Sample records for wrf numerical model

  1. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  2. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  3. Simulation of a severe convective storm using a numerical model with explicitly incorporated aerosols

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2017-09-01

    Despite an important role the aerosols play in all stages of cloud lifecycle, their representation in numerical weather prediction models is often rather crude. This paper investigates the effects the explicit versus implicit inclusion of aerosols in a microphysics parameterization scheme in Weather Research and Forecasting (WRF) - Advanced Research WRF (WRF-ARW) model has on cloud dynamics and microphysics. The testbed selected for this study is a severe mesoscale convective system with supercells that struck west and central parts of Serbia in the afternoon of July 21, 2014. Numerical products of two model runs, i.e. one with aerosols explicitly (WRF-AE) included and another with aerosols implicitly (WRF-AI) assumed, are compared against precipitation measurements from surface network of rain gauges, as well as against radar and satellite observations. The WRF-AE model accurately captured the transportation of dust from the north Africa over the Mediterranean and to the Balkan region. On smaller scales, both models displaced the locations of clouds situated above west and central Serbia towards southeast and under-predicted the maximum values of composite radar reflectivity. Similar to satellite images, WRF-AE shows the mesoscale convective system as a merged cluster of cumulonimbus clouds. Both models over-predicted the precipitation amounts; WRF-AE over-predictions are particularly pronounced in the zones of light rain, while WRF-AI gave larger outliers. Unlike WRF-AI, the WRF-AE approach enables the modelling of time evolution and influx of aerosols into the cloud which could be of practical importance in weather forecasting and weather modification. Several likely causes for discrepancies between models and observations are discussed and prospects for further research in this field are outlined.

  4. Statistical Analysis of Atmospheric Forecast Model Accuracy - A Focus on Multiple Atmospheric Variables and Location-Based Analysis

    DTIC Science & Technology

    2014-04-01

    WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch

  5. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    NASA Astrophysics Data System (ADS)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  6. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Treesearch

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  7. Quantifying the Stable Boundary Layer Structure and Evolution during T-REX 2006

    DTIC Science & Technology

    2014-09-30

    integrating surface observations, data from in-situ measurements, and a nested numerical model with two related topics was conducted in this project. the WRF ...as well as quantify differences at a fine scale model output using the different turbulent mixing/diffusion options in the WRF -ARW model; and (2... WRF model planetary boundary layer schemes were also conducted to study a downslope windstorm and rotors in Las Vegas valley. Two events (March 20

  8. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  9. A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersema, David John; Lundquist, Katherine A.; Chow, Fotini Katapodes

    With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscalemore » simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.« less

  10. Investigating Anomalies in the Output Generated by the Weather Research and Forecasting (WRF) Model

    NASA Astrophysics Data System (ADS)

    Decicco, Nicholas; Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David

    2015-04-01

    The Weather Research and Forecasting (WRF) model is an advanced mesoscale numerical weather prediction (NWP) model comprised of two numerical cores, the Numerical Mesoscale Modeling (NMM) core, and the Advanced Research WRF (ARW) core. An investigation was done to determine the source of erroneous output generated by the NMM core. In particular were the appearance of zero values at regularly spaced grid cells in output fields and the NMM core's evident (mis)use of static geographic information at a resolution lower than the nesting level for which the core is performing computation. A brief discussion of the high-level modular architecture of the model is presented as well as methods utilized to identify the cause of these problems. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.

  11. Application, evaluation and sensitivity analysis of the coupled WRF-CMAQ system from regional to urban scales

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science mete...

  12. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China

    NASA Astrophysics Data System (ADS)

    Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang

    2017-07-01

    Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi-arid areas. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for generating ensembles in numerical rainfall predictions using the WRF model.

  13. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.

    PubMed

    Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev

    2018-03-02

    While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.

  14. Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model

    NASA Astrophysics Data System (ADS)

    Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun

    2017-10-01

    A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.

  15. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    NASA Astrophysics Data System (ADS)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  16. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  17. ESPC Coupled Global Prediction System

    DTIC Science & Technology

    2015-09-30

    numerical transport algorithms. Adapted from WRF , a Semi-Lagrangian advection scheme is being implemented in the vertical in NAVGEM to process the...used in the sedimentation of cloud species, especially in the WRF research-community model for all cloud microphysics modules. We have started to

  18. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a single ready-to-use package. Thus, the previous ornery task of setting up and compiling these tools becomes obsolete and the research, educator or student can focus on using the tools to study the interactions between weather, climate and the coastal environment. The incorporation of WRF into the CSEVA has been designed to be synergistic with the extensive online tutorials and biannual tutorials hosted by NCAR. Included are working examples of the idealized test simulations provided with WRF (2D sea breeze and squalls, a large eddy simulation, a Held and Suarez simulation, etc.) To demonstrate the integration of weather, coastal and coastal science education, example applications are being developed to demonstrate how the system can be used to couple a coastal and estuarine circulation, transport and storm surge model with downscale reanalysis weather and future climate predictions. Documentation, tutorials and the enhanced CSEVA itself will be found on the web at: http://cseva.coastal.ufl.edu.

  19. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    NASA Astrophysics Data System (ADS)

    Dodla, Venkata B.; Srinivas, Desamsetti; Dasari, Hari Prasad; Gubbala, Chinna Satyanarayana

    2016-05-01

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  20. Study on the influence of ground and satellite observations on the numerical air-quality for PM10 over Romanian territory

    NASA Astrophysics Data System (ADS)

    Dumitrache, Rodica Claudia; Iriza, Amalia; Maco, Bogdan Alexandru; Barbu, Cosmin Danut; Hirtl, Marcus; Mantovani, Simone; Nicola, Oana; Irimescu, Anisoara; Craciunescu, Vasile; Ristea, Alina; Diamandi, Andrei

    2016-10-01

    The numerical forecast of particulate matter concentrations in general, and PM10 in particular is a theme of high socio-economic relevance. The aim of this study was to investigate the impact of ground and satellite data assimilation of PM10 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) numerical air quality model for Romanian territory. This is the first initiative of the kind for this domain of interest. Assimilation of satellite information - e.g. AOT's in air quality models is of interest due to the vast spatial coverage of the observations. Support Vector Regression (SVR) techniques are used to estimate the PM content from heterogeneous data sources, including EO products (Aerosol Optical Thickness), ground measurements and numerical model data (temperature, humidity, wind, etc.). In this study we describe the modeling framework employed and present the evaluation of the impact from the data assimilation of PM10 observations on the forecast of the WRF-CHEM model. Integrations of the WRF-CHEM model in data assimilation enabled/disabled configurations allowed the evaluation of satellite and ground data assimilation impact on the PM10 forecast performance for the Romanian territory. The model integration and evaluation were performed for two months, one in winter conditions (January 2013) and one in summer conditions (June 2013).

  1. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  2. Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds

    NASA Astrophysics Data System (ADS)

    Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea

    2013-04-01

    Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.

  3. The Impact of Microphysical Schemes on Intensity and Track of Hurricane

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Shi, J. J.; Chen, S. S.; Lang, S.; Lin, P.; Hong, S. Y.; Peters-Lidard, C.; Hou, A.

    2010-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. The WRF is a next-generation meso-scale forecast model and assimilation system that has incorporated a modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. The WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At Goddard, four different cloud microphysics schemes (warm rain only, two-class of ice, two three-class of ice with either graupel or hail) are implemented into the WRF. The performances of these schemes have been compared to those from other WRF microphysics scheme options for an Atlantic hurricane case. In addition, a brief review and comparison on the previous modeling studies on the impact of microphysics schemes and microphysical processes on intensity and track of hurricane will be presented. Generally, almost all modeling studies found that the microphysics schemes did not have major impacts on track forecast, but did have more effect on the intensity. All modeling studies found that the simulated hurricane has rapid deepening and/or intensification for the warm rain-only case. It is because all hydrometeors were very large raindrops, and they fell out quickly at and near the eye-wall region. This would hydrostatically produce the lowest pressure. In addition, these modeling studies suggested that the simulated hurricane becomes unrealistically strong by removing the evaporative cooling of cloud droplets and melting of ice particles. This is due to the much weaker downdraft simulated. However, there are many differences between different modeling studies and these differences were identified and discussed.

  4. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie

    2014-05-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).

  5. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  6. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  7. A Comparison Of Primitive Model Results Of The Short Term Wind Energy Prediction System (Sweps): WRF vs MM5

    NASA Astrophysics Data System (ADS)

    Unal, E.; Tan, E.; Mentes, S. S.; Caglar, F.; Turkmen, M.; Unal, Y. S.; Onol, B.; Ozdemir, E. T.

    2012-04-01

    Although discontinuous behavior of wind field makes energy production more difficult, wind energy is the fastest growing renewable energy sector in Turkey which is the 6th largest electricity market in Europe. Short-term prediction systems, which capture the dynamical and statistical nature of the wind field in spatial and time scales, need to be advanced in order to increase the wind power prediction accuracy by using appropriate numerical weather forecast models. Therefore, in this study, performances of the next generation mesoscale Numerical Weather Forecasting model, WRF, and The Fifth-Generation NCAR/Penn State Mesoscale Model, MM5, have been compared for the Western Part of Turkey. MM5 has been widely used by Turkish State Meteorological Service from which MM5 results were also obtained. Two wind farms of the West Turkey have been analyzed for the model comparisons by using two different model domain structures. Each model domain has been constructed by 3 nested domains downscaling from 9km to 1km resolution by the ratio of 3. Since WRF and MM5 models have no exactly common boundary layer, cumulus, and microphysics schemes, the similar physics schemes have been chosen for these two models in order to have reasonable comparisons. The preliminary results show us that, depending on the location of the wind farms, MM5 wind speed RMSE values are 1 to 2 m/s greater than that of WRF values. Since 1 to 2 m/s errors can be amplified when wind speed is converted to wind power; it is decided that the WRF model results are going to be used for the rest of the project.

  8. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    NASA Astrophysics Data System (ADS)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  9. Simulating land-atmosphere feedbacks and response to widespread forest disturbance: The role of lower boundary configuration and dynamic water table in meteorological modeling

    NASA Astrophysics Data System (ADS)

    Forrester, M.; Maxwell, R. M.; Bearup, L. A.; Gochis, D.

    2017-12-01

    Numerical meteorological models are frequently used to diagnose land-atmosphere interactions and predict large-scale response to extreme or hazardous events, including widespread land disturbance or perturbations to near-surface moisture. However, few atmospheric modeling platforms consider the impact that dynamic groundwater storage, specifically 3D subsurface flow, has on land-atmosphere interactions. In this study, we use the Weather Research and Forecasting (WRF) mesoscale meteorological model to identify ecohydrologic and land-atmosphere feedbacks to disturbance by the mountain pine beetle (MPB) over the Colorado Headwaters region. Disturbance simulations are applied to WRF with various lower boundary configurations: Including default Noah land surface model soil moisture representation; a version of WRF coupled to ParFlow (PF), an integrated groundwater-surface water model that resolves variably saturated flow in the subsurface; and WRF coupled to PF in a static water table version, simulating only vertical and no lateral subsurface flow. Our results agree with previous literature showing MPB-induced reductions in canopy transpiration in all lower boundary scenarios, as well as energy repartitioning, higher water tables, and higher planetary boundary layer over infested regions. Simulations show that expanding from local to watershed scale results in significant damping of MPB signal as unforested and unimpacted regions are added; and, while deforestation appears to have secondary feedbacks to planetary boundary layer and convection, these slight perturbations to cumulative summer precipitation are insignificant in the context of ensemble methodologies. Notably, the results suggest that groundwater representation in atmospheric modeling affects the response intensity of a land disturbance event. In the WRF-PF case, energy and atmospheric processes are more sensitive to disturbance in regions with higher water tables. Also, when dynamic subsurface hydrology is removed, WRF simulates a greater response to MPB at the land-atmosphere interface, including greater changes to daytime skin temperature, Bowen ratio and near-surface humidity. These findings highlight lower boundary representations in computational meteorology and numerical land-atmosphere modeling.

  10. The Local Ensemble Transform Kalman Filter with the Weather Research and Forecasting Model: Experiments with Real Observations

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Kunii, Masaru

    2012-03-01

    The local ensemble transform Kalman filter (LETKF) is implemented with the Weather Research and Forecasting (WRF) model, and real observations are assimilated to assess the newly-developed WRF-LETKF system. The WRF model is a widely-used mesoscale numerical weather prediction model, and the LETKF is an ensemble Kalman filter (EnKF) algorithm particularly efficient in parallel computer architecture. This study aims to provide the basis of future research on mesoscale data assimilation using the WRF-LETKF system, an additional testbed to the existing EnKF systems with the WRF model used in the previous studies. The particular LETKF system adopted in this study is based on the system initially developed in 2004 and has been continuously improved through theoretical studies and wide applications to many kinds of dynamical models including realistic geophysical models. Most recent and important improvements include an adaptive covariance inflation scheme which considers the spatial and temporal inhomogeneity of inflation parameters. Experiments show that the LETKF successfully assimilates real observations and that adaptive inflation is advantageous. Additional experiments with various ensemble sizes show that using more ensemble members improves the analyses consistently.

  11. A Multiseason Comparison of the Forecast Skills among Three Numerical Models over Southcentral United States

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S.

    2005-05-01

    During the summer 2003 and winter 2003-2004, three mesoscale numerical models, the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), Navy's Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) and the Weather Research and Forecasting model (WRF), were operationally run at a horizontal resolution of 27 km twice daily in Jackson State University (JSU). Three models were run by the initial and lateral boundary conditions from AVN data. The purpose of this paper is to evaluate the performances of three models during these two seasons. It was found that the temporal variation of distribution and strength of mean error (ME) biases at 12, 24 and 36h was rather weak for surface temperature, sea level pressure and surface wind speed. During two seasons, the MM5 underpredicted the seasonal precipitation while the COAMPS and WRF overpredicted. This is consistent with the statistical score analyses of rainfall. The Bias scores revealed that the MM5 yielded an underprediction of precipitation, especially for heavier rainfall events. Due to the under estimate of rainfall areas and strength, the MM5 presented the lower TS, POD and KSS scores at lighter rainfall events compared to the COAMPS and WRF. At moderate to heavier thresholds, three models produced rather low KSS and POD scores that are consistent with the high FAR values. The WRF skills in predicting precipitation heavily depend on the performance of cumulus parameterization scheme. Instead of Kain-Fritsch scheme, using other two schemes, Grell-Devenyi and Bette-Miller-Janjic, in the WRF for warm season 2003 demonstrated that the precipitation overprediction had been efficiently suppressed. Overall, the performances of three models revealed that the best skill is at 12h and the worst at 36h.

  12. The Impact of Microphysical Schemes on Hurricane Intensity and Track

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn Jong; Chen, Shuyi S.; Lang, Stephen; Lin, Pay-Liam; Hong, Song-You; Peters-Lidard, Christa; Hou, Arthur

    2011-01-01

    During the past decade, both research and operational numerical weather prediction models [e.g. the Weather Research and Forecasting Model (WRF)] have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. WRF is a next-generation meso-scale forecast model and assimilation system. It incorporates a modern software framework, advanced dynamics, numerics and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options. At NASA Goddard, four different cloud microphysics options have been implemented into WRF. The performance of these schemes is compared to those of the other microphysics schemes available in WRF for an Atlantic hurricane case (Katrina). In addition, a brief review of previous modeling studies on the impact of microphysics schemes and processes on the intensity and track of hurricanes is presented and compared against the current Katrina study. In general, all of the studies show that microphysics schemes do not have a major impact on track forecasts but do have more of an effect on the simulated intensity. Also, nearly all of the previous studies found that simulated hurricanes had the strongest deepening or intensification when using only warm rain physics. This is because all of the simulated precipitating hydrometeors are large raindrops that quickly fall out near the eye-wall region, which would hydrostatically produce the lowest pressure. In addition, these studies suggested that intensities become unrealistically strong when evaporative cooling from cloud droplets and melting from ice particles are removed as this results in much weaker downdrafts in the simulated storms. However, there are many differences between the different modeling studies, which are identified and discussed.

  13. The Impact of Microphysics on Intensity and Structure of Hurricanes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shi, Jainn; Lang, Steve; Peters-Lidard, Christa

    2006-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WFW is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WFW model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WW to examine the impact of six different cloud microphysical schemes on hurricane track, intensity and rainfall forecast. We are also performing the inline tracer calculation to comprehend the physical processes @e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes.

  14. Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF over the complex Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoduo; Li, Xin; Cheng, Guodong

    2017-04-01

    Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.

  15. A study comparison of two system model performance in estimated lifted index over Indonesia.

    NASA Astrophysics Data System (ADS)

    lestari, Juliana tri; Wandala, Agie

    2018-05-01

    Lifted index (LI) is one of atmospheric stability indices that used for thunderstorm forecasting. Numerical weather Prediction Models are essential for accurate weather forecast these day. This study has completed the attempt to compare the two NWP models these are Weather Research Forecasting (WRF) model and Global Forecasting System (GFS) model in estimates LI at 20 locations over Indonesia and verified the result with observation. Taylor diagram was used to comparing the models skill with shown the value of standard deviation, coefficient correlation and Root mean square error (RMSE). This study using the dataset on 00.00 UTC and 12.00 UTC during mid-March to Mid-April 2017. From the sample of LI distributions, both models have a tendency to overestimated LI value in almost all region in Indonesia while the WRF models has the better ability to catch the LI pattern distribution with observation than GFS model has. The verification result shows how both WRF and GFS model have such a weak relationship with observation except Eltari meteorologi station that its coefficient correlation reach almost 0.6 with the low RMSE value. Mean while WRF model have a better performance than GFS model. This study suggest that estimated LI of WRF model can provide the good performance for Thunderstorm forecasting over Indonesia in the future. However unsufficient relation between output models and observation in the certain location need a further investigation.

  16. NASA SPoRT Modeling and Data Assimilation Research and Transition Activities Using WRF, LIS and GSI

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blankenship, Clay B.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Berndt, Emily B.

    2014-01-01

    weather research and forecasting ===== The NASA Short-term Prediction Research and Transition (SPoRT) program has numerous modeling and data assimilation (DA) activities in which the WRF model is a key component. SPoRT generates realtime, research satellite products from the MODIS and VIIRS instruments, making the data available to NOAA/NWS partners running the WRF/EMS, including: (1) 2-km northwestern-hemispheric SST composite, (2) daily, MODIS green vegetation fraction (GVF) over CONUS, and (3) NASA Land Information System (LIS) runs of the Noah LSM over the southeastern CONUS. Each of these datasets have been utilized by specific SPoRT partners in local EMS model runs, with select offices evaluating the impacts using a set of automated scripts developed by SPoRT that manage data acquisition and run the NCAR Model Evaluation Tools verification package. SPoRT is engaged in DA research with the Gridpoint Statistical Interpolation (GSI) and Ensemble Kalman Filter in LIS for soil moisture DA. Ongoing DA projects using GSI include comparing the impacts of assimilating Atmospheric Infrared Sounder (AIRS) radiances versus retrieved profiles, and an analysis of extra-tropical cyclones with intense non-convective winds. As part of its Early Adopter activities for the NASA Soil Moisture Active Passive (SMAP) mission, SPoRT is conducting bias correction and soil moisture DA within LIS to improve simulations using the NASA Unified-WRF (NU-WRF) for both the European Space Agency's Soil Moisture Ocean Salinity and upcoming SMAP mission data. SPoRT has also incorporated real-time global GVF data into LIS and WRF from the VIIRS product being developed by NOAA/NESDIS. This poster will highlight the research and transition activities SPoRT conducts using WRF, NU-WRF, EMS, LIS, and GSI.

  17. Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.

    2017-10-01

    Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.

  18. Impact of implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2017-04-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This presentation reports impacts of using realistic forest canopy height, retrieved from spaceborne LiDAR, on regional climate simulation in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin and East Asia during summer season. Over these regions, the LiDAR-retrieved canopy heights were higher than the default values used in the WRF,which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when LiDAR-retrieved canopy height was used over the Amazon Basin.

  19. Implementation of spaceborne lidar-retrieved canopy height in the WRF model

    NASA Astrophysics Data System (ADS)

    Lee, Junhong; Hong, Jinkyu

    2016-06-01

    Canopy height is closely related to biomass and aerodynamic properties, which regulate turbulent transfer of energy and mass at the soil-vegetation-atmosphere continuum. However, this key information has been prescribed as a constant value in a fixed plant functional type in atmospheric models. This paper is the first to report impacts of using realistic forest canopy height, retrieved from spaceborne lidar, on regional climate simulation by using the canopy height data in the Weather Research and Forecasting (WRF) model's land surface model. Numerical simulations were conducted over the Amazon Basin during summer season. Over this region, the lidar-retrieved canopy heights were higher than the default values used in the WRF, which are dependent only on plant functional type. By modifying roughness length and zero-plane displacement height, the change of canopy height resulted in changes in surface energy balance by regulating aerodynamic conductances and vertical temperature gradient, thus modifying the lifting condensation level and equivalent potential temperature in the atmospheric boundary layer. Our analysis also showed that the WRF model better reproduced the observed precipitation when lidar-retrieved canopy height was used over the Amazon Basin.

  20. WRF model sensitivity to choice of parameterization: a study of the `York Flood 1999'

    NASA Astrophysics Data System (ADS)

    Remesan, Renji; Bellerby, Tim; Holman, Ian; Frostick, Lynne

    2015-10-01

    Numerical weather modelling has gained considerable attention in the field of hydrology especially in un-gauged catchments and in conjunction with distributed models. As a consequence, the accuracy with which these models represent precipitation, sub-grid-scale processes and exceptional events has become of considerable concern to the hydrological community. This paper presents sensitivity analyses for the Weather Research Forecast (WRF) model with respect to the choice of physical parameterization schemes (both cumulus parameterisation (CPSs) and microphysics parameterization schemes (MPSs)) used to represent the `1999 York Flood' event, which occurred over North Yorkshire, UK, 1st-14th March 1999. The study assessed four CPSs (Kain-Fritsch (KF2), Betts-Miller-Janjic (BMJ), Grell-Devenyi ensemble (GD) and the old Kain-Fritsch (KF1)) and four MPSs (Kessler, Lin et al., WRF single-moment 3-class (WSM3) and WRF single-moment 5-class (WSM5)] with respect to their influence on modelled rainfall. The study suggests that the BMJ scheme may be a better cumulus parameterization choice for the study region, giving a consistently better performance than other three CPSs, though there are suggestions of underestimation. The WSM3 was identified as the best MPSs and a combined WSM3/BMJ model setup produced realistic estimates of precipitation quantities for this exceptional flood event. This study analysed spatial variability in WRF performance through categorical indices, including POD, FBI, FAR and CSI during York Flood 1999 under various model settings. Moreover, the WRF model was good at predicting high-intensity rare events over the Yorkshire region, suggesting it has potential for operational use.

  1. Sensitivity of WRF precipitation on microphysical and boundary layer parameterizations during extreme events in Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Pytharoulis, I.; Karagiannidis, A. F.; Brikas, D.; Katsafados, P.; Papadopoulos, A.; Mavromatidis, E.; Kotsopoulos, S.; Karacostas, T. S.

    2010-09-01

    Contemporary atmospheric numerical models contain a large number of physical parameterization schemes in order to represent the various atmospheric processes that take place in sub-grid scales. The choice of the proper combination of such schemes is a challenging task for research and particularly for operational purposes. This choice becomes a very important decision in cases of high impact weather in which the forecast errors and the concomitant societal impacts are expected to be large. Moreover, it is well known that one of the hardest tasks for numerical models is to predict precipitation with a high degree of accuracy. The use of complex and sophisticated schemes usually requires more computational time and resources, but it does not necessarily lead to better forecasts. The aim of this study is to investigate the sensitivity of the model predicted precipitation on the microphysical and boundary layer parameterizations during extreme events. The nonhydrostatic Weather Research and Forecasting model with the Advanced Research dynamic solver (WRF-ARW Version 3.1.1) is utilized. It is a flexible, state-of-the-art numerical weather prediction system designed to operate in both research and operational mode in global and regional scales. Nine microphysical and two boundary layer schemes are combined in the sensitivity experiments. The 9 microphysical schemes are: i) Lin, ii) WRF Single Moment 5-classes, iii) Ferrier new Eta, iv) WRF Single Moment 6-classes, v) Goddard, vi) New Thompson V3.1, vii) WRF Double Moment 5-classes, viii) WRF Double Moment 6-classes, ix) Morrison. The boundary layer is parameterized using the schemes of: i) Mellor-Yamada-Janjic (MYJ) and ii) Mellor-Yamada-Nakanishi-Niino (MYNN) level 2.5. The model is integrated at very high horizontal resolution (2 km x 2 km in the area of interest) utilizing 38 vertical levels. Three cases of high impact weather in Eastern Mediterranean, associated with strong synoptic scale forcing, are employed in the numerical experiments. These events are characterized by strong precipitation with daily amounts exceeding 100 mm. For example, the case of 24 to 26 October 2009 was associated with floods in the eastern mainland of Greece. In Pieria (northern Greece), that was the most afflicted area, one individual perished in the overflowed Esonas river and significant damages were caused in both the infrastructure and cultivations. Precipitation amounts of 347 mm in 3 days were measured in the station of Vrontou, Pieria (which is at an elevation of only 120 m). The model results are statistically analysed and compared to the available surface observations and satellite derived precipitation data in order to identify the parameterizations (and their combinations) that provide the best representation of the spatiotemporal variability of precipitation in extreme conditions. Preliminary results indicate that the MYNN boundary layer parameterization outperforms the one of MYJ. However, the best results are produced by the combination of the Ferrier new Eta microphysics with the MYJ scheme, which are the default schemes of the well-known and reliable ETA and WRF-NMM models. Similarly, good results are produced by the combination of the New Thompson V3.1 microphysics with MYNN boundary layer scheme. On the other hand, the worst results (with mean absolute error up to about 150 mm/day) appear when the WRF Single Moment 5-classes scheme is used with MYJ. Finally, an effort is made to identify and analyze the main factors that are responsible for the aforementioned differences.

  2. Investigating Marine Boundary Layer Parameterizations by Combining Observations with Models via State Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delle Monahce, Luca; Clifton, Andrew; Hacker, Joshua

    In this project we have improved numerical weather prediction analyses and forecasts of low level winds in the marine boundary layer. This has been accomplished with the following tools; The National Center for Atmospheric Research (NCAR) Weather and Research Forecasting model, WRF, both in his single column (SCM) and three-dimensional (3D) versions; The National Oceanic and Atmospheric Administration (NOAA) Wave Watch III (WWIII); SE algorithms from the Data Assimilation Research Testbed (DART, Anderson et al. 2009); and Observations of key quantities of the lower MBL, including temperature and winds at multiple levels above the sea surface. The experiments with themore » WRF SCM / DART system have lead to large improvements with respect to a standard WRF configuration, which is currently commonly used by the wind energy industry. The single column model appears to be a tool particularly suitable for off-shore wind energy applications given its accuracy, the ability to quantify uncertainty, and the minimal computational resource requirements. In situations where the impact of an upwind wind park may be of interest in a downwind location, a 3D approach may be more suitable. We have demonstrated that with the WRF 3D / DART system the accuracy of wind predictions (and other meteorological parameters) can be improved over a 3D computational domain, and not only at specific locations. All the scripting systems developed in this project (i.e., to run WRF SCM / DART, WRF 3D / DART, and the coupling between WRF and WWIII) and the several modifications and upgrades made to the WRF SCM model will be shared with the broader community.« less

  3. The footprints of Saharan Air Layer and lightning on the formation of tropical depressions over the eastern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Centeno Delgado, Diana C.

    In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.

  4. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  5. Sensitivity of Numerical Simulations of a Mesoscale Convective System to Ice Hydrometeors in Bulk Microphysical Parameterization

    NASA Astrophysics Data System (ADS)

    Pu, Zhaoxia; Lin, Chao; Dong, Xiquan; Krueger, Steven K.

    2018-01-01

    Mesoscale convective systems (MCSs) and their associated cloud properties are the important factors that influence the aviation activities, yet they present a forecasting challenge in numerical weather prediction. In this study, the sensitivity of numerical simulations of an MCS over the US Southern Great Plains to ice hydrometeors in bulk microphysics (MP) schemes has been investigated using the Weather Research and Forecasting (WRF) model. It is found that the simulated structure, life cycle, cloud coverage, and precipitation of the convective system as well as its associated cold pools are sensitive to three selected MP schemes, namely, the WRF single-moment 6-class (WSM6), WRF double-moment 6-class (WDM6, with the double-moment treatment of warm-rain only), and Morrison double-moment (MORR, with the double-moment representation of both warm-rain and ice) schemes. Compared with observations, the WRF simulation with WSM6 only produces a less organized convection structure with a short lifetime, while WDM6 can produce the structure and length of the MCS very well. Both simulations heavily underestimate the precipitation amount, the height of the radar echo top, and stratiform cloud fractions. With MORR, the model performs well in predicting the lifetime, cloud coverage, echo top, and precipitation amount of the convection. Overall results demonstrate the importance of including double-moment representation of ice hydrometeors along with warm-rain. Additional experiments are performed to further examine the role of ice hydrometeors in numerical simulations of the MCS. Results indicate that replacing graupel with hail in the MORR scheme improves the prediction of the convective structure, especially in the convective core region.

  6. Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Raj K.; Berg, Larry K.; Kosović, Branko

    High resolution numerical simulation can provide insight into important physical processes that occur within the planetary boundary layer (PBL). The present work employs large eddy simulation (LES) using the Weather Forecasting and Research (WRF) model, with the LES domain nested within mesoscale simulation, to simulate real conditions in the convective PBL over an area of complex terrain. A multiple nesting approach has been used to downsize the grid spacing from 12.15 km (mesoscale) to 0.03 km (LES). A careful selection of grid spacing in the WRF Meso domain has been conducted to minimize artifacts in the WRF-LES solutions. The WRF-LESmore » results have been evaluated with in situ and remote sensing observations collected during the US Department of Energy-supported Columbia BasinWind Energy Study (CBWES). Comparison of the first- and second-order moments, turbulence spectrum, and probability density function (PDF) of wind speed shows good agreement between the simulations and data. Furthermore, the WRF-LES variables show a great deal of variability in space and time caused by the complex topography in the LES domain. The WRF-LES results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day. In addition to basic studies related to boundary-layer meteorology, results from these simulations can be used in other applications, such as studying wind energy resources, atmospheric dispersion, fire weather etc.« less

  7. Studying the Processes Contributed to the Hairpin Turn of Hurricane Joaquin with WRF numerical simulations and TCI-2015 observations

    NASA Astrophysics Data System (ADS)

    Pu, Z.; Yu, Y.

    2016-12-01

    The prediction of Hurricane Joaquin's hairpin clockwise during 1 and 2 October 2015 presents a forecasting challenge during real-time numerical weather prediction, as tracks of several major numerical weather prediction models differ from each other. To investigate the large-scale environment and hurricane inner-core structures related to the hairpin turn of Joaquin, a series of high-resolution mesoscale numerical simulations of Hurricane Joaquin had been performed with an advanced research version of the Weather Research and Forecasting (WRF) model. The outcomes were compared with the observations obtained from the US Office of Naval Research's Tropical Cyclone Intensity (TCI) Experiment during 2015 hurricane season. Specifically, five groups of sensitivity experiments with different cumulus, boundary layer, and microphysical schemes as well as different initial and boundary conditions and initial times in WRF simulations had been performed. It is found that the choice of the cumulus parameterization scheme plays a significant role in reproducing reasonable track forecast during Joaquin's hairpin turn. The mid-level environmental steering flows can be the reason that leads to different tracks in the simulations with different cumulus schemes. In addition, differences in the distribution and amounts of the latent heating over the inner-core region are associated with discrepancies in the simulated intensity among different experiments. Detailed simulation results, comparison with TCI-2015 observations, and comprehensive diagnoses will be presented.

  8. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are coinciding as virtual weather stations) realized as OpenMI AdaptedOutput. In order to make sure that SWAT-WRF integration technically sounds and preevaluate the impact of the climatic data resolution on the model parameters a number of test calculations were performed with different time-spatial aggregation of WRF output. Numerical experiments were carried out for the period of 2012-2013 on the Komarovka river watershed (former Primorskaya water-balance station) located in the small mountains landscapes in the western part of the Khankaiskaya plain. The watershed outlet is equipped with the automatic water level and rain gauging stations of Primorie Hydrometeorological Agency (Prigidromet http://primgidromet.ru) observation network. Spatial structure of SWAT simulation realized by ArcSWAT 2012 with 10m DEM resolution and 1:50000 soils and landuse cover. Sensitivity analysis and calibration are performed with SWAT CUP. WRF-SWAT composition is assembled in the GUI OpenMI. For the test basin in most cases the simulation results show that the predicted and measured water levels demonstrate acceptable agreement. Enforcing SWAT with WRF output avoids some semi-empirical model approximation, replaces a native weather generator for WRF forecast interval and improved upon the operational streamflow forecast. It is anticipated that leveraging direct use of the WRF variables (not only substituted standard SWAT input) will have good potential to make SWAT more physically sound.

  9. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  10. Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas

    NASA Astrophysics Data System (ADS)

    Rogelis, María Carolina; Werner, Micha

    2018-02-01

    Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.

  11. Impact of MODIS High-Resolution Sea-Surface Temperatures on WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Dembek, Scott R.; Santos, Pablo; Lapenta, William M.

    2007-01-01

    Over the past few years,studies at the Short-term Prediction Research and Transition (SPoRT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) composite sea-surface temperature (SST) products in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. The recent paper by LaCasse et al. (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPoRT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The scientific hypothesis being tested is: More accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running the WRF system in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software; The EMS is a standalone modeling system capable of downloading the necessary daily datasets, and initializing, running and displaying WRF forecasts in the NWS Advanced Weather Interactive Processing System (AWIPS) with little intervention required by forecasters. Twenty-seven hour forecasts are run daily with start times of 0300,0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and the far western portions of the Bahamas, the Florida Keys, the Straights of Florida, and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS, invoking the diabatic. "hot-start" capability. In this WRF model "hot-start", the LAPS-analyzed cloud and precipitation features are converted into model microphysics fields with enhanced vertical velocity profiles, effectively reducing the model spin-up time required to predict precipitation systems. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at l/12 degree resolution (approx. 9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPoRT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA in every respect except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. The MODIS SST composites for initializing the SPoRT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST composites into the SPoRTWRF runs is staggered such that the 0400UTC composite initializes the 0900 UTC WRF, the 0700 UTC composite initializes the 1500 UTC WRF, the 1600 UTC composite initializes the 2100 UTC WRF, and the 1900 UTC composite initializes the 0300 UTC WRF. A comparison of the SPoRT and Miami forecasts is underway in 2007, and includes quantitative verification of near-surface temperature, dewpoint, and wind forecasts at surface observation locations. In addition, particular days of interest are being analyzed to determine the impact of the MODIS SST data on the development and evolution of predicted sea/land-breeze circulations, clouds, and precipitation. This paper will present verification results comparing the NWS MIA forecasts the SPoRT experimental WRF forecasts, and highlight any substantial differences noted in the predicted mesoscale phenomena.

  12. Performance of MODIS satellite and mesoscale model based land surface temperature for soil moisture deficit estimation using Neural Network

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Petropoulos, George P.; Gupta, Manika; Islam, Tanvir

    2015-04-01

    Soil Moisture Deficit (SMD) is a key variable in the water and energy exchanges that occur at the land-surface/atmosphere interface. Monitoring SMD is an alternate method of irrigation scheduling and represents the use of the suitable quantity of water at the proper time by combining measurements of soil moisture deficit. In past it is found that LST has a strong relation to SMD, which can be estimated by MODIS or numerical weather prediction model such as WRF (Weather Research and Forecasting model). By looking into the importance of SMD, this work focused on the application of Artificial Neural Network (ANN) for evaluating its capabilities towards SMD estimation using the LST data estimated from MODIS and WRF mesoscale model. The benchmark SMD estimated from Probability Distribution Model (PDM) over the Brue catchment, Southwest of England, U.K. is used for all the calibration and validation experiments. The performances between observed and simulated SMD are assessed in terms of the Nash-Sutcliffe Efficiency (NSE), the Root Mean Square Error (RMSE) and the percentage of bias (%Bias). The application of the ANN confirmed a high capability WRF and MODIS LST for prediction of SMD. Performance during the ANN calibration and validation showed a good agreement between benchmark and estimated SMD with MODIS LST information with significantly higher performance than WRF simulated LST. The work presented showed the first comprehensive application of LST from MODIS and WRF mesoscale model for hydrological SMD estimation, particularly for the maritime climate. More studies in this direction are recommended to hydro-meteorological community, so that useful information will be accumulated in the technical literature domain for different geographical locations and climatic conditions. Keyword: WRF, Land Surface Temperature, MODIS satellite, Soil Moisture Deficit, Neural Network

  13. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, H S

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performancemore » computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.« less

  14. An Integrated High Resolution Hydrometeorological Modeling Testbed using LIS and WRF

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Eastman, Joseph L.; Tao, Wei-Kuo

    2007-01-01

    Scientists have made great strides in modeling physical processes that represent various weather and climate phenomena. Many modeling systems that represent the major earth system components (the atmosphere, land surface, and ocean) have been developed over the years. However, developing advanced Earth system applications that integrates these independently developed modeling systems have remained a daunting task due to limitations in computer hardware and software. Recently, efforts such as the Earth System Modeling Ramework (ESMF) and Assistance for Land Modeling Activities (ALMA) have focused on developing standards, guidelines, and computational support for coupling earth system model components. In this article, the development of a coupled land-atmosphere hydrometeorological modeling system that adopts these community interoperability standards, is described. The land component is represented by the Land Information System (LIS), developed by scientists at the NASA Goddard Space Flight Center. The Weather Research and Forecasting (WRF) model, a mesoscale numerical weather prediction system, is used as the atmospheric component. LIS includes several community land surface models that can be executed at spatial scales as fine as 1km. The data management capabilities in LIS enable the direct use of high resolution satellite and observation data for modeling. Similarly, WRF includes several parameterizations and schemes for modeling radiation, microphysics, PBL and other processes. Thus the integrated LIS-WRF system facilitates several multi-model studies of land-atmosphere coupling that can be used to advance earth system studies.

  15. A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Santos, Pablo; Lazarus, Steven M.; Splitt, Michael E.; Haines, Stephanie L.; Dembek, Scott R.; Lapenta, William M.

    2008-01-01

    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases.

  16. High-Resolution Specification of the Land and Ocean Surface for Improving Regional Mesoscale Model Predictions

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.

    2008-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts of the high-resolution lower boundary data on the development and evolution of mesoscale circulations such as sea and land breezes are examined, This paper will present the results of these WRF modeling experiments using LIS and MODIS lower boundary datasets over the Florida peninsula during May 2004.

  17. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions.

    PubMed

    Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.

  18. Numerical Study on the Stomatal Responses to Dry-Hot Wind Episodes and Its Effects on Land-Atmosphere Interactions

    PubMed Central

    Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing

    2016-01-01

    The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943

  19. Implementation of a gust front head collapse scheme in the WRF numerical model

    NASA Astrophysics Data System (ADS)

    Lompar, Miloš; Ćurić, Mladjen; Romanic, Djordje

    2018-05-01

    Gust fronts are thunderstorm-related phenomena usually associated with severe winds which are of great importance in theoretical meteorology, weather forecasting, cloud dynamics and precipitation, and wind engineering. An important feature of gust fronts demonstrated through both theoretical and observational studies is the periodic collapse and rebuild of the gust front head. This cyclic behavior of gust fronts results in periodic forcing of vertical velocity ahead of the parent thunderstorm, which consequently influences the storm dynamics and microphysics. This paper introduces the first gust front pulsation parameterization scheme in the WRF-ARW model (Weather Research and Forecasting-Advanced Research WRF). The influence of this new scheme on model performances is tested through investigation of the characteristics of an idealized supercell cumulonimbus cloud, as well as studying a real case of thunderstorms above the United Arab Emirates. In the ideal case, WRF with the gust front scheme produced more precipitation and showed different time evolution of mixing ratios of cloud water and rain, whereas the mixing ratios of ice and graupel are almost unchanged when compared to the default WRF run without the parameterization of gust front pulsation. The included parameterization did not disturb the general characteristics of thunderstorm cloud, such as the location of updraft and downdrafts, and the overall shape of the cloud. New cloud cells in front of the parent thunderstorm are also evident in both ideal and real cases due to the included forcing of vertical velocity caused by the periodic collapse of the gust front head. Despite some differences between the two WRF simulations and satellite observations, the inclusion of the gust front parameterization scheme produced more cumuliform clouds and seem to match better with real observations. Both WRF simulations gave poor results when it comes to matching the maximum composite radar reflectivity from radar measurement. Similar to the ideal case, WRF model with the gust front scheme gave more precipitation than the default WRF run. In particular, the gust front scheme increased the area characterized with light precipitation and diminished the development of very localized and intense precipitation.

  20. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacono, Michael J.

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting eithermore » more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.« less

  1. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    NASA Astrophysics Data System (ADS)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  2. Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary

    NASA Astrophysics Data System (ADS)

    Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.

    2012-04-01

    Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree (BSc, MSc and PhD). The three year long base BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. BasicsFundamentals in Mathematics (Calculus), Physics (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at our the Eötvös Loránd uUniversity in the our country. Our aim is to give a basic education in all fields of Meteorology. Main topics are: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, modeling Modeling of surfaceSurface-atmosphere Iinteractions and Cclimate change. Education is performed in two branches: Climate Researcher and Forecaster. Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree. The three year long BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. Fundamentals in Mathematics (Calculus), (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at the Eötvös Loránd University in our country. Our aim is to give a basic education in all fields of Meteorology: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, Modeling of Surface-atmosphere Interactions and Climate change. Education is performed in two branches: Climate Researcher and Forecaster. Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the computer resources needed for the integration of both WRF and ALADIN/CHAPEAU models will be briefly described. The software developments performed for the evaluation and comparison of the different modeling systems will be demonstrated. The main objectives of the education program on the practical numerical weather modeling will be introduced, as well as its detailed thematics and the structure of the labs.

  3. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  4. Evaluation of the WRF model for precipitation downscaling on orographic complex islands

    NASA Astrophysics Data System (ADS)

    Díaz, Juan P.; González, Albano; Expósito, Francisco; Pérez, Juan C.

    2010-05-01

    General Circulation Models (GCMs) have proven to be an effective tool to simulate many aspects of large-scale and global climate. However, their applicability to climate impact studies is limited by their capabilities to resolve regional scale situations. In this sense, dynamical downscaling techniques are an appropriate alternative to estimate high resolution regional climatologies. In this work, the Weather Research and Forecasting model (WRF) has been used to simulate precipitations over the Canary Islands region during 2009. The precipitation patterns over Canary Islands, located at North Atlantic region, show large gradients over a relatively small geographical area due to large scale factors such as Trade Winds regime predominant in the area and mesoscale factors mainly due to the complex terrain. Sensitivity study of simulated WRF precipitations to variations in model setup and parameterizations was carried out. Thus, WRF experiments were performed using two way nesting at 3 km horizontal grid spacing and 28 vertical levels in the Canaries inner domain. The initial and lateral and lower boundary conditions for the outer domain were provided at 6 hourly intervals by NCEP FNL (Final) Operational Global Analysis data on 1.0x1.0 degree resolution interpolated onto the WRF model grid. Numerous model options have been tested, including different microphysics schemes, cumulus parameterizations and nudging configuration Positive-definite moisture advection condition was also checked. Two integration approaches were analyzed: a 1-year continuous long-term integration and a consecutive short-term monthly reinitialized integration. To assess the accuracy of our simulations, model results are compared against observational datasets obtained from a network of meteorological stations in the region. In general, we can observe that the regional model is able to reproduce the spatial distribution of precipitation, but overestimates rainfall, mainly during strong precipitation events.

  5. Investigation of polar mesocyclones in Arctic Ocean using COSMO-CLM and WRF numerical models and remote sensing data

    NASA Astrophysics Data System (ADS)

    Varentsov, Mikhail; Verezemskaya, Polina; Baranyuk, Anastasia; Zabolotskikh, Elizaveta; Repina, Irina

    2015-04-01

    Polar lows (PL), high latitude marine mesoscale cyclones, are an enigmatic atmospheric phenomenon, which could result in windstorm damage of shipping and infrastructure in high latitudes. Because of their small spatial scales, short life times and their tendency to develop in remote data sparse regions (Zahn, Strorch, 2008), our knowledge of their behavior and climatology lags behind that of synoptic-scale cyclones. In case of continuing global warming (IPCC, 2013) and prospects of the intensification of economic activity and marine traffic in Arctic region, the problem of relevant simulation of this phenomenon by numerical models of the atmosphere, which could be used for weather and climate prediction, is especially important. The focus of this paper is researching the ability to simulate polar lows by two modern nonhydrostatic mesoscale numerical models, driven by realistic lateral boundary conditions from ERA-Interim reanalysis: regional climate model COSMO-CLM (Böhm et. al., 2009) and weather prediction and research model (WRF). Fields of wind, pressure and cloudiness, simulated by models, were compared with remote sensing data and ground meteorological observations for several cases, when polar lows were observed, in Norwegian, Kara and Laptev seas. Several types of satellite data were used: atmospheric water vapor, cloud liquid water content and surface wind fields were resampled by examining AMSR-E and AMSR-2 microwave radiometer data (MODIS Aqua, GCOM-W1), and wind fields were additionally extracted from QuickSCAT scatterometer. Infrared and visible pictures of cloud cover were obtained from MODIS (Aqua). Completed comparison shown that COSMO-CLM and WRF models could successfully reproduce evolution of polar lows and their most important characteristics such as size and wind speed in short experiments with WRF model and longer (up to half-year) experiments with COSMO-CLM model. Improvement of the quality of polar lows reproduction by these models in relation to source reanalysis fields were investigated. References: 1. Böhm U. et al. CLM - the climate version of LM: Brief description and long-term applications [Journal] // COSMO Newsletter. - 2006. - Vol. 6. 2. IPCC Fifth Assessment Report: Climate Change 2013 (AR5) Rep.,Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 3. Zahn, M., and H. von Storch (2008), A long-term climatology of North Atlantic polar lows, Geophys. Res. Lett., 35, L22702

  6. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a local computer, and inter-compare CRM output and data with GCE and NU-WRF.

  7. Improvement of PM concentration predictability using WRF-CMAQ-DLM coupled system and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae

    2017-04-01

    Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.

  8. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  9. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE PAGES

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; ...

    2017-09-19

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  10. A comparison of river discharge calculated by using a regional climate model output with different reanalysis datasets in 1980s and 1990s

    NASA Astrophysics Data System (ADS)

    Ma, X.; Yoshikane, T.; Hara, M.; Adachi, S. A.; Wakazuki, Y.; Kawase, H.; Kimura, F.

    2014-12-01

    To check the influence of boundary input data on a modeling result, we had a numerical investigation of river discharge by using runoff data derived by a regional climate model with a 4.5-km resolution as input data to a hydrological model. A hindcast experiment, which to reproduce the current climate was carried out for the two decades, 1980s and 1990s. We used the Advanced Research WRF (ARW) (ver. 3.2.1) with a two-way nesting technique and the WRF single-moment 6-class microphysics scheme. Noah-LSM is adopted to simulate the land surface process. The NCEP/NCAR and ERA-Interim 6-hourly reanalysis datasets were used as the lateral boundary condition for the runs, respectively. The output variables used for river discharge simulation from the WRF model were underground runoff and surface runoff. Four rivers (Mogami, Agano, Jinzu and Tone) were selected in this study. The results showed that the characteristic of river discharge in seasonal variation could be represented and there were overestimated compared with measured one.

  11. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; Lauvaux, Thomas; Deng, Aijun; Taylor, Alan

    2017-09-01

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  12. A Deep Machine Learning Algorithm to Optimize the Forecast of Atmospherics

    NASA Astrophysics Data System (ADS)

    Russell, A. M.; Alliss, R. J.; Felton, B. D.

    Space-based applications from imaging to optical communications are significantly impacted by the atmosphere. Specifically, the occurrence of clouds and optical turbulence can determine whether a mission is a success or a failure. In the case of space-based imaging applications, clouds produce atmospheric transmission losses that can make it impossible for an electro-optical platform to image its target. Hence, accurate predictions of negative atmospheric effects are a high priority in order to facilitate the efficient scheduling of resources. This study seeks to revolutionize our understanding of and our ability to predict such atmospheric events through the mining of data from a high-resolution Numerical Weather Prediction (NWP) model. Specifically, output from the Weather Research and Forecasting (WRF) model is mined using a Random Forest (RF) ensemble classification and regression approach in order to improve the prediction of low cloud cover over the Haleakala summit of the Hawaiian island of Maui. RF techniques have a number of advantages including the ability to capture non-linear associations between the predictors (in this case physical variables from WRF such as temperature, relative humidity, wind speed and pressure) and the predictand (clouds), which becomes critical when dealing with the complex non-linear occurrence of clouds. In addition, RF techniques are capable of representing complex spatial-temporal dynamics to some extent. Input predictors to the WRF-based RF model are strategically selected based on expert knowledge and a series of sensitivity tests. Ultimately, three types of WRF predictors are chosen: local surface predictors, regional 3D moisture predictors and regional inversion predictors. A suite of RF experiments is performed using these predictors in order to evaluate the performance of the hybrid RF-WRF technique. The RF model is trained and tuned on approximately half of the input dataset and evaluated on the other half. The RF approach is validated using in-situ observations of clouds. All of the hybrid RF-WRF experiments demonstrated here significantly outperform the base WRF local low cloud cover forecasts in terms of the probability of detection and the overall bias. In particular, RF experiments that use only regional three-dimensional moisture predictors from the WRF model produce the highest accuracy when compared to RF experiments that use local surface predictors only or regional inversion predictors only. Furthermore, adding multiple types of WRF predictors and additional WRF predictors to the RF algorithm does not necessarily add more value in the resulting forecasts, indicating that it is better to have a small set of meaningful predictors than to have a vast set of indiscriminately-chosen predictors. This work also reveals that the WRF-based RF approach is highly sensitive to the time period over which the algorithm is trained and evaluated. Future work will focus on developing a similar WRF-based RF model for high cloud prediction and expanding the algorithm to two-dimensions horizontally.

  13. The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification

    NASA Astrophysics Data System (ADS)

    Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.

    2015-12-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.

  14. Improved Modeling of Land-Atmosphere Interactions using a Coupled Version of WRF with the Land Information System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.

