Forehead wrinkles: a histological and immunohistochemical evaluation.
El-Domyati, Moetaz; Medhat, Walid; Abdel-Wahab, Hossam M; Moftah, Noha H; Nasif, Ghada A; Hosam, Wael
2014-09-01
Wrinkles are associated with cutaneous aging especially on sun-exposed skin. Despite they are considered a major topic in cosmetic dermatology, very few reports have studied the specific histological and immunohistochemical changes characteristic for wrinkles. The study aims to evaluate the histological and immunohistochemical changes of static forehead wrinkles in relation to surrounding photoaged skin. Biopsy specimens were obtained from the forehead wrinkles of 20 volunteers of Glogau's class III-IV wrinkles. Using histological and immunostaining methods coupled with computerized morphometric analysis, measurement of epidermal thickness and quantitative evaluation of total elastin and tropoelastin as well as collagen types I, III, and VII were performed for skin biopsies. In the wrinkle site, there was statistically significant lower epidermal thickness (P = 0.001), elastin (P < 0.001), tropoelastin (P < 0.001), and collagen VII (P < 0.001) than the surrounding photoaged skin. Meanwhile, there was no significant difference between the wrinkle site and adjacent photoaged skin regarding collagen type I (P = 0.07) or III (P = 0.07). This study detected some histological and immunohistochemical differences in the wrinkle site when compared to adjacent photoaged skin. This may help in understanding the pathophysiology of facial wrinkling as well as its ideal way of management. © 2014 Wiley Periodicals, Inc.
The anatomical basis for wrinkles.
Pessa, Joel E; Nguyen, Hang; John, George B; Scherer, Philipp E
2014-02-01
Light and electron microscopy have not identified a distinct anatomical structure associated with either skin wrinkles or creases, and a histological difference between wrinkled and adjacent skin has not been identified. The authors investigate whether facial wrinkles are related to underlying lymphatic vessels and perilymphatic fat. Lymphatic vessels with a specialized tube of perilymphatic fat were identified beneath palmar creases. Sections of skin, adipose tissue, and muscle were harvested from each of 13 cadavers. Three sites were investigated: the transverse forehead crease, lateral orbicularis oculi wrinkle (crow's feet), and the nasojugal crease. The tissue was paraffin embedded and processed. Two-step indirect immunohistochemistry was performed, and images were examined using laser confocal microscopy. Measurements were taken with software. Every wrinkle examined was found above and within ±1 mm of a major lymphatic vessel and its surrounding tube of adipose tissue. The results satisfied our null hypothesis and were statistically significant. Lymphatic vessels were identified by positive immunofluorescence as well as histological criteria. These findings have been further validated by fluorochrome tracer studies. An anatomical basis for wrinkles was identified among the specimens studied. Lymphatic vessels, along with the surrounding distinct perilymphatic fat, traveled directly beneath wrinkles and creases. Lymphatic dysregulation leads to inflammation, scarring, and fibrosis, but inadvertent injection of these vessels can be avoided with anatomical knowledge.
Triple-layered polyurethane prosthesis with wrinkles for repairing partial tracheal defects.
