and unemployment is not equal in one way compared to the opposite. Regarding the scaling; coupling exhibits different features in various scales. In a sense that although in one scale its correlation behaves in a positive/negative manner, at the same time it can be negative/positive for another scale.
46 CFR 160.051-9 - Equipment required for Coastal Service inflatable liferafts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Equipment required for Coastal Service inflatable...) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Inflatable Liferafts for Domestic Service § 160.051-9 Equipment required for Coastal Service inflatable liferafts. In...
46 CFR 185.518 - Inflatable survival craft placards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable survival craft placards. 185.518 Section 185... 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other...
Inflatable robotics for planetary applications
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2001-01-01
Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats [1]. Another branch of space inflatable technology has also considered developing ambient gasfilled, solar balloons for Mars as well as ambient gasfilled inflatable rovers [2]. More recently, some other intriguing space-inflatable vehicles have been proposed for the gas planets and Pluto, as well as for Saturn's moon, Titan, Neptune's moon, Triton, and Jupiter's moon, Io [3].
Low-Mass Inflation Systems for Inflatable Structures
NASA Technical Reports Server (NTRS)
Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.
1995-01-01
The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.
Damage Detection and Self-Repair in Inflatable/Deployable Structures
NASA Technical Reports Server (NTRS)
Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy
2009-01-01
Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.
2014-08-03
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean off the coast of San Diego during a portion of Underway Recovery Test 2. Nearby, U.S. Navy personnel in a rigid hull inflatable boat practice with tether lines on the test vehicle. Positioned further out in the ocean are three other rigid hull inflatable boats. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie
2014-11-10
Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents. Copyright © 2014 Elsevier B.V. All rights reserved.
Fiber-Optic Micrometeoroid/Orbital Debris Impact Detector System
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Tennyson, R. C.; Morison, W. D.
2012-01-01
A document describes a reliable, lightweight micrometeoroid/orbital debris (MMOD) detection system that can be located at strategic positions of "high consequence" to provide real-time warning of a penetration, its location, and the extent of the damage to a spacecraft. The concept is to employ fiber-optic sensors to detect impact damage and penetration of spacecraft structures. The fibers are non-electrical, employ light waves, and are immune to electromagnetic interference. The fiber-optic sensor array can be made as a stand-alone product, being bonded to a flexible membrane material or a structure that is employed as a MMOD shield material. The optical sensors can also be woven into hybrid MMOD shielding fabrics. The glass fibers of the fiber-optic sensor provide a dual purpose in contributing to the breakup of MMOD projectiles. The grid arrays can be made in a modular configuration to provide coverage over any area desired. Each module can be connected to a central scanner instrument and be interrogated in a continuous or periodic mode.
ERIC Educational Resources Information Center
Magnus, Brooke E.; Thissen, David
2017-01-01
Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…
Code of Federal Regulations, 2010 CFR
2010-07-01
... inflatable lifesaving appliances and marine evacuation systems? 150.506 Section 150.506 Navigation and...: OPERATIONS Emergency and Specialty Equipment Inflatable Lifesaving Appliances § 150.506 When must the operator service inflatable lifesaving appliances and marine evacuation systems? (a) The operator must...
31 CFR 359.12 - What happens in deflationary conditions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... deflationary situations, the semiannual inflation rate may be negative. Negative semiannual inflation rates will be used in the same way as positive semiannual inflation rates. However, if the semiannual inflation rate is negative to the extent that it completely offsets the fixed rate of return, the redemption...