    2007-01-01

    The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale impacts of the high-resolution MODIS datasets and optimized soil and surface initial conditions. Follow-on experiments will examine the utility of such an optimized WRF configuration for more complex weather scenarios such as convective initiation. This paper will provide an overview of the experiment design and present preliminary results from selected cases in May 2004.

  15. Atmospheric Modeling of Mars Methane Plumes

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Allen, M.; Lee, S.

    2010-10-01

    We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.

  16. ManUniCast: A Community Weather and Air-Quality Forecasting Teaching Portal

    NASA Astrophysics Data System (ADS)

    Schultz, David M.; Anderson, Stuart; Fairman, Jonathan G.; Lowe, Douglas; McFiggans, Gordon; Lee, Elsa; Seo-Zindy, Ryo

    2014-05-01

    Manunicast was borne out of the needs of our teaching program: students were entering a world where environmental prediction via numerical model was an essential skill, but were not exposed to the production or output of such models. Our site is an educational testbed to explain to students and the public how weather, air-quality, and air-chemistry forecasts are made using real-time predictions as examples. As far as we know, this site provides the first freely available real-time predictions for the UK. We perform two simulations a day over three domains using the most popular, freely available, community atmospheric mesoscale and chemistry models WRF-ARW and WRF-Chem: 1. a WRF-ARW domain over the North Atlantic and western Europe (20-km horizontal grid spacing) 2. a WRF-ARW domain over the UK and Ireland (4-km grid spacing, nested within the 20-km domain) 3. a WRF-Chem domain over the UK and Ireland (12-km grid spacing) Called ManUniCast (Manchester University Forecast), we offer a suite of products from horizontal maps, time series at stations (meteograms), skew-T-logp charts, and cross sections to help students better visualize the weather and the relationships between the various fields more effectively, specifically through the ability to overlay and fade between different plotted products. This presentation discusses how we funded and built ManUniCast, the struggles we faced, and its use in our classes.

  17. An Operational Configuration of the ARPS Data Analysis System to Initialize WRF in the NM'S Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan; Blottman, Pete; Hoeth, Brian; Oram, Timothy

    2006-01-01

    The Weather Research and Forecasting (WRF) model is the next generation community mesoscale model designed to enhance collaboration between the research and operational sectors. The NM'S as a whole has begun a transition toward WRF as the mesoscale model of choice to use as a tool in making local forecasts. Currently, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) are running the Advanced Regional Prediction System (AIRPS) Data Analysis System (ADAS) every 15 minutes over the Florida peninsula to produce high-resolution diagnostics supporting their daily operations. In addition, the NWS MLB and SMG have used ADAS to provide initial conditions for short-range forecasts from the ARPS numerical weather prediction (NWP) model. Both NM'S MLB and SMG have derived great benefit from the maturity of ADAS, and would like to use ADAS for providing initial conditions to WRF. In order to assist in this WRF transition effort, the Applied Meteorology Unit (AMU) was tasked to configure and implement an operational version of WRF that uses output from ADAS for the model initial conditions. Both agencies asked the AMU to develop a framework that allows the ADAS initial conditions to be incorporated into the WRF Environmental Modeling System (EMS) software. Developed by the NM'S Science Operations Officer (S00) Science and Training Resource Center (STRC), the EMS is a complete, full physics, NWP package that incorporates dynamical cores from both the National Center for Atmospheric Research's Advanced Research WRF (ARW) and the National Centers for Environmental Prediction's Non-Hydrostatic Mesoscale Model (NMM) into a single end-to-end forecasting system. The EMS performs nearly all pre- and postprocessing and can be run automatically to obtain external grid data for WRF boundary conditions, run the model, and convert the data into a format that can be readily viewed within the Advanced Weather Interactive Processing System. The EMS has also incorporated the WRF Standard Initialization (SI) graphical user interface (GUT), which allows the user to set up the domain, dynamical core, resolution, etc., with ease. In addition to the SI GUT, the EMS contains a number of configuration files with extensive documentation to help the user select the appropriate input parameters for model physics schemes, integration timesteps, etc. Therefore, because of its streamlined capability, it is quite advantageous to configure ADAS to provide initial condition data to the EMS software. One of the biggest potential benefits of configuring ADAS for ingest into the EMS is that the analyses could be used to initialize either the ARW or NMM. Currently, the ARPS/ADAS software has a conversion routine only for the ARW dynamical core. However, since the NIvIM runs about 2.5 times faster than the ARW, it is quite advantageous to be able to run an ADAS/NMM configuration operationally due to the increased efficiency.

  18. Using Bayesian Model Averaging (BMA) to calibrate probabilistic surface temperature forecasts over Iran

    NASA Astrophysics Data System (ADS)

    Soltanzadeh, I.; Azadi, M.; Vakili, G. A.

    2011-07-01

    Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  19. Numerical simulations of windblown dust over complex terrain: the Fiambalá Basin episode in June 2015

    NASA Astrophysics Data System (ADS)

    Mingari, Leonardo A.; Collini, Estela A.; Folch, Arnau; Báez, Walter; Bustos, Emilce; Soledad Osores, María; Reckziegel, Florencia; Alexander, Peter; Viramonte, José G.

    2017-06-01

    On 13 June 2015, the London Volcanic Ash Advisory Centre (VAAC) warned the Buenos Aires VAAC about a possible volcanic eruption from the Nevados Ojos del Salado volcano (6879 m), located in the Andes mountain range on the border between Chile and Argentina. A volcanic ash cloud was detected by the SEVIRI instrument on board the Meteosat Second Generation (MSG) satellites from 14:00 UTC on 13 June. In this paper, we provide the first comprehensive description of this event through observations and numerical simulations. Our results support the hypothesis that the phenomenon was caused by wind remobilization of ancient pyroclastic deposits (ca. 4.5 ka Cerro Blanco eruption) from the Bolsón de Fiambalá (Fiambalá Basin) in northwestern Argentina. We have investigated the spatiotemporal distribution of aerosols and the emission process over complex terrain to gain insight into the key role played by the orography and the condition that triggered the long-range transport episode. Numerical simulations of windblown dust were performed using the ARW (Advanced Research WRF) core of the WRF (Weather Research and Forecasting) model (WRF-ARW) and FALL3D modeling system with meteorological fields downscaled to a spatial resolution of 2 km in order to resolve the complex orography of the area. Results indicate that favorable conditions to generate dust uplifting occurred in northern Fiambalá Basin, where orographic effects caused strong surface winds. According to short-range numerical simulations, dust particles were confined to near-ground layers around the emission areas. In contrast, dust aerosols were injected up to 5-6 km high in central and southern regions of the Fiambalá Basin, where intense ascending airflows are driven by horizontal convergence. Long-range transport numerical simulations were also performed to model the dust cloud spreading over northern Argentina. Results of simulated vertical particle column mass were compared with the MSG-SEVIRI retrieval product. We tested two numerical schemes: with the default configuration of the FALL3D model, we found difficulties to simulate transport through orographic barriers, whereas an alternative configuration, using a numerical scheme to more accurately compute the horizontal advection in abrupt terrains, substantially improved the model performance.

  20. A Step towards a Sharable Community Knowledge Base for WRF Settings -Developing a WRF Setting Methodology based on a case study in a Torrential Rainfall Event

    NASA Astrophysics Data System (ADS)

    CHU, Q.; Xu, Z.; Zhuo, L.; Han, D.

    2016-12-01

    Increased requirements for interactions between different disciplines and readily access to the numerical weather forecasting system featured with portability and extensibility have made useful contribution to the increases of downstream model users in WRF over recent years. For these users, a knowledge base classified by the representative events would be much helpful. This is because the determination of model settings is regarded as the most important steps in WRF. However, such a process is generally time-consuming, even if with a high computational platform. As such, we propose a sharable proper lookup table on WRF domain settings and corresponding procedures based on a representative torrential rainfall event in Beijing, China. It has been found that WRF's simulations' drift away from the input lateral boundary conditions can be significantly reduced with the adjustment of the domain settings. Among all the impact factors, the placement of nested domain can not only affect the moving speed and angle of the storm-center, but also the location and amount of heavy-rain-belt which can only be detected with adjusted spatial resolutions. Spin-up time is also considered in the model settings, which is demonstrated to have the most obvious influence on the accuracy of the simulations. This conclusion is made based on the large diversity of spatial distributions of precipitation, in terms of the amount of heavy rain varied from -30% to 58% among each experiment. After following all the procedures, the variations of domain settings have minimal effect on the modeling and show the best correlation (larger than 0.65) with fusion observations. So the model settings, including domain size covering the greater Beijing area, 1:5:5 downscaling ratio, 57 vertical levels with top of 50hpa and 60h spin-up time, are found suitable for predicting the similar convective torrential rainfall event in Beijing area. We hope that the procedure for building the community WRF knowledge base in this paper would be helpful to peer-researchers and operational communities by saving them from repeating each other's work. More importantly, the results by studying different events and locations could enrich this community knowledge base to benefit WRF users around the world in the future.

  1. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  2. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  3. Coupling fast all-season soil strength land surface model with weather research and forecasting model to assess low-level icing in complex terrain

    NASA Astrophysics Data System (ADS)

    Sines, Taleena R.

    Icing poses as a severe hazard to aircraft safety with financial resources and even human lives hanging in the balance when the decision to ground a flight must be made. When analyzing the effects of ice on aviation, a chief cause for danger is the disruption of smooth airflow, which increases the drag force on the aircraft therefore decreasing its ability to create lift. The Weather Research and Forecast (WRF) model Advanced Research WRF (WRF-ARW) is a collaboratively created, flexible model designed to run on distributed computing systems for a variety of applications including forecasting research, parameterization research, and real-time numerical weather prediction. Land-surface models, one of the physics options available in the WRF-ARW, output surface heat and moisture flux given radiation, precipitation, and surface properties such as soil type. The Fast All-Season Soil STrength (FASST) land-surface model was developed by the U.S. Army ERDC-CRREL in Hanover, New Hampshire. Designed to use both meteorological and terrain data, the model calculates heat and moisture within the surface layer as well as the exchange of these parameters between the soil, surface elements (such as snow and vegetation), and atmosphere. Focusing on the Presidential Mountain Range of New Hampshire under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) Icing Assessments in Cold and Alpine Environments project, one of the main goals is to create a customized, high resolution model to predict and assess ice accretion in complex terrain. The purpose of this research is to couple the FASST land-surface model with the WRF to improve icing forecasts in complex terrain. Coupling FASST with the WRF-ARW may improve icing forecasts because of its sophisticated approach to handling processes such as meltwater, freezing, thawing, and others that would affect the water and energy budget and in turn affect icing forecasts. Several transformations had to take place in order for the FASST land-surface model and WRF-ARW to work together as fully coupled models. Changes had to be made to the WRF-ARW build mechanisms (Chapter 1, section a) so that FASST would be recognized as a new option that could be chosen through the namelist and compiled with other modules. Similarly, FASST had to be altered to no longer read meteorological data from a file, but accept input from WRF-ARW at each time step in a way that did not alter the integrity or run-time processes of the model. Several icing events were available to test the newly coupled model as well as the performance of other available land-surface models from the WRF-ARW. A variation of event intensities and durations from these events were chosen to give a broader view of the land-surface models' abilities to accurately predict icing in complex terrain. Non- icing events were also used in testing to ensure the land-surface models were not predicting ice in the events where none occurred. When compared to the other land-surface models and observations FASST showed a warm bias in several regions. As the forecasts progressed, FASST appeared to attempt to correct this bias and performed similarly to the other land-surface models and at times better than these land-surface models in areas of the domain not affected by this bias. To correct this warm bias, future investigation should be conducted into the reasoning behind this warm bias, including but not limited to: FASST operation and elevation modeling, WRF-ARW variables and forecasting methods, as well as allowing for spin-up prior to forecast times. Following the correction to the warm bias, FASST can be parallelized to allow for operational forecast performance and included in the WRF-ARW forecasting suite for future software releases. (Abstract shortened by UMI.).

  4. Decadal application of WRF/Chem for regional air quality and climate modeling over the U.S. under the representative concentration pathways scenarios. Part 1: Model evaluation and impact of downscaling

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Chen, Ying; Glotfelty, Timothy; He, Jian; Pirhalla, Michael; Zhang, Yang

    2017-03-01

    An advanced online-coupled meteorology-chemistry model, i.e., the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied for current (2001-2010) and future (2046-2055) decades under the representative concentration pathways (RCP) 4.5 and 8.5 scenarios to examine changes in future climate, air quality, and their interactions. In this Part I paper, a comprehensive model evaluation is carried out for current decade to assess the performance of WRF/Chem and WRF under both scenarios and the benefits of downscaling the North Carolina State University's (NCSU) version of the Community Earth System Model (CESM_NCSU) using WRF/Chem. The evaluation of WRF/Chem shows an overall good performance for most meteorological and chemical variables on a decadal scale. Temperature at 2-m is overpredicted by WRF (by ∼0.2-0.3 °C) but underpredicted by WRF/Chem (by ∼0.3-0.4 °C), due to higher radiation from WRF. Both WRF and WRF/Chem show large overpredictions for precipitation, indicating limitations in their microphysics or convective parameterizations. WRF/Chem with prognostic chemical concentrations, however, performs much better than WRF with prescribed chemical concentrations for radiation variables, illustrating the benefit of predicting gases and aerosols and representing their feedbacks into meteorology in WRF/Chem. WRF/Chem performs much better than CESM_NCSU for most surface meteorological variables and O3 hourly mixing ratios. In addition, WRF/Chem better captures observed temporal and spatial variations than CESM_NCSU. CESM_NCSU performance for radiation variables is comparable to or better than WRF/Chem performance because of the model tuning in CESM_NCSU that is routinely made in global models.

  5. Extending flood forecasting lead time in large basin by coupling bias-corrected WRF QPF with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    LI, J.; Chen, Y.; Wang, H. Y.

    2016-12-01

    In large basin flood forecasting, the forecasting lead time is very important. Advances in numerical weather forecasting in the past decades provides new input to extend flood forecasting lead time in large rivers. Challenges for fulfilling this goal currently is that the uncertainty of QPF with these kinds of NWP models are still high, so controlling the uncertainty of QPF is an emerging technique requirement.The Weather Research and Forecasting (WRF) model is one of these NWPs, and how to control the QPF uncertainty of WRF is the research topic of many researchers among the meteorological community. In this study, the QPF products in the Liujiang river basin, a big river with a drainage area of 56,000 km2, was compared with the ground observation precipitation from a rain gauge networks firstly, and the results show that the uncertainty of the WRF QPF is relatively high. So a post-processed algorithm by correlating the QPF with the observed precipitation is proposed to remove the systematical bias in QPF. With this algorithm, the post-processed WRF QPF is close to the ground observed precipitation in area-averaged precipitation. Then the precipitation is coupled with the Liuxihe model, a physically based distributed hydrological model that is widely used in small watershed flash flood forecasting. The Liuxihe Model has the advantage with gridded precipitation from NWP and could optimize model parameters when there are some observed hydrological data even there is only a few, it also has very high model resolution to improve model performance, and runs on high performance supercomputer with parallel algorithm if executed in large rivers. Two flood events in the Liujiang River were collected, one was used to optimize the model parameters and another is used to validate the model. The results show that the river flow simulation has been improved largely, and could be used for real-time flood forecasting trail in extending flood forecasting leading time.

  6. A New Direct Coupled Regional-scale Meteorology and Chemistry Model

    NASA Astrophysics Data System (ADS)

    Li, J.; Hsu, S.; Liu, T.; Chiang, C.; Chang, J.

    2007-12-01

    WRF/Chem was first developed in the US and generously made available to the international research community a short time ago. Starting from this, many groups have contributed new components and subroutines to this model. Based on WRF/Chem, a new online integrated model system named WRF/ChemT was established in Taiwan. It is significantly different from WRF/Chem in the following important aspects. For an online model, all chemical species emission must be direct coupled to WRF meteorology. All publicly available versions of WRF/Chem do not have this fundamental coupling. For these WRF/Chem models all emission data must first be preprocessed by SMOKE or other emission models driven by MM5 or WRF meteorologies in offline manner. WRF/ChemT has a self-consistent online emission process. We replaced the old emission driver with NCU driver, the plume rise of point sources and biogenic VOCs emission are calculated online. So that meteorology model, emission model and chemistry transport model are coupled directly in WRF/ChemT. Cloud impact on actinic flux should be consistent with WRF cloud-aerosol submodel used, not just moisture parameterization. Photolysis rates in WRF/ChemT are self consistent in every sub modules. New dry deposition routines were developed including addition of a vertical mixing scheme named the Asymmetrical Convective Model (ACM) which is used in CMAQ. The advantage of using ACM submodel had been demonstrated in earlier studies. Computational inefficiency has been a lingering problem for WRF/Chem. We have worked on this aspect of WRF/Chem development and by using a new chemical solver and also reorganizing the operator splitting computational algorithm we have made significant computational speed gain. WRF/chemT is about a factor of 4 faster in the chemistry solver and a factor of 2 faster in chemical species transport. When added together it is about a factor of 2 faster than WRF/Chem(version 2.1.2), i. e. gas-phase chemistry and meteorology are now equally fast. WRF/ChemT was evaluated and applied in regional air quality research in Taiwan. The comparison with WRF/Chem and selected current applications will be discussed in this report.

  7. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    NASA Astrophysics Data System (ADS)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  8. Numerical simulation of a meteorological regime of Pontic region

    NASA Astrophysics Data System (ADS)

    Toropov, P.; Silvestrova, K.

    2012-04-01

    The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the initial data in WRF model are used FNL the analysis, pumped up each six hours. The data is in the open access (http://nomad3.ncep.noaa.gov/pub/) in a grib format. Spatial step FNL of the FNL analysis is 1 degree. In the experiment 1-3 February 2011, was made the assimilation of station data located within the territory or identified during our expeditions. It is shown that the model WRF successfully reproduces the meteorological regime the Black Sea coast. The average error of simulation n without learning station data is as follows: for a temperature of 1.5 s for wind speed - 2 m / sec. The maximum error for the temperature is 5 C, and for wind speed 10 m / sec. To experiment with the assimilation of station data the error is reduced by an average of 20%. The spatial structure of temperature and wind fields close to the actually observed. Thus, it can be argued that the model WRF can be successfully applied to numerical forecast a dangerous phenomenon, such as «Novorossiysk nord-ost». The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.

  9. Collaborative Project: Understanding Climate Model Biases in Tropical Atlantic and Their Impact on Simulations of Extreme Climate Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ping

    Recent studies have revealed that among all the tropical oceans, the tropical Atlantic has experienced the most pronounced warming trend over the 20th century. Many extreme climate events affecting the U.S., such as hurricanes, severe precipitation and drought events, are influenced by conditions in the Gulf of Mexico and the Atlantic Ocean. It is therefore imperative to have accurate simulations of the climatic mean and variability in the Atlantic region to be able to make credible projections of future climate change affecting the U.S. and other countries adjoining the Atlantic Ocean. Unfortunately, almost all global climate models exhibit large biasesmore » in their simulations of tropical Atlantic climate. The atmospheric convection simulation errors in the Amazon region and the associated errors in the trade wind simulations are hypothesized to be a leading cause of the tropical Atlantic biases in climate models. As global climate models have resolutions that are too coarse to resolve some of the atmospheric and oceanic processes responsible for the model biases, we propose to use a high-resolution coupled regional climate model (CRCM) framework to address the tropical bias issue. We propose to combine the expertise in tropical coupled atmosphere-ocean modeling at Texas A&M University (TAMU) and the coupled land-atmosphere modeling expertise at Pacific Northwest National Laboratory (PNNL) to develop a comprehensive CRCM for the Atlantic sector within a general and flexible modeling framework. The atmospheric component of the CRCM will be the NCAR WRF model and the oceanic component will be the Rutgers/UCLA ROMS. For the land component, we will use CLM modified at PNNL to include more detailed representations of vegetation and soil hydrology processes. The combined TAMU-PNNL CRCM model will be used to simulate the Atlantic climate, and the associated land-atmosphere-ocean interactions at a horizontal resolution of 9 km or finer. A particular focus of the model development effort will be to optimize the performance of WRF and ROMS over several thousand of cores by focusing on both the parallel communication libraries and the I/O interfaces, in order to achieve the sustained throughput needed to perform simulations on such fine resolution grids. The CRCM model will be developed within the framework of the Coupler (CPL7) software that is part of the NCAR Community Earth System Model (CESM). Through efforts at PNNL and within the community, WRF and CLM have already been coupled via CPL7. Using the flux coupler approach for the whole CRCM model will allow us to flexibly couple WRF, ROMS, and CLM with each model running on its own grid at different resolutions. In addition, this framework will allow us to easily port parameterizations between CESM and the CRCM, and potentially allow partial coupling between the CESM and the CRCM. TAMU and PNNL will contribute cooperatively to this research endeavor. The TAMU team led by Chang and Saravanan has considerable experience in studying atmosphere-ocean interactions within tropical Atlantic sector and will focus on modeling issues that relate to coupling WRF and ROMS. The PNNL team led by Leung has extensive expertise in atmosphere-land interaction and will be responsible for improving the land surface parameterization. Both teams will jointly work on integrating WRF-ROMS and WRF-CLM to couple WRF, ROMS, and CLM through CPL7. Montuoro of the TAMU Supercomputing Center will be responsible for improving the MPI and Parallel IO interfaces of the CRCM. Both teams will contribute to the design and execution of the proposed numerical experiments and jointly perform analysis of the numerical experiments.« less

  10. Worsening Renal Function during Management for Chronic Heart Failure with Reduced Ejection Fraction: Results From the Pro-BNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) Study.

    PubMed

    Ibrahim, Nasrien E; Gaggin, Hanna K; Rabideau, Dustin J; Gandhi, Parul U; Mallick, Aditi; Januzzi, James L

    2017-02-01

    To assess prognostic meaning of worsening renal failure (WRF) occurring during management of chronic heart failure (HF) with reduced ejection fraction. When WRF develops during titration of HF medical therapy, it commonly leads to less aggressive care. A total of 151 patients enrolled in a prospective, randomized study of standard of care (SOC) HF therapy versus SOC plus a goal N-terminal pro-B type natriuretic peptide (NT-proBNP) < 1000 pg/mL were examined. Cardiovascular (CV) event (defined as worsening HF, hospitalization for HF, significant ventricular arrhythmia, acute coronary or cerebral ischemia, or CV death) at 1 year relative to WRF (defined as any reduction in estimated glomerular filtration rate) 90 days postenrollment were tabulated. Those developing WRF by 3 months had an average 14% reduction in estimated glomerular filtration rate. There was no difference in incidence of WRF between study arms (43% in SOC, 57% in NT-proBNP, P = .29). During the first 3 months of therapy titration, incident WRF was associated with numerically fewer CV events at 1 year compared with those without WRF (mean 0.81 vs 1.16 events, P = .21). WRF was associated trend toward fewer CV events in the SOC arm (hazard ratio 0.45, 95% confidence interval 0.16-1.24, P = .12); the NT-proBNP-guided arm had numerically lower CV event rates regardless of WRF. Subjects with NT-proBNP <1000 pg/mL and WRF received higher doses of guideline directed medical therapies, lower doses of loop diuretics, and had significantly lower CV event rates (P < .001). Modest degrees of WRF are common during aggressive HF with reduced ejection fraction management, but we found no significant association with CV outcomes. HF care guided by NT-proBNP was not associated with more WRF compared with SOC, and led to benefit regardless of final renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE PAGES

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.; ...

    2016-09-16

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  12. A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Megan H.; Lundquist, Katherine A.; Mirocha, Jeffrey D.

    Mesoscale atmospheric models are increasingly used for high-resolution (<3 km) simulations to better resolve smaller-scale flow details. Increased resolution is achieved using mesh refinement via grid nesting, a procedure where multiple computational domains are integrated either concurrently or in series. A constraint in the concurrent nesting framework offered by the Weather Research and Forecasting (WRF) Model is that mesh refinement is restricted to the horizontal dimensions. This limitation prevents control of the grid aspect ratio, leading to numerical errors due to poor grid quality and preventing grid optimization. Here, a procedure permitting vertical nesting for one-way concurrent simulation is developedmore » and validated through idealized cases. The benefits of vertical nesting are demonstrated using both mesoscale and large-eddy simulations (LES). Mesoscale simulations of the Terrain-Induced Rotor Experiment (T-REX) show that vertical grid nesting can alleviate numerical errors due to large aspect ratios on coarse grids, while allowing for higher vertical resolution on fine grids. Furthermore, the coarsening of the parent domain does not result in a significant loss of accuracy on the nested domain. LES of neutral boundary layer flow shows that, by permitting optimal grid aspect ratios on both parent and nested domains, use of vertical nesting yields improved agreement with the theoretical logarithmic velocity profile on both domains. Lastly, vertical grid nesting in WRF opens the path forward for multiscale simulations, allowing more accurate simulations spanning a wider range of scales than previously possible.« less

  13. Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach

    NASA Technical Reports Server (NTRS)

    Naeger, Aaron R.; Molthan, Andrew L.; Zavodsky, Bradley T.; Creamean, Jessie M.

    2015-01-01

    Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF-Chem model simulations. After validating the capability of the WRF-Chem in realistically simulating the aerosol-cloud precipitation interactions, we conduct sensitivity studies where the AOD is doubled to diagnose whether an increasing concentration of Asian aerosols over the western United States will lead to further impacts on the cloud and precipitation processes over California. We also perform sensitivity studies where the aerosols will be partitioned into dust-only and pollution-only in order to separate the impacts of the differing Asian aerosol species. The results of our WRF-Chem model simulations aim to show that the trans-Pacific transport of Asian aerosols influence the precipitation associated with atmospheric river events that can ultimately impact the regional climate of the western United States. 1 University

  14. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  15. Development and verification of a new wind speed forecasting system using an ensemble Kalman filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, John L.; Maxwell, Reed M.; Monache, Luca Delle

    2013-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its inherently intermittent nature. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. We have adapted the Data Assimilation Research Testbed (DART), a community software facility which includes the ensemble Kalman filter (EnKF) algorithm, to expand our capability to use observational data to improve forecasts produced with a fully coupled hydrologic and atmospheric modeling system, the ParFlow (PF) hydrologic model and the Weather Research and Forecasting (WRF) mesoscale atmospheric model, coupled via mass and energy fluxes across the land surface, and resulting in the PF.WRF model. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. We have used the PF.WRF model to explore the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture, and wind speed and demonstrated that reductions in uncertainty in these coupled fields realized through assimilation of soil moisture observations propagate through the hydrologic and atmospheric system. The sensitivities found in this study will enable further studies to optimize observation strategies to maximize the utility of the PF.WRF-DART forecasting system.

  16. Intel Xeon Phi accelerated Weather Research and Forecasting (WRF) Goddard microphysics scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A. H.-L.

    2014-12-01

    The Weather Research and Forecasting (WRF) model is a numerical weather prediction system designed to serve both atmospheric research and operational forecasting needs. The WRF development is a done in collaboration around the globe. Furthermore, the WRF is used by academic atmospheric scientists, weather forecasters at the operational centers and so on. The WRF contains several physics components. The most time consuming one is the microphysics. One microphysics scheme is the Goddard cloud microphysics scheme. It is a sophisticated cloud microphysics scheme in the Weather Research and Forecasting (WRF) model. The Goddard microphysics scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. Compared to the earlier microphysics schemes, the Goddard scheme incorporates a large number of improvements. Thus, we have optimized the Goddard scheme code. In this paper, we present our results of optimizing the Goddard microphysics scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The Intel MIC is capable of executing a full operating system and entire programs rather than just kernels as the GPU does. The MIC coprocessor supports all important Intel development tools. Thus, the development environment is one familiar to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discussed in this paper. The results show that the optimizations improved performance of Goddard microphysics scheme on Xeon Phi 7120P by a factor of 4.7×. In addition, the optimizations reduced the Goddard microphysics scheme's share of the total WRF processing time from 20.0 to 7.5%. Furthermore, the same optimizations improved performance on Intel Xeon E5-2670 by a factor of 2.8× compared to the original code.

  17. Comparison of the new intermediate complex atmospheric research (ICAR) model with the WRF model in a mesoscale catchment in Central Europe

    NASA Astrophysics Data System (ADS)

    Härer, Stefan; Bernhardt, Matthias; Gutmann, Ethan; Bauer, Hans-Stefan; Schulz, Karsten

    2017-04-01

    Until recently, a large gap existed in the atmospheric downscaling strategies. On the one hand, computationally efficient statistical approaches are widely used, on the other hand, dynamic but CPU-intensive numeric atmospheric models like the weather research and forecast (WRF) model exist. The intermediate complex atmospheric research (ICAR) model developed at NCAR (Boulder, Colorado, USA) addresses this gap by combining the strengths of both approaches: the process-based structure of a dynamic model and its applicability in a changing climate as well as the speed of a parsimonious modelling approach which facilitates the modelling of ensembles and a straightforward way to test new parametrization schemes as well as various input data sources. However, the ICAR model has not been tested in Europe and on slightly undulated terrain yet. This study now evaluates for the first time the ICAR model to WRF model runs in Central Europe comparing a complete year of model results in the mesoscale Attert catchment (Luxembourg). In addition to these modelling results, we also describe the first implementation of ICAR on an Intel Phi architecture and consequently perform speed tests between the Vienna cluster, a standard workstation and the use of an Intel Phi coprocessor. Finally, the study gives an outlook on sensitivity studies using slightly different input data sources.

  18. A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment

    NASA Astrophysics Data System (ADS)

    Verri, Giorgia; Pinardi, Nadia; Gochis, David; Tribbia, Joseph; Navarra, Antonio; Coppini, Giovanni; Vukicevic, Tomislava

    2017-10-01

    A meteo-hydrological modelling system has been designed for the reconstruction of long time series of rainfall and river runoff events. The modelling chain consists of the mesoscale meteorological model of the Weather Research and Forecasting (WRF), the land surface model NOAH-MP and the hydrology-hydraulics model WRF-Hydro. Two 3-month periods are reconstructed for winter 2011 and autumn 2013, containing heavy rainfall and river flooding events. Several sensitivity tests were performed along with an assessment of which tunable parameters, numerical choices and forcing data most impacted on the modelling performance.The calibration of the experiments highlighted that the infiltration and aquifer coefficients should be considered as seasonally dependent.The WRF precipitation was validated by a comparison with rain gauges in the Ofanto basin. The WRF model was demonstrated to be sensitive to the initialization time and a spin-up of about 1.5 days was needed before the start of the major rainfall events in order to improve the accuracy of the reconstruction. However, this was not sufficient and an optimal interpolation method was developed to correct the precipitation simulation. It is based on an objective analysis (OA) and a least square (LS) melding scheme, collectively named OA+LS. We demonstrated that the OA+LS method is a powerful tool to reduce the precipitation uncertainties and produce a lower error precipitation reconstruction that itself generates a better river discharge time series. The validation of the river streamflow showed promising statistical indices.The final set-up of our meteo-hydrological modelling system was able to realistically reconstruct the local rainfall and the Ofanto hydrograph.

  19. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  20. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s -1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  1. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  2. Evaluating the use of different precipitation datasets in simulating a flood event

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Ozkaya, A.

    2016-12-01

    Floods caused by convective storms in mountainous regions are sensitive to the temporal and spatial variability of rainfall. Space-time estimates of rainfall from weather radar, satellites and numerical weather prediction models can be a remedy to represent pattern of the rainfall with some inaccuracy. However, there is a strong need for evaluation of the performance and limitations of these estimates in hydrology. This study aims to provide a comparison of gauge, radar, satellite (Hydro-Estimator (HE)) and numerical weather prediciton model (Weather Research and Forecasting (WRF)) precipitation datasets during an extreme flood event (22.11.2014) lasting 40 hours in Samsun-Turkey. For this study, hourly rainfall data from 13 ground observation stations were used in the analyses. This event having a peak discharge of 541 m3/sec created flooding at the downstream of Terme Basin. Comparisons were performed in two parts. First the analysis were performed in areal and point based manner. Secondly, a semi-distributed hydrological model was used to assess the accuracy of the rainfall datasets to simulate river flows for the flood event. Kalman Filtering was used in the bias correction of radar rainfall data compared to gauge measurements. Radar, gauge, corrected radar, HE and WRF rainfall data were used as model inputs. Generally, the HE product underestimates the cumulative rainfall amounts in all stations, radar data underestimates the results in cumulative sense but keeps the consistency in the results. On the other hand, almost all stations in WRF mean statistics computations have better results compared to the HE product but worse than the radar dataset. Results in point comparisons indicated that, trend of the rainfall is captured by the radar rainfall estimation well but radar underestimates the maximum values. According to cumulative gauge value, radar underestimated the cumulative rainfall amount by % 32. Contrary to other datasets, the bias of WRF is positive due to the overestimation of rainfall forecasts. It was seen that radar-based flow predictions demonstrated good potential for successful hydrological modeling. Moreover, flow predictions obtained from bias corrected radar rainfall values produced an increase in the peak flows compared to the ones obtained from radar data itself.

  3. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  4. Sensitivity of WRF-Chem model to land surface schemes: Assessment in a severe dust outbreak episode in the Central Mediterranean (Apulia Region)

    NASA Astrophysics Data System (ADS)

    Rizza, Umberto; Miglietta, Mario Marcello; Mangia, Cristina; Ielpo, Pierina; Morichetti, Mauro; Iachini, Chiara; Virgili, Simone; Passerini, Giorgio

    2018-03-01

    The Weather Research and Forecasting model with online coupled chemistry (WRF-Chem) is applied to simulate a severe Saharan dust outbreak event that took place over Southern Italy in March 2016. Numerical experiments have been performed applying a physics-based dust emission model, with soil properties generated from three different Land Surface Models, namely Noah, RUC and Noah-MP. The model performance in reproducing the severe desert dust outbreak is analysed using an observational dataset of aerosol and desert dust features that includes optical properties from satellite and ground-based sun-photometers, and in-situ particulate matter mass concentration (PM) data. The results reveal that the combination of the dust emission model with the RUC Land Surface Model significantly over-predicts the emitted mineral dust; on the other side, the combination with Noah or Noah-MP Land Surface Model (LSM) gives better results, especially for the daily averaged PM10.

  5. Impact of WRF model PBL schemes on air quality simulations over Catalonia, Spain.

    PubMed

    Banks, R F; Baldasano, J M

    2016-12-01

    Here we analyze the impact of four planetary boundary-layer (PBL) parametrization schemes from the Weather Research and Forecasting (WRF) numerical weather prediction model on simulations of meteorological variables and predicted pollutant concentrations from an air quality forecast system (AQFS). The current setup of the Spanish operational AQFS, CALIOPE, is composed of the WRF-ARW V3.5.1 meteorological model tied to the Yonsei University (YSU) PBL scheme, HERMES v2 emissions model, CMAQ V5.0.2 chemical transport model, and dust outputs from BSC-DREAM8bv2. We test the performance of the YSU scheme against the Assymetric Convective Model Version 2 (ACM2), Mellor-Yamada-Janjic (MYJ), and Bougeault-Lacarrère (BouLac) schemes. The one-day diagnostic case study is selected to represent the most frequent synoptic condition in the northeast Iberian Peninsula during spring 2015; regional recirculations. It is shown that the ACM2 PBL scheme performs well with daytime PBL height, as validated against estimates retrieved using a micro-pulse lidar system (mean bias=-0.11km). In turn, the BouLac scheme showed WRF-simulated air and dew point temperature closer to METAR surface meteorological observations. Results are more ambiguous when simulated pollutant concentrations from CMAQ are validated against network urban, suburban, and rural background stations. The ACM2 scheme showed the lowest mean bias (-0.96μgm -3 ) with respect to surface ozone at urban stations, while the YSU scheme performed best with simulated nitrogen dioxide (-6.48μgm -3 ). The poorest results were with simulated particulate matter, with similar results found with all schemes tested. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model

    NASA Astrophysics Data System (ADS)

    Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.

    2016-05-01

    Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.

  7. Overview and Evaluation of the Community Multiscale Air ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In late 2016 or early 2017, CMAQ version 5.2 will be released. This new version of CMAQ will contain important updates from the current CMAQv5.1 modeling system, along with several instrumented versions of the model (e.g. decoupled direct method and sulfur tracking). Some specific model updates include the implementation of a new wind-blown dust treatment in CMAQv5.2, a significant improvement over the treatment in v5.1 which can severely overestimate wind-blown dust under certain conditions. Several other major updates to the modeling system include an update to the calculation of aerosols; implementation of full halogen chemistry (CMAQv5.1 contains a partial implementation of halogen chemistry); the new carbon bond 6 (CB6) chemical mechanism; updates to cloud model in CMAQ; and a new lightning assimilation scheme for the WRF model which significant improves the placement and timing of convective precipitation in the WRF precipitation fields. Numerous other updates to the modeling system will also be available in v5.2.

  8. Spatio-temporal pattern clustering for skill assessment of the Korea Operational Oceanographic System

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, K.

    2016-12-01

    In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.

  9. On the added value and sensitivity of WRF to driving conditions over CORDEX-Africa domain

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; García-Díez, Markel; Jimenez-Guerrero, Pedro; Fernández, Jesús; Montavez, Juan Pedro

    2014-05-01

    The assessment of the climate variability over Africa has recently attracted the interest of the regional climate downscaling research community. The main reasons are not only because Africa is a climate change hot-spot, but also due to the low capacity of this region for the adaptation and mitigation under negative impacts and its direct dependency on its socio-economic sustainability of the climate variability. Therefore, improvements in the understanding of the African climate could help the governments in decision-making. Under this umbrella, regional climate models (RCMs) are promising tools to assess the African regional climate. The main advantage of the RCMs, with respect to global reanalysis datasets, is the higher detail provided by the increased resolution which implies a better representation of land-surface interactions and atmospheric processes. However, the confidence on the RCMs strongly depends on the reduction/bounding of uncertainties. One of these sources of uncertainties is associated with the selection of the boundary conditions for driving the regional models. In this work, two identical CORDEX-compliant simulations have been performed over Africa with the unique difference of being driven by two different reanalyses. The reanalyses used were the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I) and the Japanese 25-year reanalysis (JRA-25) by the Japanese Meteorological Service. Both reanalyses have identical temporal resolution (6-hr) but different spatial grid resolution, 0.75 and 1.25 degrees, respectively. The regional model used was the Weather Research and Forecasting Model (WRF). The numerical experiments encompass the period 1989-2010 covering the Africa-CORDEX domain with a 50 km horizontal spatial resolution and 28 vertical levels up to 50 hPa. The WRF simulations are compared between them and against observations. For the mean and maximum temperature the CRU monthly time series (0.25deg) from Climatic Research Unit of the University of East Anglia are used. The precipitation is compared against the Tropical Rainfall Measuring Mission Project (TRMM) monthly data (0.25deg). The results depict that none of the reanalyses used outperforms the other in representing the African climate, since their performance depends on the variable, season and region assessed. The simulations show a noticeable disagreement for 2-m temperature in north-western Africa, where WRF-JRA tends to underestimate this variable mostly in winter and spring. For the monthly mean daily maximum temperature, WRF-JRA tends to overestimate the temperature in the Sahel in summer and in the border between Angola and Namibia in Winter. When comparing with CRU observations, there is a remarkably better spatial representation for the WRF-EI simulation in the North of Africa. However, the behaviour of WRF-EI and WRF-JRA is similar in the South of Africa. Intra-annual variability is well represented except in Atlas mountains where WRF-JRA underestimates temperature. Regarding precipitation, the main differences appear over the Sahel region in JAS and in the Congo area during JFM. The comparison with the TRMM data shows a better agreement with the WRF-JRA simulation except during summer in the Sahel region. The monthly annual cycle is well captured, except in Ethiopian highlands and Northern West Africa where WRF-JRA (WRF-EI) underestimate (overestimate) the annual cycle.

  10. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  11. The use of NASA GEOS Global Analysis in MM5/WRF Initialization: Current Studies and Future Applications

    NASA Technical Reports Server (NTRS)

    Pu, Zhao-Xia; Tao, Wei-Kuo

    2004-01-01

    An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.

  12. Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.

    2010-12-01

    The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.

  13. Modeling studies on the formation of Hurricane Helene: the impact of GPS dropwindsondes from the NAMMA 2006 field campaign

    NASA Astrophysics Data System (ADS)

    Folmer, Michael J.; Pasken, Robert W.; Chiao, Sen; Dunion, Jason; Halverson, Jeffrey

    2016-12-01

    Numerical simulations, using the weather research and forecasting (WRF) model in concert with GPS dropwindsondes released during the NASA African Monsoon Multidisciplinary Analyses 2006 Field Campaign, were conducted to provide additional insight on SAL-TC interaction. Using NCEP Final analysis datasets to initialize the WRF, a sensitivity test was performed on the assimilated (i.e., observation nudging) GPS dropwindsondes to understand the effects of individual variables (i.e., moisture, temperature, and winds) on the simulation and determine the extent of improvement when compared to available observations. The results suggested that GPS dropwindsonde temperature data provided the most significant difference in the simulated storm organization, storm strength, and synoptic environment, but all of the variables assimilated at the same time give a more representative mesoscale and synoptic picture.

  14. Advancing the Explicit Representation of Lake Processes in WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Yates, D. N.; Read, L.; Barlage, M. J.; Gochis, D.

    2017-12-01

    Realistic simulation of physical processes in lakes is essential for closing the water and energy budgets in a coupled land-surface and hydrologic model, such as the Weather Research and Forecasting (WRF) model's WRF-Hydro framework. A current version of WRF-Hydro, the National Water Model (NWM), includes 1,506 waterbodies derived from the National Hydrography Database, each of which is modeled using a level-pool routing scheme. This presentation discusses the integration of WRF's one-dimensional lake model into WRF-Hydro, which is used to estimate waterbody fluxes and thus explicitly represent latent and sensible heat and the mass balance occurring over the lakes. Results of these developments are presented through a case study from Lake Winnebago, Wisconsin. Scalability and computational benchmarks to expand to the continental-scale NWM are discussed.

  15. Observations and predictability of gap winds in a steep, narrow, fire-prone canyon in central Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.

    2017-12-01

    Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.

  16. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet

    2017-11-01

    Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.

  17. Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment

    NASA Astrophysics Data System (ADS)

    Salvador, Nadir; Reis, Neyval Costa; Santos, Jane Meri; Albuquerque, Taciana Toledo de Almeida; Loriato, Ayres Geraldo; Delbarre, Hervé; Augustin, Patrick; Sokolov, Anton; Moreira, Davidson Martins

    2016-12-01

    Three atmospheric boundary layer (ABL) schemes and two land surface models that are used in the Weather Research and Forecasting (WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France (Dunkerque). The ABL schemes YSU (Yonsei University), ACM2 (Asymmetric Convective Model version 2), and MYJ (Mellor-Yamada-Janjic) were combined with two land surface models, Noah and RUC (Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer (TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.

  18. Range-Specific High-resolution Mesoscale Model Setup

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2013-01-01

    This report summarizes the findings from an AMU task to determine the best model configuration for operational use at the ER and WFF to best predict winds, precipitation, and temperature. The AMU ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF. For both the ER and WFF, the ARW core outperformed the NMM core. Results for the ER indicate that the Lin microphysical scheme and the YSU PBL scheme is the optimal model configuration for the ER. It consistently produced the best surface and upper air forecasts, while performing fairly well for the precipitation forecasts. Both the Ferrier and Lin microphysical schemes in combination with the YSU PBL scheme performed well for WFF in the spring and fall seasons. The AMU has been tasked with a follow-on modeling effort to recommended local DA and numerical forecast model design optimized for both the ER and WFF to support space launch activities. The AMU will determine the best software and type of assimilation to use, as well as determine the best grid resolution for the initialization based on spatial and temporal availability of data and the wall clock run-time of the initialization. The AMU will transition from the WRF EMS to NU-WRF, a NASA-specific version of the WRF that takes advantage of unique NASA software and datasets. 37

  19. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  20. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  1. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2016-07-28

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  2. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  3. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  4. Investigating Surface Bias Errors in the Weather Research and Forecasting (WRF) Model using a Geographic Information System (GIS)

    DTIC Science & Technology

    2015-02-01

    WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a

  5. A Multi-Moment Bulkwater Ice Microphysics Scheme with Consideration of the Adaptive Growth Habit and Apparent Density for Pristine Ice in the WRF Model

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Chen, J. P.; Dearden, C.

    2014-12-01

    The wide variety of ice crystal shapes and growth habits makes it a complicated issue in cloud models. This study developed the bulk ice adaptive habit parameterization based on the theoretical approach of Chen and Lamb (1994) and introduced a 6-class hydrometeors double-moment (mass and number) bulk microphysics scheme with gamma-type size distribution function. Both the proposed schemes have been implemented into the Weather Research and Forecasting model (WRF) model forming a new multi-moment bulk microphysics scheme. Two new moments of ice crystal shape and volume are included for tracking pristine ice's adaptive habit and apparent density. A closure technique is developed to solve the time evolution of the bulk moments. For the verification of the bulk ice habit parameterization, some parcel-type (zero-dimension) calculations were conducted and compared with binned numerical calculations. The results showed that: a flexible size spectrum is important in numerical accuracy, the ice shape can significantly enhance the diffusional growth, and it is important to consider the memory of growth habit (adaptive growth) under varying environmental conditions. Also, the derived results with the 3-moment method were much closer to the binned calculations. A field campaign of DIAMET was selected to simulate in the WRF model for real-case studies. The simulations were performed with the traditional spherical ice and the new adaptive shape schemes to evaluate the effect of crystal habits. Some main features of narrow rain band, as well as the embedded precipitation cells, in the cold front case were well captured by the model. Furthermore, the simulations produced a good agreement in the microphysics against the aircraft observations in ice particle number concentration, ice crystal aspect ratio, and deposition heating rate especially within the temperature region of ice secondary multiplication production.

  6. Comparisons of Cloud Properties over the Southern Ocean between In situ Observations and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Wu, C.; Liu, X.

    2017-12-01

    Numerical weather models often struggle at representing clouds since small scale cloud processes must be parameterized. For example, models often utilize simple parameterizations for transitioning from liquid to ice, usually set as a function of temperature. However, supercooled liquid water (SLW) often persists at temperatures much lower than threshold values used in microphysics parameterizations. Previous observational studies of clouds over the Southern Ocean have found high frequencies of SLW (e.g., Morrison et al., 2011). Many of these studies have relied on satellite retrievals, which provide relatively low resolution observations and are often associated with large uncertainties due to assumptions of microphysical properties (e.g., particle size distributions). Recently, the NSF/NCAR O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) campaign took observations via the NSF/NCAR HIAPER research aircraft during January and February of 2016, providing in situ observations over the Southern Ocean (50°W to 92°W). We compare simulated results from the Weather Research and Forecasting (WRF) model with in situ observations from ORCAS. Differences between observations and simulations are evaluated via statistical analyses. Initial results from ORCAS reveal a high frequency of SLW at temperatures as low as -15°C, and the existence of SLW around -30°C. Recent studies have found that boundary layer clouds are underestimated by WRF in regions unaffected by cyclonic activity (Huang et al., 2014), suggesting a lack of low-level moisture due to local processes. To explore this, relative humidity distributions are examined and controlled by cloud microphysical characteristics (e.g., total water content) and relevant ambient properties (e.g., vertical velocity). A relatively low frequency of simulated SLW may in part explain the discrepancies in WRF, as cloud-top SLW results in stronger radiative cooling and turbulent motions conducive for long-lived cloud regimes. Results presented in this study will help improve our understanding of Southern Ocean clouds and the observed discrepancies seen in WRF simulations.

  7. Weather Research and Forecasting Model with Vertical Nesting Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundarymore » conditions to be provided through the nesting procedure.« less

  8. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. Themore » evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.« less

  9. High Resolution Forecasting System for Mountain area based on KLAPS-WRF

    NASA Astrophysics Data System (ADS)

    Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook

    2013-04-01

    This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and there was a significant improvement (RMSE: 2.06 ˚C -> 1.73 ˚C) in the temperature prediction in the study area. The results will provide useful guidance of grid size selection on high resolution simulation over the mountain regions in Korea.

  10. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  11. WRF Improves Downscaled Precipitation During El Niño Events over Complex Terrain in Northern South America: Implications for Deforestation Studies

    NASA Astrophysics Data System (ADS)

    Rendón, A.; Posada, J. A.; Salazar, J. F.; Mejia, J.; Villegas, J.

    2016-12-01

    Precipitation in the complex terrain of the tropical Andes of South America can be strongly reduced during El Niño events, with impacts on numerous societally-relevant services, including hydropower generation, the main electricity source in Colombia. Simulating rainfall patterns and behavior in such areas of complex terrain has remained a challenge for regional climate models. Current data products such as ERA-Interim and other reanalysis and modelling products generally fail to correctly represent processes at scales that are relevant for these processes. Here we assess the added value to ERA-Interim by dynamical downscaling using the WRF regional climate model, including a comparison of different cumulus parameterization schemes. We found that WRF improves the representation of precipitation during the dry season of El Niño (DJF) events using a 1996-2014 observation period. Further, we use these improved capability to simulate an extreme deforestation scenario under El Niño conditions for an area in the central Andes of Colombia, where a big proportion of the country's hydropower is generated. Our results suggest that forests dampen the effects of El Niño on precipitation. In synthesis, our results illustrate the utility of regional modelling to improve data sources, as well as their potential for predicting the local-to-regional effects of global-change-type processes in regions with limited data availability.

  12. Numerical investigations with WRF about atmospheric features leading to heavy precipitation and flood events over the Central Andes' complex topography

    NASA Astrophysics Data System (ADS)

    Zamuriano, Marcelo; Brönnimann, Stefan

    2017-04-01

    It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.