Lee, Ja H; Park, Hae S; Oh, Se H; Lee, Jin H; Kim, Jin R; Kim, Hyun J; Jung, Soo Y; Chung, Sung M; Choi, Hong S; Kim, Han S
2014-12-01
The purpose of this study was to develop a triple-layered artificial polyurethane (PU) scaffold with a wrinkled layer for reconstruction of partial tracheal defects. Animal experiment. PU/Pluronic F127 solution was transformed into an asymmetrically porous PU membrane by an immersion precipitation method. The nonporous wrinkled film was prepared by a simple casting of the PU solution on a grooved mold. The triple-layered wrinkled PU scaffolds were fabricated by simple inosculating between the wrinkled film and the porous membranes as in a sandwich (porous/wrinkled/porous structure). Scaffolds were transplanted into 10 New Zealand rabbits after creating tracheal windows. Endoscopic and histological examinations and mechanical tests were performed. The thickness and outer pore size of the prepared triple-layered PU scaffold were ∼1.95 mm and ∼200 μm, respectively. The wrinkled PU scaffold showed better maximum flexural strength compared to the nonwrinkled scaffold (1.03 ± 0.19 vs. 0.56 ± 0.09 MPa). Eight of 10 rabbits survived through all of the examinations and procedures. Endoscopic findings revealed that respiratory mucosa was observed over the scaffold at 3 weeks, and it was an entirely covered scaffold at 6 weeks. The circular framework of the tracheal lumen was maintained in seven of 10 rabbits. Histologic findings showed that ciliated respiratory mucosa covered the surface of the scaffolds. The tensile strength of the scaffold-implanted trachea was lower than that of the normal control. A wrinkled, triple-layered PU scaffold can be used as a ready-made scaffold for reconstruction of partial tracheal defects. NA. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Micro-fractional ablative skin resurfacing with two novel erbium laser systems.
Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B
2008-02-01
Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.
Sadick, Neil S; Sato, Masaki; Palmisano, Diana; Frank, Ido; Cohen, Hila; Harth, Yoram
2011-10-01
Acne scars are one of the most difficult disorders to treat in dermatology. The optimal treatment system will provide minimal downtime resurfacing for the epidermis and non-ablative deep volumetric heating for collagen remodeling in the dermis. A novel therapy system (EndyMed Ltd., Cesarea, Israel) uses phase-controlled multi-source radiofrequency (RF) to provide simultaneous one pulse microfractional resurfacing with simultaneous volumetric skin tightening. The study included 26 subjects (Fitzpatrick's skin type 2-5) with moderate to severe wrinkles and 4 subjects with depressed acne scars. Treatment was repeated each month up to a total of three treatment sessions. Patients' photographs were graded according to accepted scales by two uninvolved blinded evaluators. Significant reduction in the depth of wrinkles and acne scars was noted 4 weeks after therapy with further improvement at the 3-month follow-up. Our data show the histological impact and clinical beneficial effects of simultaneous RF fractional microablation and volumetric deep dermal heating for the treatment of wrinkles and acne scars.
Efficacy of mesotherapy in facial rejuvenation: a histological and immunohistochemical evaluation
El-Domyati, Moetaz; El-Ammawi, Tarek S.; Moawad, Osama; El-Fakahany, Hasan; Medhat, Walid; Mahoney, Mỹ G.; Uitto, Jouni
2012-01-01
Background Mesotherapy, commonly known as “biorejuvenation” or “biorevitalization”, is a technique used to rejuvenate the skin by means of a transdermal injection of a multivitamin solution and natural plant extracts that are thought to improve the signs of skin aging. Objectives This prospective study aimed to evaluate the clinical effect of mesotherapy applied to periorbital wrinkles and to quantitatively evaluate histological changes in the skin occurring in response to the same treatment. Methods Six volunteers with Fitzpatrick skin types III or IV and Glogau class I–III wrinkles were subjected to a three-month course of mesotherapy injections in the periocular area (six sessions administered at two-week intervals). Standard photographs and skin biopsies were obtained from the treatment area at baseline, at the end of treatment, and at three months post-treatment. Quantitative evaluation of collagen types I, III, and VII, newly synthesized collagen, total elastin, and tropoelastin was performed using a computerized morphometric analysis. Results The clinical evaluation of volunteers at baseline, end of treatment, and three months post-treatment revealed no significant differences. Histological and immunostaining analysis of collagen types I, III, and VII, newly synthesized collagen, total elastin, and tropoelastin showed no statistically significant changes (P > 0.05) after mesotherapy injection. Conclusions The present study indicates that mesotherapy for skin rejuvenation does not result in statistically significant histological changes or clinical improvement. PMID:22788806
Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles.