  13. A comparison of daily precipitation metrics downscaled using SDSM and WRF + WRFDA models over the Iberian Peninsula.

    NASA Astrophysics Data System (ADS)

    José González-Rojí, Santos; Wilby, Robert L.; Sáenz, Jon; Ibarra-Berastegi, Gabriel

    2017-04-01

    Downscaling via the Statistical DownScaling Model (SDSM) version 5.2 and two different configurations of the dynamical WRF model (with and without 3DVAR data assimilation) was evaluated for the estimation of daily precipitation over 21 sites across the Iberian Peninsula during the period 2010-2014. Six different strategies were used to calibrate the SDSM model. These options cover (1) use of NCEP/NCAR R1 Reanalysis and (2) ERA Interim data for downscaling predictor variables calibrated with data from periods (3) 1948-2009 (NCEP/NCAR R1) and (4) 1979-2009 (NCEP/NCAR R1 and ERA Interim). Additionally, for the ERA Interim case, two different grid resolutions have been used, (5) 2.5° and (6) 0.75°. On the other side, for the NCEP/NCAR R1 case, only the 2.5° resolution has been used. Configuring the SDSM model in this way allows testing the sensitivity of the results to different origins of the predictors, fit to different calibration periods and use of different reanalysis resolutions. On the other hand, ERA Interim data at the highest resolution was used as the initial/boundary conditions to run WRF simulations with a 15 km x 15 km horizontal resolution over the Iberian Peninsula, for two different configurations. The first experiment (N) was run using the same configuration typically used for numerical downscaling, with information being fed through the boundaries of the domain. The second experiment (D) was run using 3DVAR data assimilation at 00UTC, 06UTC, 12UTC and 18UTC. In both cases, WRF simulations were run over the period 2009-2014, using the first year (2009) as spin-up for the soil model. Results from the WRF N and D runs and comparable SDSM set up for the period 2010-2014 were evaluated using observations from ECA and E-OBS datasets. In each case, model skill was assessed using seven daily precipitation metrics (absolute mean, wet-day intensity, 90th percentile, maximum 5-day total, maximum number of consecutive dry days, fraction of total from heavy events and number of heavy events defined here as values over the threshold of 90th percentile. Our results show that the SDSM model improves its behaviour when using predictors from the ERA Interim Reanalysis. Improvements are even more impressive when using the 0.75° resolution for ERA Interim. Better results than using WRF D are obtained with this configuration of the SDSM model for mean precipitation and precipitation intensity. Overall, the analysis reveals the extent to which the skill of SDSM can be improved through judicious choice of downscaling predictor source, grid resolution and calibration period. Moreover, the computationally efficient SDSM tool can achieve comparable skill to WRF over a range of precipitation metrics and the contrasting rainfall regimes of the Iberian Peninsula.

  14. Comparison of Measured and WRF-LES Turbulence Statistics in a Real Convective Boundary Layer over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.

    2015-12-01

    Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.

  15. Does the uncertainty in the representation of terrestrial water flows affect precipitation predictability? A WRF-Hydro ensemble analysis for Central Europe

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Rummler, Thomas; Baur, Florian; Lerch, Sebastian; Wagner, Sven; Fersch, Benjamin; Zhang, Zhenyu; Kerandi, Noah; Keil, Christian; Kunstmann, Harald

    2017-04-01

    Precipitation predictability can be assessed by the spread within an ensemble of atmospheric simulations being perturbed in the initial, lateral boundary conditions and/or modeled processes within a range of uncertainty. Surface-related processes are more likely to change precipitation when synoptic forcing is weak. This study investigates the effect of uncertainty in the representation of terrestrial water flows on precipitation predictability. The tools used for this investigation are the Weather Research and Forecasting (WRF) model and its hydrologically-enhanced version WRF-Hydro, applied over Central Europe during April-October 2008. The WRF grid is that of COSMO-DE, with a resolution of 2.8 km. In WRF-Hydro, the WRF grid is coupled with a sub-grid at 280 m resolution to resolve lateral terrestrial water flows. Vertical flow uncertainty is considered by modifying the parameter controlling the partitioning between surface runoff and infiltration in WRF, and horizontal flow uncertainty is considered by comparing WRF with WRF-Hydro. Precipitation predictability is deduced from the spread of an ensemble based on three turbulence parameterizations. Model results are validated with E-OBS precipitation and surface temperature, ESA-CCI soil moisture, FLUXNET-MTE surface evaporation and GRDC discharge. It is found that the uncertainty in the representation of terrestrial water flows is more likely to significantly affect precipitation predictability when surface flux spatial variability is high. In comparison to the WRF ensemble, WRF-Hydro slightly improves the adjusted continuous ranked probability score of daily precipitation. The reproduction of observed daily discharge with Nash-Sutcliffe model efficiency coefficients up to 0.91 demonstrates the potential of WRF-Hydro for flood forecasting.

  16. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  17. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS) will be run at a comparable resolution to provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Additionally, real-time green vegetation fraction data from the Visible Infrared Imaging Radiometer Suite will be incorporated into the KMD-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service. Finally, model verification capabilities will be transitioned to KMD using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. The transition of these MET tools will enable KMD to monitor model forecast accuracy in near real time. This presentation will highlight preliminary verification results of WRF runs over east Africa using the LIS land surface initialization.

  18. The Community WRF-Hydro Modeling System Version 4 Updates: Merging Toward Capabilities of the National Water Model

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Gochis, D.; Dugger, A. L.; Karsten, L. R.; McCreight, J. L.; Pan, L.; Rafieeinasab, A.; Read, L. K.; Sampson, K. M.; Yu, W.

    2017-12-01

    The community WRF-Hydro modeling system is publicly available and provides researchers and operational forecasters a flexible and extensible capability for performing multi-scale, multi-physics options for hydrologic modeling that can be run independent or fully-interactive with the WRF atmospheric model. The core WRF-Hydro physics model contains very high-resolution descriptions of terrestrial hydrologic process representations such as land-atmosphere exchanges of energy and moisture, snowpack evolution, infiltration, terrain routing, channel routing, basic reservoir representation and hydrologic data assimilation. Complementing the core physics components of WRF-Hydro are an ecosystem of pre- and post-processing tools that facilitate the preparation of terrain and meteorological input data, an open-source hydrologic model evaluation toolset (Rwrfhydro), hydrologic data assimilation capabilities with DART and advanced model visualization capabilities. The National Center for Atmospheric Research (NCAR), through collaborative support from the National Science Foundation and other funding partners, provides community support for the entire WRF-Hydro system through a variety of mechanisms. This presentation summarizes the enhanced user support capabilities that are being developed for the community WRF-Hydro modeling system. These products and services include a new website, open-source code repositories, documentation and user guides, test cases, online training materials, live, hands-on training sessions, an email list serve, and individual user support via email through a new help desk ticketing system. The WRF-Hydro modeling system and supporting tools which now include re-gridding scripts and model calibration have recently been updated to Version 4 and are merging toward capabilities of the National Water Model.

  19. Comparative Evaluation of the Impact of WRF-NMM and WRF-ARW Meteorology on CMAQ Simulations for O3 and Related Species During the 2006 TexAQS/GoMACCS Campaign

    EPA Science Inventory

    In this paper, impact of meteorology derived from the Weather, Research and Forecasting (WRF)– Non–hydrostatic Mesoscale Model (NMM) and WRF–Advanced Research WRF (ARW) meteorological models on the Community Multiscale Air Quality (CMAQ) simulations for ozone and its related prec...

  20. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn; Watson, Leela R.

    2015-01-01

    NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.

  1. Enhancing the NOAA National Water Center WRF-Hydro model architecture to improve representation of the Midwest and Southwest CONUS climate regions

    NASA Astrophysics Data System (ADS)

    Lahmers, T. M.; Castro, C. L.; Gupta, H. V.; Gochis, D.; Dugger, A. L.; Smith, M.

    2016-12-01

    The NOAA National Water Model (NWM), which is based on the WRF-Hydro architecture, became operational in June of 2016 to produce streamflow forecasts nationwide. In order to improve the physical process representation of NWM/WRF-Hydro, a parameterized channel infiltration function is added to the Muskingum-Cunge channel routing scheme. Representation of transmission losses along streams was previously not supported by WRF-Hydro, even though most channels in the southwest CONUS have a high depth to groundwater, and are consequently a source for recharge throughout the region. The LSM, routing grid, baseflow bucket model, and channel parameters of the modified version of NWM/WRF-Hydro are calibrated using spatial regularization in selected basins in the Midwest and Southwest CONUS. WRF-Hydro is calibrated and tested in the Verde, San Pedro, Little Sioux, Nishnabotna, and Wapsipinicon basins. The model is forced with NCEP Stage-IV and NLDAS-2 precipitation for calibration, and the effects of the precipitation climatology, including extreme events, on model performance are considered. This work advances the regional performance of WRF-Hydro through process enhancement and calibration that is highly relevant for improving model fidelity in semi-arid climates.

  2. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  3. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data format for a seamless incorporation into WRF via the WPS utilities. The full-resolution, 1-km MODIS product is sub-sampled to 2-km grid spacing due to limitations in handling very large dimensions in the GRIB-1 data format. The GRIB-1 files are posted online at ftp://ftp.nsstc.org/sstcomp/WRF/, which is directly accessed by the WRF EMS scripts. The MODIS SST composites are also downloaded to the EMS data server, which is accessible by the WRF EMS users and NWS WFOs. The SPoRT MODIS SST composite provides the model with superior detail of the ocean gradients around Florida and surrounding waters, whereas the operational RTG SST typically depicts a relatively smooth field and is not able to capture sharp horizontal gradients in SST. Differences of 2-3 C are common over small horizontal distances, leading to enhanced SST gradients on either side of the Gulf Stream and along the edges of the cooler shelf waters. These sharper gradients can in turn produce atmospheric responses in simulated temperature and wind fields as depicted in LaCasse et al. Differences in atmospheric verification statistics over a several month study were generally small in the vicinity of south Florida; however, the validation of SSTs at specific buoy locations revealed important improvements in the biases and RMS errors, especially in the vicinity of the cooler shelf waters off the east-central Florida coast. A current weakness in the MODIS SST product is the occurrence of occasional discontinuities caused by high latency in SST coverage due to persistent cloud cover. An enhanced method developed by Jedlovec et al. (2009, GHRSST User Symposium) reduces the occurrence of these problems by adding Advanced Microwave Scanning Radiometer -- EOS (AMSR-E) SST data to the compositing process. Enhanced SST composites are produced over the ocean regions surrounding the Continental U.S. at four times each day corresponding to Terra and Aqua equator crossing times. For a given day and overpass time, both MODInd AMSR-E data from the previous seven days form a collection used in the compositing. At each MODIS pixel, cloud-free SST values from the collection are used to form a weighted average based on their latency (number of days from the current day). In this way, recent SST data are given more weight than older data. One of the primary issues involved in incorporating the AMSR-E microwave data in the composites is the tradeoff between the decreased spatial resolution of the AMSR-E data (25 km) and the increased coverage due to its near all-weather capability. Currently, the AMSR-E is given a weight of 20% compared to MODIS data, thereby preserving the spatial structure observed in the MODIS data. Day-time (night-time) AMSR-E SST data from Aqua are used with both Terra and Aqua MODIS day-time (night-time) SST data sets.

  4. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  5. Modeling Atmospheric Aerosols in WRF/Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Hu, X.-M.; Howell, G.

    2005-06-01

    In this study, three aerosol modules are tested and compared. The first module is the Modal Aerosol Dynamics Model for Europe (MADE) with the secondary organic aerosol model (SORGAM) (referred to as MADE/SORGAM). The second module is the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). The third module is the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). The three modules differ in terms of size representation used, chemical species treated, assumptions and numerical algorithms used. Table 1 compares the major processes among the three aerosol modules.

  6. New, Improved Bulk-microphysical Schemes for Studying Precipitation Processes in WRF. Part 1; Comparisons with Other Schemes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shi, J.; Chen, S. S> ; Lang, S.; Hong, S.-Y.; Thompson, G.; Peters-Lidard, C.; Hou, A.; Braun, S.; hide

    2007-01-01

    Advances in computing power allow atmospheric prediction models to be mn at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations and numerical methods. The representation of cloud microphysical processes is a key component of these models, over the past decade both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). A recent report to the United States Weather Research Program (USWRP) Science Steering Committee specifically calls for the replacement of implicit cumulus parameterization schemes with explicit bulk schemes in numerical weather prediction (NWP) as part of a community effort to improve quantitative precipitation forecasts (QPF). An improved Goddard bulk microphysical parameterization is implemented into a state-of the-art of next generation of Weather Research and Forecasting (WRF) model. High-resolution model simulations are conducted to examine the impact of microphysical schemes on two different weather events (a midlatitude linear convective system and an Atllan"ic hurricane). The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The 31CE scheme with a cloud ice-snow-hail configuration led to a better agreement with observation in terms of simulated narrow convective line and rainfall intensity. This is because the 3ICE-hail scheme includes dense ice precipitating (hail) particle with very fast fall speed (over 10 m/s). For an Atlantic hurricane case, varying the microphysical schemes had no significant impact on the track forecast but did affect the intensity (important for air-sea interaction)

  7. Modeling urban air pollution in Budapest using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Leelőssy, Ádám; Lagzi, István; Mészáros, Róbert

    2017-04-01

    Air pollution is a major problem for urban areas since the industrial revolution, including Budapest, the capital and largest city of Hungary. The main anthropogenic sources of air pollutants are industry, traffic and residential heating. In this study, we investigated the contribution of major industrial point sources to the urban air pollution in Budapest. We used the WRF (Weather Research and Forecasting) nonhydrostatic mesoscale numerical weather prediction system online coupled with chemistry (WRF-Chem, version 3.6).The model was configured with three nested domains with grid spacings of 15, 5 and 1 km, representing Central Europe, the Carpathian Basin and Budapest with its surrounding area. Emission data was obtained from the National Environmental Information System. The point source emissions were summed in their respective cells in the second nested domain according to latitude-longitude coordinates. The main examined air pollutants were carbon monoxide (CO) and nitrogen oxides (NOx), from which the secondary compound, ozone (O3) forms through chemical reactions. Simulations were performed under different weather conditions and compared to observations from the automatic monitoring site of the Hungarian Air Quality Network. Our results show that the industrial emissions have a relatively weak role in the urban background air pollution, confirming the effect of industrial developments and regulations in the recent decades. However, a few significant industrial sources and their impact area has been demonstrated.

  8. Can green roofs reduce urban heat stress in vulnerable urban communities: A coupled atmospheric and social modeling approach

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.

    2017-12-01

    Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.

  9. Assessing the Impact of Pre-gpm Microwave Precipitation Observations in the Goddard WRF Ensemble Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Chambon, Philippe; Zhang, Sara Q.; Hou, Arthur Y.; Zupanski, Milija; Cheung, Samson

    2013-01-01

    The forthcoming Global Precipitation Measurement (GPM) Mission will provide next generation precipitation observations from a constellation of satellites. Since precipitation by nature has large variability and low predictability at cloud-resolving scales, the impact of precipitation data on the skills of mesoscale numerical weather prediction (NWP) is largely affected by the characterization of background and observation errors and the representation of nonlinear cloud/precipitation physics in an NWP data assimilation system. We present a data impact study on the assimilation of precipitation-affected microwave (MW) radiances from a pre-GPM satellite constellation using the Goddard WRF Ensemble Data Assimilation System (Goddard WRF-EDAS). A series of assimilation experiments are carried out in a Weather Research Forecast (WRF) model domain of 9 km resolution in western Europe. Sensitivities to observation error specifications, background error covariance estimated from ensemble forecasts with different ensemble sizes, and MW channel selections are examined through single-observation assimilation experiments. An empirical bias correction for precipitation-affected MW radiances is developed based on the statistics of radiance innovations in rainy areas. The data impact is assessed by full data assimilation cycling experiments for a storm event that occurred in France in September 2010. Results show that the assimilation of MW precipitation observations from a satellite constellation mimicking GPM has a positive impact on the accumulated rain forecasts verified with surface radar rain estimates. The case-study on a convective storm also reveals that the accuracy of ensemble-based background error covariance is limited by sampling errors and model errors such as precipitation displacement and unresolved convective scale instability.

  10. Evaluating the effects of the Pacific Decadal Oscillation on winter precipitation in The Cascades using a mixed-physics WRF ensemble

    NASA Astrophysics Data System (ADS)

    Buxton, Carly S.

    In most of Washington and Oregon, USA, mountain snowpack stores water which will be available through spring and early summer, when water demand in the region is at its highest. Therefore, understanding the numerous factors that influence winter precipitation variability is a key component in water resource planning. This project examines the effects of the Pacific Decadal Oscillation (PDO) on winter precipitation in the Pacific Northwest U.S. using the WRF-ARW regional climate model. A significant component of this work was evaluating the many options that WRF-ARW provides for representing sub-grid scale cloud microphysical processes. Because the "best" choice of microphysics parameterization can vary depending on the application, this project also seeks to determine which option leads to the most accurate simulation of winter precipitation (when compared to observations) in the complex terrain of the Pacific Northwest. A series of test runs were performed with eight different combinations of physics parameterizations, and the results of these test runs were used to narrow the number of physics options down to three for the final runs. Mean total precipitation and coefficient of variation of the final model runs were compared against observational data. As RCMs tend to do, WRF over-predicts mean total precipitation compared to observations, but the double-moment microphysics schemes, Thompson and Morrison, over-predict to a lesser extent than the single-moment scheme. Two WRF microphysics schemes, Thompson and Lin, were more likely to have a coefficient of variation within the range of observations. Overall, the Thompson scheme produced the most accurate simulation as compared to observations. To focus on the effects of the PDO, WRF simulations were performed for two ten-member ensembles, one for positive PDO Decembers, and one for negative PDO Decembers. WRF output of total precipitation was compared to both station and gridded observational data. During positive PDO conditions, there is a strong latitudinal signal at low elevations, while during negative PDO conditions, there is a strong latitudinal signal at high elevations. This shift in where the PDO signal is most visible is due to changes in mid-level westerly winds and upper-level circulation and temperature advection. Under positive PDO conditions, wind direction and moisture transport are the most important factors, and frequent warm, moist southwesterly winds cause a PDO signal at low elevations. Under negative PDO conditions, differences in westerly wind speed, and therefore orographic precipitation enhancement, lead to a latitudinal PDO signal at high elevations. This PDO signal is robust, appearing in both the WRF simulations and observational data, and the differences due to PDO phase exceed the differences due to choice of microphysics scheme, WRF internal variability, and observational data uncertainty.

  11. Numerical Analysis Using WRF-SBM for the Cloud Microphysical Structures in the C3VP Field Campaign: Impacts of Supercooled Droplets and Resultant Riming on Snow Microphysics

    NASA Technical Reports Server (NTRS)

    Iguchi, Takamichi; Matsui, Toshihisa; Shi, Jainn J.; Tao, Wei-Kuo; Khain, Alexander P.; Hao, Arthur; Cifelli, Robert; Heymsfield, Andrew; Tokay, Ali

    2012-01-01

    Two distinct snowfall events are observed over the region near the Great Lakes during 19-23 January 2007 under the intensive measurement campaign of the Canadian CloudSat/CALIPSO validation project (C3VP). These events are numerically investigated using the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM) scheme that allows a smooth calculation of riming process by predicting the rimed mass fraction on snow aggregates. The fundamental structures of the observed two snowfall systems are distinctly characterized by a localized intense lake-effect snowstorm in one case and a widely distributed moderate snowfall by the synoptic-scale system in another case. Furthermore, the observed microphysical structures are distinguished by differences in bulk density of solid-phase particles, which are probably linked to the presence or absence of supercooled droplets. The WRF-SBM coupled with Goddard Satellite Data Simulator Unit (G-SDSU) has successfully simulated these distinctive structures in the three-dimensional weather prediction run with a horizontal resolution of 1 km. In particular, riming on snow aggregates by supercooled droplets is considered to be of importance in reproducing the specialized microphysical structures in the case studies. Additional sensitivity tests for the lake-effect snowstorm case are conducted utilizing different planetary boundary layer (PBL) models or the same SBM but without the riming process. The PBL process has a large impact on determining the cloud microphysical structure of the lake-effect snowstorm as well as the surface precipitation pattern, whereas the riming process has little influence on the surface precipitation because of the small height of the system.

  12. Application of a Mesoscale Atmospheric Coupled Fire Model BRAMS-FIRE to Alentejo Woodland Fire and Comparison of Performance with the Fire Model WRF-Sfire.

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Menezes, I. C.; Stockler, R.; Mello, R.; Ribeiro, N. A.; Corte-Real, J. A. M.; Surový, P.

    2014-12-01

    Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread woodland fire model. The BRAMS-FIRE is a new system developed by the "Centro de Previsão de Tempo e Estudos Climáticos" (CPTEC/INPE, Brazil) and the "Instituto de Ciências Agrárias e Ambientais Mediterrâneas" (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-FIRE and WRF-SFIRE. One grid was placed in the plain land near Beja and the other one in the hills of Ossa to evaluate different types of fire propagation and calibrate BRAMS-FIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of woodland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro woodland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system. References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Cargèse, France, May 13-18, 2013.

  13. Application of a mesoscale atmospheric coupled fire model BRAMS-SFIRE to Alentejo wildland fire and comparison of performance with the fire model WRF-SFIRE

    NASA Astrophysics Data System (ADS)

    Menezes, Isilda; Freitas, Saulo; Stockler, Rafael; Mello, Rafael; Ribeiro, Nuno; Corte-Real, João; Surový, Peter

    2015-04-01

    Models of fuel with the identification of vegetation patterns of Montado ecosystem in Portugal was incorporated in the mesoscale Brazilian Atmospheric Modeling System (BRAMS) and coupled with a spread wildland fire model. The BRAMS-FIRE is a new system developed by the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE, Brazil) and the Instituto de Ciências Agrárias e Ambientais Mediterrâneas (ICAAM, Portugal). The fire model used in this effort was originally, developed by Mandel et al. (2013) and further incorporated in the Weather Research and Forecast model (WRF). Two grids of high spatial resolution were configured with surface input data and fuel models integrated for simulations using both models BRAMS-SFIRE and WRF-SFIRE. One grid was placed in the plain land and the other one in the hills to evaluate different types of fire propagation and calibrate BRAMS-SFIRE. The objective is simulating the effects of atmospheric circulation in local scale, namely the movements of the heat front and energy release associated to it, obtained by this two models in an episode of wildland fire which took place in Alentejo area in the last decade, for application to planning and evaluations of agro wildland fire risks. We aim to model the behavior of forest fires through a set of equations whose solutions provide quantitative values of one or more variables related to the propagation of fire, described by semi-empirical expressions that are complemented by experimental data allow to obtain the main variables related advancing the perimeter of the fire, as the propagation speed, the intensity of the fire front and fuel consumption and its interaction with atmospheric dynamic system References Mandel, J., J. D. Beezley, G. Kelman, A. K. Kochanski, V. Y. Kondratenko, B. H. Lynn, and M. Vejmelka, 2013. New features in WRF-SFIRE and the wildfire forecasting and danger system in Israel. Natural Hazards and Earth System Sciences, submitted, Numerical Wildfires, Cargèse, France, May 13-18, 2013.

  14. Implementation of a lightning data assimilation technique in the Weather Research and Forecasting (WRF) model for improving precipitation prediction

    NASA Astrophysics Data System (ADS)

    Giannaros, Theodore; Kotroni, Vassiliki; Lagouvardos, Kostas

    2015-04-01

    Lightning data assimilation has been recently attracting increasing attention as a technique implemented in numerical weather prediction (NWP) models for improving precipitation forecasts. In the frame of TALOS project, we implemented a robust lightning data assimilation technique in the Weather Research and Forecasting (WRF) model with the aim to improve the precipitation prediction in Greece. The assimilation scheme employs lightning as a proxy for the presence or absence of deep convection. In essence, flash data are ingested in WRF to control the Kain-Fritsch (KF) convective parameterization scheme (CPS). When lightning is observed, indicating the occurrence of convective activity, the CPS is forced to attempt to produce convection, whereas the CPS may be optionally be prevented from producing convection when no lightning is observed. Eight two-day precipitation events were selected for assessing the performance of the lightning data assimilation technique. The ingestion of lightning in WRF was carried out during the first 6 h of each event and the evaluation focused on the consequent 24 h, constituting a realistic setup that could be used in operational weather forecasting applications. Results show that the implemented assimilation scheme can improve model performance in terms of precipitation prediction. Forecasts employing the assimilation of flash data were found to exhibit more skill than control simulations, particularly for the intense (>20 mm) 24 h rain accumulations. Analysis of results also revealed that the option not to suppress the KF scheme in the absence of observed lightning, leads to a generally better performance compared to the experiments employing the full control of the CPS' triggering. Overall, the implementation of the lightning data assimilation technique is found to improve the model's ability to represent convection, especially in situations when past convection has modified the mesoscale environment in ways that affect the occurrence and evolution of subsequent convection.

  15. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  16. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations, and FDS influence functions will be compared with those generated from WRF and the Lagrangian Particle Dispersion Model. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions.

  17. Numerical Model Simulation of Atmosphere above A.C. Airport

    NASA Astrophysics Data System (ADS)

    Lutes, Tiffany; Trout, Joseph

    2014-03-01

    In this research project, the Weather Research & Forecasting (WRF) model from the National Center for Atmospheric Research (NCAR) is used to investigate past and present weather conditions. The Atlantic City Airport area in southern New Jersey is the area of interest. Long-term hourly data is analyzed and model simulations are created. By inputting high resolution surface data, a more accurate picture of the effects of different weather conditions will be portrayed. Currently, the impact of gridded model runs is being tested, and the impact of surface characteristics is being investigated.

  18. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  19. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  20. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  1. Integrated Wind Power Planning Tool

    NASA Astrophysics Data System (ADS)

    Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.

    2012-04-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.

  2. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    NASA Astrophysics Data System (ADS)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. These MET tools enable KMS to monitor model forecast accuracy in near real time. This study highlights verification results of WRF runs over East Africa using the LIS land surface initialization.

  3. Sensitivity of WRF precipitation field to assimilation sources in northeastern Spain

    NASA Astrophysics Data System (ADS)

    Lorenzana, Jesús; Merino, Andrés; García-Ortega, Eduardo; Fernández-González, Sergio; Gascón, Estíbaliz; Hermida, Lucía; Sánchez, José Luis; López, Laura; Marcos, José Luis

    2015-04-01

    Numerical weather prediction (NWP) of precipitation is a challenge. Models predict precipitation after solving many physical processes. In particular, mesoscale NWP models have different parameterizations, such as microphysics, cumulus or radiation schemes. These facilitate, according to required spatial and temporal resolutions, precipitation fields with increasing reliability. Nevertheless, large uncertainties are inherent to precipitation forecasting. Consequently, assimilation methods are very important. The Atmospheric Physics Group at the University of León in Spain and the Castile and León Supercomputing Center carry out daily weather prediction based on the Weather Research and Forecasting (WRF) model, covering the entire Iberian Peninsula. Forecasts of severe precipitation affecting the Ebro Valley, in the southern Pyrenees range of northeastern Spain, are crucial in the decision-making process for managing reservoirs or initializing runoff models. These actions can avert floods and ensure uninterrupted economic activity in the area. We investigated a set of cases corresponding to intense or severe precipitation patterns, using a rain gauge network. Simulations were performed with a dual objective, i.e., to analyze forecast improvement using a specific assimilation method, and to study the sensitivity of model outputs to different types of assimilation data. A WRF forecast model initialized by an NCEP SST analysis was used as the control run. The assimilation was based on the Meteorological Assimilation Data Ingest System (MADIS) developed by NOAA. The MADIS data used were METAR, maritime, ACARS, radiosonde, and satellite products. The results show forecast improvement using the suggested assimilation method, and differences in the accuracy of forecast precipitation patterns varied with the assimilation data source.

  4. Integrated Wind Power Planning Tool

    NASA Astrophysics Data System (ADS)

    Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik

    2013-04-01

    This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.

  5. Potential Technologies for Assessing Risk Associated with a Mesoscale Forecast

    DTIC Science & Technology

    2015-10-01

    American GFS models, and informally applied on the Weather Research and Forecasting ( WRF ) model. The current CI equation is as follows...Reen B, Penc R. Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) model using a Geographic Information System (GIS). J...Forecast model ( WRF -ARW) with extensions that might include finer terrain resolutions and more detailed representations of the underlying atmospheric

  6. Numerical Modelling of Freshwater Inputs in the Shelf Area of the Ofanto River (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Verri, G.; Pinardi, N.; Tribbia, J. J.; Gochis, D.; Bryan, F.; Tseng, Y. H.; Navarra, A.; Coppini, G.

    2016-02-01

    The aim of this study is to understand and to assess the effects of river freshwater release on the ocean circulation and dynamics focusing on the shelf area near estuaries. A sensitivity study to different modelling approaches, which point to the representation of the dynamics of the river inflow, are presented. The modeling strategy we chose consists of an integrated modeling chain including the atmosphere, the hydrology/hydraulics and the estuarine dynamics in order to force our regional ocean model at the Ofanto outlet in a reliable way. This meteo-hydrological modeling chain allows us to take into account all the physical processes involved in the local water cycle of the Ofanto catchment such as the rainfall, the land surface infiltration/evaporation, the partitioning of total runoff into surface and subsurface runoff and the channel streamflow. In order to achieve our goal, we chose the Ofanto river catchment and its estuary as case study. The Ofanto river is a torrential river flowing across the Southern Italy and ending in the Adriatic Sea; its annual averaged discharge is low (15 m3s-1 following Raicich, 1996) but may significantly increase when heavy rain events occur. In details our regional ocean model is a finite difference numerical model based on NEMO code (Madec, G., 2008) and implemented in the Central Mediterranean Sea with 2km as horizontal resolution. The meteo-hydrological modeling chain consists of: 1) the WRF-ARW model (Skamarock et al., 2008) including NOAH-MP as Land Surface Submodel,; 2) WRF-HYDRO model (Gochis D., et al., 2013) representing the hydrology/hydraulics component with 200m as horizontal resolution, simulating the streamflow discharge along the Ofanto river network.; 3) finally an estuarine box model (Garvine et al., 2006) is inserted downstream of WRF-Hydro and upstream of the regional ocean model. A set of sensitivity experiments has been performed aiming to evaluate the capability of the regional ocean model to decribe the Ofanto river plume by providing hindcast discharge and salinity from the estuary model at the river mouth with different methods. The time window of the simulations covers the first three months of year 2011, since 4 heavy rain events affected the Ofanto catchment in this period.

  7. Examining the Impacts of High-Resolution Land Surface Initialization on Model Predictions of Convection in the Southeastern U.S.

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.

    2009-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF simulations over the Mobile, AL and Miami, FL NWS county warning areas. Future efforts may involve examining the impacts of assimilating remotely-sensed soil moisture data, and/or introducing weekly greenness vegetation fraction composites (as opposed to monthly climatologies) into ol'fline NASA LIS runs. Based on positive impacts, the offline LIS runs could be transitioned into an operational mode, providing land surface initialization data to NWS forecast offices in real time.

  8. Investigating the Impact on Modeled Ozone Concentrations Using Meteorological Fields From WRF With and Updated Four-Dimensional Data Assimilation Approach”

    EPA Science Inventory

    The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...

  9. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  10. Interactions between volatile organic compounds and reactive halogen in the tropical marine atmosphere using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Reeves, Claire E.; Baker, Alex; Volkamer, Rainer; von Glasow, Roland

    2016-04-01

    Halogen species (chlorine, bromine and iodine) are known to play an important role in the chemistry and oxidizing capacity of the troposphere, particularly in the marine boundary layer (MBL). Reactive halogens cause ozone (O3) destruction, change the HOx and NOX partitioning, affect the oxidation of volatile organic compounds (VOCs) and mercury, reduce the lifetime of methane, and take part in new particle formation. Numerical models predicted that reactive halogen compounds account for 30% of O3 destruction in the MBL and 5-20% globally. There are indications that the chemistry of reactive halogens and oxygenated VOCs (OVOCs) in the tropics are inter-related. Moreover, the presence of aldehydes, such as glyoxal (CHOCHO), has a potential impact on radical cycling and secondary organic aerosol (SOA) formation in the MBL and free troposphere (FT). Model calculations suggest aldehydes to be an important sink for bromine atoms and hence competition for their reaction with O3 forming BrO and so illustrating a link between the cycles of halogens and OVOCs in the marine atmosphere. The main objective of this contribution is to investigate the atmospheric chemistry in the tropical East Pacific with a focus on reactive halogens and OVOCs and their links using the latest version of the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF-Chem) and field data from the TORERO campaign. WRF-Chem is a highly flexible community model for atmospheric research where aerosol-radiation-cloud feedback processes are taken into account. Our current reaction mechanism in WRF-Chem is based on the MOZART mechanism and has been extended to include bromine, chlorine and iodine chemistry. The MOZART mechanism includes detailed gas-phase chemistry of CHOCHO formation as well as state-of-the-science pathways to form SOA. Oceanic emissions of aldehydes, including CHOCHO, and of organic halogens based on measurements from the TORERO campaign have been added into the model. Sea surface emissions of inorganic iodine are calculated using the parameterisation of Carpenter et al., 2013. Focusing on TORERO observations from the ships and a selected number of flights we present an evaluation of the relevant tropospheric gas-phase chemistry (O3, H2O), inorganic halogen species (BrO, IO), aldehydes (CH3CHO, CHOCHO) and Very Short Lived Halocarbons (VSLH).

  11. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable resolution to provide real-time, daily soil initialization data in place of data interpolated from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model soil moisture and temperature fields. Additionally, realtime green vegetation fraction (GVF) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite will be incorporated into the KMS-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service (NESDIS). Finally, model verification capabilities will be transitioned to KMS using the Model Evaluation Tools (MET; Brown et al. 2009) package in conjunction with a dynamic scripting package developed by SPoRT (Zavodsky et al. 2014), to help quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. Furthermore, the transition of these MET tools will enable KMS to monitor model forecast accuracy in near real time. This paper presents preliminary efforts to improve land surface model initialization over eastern Africa in support of operations at KMS. The remainder of this extended abstract is organized as follows: The collaborating organizations involved in the project are described in Section 2; background information on LIS and the configuration for eastern Africa is presented in Section 3; the WRF configuration used in this modeling experiment is described in Section 4; sample experimental WRF output with and without LIS initialization data are given in Section 5; a summary is given in Section 6 followed by acknowledgements and references.

  12. Application of Suomi-NPP Green Vegetation Fraction and NUCAPS for Improving Regional Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Berndt, Emily B.; Srikishen, Jayanthi; Zavodsky, Bradley T.

    2014-01-01

    The NASA SPoRT Center is working to incorporate Suomi-NPP products into its research and transition activities to improve regional numerical weather prediction (NWP). Specifically, SPoRT seeks to utilize two data products from NOAA/NESDIS: (1) daily global VIIRS green vegetation fraction (GVF), and (2) NOAA Unique CrIS and ATMS Processing System (NUCAPS) temperature and moisture retrieved profiles. The goal of (1) is to improve the representation of vegetation in the Noah land surface model (LSM) over existing climatological GVF datasets in order to improve the land-atmosphere energy exchanges in NWP models and produce better temperature, moisture, and precipitation forecasts. The goal of (2) is to assimilate NUCAPS retrieved profiles into the Gridpoint Statistical Interpolation (GSI) data assimilation system to assess the impact on a summer pre-frontal convection case. Most regional NWP applications make use of a monthly GVF climatology for use in the Noah LSM within the Weather Research and Forecasting (WRF) model. The GVF partitions incoming energy into direct surface heating/evaporation over bare soil versus evapotranspiration processes over vegetated surfaces. Misrepresentations of the fractional coverage of vegetation during anomalous weather/climate regimes (e.g., early/late bloom or freeze; drought) can lead to poor NWP model results when land-atmosphere feedback is important. SPoRT has been producing a daily MODIS GVF product based on the University of Wisconsin Direct Broadcast swaths of Normalized Difference Vegetation Index (NDVI). While positive impacts have been demonstrated in the WRF model for some cases, the reflectances composing these NDVI do not correct for atmospheric aerosols nor satellite view angle, resulting in temporal noisiness at certain locations (especially heavy vegetation). The method behind the NESDIS VIIRS GVF is expected to alleviate the issues seen in the MODIS GVF real-time product, thereby offering a higher-quality dataset for modeling applications. SPoRT is evaluating the VIIRS GVF data against the MODIS real-time and climatology GVF in both WRF and the NASA Land Information System. SPoRT has a history of assimilating hyperspectral infrared retrieved profiles

  13. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic

    NASA Astrophysics Data System (ADS)

    Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.

    2018-01-01

    The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.

  14. Analysis of Numerical Weather Predictions of Reference Evapotranspiration and Precipitation

    NASA Astrophysics Data System (ADS)

    Bughici, Theodor; Lazarovitch, Naftali; Fredj, Erick; Tas, Eran

    2017-04-01

    This study attempts to improve the forecast skill of the evapotranspiration (ET0) and Precipitation for the purpose of crop irrigation management over Israel using the Weather Research and Forecasting (WRF) Model. Optimized crop irrigation, in term of timing and quantities, decreases water and agrochemicals demand. Crop water demands depend on evapotranspiration and precipitation. The common method for computing reference evapotranspiration, for agricultural needs, ET0, is according to the FAO Penman-Monteith equation. The weather variables required for ET0 calculation (air temperature, relative humidity, wind speed and solar irradiance) are estimated by the WRF model. The WRF Model with two-way interacting domains at horizontal resolutions of 27, 9 and 3 km is used in the study. The model prediction was performed in an hourly time resolution and a 3 km spatial resolution, with forecast lead-time of up to four days. The WRF prediction of these variables have been compared against measurements from 29 meteorological stations across Israel for the year 2013. The studied area is small but with strong climatic gradient, diverse topography and variety of synoptic conditions. The forecast skill that was used for forecast validation takes into account the prediction bias, mean absolute error and root mean squared error. The forecast skill of the variables was almost robust to lead time, except for precipitation. The forecast skill was tested across stations with respect to topography and geographic location and for all stations with respect to seasonality and synoptic weather system determined by employing a semi-objective synoptic systems classification to the forecasted days. It was noticeable that forecast skill of some of the variables was deteriorated by seasonality and topography. However, larger impacts in the ET0 skill scores on the forecasted day are achieved by a synoptic based forecast. These results set the basis for increasing the robustness of ET0 to synoptic effects and for more precise crop irrigation over Israel.

  15. Development of the WRF-CO2 4D-Var assimilation system v1.0

    NASA Astrophysics Data System (ADS)

    Zheng, Tao; French, Nancy H. F.; Baxter, Martin

    2018-05-01

    Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.

  16. Air Quality Modeling and Forecasting over the United States Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Hafsa, U.; Blue, S.; Emmanuel, S.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Gurung, D.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Salako, O.

    2016-12-01

    WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community led by NOAA/ESRL scientists. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely linked with both NOAA/ESRL and DOE/PNNL efforts. Description of PNNL WRF-Chem model development is located at the PNNL web site as well as the PNNL Aerosol Modeling Testbed. High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), set up WRF-Chem on CUNY CSI's High Performance Computing Center. Students learned the back-end coding that governs WRF-Chems structure and the front-end coding that displays visually specified weather simulations and forecasts. Students also investigated the impact, to select baseline simulations/forecasts, due to the reaction, NO2 + OH + M → HOONO + M (k = 9.2 × 10-12 cm3 molecule-1 s-1, Mollner et al. 2010). The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential and in atmospheric chemistry. Till a few years prior, its rate coefficient remained poorly determined under tropospheric conditions because of difficulties in making laboratory measurements at 760 torr. These activities fosters student coding competencies and deep insights into weather forecast and air quality.

  17. Inter-Comparison of WRF Model Simulated Winds and MISR Stereoscopic Winds Embedded within Mesoscale von Kármán Wake Vortices

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Nunalee, C. G.; Mueller, K. J.

    2014-12-01

    Several distinct wake regimes are possible when considering atmospheric flow past a steep mountainous island. Of these regimes, coherent vortex shedding in low-Froude number flow is particularly interesting because it can produce laterally focused paths of counter rotating eddies capable of extending downstream for hundreds of kilometers (i.e., a von Kármán vortex street). Given the spatial scales of atmospheric von Kármán vortices, which typically lies on the interface of the meso-scale and the micro-scale, they are uniquely challenging to model using conventional numerical weather prediction platforms. In this presentation, we present high resolution (1-km horizontally) numerical modeling results using the Weather Research and Forecasting (WRF) model, of multiple real-world von Kármán vortex shedding events associated with steep islands (e.g., Madeira island, Gran Canaria island, etc.). In parallel, we also present corresponding cloud-motion wind and cloud-top height measurements from the satellite-based Multiangle Imaging SpectroRadiometer (MISR) instrument. The MISR stereo algorithm enables experimental retrieval of the horizontal wind vector (both along-track and cross-track components) at 4.4-km resolution, in addition to the operational 1.1-km resolution cross-track wind and cloud-top height products. These products offer the fidelity appropriate for inter-comparison with the numerically simulated vortex streets. In general, we find an agreement between the instantaneous simulated cloud level winds and the MISR stereoscopic winds; however, discrepancies in the vortex street length and localized horizontal wind shear were documented. In addition, the simulated fields demonstrate sensitivity to turbulence closure and input terrain height data.

  18. The Impact of Incongruous Lake Temperatures on Regional Climate Extremes Downscaled from the CMIP5 Archive Using the WRF Model

    EPA Science Inventory

    The impact of incongruous lake temperatures is demonstrated using the Weather Research and Forecasting (WRF) Model to downscale global climate fields. Unrealistic lake temperatures prescribed by the default WRF configuration cause obvious biases near the lakes and also affect pre...

  19. Application Bayesian Model Averaging method for ensemble system for Poland

    NASA Astrophysics Data System (ADS)

    Guzikowski, Jakub; Czerwinska, Agnieszka

    2014-05-01

    The aim of the project is to evaluate methods for generating numerical ensemble weather prediction using a meteorological data from The Weather Research & Forecasting Model and calibrating this data by means of Bayesian Model Averaging (WRF BMA) approach. We are constructing height resolution short range ensemble forecasts using meteorological data (temperature) generated by nine WRF's models. WRF models have 35 vertical levels and 2.5 km x 2.5 km horizontal resolution. The main emphasis is that the used ensemble members has a different parameterization of the physical phenomena occurring in the boundary layer. To calibrate an ensemble forecast we use Bayesian Model Averaging (BMA) approach. The BMA predictive Probability Density Function (PDF) is a weighted average of predictive PDFs associated with each individual ensemble member, with weights that reflect the member's relative skill. For test we chose a case with heat wave and convective weather conditions in Poland area from 23th July to 1st August 2013. From 23th July to 29th July 2013 temperature oscillated below or above 30 Celsius degree in many meteorology stations and new temperature records were added. During this time the growth of the hospitalized patients with cardiovascular system problems was registered. On 29th July 2013 an advection of moist tropical air masses was recorded in the area of Poland causes strong convection event with mesoscale convection system (MCS). MCS caused local flooding, damage to the transport infrastructure, destroyed buildings, trees and injuries and direct threat of life. Comparison of the meteorological data from ensemble system with the data recorded on 74 weather stations localized in Poland is made. We prepare a set of the model - observations pairs. Then, the obtained data from single ensemble members and median from WRF BMA system are evaluated on the basis of the deterministic statistical error Root Mean Square Error (RMSE), Mean Absolute Error (MAE). To evaluation probabilistic data The Brier Score (BS) and Continuous Ranked Probability Score (CRPS) were used. Finally comparison between BMA calibrated data and data from ensemble members will be displayed.

  20. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the SeasonalIce Zone Reconnaissance Surveys

    DTIC Science & Technology

    2015-09-30

    hired to conduct WRF model experiments. • We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with... WRF simulations under different synoptic conditions will help to more 10 clearly identify the deficiencies in the representation of these processes

  1. Evaluation of the two-way coupled WRF-CMAQ modeling system to the 2011 DISCOVER-AQ campaign at 12-km, 4-km and 1-km resolutions

    EPA Science Inventory

    At the 12th Annual CMAS Conference initial results from the application of the coupled WRF-CMAQ modeling system to the 2011 Baltimore-Washington D.C. DISCOVER-AQ campaign were presented, with the focus on updates and new methods applied to the WRF modeling for fine-scale applicat...

  2. A simple parameterization of aerosol emissions in RAMS

    NASA Astrophysics Data System (ADS)

    Letcher, Theodore

    Throughout the past decade, a high degree of attention has been focused on determining the microphysical impact of anthropogenically enhanced concentrations of Cloud Condensation Nuclei (CCN) on orographic snowfall in the mountains of the western United States. This area has garnered a lot of attention due to the implications this effect may have on local water resource distribution within the Region. Recent advances in computing power and the development of highly advanced microphysical schemes within numerical models have provided an estimation of the sensitivity that orographic snowfall has to changes in atmospheric CCN concentrations. However, what is still lacking is a coupling between these advanced microphysical schemes and a real-world representation of CCN sources. Previously, an attempt to representation the heterogeneous evolution of aerosol was made by coupling three-dimensional aerosol output from the WRF Chemistry model to the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) (Ward et al. 2011). The biggest problem associated with this scheme was the computational expense. In fact, the computational expense associated with this scheme was so high, that it was prohibitive for simulations with fine enough resolution to accurately represent microphysical processes. To improve upon this method, a new parameterization for aerosol emission was developed in such a way that it was fully contained within RAMS. Several assumptions went into generating a computationally efficient aerosol emissions parameterization in RAMS. The most notable assumption was the decision to neglect the chemical processes in formed in the formation of Secondary Aerosol (SA), and instead treat SA as primary aerosol via short-term WRF-CHEM simulations. While, SA makes up a substantial portion of the total aerosol burden (much of which is made up of organic material), the representation of this process is highly complex and highly expensive within a numerical model. Furthermore, SA formation is greatly reduced during the winter months due to the lack of naturally produced organic VOC's. Because of these reasons, it was felt that neglecting SOA within the model was the best course of action. The actual parameterization uses a prescribed source map to add aerosol to the model at two vertical levels that surround an arbitrary height decided by the user. To best represent the real-world, the WRF Chemistry model was run using the National Emissions Inventory (NEI2005) to represent anthropogenic emissions and the Model Emissions of Gases and Aerosols from Nature (MEGAN) to represent natural contributions to aerosol. WRF Chemistry was run for one hour, after which the aerosol output along with the hygroscopicity parameter (κ) were saved into a data file that had the capacity to be interpolated to an arbitrary grid used in RAMS. The comparison of this parameterization to observations collected at Mesa Verde National Park (MVNP) during the Inhibition of Snowfall from Pollution Aerosol (ISPA-III) field campaign yielded promising results. The model was able to simulate the variability in near surface aerosol concentration with reasonable accuracy, though with a general low bias. Furthermore, this model compared much better to the observations than did the WRF Chemistry model using a fraction of the computational expense. This emissions scheme was able to show reasonable solutions regarding the aerosol concentrations and can therefore be used to provide an estimate of the seasonal impact of increased CCN on water resources in Western Colorado with relatively low computational expense.

  3. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Lauer, Axel; Lupascu, Aurelia; Rupakheti, Maheswar; Kuik, Friderike; Lawrence, Mark G.

    2018-06-01

    An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF) model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem). A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC) of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other. The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are needed before being able to use the model to robustly assess air pollution mitigation scenarios in the Kathmandu region.

  4. Impacts of Typhoon Megi (2010) on the South China Sea

    DTIC Science & Technology

    2014-06-01

    investigations. To obtain realistic typhoon-strength atmospheric forcing, the EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind...EASNFS applied typhoon-resolving Weather Research and Forecasting ( WRF ) model wind field blended with global weather forecast winds from the U.S. Navy...only 1C. Sequential SST snapshots, of which only a Figure 1. The EASNFS model domain with topography and an inset covered by WRF model. Typhoon Megi’s

  5. Evaluation of snowmelt simulation in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Jin, Jiming; Wen, Lijuan

    2012-05-01

    The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.

  6. Numerical simulation and analysis of the April 2013 Chicago floods

    DOE PAGES

    Campos, Edwin; Wang, Jiali

    2015-09-08

    The weather event associated to record Chicago floods on April 2013 is investigated by using the Weather Research and Forecasting (WRF) model. Observations at Argonne National Laboratory and multi-sensor (weather radar and rain gauge) precipitation data from the National Weather Service were employed to evaluate the model’s performance. The WRF model captured the synoptic-scale atmospheric features well, but the simulated 24-h accumulated precipitation and short-period temporal evolution of precipitation over the heavy-rain region were less successful. To investigate the potential reasons for the model bias, four supplementary sensitivity experiments using various microphysics schemes and cumulus parameterizations were designed. Of themore » five tested parameterizations, the WRF Single-Moment 6-class (WSM6) graupel scheme and Kain-Fritsch (KF) cumulus parameterization outperformed the others, such as Grell-Dévényi (GD) cumulus parameterization, which underestimated the precipitation by 30–50% on a regional-average scale. Morrison microphysics and KF outperformed the others for the spatial patterns of 24-h accumulated precipitation. The spatial correlation between observation and Morrison-KF was 0.45, higher than those for other simulations. All of the simulations underestimated the precipitation over northeastern Illinois (especially at Argonne) during 0400–0800 UTC 18 April because of weak ascending motion or small moisture. In conclusion, all of the simulations except WSM6-GD also underestimated the precipitation during 1200–1600 UTC 18 April because of weak southerly flow.« less

  7. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  8. Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2007-01-01

    This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.

  9. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have based on their track and other characteristics. Prat, O.P., and B.R. Nelson, 2012. J. Climate. Conditionally Accepted. Westerink, J., R. Luettich, J. Feyen, et al, 2008. Month. Weather Rev., 136, 833-864.

  10. The Sensitivity of WRF Daily Summertime Simulations over West Africa to Alternative Parameterizations. Part 1: African Wave Circulation

    NASA Technical Reports Server (NTRS)

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2014-01-01

    The performance of the NCAR Weather Research and Forecasting Model (WRF) as a West African regional-atmospheric model is evaluated. The study tests the sensitivity of WRF-simulated vorticity maxima associated with African easterly waves to 64 combinations of alternative parameterizations in a series of simulations in September. In all, 104 simulations of 12-day duration during 11 consecutive years are examined. The 64 combinations combine WRF parameterizations of cumulus convection, radiation transfer, surface hydrology, and PBL physics. Simulated daily and mean circulation results are validated against NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) and NCEP/Department of Energy Global Reanalysis 2. Precipitation is considered in a second part of this two-part paper. A wide range of 700-hPa vorticity validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve correlations against reanalysis of 0.40-0.60 and realistic amplitudes of spatiotemporal variability for the 2006 focus year while a parallel-benchmark simulation by the NASA Regional Model-3 (RM3) achieves higher correlations, but less realistic spatiotemporal variability. The largest favorable impact on WRF-vorticity validation is achieved by selecting the Grell-Devenyi cumulus convection scheme, resulting in higher correlations against reanalysis than simulations using the Kain-Fritch convection. Other parameterizations have less-obvious impact, although WRF configurations incorporating one surface model and PBL scheme consistently performed poorly. A comparison of reanalysis circulation against two NASA radiosonde stations confirms that both reanalyses represent observations well enough to validate the WRF results. Validation statistics for optimized WRF configurations simulating the parallel period during 10 additional years are less favorable than for 2006.

  11. Capabilities of current wildfire models when simulating topographical flow

    NASA Astrophysics Data System (ADS)

    Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.

    2009-12-01

    Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.

  12. WRF4SG: A Scientific Gateway for climate experiment workflows

    NASA Astrophysics Data System (ADS)

    Blanco, Carlos; Cofino, Antonio S.; Fernandez-Quiruelas, Valvanuz

    2013-04-01

    The Weather Research and Forecasting model (WRF) is a community-driven and public domain model widely used by the weather and climate communities. As opposite to other application-oriented models, WRF provides a flexible and computationally-efficient framework which allows solving a variety of problems for different time-scales, from weather forecast to climate change projection. Furthermore, WRF is also widely used as a research tool in modeling physics, dynamics, and data assimilation by the research community. Climate experiment workflows based on Weather Research and Forecasting (WRF) are nowadays among the one of the most cutting-edge applications. These workflows are complex due to both large storage and the huge number of simulations executed. In order to manage that, we have developed a scientific gateway (SG) called WRF for Scientific Gateway (WRF4SG) based on WS-PGRADE/gUSE and WRF4G frameworks to ease achieve WRF users needs (see [1] and [2]). WRF4SG provides services for different use cases that describe the different interactions between WRF users and the WRF4SG interface in order to show how to run a climate experiment. As WS-PGRADE/gUSE uses portlets (see [1]) to interact with users, its portlets will support these use cases. A typical experiment to be carried on by a WRF user will consist on a high-resolution regional re-forecast. These re-forecasts are common experiments used as input data form wind power energy and natural hazards (wind and precipitation fields). In the cases below, the user is able to access to different resources such as Grid due to the fact that WRF needs a huge amount of computing resources in order to generate useful simulations: * Resource configuration and user authentication: The first step is to authenticate on users' Grid resources by virtual organizations. After login, the user is able to select which virtual organization is going to be used by the experiment. * Data assimilation: In order to assimilate the data sources, the user has to select them browsing through LFC Portlet. * Design Experiment workflow: In order to configure the experiment, the user will define the type of experiment (i.e. re-forecast), and its attributes to simulate. In this case the main attributes are: the field of interest (wind, precipitation, ...), the start and end date simulation and the requirements of the experiment. * Monitor workflow: In order to monitor the experiment the user will receive notification messages based on events and also the gateway will display the progress of the experiment. * Data storage: Like Data assimilation case, the user is able to browse and view the output data simulations using LFC Portlet. The objectives of WRF4SG can be described by considering two goals. The first goal is to show how WRF4SG facilitates to execute, monitor and manage climate workflows based on the WRF4G framework. And the second goal of WRF4SG is to help WRF users to execute their experiment workflows concurrently using heterogeneous computing resources such as HPC and Grid. [1] Kacsuk, P.: P-GRADE portal family for grid infrastructures. Concurrency and Computation: Practice and Experience. 23, 235-245 (2011). [2] http://www.meteo.unican.es/software/wrf4g

  13. Hydrological Modeling in Alaska with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  14. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2015-09-30

    to conduct WRF model experiments.  We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with the...level winds might be more important forcing for sea ice. In addition, evaluation of Polar- WRF simulations under different synoptic conditions will help

  15. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    NASA Technical Reports Server (NTRS)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using traditional verification methodologies. Output from object-based verification within NCAR s Meteorological Evaluation Tools reveals that the WRF runs initialized with LIS+MODIS data consistently generated precipitation objects that better matched observed precipitation objects, especially at higher precipitation intensities. The LIS+MODIS runs produced on average a 4% increase in matched precipitation areas and a simultaneous 4% decrease in unmatched areas during three months of daily simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  17. Sensitivity of the WRF model to the lower boundary in an extreme precipitation event - Madeira island case study

    NASA Astrophysics Data System (ADS)

    Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.

    2014-08-01

    The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.

  18. An evaluation of the performance of a WRF multi-physics ensemble for heatwave events over the city of Melbourne in southeast Australia

    NASA Astrophysics Data System (ADS)

    Imran, H. M.; Kala, J.; Ng, A. W. M.; Muthukumaran, S.

    2018-04-01

    Appropriate choice of physics options among many physics parameterizations is important when using the Weather Research and Forecasting (WRF) model. The responses of different physics parameterizations of the WRF model may vary due to geographical locations, the application of interest, and the temporal and spatial scales being investigated. Several studies have evaluated the performance of the WRF model in simulating the mean climate and extreme rainfall events for various regions in Australia. However, no study has explicitly evaluated the sensitivity of the WRF model in simulating heatwaves. Therefore, this study evaluates the performance of a WRF multi-physics ensemble that comprises 27 model configurations for a series of heatwave events in Melbourne, Australia. Unlike most previous studies, we not only evaluate temperature, but also wind speed and relative humidity, which are key factors influencing heatwave dynamics. No specific ensemble member for all events explicitly showed the best performance, for all the variables, considering all evaluation metrics. This study also found that the choice of planetary boundary layer (PBL) scheme had largest influence, the radiation scheme had moderate influence, and the microphysics scheme had the least influence on temperature simulations. The PBL and microphysics schemes were found to be more sensitive than the radiation scheme for wind speed and relative humidity. Additionally, the study tested the role of Urban Canopy Model (UCM) and three Land Surface Models (LSMs). Although the UCM did not play significant role, the Noah-LSM showed better performance than the CLM4 and NOAH-MP LSMs in simulating the heatwave events. The study finally identifies an optimal configuration of WRF that will be a useful modelling tool for further investigations of heatwaves in Melbourne. Although our results are invariably region-specific, our results will be useful to WRF users investigating heatwave dynamics elsewhere.

  19. Development of WRF-CO2 4DVAR Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zheng, T.; French, N. H. F.

    2016-12-01

    Four dimensional variational (4DVar) assimilation systems have been widely used for CO2 inverse modeling at global scale. At regional scale, however, 4DVar assimilation systems have been lacking. At present, most regional CO2 inverse models use Lagrangian particle backward trajectory tools to compute influence function in an analytical/synthesis framework. To provide a 4DVar based alternative, we developed WRF-CO2 4DVAR based on Weather Research and Forecasting (WRF), its chemistry extension (WRF-Chem), and its data assimilation system (WRFDA/WRFPLUS). Different from WRFDA, WRF-CO2 4DVAR does not optimize meteorology initial condition, instead it solves for the optimized CO2 surface fluxes (sources/sink) constrained by atmospheric CO2 observations. Based on WRFPLUS, we developed tangent linear and adjoint code for CO2 emission, advection, vertical mixing in boundary layer, and convective transport. Furthermore, we implemented an incremental algorithm to solve for optimized CO2 emission scaling factors by iteratively minimizing the cost function in a Bayes framework. The model sensitivity (of atmospheric CO2 with respect to emission scaling factor) calculated by tangent linear and adjoint model agrees well with that calculated by finite difference, indicating the validity of the newly developed code. The effectiveness of WRF-CO2 4DVar for inverse modeling is tested using forward-model generated pseudo-observation data in two experiments: first-guess CO2 fluxes has a 50% overestimation in the first case and 50% underestimation in the second. In both cases, WRF-CO2 4DVar reduces cost function to less than 10-4 of its initial values in less than 20 iterations and successfully recovers the true values of emission scaling factors. We expect future applications of WRF-CO2 4DVar with satellite observations will provide insights for CO2 regional inverse modeling, including the impacts of model transport error in vertical mixing.

  20. SMOS Soil Moisture Data Assimilation in the NASA Land Information System: Impact on LSM Initialization and NWP Forecasts

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan L.; Zavodsky, Bradley

    2015-01-01

    Land surface models are important components of numerical weather prediction (NWP) models, partitioning incoming energy into latent and sensitive heat fluxes that affect boundary layer growth and destabilization. During warm-season months, diurnal heating and convective initiation depend strongly on evapotranspiration and available boundary layer moisture, which are substantially affected by soil moisture content. Therefore, to properly simulate warm-season processes in NWP models, an accurate initialization of the land surface state is important for accurately depicting the exchange of heat and moisture between the surface and boundary layer. In this study, soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) satellite radiometer are assimilated into the Noah Land Surface Model via an Ensemble Kalman Filter embedded within the NASA Land Information System (LIS) software framework. The output from LIS-Noah is subsequently used to initialize runs of the Weather Research and Forecasting (WRF) NWP model. The impact of assimilating SMOS retrievals is assessed by initializing the WRF model with LIS-Noah output obtained with and without SMOS data assimilation. The southeastern United States is used as the domain for a preliminary case study. During the summer months, there is extensive irrigation in the lower Mississippi Valley for rice and other crops. The irrigation is not represented in the meteorological forcing used to drive the LIS-Noah integration, but the irrigated areas show up clearly in the SMOS soil moisture retrievals, resulting in a case with a large difference in initial soil moisture conditions. The impact of SMOS data assimilation on both Noah soil moisture fields and on short-term (0-48 hour) WRF weather forecasts will be presented.

  1. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  2. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with assimilation and the runs without assimilation demonstrates the importance of SIZRS dropsonde data to the improvement of atmospheric analysis and reanalysis such as GFS and ERA-Interim, and consequently to the improvement of weather forecast in this region.

  3. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  4. A simple nudging scheme to assimilate ASCAT soil moisture data in the WRF model

    NASA Astrophysics Data System (ADS)

    Capecchi, V.; Gozzini, B.

    2012-04-01

    The present work shows results obtained in a numerical experiment using the WRF (Weather and Research Forecasting, www.wrf-model.org) model. A control run where soil moisture is constrained by GFS global analysis is compared with a test run where soil moisture analysis is obtained via a simple nudging scheme using ASCAT data. The basic idea of the assimilation scheme is to "nudge" the first level (0-10 cm below ground in NOAH model) of volumetric soil moisture of the first-guess (say θ(b,1) derived from global model) towards the ASCAT derived value (say ^θ A). The soil moisture analysis θ(a,1) is given by: { θ + K (^θA - θ ) l = 1 θ(a,1) = θ(b,l) (b,l) l > 1 (b,l) (1) where l is the model soil level. K is a constant scalar value that is user specified and in this study it is equal to 0.2 (same value as in similar studies). Soil moisture is critical for estimating latent and sensible heat fluxes as well as boundary layer structure. This parameter is, however, poorly assimilated in current global and regional numerical models since no extensive soil moisture observation network exists. Remote sensing technologies offer a synoptic view of the dynamics and spatial distribution of soil moisture with a frequent temporal coverage and with a horizontal resolution similar to mesoscale NWP model. Several studies have shown that measurements of normalized backscatter (surface soil wetness) from the Advanced Scatterometer (ASCAT) operating at microwave frequencies and boarded on the meteorological operational (Metop) satellite, offer quality information about surface soil moisture. Recently several studies deal with the implementation of simple assimilation procedures (nudging, Extended Kalman Filter, etc...) to integrate ASCAT data in NWP models. They found improvements in screen temperature predictions, particularly in areas such as North-America and in the Tropics, where it is strong the land-atmosphere coupling. The ECMWF (Newsletter No. 127) is currently implementing and testing an EKF for combining conventional observations and remote sensed soil moisture data in order to produce a more accurate analysis. In the present work verification skills (RMSE, BIAS, correlation) of both control and test run are presented using observed data collected by International Soil Moisture Network. Moreover improvements in temperature predictions are evaluated.

  5. Plasma Neutrophil Gelatinase-Associated Lipocalin and Predicting Clinically Relevant Worsening Renal Function in Acute Heart Failure

    PubMed Central

    Damman, Kevin; A.E. Valente, Mattia; J. van Veldhuisen, Dirk; G.F. Cleland, John; M. O’Connor, Christopher; Metra, Marco; Ponikowski, Piotr; Cotter, Gad; Davison, Beth; M. Givertz, Michael; M. Bloomfield, Daniel; L. Hillege, Hans; A. Voors, Adriaan

    2017-01-01

    The aim of this study was to evaluate the ability of Neutrophil Gelatinase-Associated Lipocalin (NGAL) to predict clinically relevant worsening renal function (WRF) in acute heart failure (AHF). Plasma NGAL and serum creatinine changes during the first 4 days of admission were investigated in 1447 patients hospitalized for AHF and enrolled in the Placebo-Controlled Randomized Study of the Selective A1Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized with Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function (PROTECT) study. WRF was defined as serum creatinine rise ≥ 0.3 mg/dL through day 4. Biomarker patterns were described using linear mixed models. WRF developed in 325 patients (22%). Plasma NGAL did not rise earlier than creatinine in patients with WRF. After multivariable adjustment, baseline plasma NGAL, but not creatinine, predicted WRF. AUCs for WRF prediction were modest (<0.60) for all models. NGAL did not independently predict death or rehospitalization (p = n.s.). Patients with WRF and high baseline plasma NGAL had a greater risk of death, and renal or cardiovascular rehospitalization by 60 days than patients with WRF and a low baseline plasma NGAL (p for interaction = 0.024). A rise in plasma NGAL after baseline was associated with a worse outcome in patients with WRF, but not in patients without WRF (p = 0.007). On the basis of these results, plasma NGAL does not provide additional, clinically relevant information about the occurrence of WRF in patients with AHF. PMID:28698481

  6. Plasma Neutrophil Gelatinase-Associated Lipocalin and Predicting Clinically Relevant Worsening Renal Function in Acute Heart Failure.

    PubMed

    Damman, Kevin; Valente, Mattia A E; van Veldhuisen, Dirk J; Cleland, John G F; O'Connor, Christopher M; Metra, Marco; Ponikowski, Piotr; Cotter, Gad; Davison, Beth; Givertz, Michael M; Bloomfield, Daniel M; Hillege, Hans L; Voors, Adriaan A

    2017-07-08

    The aim of this study was to evaluate the ability of Neutrophil Gelatinase-Associated Lipocalin (NGAL) to predict clinically relevant worsening renal function (WRF) in acute heart failure (AHF). Plasma NGAL and serum creatinine changes during the first 4 days of admission were investigated in 1447 patients hospitalized for AHF and enrolled in the Placebo-Controlled Randomized Study of the Selective A₁Adenosine Receptor Antagonist Rolofylline for Patients Hospitalized with Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function (PROTECT) study. WRF was defined as serum creatinine rise ≥ 0.3 mg/dL through day 4. Biomarker patterns were described using linear mixed models. WRF developed in 325 patients (22%). Plasma NGAL did not rise earlier than creatinine in patients with WRF. After multivariable adjustment, baseline plasma NGAL, but not creatinine, predicted WRF. AUCs for WRF prediction were modest (<0.60) for all models. NGAL did not independently predict death or rehospitalization ( p = n.s.). Patients with WRF and high baseline plasma NGAL had a greater risk of death, and renal or cardiovascular rehospitalization by 60 days than patients with WRF and a low baseline plasma NGAL (p for interaction = 0.024). A rise in plasma NGAL after baseline was associated with a worse outcome in patients with WRF, but not in patients without WRF ( p = 0.007). On the basis of these results, plasma NGAL does not provide additional, clinically relevant information about the occurrence of WRF in patients with AHF.

  7. Research on numerical simulation technology about regional important pollutant diffusion of haze

    NASA Astrophysics Data System (ADS)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  8. Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano

    2016-04-01

    Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).

  9. Implementing Network Common Data Form (netCDF) for the 3DWF Model

    DTIC Science & Technology

    2016-02-01

    format. In addition, data extraction from netCDF-formatted Weather Research and Forecasting ( WRF ) model results necessary for the 3DWF model’s wind...Requirement for the 3DWF Model 1 3. Implementing netCDF to the 3DWF Model 2 3.1 Weather Research and Forecasting ( WRF ) domain and results 3 3.2...Extracting Variables from netCDF Formatted WRF Data File 5 3.3 Converting the 3DWF’s Results into netCDF 11 4. Conclusion 14 5. References 15 Appendix

  10. Using the Random Nearest Neighbor Data Mining Method to Extract Maximum Information Content from Weather Forecasts from Multiple Predictors of Weather and One Predictand (Low-Level Turbulence)

    DTIC Science & Technology

    2014-10-30

    Force Weather Agency (AFWA) WRF 15-km atmospheric model forecast data and low-level turbulence. Archives of historical model data forecast predictors...Relationships between WRF model predictors and PIREPS were developed using the new data mining methodology. The new methodology was inspired...convection. Predictors of turbulence were collected from the AFWA WRF 15km model, and corresponding PIREPS (the predictand) were collected between 2013

  11. Improved cyberinfrastructure for integrated hydrometeorological predictions within the fully-coupled WRF-Hydro modeling system

    NASA Astrophysics Data System (ADS)

    gochis, David; hooper, Rick; parodi, Antonio; Jha, Shantenu; Yu, Wei; Zaslavsky, Ilya; Ganapati, Dinesh

    2014-05-01

    The community WRF-Hydro system is currently being used in a variety of flood prediction and regional hydroclimate impacts assessment applications around the world. Despite its increasingly wide use certain cyberinfrastructure bottlenecks exist in the setup, execution and post-processing of WRF-Hydro model runs. These bottlenecks result in wasted time, labor, data transfer bandwidth and computational resource use. Appropriate development and use of cyberinfrastructure to setup and manage WRF-Hydro modeling applications will streamline the entire workflow of hydrologic model predictions. This talk will present recent advances in the development and use of new open-source cyberinfrastructure tools for the WRF-Hydro architecture. These tools include new web-accessible pre-processing applications, supercomputer job management applications and automated verification and visualization applications. The tools will be described successively and then demonstrated in a set of flash flood use cases for recent destructive flood events in the U.S. and in Europe. Throughout, an emphasis on the implementation and use of community data standards for data exchange is made.

  12. The Another Assimilation System for WRF-Chem (AAS4WRF): a new mass-conserving emissions pre-processor for WRF-Chem regional modelling

    NASA Astrophysics Data System (ADS)

    Vara Vela, A. L.; Muñoz, A.; Lomas, A., Sr.; González, C. M.; Calderon, M. G.; Andrade, M. D. F.

    2017-12-01

    The Weather Research and Forecasting with Chemistry (WRF-Chem) community model have been widely used for the study of pollutants transport, formation of secondary pollutants, as well as for the assessment of air quality policies implementation. A key factor to improve the WRF-Chem air quality simulations over urban areas is the representation of anthropogenic emission sources. There are several tools that are available to assist users in creating their own emissions based on global emissions information (e.g. anthro_emiss, prep_chem_src); however, there is no single tool that will construct local emissions input datasets for any particular domain at this time. Because the official emissions pre-processor (emiss_v03) is designed to work with domains located over North America, this work presents the Another Assimilation System for WRF-Chem (AAS4WRF), a ncl based mass-conserving emissions pre-processor designed to create WRF-Chem ready emissions files from local inventories on a lat/lon projection. AAS4WRF is appropriate to scale emission rates from both surface and elevated sources, providing the users an alternative way to assimilate their emissions to WRF-Chem. Since it was successfully tested for the first time for the city of Lima, Peru in 2014 (managed by SENAMHI, the National Weather Service of the country), several studies on air quality modelling have applied this utility to convert their emissions to those required for WRF-Chem. Two case studies performed in the metropolitan areas of Sao Paulo and Manizales in Brazil and Colombia, respectively, are here presented in order to analyse the influence of using local or global emission inventories in the representation of regulated air pollutants such as O3 and PM2.5. Although AAS4WRF works with local emissions information at the moment, further work is being conducted to make it compatible with global/regional emissions data file format. The tool is freely available upon request to the corresponding author.

  13. A Robust Multi-Scale Modeling System for the Study of Cloud and Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2012-01-01

    During the past decade, numerical weather and global non-hydrostatic models have started using more complex microphysical schemes originally developed for high resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. These microphysical schemes affect the dynamic through the release of latent heat (buoyancy loading and pressure gradient) the radiation through the cloud coverage (vertical distribution of cloud species), and surface processes through rainfall (both amount and intensity). Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving model (Goddard Cumulus Ensemble, GCE, model) and regional scale (Weather Research and Forecast, WRF) model. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2010); a 4-ICE (cloud ice, snow, graupel and hail) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. The performance of these schemes has been evaluated by using observational data from TRMM and other major field campaigns. In this talk, we will present the high-resolution (1 km) GeE and WRF model simulations and compared the simulated model results with observation from recent field campaigns [i.e., midlatitude continental spring season (MC3E; 2010), high latitude cold-season (C3VP, 2007; GCPEx, 2012), and tropical oceanic (TWP-ICE, 2006)].

  14. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    DOE PAGES

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  15. Numerical Modeling of Persistent Winter Fog over the Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Ghimire, S.; Adhikary, B.; Praveen, P. S.; Panday, A. K.

    2017-12-01

    Every winter the Indo-Gangetic Plains (IGP) in northern South Asia; bounded by the great Himalayas in the north, are periodically covered by dense and persistent fog that severely impacts day-to-day activities of several hundred million people. The fog can stretch over several hundred kilometers and last several days in many locations. Despite the fog's high impact, there are very limited in-situ observations available to characterize persistent fog episodes. Also, there has been very little success to date in accurately predicting the fog occurrence and extent over a larger area such as IGP. This study will present insights into the performance of the Weather Research and Forecasting (WRF) model simulating persistent winter fog prediction in the IGP region, compared to satellite observations and in-situ measurements. Since fog is not a prognostic variable in WRF, the study presents results based on multi-rule diagnostic algorithms published in peer reviewed journals. In addition, fog episodes were analyzed using the Air Force Weather Agency (AFWA) diagnostics package available for WRF. On a regional scale, MODIS data onboard the TERRA and AQUA satellites are used to evaluate model performance skills. At a local scale, the model is evaluated at two sites in the southern Nepal, Lumbini and Chitwan, located in the IGP. Lumbini and Chitwan observatories have Luftt and Biral weather sensors which allow monitoring presence of fog, visibility range and surface meteorology. In addition, for Chitwan, data from DMT Fog Monitor (FM 120) and Luftt CHM 15K Ceilometer were used to compare model performance for liquid-water content and planetary boundary layer during foggy and non-foggy days.

  16. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, K A

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.more » First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.« less

  17. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  18. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  19. Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa; hide

    2012-01-01

    In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.

  20. The prognostic importance of worsening renal function during an acute myocardial infarction on long-term mortality.

    PubMed

    Amin, Amit P; Spertus, John A; Reid, Kimberly J; Lan, Xiao; Buchanan, Donna M; Decker, Carole; Masoudi, Frederick A

    2010-12-01

    Although an acute worsening in renal function (WRF) commonly occurs among patients hospitalized for acute myocardial infarction (AMI), its long-term prognostic significance is unknown. We examined predictors of WRF and its association with 4-year mortality. Acute myocardial infarction patients from the multicenter PREMIER study (N=2,098) who survived to hospital discharge were followed for at least 4 years. Worsening in renal function was defined as an increase in creatinine during hospitalization of ≥0.3 mg/dL above the admission value. Correlates of WRF were determined with multivariable logistic regression models and used, along with other important clinical covariates, in Cox proportional hazards models to define the independent association between WRF and mortality. Worsening in renal function was observed in 393 (18.7%) of AMI survivors. Diabetes, left ventricular systolic dysfunction, and a history of chronic kidney disease (documented history of renal failure with baseline creatinine>2.5 mg/dL) were independently associated with WRF. During 4-year follow-up, 386 (18.6%) patients died. Mortality was significantly higher in the WRF group (36.6% vs 14.4% in those without WRF, P<.001). After adjusting for other factors associated with WRF and long-term mortality, including baseline creatinine, WRF was independently associated with a higher risk of death (hazard ratio=1.64, 95% CI 1.23-2.19). Worsening in renal function occurs in approximately 1 of 6 AMI survivors and is independently associated with an adverse long-term prognosis. Further studies on interventions to minimize WRF or to more aggressively treat patients developing WRF should be tested. Copyright © 2010 Mosby, Inc. All rights reserved.

  1. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.

  2. Development of Physics-Based Hurricane Wave Response Functions: Application to Selected Sites on the U.S. Gulf Coast

    NASA Astrophysics Data System (ADS)

    McLaughlin, P. W.; Kaihatu, J. M.; Irish, J. L.; Taylor, N. R.; Slinn, D.

    2013-12-01

    Recent hurricane activity in the Gulf of Mexico has led to a need for accurate, computationally efficient prediction of hurricane damage so that communities can better assess risk of local socio-economic disruption. This study focuses on developing robust, physics based non-dimensional equations that accurately predict maximum significant wave height at different locations near a given hurricane track. These equations (denoted as Wave Response Functions, or WRFs) were developed from presumed physical dependencies between wave heights and hurricane characteristics and fit with data from numerical models of waves and surge under hurricane conditions. After curve fitting, constraints which correct for fully developed sea state were used to limit the wind wave growth. When applied to the region near Gulfport, MS, back prediction of maximum significant wave height yielded root mean square errors between 0.22-0.42 (m) at open coast stations and 0.07-0.30 (m) at bay stations when compared to the numerical model data. The WRF method was also applied to Corpus Christi, TX and Panama City, FL with similar results. Back prediction errors will be included in uncertainty evaluations connected to risk calculations using joint probability methods. These methods require thousands of simulations to quantify extreme value statistics, thus requiring the use of reduced methods such as the WRF to represent the relevant physical processes.

  3. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  4. Impact of assimilation of conventional and satellite meteorological observations on the numerical simulation of a Bay of Bengal Tropical Cyclone of November 2008 near Tamilnadu using WRF model

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Yesubabu, V.; Venkatesan, R.; Ramarkrishna, S. S. V. S.

    2010-12-01

    The objective of this study is to examine the impact of assimilation of conventional and satellite data on the prediction of a severe cyclonic storm that formed in the Bay of Bengal during November 2008 with the four-dimensional data assimilation (FDDA) technique. The Weather Research and Forecasting (WRF ARW) model was used to study the structure, evolution, and intensification of the storm. Five sets of numerical simulations were performed using the WRF. In the first one, called Control run, the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) was used for the initial and boundary conditions. In the remaining experiments available observations were used to obtain an improved analysis and FDDA grid nudging was performed for a pre-forecast period of 24 h. The second simulation (FDDAALL) was performed with all the data of the Quick Scatterometer (QSCAT), Special Sensor Microwave Imager (SSM/I) winds, conventional surface, and upper air meteorological observations. QSCAT wind alone was used in the third simulation (FDDAQSCAT), the SSM/I wind alone in the fourth (FDDASSMI) and the conventional observations alone in the fifth (FDDAAWS). The FDDAALL with assimilation of all observations, produced sea level pressure pattern closely agreeing with the analysis. Examination of various parameters indicated that the Control run over predicted the intensity of the storm with large error in its track and landfall position. The assimilation experiment with QSCAT winds performed marginally better than the one with SSM/I winds due to better representation of surface wind vectors. The FDDAALL outperformed all the simulations for the intensity, movement, and rainfall associated with the storm. Results suggest that the combination of land-based surface, upper air observations along with satellite winds for assimilation produced better prediction than the assimilation with individual data sets.

  5. WRF model performance under flash-flood associated rainfall

    NASA Astrophysics Data System (ADS)

    Mejia-Estrada, Iskra; Bates, Paul; Ángel Rico-Ramírez, Miguel

    2017-04-01

    Understanding the natural processes that precede the occurrence of flash floods is crucial to improve the future flood projections in a changing climate. Using numerical weather prediction tools allows to determine one of the triggering conditions for these particularly dangerous events, difficult to forecast due to their short lead-time. However, simulating the spatial and temporal evolution of the rainfall that leads to a rapid rise in river levels requires determining the best model configuration without compromising the computational efficiency. The current research involves the results of the first part of a cascade modeling approach, where the Weather Research and Forecasting (WRF) model is used to simulate the heavy rainfall in the east of the UK in June 2012 when stationary thunderstorms caused 2-hour accumulated values to match those expected in the whole month of June over the city of Newcastle. The optimum model set-up was obtained after extensive testing regarding physics parameterizations, spin-up times, datasets used as initial conditions and model resolution and nesting, hence determining its sensitivity to reproduce localised events of short duration. The outputs were qualitatively and quantitatively assessed using information from the national weather radar network as well as interpolated rainfall values from gauges, respectively. Statistical and skill score values show that the model is able to produce reliable accumulated precipitation values while explicitly solving the atmospheric equations in high resolution domains as long as several hydrometeors are considered with a spin-up time that allows the model to assimilate the initial conditions without going too far back in time from the event of interest. The results from the WRF model will serve as input to run a semi-distributed hydrological model to determine the rainfall-runoff relationship within an uncertainty assessment framework that will allow evaluating the implications of assumptions at the top of the modeling process in the final outputs of the cascade.

  6. Inconsistencies in the Weather Research and Forecasting Model of the Marine Boundary Layer Along the Coast of California

    NASA Astrophysics Data System (ADS)

    Fisher, Andrew M.

    The late spring and summer low-level wind field along the California coast is primarily controlled by the pressure gradient between the Pacific high and the thermal low over the desert southwest. Strong northwesterly winds within the marine boundary layer (MBL) are common and the flow is often described as a two-layer shallow water hydraulic system, capped above by subsidence and bounded laterally by high coastal topography. Hydraulic features such as an expansion fan can occur near major coastal headlands. Numerical simulations using the Weather Research and Forecasting (WRF) modeling system were conducted over a two-month period and compared to observations from several buoy stations and aircraft measurements from the Precision Atmospheric Marine Boundary Layer Experiment (PreAMBLE). Model performance of the atmospheric adjustment near the Point Arguello and Point Conception (PAPC) headlands and into the Santa Barbara Channel (SBC) is assessed. Substantial inconsistencies are revealed, especially in the SBC. The strength of the synoptic forcing impacts model performance upstream of PAPC. The model maintains stronger winds than observed under weak forcing regimes, inadequately representing periods of wind relaxation. The large-scale forcing has minimal impact on the flow in the SBC, where poor modeling of the MBL characteristics exists throughout the entire period. Similar results are found in the coarser North American Mesoscale (NAM) model. In general, WRF overestimates the wind speed around PAPC and the expansion fan extends too far into the SBC. Previous conceptual models were based on similar flawed model results and limited observations. PreAMBLE measurements reveal a more complex lower atmosphere in the SBC than the simulations can represent. Mischaracterization of surface wind stress in the SBC has implications for forcing ocean models with WRF. Understanding model biases of the vertical profile of temperature and humidity are also critical to several national defense agencies with interests in atmospheric refractivity conditions and its impact on their operations.

  7. GPU-Accelerated Stony-Brook University 5-class Microphysics Scheme in WRF

    NASA Astrophysics Data System (ADS)

    Mielikainen, J.; Huang, B.; Huang, A.

    2011-12-01

    The Weather Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather prediction system. Microphysics plays an important role in weather and climate prediction. Several bulk water microphysics schemes are available within the WRF, with different numbers of simulated hydrometeor classes and methods for estimating their size fall speeds, distributions and densities. Stony-Brook University scheme (SBU-YLIN) is a 5-class scheme with riming intensity predicted to account for mixed-phase processes. In the past few years, co-processing on Graphics Processing Units (GPUs) has been a disruptive technology in High Performance Computing (HPC). GPUs use the ever increasing transistor count for adding more processor cores. Therefore, GPUs are well suited for massively data parallel processing with high floating point arithmetic intensity. Thus, it is imperative to update legacy scientific applications to take advantage of this unprecedented increase in computing power. CUDA is an extension to the C programming language offering programming GPU's directly. It is designed so that its constructs allow for natural expression of data-level parallelism. A CUDA program is organized into two parts: a serial program running on the CPU and a CUDA kernel running on the GPU. The CUDA code consists of three computational phases: transmission of data into the global memory of the GPU, execution of the CUDA kernel, and transmission of results from the GPU into the memory of CPU. CUDA takes a bottom-up point of view of parallelism is which thread is an atomic unit of parallelism. Individual threads are part of groups called warps, within which every thread executes exactly the same sequence of instructions. To test SBU-YLIN, we used a CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001. A WRF domain is a geographic region of interest discretized into a 2-dimensional grid parallel to the ground. Each grid point has multiple levels, which correspond to various vertical heights in the atmosphere. The size of the CONUS 12 km domain is 433 x 308 horizontal grid points with 35 vertical levels. First, the entire SBU-YLIN Fortran code was rewritten in C in preparation of GPU accelerated version. After that, C code was verified against Fortran code for identical outputs. Default compiler options from WRF were used for gfortran and gcc compilers. The processing time for the original Fortran code is 12274 ms and 12893 ms for C version. The processing times for GPU implementation of SBU-YLIN microphysics scheme with I/O are 57.7 ms and 37.2 ms for 1 and 2 GPUs, respectively. The corresponding speedups are 213x and 330x compared to a Fortran implementation. Without I/O the speedup is 896x on 1 GPU. Obviously, ignoring I/O time speedup scales linearly with GPUs. Thus, 2 GPUs have a speedup of 1788x without I/O. Microphysics computation is just a small part of the whole WRF model. After having completely implemented WRF on GPU, the inputs for SBU-YLIN do not have to be transferred from CPU. Instead they are results of previous WRF modules. Therefore, the role of I/O is greatly diminished once all of WRF have been converted to run on GPUs. In the near future, we expect to have a WRF running completely on GPUs for a superior performance.

  8. Verification of a Non-Hydrostatic Dynamical Core Using Horizontally Spectral Element Vertically Finite Difference Method: 2D Aspects

    DTIC Science & Technology

    2014-04-01

    hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In

  9. The polar WRF downscaled historical and projected 21st century climate for the coast and foothills of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Gädeke, Anne

    2018-01-01

    Climate change is most pronounced in the northern high latitude region. Yet, climate observations are unable to fully capture regional-scale dynamics due to the sparse weather station coverage, which limits our ability to make reliable climate-based assessments. A set of simulated data products was therefore developed for the North Slope of Alaska through a dynamical downscaling approach. The polar-optimized Weather Research & Forecast (Polar WRF) model was forced by three sources: The ERA-interim reanalysis data (for 1979-2014), the Community Earth System Model 1.0 (CESM1.0) historical simulation (for 1950-2005), and the CESM1.0 projected (for 2006-2100) simulations in two Representative Concentration Pathways (RCP4.5 and RCP8.5) scenarios. Climatic variables were produced in a 10-km grid spacing and a 3-hour interval. The ERA-interim forced WRF (ERA-WRF) proves the value of dynamical downscaling, which yields more realistic topographical-induced precipitation and air temperature, as well as corrects underestimations in observed precipitation. In summary, dry and cold biases to the north of the Brooks Range are presented in ERA-WRF, while CESM forced WRF (CESM-WRF) holds wet and warm biases in its historical period. A linear scaling method allowed for an adjustment of the biases, while keeping the majority of the variability and extreme values of modeled precipitation and air temperature. CESM-WRF under RCP 4.5 scenario projects smaller increase in precipitation and air temperature than observed in the historical CESM-WRF product, while the CESM-WRF under RCP8.5 scenario shows larger changes. The fine spatial and temporal resolution, long temporal coverage, and multi-scenario projections jointly make the dataset appropriate to address a myriad of physical and biological changes occurring on the North Slope of Alaska.

  10. Precipitation From a Multiyear Database of Convection-Allowing WRF Simulations

    NASA Astrophysics Data System (ADS)

    Goines, D. C.; Kennedy, A. D.

    2018-03-01

    Convection-allowing models (CAMs) have become frequently used for operational forecasting and, more recently, have been utilized for general circulation model downscaling. CAM forecasts have typically been analyzed for a few case studies or over short time periods, but this limits the ability to judge the overall skill of deterministic simulations. Analysis over long time periods can yield a better understanding of systematic model error. Four years of warm season (April-August, 2010-2013)-simulated precipitation has been accumulated from two Weather Research and Forecasting (WRF) models with 4 km grid spacing. The simulations were provided by the National Center for Environmental Prediction (NCEP) and the National Severe Storms Laboratory (NSSL), each with different dynamic cores and parameterization schemes. These simulations are evaluated against the NCEP Stage-IV precipitation data set with similar 4 km grid spacing. The spatial distribution and diurnal cycle of precipitation in the central United States are analyzed using Hovmöller diagrams, grid point correlations, and traditional verification skill scoring (i.e., ETS; Equitable Threat Score). Although NCEP-WRF had a high positive error in total precipitation, spatial characteristics were similar to observations. For example, the spatial distribution of NCEP-WRF precipitation correlated better than NSSL-WRF for the Northern Plains. Hovmöller results exposed a delay in initiation and decay of diurnal precipitation by NCEP-WRF while both models had difficulty in reproducing the timing and location of propagating precipitation. ETS was highest for NSSL-WRF in all domains at all times. ETS was also higher in areas of propagating precipitation compared to areas of unorganized diurnal scattered precipitation. Monthly analysis identified unique differences between the two models in their abilities to correctly simulate the spatial distribution and zonal motion of precipitation through the warm season.

  11. WRF simulation over complex terrain during a southern California wildfire event

    NASA Astrophysics Data System (ADS)

    Lu, W.; Zhong, S.; Charney, J. J.; Bian, X.; Liu, S.

    2012-03-01

    In October 2007, the largest wildfire-related evacuation in California's history occurred as severe wildfires broke out across southern California. Smoke from these wildfires contributed to elevated pollutant concentrations in the atmosphere, affecting air quality in a vast region of the western United States. High-resolution numerical simulations were performed using the Weather Research and Forecast (WRF) model to understand the atmospheric conditions during the wildfire episode and how the complex circulation patterns might affect smoke transport and dispersion. The simulated meteorological fields were validated using surface and upper air observations in California and Nevada. To distinguish the performance of the WRF in different geographic regions, the surface stations were grouped into coastal sites, valley and basin sites, and mountain sites, and the results for the three categories were analyzed and intercompared. For temperature and moisture, the mountain category has the best agreement with the observations, while the coastal category was the worst. For wind, the model performance for the three categories was very similar. The flow patterns over complex terrain were also analyzed under different synoptic conditions and the possible impact of the terrain on smoke and pollutant pathways is analyzed by employing a Lagrangian Particle Dispersion Model. When high mountains prevent the smoke from moving inland, the mountain passes act as active pathways for smoke transport; meanwhile, chimney effect helps inject the pollutants to higher levels, where they are transported regionally. The results highlight the role of complex topography in the assessment of the possible smoke transport patterns in the region.

  12. Ship Observations and Numerical Simulation of the Marine Atmosphericboundary Layer over the Spring Oceanic Front in the Northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shi, R.; Chen, J.; Guo, X.; Zeng, L.; Li, J.; Xie, Q.; Wang, X.

    2017-12-01

    The response of the marine atmospheric boundary layer (MABL) structure to an oceanic front is analyzed using Global Positioning System (GPS) sounding data obtained during a survey in the northwestern South China Sea (NSCS) over a period of about one week in April 2013. The Weather Research and Forecasting (WRF) model is used to further examine the thermodynamical mechanisms of the MABL's response to the front. The WRF model successfully simulates the change in the MABL structure across the front, which agrees well with the observations. The spatially high-pass-filtered fields of sea surface temperature (SST) and 10-m neutral equivalent wind from the WRF model simulation show a tight, positive coupling between the SST and surface winds near the front. Meanwhile, the SST front works as a damping zone to reduce the enhancement of wind blowing from the warm to the cold side of the front in the lower boundary layer. Analysis of the momentum budget shows that the most active and significant term affecting horizontal momentum over the frontal zone is the adjustment of the pressure gradient. It is found that the front in the NSCS is wide enough for slowly moving air parcels to be affected by the change in underlying SST. The different thermal structure upwind and downwind of the front causes a baroclinic adjustment of the perturbation pressure from the surface to the mid-layer of the MABL, which dominates the change in the wind profile across the front.

  13. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    NASA Astrophysics Data System (ADS)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  14. Using a Coupled Lake Model with WRF for Dynamical Downscaling

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is used to downscale a coarse reanalysis (National Centers for Environmental Prediction–Department of Energy Atmospheric Model Intercomparison Project reanalysis, hereafter R2) as a proxy for a global climate model (GCM) to examine...

  15. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  16. Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project

    NASA Astrophysics Data System (ADS)

    Wang, Pinya; Tang, Jianping; Sun, Xuguang; Liu, Jianyong; Juan, Fang

    2018-03-01

    Using the Weather Research and Forecasting (WRF) model, this paper analyzes the spatiotemporal features of heat waves in 20-year regional climate simulations over East Asia, and investigates the capability of WRF to reproduce observational heat waves in China. Within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the WRF model is driven by the ERA-Interim (ERAIN) reanalysis, and five continuous simulations are conducted from 1989 to 2008. Of these, four runs apply the interior spectral nudging (SN) technique with different wavenumbers, nudging variables and nudging coefficients. Model validations show that WRF can reasonably reproduce the spatiotemporal features of heat waves in China. Compared with the experiment without SN, the application of SN is effectie on improving the skill of the model in simulating both the spatial distributions and temporal variations of heat waves of different intensities. The WRF model shows advantages in reproducing the synoptic circulations with SN and therefore yields better representations for heat wave events. Besides, the SN method is able to preserve the variability of large-scale circulations quite well, which in turn adjusts the extreme temperature variability towards the observation. Among the four SN experiments, those with stronger nudging coefficients perform better in modulating both the spatial and temporal features of heat waves. In contrast, smaller nudging coefficients weaken the effects of SN on improving WRF's performances.

  17. Weather Research and Forecasting model simulation of an onshore wind farm: assessment against LiDAR and SCADA data

    NASA Astrophysics Data System (ADS)

    Santoni, Christian; Garcia-Cartagena, Edgardo J.; Zhan, Lu; Iungo, Giacomo Valerio; Leonardi, Stefano

    2017-11-01

    The integration of wind farm parameterizations into numerical weather prediction models is essential to study power production under realistic conditions. Nevertheless, recent models are unable to capture turbine wake interactions and, consequently, the mean kinetic energy entrainment, which are essential for the development of power optimization models. To address the study of wind turbine wake interaction, one-way nested mesoscale to large-eddy simulation (LES) were performed using the Weather Research and Forecasting model (WRF). The simulation contains five nested domains modeling the mesoscale wind on the entire North Texas Panhandle region to the microscale wind fluctuations and turbine wakes of a wind farm located at Panhandle, Texas. The wind speed, direction and boundary layer profile obtained from WRF were compared against measurements obtained with a sonic anemometer and light detection and ranging system located within the wind farm. Additionally, the power production were assessed against measurements obtained from the supervisory control and data acquisition system located in each turbine. Furthermore, to incorporate the turbines into very coarse LES, a modification to the implementation of the wind farm parameterization by Fitch et al. (2012) is proposed. This work was supported by the NSF, Grants No. 1243482 (WINDINSPIRE) and IIP 1362033 (WindSTAR), and TACC.

  18. Role of surface and subsurface lateral water flows on summer precipitation in a complex terrain region: A WRF-Hydro case-study for Southern Germany

    NASA Astrophysics Data System (ADS)

    Rummler, Thomas; Arnault, Joel; Gochis, David; Kunstmann, Harald

    2017-04-01

    Recent developments in hydrometeorological modeling aim towards more sophisticated treatment of terrestrial hydrologic processes. The standard version of the Weather Research and Forecasting (WRF) model describes terrestrial water transport as a purely vertical process. The hydrologically enhanced version of WRF, namely WRF-Hydro, does account for lateral terrestrial water flows, which allows for a more comprehensive process description of the interdependencies between water- and energy fluxes at the land-atmosphere interface. In this study, WRF and WRF-Hydro are applied to the Bavarian Alpine region in southern Germany, a complex terrain landscape in a relatively humid, mid-latitude climate. Simulation results are validated with gridded and station observation of precipitation, temperature and river discharge. Differences between WRF and WRF-Hydro results are investigated with a joint atmospheric-terrestrial water budget analysis. Changes in the partitioning in (near-) surface runoff and percolation are prominent. However, values for evapotranspiration ET feature only marginal variations, suggesting that soil moisture content is not a limiting factor of ET in this specific region. Simulated precipitation fields during isolated summertime events still show appreciable differences, while differences in large-scale, multi-day rainy periods are less substantial. These differences are mainly related to differences in the moisture in- and outflow terms of the atmospheric water budget induced by the surface and sub-surface lateral redistribution of soil moisture in WRF-Hydro.

  19. Effect of the Initial Vortex Size on Intensity Change in the WRF-ROMS Coupled Model

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Chan, Johnny C. L.

    2017-12-01

    Numerous studies have demonstrated that the tropical cyclone (TC) induced sea surface temperature (SST) cooling strongly depends on the preexisting oceanic condition and TC characteristics. However, very few focused on the correlation of SST cooling and the subsequent intensity with TC size. Therefore, a series of idealized numerical experiments are conducted using the Weather Research Forecasting (WRF) model coupled with the Regional Ocean Model System (ROMS) model to understand how the vortex size is related to SST cooling and subsequent intensity changes of a stationary TC-like vortex. In the uncoupled experiments, the radius of maximum wind (RMW) and size (radius of gale-force wind (R17)) both depend on the initial size within the 72 h simulation. The initially small vortex is smaller than the medium and large vortices throughout its life cycle and is the weakest. In other words, thermodynamic processes do not contribute as much to the R17 change as the dynamic processes proposed (e.g., angular momentum transport) in previous studies. In the coupled experiments, the area-averaged SST cooling induced by medium and large TCs within the inner-core region is comparable due to the similar surface winds and thus mixing in the ocean. Although a stronger SST cooling averaged within a larger region outside the inner-core is induced by the larger TC, the intensity of the larger TC is more intense. This is because that the enthalpy flux in the inner-core region is higher in the larger TC than that in the medium and small TCs.

  20. Coupled Stochastic Time-Inverted Lagrangian Transport/Weather Forecast and Research/Vegetation Photosynthesis and Respiration Model. Part II; Simulations of Tower-Based and Airborne CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter

    2007-01-01

    This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.

  1. Downscaling seasonal to centennial simulations on distributed computing infrastructures using WRF model. The WRF4G project

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.

    2013-12-01

    Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models, or seasonal. WRF4G is been used to run WRF simulations which are contributing to the CORDEX initiative and others projects like SPECS and EUPORIAS. This work is been partially funded by the European Regional Development Fund (ERDF) and the Spanish National R&D Plan 2008-2011 (CGL2011-28864)

  2. WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Tao, W.-K.; Matsui, T.; Cifelli, R.; Huo, A.; Lang, S.; Tokay, A.; Peters-Lidard, C.; Jackson, G.; Rutledge, S.; hide

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.

  3. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    EPA Science Inventory

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  4. The relationship between transient and persistent worsening renal function and mortality in patients with acute decompensated heart failure.

    PubMed

    Aronson, Doron; Burger, Andrew J

    2010-07-01

    Worsening renal function (WRF) is an ominous complication in patients with acute heart failure syndrome (AHFS). Few data are available with regard to the clinical implications of transient versus persistent WRF in this setting. We studied 467 patients with AHFS and creatinine measurements at baseline and on days 2, 5, 14, and 30. WRF (>/= 0.5 mg/dL increase in serum creatinine above baseline at any time point) was defined as persistent when serum creatinine remained >/= 0.5 mg/dL above baseline throughout day 30, and transient when creatinine levels subsequently decreased to < 0.5 mg/dL above baseline. WRF occurred in 115 patients, and was transient in 39 patients (33.9%). The 6-month mortality rates were 17.3%, 20.5%, and 46.1% in patients without WRF, transient WRF, and persistent WRF, respectively. In a multivariable Cox model, compared with patients with stable renal function, the adjusted hazard ratio for mortality was 0.8 (95% CI 0.4-1.7; P = .58) in patients with transient WRF and 3.2 (95% CI 2.1-5.0; P < .0001) in patients with persistent WRF. Transient WRF is frequent among patients with AHFS. Whereas persistent WRF portends increased mortality, transient WRF appears to be associated with a better outcome as compared with persistent renal failure. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Modeling of the Urban Heat Island (UHI) using WRF - Assessment of adaptation and mitigation strategies for the city of Stuttgart.

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Suppan, Peter; Emeis, Stefan

    2013-04-01

    Cities are warmer than their surroundings (called urban heat island, UHI). UHI influence urban atmospheric circulation, air quality, and ecological conditions. UHI leads to upward motion and compensating near-surface inflow from the surroundings which import rural trace substances. Chemical and aerosol formation processes are modified due to increased temperature, reduced humidity and modified urban-rural trace substance mixtures. UHIs produce enhanced heat stress for humans, animals and plants, less water availability and modified air quality. Growing cities and Climate Change will aggravate the UHI and its effects and urgently require adaptation and mitigation strategies. Prior to this, UHI properties must be assessed by surface observations, ground- and satellite-based vertical remote sensing and numerical modelling. The Weather Research and Forecasting Model (WRF) is an instrument to simulate and assess this phenomenon based on boundary conditions from observations and global climate models. Three urbanization schemes are available with WRF, which are tested during this study for different weather conditions in central Europe and will be enhanced if necessary. High resolution land use maps are used for this modeling effort. In situ measurements and Landsat thermal images are employed for validation of the results. The study will focus on the city of Stuttgart located in the south western part of Germany that is situated in a caldera-like orographic feature. This municipality has a long tradition in urban climate research and thus is well equipped with climatologic measurement stations. By using Geographical Information Systems (GIS), it is possible to simulate several scenarios for different surface properties. By increasing the albedo of roof and wall layers in the urban canopy model or by replacing urban land use by natural vegetation, simple urban planning strategies can be tested and the effect on urban heat island formation and air quality can be investigated. These numerical simulations will then be used to assess effectiveness and impact of planned adaptation and mitigation actions for the UHI under present and future climate conditions. Urban air quality is in the focus of these studies. The study is funded by EU-Project 3CE292P3 - "UHI - Development and application of mitigation and adaptation strategies and measures for counteracting the global UHI phenomenon."

  6. Performance tuning Weather Research and Forecasting (WRF) Goddard longwave radiative transfer scheme on Intel Xeon Phi

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2015-10-01

    Next-generation mesoscale numerical weather prediction system, the Weather Research and Forecasting (WRF) model, is a designed for dual use for forecasting and research. WRF offers multiple physics options that can be combined in any way. One of the physics options is radiance computation. The major source for energy for the earth's climate is solar radiation. Thus, it is imperative to accurately model horizontal and vertical distribution of the heating. Goddard solar radiative transfer model includes the absorption duo to water vapor,ozone, ozygen, carbon dioxide, clouds and aerosols. The model computes the interactions among the absorption and scattering by clouds, aerosols, molecules and surface. Finally, fluxes are integrated over the entire longwave spectrum.In this paper, we present our results of optimizing the Goddard longwave radiative transfer scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The coprocessor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of MICs will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The optimizations improved the performance of the original Goddard longwave radiative transfer scheme on Xeon Phi 7120P by a factor of 2.2x. Furthermore, the same optimizations improved the performance of the Goddard longwave radiative transfer scheme on a dual socket configuration of eight core Intel Xeon E5-2670 CPUs by a factor of 2.1x compared to the original Goddard longwave radiative transfer scheme code.