Wang, Tingting; Luu, Thuy U; Chen, Aaron; Khine, Michelle; Liu, Wendy F
2016-06-24
The host immune response to foreign materials is a major hurdle for implanted medical devices. To control this response, modulation of macrophage behavior has emerged as a promising strategy, given their prominent role in inflammation and wound healing. Towards this goal, we explore the effect of biomimetic multi-scale wrinkles on macrophage adhesion and expression of phenotype markers. We find that macrophages elongate along the direction of the uniaxial wrinkles made from shape memory polymers, and express more arginase-1 and IL-10, and less TNF-α, suggesting polarization towards an alternatively activated, anti-inflammatory phenotype. Materials were further implanted in the subcutaneous space of mice and tissue surrounding the material evaluated by histology and immunohistochemistry. We found that material surface topography altered the distribution of collagen deposition in the adjacent tissue, with denser collagen tissue observed near flat materials when compared to wrinkled materials. Furthermore, cells surrounding wrinkled materials exhibited higher arginase-1 expression. Together these data suggest that wrinkled material surfaces promote macrophage alternative activation, and may influence the foreign body response to implants.
Hiramoto, Keiichi; Sugiyama, Daijiro; Iizuka, Yasutaka; Yamaguchi, Tomohiko
2016-10-01
Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) exerts an amelioration effect on wrinkle formation due to skin dryness. We examined the sex differences in this effect. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to male and female Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In the treated female mice, the amelioration effect on the wrinkle score, deterioration of transepidermal water loss (TEWL), capacitance, and decrease in the expression of collagen type I was stronger than in the male treated mice. Furthermore, the level of β-endorphin in the plasma and the expression of β-endorphin, μ-opioid receptor, and macrophages in the dorsal skin increased after the administration of tranexamic acid, and this increase was higher in female mice than in males. In addition, the macrophage production was increased by the administration of tranexamic acid in the ovary but did not change after administration in the testes. A histological examination revealed that these macrophages produce the β-endorphin, clarifying the source of the elevated levels. The amelioration effect in the female treated mice was decreased by the administration of clophosome (a macrophage inhibitor) to a degree that did not markedly differ from the effect observed in the male treated mice. These results suggest that the amelioration effect on wrinkles is stronger in female NOA mice than in males and that β-endorphin produced by macrophages plays an important role in this sex difference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Platelet-Rich Plasma for the Treatment of Photodamage of the Skin of the Hands.
Cabrera-Ramírez, J O; Puebla-Mora, A G; González-Ojeda, A; García-Martínez, D; Cortés-Lares, J A; Márquez-Valdés, A R; Contreras-Hernández, G I; Bracamontes-Blanco, J; Saucedo Ortiz, J A; Fuentes-Orozco, C
2017-10-01
Platelet-rich plasma (PRP) provides growth factors that stimulate fibroblast activation and induce the synthesis of collagen and other components of the extracellular matrix. The objective of this study was to evaluate the effect of PRP in the treatment of photodamage of the skin of the hands. Experimental study enrolling persons with photoaged skin on the dorsum of the hands (Glogau photoaging scale, type III, or Fitzpatrick wrinkle classification, type II) were included between August 2012 and January 2013. A histological comparison was made of skin biopsies taken before and after the application of PRP to the skin of the dorsum of the hands. The mean (SD) age of the 18 women enrolled was 47.9 (4.3) years. Histological analysis showed an increase in the number of fibroblasts (P<.001), number of vessels (P<.001), and collagen density (P=.27). These changes produced significant improvements in the Fitzpatrick wrinkle and elastosis scale (P<.001) and in the Glogau photoaging scale (P=.01). PRP induced a reduction in the manifestations of skin aging, including an improvement in wrinkles and elastosis. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.