  7. An intercomparison of GCM and RCM dynamical downscaling for characterizing the hydroclimatology of California and Nevada

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.

    2017-12-01

    Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.

  8. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    NASA Astrophysics Data System (ADS)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.

  9. Evaluate dry deposition velocity of the nitrogen oxides using Noah-MP physics ensemble simulations for the Dinghushan Forest, Southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Chang, Ming; Zhou, Shengzhen; Chen, Weihua; Wang, Xuemei; Liao, Wenhui; Dai, Jianing; Wu, ZhiYong

    2017-11-01

    There has been a rapid growth of reactive nitrogen (Nr) deposition over the world in the past decades. The Pearl River Delta region is one of the areas with high loading of nitrogen deposition. But there are still large uncertainties in the study of dry deposition because of its complex processes of physical chemistry and vegetation physiology. At present, the forest canopy parameterization scheme used in WRF-Chem model is a single-layer "big leaf" model, and the simulation of radiation transmission and energy balance in forest canopy is not detailed and accurate. Noah-MP land surface model (Noah-MP) is based on the Noah land surface model (Noah LSM) and has multiple parametric options to simulate the energy, momentum, and material interactions of the vegetation-soil-atmosphere system. Therefore, to investigate the improvement of the simulation results of WRF-Chem on the nitrogen deposition in forest area after coupled with Noah-MP model and to reduce the influence of meteorological simulation biases on the dry deposition velocity simulation, a dry deposition single-point model coupled by Noah- MP and the WRF-Chem dry deposition module (WDDM) was used to simulate the deposition velocity (Vd). The model was driven by the micro-meteorological observation of the Dinghushan Forest Ecosystem Location Station. And a series of numerical experiments were carried out to identify the key processes influencing the calculation of dry deposition velocity, and the effects of various surface physical and plant physiological processes on dry deposition were discussed. The model captured the observed Vd well, but still underestimated the Vd. The self-defect of Wesely scheme applied by WDDM, and the inaccuracy of built-in parameters in WDDM and input data for Noah-MP (e.g. LAI) were the key factors that cause the underestimation of Vd. Therefore, future work is needed to improve model mechanisms and parameterization.

  10. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2013-05-01

    Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .

  11. Meso- to micro-scale coupled simulations of flow over complex terrain at the Perdigao site

    NASA Astrophysics Data System (ADS)

    Neher, J.; van Veen, L.; Chow, F. K.; Mirocha, J. D.; Lundquist, J. K.

    2017-12-01

    In this work, the site of the 2017 Perdigao field campaign is analyzed with high resolution large-eddy simulations generated using the Weather Research and Forecasting (WRF) model as a coupled mesoscale to microscale model. The fine topographic features of the site, with its ridgelines a mere 1.2 km apart, the occurrence of intermittent turbulence at night, and the presence of a wind turbine on one of the ridgelines pose a challenge for many current numerical models. Key test cases in the observational data that demonstrate these modelling difficulties are identified, and advanced modeling techniques for overcoming these issues in the WRF model are presented. These techniques include vertical grid nesting for control of the grid aspect ratio, the cell perturbation method for accelerating the generation of turbulence at the boundary, the dynamic reconstruction model as a closure model that allows for backscatter of turbulence, and the actuator disk model for representing the turbine wake. Multiple nesting configurations are considered, with special consideration given to spanning the `grey zone' where neither PBL nor LES closures are effective. Comparisons between model results and measured sounding, meteorological tower, and Lidar data are used to evaluate the effectiveness of these techniques, and the model results are evaluated to provide a broader view of the flow field and the turbine wake interactions at the site.

  12. Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis

    DTIC Science & Technology

    2015-09-01

    Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of

  13. Feasibility of Virtual Machine and Cloud Computing Technologies for High Performance Computing

    DTIC Science & Technology

    2014-05-01

    Hat Enterprise Linux SaaS software as a service VM virtual machine vNUMA virtual non-uniform memory access WRF weather research and forecasting...previously mentioned in Chapter I Section B1 of this paper, which is used to run the weather research and forecasting ( WRF ) model in their experiments...against a VMware virtualization solution of WRF . The experiment consisted of running WRF in a standard configuration between the D-VTM and VMware while

  14. Evaluation of NOx emissions from U.S. wildfires occurring during August-October 2006 using WRF-Chem model simulations and satellite observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Brioude, J.; Hilboll, A.; Richter, A.; Gleason, J. F.; Burrows, J. P.; Ryerson, T. B.; Peischl, J. W.; Holloway, J.; Lee, S.; Frost, G. J.; McKeen, S. A.; Trainer, M.

    2009-12-01

    During August-October 2006, there were many fire events in the U.S., including a month-long fire in Los Padres National Forest in California and numerous fires in the southeastern U.S. The OMI instrument onboard NASA's Aura satellite, the MODIS instrument on NASA's Terra satellite, and instruments on the NOAA GOES satellites clearly detected fire plumes during this period, opening the possibility of using trace gas and aerosol measurements from satellites to improve bottom-up emission estimates from wildfires. WRF-Chem model simulations of U.S. air quality without bottom-up fire emissions underestimated satellite-observed nitrogen dioxide columns substantially over fire-impacted regions during this time period. In this presentation, nitrogen dioxide columns simulated from the model including the wildfire emissions will be compared with the satellite retrievals and uncertainties in the bottom-up fire NOx emissions will be discussed. In addition, the sensitivities of satellite retrievals to aerosols resulting from these fires will be shown. The satellite NO2 columns will also be tested with aircraft observations made over the Texas region during September-October 2006 as part of the TexAQS/GoMACCS field campaign.

  15. Effect of aerosol feedback in the Korea Peninsula using WRF-CMAQ two-way coupled model

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Jeon, W.; Lee, H.; Lee, S.

    2017-12-01

    Aerosols influence the climate system by scattering and absorption of the solar radiation by altering the cloud radiative properties. For the reason, consideration of aerosol feedback is important numerical weather prediction and air quality models. The purpose of this study was to investigate the effect of aerosol feedback on PM10 simulation in Korean Peninsula using the Weather Research and Forecasting (WRF) and the community multiscale air quality (CMAQ) two-way coupled model. Simulations were conducted with the aerosol feedback (FB) and without (NFB). The results of the simulated solar radiation in the west part of Korea decreased due to the aerosol feedback effect. The feedback effect was significant in the west part of Korea Peninsula, showing high Particulate Matter (PM) estimates due to dense emissions and its long-range transport from China. The decrease of solar radiation lead to planetary boundary layer (PBL) height reduction, thereby dispersion of air pollutants such as PM is suppressed, and resulted in higher PM concentrations. These results indicate that aerosol feedback effects can play an important role in the simulation of meteorology and air quality over Korea Peninsula.

  16. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.

  17. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.

  18. Exploring the use of WRF-3DVar for Estimating reference evapotranspiration in semi arid regions

    NASA Astrophysics Data System (ADS)

    Bray, Michaela; Liu, Jia; Abdulhamza, Ali; Bocklemann-Evans, Bettina

    2013-04-01

    Evapotranspiration is an important process in hydrology and is central to the analysis of water balances and water resource management. Significant water losses can occur in large drainage basins under semi arid climate conditions, moreover with the lack of measured data, the exact losses are hard to quantify. Since direct measurements for evapotranspiration are difficult to obtain it is common to estimate the process by using evapotranspiration models such as the Priestley-Taylor model, Shuttleworth -Wallace model and the FAO Penmann-Monteith. However these models depend on several atmospheric variables such as atmospheric pressure, wind speed, air temperature, net radiation and relative humidity. Some of these variables are also difficult to acquire from in-situ measurements; in addition these measurements provide local information which need to be interpolated to cover larger catchment areas over long time scales. Mesoscale Numerical Weather Prediction (NWP) modelling has become more accessible to the hydrometeorological community in recent years and is frequently used for modelling precipitation at the catchment scale. However these NWPs can also provide the atmospheric variables needed for evapotranspiration estimation at finer resolutions than can be attained from in situ measurements, offering a practical water resource tool. Moreover there is evidence that assimilation of real time observations can help improve the accuracy of mesoscale weather modelling which in turn would improve the overall evapotranspiration estimate. This study explores the effect of data assimilation in the Weather Research and Forecasting (WRF) model to derive evapotranspiration estimates for the Tigris water basin, Iraq. Two types of traditional observations, SYNOP and SOUND are assimilated by WRF-3DVAR.which contain surface and upper-level measurements of pressure, temperature, humidity and wind. The downscaled weather variables are used to determine evapostranspiration estimates and compared with observed evapostranspiration data measured by Class A evaporation pan.

  19. Preliminary validation of WRF model in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    Our research is focused on development of efficient modeling system for arctic fjords. This tool should include high-resolution meteorological data derived using downscaling approach. In this presentation we have focused on modeling, with high spatial resolution, of the meteorological conditions in two Arctic fjords: Hornsund (H), located in the western part of Svalbard archipelago and Porsanger (P) located in the coastal waters of the Barents Sea. The atmospheric downscaling is based on The Weather Research and Forecasting Model (WRF, www.wrf-model.org) with polar stereographic projection. We have created two parent domains with grid point distances of about 3.2 km (P) and 3.0 km (H) and with nested domains (almost 5 times higher resolution than parent domains). We tested what is the impact of the spatial resolution of the model on derived meteorological quantities. For both fjords the input topography data resolution is 30 sec. To validate the results we have used meteorological data from the Norwegian Meteorological Institute for stations Lakselv (L) and Honningsvåg (Ho) located in the inner and outer parts of the Porsanger fjord as well as from station in the outer part of the Hornsund fjord. We have estimated coefficients of determination (r2), statistical errors (St) and systematic errors (Sy) between measured and modelled air temperature and wind speed at each station. This approach will allow us to create high resolution spatially variable meteorological fields that will serve as forcing for numerical models of the fjords. We will investigate the role of different meteorological quantities (e. g. wind, solar insolation, precipitation) on hydrohraphic processes in fjords. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, R.; Hong, Seungkyu K.; Kwon, Hyoung-Ahn

    We used a 3-D regional atmospheric chemistry transport model (WRF-Chem) to examine processes that determine O3 in East Asia; in particular, we focused on O3 dry deposition, which is an uncertain research area due to insufficient observation and numerical studies in East Asia. Here, we compare two widely used dry deposition parameterization schemes, Wesely and M3DRY, which are used in the WRF-Chem and CMAQ models, respectively. The O3 dry deposition velocities simulated using the two aforementioned schemes under identical meteorological conditions show considerable differences (a factor of 2) due to surface resistance parameterization discrepancies. The O3 concentration differed by upmore » to 10 ppbv for the monthly mean. The simulated and observed dry deposition velocities were compared, which showed that the Wesely scheme model is consistent with the observations and successfully reproduces the observed diurnal variation. We conduct several sensitivity simulations by changing the land use data, the surface resistance of the water and the model’s spatial resolution to examine the factors that affect O3 concentrations in East Asia. As shown, the model was considerably sensitive to the input parameters, which indicates a high uncertainty for such O3 dry deposition simulations. Observations are necessary to constrain the dry deposition parameterization and input data to improve the East Asia air quality models.« less

  1. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  2. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    EPA Science Inventory

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  3. Investigation of the Representation of OLEs and Terrain Effects within the Coastal Zone in the EDMF Parameterization Scheme: An Airborne Doppler Wind Lidar Perspective

    DTIC Science & Technology

    2015-10-21

    rolls) in preparation for modifying current EDMF expressions We also continued to investigate the sensitivity of the WRF and COAMPS model to modified...allow non-collinear models to interact. During the fourth year, the TODWL data was also utilized by both the WRF and COAMPS model to help characterize...includes the contribution from both corrective and shear driven rolls within SCM, COAMPS and WRF <.’u:^--<^y\\,i/uU

  4. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  5. Tubular damage and worsening renal function in chronic heart failure.

    PubMed

    Damman, Kevin; Masson, Serge; Hillege, Hans L; Voors, Adriaan A; van Veldhuisen, Dirk J; Rossignol, Patrick; Proietti, Gianni; Barbuzzi, Savino; Nicolosi, Gian Luigi; Tavazzi, Luigi; Maggioni, Aldo P; Latini, Roberto

    2013-10-01

    This study sought to investigate the relationship between tubular damage and worsening renal function (WRF) in chronic heart failure (HF) BACKGROUND: WRF is associated with poor outcome in chronic HF. It is unclear whether urinary tubular markers may identify patients at risk for WRF. In 2,011 patients with chronic HF, we evaluated the ability of urinary tubular markers (N-acetyl-beta-d-glucosaminidase (NAG), kidney injury molecule (KIM)-1, and neutrophil gelatinase-associated lipocalin (NGAL) to predict WRF. Finally, we assessed the prognostic importance of WRF. A total of 290 patients (14.4%) experienced WRF during follow-up, and WRF was a strong and independent predictor of all-cause mortality and HF hospitalizations (hazard ratio [HR]: 2.87; 95% CI: 2.40 to 3.43; p < 0.001). Patients with WRF had lower baseline glomerular filtration rate and higher KIM-1, NAG, and NGAL levels. In a multivariable-adjusted model, KIM-1 was the strongest independent predictor of WRF (HR: 1.23; 95% CI: 1.09 to 1.39 per log increase; p = 0.001). WRF was associated with strongly impaired outcome in patients with chronic HF. Increased level of urinary KIM-1 was the strongest independent predictor of WRF and could therefore be used to identify patients at risk for WRF and poor clinical outcome. (GISSI-HF-Effects of n-3 PUFA and Rosuvastatin on Mortality-Morbidity of Patients With Symptomatic CHF; NCT00336336). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Numerical Modelling of Fire-Atmosphere Interactions and the 2003 Canberra Bushfires

    NASA Astrophysics Data System (ADS)

    Simpson, C.; Sturman, A.; Zawar-Reza, P.

    2010-12-01

    It is well known that the behaviour of a wildland fire is strongly associated with the conditions of its surrounding atmosphere. However, the two-way interactions between fire behaviour and the atmospheric conditions are not well understood. A numerical model is used to simulate wildland fires so that the nature of these fire-atmosphere interactions, and how they might affect fire behaviour, can be further investigated. The 2003 Canberra bushfires are used as a case study due to their highly destructive and unusual behaviour. On the 18th January 2003, these fires spread to the urban suburbs of Canberra, resulting in the loss of four lives and the destruction of over 500 homes. Fire-atmosphere interactions are believed to have played an important role in making these fires so destructive. WRF-Fire is used to perform real data simulations of the 2003 Canberra bushfires. WRF-Fire is a coupled fire-atmosphere model, which combines a semi-empirical fire spread model with an atmospheric model, allowing it to directly simulate the two-way interactions between a fire and its surrounding atmosphere. These simulations show the impact of the presence of a fire on conditions within the atmospheric boundary layer. This modification of the atmosphere, resulting from the injection of heat and moisture released by the fire, appears to have a direct feedback onto the overall fire behaviour. The bushfire simulations presented in this paper provide important scientific insights into the nature of fire-atmosphere interactions for a real situation. It is expected that they will also help fire managers in Australia to better understand why the 2003 Canberra bushfires were so destructive, as well as to gain improved insight into bushfire behaviour in general.

  7. Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...

  8. Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure.

    PubMed

    Sokolski, Mateusz; Zymliński, Robert; Biegus, Jan; Siwołowski, Paweł; Nawrocka-Millward, Sylwia; Todd, John; Yerramilli, Malli Rama; Estis, Joel; Jankowska, Ewa Anita; Banasiak, Waldemar; Ponikowski, Piotr

    2017-06-01

    Recent studies indicate the need to redefine worsening renal function (WRF) in acute heart failure (AHF), linking a rise in creatinine with clinical status to identify patients who develop 'true WRF'. We evaluated the usefulness of serial assessment of urinary levels of neutrophil gelatinase-associated lipocalin (uNGAL), kidney injury molecule-1 (uKIM-1), and cystatin C (uCysC) for prediction of 'true WRF'. In 132 patients with AHF, uNGAL, uKIM-1, and uCysC were measured using a highly sensitive immunoassay based on a single-molecule counting technology (Singulex, Alameda, CA, USA) at baseline, day 2, and day 3. Patients who developed WRF (a ≥0.3 mg/dL increase in serum creatinine or a >25% decrease in the estimated glomerular filtration rate from the baseline value) were differentiated into those 'true WRF' (presence of deterioration/no improvement in clinical status during hospitalization) vs. 'pseudo-WRF' (uneventful clinical course). 'True WRF' occurred in 13 (10%), 'pseudo-WRF' in 15 (11%), whereas the remaining 104 (79%) patients did not develop WRF. Patients with 'true WRF' were more often females, had higher levels of NT-proBNP, creatinine, and urea on admission, higher urine albumin to creatinine ratio at day 2, higher uNGAL at baseline, day 2, and day 3, and higher KIM-1 at day 2 (vs. pseudo-WRF vs. without WRF, all P < 0.05). Patients with pseudo-WRF did not differ from those without WRF. In the multivariable model, elevated uNGAL at all time points and uKIM-1 at day 2 remained independent predictors of 'true WRF'. Elevated levels of uNGAL and uKIM-1 may predict development of 'true WRF' in AHF. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  9. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  10. A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements

    EPA Science Inventory

    In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...

  11. “ How Reliable is the Couple of WRF & VIC Models”

    EPA Science Inventory

    The ability of the fully coupling of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological and climate variables was evaluated. First, the VIC model was run by using observed meteorological data and calibrated in the Upp...

  12. The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part 2: Precipitation.

    PubMed

    Noble, Erik; Druyan, Leonard M; Fulakeza, Matthew

    2016-01-01

    This paper evaluates the performance of the Weather and Research Forecasting (WRF) model as a regional-atmospheric model over West Africa. It tests WRF sensitivity to 64 configurations of alternative parameterizations in a series of 104 twelve-day September simulations during eleven consecutive years, 2000-2010. The 64 configurations combine WRF parameterizations of cumulus convection, radiation, surface-hydrology, and PBL. Simulated daily and total precipitation results are validated against Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) data. Particular attention is given to westward-propagating precipitation maxima associated with African Easterly Waves (AEWs). A wide range of daily precipitation validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve time-longitude correlations (against GPCP) of between 0.35-0.42 and spatiotemporal variability amplitudes only slightly higher than observed estimates. A parallel simulation by the benchmark Regional Model-v.3 achieves a higher correlation (0.52) and realistic spatiotemporal variability amplitudes. The largest favorable impact on WRF precipitation validation is achieved by selecting the Grell-Devenyi convection scheme, resulting in higher correlations against observations than using the Kain-Fritch convection scheme. Other parameterizations have less obvious impact. Validation statistics for optimized WRF configurations simulating the parallel period during 2000-2010 are more favorable for 2005, 2006, and 2008 than for other years. The selection of some of the same WRF configurations as high scorers in both circulation and precipitation validations supports the notion that simulations of West African daily precipitation benefit from skillful simulations of associated AEW vorticity centers and that simulations of AEWs would benefit from skillful simulations of convective precipitation.

  13. The sensitivity of WRF daily summertime simulations over West Africa to alternative parameterizations. Part 2: Precipitation

    PubMed Central

    Noble, Erik; Druyan, Leonard M.; Fulakeza, Matthew

    2018-01-01

    This paper evaluates the performance of the Weather and Research Forecasting (WRF) model as a regional-atmospheric model over West Africa. It tests WRF sensitivity to 64 configurations of alternative parameterizations in a series of 104 twelve-day September simulations during eleven consecutive years, 2000–2010. The 64 configurations combine WRF parameterizations of cumulus convection, radiation, surface-hydrology, and PBL. Simulated daily and total precipitation results are validated against Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) data. Particular attention is given to westward-propagating precipitation maxima associated with African Easterly Waves (AEWs). A wide range of daily precipitation validation scores demonstrates the influence of alternative parameterizations. The best WRF performers achieve time-longitude correlations (against GPCP) of between 0.35–0.42 and spatiotemporal variability amplitudes only slightly higher than observed estimates. A parallel simulation by the benchmark Regional Model-v.3 achieves a higher correlation (0.52) and realistic spatiotemporal variability amplitudes. The largest favorable impact on WRF precipitation validation is achieved by selecting the Grell-Devenyi convection scheme, resulting in higher correlations against observations than using the Kain-Fritch convection scheme. Other parameterizations have less obvious impact. Validation statistics for optimized WRF configurations simulating the parallel period during 2000–2010 are more favorable for 2005, 2006, and 2008 than for other years. The selection of some of the same WRF configurations as high scorers in both circulation and precipitation validations supports the notion that simulations of West African daily precipitation benefit from skillful simulations of associated AEW vorticity centers and that simulations of AEWs would benefit from skillful simulations of convective precipitation. PMID:29563651

  14. Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies

    NASA Astrophysics Data System (ADS)

    Mu, Qing; Lammel, Gerhard; Gencarelli, Christian N.; Hedgecock, Ian M.; Chen, Ying; Přibylová, Petra; Teich, Monique; Zhang, Yuxuan; Zheng, Guangjie; van Pinxteren, Dominik; Zhang, Qiang; Herrmann, Hartmut; Shiraiwa, Manabu; Spichtinger, Peter; Su, Hang; Pöschl, Ulrich; Cheng, Yafang

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants, with increasing emissions in pace with economic development in East Asia, but their distribution and fate in the atmosphere are not yet well understood. We extended the regional atmospheric chemistry model WRF-Chem (Weather Research Forecast model with Chemistry module) to comprehensively study the atmospheric distribution and the fate of low-concentration, slowly degrading semivolatile compounds. The WRF-Chem-PAH model reflects the state-of-the-art understanding of current PAHs studies with several new or updated features. It was applied for PAHs covering a wide range of volatility and hydrophobicity, i.e. phenanthrene, chrysene and benzo[a]pyrene, in East Asia. Temporally highly resolved PAH concentrations and particulate mass fractions were evaluated against observations. The WRF-Chem-PAH model is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions. Sensitivity study shows that the heterogeneous reaction with ozone and the homogeneous reaction with the nitrate radical significantly influence the fate and distributions of PAHs. The methods to implement new species and to correct the transport problems can be applied to other newly implemented species in WRF-Chem.

  15. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 whenmore » the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.« less

  16. Evaluation of WRF Parameterizations for Air Quality Applications over the Midwest USA

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Fu, K.; Balasubramanian, S.; Koloutsou-Vakakis, S.; McFarland, D. M.; Rood, M. J.

    2017-12-01

    Reliable predictions from Chemical Transport Models (CTMs) for air quality research require accurate gridded weather inputs. In this study, a sensitivity analysis of 17 Weather Research and Forecast (WRF) model runs was conducted to explore the optimum configuration in six physics categories (i.e., cumulus, surface layer, microphysics, land surface model, planetary boundary layer, and longwave/shortwave radiation) for the Midwest USA. WRF runs were initally conducted over four days in May 2011 for a 12 km x 12 km domain over contiguous USA and a nested 4 km x 4 km domain over the Midwest USA (i.e., Illinois and adjacent areas including Iowa, Indiana, and Missouri). Model outputs were evaluated statistically by comparison with meteorological observations (DS337.0, METAR data, and the Water and Atmospheric Resources Monitoring Network) and resulting statistics were compared to benchmark values from the literature. Identified optimum configurations of physics parametrizations were then evaluated for the whole months of May and October 2011 to evaluate WRF model performance for Midwestern spring and fall seasons. This study demonstrated that for the chosen physics options, WRF predicted well temperature (Index of Agreement (IOA) = 0.99), pressure (IOA = 0.99), relative humidity (IOA = 0.93), wind speed (IOA = 0.85), and wind direction (IOA = 0.97). However, WRF did not predict daily precipitation satisfactorily (IOA = 0.16). Developed gridded weather fields will be used as inputs to a CTM ensemble consisting of the Comprehensive Air Quality Model with Extensions to study impacts of chemical fertilizer usage on regional air quality in the Midwest USA.

  17. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  18. Precipitation intercomparison of a set of satellite- and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic

    NASA Astrophysics Data System (ADS)

    Skok, Gregor; Žagar, Nedjeljka; Honzak, Luka; Žabkar, Rahela; Rakovec, Jože; Ceglar, Andrej

    2016-01-01

    The study presents a precipitation intercomparison based on two satellite-derived datasets (TRMM 3B42, CMORPH), four raingauge-based datasets (GPCC, E-OBS, Willmott & Matsuura, CRU), ERA Interim reanalysis (ERAInt), and a single climate simulation using the WRF model. The comparison was performed for a domain encompassing parts of Europe and the North Atlantic over the 11-year period of 2000-2010. The four raingauge-based datasets are similar to the TRMM dataset with biases over Europe ranging from -7 % to +4 %. The spread among the raingauge-based datasets is relatively small over most of Europe, although areas with greater uncertainty (more than 30 %) exist, especially near the Alps and other mountainous regions. There are distinct differences between the datasets over the European land area and the Atlantic Ocean in comparison to the TRMM dataset. ERAInt has a small dry bias over the land; the WRF simulation has a large wet bias (+30 %), whereas CMORPH is characterized by a large and spatially consistent dry bias (-21 %). Over the ocean, both ERAInt and CMORPH have a small wet bias (+8 %) while the wet bias in WRF is significantly larger (+47 %). ERAInt has the highest frequency of low-intensity precipitation while the frequency of high-intensity precipitation is the lowest due to its lower native resolution. Both satellite-derived datasets have more low-intensity precipitation over the ocean than over the land, while the frequency of higher-intensity precipitation is similar or larger over the land. This result is likely related to orography, which triggers more intense convective precipitation, while the Atlantic Ocean is characterized by more homogenous large-scale precipitation systems which are associated with larger areas of lower intensity precipitation. However, this is not observed in ERAInt and WRF, indicating the insufficient representation of convective processes in the models. Finally, the Fraction Skill Score confirmed that both models perform better over the Atlantic Ocean with ERAInt outperforming the WRF at low thresholds and WRF outperforming ERAInt at higher thresholds. The diurnal cycle is simulated better in the WRF simulation than in ERAInt, although WRF could not reproduce well the amplitude of the diurnal cycle. While the evaluation of the WRF model confirms earlier findings related to the model's wet bias over European land, the applied satellite-derived precipitation datasets revealed differences between the land and ocean areas along with uncertainties in the observation datasets.

  19. Analysis and High-Resolution Modeling of Tropical Cyclogenesis During the TCS-08 and TPARC Field Campaign

    DTIC Science & Technology

    2014-10-13

    synoptic and dynamic aspects of cyclogenesis, a multi-nested WRF model (with 2 km resolution in the innermost mesh) will be used to simulate both...intraseasonal and interannual variability of TC activity in the WNP. For the data assimilation task, WRF 3DVar assimilation system will be employed...simulated using WRF . This genesis is associated with Rossby wave energy dispersion of a pre- existing TC Bills (2000). Using the reanalysis data as an

  20. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    DTIC Science & Technology

    2016-09-01

    Laboratory Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS) by JL Cogan...analysis. As expected, accuracy generally tended to decline as the large-scale data aged , but appeared to improve slightly as the age of the large...19 Table 7 Minimum and maximum mean RMDs for each WRF time (or GFS data age ) category. Minimum and

  1. Numerical Weather Predictions Evaluation Using Spatial Verification Methods

    NASA Astrophysics Data System (ADS)

    Tegoulias, I.; Pytharoulis, I.; Kotsopoulos, S.; Kartsios, S.; Bampzelis, D.; Karacostas, T.

    2014-12-01

    During the last years high-resolution numerical weather prediction simulations have been used to examine meteorological events with increased convective activity. Traditional verification methods do not provide the desired level of information to evaluate those high-resolution simulations. To assess those limitations new spatial verification methods have been proposed. In the present study an attempt is made to estimate the ability of the WRF model (WRF -ARW ver3.5.1) to reproduce selected days with high convective activity during the year 2010 using those feature-based verification methods. Three model domains, covering Europe, the Mediterranean Sea and northern Africa (d01), the wider area of Greece (d02) and central Greece - Thessaly region (d03) are used at horizontal grid-spacings of 15km, 5km and 1km respectively. By alternating microphysics (Ferrier, WSM6, Goddard), boundary layer (YSU, MYJ) and cumulus convection (Kain-­-Fritsch, BMJ) schemes, a set of twelve model setups is obtained. The results of those simulations are evaluated against data obtained using a C-Band (5cm) radar located at the centre of the innermost domain. Spatial characteristics are well captured but with a variable time lag between simulation results and radar data. Acknowledgements: This research is co­financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-­-2013).

  2. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...

  3. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    EPA Science Inventory

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...

  4. How reliable is the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model?

    EPA Science Inventory

    The aim for this research is to evaluate the ability of the offline linkage of Weather Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) model to produce hydrological, e.g. evaporation (ET), soil moisture (SM), runoff, and baseflow. First, the VIC mo...

  5. High-resolution dynamical downscaling of the future Alpine climate

    NASA Astrophysics Data System (ADS)

    Bozhinova, Denica; José Gómez-Navarro, Juan; Raible, Christoph

    2017-04-01

    The Alpine region and Switzerland is a challenging area for simulating and analysing Global Climate Model (GCM) results. This is mostly due to the combination of a very complex topography and the still rather coarse horizontal resolution of current GCMs, in which not all of the many-scale processes that drive the local weather and climate can be resolved. In our study, the Weather Research and Forecasting (WRF) model is used to dynamically downscale a GCM simulation to a resolution as high as 2 km x 2 km. WRF is driven by initial and boundary conditions produced with the Community Earth System Model (CESM) for the recent past (control run) and until 2100 using the RCP8.5 climate scenario (future run). The control run downscaled with WRF covers the period 1976-2005, while the future run investigates a 20-year-slice simulated for the 2080-2099. We compare the control WRF-CESM simulations to an observational product provided by MeteoSwiss and an additional WRF simulation driven by the ERA-Interim reanalysis, to estimate the bias that is introduced by the extra modelling step of our framework. Several bias-correction methods are evaluated, including a quantile mapping technique, to ameliorate the bias in the control WRF-CESM simulation. In the next step of our study these corrections are applied to our future WRF-CESM run. The resulting downscaled and bias-corrected data is analysed for the properties of precipitation and wind speed in the future climate. Our special interest focuses on the absolute quantities simulated for these meteorological variables as these are used to identify extreme events, such as wind storms and situations that can lead to floods.

  6. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    PubMed

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Relationship between worsening renal function and long-term cardiovascular mortality in heart failure patients.

    PubMed

    Okabe, Toshitaka; Yakushiji, Tadayuki; Kido, Takehiko; Oyama, Yuji; Igawa, Wataru; Ono, Morio; Ebara, Seitaro; Yamashita, Kennosuke; Yamamoto, Myong Hwa; Saito, Shigeo; Amemiya, Kisaki; Isomura, Naoei; Araki, Hiroshi; Ochiai, Masahiko

    2017-03-01

    Recently several studies showed that worsening renal function (WRF) during hospitalization might be a strong independent predictor of poor prognosis in decompensated heart failure (HF) patients. However, these studies had a relatively short follow-up duration and their data were limited to in-hospital outcomes. Our purpose was to assess the relationship between WRF and long-term cardiovascular mortality in HF patients. We enrolled decompensated HF patients who were admitted to our hospital between April 2010 and March 2015. WRF was defined as a relative increase in serum creatinine of at least 25% or an absolute increase in serum creatinine ≥0.3mg/dL from the baseline. We assessed the cardiovascular mortality and all-cause mortality in HF patients with WRF (WRF group) and without WRF (no WRF group). Among 301 patients enrolled, WRF developed in 118 patients (39.2%). During a median follow-up period of 537days [interquartile range, 304.3 to 1025.8days], cardiovascular mortality and all-cause mortality were significantly higher in the WRF group than in the no WRF group (23.2% vs. 6.1%, P<0.001; 30.3% vs. 14.7%, P<0.001, respectively). In the multivariate Cox proportional hazards model, age and serum B-type natriuretic peptide (BNP) level were associated with both cardiovascular death and all-cause death. However, WRF was not the independent predictor of cardiovascular death (P=0.19) nor all-cause death (P=0.57). WRF was associated with cardiovascular death in patients with HF. Although not an independent predictor, WRF might be one of useful markers to identify patients who should be followed carefully after discharge. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  9. Short-Term Forecasts Using NU-WRF for the Winter Olympics 2018

    NASA Technical Reports Server (NTRS)

    Srikishen, Jayanthi; Case, Jonathan L.; Petersen, Walter A.; Iguchi, Takamichi; Tao, Wei-Kuo; Zavodsky, Bradley T.; Molthan, Andrew

    2017-01-01

    The NASA Unified-Weather Research and Forecasting model (NU-WRF) will be included for testing and evaluation in the forecast demonstration project (FDP) of the International Collaborative Experiment -PyeongChang 2018 Olympic and Paralympic (ICE-POP) Winter Games. An international array of radar and supporting ground based observations together with various forecast and now-cast models will be operational during ICE-POP. In conjunction with personnel from NASA's Goddard Space Flight Center, the NASA Short-term Prediction Research and Transition (SPoRT) Center is developing benchmark simulations for a real-time NU-WRF configuration to run during the FDP. ICE-POP observational datasets will be used to validate model simulations and investigate improved model physics and performance for prediction of snow events during the research phase (RDP) of the project The NU-WRF model simulations will also support NASA Global Precipitation Measurement (GPM) Mission ground-validation physical and direct validation activities in relation to verifying, testing and improving satellite-based snowfall retrieval algorithms over complex terrain.

  10. Mesoscale Air-Sea Interactions along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study

    NASA Astrophysics Data System (ADS)

    Hsieh, J. S.; Chang, P.; Saravanan, R.

    2017-12-01

    Frontal and mesoscale air-sea interactions along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.

  11. Forecasting near-surface weather conditions and precipitation in Alaska's Prince William Sound with the PWS-WRF modeling system

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Volz, Karl P.; Liu, Haibo

    2013-07-01

    In the summer of 2009, several scientific teams engaged in a field program in Prince William Sound (PWS), Alaska to test an end-to-end atmosphere/ocean prediction system specially designed for this region. The "Sound Predictions Field Experiment" (FE) was a test of the PWS-Observing System (PWS-OS) and the culmination of a five-year program to develop an observational and prediction system for the Sound. This manuscript reports on results of an 18-day high-resolution atmospheric forecasting field project using the Weather Research and Forecasting (WRF) model.Special attention was paid to surface meteorological properties and precipitation. Upon reviewing the results of the real-time forecasts, modifications were incorporated in the PWS-WRF modeling system in an effort to improve objective forecast skill. Changes were both geometric (model grid structure) and physical (different physics parameterizations).The weather during the summer-time FE was typical of the PWS in that it was characterized by a number of minor disturbances rotating around an anchored low, but with no major storms in the Gulf of Alaska. The basic PWS-WRF modeling system as implemented operationally for the FE performed well, especially considering the extremely complex terrain comprising the greater PWS region.Modifications to the initial PWS-WRF modeling system showed improvement in predicting surface variables, especially where the ambient flow interacted strongly with the terrain. Prediction of precipitation on an accumulated basis was more accurate than prediction on a day-to-day basis. The 18-day period was too short to provide reliable assessment and intercomparison of the quantitative precipitation forecasting (QPF) skill of the PWS-WRF model variants.

  12. Relation of Worsened Renal Function during Hospitalization for Heart Failure to Long-Term Outcomes and Rehospitalization

    PubMed Central

    Lanfear, David E.; Peterson, Edward L.; Campbell, Janis; Phatak, Hemant; Wu, David; Wells, Karen; Spertus, John A.; Williams, L. Keoki

    2010-01-01

    Worsened renal function (WRF) during heart failure (HF) hospitalization is associated with in-hospital mortality, but there are limited data regarding its relationship to long-term outcomes after discharge. The influence of WRF resolution is also unknown. This retrospective study analyzed patients who received care from a large health system and had a primary hospital discharge diagnosis of HF between 1/2000 and 6/2008. Renal function was estimated from creatinine levels during hospitalization. The first available value was considered baseline. WRF was defined a creatinine increase of ≥0.3mg/dl on any subsequent hospital day compared to baseline. Persistent WRF was defined as having WRF at discharge. Proportional hazards regression, adjusting for baseline renal function and potential confounding factors, was used to assess time to re-hospitalization or death. Among 2465 patients who survived to discharge, 887 (36%) developed WRF. Median follow up was 2.1 years. In adjusted models, WRF was associated with higher rates of post-discharge death or re-hospitalization (HR 1.12, 95%CI 1.02 – 1.22). Among those with WRF, 528 (60%) had persistent WRF while 359 (40%) recovered. Persistent WRF was significantly associated with higher post-discharge event rates (HR 1.14, 95%CI 1.02 – 1.27), whereas transient WRF showed only a non-significant trend towards risk (HR 1.09 95%CI 0.96-1.24). In conclusion, among patients surviving hospitalization for HF, WRF was associated with increased long-term mortality and re-hospitalization, particularly if renal function did not recover by the time of discharge. PMID:21146690

  13. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.

  14. Effect and clinical prediction of worsening renal function in acute decompensated heart failure.

    PubMed

    Breidthardt, Tobias; Socrates, Thenral; Noveanu, Markus; Klima, Theresia; Heinisch, Corinna; Reichlin, Tobias; Potocki, Mihael; Nowak, Albina; Tschung, Christopher; Arenja, Nisha; Bingisser, Roland; Mueller, Christian

    2011-03-01

    We aimed to establish the prevalence and effect of worsening renal function (WRF) on survival among patients with acute decompensated heart failure. Furthermore, we sought to establish a risk score for the prediction of WRF and externally validate the previously established Forman risk score. A total of 657 consecutive patients with acute decompensated heart failure presenting to the emergency department and undergoing serial creatinine measurements were enrolled. The potential of the clinical parameters at admission to predict WRF was assessed as the primary end point. The secondary end point was all-cause mortality at 360 days. Of the 657 patients, 136 (21%) developed WRF, and 220 patients had died during the first year. WRF was more common in the nonsurvivors (30% vs 41%, p = 0.03). Multivariate regression analysis found WRF to independently predict mortality (hazard ratio 1.92, p <0.01). In a single parameter model, previously diagnosed chronic kidney disease was the only independent predictor of WRF and achieved an area under the receiver operating characteristic curve of 0.60. After the inclusion of the blood gas analysis parameters into the model history of chronic kidney disease (hazard ratio 2.13, p = 0.03), outpatient diuretics (hazard ratio 5.75, p <0.01), and bicarbonate (hazard ratio 0.91, p <0.01) were all predictive of WRF. A risk score was developed using these predictors. On receiver operating characteristic curve analysis, the Forman and Basel prediction rules achieved an area under the curve of 0.65 and 0.71, respectively. In conclusion, WRF was common in patients with acute decompensated heart failure and was linked to significantly worse outcomes. However, the clinical parameters failed to adequately predict its occurrence, making a tailored therapy approach impossible. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Impact of PBL and convection parameterization schemes for prediction of severe land-falling Bay of Bengal cyclones using WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Singh, K. S.; Bhaskaran, Prasad K.

    2017-12-01

    This study evaluates the performance of the Advanced Research Weather Research and Forecasting (WRF-ARW) model for prediction of land-falling Bay of Bengal (BoB) tropical cyclones (TCs). Model integration was performed using two-way interactive double nested domains at 27 and 9 km resolutions. The present study comprises two major components. Firstly, the study explores the impact of five different planetary boundary layer (PBL) and six cumulus convection (CC) schemes on seven land-falling BoB TCs. A total of 85 numerical simulations were studied in detail, and the results signify that the model simulated better both the track and intensity by using a combination of Yonsei University (YSU) PBL and the old simplified Arakawa-Schubert CC scheme. Secondly, the study also investigated the model performance based on the best possible combinations of model physics on the real-time forecasts of four BoB cyclones (Phailin, Helen, Lehar, and Madi) that made landfall during 2013 based on another 15 numerical simulations. The predicted mean track error during 2013 was about 71 km, 114 km, 133 km, 148 km, and 130 km respectively from day-1 to day-5. The Root Mean Square Error (RMSE) for Minimum Central Pressure (MCP) was about 6 hPa and the same noticed for Maximum Surface Wind (MSW) was about 4.5 m s-1 noticed during the entire simulation period. In addition the study also reveals that the predicted track errors during 2013 cyclones improved respectively by 43%, 44%, and 52% from day-1 to day-3 as compared to cyclones simulated during the period 2006-2011. The improvements noticed can be attributed due to relatively better quality data that was specified for the initial mean position error (about 48 km) during 2013. Overall the study signifies that the track and intensity forecast for 2013 cyclones using the specified combinations listed in the first part of this study performed relatively better than the other NWP (Numerical Weather Prediction) models, and thereby finds application in real-time forecast.

  16. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    NASA Astrophysics Data System (ADS)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function between inner and outer loops of the incremental 3-D/4-D VAR minimization. The first part of this paper will describe the methodology and performance analysis of the 1D-Var retrieval scheme that adjusts the WRF temperature profiles closer to an observed value as in Mahfouf et al. (2005). The second part will show the positive impact of these 1D-Var pseudo - temperature observations on both model 3D/4D-Var WRF analyses and short-range forecasts for three cases - the Tuscaloosa tornado outbreak (April 27, 2011) with intense but localized lightning, a second severe storm outbreak with more widespread but less intense lightning (June 27, 2011), and a northeaster containing much less lightning.

  17. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints.

    PubMed

    Saide, Pablo E; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M; Pierce, R Bradley; Carmichael, Gregory R

    2016-09-16

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  18. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Watson, Leela R.

    2015-01-01

    Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1.33-kilometer domain model performance for the 2014 warm season (May-September). Verification statistics were computed using the Model Evaluation Tools, which compared the model forecasts to observations. The mean error values were close to 0 and the root mean square error values were less than 1.8 for mean sea-level pressure (millibars), temperature (degrees Kelvin), dewpoint temperature (degrees Kelvin), and wind speed (per millisecond), all very small differences between the forecast and observations considering the normal magnitudes of the parameters. The precipitation forecast verification results showed consistent under-forecasting of the precipitation object size. This could be an artifact of calculating the statistics for each hour rather than for the entire 12-hour period. The AMU will continue to generate verification statistics for the 1.33-kilometer WRF-EMS domain as data become available in future cool and warm seasons. More data will produce more robust statistics and reveal a more accurate assessment of model performance. Once the formal task was complete, the AMU conducted additional work to better understand the wind direction results. The results were stratified diurnally and by wind speed to determine what effects the stratifications would have on the model wind direction verification statistics. The results are summarized in the addendum at the end of this report. In addition to verifying the model's performance, the AMU also made the output available in the Advanced Weather Interactive Processing System II (AWIPS II). This allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations AWIPS II client computers and conduct real-time subjective analyses. In the future, the AMU will implement an updated version of the WRF-EMS model that incorporates local data assimilation. This model will also run in real-time and be made available in AWIPS II.

  19. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  20. WRF-Hydro Simulated Spatiotemporal Characteristics of Streamflow Extremes over the CONUS during 1993-2016 and Possible Connections with Climate Variability

    NASA Astrophysics Data System (ADS)

    Dugger, A. L.; Zhang, Y.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L.; Rafieeinasab, A.; Sampson, K. M.; Salas, F.; Read, L.; Pan, L.; Yates, D. N.; Cosgrove, B.; Clark, E. P.

    2017-12-01

    Streamflow extremes (lows and peaks) tend to have disproportionately higher impacts on the human and natural systems compared to mean streamflow. Examining and understanding the spatiotemporal distributions of streamflow extremes is of significant interests to both the research community and the water resources management. In this work, the output from the 24-year (1993 through 2016) retrospective runs of the National Water Model (NWM) version of WRF-Hydro will be analyzed for streamflow extremes over the CONUS domain. The CONUS domain was configured at 1-km resolution for land surface grid and 250-m resolution for terrain routing. The WRF-Hydro runs were forced by the regridded and downscaled NLDAS2 data. The analyses focus on daily mean streamflow values over the full water year and within the summer and winter seasons. Connections between NWM streamflow and other hydrologic variables (e.g. snowpack, soil moisture/saturation and ET) with variations in large-scale climate phenomena, e.g., El Niño - Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and North American monsoon are examined. The CONUS domain has a diverse environment and is characterized by complex terrain, heterogeneous land surfaces and ecosystems, and numerous hydrological basins. The potential dependence of streamflow extremes on regional terrain character, climatic conditions, and ecologic zones will also be investigated.

  1. Comment on "Simulation of Surface Ozone Pollution in the Central Gulf Coast Region Using WRF/Chem Model: Sensitivity to PBL and Land Surface Physics"

    EPA Science Inventory

    A recently published meteorology and air quality modeling study has several serious deficiencies deserving comment. The study uses the weather research and forecasting/chemistry (WRF/Chem) model to compare and evaluate boundary layer and land surface modeling options. The most se...

  2. The paradox of transient worsening renal function in patients with acute heart failure: the role of B-type natriuretic peptide and diuretic response.

    PubMed

    Ruocco, Gaetano; Nuti, Ranuccio; Giambelluca, Amalia; Evangelista, Isabella; De Vivo, Oreste; Daniello, Cosimo; Palazzuoli, Alberto

    2017-11-01

    Worsening renal function (WRF) occurs in one-third of patients hospitalized for acute decompensated heart failure. Recently, WRF was categorized in two subtypes: persistent and transient WRF. Thus, we sought to investigate the different prognostic impact of persistent vs. transient WRF; we also evaluate the relation of two WRF phenotypes with congestion, B-type natriuretic peptide (BNP) changes, and diuretic response at discharge. The prospective was a single centre study including patients screened for interventional Diur-heart failure Trial (NCT01441245). Patients were eligible if they were admitted with a primary diagnosis of acute heart failure with evidence of volume overload. Persistent WRF was defined as a sustained creatinine increase by at least 0.3 mg/dl throughout the hospitalisation; transient WRF was defined as creatinine increase by at least 0.3 mg/dl within 72 h and a return to baseline levels at discharge. Patients were followed for 6 months after discharge. Our population included 192 acute decompensated heart failure patients. In total, 61 patients developed persistent WRF and 29 developed transient WRF. Patients with persistent WRF showed a lower mean urine output with respect to the transient WRF group and patients with preserved renal function (1618 ± 374 vs. 2132 ± 392 vs. 2075 ± 442 ml; P < 0.001). Similarly, patients with transient WRF demonstrated a higher rate of BNP decrease more than 30% than seen in patients with stable creatinine levels and in the persistent WRF group (95 vs. 76 vs. 54%; P = 0.001). Univariate Cox regression analysis demonstrated that BNP decrease less than 30% [HR 2.15 (1.40-3.40); P < 0.001] and persistent WRF [HR 1.70 (1.11-2.61); P = 0.01] were related to poor outcome; conversely, transient WRF should be considered as a protective factor [HR 0.42 (0.19-0.93); P = 0.03]. In the multivariable model, only persistent WRF appeared to be related to poor prognosis [HR 1.61 (1.02-2.57); P = 0.04]. WRF occurring during hospitalization has a different significance: transient deterioration appears to be associated with a favourable clinical course; conversely, persistent WRF is related to poor outcome.

  3. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  4. Intercomparison of Streamflow Simulations between WRF-Hydro and Hydrology Laboratory-Research Distributed Hydrologic Model Frameworks

    NASA Astrophysics Data System (ADS)

    KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.

  5. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  6. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion

    Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.

  7. Advanced corrections for InSAR using GPS and numerical weather models

    NASA Astrophysics Data System (ADS)

    Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.

    2016-12-01

    The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  8. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa, Water Resour. Res., 52, 1544-1567, doi:10.1002/2015WR017704.

  9. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  10. Improvements to the Noah Land Surface Model in WRF-CMAQ, and its Application to Future Changes in the Chesapeake Bay Region

    EPA Science Inventory

    Regional, state, and local environmental regulatory agencies often use Eulerian meteorological and air quality models to investigate the potential impacts of climate, emissions, and land use changes on nutrient loading and air quality. The Noah land surface model in WRF could be...

  11. Relation of worsened renal function during hospitalization for heart failure to long-term outcomes and rehospitalization.

    PubMed

    Lanfear, David E; Peterson, Edward L; Campbell, Janis; Phatak, Hemant; Wu, David; Wells, Karen; Spertus, John A; Williams, L Keoki

    2011-01-01

    Worsened renal function (WRF) during heart failure (HF) hospitalization is associated with in-hospital mortality, but there are limited data regarding its relation to long-term outcomes after discharge. The influence of WRF resolution is also unknown. This retrospective study analyzed patients who received care from a large health system and had a primary hospital discharge diagnosis of HF from January 2000 to June 2008. Renal function was estimated from creatinine levels during hospitalization. The first available value was considered baseline. WRF was defined a creatinine increase ≥ 0.3 mg/dl on any subsequent hospital day compared to baseline. Persistent WRF was defined as having WRF at discharge. Proportional hazards regression, adjusting for baseline renal function and potential confounding factors, was used to assess time to rehospitalization or death. Of 2,465 patients who survived to discharge, 887 (36%) developed WRF. Median follow-up was 2.1 years. In adjusted models, WRF was associated with higher rates of postdischarge death or rehospitalization (hazard ratio [HR] 1.12, 95% confidence interval [CI] 1.02 to 1.22). Of those with WRF, 528 (60%) had persistent WRF, whereas 359 (40%) recovered. Persistent WRF was significantly associated with higher postdischarge event rates (HR 1.14, 95% CI 1.02 to 1.27), whereas transient WRF showed only a nonsignificant trend toward risk (HR 1.09, 95% CI 0.96 to 1.24). In conclusion, in patients surviving hospitalization for HF, WRF was associated with increased long-term mortality and rehospitalization, particularly if renal function did not recover by the time of discharge. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. PNNL: Climate Modelling

    Science.gov Websites

    Runs [ Open Access : Password Protected ] CESM Development CESM Runs [ Open Access : Password Protected ] WRF Development WRF Runs [ Open Access : Password Protected ] Climate Modeling Home Projects Links Literature Manuscripts Publications Polar Group Meeting (2012) ASGC Home ASGC Jobs Web Calendar Wiki Internal

  13. Hazard mitigation with cloud model based rainfall and convective data

    NASA Astrophysics Data System (ADS)

    Gernowo, R.; Adi, K.; Yulianto, T.; Seniyatis, S.; Yatunnisa, A. A.

    2018-05-01

    Heavy rain in Semarang 15 January 2013 causes flood. It is related to dynamic of weather’s parameter, especially with convection process, clouds and rainfall data. In this case, weather condition analysis uses Weather Research and Forecasting (WRF) model used to analyze. Some weather’s parameters show significant result. Their fluctuations prove there is a strong convection that produces convective cloud (Cumulonimbus). Nesting and 2 domains on WRF model show good output to represent weather’s condition commonly. The results of this study different between output cloud cover rate of observation result and output of model around 6-12 hours is because spinning-up of processing. Satellite Images of MTSAT (Multifunctional Transport Satellite) are used as a verification data to prove the result of WRF. White color of satellite image is Coldest Dark Grey (CDG) that indicates there is cloud’s top. This image consolidates that the output of WRF is good enough to analyze Semarang’s condition when the case happened.

  14. Modeling and Observational Framework for Diagnosing Local Land-Atmosphere Coupling on Diurnal Time Scales

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Alonge, Charles; Tao, Wei-Kuo

    2009-01-01

    Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The co-evolution of these variables and the convective PBL is sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land-atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.

  15. Summertime Thunderstorms Prediction in Belarus

    NASA Astrophysics Data System (ADS)

    Lapo, Palina; Sokolovskaya, Yaroslava; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Mesoscale modeling with the Weather Research & Forecasting (WRF) system makes it possible to predict thunderstorm formation events by direct numerical simulation. In the present study, we analyze the feasibility and quality of thunderstorm prediction on the territory of Belarus for the summer period of 2014 based on analysis of several characteristic parameters in WRF modeling results that can serve as indicators of thunderstorms formation. These parameters include vertical velocity distribution, convective available potential energy (CAPE), K-index, SWEAT-index, Thompson index, lifted condensation level (LCL), and others, all of them being indicators of favorable atmospheric conditions for thunderstorms development. We perform mesoscale simulations of several cases of thunderstorm development in Belarus with WRF-ARW modeling system using 3 km grid spacing, WSM6 microphysics parameterization and explicit convection (no convective parameterization). Typical modeling duration makes 48 hours, which is equivalent to next-day thunderstorm prediction in operational use. We focus our attention to most prominent cases of intense thunderstorms in Minsk. For validation purposes, we use radar and satellite data in addition to surface observations. In summertime, the territory of Belarus is quite often under the influence of atmospheric fronts and stationary anticyclones. In this study, we subdivide thunderstorm cases under consideration into 2 categories: thunderstorms related to free convection and those related to forced convection processes. Our aim is to study the differences in thunderstorm indicator parameters between these two categories of thunderstorms in order to elaborate a set of parameters that can be used for operational thunderstorm forecasting. For that purpose, we analyze characteristic features of thunderstorms development on cold atmospheric fronts as well as thunderstorms formation in stable air masses. Modeling results demonstrate good predictive skill for thunderstorms development forecasting in summertime, which is even better in cases of atmospheric fronts passage. Integrated use of thunderstorm indicator parameters makes it possible to further improve the predictive skill.

  16. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    NASA Astrophysics Data System (ADS)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.

  17. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin

    NASA Astrophysics Data System (ADS)

    Tran, Trang; Tran, Huy; Mansfield, Marc; Lyman, Seth; Crosman, Erik

    2018-03-01

    Four-dimensional data assimilation (FDDA) was applied in WRF-CMAQ model sensitivity tests to study the impact of observational and analysis nudging on model performance in simulating inversion layers and O3 concentration distributions within the Uintah Basin, Utah, U.S.A. in winter 2013. Observational nudging substantially improved WRF model performance in simulating surface wind fields, correcting a 10 °C warm surface temperature bias, correcting overestimation of the planetary boundary layer height (PBLH) and correcting underestimation of inversion strengths produced by regular WRF model physics without nudging. However, the combined effects of poor performance of WRF meteorological model physical parameterization schemes in simulating low clouds, and warm and moist biases in the temperature and moisture initialization and subsequent simulation fields, likely amplified the overestimation of warm clouds during inversion days when observational nudging was applied, impacting the resulting O3 photochemical formation in the chemistry model. To reduce the impact of a moist bias in the simulations on warm cloud formation, nudging with the analysis water mixing ratio above the planetary boundary layer (PBL) was applied. However, due to poor analysis vertical temperature profiles, applying analysis nudging also increased the errors in the modeled inversion layer vertical structure compared to observational nudging. Combining both observational and analysis nudging methods resulted in unrealistically extreme stratified stability that trapped pollutants at the lowest elevations at the center of the Uintah Basin and yielded the worst WRF performance in simulating inversion layer structure among the four sensitivity tests. The results of this study illustrate the importance of carefully considering the representativeness and quality of the observational and model analysis data sets when applying nudging techniques within stable PBLs, and the need to evaluate model results on a basin-wide scale.

  18. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically downscaled climate projection data will be integrated into future water resource projections in the state of Arizona, through a cooperative effort involving numerous water resource stakeholders.

  19. Fine-Resolution Modeling of the Santa Cruz and San Pedro River Basins for Climate Change and Riparian System Studies

    NASA Astrophysics Data System (ADS)

    Robles-Morua, A.; Vivoni, E. R.; Volo, T. J.; Rivera, E. R.; Dominguez, F.; Meixner, T.

    2011-12-01

    This project is part of a multidisciplinary effort aimed at understanding the impacts of climate variability and change on the ecological services provided by riparian ecosystems in semiarid watersheds of the southwestern United States. Valuing the environmental and recreational services provided by these ecosystems in the future requires a numerical simulation approach to estimate streamflow in ungauged tributaries as well as diffuse and direct recharge to groundwater basins. In this work, we utilize a distributed hydrologic model known as the TIN-based Real-time Integrated Basin Simulator (tRIBS) in the upper Santa Cruz and San Pedro basins with the goal of generating simulated hydrological fields that will be coupled to a riparian groundwater model. With the distributed model, we will evaluate a set of climate change and population scenarios to quantify future conditions in these two river systems and their impacts on flood peaks, recharge events and low flows. Here, we present a model confidence building exercise based on high performance computing (HPC) runs of the tRIBS model in both basins during the period of 1990-2000. Distributed model simulations utilize best-available data across the US-Mexico border on topography, land cover and soils obtained from analysis of remotely-sensed imagery and government databases. Meteorological forcing over the historical period is obtained from a combination of sparse ground networks and weather radar rainfall estimates. We then focus on a comparison between simulation runs using ground-based forcing to cases where the Weather Research Forecast (WRF) model is used to specify the historical conditions. Two spatial resolutions are considered from the WRF model fields - a coarse (35-km) and a downscaled (10- km) forcing. Comparisons will focus on the distribution of precipitation, soil moisture, runoff generation and recharge and assess the value of the WRF coarse and downscaled products. These results provide confidence in the model application and a measure of modeling uncertainty that will help set the foundation for forthcoming climate change studies.

  20. A Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005) Simulation

    PubMed Central

    Dodla, Venkata B.; Desamsetti, Srinivas; Yerramilli, Anjaneyulu

    2011-01-01

    The life cycle of Hurricane Katrina (2005) was simulated using three different modeling systems of Weather Research and Forecasting (WRF) mesoscale model. These are, HWRF (Hurricane WRF) designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW) model and the Non-hydrostatic Mesoscale Model (NMM). The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR), incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP) based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis) data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina. PMID:21776239

  1. A comparison of HWRF, ARW and NMM models in Hurricane Katrina (2005) simulation.

    PubMed

    Dodla, Venkata B; Desamsetti, Srinivas; Yerramilli, Anjaneyulu

    2011-06-01

    The life cycle of Hurricane Katrina (2005) was simulated using three different modeling systems of Weather Research and Forecasting (WRF) mesoscale model. These are, HWRF (Hurricane WRF) designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW) model and the Non-hydrostatic Mesoscale Model (NMM). The WRF model was developed and sourced from National Center for Atmospheric Research (NCAR), incorporating the advances in atmospheric simulation system suitable for a broad range of applications. The HWRF modeling system was developed at the National Centers for Environmental Prediction (NCEP) based on the NMM dynamic core and the physical parameterization schemes specially designed for tropics. A case study of Hurricane Katrina was chosen as it is one of the intense hurricanes that caused severe destruction along the Gulf Coast from central Florida to Texas. ARW, NMM and HWRF models were designed to have two-way interactive nested domains with 27 and 9 km resolutions. The three different models used in this study were integrated for three days starting from 0000 UTC of 27 August 2005 to capture the landfall of hurricane Katrina on 29 August. The initial and time varying lateral boundary conditions were taken from NCEP global FNL (final analysis) data available at 1 degree resolution for ARW and NMM models and from NCEP GFS data at 0.5 degree resolution for HWRF model. The results show that the models simulated the intensification of Hurricane Katrina and the landfall on 29 August 2005 agreeing with the observations. Results from these experiments highlight the superior performance of HWRF model over ARW and NMM models in predicting the track and intensification of Hurricane Katrina.

  2. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  3. Mesoscale modelling methodology based on nudging to increase accuracy in WRA

    NASA Astrophysics Data System (ADS)

    Mylonas Dirdiris, Markos; Barbouchi, Sami; Hermmann, Hugo

    2016-04-01

    The offshore wind energy has recently become a rapidly growing renewable energy resource worldwide, with several offshore wind projects in development in different planning stages. Despite of this, a better understanding of the atmospheric interaction within the marine atmospheric boundary layer (MABL) is needed in order to contribute to a better energy capture and cost-effectiveness. Light has been thrown in observational nudging as it has recently become an innovative method to increase the accuracy of wind flow modelling. This particular study focuses on the observational nudging capability of Weather Research and Forecasting (WRF) and ways the uncertainty of wind flow modelling in the wind resource assessment (WRA) can be reduced. Finally, an alternative way to calculate the model uncertainty is pinpointed. Approach WRF mesoscale model will be nudged with observations from FINO3 at three different heights. The model simulations with and without applying observational nudging will be verified against FINO1 measurement data at 100m. In order to evaluate the observational nudging capability of WRF two ways to derive the model uncertainty will be described: one global uncertainty and an uncertainty per wind speed bin derived using the recommended practice of the IEA in order to link the model uncertainty to a wind energy production uncertainty. This study assesses the observational data assimilation capability of WRF model within the same vertical gridded atmospheric column. The principal aim is to investigate whether having observations up to one height could improve the simulation at a higher vertical level. The study will use objective analysis implementing a Cress-man scheme interpolation to interpolate the observation in time and in sp ace (keeping the horizontal component constant) to the gridded analysis. Then the WRF model core will incorporate the interpolated variables to the "first guess" to develop a nudged simulation. Consequently, WRF with and without applying observational nudging will be validated against the higher level of FINO1 met mast using verification statistical metrics such as root mean square error (RMSE), standard deviation of mean error (ME Std), mean error average (bias) and Pearson correlation coefficient (R). The respective process will be followed for different atmospheric stratification regimes in order to evaluate the sensibility of the method to the atmospheric stability. Finally, since wind speed does not have an equally distributed impact on the power yield, the uncertainty will be measured using two ways resulting in a global uncertainty and one per wind speed bin based on a wind turbine power curve in order to evaluate the WRF for the purposes of wind power generation. Conclusion This study shows the higher accuracy of the WRF model after nudging observational data. In a next step these results will be compared with traditional vertical extrapolation methods such as power and log laws. The larger picture of this work would be to nudge the observations from a short offshore metmast in order for the WRF to reconstruct accurately the entire wind profile of the atmosphere up to hub height. This is an important step in order to reduce the cost of offshore WRA. Learning objectives 1. The audience will get a clear view of the added value of observational nudging; 2. An interesting way to calculate WRF uncertainty will be described, linking wind speed uncertainty to energy uncertainty.

  4. Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications

    EPA Science Inventory

    The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...

  5. Sensitivity of the Community Multiscale Air Quality (CMAQ) Model v4.7 Results for the Eastern United States to MM5 and WRF Meteorological Drivers

    EPA Science Inventory

    This paper presents a comparison of the operational performance of two Community Multiscale Air Quality (CMAQ) model v4.7 simulations that utilize input data from the 5th generation Mesoscale Model MM5 and the Weather Research and Forecasting (WRF) meteorological models.

  6. Validation of the WRF-CMAQ Two-Way Model with Aircraft Data and High Resolution MODIS Data in the CA 2008 Wildfire Case

    EPA Science Inventory

    A new WRF-CMAQ two-way coupled model was developed to provide a pathway for chemical feedbacks from the air quality model to the meteorological model. The essence of this interaction is focused on the direct radiative effects of scattering and absorbing aerosols in the tropospher...

  7. Mesoscale modeling of smoke radiative feedback over the Sahel region

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.

    2013-12-01

    This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.

  8. Analyzing Multidecadal Trends in Cloudiness Over the Subtropical Andes Mountains of South America Using a Regional Climate Model.

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Russell, A.; Gnanadesikan, A.

    2016-12-01

    Satellite-based products indicate that many parts of South America have been experiencing increases in outgoing longwave radiation (OLR) and corresponding decreases in cloudiness over the last few decades, with the strongest trends occurring in the subtropical Andes Mountains - an area that is highly vulnerable to climate change due to its reliance on glacial melt for dry-season runoff. Changes in cloudiness may be contributing to increases in atmospheric temperature, thereby raising the freezing level height (FLH) - a critical geophysical parameter. Yet these trends are only partially captured in reanalysis products, while AMIP climate models generally show no significant trend in OLR over this timeframe, making it difficult to determine the underlying drivers. Therefore, controlled numerical experiments with a regional climate model are performed in order to investigate drivers of the observed OLR and cloudiness trends. The Weather Research and Forecasting model (WRF) is used here because it offers several advantages over global models, including higher resolution - a critical asset in areas of complex topography - as well as flexible physics, parameterization, and data assimilation capabilities. It is likely that changes in the mean states and meridional gradients of SSTs in the Pacific and Atlantic oceans are driving regional trends in clouds. A series of lower boundary manipulations are performed with WRF to determine to what extent changes in SSTs influence regional OLR.

  9. WRF added value to capture the spatio-temporal drought variability

    NASA Astrophysics Data System (ADS)

    García-Valdecasas Ojeda, Matilde; Quishpe-Vásquez, César; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    Regional Climate Models (RCM) has been widely used as a tool to perform high resolution climate fields in areas with high climate variability such as Spain. However, the outputs provided by downscaling techniques have many sources of uncertainty associated at different aspects. In this study, the ability of the Weather Research and Forecasting (WRF) model to capture drought conditions has been analyzed. The WRF simulation was carried out for a period that spanned from 1980 to 2010 over a domain centered in the Iberian Peninsula with a spatial resolution of 0.088°, and nested in the coarser EURO-CORDEX domain (0.44° spatial resolution). To investigate the spatiotemporal drought variability, the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) has been computed at two different timescales: 3- and 12-months due to its suitability to study agricultural and hydrological droughts. The drought indices computed from WRF outputs were compared with those obtained from the observational (MOTEDAS and MOPREDAS) datasets. In order to assess the added value provided by downscaled fields, these indices were also computed from the ERA-Interim Re-Analysis database, which provides the lateral and boundary conditions of the WRF simulations. Results from this study indicate that WRF provides a noticeable benefit with respect to ERA-Interim for many regions in Spain in terms of drought indices, greater for SPI than for SPEI. The improvement offered by WRF depends on the region, index and timescale analyzed, being greater at longer timescales. These findings prove the reliability of the downscaled fields to detect drought events and, therefore, it is a remarkable source of knowledge for a suitable decision making related to water-resource management. Keywords: Drought, added value, Regional Climate Models, WRF, SPEI, SPI. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  10. Worsening renal function definition is insufficient for evaluating acute renal failure in acute heart failure.

    PubMed

    Shirakabe, Akihiro; Hata, Noritake; Kobayashi, Nobuaki; Okazaki, Hirotake; Matsushita, Masato; Shibata, Yusaku; Nishigoori, Suguru; Uchiyama, Saori; Asai, Kuniya; Shimizu, Wataru

    2018-06-01

    Whether or not the definition of a worsening renal function (WRF) is adequate for the evaluation of acute renal failure in patients with acute heart failure is unclear. One thousand and eighty-three patients with acute heart failure were analysed. A WRF, indicated by a change in serum creatinine ≥0.3 mg/mL during the first 5 days, occurred in 360 patients while no-WRF, indicated by a change <0.3 mg/dL, in 723 patients. Acute kidney injury (AKI) upon admission was defined based on the ratio of the serum creatinine value recorded on admission to the baseline creatinine value and placed into groups based on the degree of AKI: no-AKI (n = 751), Class R (risk; n = 193), Class I (injury; n = 41), or Class F (failure; n = 98). The patients were assigned to another set of four groups: no-WRF/no-AKI (n = 512), no-WRF/AKI (n = 211), WRF/no-AKI (n = 239), and WRF/AKI (n = 121). A multivariate logistic regression model found that no-WRF/AKI and WRF/AKI were independently associated with 365 day mortality (hazard ratio: 1.916; 95% confidence interval: 1.234-2.974 and hazard ratio: 3.622; 95% confidence interval: 2.332-5.624). Kaplan-Meier survival curves showed that the rate of any-cause death during 1 year was significantly poorer in the no-WRF/AKI and WRF/AKI groups than in the WRF/no-AKI and no-WRF/no-AKI groups and in Class I and Class F than in Class R and the no-AKI group. The presence of AKI on admission, especially Class I and Class F status, is associated with a poor prognosis despite the lack of a WRF within the first 5 days. The prognostic ability of AKI on admission may be superior to WRF within the first 5 days. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  11. Worsening renal function definition is insufficient for evaluating acute renal failure in acute heart failure

    PubMed Central

    Hata, Noritake; Kobayashi, Nobuaki; Okazaki, Hirotake; Matsushita, Masato; Shibata, Yusaku; Nishigoori, Suguru; Uchiyama, Saori; Asai, Kuniya; Shimizu, Wataru

    2018-01-01

    Abstract Aims Whether or not the definition of a worsening renal function (WRF) is adequate for the evaluation of acute renal failure in patients with acute heart failure is unclear. Methods and results One thousand and eighty‐three patients with acute heart failure were analysed. A WRF, indicated by a change in serum creatinine ≥0.3 mg/mL during the first 5 days, occurred in 360 patients while no‐WRF, indicated by a change <0.3 mg/dL, in 723 patients. Acute kidney injury (AKI) upon admission was defined based on the ratio of the serum creatinine value recorded on admission to the baseline creatinine value and placed into groups based on the degree of AKI: no‐AKI (n = 751), Class R (risk; n = 193), Class I (injury; n = 41), or Class F (failure; n = 98). The patients were assigned to another set of four groups: no‐WRF/no‐AKI (n = 512), no‐WRF/AKI (n = 211), WRF/no‐AKI (n = 239), and WRF/AKI (n = 121). A multivariate logistic regression model found that no‐WRF/AKI and WRF/AKI were independently associated with 365 day mortality (hazard ratio: 1.916; 95% confidence interval: 1.234–2.974 and hazard ratio: 3.622; 95% confidence interval: 2.332–5.624). Kaplan–Meier survival curves showed that the rate of any‐cause death during 1 year was significantly poorer in the no‐WRF/AKI and WRF/AKI groups than in the WRF/no‐AKI and no‐WRF/no‐AKI groups and in Class I and Class F than in Class R and the no‐AKI group. Conclusions The presence of AKI on admission, especially Class I and Class F status, is associated with a poor prognosis despite the lack of a WRF within the first 5 days. The prognostic ability of AKI on admission may be superior to WRF within the first 5 days. PMID:29388735

  12. Evaluation of NU-WRF Rainfall Forecasts for IFloodS

    NASA Technical Reports Server (NTRS)

    Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter

    2016-01-01

    The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.

  13. Evaluating the extreme precipitation events using a mesoscale atmopshere model

    NASA Astrophysics Data System (ADS)

    Yucel, I.; Onen, A.

    2012-04-01

    Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.

  14. Modeling changes in extreme snowfall events in the Central Rocky Mountains Region with the Fully-Coupled WRF-Hydro Modeling System

    NASA Astrophysics Data System (ADS)

    gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko

    2014-05-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more rapidly translated into streamflow values that approach significant flooding risks.

  15. Evaluation of WRF Model Against Satellite and Field Measurements During ARM March 2000 IOP

    NASA Astrophysics Data System (ADS)

    Wu, J.; Zhang, M.

    2003-12-01

    Meso-scale WRF model is employed to simulate the organization of clouds related with the cyclogenesis occurred during March 1-4, 2000 over ARM SGP CART site. Qualitative comparisons of simulated clouds with GOES8 satellite images show that the WRF model can capture the main features of clouds related with the cyclogenesis. The simulated precipitation patterns also match the Radar reflectivity images well. Further evaluation of the simulated features on GCM grid-scale is conducted against ARM field measurements. The evaluation shows that the evolutions of the simulated state fields such as temperature and moisture, the simulated wind fields and the derived large-scale temperature and moisture tendencies closely follow the observed patterns. These results encourages us to use meso-scale WRF model as a tool to verify the performance of GCMs in simulating cloud feedback processes related with the frontal clouds such that we can test and validate the current cloud parameterizations in climate models, and make possible improvements to different components of current cloud parameterizations in GCMs.

  16. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  17. An Observation-base investigation of nudging in WRF for downscaling surface climate information to 12-km Grid Spacing

    EPA Science Inventory

    Previous research has demonstrated the ability to use the Weather Research and Forecast (WRF) model and contemporary dynamical downscaling methods to refine global climate modeling results to a horizontal resolution of 36 km. Environmental managers and urban planners have expre...

  18. Tropical Cyclone Prediction Using COAMPS-TC

    DTIC Science & Technology

    2014-09-01

    landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review 136:1,990–2,005, http://dx.doi.org/10.1175/2007MWR2085.1. DeMaria, M...Weisman. 2004. The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast ( WRF ) Model. Atmospheric Science

  19. Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset

    EPA Science Inventory

    The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...

  20. “Assessment of the two-way Coupled WRF-CMAQ Model with Observations from the CARES”

    EPA Science Inventory

    The main goal of this assessment is to evaluate the improved aerosol component of two-way coupled WRF-CMAQ model particularly in representing aerosol physical and optical properties by utilizing observations from the Carbonaceous Aerosol and Radiative Effects Study (CARES) in May...

  1. Comparison of Spatial and Temporal Rainfall Characteristics in WRF-Simulated Precipitation to Gauge and Radar Observations

    EPA Science Inventory

    Weather Research and Forecasting (WRF) meteorological data are used for USEPA multimedia air and water quality modeling applications, within the CMAQ modeling system to estimate wet deposition and to evaluate future climate and land-use scenarios. While it is not expected that hi...

  2. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization.

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  3. Application and evaluation of high-resolution WRF-CMAQ with simple urban parameterization

    EPA Science Inventory

    The 2-way coupled WRF-CMAQ meteorology and air quality modeling system is evaluated for high-resolution applications by comparing to a regional air quality field study (Discover-AQ). The model was modified to better account for the effects of urban environments. High-resolution...

  4. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  5. Validation of WRF forecasts for the Chajnantor region

    NASA Astrophysics Data System (ADS)

    Pozo, Diana; Marín, J. C.; Illanes, L.; Curé, M.; Rabanus, D.

    2016-06-01

    This study assesses the performance of the Weather Research and Forecasting (WRF) model to represent the near-surface weather conditions and the precipitable water vapour (PWV) in the Chajnantor plateau, in the north of Chile, from 2007 April to December. The WRF model shows a very good performance forecasting the near-surface temperature and zonal wind component, although it overestimates the 2 m water vapour mixing ratio and underestimates the 10 m meridional wind component. The model represents very well the seasonal, intraseasonal and the diurnal variation of PWV. However, the PWV errors increase after the 12 h of simulation. Errors in the simulations are larger than 1.5 mm only during 10 per cent of the study period, they do not exceed 0.5 mm during 65 per cent of the time and they are below 0.25 mm more than 45 per cent of the time, which emphasizes the good performance of the model to forecast the PWV over the region. The misrepresentation of the near-surface humidity in the region by the WRF model may have a negative impact on the PWV forecasts. Thus, having accurate forecasts of humidity near the surface may result in more accurate PWV forecasts. Overall, results from this, as well as recent studies, supports the use of the WRF model to provide accurate weather forecasts for the region, particularly for the PWV, which can be of great benefit for astronomers in the planning of their scientific operations and observing time.

  6. A Comparison of the Forecast Skills among Three Numerical Models

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S. R.; White, L. J.

    2003-12-01

    Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.

  7. A Method for Evaluation of Model-Generated Vertical Profiles of Meteorological Variables

    DTIC Science & Technology

    2016-03-01

    3 2.1 RAOB Soundings and WRF Output for Profile Generation 3 2.2 Height-Based Profiles 5 2.3 Pressure-Based Profiles 5 3. Comparisons 8 4...downward arrow. The blue lines represent sublayers with sublayer means indicated by red triangles. Circles indicate the observations or WRF output...9 Table 3 Sample of differences in listed variables derived from WRF and RAOB data

  8. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno

    2018-06-01

    A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.

  9. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor'easter simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2017-03-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  10. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations.

    PubMed

    Nicholls, Stephen D; Decker, Steven G; Tao, Wei-Kuo; Lang, Stephen E; Shi, Jainn J; Mohr, Karen I

    2017-01-01

    This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  11. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations

    PubMed Central

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2018-01-01

    This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217–0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions. PMID:29697705

  12. Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen Irene

    2017-01-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217 to 0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  13. An LES study on the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL)

    NASA Astrophysics Data System (ADS)

    Kang, S. L.; Chun, J.; Kumar, A.

    2015-12-01

    We study the spatial variability impact of surface sensible heat flux (SHF) on the convective boundary layer (CBL), using the Weather Research and Forecasting (WRF) model in large eddy simulation (LES) mode. In order to investigate the response of the CBL to multi-scale feature of the surface SHF field over a local area of several tens of kilometers or smaller, an analytic surface SHF map is crated as a function of the chosen feature. The spatial variation in the SHF map is prescribed with a two-dimensional analytical perturbation field, which is generated by using the inverse transform technique of the Fourier series whose coefficients are controlled, of which spectrum to have a particular slope in the chosen range of wavelength. Then, the CBL responses to various SHF heterogeneities are summarized as a function of the spectral slope, in terms of mean structure, turbulence statistics and cross-scale processes. The range of feasible SHF heterogeneities is obtained from the SHF maps produced by a land surface model (LSM) of the WRF system. The LSM-derived SHF maps are a function of geographical data on various resolutions. Based on the numerical experiment results with the surface heterogeneities in the range, we will discuss the uncertainty in the SHF heterogeneity and its impact on the atmosphere in a numerical model. Also we will present the range of spatial scale of the surface SHF heterogeneity that significantly influence on the whole CBL. Lastly, we will report the test result of the hypothesis that the spatial variability of SHF is more representative of surface thermal heterogeneity than is the latent heat flux over the local area of several tens of kilometers or smaller.

  14. Potential Vorticity Analysis of Low Level Thunderstorm Dynamics in an Idealized Supercell Simulation

    DTIC Science & Technology

    2009-03-01

    Severe Weather, Supercell, Weather Research and Forecasting Model , Advanced WRF 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...27 A. ADVANCED RESEARCH WRF MODEL .................................................27 1. Data, Model Setup, and Methodology...03/11/2006 GFS model run. Top row: 11/12Z initialization. Middle row: 12 hour forecast valid at 12/00Z. Bottom row: 24 hour forecast valid at

  15. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.

  16. Hydrometeor Trajectories and Distributions in a Simulation of TC Rapid Intensification (RI)

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Zhu, P.

    2010-12-01

    It has long been recognized that the microphysics scheme used in a numerical simulation of tropical cyclones (TC) can greatly affect the precipitation distribution, intensity and thermodynamic structure of the simulated TC. This suggests that the mixing ratios, concentrations and size distributions of hydrometeor(snow, graupel,rain,cloud ice) are important factors in the evolution of TC . The transport of hydrometeor may have a strong influence on these factors through its interactions with the growth and the latent heat forcing of hydrometeor and the wind filed, hence is a key to understanding TC microphysics. Schematic hydrometeor trajectories were first constructed using 3-D wind field and particle fallspeeds derived from airborne radar observations in a steady-state mature hurricane,Alicia(1983). Since then, little effort has been put in understanding hydrometeor transport in TC, especially the potential link between its evolution and the intensity and structure changes in a non-steady-state TC. This study is focused on investigating such a link by means of numerical simulations of TC Rapid Intensification(RI) using WRF model. We use the tracer utility in WRF to construct hydrometeor trajectories. Most of the popular microphysics schemes are tested, and the most reasonable test( which is determined by comparing the simulated TC intensity and structure with airborne radar observations) and the ensemble mean of all the tests are picked for detailed examinations.

  17. A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.

    PubMed

    Kolling, Jenna S; Pleim, Jonathan E; Jeffries, Harvey E; Vizuete, William

    2013-01-01

    There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is necessary for realistic air quality simulations, and for formulating effective policy. The meteorological model used to support the southeast Texas 03 attainment demonstration made predictions of the PBL that were consistently less than those found in observations. The use of the Asymmetric Convective Model, version 2 (ACM2), predicted taller PBL heights and improved model predictions. A lower predicted PBL height in an air quality model would increase precursor concentrations and change the chemical production of O3 and possibly the response to control strategies.

  18. Evaluation of the Weather Research and Forecasting (WRF) Model over Portugal: Case study

    NASA Astrophysics Data System (ADS)

    Rodrigues, Mónica; Rocha, Alfredo; Monteiro, Ana

    2013-04-01

    Established in 1756 the Demarcated Douro Region, became the first viticulturist region to be delimited and regulated under worldwide scale. The region has an area of 250000 hectares, from which 45000 are occupied by continuous vineyards (IVDP, 2010). It stretches along the Douro river valleys and its main streams, from the region of Mesão Frio, about 100 kilometers east from Porto town where this river discharges till attaining the frontier with Spain in the east border. Due to its stretching and extension in the W-E direction accompanying the Douro Valley, it is not strange that the region is not homogeneous having, therefore, three sub-regions: Baixo Corgo, Cima Corgo and Douro Superior. The Baixo Corgo the most western region is the "birthplace" of the viticulturalist region. The main purpose of this work is to evaluate and test the quality of a criterion developed to determine the occurrence of frost. This criterion is to be used latter by numerical weather forecasts (WRF-ARW) and put into practice in 16 meteorological stations in the Demarcated Douro Region. Firstly, the criterion was developed to calculate the occurrence of frost based on the meteorological data observed in those 16 stations. Time series of temperatures and precipitation were used for a period of approximately 20 years. It was verified that the meteorological conditions associated to days with frost (SG) and without frost (CG) are different in each station. Afterwards, the model was validated, especially in what concerns the simulation of the daily minimal temperature. Correcting functions were applied to the data of the model, having considerably diminished the errors of simulation. Then the criterion of frost estimate was applied do the output of the model for a period of 2 frost seasons. The results show that WRF simulates successfully the appearance of frost episodes and so can be used in the frost forecasting.

  19. Assimilation of GPM GMI Rainfall Product with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Zavodsky, Bradley

    2015-01-01

    The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the influence on precipitation forecast will be presented at the conference.

  20. The Novaya Zemlya Bora: Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Efimov, V. V.; Komarovskaya, O. I.

    2018-01-01

    We consider the data of an ASRI reanalysis to distinguish the properties of velocity and temperature fields in the region of Novaya Zemlya (NZ). A numerical simulation of the bora development is performed using the WRF-ARW regional model of atmospheric circulation for two cases with different directions of the wind. In the case of southeastern winds, the wind speed and temperature fields are reproduced and the characteristics of the bora are defined: temperature and wind speed increase over the lee slope of mountains and coastal western area of the Barents Sea. In the case of a western wind, the bora does not appear. The estimates of temperature contrasts in the flow of the air stream over the NZ mountains found in the processing of the ASRI data are reported. The region of high velocities and fluxes of sensible and latent heat indicating the climatic role of the NZ archipelago noted earlier in [12] is determined.

  1. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2014-09-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in-situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region by coupling a sectional aerosol scheme to the plume rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AOD). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern Cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern Cerrado regions, WRF-Chem tended to under-predict AOD. Modeled aerosol loadings in the east were higher in the modified emission scenario. The primary organic matter to black carbon ratio was typically between 8-10 in WRF-Chem. This was lower than western flights measurements (interquartile range of 11.6-15.7 in B734, 14.7-24.0 in B739), but similar to the eastern flight B742 (8.1-10.4). However, single scattering albedo was close to measured over the western flights (0.87-0.89 in model; 0.88-0.91 in flight B734, and 0.86-0.95 in flight B739 measurements) but too high over the eastern flight B742 (0.86-0.87 in model, 0.81-0.84 in measurements). This suggests that improvements are needed to both modeled aerosol composition and optical properties calculations in WRF-Chem.

  2. Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Han, Yuefeng; Stein, Michael L.

    2016-02-10

    The Weather Research and Forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximummore » temperature through comparison with North American Regional Reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting bootstrap resampling. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.« less

  3. Development of WRF-ROI system by incorporating eigen-decomposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Noh, N.; Song, H.; Lim, G.

    2011-12-01

    This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.

  4. Assessment of the contribution of traffic emissions to the mobile vehicle measured PM2.5 concentration by means of WRF-CMAQ simulations.

    DOT National Transportation Integrated Search

    2012-03-01

    The Alaska adapted version of the Weather Research and Forecasting and the Community Modeling and Analysis Quality (WRF-CMAQ) modeling : systems was used to assess the contribution of traffic to the PM2.5-concentration in the Fairbanks nonattainment ...

  5. Dynamic Evaluation of Two Decades of WRF-CMAQ Ozone Simulations over the Contiguous United States (2017 CMAS)

    EPA Science Inventory

    Weather Research and Forecasting (WRF)–Community Multi-scale Air Quality (CMAQ) model over the contiguous United States is conducted to assess how well the changes in observed ozone air quality are simulated by the model. The changes induced by variations in meteorology and...

  6. Assessment of biomass burning smoke influence on environmental conditions for multiyear tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2016-09-01

    We use the Weather Research and Forecasting (WRF) system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the U.S. during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included, and smoke emissions are constrained using an inverse modeling technique and satellite-based aerosol optical depth observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low-level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics, and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

  7. Assessment of biomass burning smoke influence on environmental conditions for multi-year tornado outbreaks by combining aerosol-aware microphysics and fire emission constraints

    PubMed Central

    Saide, Pablo E.; Thompson, Gregory; Eidhammer, Trude; da Silva, Arlindo M.; Pierce, R. Bradley; Carmichael, Gregory R.

    2018-01-01

    We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations. PMID:29619287

  8. Predictability and Coupled Dynamics of MJO During DYNAMO

    DTIC Science & Technology

    2015-02-03

    with two complementary atmosphere-only simulations with modified SST conditions. One WRF simulation is forced with the persistent initial SST, lacking...we have contributed to the following subset of accomplishments of the muhi-institutional team: a. Run SC0AR2 ( WRF -ROMS) in downscaling mode for the 2...Regional (SCOAR) Model Seo et al. (2007; 2014, J. Climate), http://scoar.wlklspaces.cotn p^ WRF /RSM C^ ROMS {j^TWo-way coupling ^ One

  9. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    NASA Astrophysics Data System (ADS)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  10. The 20-22 January 2007 Snow Events over Canada: Microphysical Properties

    NASA Technical Reports Server (NTRS)

    Tao. W.K.; Shi, J.J.; Matsui, T.; Hao, A.; Lang, S.; Peters-Lidard, C.; Skofronick-Jackson, G.; Petersen, W.; Cifelli, R.; Rutledge, S.

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.

  11. Enhancements to the WRF-Hydro Hydrologic Model Structure for Semi-arid Environments

    NASA Astrophysics Data System (ADS)

    Lahmers, T. M.; Gupta, H.; Hazenberg, P.; Castro, C. L.; Gochis, D.; Yates, D. N.; Dugger, A. L.; Goodrich, D. C.

    2017-12-01

    The NOAA National Water Center (NWC) implemented an operational National Water Model (NWM) in August 2016 to simulate and forecast streamflow and soil moisture throughout the Contiguous US (CONUS). The NWM is based on the WRF-Hydro hydrologic model architecture, with a 1-km resolution Noah-MP LSM grid and a 250m routing grid. The operational NWM does not currently resolve infiltration of water from the beds of ephemeral channels, which is an important component of the water balance in semi-arid environments common in many portions of the western US. This work demonstrates the benefit of a conceptual channel infiltration function in the WRF-Hydro model architecture following calibration. The updated model structure and parameters for the NWM architecture, when implemented operationally, will permit its use in flow simulation and forecasting in the southwest US, particularly for flash floods in basins with smaller drainage areas. Our channel infiltration function is based on that of the KINEROS2 semi-distributed hydrologic model, which has been tested throughout the southwest CONUS for flash flood forecasts. Model calibration utilizes the Dynamically Dimensioned Search (DDS) algorithm, and the model is calibrated using NLDAS-2 atmospheric forcing and NCEP Stage-IV precipitation. Our results show that adding channel infiltration to WRF-Hydro can produce a physically consistent hydrologic response with a high-resolution gauge based precipitation forcing dataset in the USDA-ARS Walnut Gulch Experimental Watershed. NWM WRF-Hydro is also tested for the Babocomari River, Beaver Creek, and Sycamore Creek catchments in southern and central Arizona. In these basins, model skill is degraded due to uncertainties in the NCEP Stage-IV precipitation forcing dataset.

  12. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    NASA Astrophysics Data System (ADS)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2018-06-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.

  13. Sensitivity of the weather research and forecasting model to parameterization schemes for regional climate of Nile River Basin

    NASA Astrophysics Data System (ADS)

    Tariku, Tebikachew Betru; Gan, Thian Yew

    2017-08-01

    Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.

  14. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.

  15. Air quality modeling for the urban Jackson, Mississippi Region using a high resolution WRF/Chem model.

    PubMed

    Yerramilli, Anjaneyulu; Dodla, Venkata B; Desamsetti, Srinivas; Challa, Srinivas V; Young, John H; Patrick, Chuck; Baham, Julius M; Hughes, Robert L; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G; Swanier, Shelton J

    2011-06-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  16. Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bell, Jordan R.; LaFontaine, Frank J.; Peters-Lidard, Christa D.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes.

  17. Photochemical Pollution Modeling of Ozone at Metropolitan Area of Porto Alegre - RS/Brazil using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Cuchiara, G. C.; Carvalho, J.

    2013-05-01

    One of the main problems related to air pollution in urban areas is caused by photochemical oxidants, particularly troposphere ozone (O3), which is considered a harmful substance. The O3 precursors (carbon monoxide CO, nitrogen oxides NOx and hydrocarbons HCs) are predominantly of anthropogenic origin in these areas, and vehicles are the main emission sources. Due to the increased urbanization and industrial development in recent decades, air pollutant emissions have increased likewise, mainly by mobile sources in the highly urbanized and developed areas, such as the Metropolitan Area of Porto Alegre-RS (MAPA). According to legal regulations implemented in Brazil in 2005, which aimed at increasing the fraction of biofuels in the national energy matrix, 2% biodiesel were supposed to be added to the fuel mixture within three years, and up to 5% after eight years of implementation of these regulations. Our work performs an analysis of surface concentrations for O3, NOx, CO, and HCs through numerical simulations with WRF/Chem (Weather Research and Forecasting model with Chemistry). The model is validated against observational data obtained from the local urban air quality network for the period from January 5 to 9, 2009 (96 hours). One part of the study focused on the comparison of simulated meteorological variables, to observational data from two stations in MAPA. The results showed that the model simulates well the diurnal evolution of pressure and temperature at the surface, but is much less accurate for wind speed. Another part included the evaluation of model results of WRF/Chem for O3 versus observed data at air quality stations Esteio and Porto Alegre. Comparisons between simulated and observed O3 revealed that the model simulates well the evolution of the observed values, but on many occasions the model did not reproduce well the maximum and minimum concentrations. Finally, a preliminary quantitative sensitivity study on the impact of biofuel on the concentrations of O3 in RMPA was performed, revealing that there was little difference between a simulation using 0% and another one using 20% biodiesel.

  18. Developing of operational hydro-meteorological simulating and displaying system

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shih, D.; Chen, C.

    2010-12-01

    Hydrological hazards, which often occur in conjunction with extreme precipitation events, are the most frequent type of natural disaster in Taiwan. Hence, the researchers at the Taiwan Typhoon and Flood Research Institute (TTFRI) are devoted to analyzing and gaining a better understanding of the causes and effects of natural disasters, and in particular, typhoons and floods. The long-term goal of the TTFRI is to develop a unified weather-hydrological-oceanic model suitable for simulations with local parameterizations in Taiwan. The development of a fully coupled weather-hydrology interaction model is not yet completed but some operational hydro-meteorological simulations are presented as a step in the direction of completing a full model. The predicted rainfall data from Weather Research Forecasting (WRF) are used as our meteorological forcing on watershed modeling. The hydrology and hydraulic modeling are conducted by WASH123D numerical model. And the WRF/WASH123D coupled system is applied to simulate floods during the typhoon landfall periods. The daily operational runs start at 04UTC, 10UTC, 16UTC and 22UTC, about 4 hours after data downloaded from NCEP GFS. This system will execute 72-hr weather forecasts. The simulation of WASH123D will sequentially trigger after receiving WRF rainfall data. This study presents the preliminary framework of establishing this system, and our goal is to build this earlier warning system to alert the public form dangerous. The simulation results are further display by a 3D GIS web service system. This system is established following the Open Geospatial Consortium (OGC) standardization process for GIS web service, such as Web Map Service (WMS) and Web Feature Service (WFS). The traditional 2D GIS data, such as high resolution aerial photomaps and satellite images are integrated into 3D landscape model. The simulated flooding and inundation area can be dynamically mapped on Wed 3D world. The final goal of this system is to real-time forecast flood and the results can be visually displayed on the virtual catchment. The policymaker can easily and real-time gain visual information for decision making at any site through internet.

  19. Projecting water yield and ecosystem productivity across the United States by linking an ecohydrological model to WRF dynamically downscaled climate data

    Treesearch

    Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang

    2016-01-01

    Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...

  20. Assessment of Wind Resource in the Palk Strait using Different Methods

    NASA Astrophysics Data System (ADS)

    Gupta, T.; Khan, F.; Baidya Roy, S.; Miller, L.

    2017-12-01

    The Government of India has proposed a target of 60 GW in grid power from the wind by the year 2022. The Palk Strait is one of the potential offshore wind power generation sites in India. It is a 65-135 km wide and 135 km long channel lying between the south eastern tip of India and northern Sri Lanka. The complex terrain bounding the two sides of the strait leads to enhanced wind speed and reduced variability in the wind direction. Here, we compare 3 distinct methodologies for estimating the generation rates for a hypothetical offshore wind farm array located in the strait. The methodologies include: 1) traditional wind power density model that ignores the effect of turbine interactions on generation rates; 2) the PARK wake model; and 3) a high resolution weather model (WRF) with a wind turbine parameterization. Using the WRF model as our baseline, we find that the simple model overestimates generation by an order-of-magnitude, while the wake model underestimates generation rates by about 5%. The reason for these differences relates to the influence of wind turbines on the atmospheric flow, wherein, the WRF model is able to capture the effect of both the complex terrain and wind turbine atmospheric boundary layer interactions. Lastly, a model evaluation is conducted which shows that 10m wind speeds and directions from WRF are comparable with the satellite data. Hence, we conclude from the study that each of these methodologies may have merit, but should a wind farm is deployed in such a complex terrain, we expect the WRF method to give better estimates of wind resource assessment capturing the physical processes emerging due to the interactions between offshore wind farm and the surrounding terrain.

  1. Comparisons of Anvil Cirrus Spatial Characteristics between Airborne Observations in DC3 Campaign and WRF Simulations

    NASA Astrophysics Data System (ADS)

    D'Alessandro, J.; Diao, M.; Chen, M.

    2015-12-01

    John D'Alessandro1, Minghui Diao1, Ming Chen2, George Bryan2, Hugh Morrison21. Department of Meteorology and Climate Science, San Jose State University2. Mesoscale & Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO, 80301 Ice crystal formation requires the prerequisite condition of ice supersaturation, i.e., relative humidity with respect to ice (RHi) greater than 100%. The formation and evolution of ice supersaturated regions (ISSRs) has large impact on the subsequent formation of ice clouds. To examine the characteristics of simulated ice supersaturated regions at various model spatial resolutions, case studies between airborne in-situ measurements in the NSF Deep Convective, Clouds and Chemistry (DC3) campaign (May - June 2012) and WRF simulations are conducted in this work. Recent studies using ~200 m in-situ observations showed that ice supersaturated regions are mostly around 1 km in horizontal scale (Diao et al. 2014). Yet it is still unclear if such observed characteristics can be represented by WRF simulations at various spatial resolutions. In this work, we compare the WRF simulated anvil cirrus spatial characteristics with those observed in the DC3 campaign over the southern great plains in US. The WRF model is run at 1 km and 3 km horizontal grid spacing with a recent update of Thompson microphysics scheme. Our comparisons focus on the spatial characteristics of ISSRs and cirrus clouds, including the distributions of their horizontal scales, the maximum relative humidity with respect to ice (RHi) and the relationship between RHi and temperature. Our previous work on the NCAR CM1 cloud-resolving model shows that the higher resolution runs (i.e., 250m and 1km) generally have better agreement with observations than the coarser resolution (4km) runs. We will examine if similar trend exists for WRF simulations in deep convection cases. In addition, we will compare the simulation results between WRF and CM1, particularly for spatial correlations between ISSRs and cirrus and their evolution (based on the method of Diao et al. 2013). Overall, our work will help to assess the representation of ISSRs and cirrus in WRF simulation based on comparisons with in-situ observations.

  2. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  3. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  4. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description and evaluation of meteorological predictions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-02-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g. snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvement for WS10, Precip, and some mesoscale events (e.g. strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. These results indicate a need to further improve the model representations of the above parameterizations at all scales.

  5. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  6. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured withmore » sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance activity. This will allow (i) a direct comparison of future TC activity that could be expected for an active or inactive season in an altered climate regime, and (ii) a measure of the level of uncertainty and variability in TC activity resulting from different carbon emission scenarios.« less

  7. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region

    NASA Astrophysics Data System (ADS)

    Tateo, Andrea; Marcello Miglietta, Mario; Fedele, Francesca; Menegotto, Micaela; Monaco, Alfonso; Bellotti, Roberto

    2017-04-01

    The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse and point sources during specific meteorological conditions named wind days. According to the Recovery Plan, the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological conditions with 72 h in advance and possibly issue the early warning. In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertainties in the initial and boundary conditions provided by global models and secondly on the model formulation, in particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cumulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes were considered. Simulations are implemented in a real-time configuration since our intention is to analyze the same configuration implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant. After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more complex post-processing methods (e.g. weighted average, linear and nonlinear regression, and artificial neural network) are adopted to improve the performances with respect to the output of each single setup. The neural network approach comes out as the most promising method.

  8. A comparison study of convective and microphysical parameterization schemes associated with lightning occurrence in southeastern Brazil using the WRF model

    NASA Astrophysics Data System (ADS)

    Zepka, G. D.; Pinto, O.

    2010-12-01

    The intent of this study is to identify the combination of convective and microphysical WRF parameterizations that better adjusts to lightning occurrence over southeastern Brazil. Twelve thunderstorm days were simulated with WRF model using three different convective parameterizations (Kain-Fritsch, Betts-Miller-Janjic and Grell-Devenyi ensemble) and two different microphysical schemes (Purdue-Lin and WSM6). In order to test the combinations of parameterizations at the same time of lightning occurrence, a comparison was made between the WRF grid point values of surface-based Convective Available Potential Energy (CAPE), Lifted Index (LI), K-Index (KI) and equivalent potential temperature (theta-e), and the lightning locations nearby those grid points. Histograms were built up to show the ratio of the occurrence of different values of these variables for WRF grid points associated with lightning to all WRF grid points. The first conclusion from this analysis was that the choice of microphysics did not change appreciably the results as much as different convective schemes. The Betts-Miller-Janjic parameterization has generally worst skill to relate higher magnitudes for all four variables to lightning occurrence. The differences between the Kain-Fritsch and Grell-Devenyi ensemble schemes were not large. This fact can be attributed to the similar main assumptions used by these schemes that consider entrainment/detrainment processes along the cloud boundaries. After that, we examined three case studies using the combinations of convective and microphysical options without the Betts-Miller-Janjic scheme. Differently from the traditional verification procedures, fields of surface-based CAPE from WRF 10 km domain were compared to the Eta model, satellite images and lightning data. In general the more reliable convective scheme was Kain-Fritsch since it provided more consistent distribution of the CAPE fields with respect to satellite images and lightning data.

  9. Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain

    NASA Astrophysics Data System (ADS)

    Rincón, A.; Jorba, O.; Baldasano, J. M.

    2010-09-01

    The increased contribution of solar energy in power generation sources requires an accurate estimation of surface solar irradiance conditioned by geographical, temporal and meteorological conditions. The knowledge of the variability of these factors is essential to estimate the expected energy production and therefore help stabilizing the electricity grid and increase the reliability of available solar energy. The use of numerical meteorological models in combination with statistical post-processing tools may have the potential to satisfy the requirements for short-term forecasting of solar irradiance for up to several days ahead and its application in solar devices. In this contribution, we present an assessment of a short-term irradiance prediction system based on the WRF-ARW mesoscale meteorological model (Skamarock et al., 2005) and several post-processing tools in order to improve the overall skills of the system in an annual simulation of the year 2004 in Spain. The WRF-ARW model is applied with 4 km x 4 km horizontal resolution and 38 vertical layers over the Iberian Peninsula. The hourly model irradiance is evaluated against more than 90 surface stations. The stations are used to assess the temporal and spatial fluctuations and trends of the system evaluating three different post-processes: Model Output Statistics technique (MOS; Glahn and Lowry, 1972), Recursive statistical method (REC; Boi, 2004) and Kalman Filter Predictor (KFP, Bozic, 1994; Roeger et al., 2003). A first evaluation of the system without post-processing tools shows an overestimation of the surface irradiance, due to the lack of atmospheric absorbers attenuation different than clouds not included in the meteorological model. This produces an annual BIAS of 16 W m-2 h-1, annual RMSE of 106 W m-2 h-1 and annual NMAE of 42%. The largest errors are observed in spring and summer, reaching RMSE of 350 W m-2 h-1. Results using Kalman Filter Predictor show a reduction of 8% of RMSE, 83% of BIAS, and NMAE decreases down to 32%. The REC method shows a reduction of 6% of RMSE, 79% of BIAS, and NMAE decreases down to 28%. When comparing stations at different altitudes, the overestimation is enhanced at coastal stations (less than 200m) up to 900 W m-2 h-1. The results allow us to analyze strengths and drawbacks of the irradiance prediction system and its application in the estimation of energy production from photovoltaic system cells. References Boi, P.: A statistical method for forecasting extreme daily temperatures using ECMWF 2-m temperatures and ground station measurements, Meteorol. Appl., 11, 245-251, 2004. Bozic, S.: Digital and Kalman filtering, John Wiley, Hoboken, New Jersey, 2nd edn., 1994. Glahn, H. and Lowry, D.: The use of Model Output Statistics (MOS) in Objective Weather Forecasting, Applied Meteorology, 11, 1203-1211, 1972. Roeger, C., Stull, R., McClung, D., Hacker, J., Deng, X., and Modzelewski, H.: Verification of Mesoscale Numerical Weather Forecasts in Mountainous Terrain for Application to Avalanche Prediction, Weather and forecasting, 18, 1140-1160, 2003. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D. M., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 2, Tech. Rep. NCAR/TN-468+STR, NCAR Technical note, 2005.