Miura, Tomoe; Takada, Akiyoshi; Ooe, Masahiko
2012-08-01
Topical tretinoin [all-trans-retinoic acid (RA)] currently is widely used to treat photoaged skin. However, undesirable side effects such as erythema, irritation, and scaling are unavoidable and limit the use of tretinoin. To address these issues, the authors developed the tretinoin cyclodextrin complex (RA/CyD), which is tretinoin encapsulated by cyclodextrin. Cyclodextrins are cyclic oligosaccharides commonly used in food additives and fabric fresheners. This study aimed to evaluate the antiwrinkle effect of RA/CyD and alleviation of the side effects compared with RA treatment alone. In this study, 12 photoaged patients completed an 8 week study using RA and RA/CyD in a double-blind manner. Before and after the treatment, the patients' evaluations, wrinkle scores, skin elasticity, and wrinkle area measurement using skin replica were evaluated. Three men were recruited for histologic analysis. The patients reported that undesirable irritant reactions were more moderate with RA/CyD than with RA. In the assessment of wrinkle scores, skin elasticity, and wrinkle area measurement, RA/CyD demonstrated an antiwrinkle effect statistically equal to that of RA. In histology, both RA/CyD and RA demonstrated epidermal hyperplasia. In immunohistochemistry, inflammation induced by RA/CyD was more moderate than that induced by RA. The findings show that RA and RA/CyD result in the equivalent clinical improvement for patients with photoaging. The use of RA/CyD overcomes the drawbacks of RA while possessing equal effect. It is expected that CyD will broaden tretinoin treatment. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.
Im, A-Rang; Kim, Hui Seong; Hyun, Jin Won; Chae, Sungwook
2016-08-01
It is widely accepted that ultraviolet (UV) irradiation induces skin damage. In the present study, a UVB-induced hairless mouse model of skin photoaging was developed to determine whether tyndalized Lactobacillus acidophilus was able to significantly enhance the repair of photodamaged skin. To evaluate the effects of tyndalized L. acidophilus on UVB-induced skin-wrinkle formation in vivo , HR-1 hairless male mice were exposed to UVB radiation and orally administered tyndalized L. acidophilus . Compared with the control group, the UVB irradiation mice displayed a significant increase in transepidermal water loss and a reduction in skin hydration. In mice with UVB-induced photodamage, the effacement of the fine wrinkles by tyndalized L. acidophilus was correlated with dermal collagen synthesis, accompanied by histological changes. Furthermore, western blotting was performed to investigate the protein expression levels of matrix metalloproteinases (MMPs) and mitogen-activated protein kinase. Notably, orally administered tyndalized L. acidophilus reduced the expression levels of MMP-1 and MMP-9. Based upon the aforementioned results, it was determined that tyndalized L. acidophilus effectively inhibited the wrinkle formation induced by UVB irradiation, and that this may be attributed to the downregulation of MMPs. Therefore, tyndalized L. acidophilus may be considered a potential agent for preventing skin photoaging and wrinkle formation.
Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young
2013-01-01
Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081
Trelles, Mario A; Mordon, Serge; Velez, Mariano; Urdiales, Fernando; Levy, Jean Luc
2009-03-01
The erbium:yttrium-aluminium-garnet (Er:YAG) laser has recently been used in the fractional resurfacing of photo-aged skin. Our study evaluated the results after one single session of fractional resurfacing with Er:YAG. Thirty women participated in the study, with an average age of 46 years, skin types from II to IV, and wrinkle grades I to III. The 2,940 nm Er:YAG system used (Pixel, Alma Laser, Israel) had variable pulse durations (1 ms to 2 ms) and energy densities (800 mJ/cm(2) to 1,400 mJ/cm(2)) which, together with the number of passes (four to eight), were selected as a function of wrinkle severity. All patients received only one treatment. Postoperative side effects were evaluated. The number of wrinkles was documented with clinical photography and was scored. Histological assessment was carried out on two patients before and 2 months after treatment. All patients completed the study. Of the patients, 93% reported good or very good improvement of the degree of their wrinkles, with a satisfaction index of 83%. Pain was not a problem during treatment, and there were no side effects except for in one phototype IV patient, who had hyperpigmentation. Histology 2 months after the single treatment demonstrated younger morphology of both the epidermis and dermis, with improvement of the pretreatment typical elastotic appearance. At the parameters used in our study, only one treatment session of Er:YAG laser could achieve effective skin rejuvenation, with effects recognized in both the dermis and, more importantly, the epidermis. This regimen offers an interesting alternative to the conventional approach of multi-session fractional resurfacing.