  10. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Treesearch

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  11. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  12. Achieving Superior Tropical Cyclone Intensity Forecasts by Improving the Assimilation of High-Resolution Satellite Data into Mesoscale Prediction Models

    DTIC Science & Technology

    2013-09-30

    using polar orbit microwave and infrared sounder measurements from the Global Telecommunication System (GTS). The SDAT system was developed as a...WRF/GSI initial conditions and WRF boundary conditions. • WRF system to do short-range forecasts (6 hours) to provide the background fields for GSI...UCAR is related to a NASA GNSS proposal: “Improving Tropical Prediction and Analysis using COSMIC Radio Occultation Observations and an Ensemble Data

  13. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  14. Improved Land Use and Leaf Area Index Enhances WRF-3DVAR Satellite Radiance Assimilation: A Case Study Focusing on Rainfall Simulation in the Shule River Basin during July 2013

    NASA Astrophysics Data System (ADS)

    Yang, Junhua; Ji, Zhenming; Chen, Deliang; Kang, Shichang; Fu, Congshen; Duan, Keqin; Shen, Miaogen

    2018-06-01

    The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level (surface-sensitive) channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets. Here, we used an improved land use and leaf area index (LAI) dataset in the WRF-3DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels (e.g., channel 3), the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation.

  15. Development of GNSS PWV information management system for very short-term weather forecast in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho

    2017-04-01

    Over the past decade, Global Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term weather forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the experiment of numerical weather prediction model, the GNSS PWV was utilized as the initial value of the Weather Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.

  16. Evaluation of Diagnostic CO2 Flux and Transport Modeling in NU-WRF and GEOS-5

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Collatz, G. J.; Tao, Z.; Wang, J. S.; Ott, L. E.; Liu, Y.; Andrews, A. E.; Sweeney, C.

    2015-12-01

    We report on recent diagnostic (constrained by observations) model simulations of atmospheric CO2 flux and transport using a newly developed facility in the NASA Unified-Weather Research and Forecast (NU-WRF) model. The results are compared to CO2 data (ground-based, airborne, and GOSAT) and to corresponding simulations from a global model that uses meteorology from the NASA GEOS-5 Modern Era Retrospective analysis for Research and Applications (MERRA). The objective of these intercomparisons is to assess the relative strengths and weaknesses of the respective models in pursuit of an overall carbon process improvement at both regional and global scales. Our guiding hypothesis is that the finer resolution and improved land surface representation in NU-WRF will lead to better comparisons with CO2 data than those using global MERRA, which will, in turn, inform process model development in global prognostic models. Initial intercomparison results, however, have generally been mixed: NU-WRF is better at some sites and times but not uniformly. We are examining the model transport processes in detail to diagnose differences in the CO2 behavior. These comparisons are done in the context of a long history of simulations from the Parameterized Chemistry and Transport Model, based on GEOS-5 meteorology and Carnegie Ames-Stanford Approach-Global Fire Emissions Database (CASA-GFED) fluxes, that capture much of the CO2 variation from synoptic to seasonal to global scales. We have run the NU-WRF model using unconstrained, internally generated meteorology within the North American domain, and with meteorological 'nudging' from Global Forecast System and North American Regional Reanalysis (NARR) in an effort to optimize the CO2 simulations. Output results constrained by NARR show the best comparisons to data. Discrepancies, of course, may arise either from flux or transport errors and compensating errors are possible. Resolving their interplay is also important to using the data in inverse models. Recent analysis is focused on planetary boundary depth, which can be significantly different between MERRA and NU-WRF, along with subgrid transport differences. Characterization of transport differences between the models will allow us to better constrain the CO2 fluxes, which is the major objective of this work.

  17. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W. T.; Bela, M. M.; Pereira, G.; Trembath, J.; Kaiser, J. W.; Longo, K. M.; Freitas, S. R.; Coe, H.; McFiggans, G.

    2015-03-01

    The South American Biomass Burning Analysis (SAMBBA) field campaign took detailed in situ flight measurements of aerosol during the 2012 dry season to characterise biomass burning aerosol and improve understanding of its impacts on weather and climate. Developments have been made to the Weather Research and Forecast model with chemistry (WRF-Chem) model to improve the representation of biomass burning aerosol in the region, by coupling a sectional aerosol scheme to the plume-rise parameterisation. Brazilian Biomass Burning Emissions Model (3BEM) fire emissions are used, prepared using PREP-CHEM-SRC, and mapped to CBM-Z and MOSAIC species. Model results have been evaluated against remote sensing products, AERONET sites, and four case studies of flight measurements from the SAMBBA campaign. WRF-Chem predicted layers of elevated aerosol loadings (5-20 μg sm-3) of particulate organic matter at high altitude (6-8 km) over tropical forest regions, while flight measurements showed a sharp decrease above 2-4 km altitude. This difference was attributed to the plume-rise parameterisation overestimating injection height. The 3BEM emissions product was modified using estimates of active fire size and burned area for the 2012 fire season, which reduced the fire size. The enhancement factor for fire emissions was increased from 1.3 to 5 to retain reasonable aerosol optical depths (AODs). The smaller fire size lowered the injection height of the emissions, but WRF-Chem still showed elevated aerosol loadings between 4-5 km altitude. Over eastern cerrado (savannah-like) regions, both modelled and measured aerosol loadings decreased above approximately 4 km altitude. Compared with MODIS satellite data and AERONET sites, WRF-Chem represented AOD magnitude well (between 0.3-1.5) over western tropical forest fire regions in the first half of the campaign, but tended to over-predict them in the second half, when precipitation was more significant. Over eastern cerrado regions, WRF-Chem tended to under-predict AODs. Modelled aerosol loadings in the east were higher in the modified emission scenario. The primary organic matter to black carbon ratio was typically between 8-10 in WRF-Chem. This was lower than the western flight measurements (interquartile range of 11.6-15.7 in B734, 14.7-24.0 in B739), but similar to the eastern flight B742 (8.1-10.4). However, single scattering albedo was close to measured over the western flights (0.87-0.89 in model; 0.86-0.91 in flight B734, and 0.81-0.95 in flight B739 measurements) but too high over the eastern flight B742 (0.86-0.87 in model, 0.79-0.82 in measurements). This suggests that improvements are needed to both modelled aerosol composition and optical properties calculations in WRF-Chem.

  18. The October 25th 2015 super-cell storm over central Israel: numerical simulations with the WRF model

    NASA Astrophysics Data System (ADS)

    Lynn, Barry; Yair, Yoav

    2017-04-01

    We present high-resolution WRF simulations with lightning assimilation (Fierro et al., 2012; Lynn et al., 2015) coupled with the Dynamic Lightning Scheme (Lynn et al., 2012) of the October 25th 2015 super-cell event in the eastern Mediterranean. That storm developed within the northern tip of a Red-Sea trough off the Egyptian coastline near Alexandria, with deep convective cells rapidly growing over the sea, exhibiting cloud top temperatures colder than -70°C ( 18 km) and radar reflectivity cores > 65 dBz at 10 km. As the cells crossed the Israeli coast-line north of Tel-Aviv, they exhibited intensive lightning activity, severe hail, downbursts, and intense rain. The lightning detection system of the Israeli Electrical Corporation registered a total of over 17,000 CGs, and for 20 minutes at the peak of the event recorded CG flash-rates greater than 430 strokes per minute (if including IC strokes, it was likely higher). The results of the simulations properly reconstruct the rapid growth of vertically extensive high-reflectivity cores, with significant amounts of graupel, ice and supercooled water within the charging zone below -20C. This guaranteed the effectiveness of non-inductive charge separation processes leading to the exceptional flash rates that were observed. Fierro, A. O, E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a Lightning Data Assimilation Technique in the WRF-ARW Model at Cloud-Resolving Scales for the Tornado Outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609-2627. Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An Evaluation of the Efficacy of Using Observed Lightning to Improve Convective Lightning Forecasts. Wea. Forecasting, 30, 405-423. Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models.Wea. Forecasting, 27, 1470-1488, doi:10.1175/WAF-D-11-00144.1.

  19. High-resolution regional climate simulations of precipitation and snowpack over the US northern Rockies in a changing climate

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Geerts, B.; Liu, C.

    2015-12-01

    This work first examines the performance of a regional climate model in capturing orographic precipitation and snowpack dynamics in the northern US Rockies. The Weather Research and Forecasting (WRF) model is run at a sufficiently fine resolution (4-km horizontal grid spacing), over a sub-continental domain driven by the Climate Forecast System Reanalysis (CFSR), to examine WRF's ability to simulate the observed seasonal precipitation and snowpack dynamics. WRF retrospective simulations are being run over a 30-year period from 1980 to 2010. Observations from Snow Telemetry (SNOTEL, providing precipitation rate and snowpack snow water equivalent (SWE)) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM, providing fine-scale monthly mean values of precipitation and temperature) are used for validation. The results show that WRF captures observed seasonal precipitation and snowpack build-up reasonably well. The second part of this work is in progress. A pseudo-global warming (PGW) technique is used to perturb the retrospective reanalysis with the anticipated change according to the consensus global model guidance under the CMIP5 "high emissions" (RCP8.5) scenario produced by the CCSM4. This technique preserves low-frequency general circulation patterns and the characteristics of storms entering the domain. The WRF model is rerun over 30 years centered on 2050 with perturbed initial and boundary conditions. The results will be used to examine the effect of climate variability and projected global warming on the statistical distributions of precipitation amounts and SWE in the studied domain.

  20. Evaluation of quality of precipitation products: A case study using WRF and IMERG data over the central United States

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lin, L. F.; Bras, R. L.

    2017-12-01

    Hydrological applications rely on the availability and quality of precipitation products, specially model- and satellite-based products for use in areas without ground measurements. It is known that the quality of model- and satellite-based precipitation products are complementary—model-based products exhibiting high quality during winters while satellite-based products seem to be better during summers. To explore that behavior, this study uses 2-m air temperature as auxiliary information to evaluate high-resolution (0.1°×0.1° every hour) precipitation products from Weather Research and Forecasting (WRF) simulations and from version-4 Integrated Multi-satellite Retrievals for GPM (IMERG) early and final runs. The products are evaluated relative to the reference NCEP Stage IV precipitation estimates over the central United States in 2016. The results show that the WRF and IMERG final-run estimates are nearly unbiased while the IMERG early-run estimates positively biased. The results also show that the WRF estimates exhibit high correlations with the reference data when the temperature falls below 280°K and the IMERG estimates (i.e., both early and final runs) do so when the temperature exceeds 280°K. Moreover, the temperature threshold of 280°K, which distinguishes the quality of the WRF and the IMERG products, does not vary significantly with either season or location. This study not only adds insight into current precipitation research on the quality of precipitation products but also suggests a simple way for choosing either a model- or satellite-based product or a hybrid model/satellite product for applications.

  1. Payette River Basin Project: Improving Operational Forecasting in Complex Terrain through Chemistry

    NASA Astrophysics Data System (ADS)

    Blestrud, D.; Kunkel, M. L.; Parkinson, S.; Holbrook, V. P.; Benner, S. G.; Fisher, J.

    2015-12-01

    Idaho Power Company (IPC) is an investor owned hydroelectric based utility, serving customers throughout southern Idaho and eastern Oregon. The University of Arizona (UA) runs an operational 1.8-km resolution Weather and Research Forecast (WRF) model for IPC, which is incorporated into IPC near and real-time forecasts for hydro, solar and wind generation, load servicing and a large-scale wintertime cloud seeding operation to increase winter snowpack. Winter snowpack is critical to IPC, as hydropower provides ~50% of the company's generation needs. In efforts to improve IPC's near-term forecasts and operational guidance to its cloud seeding program, IPC is working extensively with UA and the National Center for Atmospheric Research (NCAR) to improve WRF performance in the complex terrain of central Idaho. As part of this project, NCAR has developed a WRF based cloud seeding module (WRF CS) to deliver high-resolution, tailored forecasts to provide accurate guidance for IPC's operations. Working with Boise State University (BSU), IPC is conducting a multiyear campaign to validate the WRF CS's ability to account for and disperse the cloud seeding agent (AgI) within the boundary layer. This improved understanding of how WRF handles the AgI dispersion and fate will improve the understanding and ultimately the performance of WRF to forecast other parameters. As part of this campaign, IPC has developed an extensive ground based monitoring network including a Remote Area Snow Sampling Device (RASSD) that provides spatially and temporally discrete snow samples during active cloud seeding periods. To quantify AgI dispersion in the complex terrain, BSU conducts trace element analysis using LA-ICP-MS on the RASSD sampled snow to provide measurements (at the 10-12 level) of incorporated AgI, measurements are compare directly with WRF CS's estimates of distributed AgI. Modeling and analysis results from previous year's research and plans for coming seasons will be presented.

  2. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    NASA Astrophysics Data System (ADS)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  3. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less

  4. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    NASA Astrophysics Data System (ADS)

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; Mei, Rui; Kabela, Erik D.; Gangrade, Sudershan; Naz, Bibi S.; Preston, Benjamin L.; Singh, Nagendra; Anantharaj, Valentine G.

    2017-05-01

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) River Basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms, were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserve more in-depth examination.

  5. Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin

    DOE PAGES

    Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; ...

    2017-04-13

    Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less

  6. WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.

    2013-04-01

    The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.

  7. Application and Evaluation of MODIS LAI, FPAR, and Albedo ...

    EPA Pesticide Factsheets

    MODIS vegetation and albedo products provide a more realistic representation of surface conditions for input to the WRF/CMAQ modeling system. However, the initial evaluation of ingesting MODIS data into the system showed mixed results, with increased bias and error for 2-m temperature and reduced bias and error for 2-m mixing ratio. Recently, the WRF/CMAQ land surface and boundary laywer processes have been updated. In this study, MODIS vegetation and albedo data are input to the updated WRF/CMAQ meteorology and air quality simulations for 2006 over a North American (NA) 12-km domain. The evaluation of the simulation results shows that the updated WRF/CMAQ system improves 2-m temperature estimates over the pre-update base modeling system estimates. The MODIS vegetation input produces a realistic spring green-up that progresses through time from the south to north. Overall, MODIS input reduces 2-m mixing ration bias during the growing season. The NA west shows larger positive O3 bias during the growing season because of reduced gas phase deposition resulting from lower O3 deposition velocities driven by reduced vegetation cover. The O3 bias increase associated with the realistic vegetation representation indicates that further improvement may be needed in the WRF/CMAQ system. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment. AMAD’s rese

  8. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2014-10-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (Polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first two years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, lending itself better for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations.

  9. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    NASA Astrophysics Data System (ADS)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2015-04-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations.

  10. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    PubMed Central

    Yerramilli, Anjaneyulu; Dodla, Venkata B.; Desamsetti, Srinivas; Challa, Srinivas V.; Young, John H.; Patrick, Chuck; Baham, Julius M.; Hughes, Robert L.; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G.; Swanier, Shelton J.

    2011-01-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators. PMID:21776240

  11. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America: DYNAMICAL DOWNSCALING AT 12 KM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    This study performs high spatial resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 × 6180 km2, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections when applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4, showmore » smaller biases versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the U.S. Southwest, increasing intensity over the eastern United Sates and most of Canada, and an increase in the number of days with heavy precipitation over much of NA. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  12. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biasesmore » versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  13. High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America

    DOE PAGES

    None, None

    2015-07-29

    This study performs high-spatial-resolution (12 km) Weather Research and Forecasting (WRF) simulations over a very large domain (7200 km × 6180 km, covering much of North America) to explore changes in mean and extreme precipitation in the mid and late 21st century under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). We evaluate WRF model performance for a historical simulation and future projections, applying the Community Climate System Model version 4 (CCSM4) as initial and boundary conditions with and without a bias correction. WRF simulations using boundary and initial conditions from both versions of CCSM4 show smaller biasesmore » versus evaluation data sets than does CCSM4 over western North America. WRF simulations also improve spatial details of precipitation over much of North America. However, driving the WRF with the bias-corrected CCSM4 does not always reduce the bias. WRF-projected changes in precipitation include decreasing intensity over the southwestern United States, increasing intensity over the eastern United States and most of Canada, and an increase in the number of days with heavy precipitation over much of North America. Projected precipitation changes are more evident in the late 21st century than the mid 21st century, and they are more evident under RCP 8.5 than under RCP 4.5 in the late 21st century. Uncertainties in the projected changes in precipitation due to different warming scenarios are non-negligible. Differences in summer precipitation changes between WRF and CCSM4 are significant over most of the United States.« less

  14. Methods for Improving Fine-Scale Applications of the WRF-CMAQ Modeling System

    EPA Science Inventory

    Presentation on the work in AMAD to improve fine-scale (e.g. 4km and 1km) WRF-CMAQ simulations. Includes iterative analysis, updated sea surface temperature and snow cover fields, and inclusion of impervious surface information (urban parameterization).

  15. UPDATE ON DEVELOPMENT OF NUDGING FDDA FOR ADVANCED RESEARCH WRF

    EPA Science Inventory

    A nudging-based four-dimensional data assimilation (FDDA) system is being developed for the Weather Research and Forecasting (WRF) Model. This effort represents a collaboration between The Pennsylvania State University (i.e., Penn State), the National Center for Atmospheric Rese...

  16. Effects of different regional climate model resolution and forcing scales on projected hydrologic changes

    NASA Astrophysics Data System (ADS)

    Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji

    2016-10-01

    We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.

  17. Impacts of Different Anthropogenic Aerosol Emission Scenarios on Hydrology in the Mekong Basins and their Effects on Irrigation and Hydropower

    NASA Astrophysics Data System (ADS)

    Yeo, L. K.; Wang, C.

    2016-12-01

    Water distribution is closely linked to food and energy security. Aerosol emissions affect cloud properties, as well as atmospheric stability, changing the distribution of precipitation. These changes in precipitation causes changes in water availability, affecting food production and energy generation. These impacts are especially important in Southeast Asia, which uses up to 90% of their water supply for irrigation. In addition, the Mekong river, the largest inland fishery in the world, has 30,000MW of hydropower potential in its lower reaches alone. Modelling the impacts of these anthropogenic emission scenarios will allow us to better understand their downstream effects on hydrology, and any potential feedbacks it may have on future aerosol emissions. In the first step, we run the WRF model using FNL reanlaysis data from 2014 and 2015 to generate the WRF-hydro model forcing inputs. We then run the WRF-hydro model and compare the output with current measurements of soil moisture, river flow, and precipitation. Secondly, we run the WRF-Chem model with various anthropogenic emission scenarios and put the results through the WRF-hydro model to determine the impact of these emission scenarios on soil moisture and river flow. The scenarios include enhanced anthropogenic emissions in Asia, anologous to widespread adoption of coal burning as an energy source in Asia. Anthropogenic emissions have the potential to affect energy policy in countries affected by these emissions. When hydropower generation is affected by changes in precipitation, the affected countries will have to switch to alternative sources of fuel to meet their energy needs. These sources typically result in changes in anthropogenic aerosol emisssions, especially if coal is used as an alternative source of energy.

  18. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  19. The Spatial Resolution in the Computer Modelling of Atmospheric Flow over a Double-Hill Forested Region

    NASA Astrophysics Data System (ADS)

    Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.

    2017-12-01

    With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.

  20. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in a regional model.

  1. A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area

    NASA Astrophysics Data System (ADS)

    Žabkar, Rahela; Koračin, Darko; Rakovec, Jože

    2013-10-01

    A high ozone (O3) concentrations episode during a heat wave event in the Northeastern Mediterranean was investigated using the WRF/Chem model. To understand the major model uncertainties and errors as well as the impacts of model inputs on the model accuracy, an ensemble modelling experiment was conducted. The 51-member ensemble was designed by varying model physics parameterization options (PBL schemes with different surface layer and land-surface modules, and radiation schemes); chemical initial and boundary conditions; anthropogenic and biogenic emission inputs; and model domain setup and resolution. The main impacts of the geographical and emission characteristics of three distinct regions (suburban Mediterranean, continental urban, and continental rural) on the model accuracy and O3 predictions were investigated. In spite of the large ensemble set size, the model generally failed to simulate the extremes; however, as expected from probabilistic forecasting the ensemble spread improved results with respect to extremes compared to the reference run. Noticeable model nighttime overestimations at the Mediterranean and some urban and rural sites can be explained by too strong simulated winds, which reduce the impact of dry deposition and O3 titration in the near surface layers during the nighttime. Another possible explanation could be inaccuracies in the chemical mechanisms, which are suggested also by model insensitivity to variations in the nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. Major impact factors for underestimations of the daytime O3 maxima at the Mediterranean and some rural sites include overestimation of the PBL depths, a lack of information on forest fires, too strong surface winds, and also possible inaccuracies in biogenic emissions. This numerical experiment with the ensemble runs also provided guidance on an optimum model setup and input data.

  2. Moisture Balance Over the Iberian Peninsula According to a Regional Climate Model: The Impact of 3DVAR Data Assimilation

    NASA Astrophysics Data System (ADS)

    González-Rojí, Santos J.; Sáenz, Jon; Ibarra-Berastegi, Gabriel; Díaz de Argandoña, Javier

    2018-01-01

    An analysis of the atmospheric branch of the hydrological cycle by means of a 15 km resolution numerical integration performed using Weather Research and Forecasting (WRF) nested in ERA Interim is presented. Two WRF experiments covering the period 2010-2014 were prepared. The first one (N) was configured as in standard numerical downscaling experiments. The second one (D), with the same parameterizations, included a step of 3DVAR data assimilation every 6 h. Apart from comparing our results with ERA Interim data, several observational data sets were used to validate the precipitable water (radiosondes and MODIS data), precipitation (EOBS, ECA&D, TRMM, and GPCP), or evaporation (GLEAM). The verification results showed that the D experiment systematically performs better than N and in many instances, too, better than the forcing reanalysis. According to the results, the leading terms of the water balance are the tendency of the precipitable water, the divergence of moisture flux, evaporation, and precipitation. No spatial patterns were recognizable for the annual accumulated evaporation, but the effect of the Atlantic fronts was detected in the precipitation patterns. The transboundary moisture fluxes through the contour of the Iberian Peninsula behave differently depending on the season during 2010-2014. During winter, they show a net moisture import through the boundaries. During spring, summer, or autumn moisture is exported specially through the Mediterranean coast, and only during midday, this feature is reversed due to sea breezes.

  3. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Vara-Vela, A.; Andrade, M. F.; Kumar, P.; Ynoue, R. Y.; Muñoz, A. G.

    2016-01-01

    The objective of this work is to evaluate the impact of vehicular emissions on the formation of fine particles (PM2.5; ≤ 2.5 µm in diameter) in the Sao Paulo Metropolitan Area (SPMA) in Brazil, where ethanol is used intensively as a fuel in road vehicles. The Weather Research and Forecasting with Chemistry (WRF-Chem) model, which simulates feedbacks between meteorological variables and chemical species, is used as a photochemical modelling tool to describe the physico-chemical processes leading to the evolution of number and mass size distribution of particles through gas-to-particle conversion. A vehicular emission model based on statistical information of vehicular activity is applied to simulate vehicular emissions over the studied area. The simulation has been performed for a 1-month period (7 August-6 September 2012) to cover the availability of experimental data from the NUANCE-SPS (Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State) project that aims to characterize emissions of atmospheric aerosols in the SPMA. The availability of experimental measurements of atmospheric aerosols and the application of the WRF-Chem model made it possible to represent some of the most important properties of fine particles in the SPMA such as the mass size distribution and chemical composition, besides allowing us to evaluate its formation potential through the gas-to-particle conversion processes. Results show that the emission of primary gases, mostly from vehicles, led to a production of secondary particles between 20 and 30 % in relation to the total mass concentration of PM2.5 in the downtown SPMA. Each of PM2.5 and primary natural aerosol (dust and sea salt) contributed with 40-50 % of the total PM10 (i.e. those ≤ 10 µm in diameter) concentration. Over 40 % of the formation of fine particles, by mass, was due to the emission of hydrocarbons, mainly aromatics. Furthermore, an increase in the number of small particles impaired the ultraviolet radiation and induced a decrease in ozone formation. The ground-level O3 concentration decreased by about 2 % when the aerosol-radiation feedback is taken into account.

  4. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    NASA Astrophysics Data System (ADS)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  5. Evaluation of numerical weather predictions performed in the context of the project DAPHNE

    NASA Astrophysics Data System (ADS)

    Tegoulias, Ioannis; Pytharoulis, Ioannis; Bampzelis, Dimitris; Karacostas, Theodore

    2014-05-01

    The region of Thessaly in central Greece is one of the main areas of agricultural production in Greece. Severe weather phenomena affect the agricultural production in this region with adverse effects for farmers and the national economy. For this reason the project DAPHNE aims at tackling the problem of drought by means of weather modification through the development of the necessary tools to support the application of a rainfall enhancement program. In the present study the numerical weather prediction system WRF-ARW is used, in order to assess its ability to represent extreme weather phenomena in the region of Thessaly. WRF is integrated in three domains covering Europe, Eastern Mediterranean and Central-Northern Greece (Thessaly and a large part of Macedonia) using telescoping nesting with grid spacing of 15km, 5km and 1.667km, respectively. The cases examined span throughout the transitional and warm period (April to September) of the years 2008 to 2013, including days with thunderstorm activity. Model results are evaluated against all available surface observations and radar products, taking into account the spatial characteristics and intensity of the storms. Preliminary results indicate a good level of agreement between the simulated and observed fields as far as the standard parameters (such as temperature, humidity and precipitation) are concerned. Moreover, the model generally exhibits a potential to represent the occurrence of the convective activity, but not its exact spatiotemporal characteristics. Acknowledgements This research work has been co-financed by the European Union (European Regional Development Fund) and Greek national funds, through the action "COOPERATION 2011: Partnerships of Production and Research Institutions in Focused Research and Technology Sectors" (contract number 11SYN_8_1088 - DAPHNE) in the framework of the operational programme "Competitiveness and Entrepreneurship" and Regions in Transition (OPC II, NSRF 2007-2013)

  6. High resolution numerical simulation (WRF V3) of an extreme rainy event over the Guadeloupe archipelago: Case of 3-5 january 2011.

    NASA Astrophysics Data System (ADS)

    Bernard, Didier C.; Cécé, Raphaël; Dorville, Jean-François

    2013-04-01

    During the dry season, the Guadeloupe archipelago may be affected by extreme rainy disturbances which may induce floods in a very short time. C. Brévignon (2003) considered a heavy rain event for rainfall upper 100 mm per day (out of mountainous areas) for this tropical region. During a cold front passage (3-5 January 2011), torrential rainfalls caused floods, major damages, landslides and five deaths. This phenomenon has put into question the current warning system based on large scale numerical models. This low-resolution forecasting (around 50-km scale) has been unsuitable for small tropical island like Guadeloupe (1600 km2). The most affected area was the middle of Grande-Terre island which is the main flat island of the archipelago (area of 587 km2, peak at 136 m). It is the most populated sector of Guadeloupe. In this area, observed rainfall have reached to 100-160 mm in 24 hours (this amount is equivalent to two months of rain for January (C. Brévignon, 2003)), in less 2 hours drainage systems have been saturated, and five people died in a ravine. Since two years, the atmospheric model WRF ARW V3 (Skamarock et al., 2008) has been used to modeling meteorological variables fields observed over the Guadeloupe archipelago at high resolution 1-km scale (Cécé et al., 2011). The model error estimators show that meteorological variables seem to be properly simulated for standard types of weather: undisturbed, strong or weak trade winds. These simulations indicate that for synoptic winds weak to moderate, a small island like Grande-Terre is able to generate inland convergence zones during daytime. In this presentation, we apply this high resolution model to simulate this extreme rainy disturbance of 3-5 January 2011. The evolution of modeling meteorological variable fields is analyzed in the most affected area of Grande-Terre (city of Les Abymes). The main goal is to examine local quasi-stationary updraft systems and highlight their convective mechanisms. The spatio-temporal distribution of simulated rainfall could help to design the prevention and evacuation plan, particularly for the flooding areas. The meteorological variable fields simulated are evaluated by comparison with observed data of meteorological weather stations (French Met. Office) available in the area. Brévignon, C., 2003: Atlas climatique: l'environnement atmosphérique de la Guadeloupe, de Saint-Barthélémy et Saint-martin. Météo-France, Service Régional de Guadeloupe, 92 pp. Cécé, R., T. Plocoste, C. D'Alexis, D. Bernard and J.-F. Dorville, 2012: Modélisation numérique à l'échelle locale des situations météorologiques observées au cours de la transition saison sèche - saison humide à l'aide de WRF ARW V3 : cas de l'archipel de la Guadeloupe. AMA 2012, Toulouse. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3.Tech. Rep., National Center for Atmospheric Research.

  7. Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick

    2016-04-01

    The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.

  8. Air quality high resolution simulations of Italian urban areas with WRF-CHIMERE

    NASA Astrophysics Data System (ADS)

    Falasca, Serena; Curci, Gabriele

    2017-04-01

    The new European Directive on ambient air quality and cleaner air for Europe (2008/50/EC) encourages the use of modeling techniques to support the observations in the assessment and forecasting of air quality. The modelling system based on the combination of the WRF meteorological model and the CHIMERE chemistry-transport model is used to perform simulations at high resolution over the main Italian cities (e.g. Milan, Rome). Three domains covering Europe, Italy and the urban areas are nested with a decreasing grid size up to 1 km. Numerical results are produced for a winter month and a summer month of the year 2010 and are validated using ground-based observations (e.g. from the European air quality database AirBase). A sensitivity study is performed using different physics options, domain resolution and grid ratio; different urban parameterization schemes are tested using also characteristic morphology parameters for the cities considered. A spatial reallocation of anthropogenic emissions derived from international (e.g. EMEP, TNO, HTAP) and national (e.g. CTN-ACE) emissions inventories and based on the land cover datasets (Global Land Cover Facility and GlobCover) and the OpenStreetMap tool is also included. Preliminary results indicate that the introduction of the spatial redistribution at high-resolution allows a more realistic reproduction of the distribution of the emission flows and thus the concentrations of the pollutants, with significant advantages especially for the urban environments.

  9. Mapping Nuclear Fallout Using the Weather Research & Forecasting (WRF) Model

    DTIC Science & Technology

    2012-09-01

    relevant modules, originally designed to predict the settling of volcanic ash, such that a stabilized cloud of nuclear particulate is initialized...within the model. This modified code is then executed for various atmospheric test explosions and the results are qualitatively and quantitatively...HYSPLIT Simulation ....................................... 44  Figure 7. WRF Fallout Prediction for Test Shot George, 0.8 R/h at H+1

  10. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system

    Treesearch

    Maria Theresa I. Cabaraban; Charles N. Kroll; Satoshi Hirabayashi; David J. Nowak

    2013-01-01

    A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature...

  11. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single simulations can be in error. Although these model shortcomings presently limit the precision of lightning threat forecasts from individual runs of current generation models,the techniques proposed herein should continue to be applicable as newer and more accurate physically-based model versions, physical parameterizations, initialization techniques and ensembles of forecasts become available.

  12. Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, and on the regional hydroclimate using WRF/Chem

    NASA Astrophysics Data System (ADS)

    Li, Jialun; Mahalov, Alex; Hyde, Peter

    2016-11-01

    The Noah-Multiparameterization land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydroclimate have been investigated over the continental United States. Our results indicate that the model with/without modification in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it underestimates rainfall in the central Great Plains and overestimates it in the eastern coast states. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using different linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experiment setups improves the simulated estimates of rainfall and temperatures in Texas and regions to the immediate north. The simulations in June, July and August of 2007-2012 show that surface [O3] decrease latent heat fluxes (LH) by 10-27 W m-2, increase surface air temperatures (T 2) by 0.6 °C-2.0 °C, decrease rainfall by 0.9-1.4 mm d-1, and decrease runoff by 0.1-0.17 mm d-1 in Texas and surrounding areas, all of which highly depends on the precise experiment setup, especially the [O3] threshold. The mechanism producing these results is that COE decreases the LH and increases sensible heat fluxes, which in turn increases the Bowen ratios and air temperatures. This lowering of the LH also results in the decrease of convective potential and finally decreases convective rainfall. Employing this modified WRF/Chem model in any high [O3] region can improve the understanding of the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.

  13. Design and Impacts of Land-Biogenic-Atmosphere Coupling in the NASA-Unified WRF (NU-WRF) Modeling System

    NASA Technical Reports Server (NTRS)

    Tan, Qian; Santanello, Joseph A., Jr.; Zhou, Shujia; Tao, Zhining; Peters-Lidard, Christa d.; Chn, Mian

    2011-01-01

    Land-Atmosphere coupling is typically designed and implemented independently for physical (e.g. water and energy) and chemical (e.g. biogenic emissions and surface depositions)-based models and applications. Differences in scale, data requirements, and physics thus limit the ability of Earth System models to be fully coupled in a consistent manner. In order for the physical-chemical-biological coupling to be complete, treatment of the land in terms of surface classification, condition, fluxes, and emissions must be considered simultaneously and coherently across all components. In this study, we investigate a coupling strategy for the NASA-Unified Weather Research and Forecasting (NU-WRF) model that incorporates the traditionally disparate fluxes of water and energy through NASA's LIS (Land Information System) and biogenic emissions through BEIS (Biogenic Emissions Inventory System) and MEGAN (Model of Emissions of Gases and Aerosols from Nature) into the atmosphere. In doing so, inconsistencies across model inputs and parameter data are resolved such that the emissions from a particular plant species are consistent with the heat and moisture fluxes calculated for that land cover type. In turn, the response of the atmospheric turbulence and mixing in the planetary boundary layer (PBL) acts on the identical surface type, fluxes, and emissions for each. In addition, the coupling of dust emission within the NU-WRF system is performed in order to ensure consistency and to maximize the benefit of high-resolution land representation in LIS. The impacts of those self-consistent components on' the simulation of atmospheric aerosols are then evaluated through the WRF-Chem-GOCART (Goddard Chemistry Aerosol Radiation and Transport) model. Overall, this ambitious project highlights the current difficulties and future potential of fully coupled. components. in Earth System models, and underscores the importance of the iLEAPS community in supporting improved knowledge of processes and innovative approaches for models and observations.

  14. Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation

    NASA Astrophysics Data System (ADS)

    Jiménez, Pedro A.; González-Rouco, J. Fidel; Montávez, Juan P.; García-Bustamante, E.; Navarro, J.; Dudhia, J.

    2013-04-01

    This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992-2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.

  15. Advanced Land Surface Processes in the Coupled WRF/CMAQ with MODIS Input

    EPA Science Inventory

    Land surface modeling (LSM) is important in WRF/CMAQ for simulating the exchange of heat, moisture, momentum, trace atmospheric chemicals, and windblown dust between the land surface and the atmosphere.? Vegetation and soil treatments are crucial in LSM for surface energy budgets...

  16. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  17. Operational forecast products and applications based on WRF/Chem

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Flandorfer, Claudia; Langer, Matthias; Mantovani, Simone; Olefs, Marc; Schellander-Gorgas, Theresa

    2015-04-01

    The responsibilities of the national weather service of Austria (ZAMG) include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The ZAMG conducts daily Air-Quality forecasts using the on-line coupled model WRF/Chem. The mother domain expands over Europe, North Africa and parts of Russia. The nested domain includes the alpine region and has a horizontal resolution of 4 km. Local emissions (Austria) are used in combination with European inventories (TNO and EMEP) for the simulations. The modeling system is presented and the results from the evaluation of the assimilation of pollutants using the 3D-VAR software GSI is shown. Currently observational data (PM10 and O3) from the Austrian Air-Quality network and from European stations (EEA) are assimilated into the model on an operational basis. In addition PM maps are produced using Aerosol Optical Thickness (AOT) observations from MODIS in combination with model data using machine learning techniques. The modeling system is operationally evaluated with different data sets. The emphasis of the application is on the forecast of pollutants which are compared to the hourly values (PM10, O3 and NO2) of the Austrian Air-Quality network. As the meteorological conditions are important for transport and chemical processes, some parameters like wind and precipitation are automatically evaluated (SAL diagrams, maps, …) with other models (e.g. ECMWF, AROME, …) and ground stations via web interface. The prediction of the AOT is also important for operators of solar power plants. In the past Numerical Weather Prediction (NWP) models were used to predict the AOT based on cloud forecasts at the ZAMG. These models do not consider the spatial and temporal variation of the aerosol distribution in the atmosphere with a consequent impact on the accuracy of forecasts especially during clear-sky days when the influence of the aerosols can have a strong impact on the AOT. WRF/Chem forecasts of the atmospheric optical properties are used to add information on the incoming radiation during these days. The evaluation of the model with satellite data for different episodes with clear-sky conditions is presented.

  18. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    NASA Astrophysics Data System (ADS)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  19. Effect of MERRA-2 initial and boundary conditions on WRF-Chem aerosol simulations over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Ukhov, Alexander; Stenchikov, Georgiy

    2017-04-01

    In this study, we test the sensitivity of the horizontal and vertical distributions of aerosols to the initial and boundary conditions (IC&BC) of the aerosol/chemistry. We use the WRF-Chem model configured over the Arabian Peninsula to study both dust and anthropogenic aerosols. Currently, in the WRF-Chem the aerosol/chemistry IC&BC are constructed using either default aerosol/chemistry profiles with no inflow of aerosols and chemicals through the lateral boundaries or using the aerosol/chemistry fields from MOZART, the model for ozone and related chemical tracers from the NCAR. Here, we construct aerosol/chemistry IC&BC using MERRA-2 output. MERRA-2 is a recently developed reanalysis that assimilates ground-based and satellite observations to provide the improved distributions of aerosols and chemical species. We ran WRF-Chem simulations for July-August 2015 using GOCART/AFWA dust emission and GOCART aerosol schemes. We used the EDGAR HTAP V4 dataset to calculate SO2 emissions. Comparison of three runs initiated using the same ERA-Interim reanalysis fields but different aerosol/chemistry IC&BC (default WRF-Chem, MOZART, and MERRA-2) with AERONET, Micropulse Lidar, Balloon, and satellite observations shows that the MERRA-2 IC&BC are superior.

  20. Forecasting Lightning Threat Using WRF Proxy Fields

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.

    2010-01-01

    Objectives: Given that high-resolution WRF forecasts can capture the character of convective outbreaks, we seek to: 1. Create WRF forecasts of LTG threat (1-24 h), based on 2 proxy fields from explicitly simulated convection: - graupel flux near -15 C (captures LTG time variability) - vertically integrated ice (captures LTG threat area). 2. Calibrate each threat to yield accurate quantitative peak flash rate densities. 3. Also evaluate threats for areal coverage, time variability. 4. Blend threats to optimize results. 5. Examine sensitivity to model mesh, microphysics. Methods: 1. Use high-resolution 2-km WRF simulations to prognose convection for a diverse series of selected case studies. 2. Evaluate graupel fluxes; vertically integrated ice (VII). 3. Calibrate WRF LTG proxies using peak total LTG flash rate densities from NALMA; relationships look linear, with regression line passing through origin. 4. Truncate low threat values to make threat areal coverage match NALMA flash extent density obs. 5. Blend proxies to achieve optimal performance 6. Study CAPS 4-km ensembles to evaluate sensitivities.

  1. Downscaling with a nested regional climate model in near-surface fields over the contiguous United States: WRF dynamical downscaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Kotamarthi, Veerabhadra R.

    The Weather Research and Forecasting (WRF) model is used for dynamic downscaling of 2.5 degree National Centers for Environmental Prediction-U.S. Department of Energy Reanalysis II (NCEP-R2) data for 1980-2010 at 12 km resolution over most of North America. The model's performance for surface air temperature and precipitation is evaluated by comparison with high-resolution observational data sets. The model's ability to add value is investigated by comparison with NCEP-R2 data and a 50 km regional climate simulation. The causes for major model bias are studied through additional sensitivity experiments with various model setup/integration approaches and physics representations. The WRF captures themore » main features of the spatial patterns and annual cycles of air temperature and precipitation over most of the contiguous United States. However, simulated air temperatures over the south central region and precipitation over the Great Plains and the Southwest have significant biases. Allowing longer spin-up time, reducing the nudging strength, or replacing the WRF Single-Moment 6-class microphysics with Morrison microphysics reduces the bias over some subregions. However, replacing the Grell-Devenyi cumulus parameterization with Kain-Fritsch shows no improvement. The 12 km simulation does add value above the NCEP-R2 data and the 50 km simulation over mountainous and coastal zones.« less

  2. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  3. Meteorological air quality forecasting using the WRF-Chem model during the LMOS2017 field campaign

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Abdioskouei, M.; Carmichael, G. R.; Christiansen, M.; Sobhani, N.

    2017-12-01

    The Lake Michigan Ozone Study (LMOS 2017) occurred during May and June 2017 to address the high ozone episodes in coastal communities surrounding Lake Michigan. Aircraft, ship, mobile lab, and ground-based stations were used in this campaign to build an extensive dataset regarding ozone, its precursors, and particulate matter. The University of Iowa produced high-resolution (4x4 km2 horizontal resolution and 53 vertical levels) forecast products using the WRF-Chem modeling system in support of experimental planning during LMOS 2017. The base forecast system used WRF-Chem 3.6.1 and updated National Emission Inventory (NEI-2011v2). In the updated NEI-2011v2, we reduced the NOx emissions by 28% based on EPA's estimated NOx trends from 2011 to 2017. We ran another daily forecast (perturbed forecast) with 50% reduced NOx emission to capture the sensitivity of ozone to NOx emission and account for the impact of weekend emissions on ozone values. Preliminary in-field evaluation of model performance for clouds, on-shore flows, and surface and aircraft sampled ozone and NOx concentrations found that the model successfully captured much of the observed synoptic variability of onshore flows. The model captured the variability of O3 well, but underpredicted peak ozone during high O3 episodes. In post-campaign WRF-Chem simulations, we investigated the sensitivity of the model to the hydrocarbon emission.

  4. Prognostic significance of dilated inferior vena cava in advanced decompensated heart failure.

    PubMed

    Lee, Hsin-Fu; Hsu, Lung-An; Chang, Chi-Jen; Chan, Yi-Hsin; Wang, Chun-Li; Ho, Wan-Jing; Chu, Pao-Hsien

    2014-10-01

    Dilated inferior vena cava (IVC) is prevalent among patients with heart failure (HF), but whether its presence predicts worsening renal function (WRF) or adverse outcomes is unclear. This cohort study analyzed patients with left ventricular ejection fraction <40 % and repeated hospitalizations (≥2 times) for HF between August 2009 and August 2011. The study endpoints were death and HF re-hospitalization. Among baseline parameters, IVC diameter was the most powerful predictor for the development of WRF (area under the curve = 0.795, cut-off value = 20.5 mm). During the 2-year follow-up, 36 patients (49 %) were re-hospitalized for HF and 14 patients (19 %) died. The event rates were significantly greater in the WRF group than in the non-WRF group (71 vs. 30 %, P < 0.001 for HF re-hospitalization; 29 vs. 10 %, P = 0.03 for death). In Cox regression model, the risk of combined end-points was increased in patients with aging, elevated blood urine nitrogen, IVC >21 mm, and WRF. When adjusted for confounding factors, IVC >21 mm [hazard ratio (HR) 3.73, 95 % confidence interval (CI) 1.66-8.34] and WRF (HR 2.68, 95 % CI 1.07-6.75) were significant predictors for adverse outcomes. In patients with advanced decompensated HF, dilated IVC (>21 mm) predicted the development of WRF and could be a predictor for adverse outcomes.

  5. A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen

    The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less

  6. Choice of Control Variables in Variational Data Assimilation and Its Analysis and Forecast Impact

    NASA Astrophysics Data System (ADS)

    Xie, Yuanfu; Sun, Jenny; Fang, Wei-ting

    2014-05-01

    Choice of control variables directly impacts the analysis qualify of a variational data assimilation and its forecasts. A theory on selecting control variables for wind and moisture field is introduced for 3DVAR or 4DVAR. For a good control variable selection, Parseval's theory is applied to 3-4DVAR and the behavior of different control variables is illustrated in physical and Fourier space in terms of minimization condition, meteorological dynamic scales and practical implementation. The computational and meteorological benefits will be discussed. Numerical experiments have been performed using WRF-DA for wind control variables and CRTM for moisture control variables. It is evident of the WRF forecast improvement and faster convergence of CRTM satellite data assimilation.

  7. Regional Climate Model sesitivity to different parameterizations schemes with WRF over Spain

    NASA Astrophysics Data System (ADS)

    García-Valdecasas Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Hidalgo-Muñoz, Jose Manuel; Argüeso, Daniel; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2015-04-01

    The ability of the Weather Research and Forecasting (WRF) model to simulate the regional climate depends on the selection of an adequate combination of parameterization schemes. This study assesses WRF sensitivity to different parameterizations using six different runs that combined three cumulus, two microphysics and three surface/planetary boundary layer schemes in a topographically complex region such as Spain, for the period 1995-1996. Each of the simulations spanned a period of two years, and were carried out at a spatial resolution of 0.088° over a domain encompassing the Iberian Peninsula and nested in the coarser EURO-CORDEX domain (0.44° resolution). The experiments were driven by Interim ECMWF Re-Analysis (ERA-Interim) data. In addition, two different spectral nudging configurations were also analysed. The simulated precipitation and maximum and minimum temperatures from WRF were compared with Spain02 version 4 observational gridded datasets. The comparison was performed at different time scales with the purpose of evaluating the model capability to capture mean values and high-order statistics. ERA-Interim data was also compared with observations to determine the improvement obtained using dynamical downscaling with respect to the driving data. For this purpose, several parameters were analysed by directly comparing grid-points. On the other hand, the observational gridded data were grouped using a multistep regionalization to facilitate the comparison in term of monthly annual cycle and the percentiles of daily values analysed. The results confirm that no configuration performs best, but some combinations that produce better results could be chosen. Concerning temperatures, WRF provides an improvement over ERA-Interim. Overall, model outputs reduce the biases and the RMSE for monthly-mean maximum and minimum temperatures and are higher correlated with observations than ERA-Interim. The analysis shows that the Yonsei University planetary boundary layer scheme is the most appropriate parameterization in term of temperatures because it better describes monthly minimum temperatures and seems to perform well for maximum temperatures. Regarding precipitation, ERA-Interim time series are slightly higher correlated with observations than WRF, but the bias and the RMSE are largely worse. These results also suggest that CAM V.5.1 2-moment 5-class microphysics schemes should not be used due to the computational cost with no apparent gain with respect to simpler schemes such as WRF single-moment 3-class. For the convection scheme, this study suggests that Betts-Miller-Janjic scheme is an appropriate choice due to its robustness and Kain-Fritsch cumulus scheme should not be used over this region. KEY WORDS: Regional climate modelling, physics schemes, parameterizations, WRF. ACKNOWLEDGEMENTS This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  8. “Fine-Scale Application of the coupled WRF-CMAQ System to ...

    EPA Pesticide Factsheets

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campa

  9. “Application and evaluation of the two-way coupled WRF ...

    EPA Pesticide Factsheets

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campa

  10. Application and Evaluation of MODIS LAI, FPAR, and Albedo Products in the WRF/CMAQ System

    EPA Science Inventory

    MODIS vegetation and albedo products provide a more realistic representation of surface conditions for input to the WRF/CMAQ modeling system. However, the initial evaluation of ingesting MODIS data into the system showed mixed results, with increased bias and error for 2-m temper...

  11. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States

    EPA Science Inventory

    Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to ...

  12. Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States

    EPA Science Inventory

    Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess...

  13. Application and evaluation of the WRF-CMAQ modeling system to the 2011 DISCOVER-AQ Baltimore-Washington D.C. study

    NASA Astrophysics Data System (ADS)

    Appel, W.; Gilliam, R. C.; Pouliot, G. A.; Godowitch, J. M.; Pleim, J.; Hogrefe, C.; Kang, D.; Roselle, S. J.; Mathur, R.

    2013-12-01

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campaign, which include aircraft transects and spirals, ship measurements in the Chesapeake Bay, ozonesondes, tethered balloon measurements, DRAGON aerosol optical depth measurements, LIDAR measurements, and intensive ground-based site measurements, are used to evaluate results from the WRF-CMAQ modeling system for July 2011 at the three model grid resolutions. The results of the comparisons of the model results to these measurements will be presented, along with results from the various sensitivity simulations examining the impact the various updates to the modeling system have on the model estimates.

  14. Use of High-resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, William E.; LaCasse, K.; Goodman, S. J.

    2006-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  15. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    NASA Astrophysics Data System (ADS)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community.

  16. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Hodge, B. M.; Clifton, A.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  17. Impact of bias-corrected reanalysis-derived lateral boundary conditions on WRF simulations

    NASA Astrophysics Data System (ADS)

    Moalafhi, Ditiro Benson; Sharma, Ashish; Evans, Jason Peter; Mehrotra, Rajeshwar; Rocheta, Eytan

    2017-08-01

    Lateral and lower boundary conditions derived from a suitable global reanalysis data set form the basis for deriving a dynamically consistent finer resolution downscaled product for climate and hydrological assessment studies. A problem with this, however, is that systematic biases have been noted to be present in the global reanalysis data sets that form these boundaries, biases which can be carried into the downscaled simulations thereby reducing their accuracy or efficacy. In this work, three Weather Research and Forecasting (WRF) model downscaling experiments are undertaken to investigate the impact of bias correcting European Centre for Medium range Weather Forecasting Reanalysis ERA-Interim (ERA-I) atmospheric temperature and relative humidity using Atmospheric Infrared Sounder (AIRS) satellite data. The downscaling is performed over a domain centered over southern Africa between the years 2003 and 2012. The sample mean and the mean as well as standard deviation at each grid cell for each variable are used for bias correction. The resultant WRF simulations of near-surface temperature and precipitation are evaluated seasonally and annually against global gridded observational data sets and compared with ERA-I reanalysis driving field. The study reveals inconsistencies between the impact of the bias correction prior to downscaling and the resultant model simulations after downscaling. Mean and standard deviation bias-corrected WRF simulations are, however, found to be marginally better than mean only bias-corrected WRF simulations and raw ERA-I reanalysis-driven WRF simulations. Performances, however, differ when assessing different attributes in the downscaled field. This raises questions about the efficacy of the correction procedures adopted.

  18. Ensemble Simulation of Sierra Nevada Snowmelt Runoff Using a Regional Climate Modeling Approach

    NASA Astrophysics Data System (ADS)

    Holtzman, N.; Pavelsky, T.; Wrzesien, M.

    2017-12-01

    The snowmelt-dominated watersheds on the western slopes of the California Sierra Nevada drain into reservoirs that generate electricity and help irrigate Central Valley farms. At the end of the wet season of each year, around April 1, most of the water that will become runoff in these basins is stored as snow at high elevations. Snow measurements provide a good estimate of the total annual runoff to come. For efficient water management, however, it is also useful to know the timing of runoff. When and how large will the peak flow into a reservoir be, and how fast will the flow decline after it peaks? We address such questions using a coupled regional climate and land surface model, WRF and Noah-MP, to dynamically downscale the North American Regional Reanalysis (NARR) with an ensemble approach. First, we assess several methods of deriving melt-season runoff from WRF. We run WRF for a complete water year, and also test initializing WRF snow from observation-based datasets at the approximate date of peak snow water equivalent. By aggregating the modeled runoffs over the drainage basins of reservoirs and comparing to naturalized flow data, we can assess the basin-scale snow accumulation accuracy of WRF and the other datasets in the Sierra. After choosing a procedure to set the model snow at the end of the wet season, we apply in WRF the melt-season meteorology from 20 different past years of NARR to produce an ensemble of simulations, each with modeled flows into 8 reservoirs spanning the Sierra. We use the ensemble to characterize the likely spread in the timing and magnitude of hydrologic outcomes during the melt season. Probabilistic forecasts can help water-energy systems operate more efficiently. The ensemble also shows the effect of warm-season temperature extremes on flow timing, allowing human systems to prepare for those possibilities. Finally, the ensemble provides a baseline estimate of the maximum variability in runoff timing that could be generated by past conditions. If future runoff patterns consistently exceed the extremes found in the ensemble, nonstationary hydroclimate can be inferred.

  19. Potential aetiologies and prognostic implications of worsening renal function in acute decompensated heart failure.

    PubMed

    Abo-Salem, Elsayed; Sherif, Khalid; Dunlap, Stephanie; Prabhakar, Sharma

    2014-12-01

    One third of patients hospitalized for acute decompensated heart failure (ADHF) develop a worsening renal function (WRF) that is associated with increased in-hospital morbidity and mortality. However, previous investigations have not evaluated the various etiologies of WRF and its impact on prognosis. A retrospective chart review was performed of patients admitted with ADHF who had a rise of serum creatinine ≥ 0.3 mg/dl on admission or during their hospital stay. The chart notes were reviewed for the suggested etiology of WRF. Cases were defined as ADHF associated WRF (ADHF-WRF) when there was no other explanation for WRF, plus an objective evidence of hypervolemia. Cases with WRF after 48 hours of a negative fluid balance were classified as diuresis-associated WRF (DA-WRF). ICD-9 codes identified 319 admissions with ADHF complicated with WRF. Fifty admissions were excluded. The most common causes of WRF were ADHF-WRF (43.1%) and DA-WRF (42.8%). Other causes included nephrotoxins (5.9%) and surgery (3.7%). The mortality rate was significantly lower with DA-WRF compared to ADHF-WRF; odds ratio 0.059 (95% CI 0.007 to 0.45, P = 0.006). Readmission at 30 days was higher in cases with ADHF-WRF (42%). WRF with ADHF is a heterogeneous group, and cases with ADHF-WRF had a higher in-hospital mortality and readmission rates.

  20. Numerical simulation of wave-current interaction under strong wind conditions

    NASA Astrophysics Data System (ADS)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  1. Future Drought Projections over the Iberian Peninsula using Drought Indices

    NASA Astrophysics Data System (ADS)

    Garcia-Valdecasas Ojeda, M.; Yeste Donaire, P.; Góngora García, T. M.; Gámiz-Fortis, S. R.; Castro-Diez, Y.; Esteban-Parra, M. J.

    2017-12-01

    Currently, drought events are the cause of numerous annual economic losses. In a context of climate change, it is expected an increase in the severity and the frequency of drought occurrences, especially in areas such as the Mediterranean region. This study makes use of two drought indices in order to analyze the potential changes on future drought events and their effects at different time scales over a vulnerable region, the Iberian Peninsula. The indices selected were the Standardized Precipitation Evapotranspiration Index (SPEI), which takes into account the global warming through the temperature, and the Standardized Precipitation Index (SPI), based solely on precipitation data, at a spatial resolution of 0.088º ( 10 km). For their computation, current (1980-2014) and future (2021-2050 and 2071-2100) high resolution simulations were carried out using the Weather Research and Forecasting (WRF) model over a domain centered in the Iberian Peninsula, and nested in the 0.44 EUROCORDEX region. WRF simulations were driven by two different global bias-corrected climate models: the version 1 of NCAR's Community Earth System Model (CESM1) and the Max Planck Institute's Earth System Model (MPI-ESM-LR), and under two different Representative Concentration Pathway (RCP) scenarios: RCP 4.5 and RCP 8.5. Future projections were analyzed regarding to changes in mean, median and variance of drought indices with respect to the historical distribution, as well as changes in the frequency and duration of moderate and severe drought events. In general, results suggest an increase in frequency and severity of drought, especially for 2071-2100 period in the RCP 8.5 scenario. Results also shown an increase of drought phenomena more evident using the SPEI. Conclusions from this study could provide a valuable contribution to the understanding of how the increase of the temperature would affect the drought variability in the Mediterranean regions which is necessary for a suitable decision making.Keywords: Drought, SPEI, SPI, Climatic change, Regional projections, WRF.ACKNOWLEDGEMENTS: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía) and CGL2013-48539-R (MINECO-Spain, FEDER). This analysis was carried out in the ALHAMBRA computer infrastructure at the University of Granada.

  2. High Resolution Modeling in Mountainous Terrain for Water Resource Management: AN Extreme Precipitation Event Case Study

    NASA Astrophysics Data System (ADS)

    Masarik, M. T.; Watson, K. A.; Flores, A. N.; Anderson, K.; Tangen, S.

    2016-12-01

    The water resources infrastructure of the Western US is designed to deliver reliable water supply to users and provide recreational opportunities for the public, as well as afford flood control for communities by buffering variability in precipitation and snow storage. Thus water resource management is a balancing act of meeting multiple objectives while trying to anticipate and mitigate natural variability of water supply. Currently, the forecast guidance available to personnel managing resources in mountainous terrain is lacking in two ways: the spatial resolution is too coarse, and there is a gap in the intermediate time range (10-30 days). To address this need we examine the effectiveness of using the Weather Research and Forecasting (WRF) model, a state of the art, regional, numerical weather prediction model, as a means to generate high-resolution weather guidance in the intermediate time range. This presentation will focus on a reanalysis and hindcasting case study of the extreme precipitation and flooding event in the Payette River Basin of Idaho during the period of June 2nd-4th, 2010. For the reanalysis exercise we use NCEP's Climate Forecast System Reanalysis (CFSR) and the North American Regional Reanalysis (NARR) data sets as input boundary conditions to WRF. The model configuration includes a horizontal spatial resolution of 3km in the outer nest, and 1 km in the inner nest, with output temporal resolution of 3 hrs and 1 hr, respectively. The hindcast simulations, which are currently underway, will make use of the NCEP Climate Forecast System Reforecast (CFSRR) data. The current state of these runs will be discussed. Preparations for the second of two components in this project, weekly WRF forecasts during the intense portion of the water year, will be briefly described. These forecasts will use the NCEP Climate Forecast System version 2 (CFSv2) operational forecast data as boundary conditions to provide forecast guidance geared towards water resource managers out to a lead time of 30 days. We are particularly interested in the degree to which there is forecast skill in basinwide precipitation occurrence, departure from climatology, timing, and amount in the intermediate time range.

  3. Extreme precipitation forecasting in the Chilean Andean region with complex topography using the Weather Research and Forecasting (WRF) model

    NASA Astrophysics Data System (ADS)

    Gironás, J.; Yáñez Morroni, G.; Caneo, M.; Delgado, R.

    2017-12-01

    The Weather Research and Forecasting (WRF) model is broadly used for weather forecasting, hindcasting and researching due to its good performance. However, the atmospheric conditions for simulating are not always optimal when it includes complex topographies: affecting WRF mathematical stability and convergence, therefore, its performance. As Chile is a country strongly characterized by a complex topography and high gradients of elevation, WRF is ineffective resolving Chilean mountainous terrain and foothills. The need to own an effective weather forecasting tool relies on that Chile's main cities are located in these regions. Furthermore, the most intense rainfall events take place here, commonly caused by the presence of cutoff lows. This work analyzes a microphysics scheme ensemble to enhance initial forecasts made by the Chilean Weather Agency (DMC). These forecasts were made over the Santiago piedmont, in Quebrada de Ramón watershed, located upstream an urban area highly populated. In this region a non-existing planning increases the potential damage of a flash flood. An initial testing was made over different vertical levels resolution (39 and 50 levels), and subsequently testing with land use and surface models, and finally with the initial and boundary condition data (GFS/FNL). Our task made emphasis in analyzing microphysics and lead time (3 to 5 days before the storm peak) in the computational simulations over three extreme rainfall events between 2015 and 2017. WRF shortcoming are also related to the complex configuration of the synoptic events, even when the steep topography difficult the rainfall event peak amount, and to a lesser degree, the exact rainfall event beginning prediction. No evident trend was found in the lead time, but as expected, better results in rainfall and zero isotherm height are obtained with smaller anticipation. We found that WRF do predict properly the N-hours with the biggest amount of rainfall (5 hours corresponding to Quebrada de Ramón's time of concentration) and the temperatures during the event. This is a fundamental input to a hydrological model that could forecast flash floods. Finally, WSM-6Class microphysics was chosen as the one with best performance, but a geostatistical approach to countervail WRF forecasts' shortcomings over Andean piedmont is required.

  4. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. Analyses are run to produce quasi-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes.

  5. Estimating the importance of factors influencing the radon-222 flux from building walls.

    PubMed

    Girault, Frédéric; Perrier, Frédéric

    2012-09-01

    Radiation hazard in dwellings is dominated by the contribution of radon-222 released from soil and bedrock, but the contribution of building materials can also be important. Using a simple air mixing model in a 2-story house with an attic and a basement, it is estimated that a significant risk arises when the Wall Radon exhalation Flux (WRF) exceeds 10×10(-3) Bq·m(-2)·s(-1). WRF is studied using a multiphase advection-diffusion 3-layer analytical model with advective flow, possibly induced by a pressure deficit inside the house compared with the outside atmosphere. To first order, in most circumstances, the WRF is proportional to the wall thickness and to the radon source term, the effective radium concentration EC(Ra), which is the product of the radium-226 concentration by the emanation coefficient E. The WRF decreases with increasing material porosity and exhibits a maximum for water saturation of about 50%. For EC(Ra)=10 Bq·kg(-1), in many instances, WRF is larger than 10×10(-3) Bq·m(-2)·s(-1) and, therefore, EC(Ra)=10 Bq·kg(-1) can be considered as the typical limit not to be exceeded by building materials. An upper limit of the WRF is obtained in the purely advective regime, independent of porosity or moisture content, which can thus be used as a robust safety guideline. The sensitivity of WRF to temperature, due to the temperature sensitivity of EC(Ra) or the temperature sensitivity of radon Henry constant can be larger than 5% for the seasonal variation in the presence of slight pressure deficit. The temperature sensitivity of EC(Ra) is the dominant effect, except for moist walls. Temperature and moisture variation effects on the WRF potentially can account for most observed seasonal variations of radon concentration in houses, in addition to seasonal changes of air exchange, suggesting that the contribution of walls should be considered when designing remediation strategies and studied with dedicated experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, Sonia; Simpson, Matthew; Osuna, Jessica

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. Themore » LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.« less

  7. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  8. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  9. Study of Regional Volcanic Impact on the Middle East and North Africa using high-resolution global and regional models

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Dogar, Mohammad; Stenchikov, Georgiy

    2016-04-01

    High-latitude winter warming after strong equatorial volcanic eruptions caused by circulation changes associated with the anomalously positive phase of Arctic Oscillation is a subject of active research during recent decade. But severe winter cooling in the Middle East observed after the Mt. Pinatubo eruption of 1991, although recognized, was not thoroughly investigated. These severe regional climate perturbations in the Middle East cannot be explained by solely radiative volcanic cooling, which suggests that a contribution of forced circulation changes could be important and significant. To better understand the mechanisms of the Middle East climate response and evaluate the contributions of dynamic and radiative effects we conducted a comparative study using Geophysical Fluid Dynamics Laboratory global High Resolution Atmospheric Model (HiRAM) with the effectively "regional-model-resolution" of 25-km and the regional Weather Research and Forecasting (WRF) model focusing on the eruption of Mount Pinatubo on June 15, 1991 followed by a pronounced positive phase of the Arctic Oscillation. The WRF model has been configured over the Middle East and North Africa (MENA) region. The WRF code has been modified to interactively account for the radiative effect of volcanic aerosols. Both HiRAM and WRF capture the main features of the MENA climate response and show that in winter the dynamic effects in the Middle East prevail the direct radiative cooling from volcanic aerosols.

  10. Observations and modelling of a meteotsunami across the English Channel on 23rd June 2016

    NASA Astrophysics Data System (ADS)

    Williams, David; Horsburgh, Kevin; Schultz, David; Hughes, Chris

    2017-04-01

    Meteotsunami are shallow water waves in the tsunami frequency band, which are generated by sub-mesoscale pressure and wind velocity fluctuations. Whilst documented meteotsunami on the north-western European shelf have not been hazardous, around the world they have caused fatalities and significant economic losses. Previous observational studies suggest that across Western Europe strongly convective storms are meteotsunami-generating. We give evidence for a meteotsunami on 23rd June 2016 along the northern coastline of France, following strongly convective storms. This includes 1-minute temporal resolution tide gauge data, in situ pressure and wind velocities, and infrared satellite images. With an estimated wave height of 0.8 m at Boulogne, this meteotsunami is particularly large compared to previous observations in Western Europe. The tsunami travel times have been estimated using the wavefront method, showing that a single, instantaneous source for the waves is highly unlikely. Using the ocean model Telemac2D, idealised models of pressure and wind have been used to simulate the meteotsunami. The model supports that across the English Channel thunderstorms with north-easterly tracks, moving at the shallow water wave speed, can generate wave amplification through Proudman resonance. The Weather Research and Forecasting (WRF) model has been used to produce numerically simulated thunderstorms, which have been used to force the Telemac2D ocean model with idealised bathymetries. The WRF-Telemac2D model results also support meteotsunami generation by thunderstorms. To the author's knowledge this is the first time a thunderstorm simulation has been used to produce a meteotsunami-like wave, and indicates that non-hydrostatic, convective atmospheric processes are important for meteotsunami generation. This suggests that with combined high resolution observations and modelling, a meteotsunami forecasting system may become possible in Western Europe.

  11. Future Midwest Heat Waves in WRF

    NASA Astrophysics Data System (ADS)

    Huber, M.; Buzan, J. R.; Yoo, J.

    2017-12-01

    We present heat stress results for the upper Midwest derived from convection resolving Weather Research and Forecasting (WRF) model simulations carried out for the RCP 8.5 Scenario and driven by Community Earth System Model (CESM) boundary conditions as part of the Indiana Climate Change Assessment. Using this modeling system we find widespread and severe increases in moist heat stress metrics in the Midwest by end of century. We detail scaling arguments that suggest our results are robust and not model dependent and describe potential health, welfare, and productivity implications of these results.

  12. Implementation of Bessel's method for solar eclipses prediction in the WRF-ARW model

    NASA Astrophysics Data System (ADS)

    Montornes, Alex; Codina, Bernat; Zack, John W.; Sola, Yolanda

    2016-05-01

    Solar eclipses are predictable astronomical events that abruptly reduce the incoming solar radiation into the Earth's atmosphere, which frequently results in non-negligible changes in meteorological fields. The meteorological impacts of these events have been analyzed in many studies since the late 1960s. The recent growth in the solar energy industry has greatly increased the interest in providing more detail in the modeling of solar radiation variations in numerical weather prediction (NWP) models for the use in solar resource assessment and forecasting applications. The significant impact of the recent partial and total solar eclipses that occurred in the USA (23 October 2014) and Europe (20 March 2015) on solar power generation have provided additional motivation and interest for including these astronomical events in the current solar parameterizations.Although some studies added solar eclipse episodes within NWP codes in the 1990s and 2000s, they used eclipse parameterizations designed for a particular case study. In contrast to these earlier implementations, this paper documents a new package for the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950 to 2050 and is also extensible to a longer period. The algorithm analytically computes the trajectory of the Moon's shadow and the degree of obscuration of the solar disk at each grid point of the domain based on Bessel's method and the Five Millennium Catalog of Solar Eclipses provided by NASA, with a negligible computational time. Then, the incoming radiation is modified accordingly at each grid point of the domain.This contribution is divided in three parts. First, the implementation of Bessel's method is validated for solar eclipses in the period 1950-2050, by comparing the shadow trajectory with values provided by NASA. Latitude and longitude are determined with a bias lower than 5 x 10-3 degrees (i.e., ~ 550 m at the Equator) and are slightly overestimated and underestimated, respectively. The second part includes a validation of the simulated global horizontal irradiance (GHI) for four total solar eclipses with measurements from the Baseline Surface Radiation Network (BSRN). The results show an improvement in mean absolute error (MAE) from 77 to 90 % under cloudless skies. Lower agreement between modeled and measured GHI is observed under cloudy conditions because the effect of clouds is not included in the simulations for a better analysis of the eclipse outcomes. Finally, an introductory discussion of eclipse-induced perturbations in the surface meteorological fields (e.g., temperature, wind speed) is provided by comparing the WRF-eclipse outcomes with control simulations.

  13. The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, Anthony D.; Lee, Christopher; Newman, Claire E.; Richardson, Mark I.

    2012-09-01

    We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted.

  14. Evaluation of a regional assimilation system coupled with the WRF-chem model

    NASA Astrophysics Data System (ADS)

    Liu, Yan-an; Gao, Wei; Huang, Hung-lung; Strabala, Kathleen; Liu, Chaoshun; Shi, Runhe

    2013-09-01

    Air quality has become a social issue that is causing great concern to humankind across the globe, but particularly in developing countries. Even though the Weather Research and Forecasting with Chemistry (WRF-Chem) model has been applied in many regions, the resolution for inputting meteorology field analysis still impacts the accuracy of forecast. This article describes the application of the CIMSS Regional Assimilation System (CRAS) in East China, and its capability to assimilate the direct broadcast (DB) satellite data for obtaining more detailed meteorological information, including cloud top pressure (CTP) and total precipitation water (TPW) from MODIS. Performance evaluation of CRAS is based on qualitative and quantitative analyses. Compared with data collected from ERA-Interim, Radiosonde, and the Tropical Rainfall Measuring Mission (TRMM) precipitation measurements using bias and Root Mean Square Error (RMSE), CRAS has a systematic error due to the impact of topography and other factors; however, the forecast accuracy of all elements in the model center area is higher at various levels. The bias computed with Radiosonde reveals that the temperature and geopotential height of CRAS are better than ERA-Interim at first guess. Moreover, the location of the 24 h accumulated precipitation forecast are highly consistent with the TRMM retrieval precipitation, which means that the performance of CRAS is excellent. In summation, the newly built Vtable can realize the function of inputting the meteorology field from CRAS output into WRF, which couples the CRAS with WRF-Chem. Therefore, this study not only provides for forecast accuracy of CRAS, but also increases the capability of running the WRF-Chem model at higher resolutions in the future.

  15. A High Resolution Land Cover Data Product to Remove Urban Density Over-Estimation Bias for Coupled Urban-Vegetation-Atmosphere Interaction Studies

    NASA Astrophysics Data System (ADS)

    Shaffer, S. R.

    2017-12-01

    Coupled land-atmosphere interactions in urban settings modeled with the Weather Research and Forecasting model (WRF) derive urban land cover from 30-meter resolution National Land Cover Database (NLCD) products. However, within urban areas, the categorical NLCD lose information of non-urban classifications whenever the impervious cover within a grid cell is above 0%, and the current method to determine urban area over estimates the actual area, leading to a bias of urban contribution. To address this bias of urban contribution an investigation is conducted by employing a 1-meter resolution land cover data product derived from the National Agricultural Imagery Program (NAIP) dataset. Scenes during 2010 for the Central Arizona Phoenix Long Term Ecological Research (CAP-LTER) study area, roughly a 120 km x 100 km area containing metropolitan Phoenix, are adapted for use within WRF to determine the areal fraction and urban fraction of each WRF urban class. A method is shown for converting these NAIP data into classes corresponding to NLCD urban classes, and is evaluated in comparison with current WRF implementation using NLCD. Results are shown for comparisons of land cover products at the level of input data and aggregated to model resolution (1 km). The sensitivity of WRF short-term summertime pre-monsoon predictions within metropolitan Phoenix to different input data products of land cover, to method of aggregating these data to model grid scale (1 km), for the default and derived parameter values are examined with the Noah mosaic land surface scheme adapted for using these data. Issues with adapting these non-urban NAIP classes for use in the mosaic approach will also be discussed.

  16. Investigating Lateral Boundary Forcing of Weather Research and Forecasting (WRF) Model Forecasts for Artillery Mission Support

    DTIC Science & Technology

    2013-01-01

    the internal variability, such as the storm track or rainfall pattern (8). Arguments have emerged for the use of small domains in certain cases as...Sensitivity experiments were performed with the WRF-ARW over Meiningen, Germany for two strong wintertime extratropical cyclones. These cases were chosen

  17. Impact of Gas-Phase Mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) Predictions: Mechanism Implementation and Comparative Evaluation

    EPA Science Inventory

    Gas-phase mechanisms provide important oxidant and gaseous precursors for secondary aerosol formation. Different gas-phase mechanisms may lead to different predictions of gases, aerosols, and aerosol direct and indirect effects. In this study, WRF/Chem-MADRID simulations are cond...

  18. Evaluation of cumulus cloud – radiation interaction effects on air quality –relevant meteorological variables from WRF, from a regional climate perspective

    EPA Science Inventory

    Aware only of the resolved, grid-scale clouds, the Weather Research & Forecasting model (WRF) does not consider the interactions between subgrid-scale convective clouds and radiation. One consequence of this omission may be WRF’s overestimation of surface precipitation during sum...

  19. Dynamic Evaluation of Two Decades of WRF-CMAQ Ozone Simulations over the Contiguous United States (2017 MAC-MAQ Conference Presentation)

    EPA Science Inventory

    Dynamic evaluation of two decades of ozone simulations performed with the fully coupled Weather Research and Forecasting (WRF)–Community Multi-scale Air Quality (CMAQ) model over the contiguous United States is conducted to assess how well the changes in observed ozone air ...

  20. Precipitation Retrievals in typhoon domain combining of FY3C MWHTS Observations and WRF Predicted Models

    NASA Astrophysics Data System (ADS)

    Jieying, HE; Shengwei, ZHANG; Na, LI

    2017-02-01

    A passive sub-millimeter precipitation retrievals algorithm is provided based on Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese Feng Yun 3C (FY-3C) satellite. Using the validated global reference physical model NCEP/WRF/VDISORT), NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF, and derive the typical precipitation data from the whole world. The precipitation retrieval algorithm can operate either on land or on seawater for global. To simply the calculation procedure and save the training time, principle component analysis (PCA) was adapted to filter out the redundancy caused by scanning angle and surface effects, as well as system noise. According to the comparison and validation combing with other precipitation sources, it is demonstrated that the retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution.

  1. The Impact of Infiltration Losses and Model Resolution on the Simulated Hydrometeorological Response of a Semi-Arid Catchment

    NASA Astrophysics Data System (ADS)

    Mitchell, M. F.; Goodrich, D. C.; Gochis, D. J.; Lahmers, T. M.

    2017-12-01

    In semi-arid environments with complex terrain, redistribution of moisture occurs through runoff, stream infiltration, and regional groundwater flow. In semi-arid regions, stream infiltration has been shown to account for 10-40% of total recharge in high runoff years. These processes can potentially significantly alter land-atmosphere interactions through changes in sensible and latent heat release. However, currently, their overall impact is still unclear as historical model simulations generally made use of a coarse grid resolution, where these smaller-scale processes were either parameterized or not accounted for. To improve our understanding on the importance of stream infiltration and our ability to represent them in a coupled land-atmosphere model, this study focuses on the Walnut Gulch Experimental Watershed (WGEW) and Long-Term Agro-ecosystem Research (LTAR) site, surrounding the city of Tombstone, AZ. High-resolution surface precipitation, meteorological forcing and distributed runoff measurements have been obtained in WGEW since the 1960s. These data will be used as input for the spatially distributed WRF-Hydro model, a spatially distributed hydrological model that uses the NOAH-MP land surface model. Recently, we have implemented an infiltration loss scheme to WRF-Hydro. We will present the performance of WRF-Hydro to account for stream infiltration by comparing model simulation with in-situ observations. More specifically, as the performance of the model simulations has been shown to depend on the used model grid resolution, in the current work results will present WRF-Hydro simulations obtained at different pixel resolution (10-1000m).

  2. Cross-compartment evaluation of a fully-coupled hydrometeorological modeling system using comprehensive observation data

    NASA Astrophysics Data System (ADS)

    Fersch, Benjamin; Senatore, Alfonso; Kunstmann, Harald

    2017-04-01

    Fully-coupled hydrometeorological modeling enables investigations about the complex and often non-linear exchange mechanisms among subsurface, land, and atmosphere with respect to water and energy fluxes. The consideration of lateral redistribution of surface and subsurface water in such modeling systems is a crucial enhancement, allowing for a better representation of surface spatial patterns and providing also channel discharge predictions. However, the evaluation of fully-coupled simulations is difficult since the amount of physical detail along with feedback mechanisms leads to high degrees of freedom. Therefore, comprehensive observation data is required to obtain meaningful model configurations. We present a case study for a medium-sized river catchment in southern Germany that includes the calibration of the stand-alone and the evaluation of the fully-coupled WRF-Hydro modeling system with a horizontal resolution of 1 x 1 km2, for the period June to August 2015. ECMWF ERA-Interim reanalysis is used for model driving. Land-surface processes are represented by the Noah-MP land surface model. Land-cover is described by the EU CORINE data set. Observations for model evaluation are obtained from the TERENO Pre-Alpine observatory (http://www.imk-ifu.kit.edu/tereno.php) and are complemented by further measurements from the ScaleX campaign (http://scalex.imk-ifu.kit.edu) such as atmospheric profiles obtained from radiometer sounding and airborne systems as well as soil moisture and -temperature networks. We show how well water budgets and heat-fluxes are being reproduced by the stand-alone WRF, the stand-alone WRF-Hydro and the fully-coupled WRF-Hydro model.

  3. Analysis of sensitivity to different parameterization schemes for a subtropical cyclone

    NASA Astrophysics Data System (ADS)

    Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.

    2018-05-01

    A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.

  4. The Influence of Ocean on Typhoon Nuri (2008)

    NASA Astrophysics Data System (ADS)

    Sun, J.; Oey, L. Y.; Xu, F.; Lin, Y.; Huang, S. M.; Chang, R.

    2014-12-01

    The influence of ocean on typhoon Nuri (2008) is investigated in this study using the WRF numerical model. Typhoon Nuri formed over the warm pool of the western North Pacific. The storm traversed west-northwestward and became a Category 3 typhoon over the Kuroshio east of the Luzon Strait and weakened as it moved across South China Sea. Three types of SST: NCEP RTG_SST (Real-time,global,sea surface temperature) GHRsst (Group for High Resolution Sea Surface Temperature) and SST from the ATOP North Pacific ocean model [Oey et al 2014, JPO] are used in WRF to test the effect of ocean on the intensity of typhoon Nuri. The typhoon intensity and track are also compared with simulations using different microphysics schemes but with fixed SST. The results show that thermodynamic control through ocean response is the dominant factor which determines Nuri's intensity. The simulated intensity agrees well with the observed intensity when ATOP SST is used, while using NCEP SST and GHRsst yield errors both in intensity and timing of maximum intensity. Over the Kuroshio, the thicker depth of 26 ℃ from ATOP provides stronger heating for the correct timing of intensification of Nuri. In South China Sea, the storm weakened because of cooled SST through ocean mixing by inertial resonance. A new way of explaining typhoon intensification though PV is proposed.

  5. Are weather models better than gridded observations for precipitation in the mountains? (Invited)

    NASA Astrophysics Data System (ADS)

    Gutmann, E. D.; Rasmussen, R.; Liu, C.; Ikeda, K.; Clark, M. P.; Brekke, L. D.; Arnold, J.; Raff, D. A.

    2013-12-01

    Mountain snowpack is a critical storage component in the water cycle, and it provides drinking water for tens of millions of people in the Western US alone. This water store is susceptible to climate change both because warming temperatures are likely to lead to earlier melt and a temporal shift of the hydrograph, and because changing atmospheric conditions are likely to change the precipitation patterns that produce the snowpack. Current measurements of snowfall in complex terrain are limited in number due in part to the logistics of installing equipment in complex terrain. We show that this limitation leads to statistical artifacts in gridded observations of current climate including errors in precipitation season totals of a factor of two or more, increases in wet day fraction, and decreases in storm intensity. In contrast, a high-resolution numerical weather model (WRF) is able to reproduce observed precipitation patterns, leading to confidence in its predictions for areas without measurements and new observations support this. Running WRF for a future climate scenario shows substantial changes in the spatial patterns of precipitation in the mountains related to the physics of hydrometeor production and detrainment that are not captured by statistical downscaling products. The stationarity in statistical downscaling products is likely to lead to important errors in our estimation of future precipitation in complex terrain.

  6. Study of persistent fog in Bulgaria with Sofia Stability Index, GNSS tropospheric products and WRF simulations

    NASA Astrophysics Data System (ADS)

    Stoycheva, Anastasiya; Manafov, Ilian; Vassileva, Keranka; Guerova, Guergana

    2017-08-01

    The topography of the high valley, in which the Bulgarian capital Sofia is located, predispose the seasonal character of fog formation in anticyclonic conditions. The fog in Sofia is mainly in the cold season, with the highest frequency of registrations in December and January. During the anticyclonic conditions the clear sky and calm or nearly calm conditions favour the formation of inversions and hence the fog formation. The maximum of fog registrations is at 6 UTC and minimum at 15 UTC but during prolonged fog a low visibility is registered also between 12 and 15 UTC. A prolonged fog is registered in Sofia between 3 and 10 January 2014 and is studied by using surface synoptic observations and vertically Integrated Water Vapour (IWV) derived from Global Navigation Satellite Systems (GNSS). The fog is separated in two parts: 1) part I - radiation fog (3-5 January) and 2) part II - advection fog (7-10 January). The Sofia Stability Index (SSI) is computed using surface temperature observation at 600 and 2300 m asl. The SSI is found to give additional information about the development and the dissipation of inversion layer especially for the part II fog. IWV is derived from two GNSS stations at 600 and 1120 m asl. and clearly detects the change in the air mass between the part I and II (5-6 January) fog. Furthermore, dependence between diurnal IWV cycle and fog formation/dissipation is found with IWV variation being lowest during the days with fog. A comparison of SSI and index computed using the WRF Numerical Weather Prediction model temperatures (SSI-W) shows good correlation but an negative off-set. Assimilation of surface and upper-air observations in the WRF model resulted in partial improvement of the index (10%), which is a result of moderate improvement of the vertical temperature profile.

  7. Regional Climate Modeling of Volcanic Eruptions and the Arctic Climate System: A Baffin Island Case Study

    NASA Astrophysics Data System (ADS)

    Losic, M.; Robock, A.

    2010-12-01

    It is well-understood that the effects of volcanic aerosol loading into the stratosphere are transient, with global cooling lasting only a few years after a single large eruption. Geological evidence collected from Northern Baffin Island, Canada, suggests ice cap growth began soon after a succession of several large eruptions in the 13th century, and they did not start to melt until roughly a century ago. We investigate which feedbacks allowed these ice caps to be maintained long after the transient forcing of the volcanic aerosols, by conducting sensitivity studies with the Weather Research and Forecasting (WRF) Model and Polar WRF, a version of WRF developed specifically for the polar regions. Results from an ensemble of month-long regional simulations over Baffin Island suggest that better treatment of snow and ice in Polar WRF improves our regional climate simulations. Thus, sensitivity test results from decade-long runs with imposed changes to boundary condition temperatures and carbon dioxide concentrations using Polar WRF are presented. Preliminary findings suggest that not only large scale but localized climate feedbacks play an important role in the responses of the ice caps after temperature and carbon dioxide forcings are applied. The results from these and further sensitivity tests will provide insight into the influence of regional feedbacks on the persistence of these ice caps long after the 13th century eruptions.

  8. Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.

    PubMed

    Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.

  9. Worsening of Renal Function During 1 Year After Hospital Discharge Is a Strong and Independent Predictor of All‐Cause Mortality in Acute Decompensated Heart Failure

    PubMed Central

    Ueda, Tomoya; Kawakami, Rika; Sugawara, Yu; Okada, Sadanori; Nishida, Taku; Onoue, Kenji; Soeda, Tsunenari; Okayama, Satoshi; Takeda, Yukiji; Watanabe, Makoto; Kawata, Hiroyuki; Uemura, Shiro; Saito, Yoshihiko

    2014-01-01

    Background Renal impairment is a common comorbidity and the strongest risk factor for poor prognosis in acute decompensated heart failure (ADHF). In clinical practice, renal function is labile during episodes of ADHF, and often worsens after discharge. The significance of worsening of renal function (WRF) after discharge has not been investigated as extensively as baseline renal function at admission or WRF during hospitalization. Methods and Results Among 611 consecutive patients with ADHF emergently admitted to our hospital, 233 patients with 3 measurements of serum creatinine (SCr) level measurements (on admission, at discharge, and 1 year after discharge) were included in the present study. Patients were divided into 2 groups according to the presence or absence of WRF at 1 year after discharge (1y‐WRF), defined as an absolute increase in SCr >0.3 mg/dL (>26.5 μmol/L) plus a ≥25% increase in SCr at 1 year after discharge compared to the SCr value at discharge. All‐cause and cardiovascular mortality were assessed as adverse outcomes. During a mean follow‐up of 35.4 months, 1y‐WRF occurred in 48 of 233 patients. There were 66 deaths from all causes. All‐cause and cardiovascular mortality were significantly higher in patients with 1y‐WRF (log‐rank P<0.0001 and P<0.0001, respectively) according to Kaplan–Meier analysis. In a multivariate Cox proportional hazards model, 1y‐WRF was a strong and independent predictor of all‐cause and cardiovascular mortality. Hemoglobin and B‐type natriuretic peptide at discharge, as well as left ventricular ejection fraction <50%, were independent predictors of 1y‐WRF. Conclusions In patients with ADHF, 1y‐WRF is a strong predictor of all‐cause and cardiovascular mortality. PMID:25370599

  10. Worsening of renal function during 1 year after hospital discharge is a strong and independent predictor of all-cause mortality in acute decompensated heart failure.

    PubMed

    Ueda, Tomoya; Kawakami, Rika; Sugawara, Yu; Okada, Sadanori; Nishida, Taku; Onoue, Kenji; Soeda, Tsunenari; Okayama, Satoshi; Takeda, Yukiji; Watanabe, Makoto; Kawata, Hiroyuki; Uemura, Shiro; Saito, Yoshihiko

    2014-11-04

    Renal impairment is a common comorbidity and the strongest risk factor for poor prognosis in acute decompensated heart failure (ADHF). In clinical practice, renal function is labile during episodes of ADHF, and often worsens after discharge. The significance of worsening of renal function (WRF) after discharge has not been investigated as extensively as baseline renal function at admission or WRF during hospitalization. Among 611 consecutive patients with ADHF emergently admitted to our hospital, 233 patients with 3 measurements of serum creatinine (SCr) level measurements (on admission, at discharge, and 1 year after discharge) were included in the present study. Patients were divided into 2 groups according to the presence or absence of WRF at 1 year after discharge (1y-WRF), defined as an absolute increase in SCr >0.3 mg/dL (>26.5 μmol/L) plus a ≥25% increase in SCr at 1 year after discharge compared to the SCr value at discharge. All-cause and cardiovascular mortality were assessed as adverse outcomes. During a mean follow-up of 35.4 months, 1y-WRF occurred in 48 of 233 patients. There were 66 deaths from all causes. All-cause and cardiovascular mortality were significantly higher in patients with 1y-WRF (log-rank P<0.0001 and P<0.0001, respectively) according to Kaplan-Meier analysis. In a multivariate Cox proportional hazards model, 1y-WRF was a strong and independent predictor of all-cause and cardiovascular mortality. Hemoglobin and B-type natriuretic peptide at discharge, as well as left ventricular ejection fraction <50%, were independent predictors of 1y-WRF. In patients with ADHF, 1y-WRF is a strong predictor of all-cause and cardiovascular mortality. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS

    NASA Astrophysics Data System (ADS)

    Sessions, W. R.; Fuelberg, H. E.; Kahn, R. A.; Winker, D. M.

    2010-11-01

    The Weather Research and Forecasting Model (WRF) is considered a "next generation" mesoscale meteorology model. The inclusion of a chemistry module (WRF-Chem) allows transport simulations of chemical and aerosol species such as those observed during NASA's Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in 2008. The ARCTAS summer deployment phase during June and July coincided with large boreal wildfires in Saskatchewan and Eastern Russia. One of the most important aspects of simulating wildfire plume transport is the height at which emissions are injected. WRF-Chem contains an integrated one-dimensional plume rise model to determine the appropriate injection layer. The plume rise model accounts for thermal buoyancy associated with fires and the local atmospheric stability. This study compares results from the plume model against those of two more traditional injection methods: Injecting within the planetary boundary layer, and in a layer 3-5 km above ground level. Fire locations are satellite derived from the GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA) and the MODIS thermal hotspot detection. Two methods for preprocessing these fire data are compared: The prep_chem_sources method included with WRF-Chem, and the Naval Research Laboratory's Fire Locating and Monitoring of Burning Emissions (FLAMBE). Results from the simulations are compared with satellite-derived products from the AIRS, MISR and CALIOP sensors. Results show that the FLAMBE pre-processor produces more realistic injection heights than does prep_chem_sources. The plume rise model using FLAMBE provides the best agreement with satellite-observed injection heights. Conversely, when the planetary boundary layer or the 3-5 km AGL layer were filled with emissions, the resulting injection heights exhibit less agreement with observed plume heights. Results indicate that differences in injection heights produce different transport pathways. These differences are especially pronounced in areas of strong vertical wind shear and when the integration period is long.

  12. Precipitation forecast verification over Brazilian watersheds on present and future climate

    NASA Astrophysics Data System (ADS)

    Xavier, L.; Bruyere, C. L.; Rotunno, O.

    2016-12-01

    Evaluating the quality of precipitation forecast is an essential step for hydrological studies, among other applications, which is particularly relevant when taking into account climate change and the consequent likely modification of precipitation patterns. In this study we analyzed daily precipitation forecasts given by the global model CESM and the regional model WRF on present and future climate. For present runs, CESM data have been considered from 1980 to 2005, and WRF data from 1990 to 2000. CESM future runs were available for 3 RCP scenarios (4.5, 6.0 and 8.5), over 2005-2100 period; for WRF, future runs spanned 4 different 11-year periods (2020-2030, 2030-2040, 2050-2060 and 2080-2090). WRF simulations had been driven by bias-corrected forcings, and had been done on present climate for a 24 members ensemble created by varying the adopted parameterization schemes. On WRF future climate simulations, data from 3 members out of the original ensemble were available. Precipitation data have been spatially averaged over some large Brazilian watersheds (Amazon and subbasins, Tocantins, Sao Francisco, 4 of Parana`s subbasins) and have been evaluated for present climate against a gauge gridded dataset and ERA Interim data both spanning the 1980-2013 period. The evaluation was focused on the analysis of precipitation forecasts probabilities distribution. Taking into account daily and monthly mean precipitation aggregated on 3-month periods (DJF,MAM,JJA,SON), we adopted some skill measures, amongst them, the Perkins Skill Score (PSS). From the results we verified that on present climate WRF ensemble mean led to clearly better results when compared with CESM data for Amazon, Tocantins and Sao Francisco, but model was not as skillful to the other basins, which could be also been observed for future climate. PSS results from future runs showed that few changes would be observed over the different periods for the considered basins.

  13. Extreme Rainfall from Hurricane Harvey (2017): Intercomparisons of WRF Simulations and Polarimetric Radar Fields

    NASA Astrophysics Data System (ADS)

    Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.

    2017-12-01

    Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.

  14. Sensitivity of WRF-chem predictions to dust source function specification in West Asia

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus

    2017-02-01

    Dust storms tend to form in sparsely populated areas covered by only few observations. Dust source maps, known as source functions, are used in dust models to allocate a certain potential of dust release to each place. Recent research showed that the well known Ginoux source function (GSF), currently used in Weather Research and Forecasting Model coupled with Chemistry (WRF-chem), exhibits large errors over some regions in West Asia, particularly near the IRAQ/Syrian border. This study aims to improve the specification of this critical part of dust forecasts. A new source function based on multi-year analysis of satellite observations, called West Asia source function (WASF), is therefore proposed to raise the quality of WRF-chem predictions in the region. WASF has been implemented in three dust schemes of WRF-chem. Remotely sensed and ground-based observations have been used to verify the horizontal and vertical extent and location of simulated dust clouds. Results indicate that WRF-chem performance is significantly improved in many areas after the implementation of WASF. The modified runs (long term simulations over the summers 2008-2012, using nudging) have yielded an average increase of Spearman correlation between observed and forecast aerosol optical thickness by 12-16 percent points compared to control runs with standard source functions. They even outperform MACC and DREAM dust simulations over many dust source regions. However, the quality of the forecasts decreased with distance from sources, probably due to deficiencies in the transport and deposition characteristics of the forecast model in these areas.

  15. Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China

    PubMed Central

    Liang, Fengchao; Gao, Meng; Xiao, Qingyang; Carmichael, Gregory R.

    2017-01-01

    PM2.5 air pollution has been a growing concern worldwide. Previous studies have conducted several techniques to estimate PM2.5 exposure spatiotemporally in China, but all these have limitations. This study was to develop a data fusion approach and compare it with kriging and Chemistry Module. Two techniques were applied to create daily spatial cover of PM2.5 in grid cells with a resolution of 10 km in North China in 2013, respectively, which was kriging with an external drift (KED) and Weather Research and Forecast Model with Chemistry Module (WRF-Chem). A data fusion technique was developed by fusing PM2.5 concentration predicted by KED and WRF-Chem, accounting for the distance from the central of grid cell to the nearest ground observations and daily spatial correlations between WRF-Chem and observations. Model performances were evaluated by comparing them with ground observations and the spatial prediction errors. KED and data fusion performed better at monitoring sites with a daily model R2 of 0.95 and 0.94, respectively and PM2.5 was overestimated by WRF-Chem (R2=0.51). KED and data fusion performed better around the ground monitors, WRF-Chem performed relative worse with high prediction errors in the central of study domain. In our study, both KED and data fusion technique provided highly accurate PM2.5. Current monitoring network in North China was dense enough to provide a reliable PM2.5 prediction by interpolation technique. PMID:28599195

  16. Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China.

    PubMed

    Liang, Fengchao; Gao, Meng; Xiao, Qingyang; Carmichael, Gregory R; Pan, Xiaochuan; Liu, Yang

    2017-10-01

    PM 2.5 air pollution has been a growing concern worldwide. Previous studies have conducted several techniques to estimate PM 2.5 exposure spatiotemporally in China, but all these have limitations. This study was to develop a data fusion approach and compare it with kriging and Chemistry Module. Two techniques were applied to create daily spatial cover of PM 2.5 in grid cells with a resolution of 10km in North China in 2013, respectively, which was kriging with an external drift (KED) and Weather Research and Forecast Model with Chemistry Module (WRF-Chem). A data fusion technique was developed by fusing PM 2.5 concentration predicted by KED and WRF-Chem, accounting for the distance from the central of grid cell to the nearest ground observations and daily spatial correlations between WRF-Chem and observations. Model performances were evaluated by comparing them with ground observations and the spatial prediction errors. KED and data fusion performed better at monitoring sites with a daily model R 2 of 0.95 and 0.94, respectively and PM 2.5 was overestimated by WRF-Chem (R 2 =0.51). KED and data fusion performed better around the ground monitors, WRF-Chem performed relative worse with high prediction errors in the central of study domain. In our study, both KED and data fusion technique provided highly accurate PM 2.5 . Current monitoring network in North China was dense enough to provide a reliable PM 2.5 prediction by interpolation technique. Copyright © 2017. Published by Elsevier Inc.

  17. A rare case of haboob in Tehran: Observational and numerical study

    NASA Astrophysics Data System (ADS)

    Karami, S.; Ranjbar, A.; Mohebalhojeh, A. R.; Moradi, M.

    2017-03-01

    A great dust storm occurred in Tehran on 2 June 2014 and caused severe damage to properties and involved loss of human life. From the visual evidence available, it can be regarded as a case of haboob. As a lower latitude phenomenon, its occurrence in Tehran was unprecedented in the last 50 years. This paper aims to present a detailed analysis of the weather conditions, the pathways by which dust particles were ingested by the haboob, as well as the impact of the urban boundary layer on the intensity and propagation of the dust storm. Using numerical simulation carried out by the WRF-Chem model and various observational techniques, the coupling of a low-level small-scale deformation field with a lower-tropospheric cold pool produced by precipitating mid-tropospheric clouds is identified as the main process involved in shaping this rare dust storm.

  18. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models.

    PubMed

    Booth, James F; Naud, Catherine M; Willison, Jeff

    2018-03-01

    The representation of extratropical cyclones (ETCs) precipitation in general circulation models (GCMs) and a weather research and forecasting (WRF) model is analyzed. This work considers the link between ETC precipitation and dynamical strength and tests if parameterized convection affects this link for ETCs in the North Atlantic Basin. Lagrangian cyclone tracks of ETCs in ERA-Interim reanalysis (ERAI), the GISS and GFDL CMIP5 models, and WRF with two horizontal resolutions are utilized in a compositing analysis. The 20-km resolution WRF model generates stronger ETCs based on surface wind speed and cyclone precipitation. The GCMs and ERAI generate similar composite means and distributions for cyclone precipitation rates, but GCMs generate weaker cyclone surface winds than ERAI. The amount of cyclone precipitation generated by the convection scheme differs significantly across the datasets, with GISS generating the most, followed by ERAI and then GFDL. The models and reanalysis generate relatively more parameterized convective precipitation when the total cyclone-averaged precipitation is smaller. This is partially due to the contribution of parameterized convective precipitation occurring more often late in the ETC life cycle. For reanalysis and models, precipitation increases with both cyclone moisture and surface wind speed, and this is true if the contribution from the parameterized convection scheme is larger or not. This work shows that these different models generate similar total ETC precipitation despite large differences in the parameterized convection, and these differences do not cause unexpected behavior in ETC precipitation sensitivity to cyclone moisture or surface wind speed.

  19. The diagnosis of severe thunderstorms with high-resolution WRF model

    NASA Astrophysics Data System (ADS)

    Litta, A. J.; Mohanty, U. C.; Idicula, Sumam Mary

    2012-04-01

    Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere. A common feature of the weather during the pre-monsoon season over the Indo-Gangetic Plain and northeast India is the outburst of severe local convective storms, commonly known as `Nor'westers'(as they move from northwest to southeast). The severe thunderstorms associated with thunder, squall lines, lightning and hail cause extensive losses in agricultural, damage to structure and also loss of life. In this paper, sensitivity experiments have been conducted with the Non-hydrostatic Mesoscale Model (NMM) to test the impact of three microphysical schemes in capturing the severe thunderstorm event occurred over Kolkata on 15 May 2009. The results show that the WRF-NMM model with Ferrier microphysical scheme appears to reproduce the cloud and precipitation processes more realistically than other schemes. Also, we have made an attempt to diagnose four severe thunderstorms that occurred during pre-monsoon seasons of 2006, 2007 and 2008 through the simulated radar reflectivity fields from NMM model with Ferrier microphysics scheme and validated the model results with Kolkata Doppler Weather Radar (DWR) observations. Composite radar reflectivity simulated by WRF-NMM model clearly shows the severe thunderstorm movement as observed by DWR imageries, but failed to capture the intensity as in observations. The results of these analyses demonstrated the capability of high resolution WRF-NMM model in the simulation of severe thunderstorm events and determined that the 3 km model improve upon current abilities when it comes to simulating severe thunderstorms over east Indian region.

  20. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled modeling system with direct aerosol feedbacks predicted aerosol optical depth relatively well and significantly reduced the overprediction in downward shortwave radiation at the surface (SWDOWN) over polluted regions in China. The performance of cloud variables was not as good as other meteorological variables, and underpredictions of cloud fraction resulted in overpredictions of SWDOWN and underpredictions of shortwave and longwave cloud forcing. The importance of climate-chemistry interactions was demonstrated via the impacts of aerosol direct effects on climate and air quality. The aerosol effects on climate and air quality in east Asia (e.g., SWDOWN and T2 decreased by 21.8 W m-2 and 0.45 °C, respectively, and most pollutant concentrations increased by 4.8-9.5 % in January over China's major cities) were more significant than in other regions because of higher aerosol loadings that resulted from severe regional pollution, which indicates the need for applying online-coupled models over east Asia for regional climate and air quality modeling and to study the important climate-chemistry interactions. This work established a baseline for WRF-CMAQ simulations for a future period under the RCP4.5 climate scenario, which will be presented in a future paper.

Top