Lee, Bonggi; Moon, Kyoung Mi; Kim, Seong Jin; Kim, So Hee; Kim, Dae Hyun; An, Hye Jin; Jeong, Ji Won; Kim, Ye Ra; Son, Sujin; Kim, Min Jo; Chung, Ki Wung; Lee, Eun Kyeong; Chun, Pusoon; Ha, Young Mi; Kim, Min-Sun; Mo, Sang Hyun; Moon, Hyung Ryong; Chung, Hae Young
2016-01-01
Background. Uncontrolled melanogenesis and wrinkle formation are an indication of photoaging. Our previous studies demonstrated that (Z)-5-(2,4-dihydroxybenzylidene)thiazolidine-2,4-dione (MHY498) inhibited tyrosinase activity and melanogenesis in vitro. Objective. To examine in vivo effects of MHY498 as an antiaging compound on UVB-induced melanogenesis and wrinkle formation, we topically applied MHY498 on dorsal skin of HRM-2 hairless mice. Methods. Using histological analysis, we evaluated effects of MHY498 on melanogenesis and wrinkle formation after UVB exposure. In addition, related molecular signaling pathways were examined using western blotting, fluorometric assay, and enzyme-linked immunosorbent assay. Results. MHY498 suppressed UVB-induced melanogenesis by inhibiting phosphorylation of CREB and translocation of MITF protein into the nucleus, which are key factors for tyrosinase expression. Consistently, tyrosinase protein levels were notably reduced in the dorsal skin of the hairless mice by MHY498 treatment. Furthermore, MHY498 inhibited UVB-induced wrinkle formation and collagen fiber destruction by increasing type 1 procollagen concentration and decreasing protein expression levels of MMPs, which play an essential role in collagen fiber degradation. As a mechanism, MHY498 notably ameliorated UVB-induced oxidative stress and NF-κB activation in the dermal skin of the hairless mice. Conclusion. Our study suggests that MHY498 can be used as a therapeutic or cosmetic agent for preventing uncontrolled melanogenesis and wrinkle formation. PMID:27242917
Skin rejuvenating effects of chemical peeling: a study in photoaged hairless mice.
Han, Sung Hyup; Kim, Hong Jig; Kim, Si Yong; Kim, You Chan; Choi, Gwang Seong; Shin, Jeong Hyun
2011-09-01
Chemical peeling is a dermatologic treatment for skin aging. However, the mechanism by which the chemical peel achieves its results is not clear. We investigated the effects of chemical peeling and the mechanism of wrinkle reduction in photoaged hairless mice skin. After inducing photoaged skin in hairless mice by repetitive ultraviolet-B irradiation applied over 14 weeks, we applied trichloroacetic acid (TCA) 30%, TCA 50%, and phenol on areas of the same size on the backs of the mice. Punch biopsies were obtained 7, 14, 28, and 60 days after the procedure for histologic and immunohistochemical analyses. Histologic examination showed an increase in dermal thickness, collagen fibers, and elastic fibers in the dermis of intervention groups compared with control groups. These increases were maintained significantly for 60 days. This study demonstrates that chemical peeling reduces wrinkles and regenerates skin by increasing dermal thickness and the amount of collagen and elastic fibers in photoaged skin. © 2011 The International Society of Dermatology.
Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Ko, Eun Jung; Yoo, Kwang Ho; Kim, Beom Joon
2016-05-01
Mesenchymal stem cells (MSCs) are promising therapeutic agents for various diseases. To investigate the effects of conditioned medium from human bone marrow-derived mesenchymal stem cells (MSC-CdM) on pro-collagen production and wrinkle formation, we performed in vitro and in vivo experiments. We assessed the effects of MSC-CdM on proliferation and photo-aging in human dermal fibroblasts after UVB exposure using enzyme activity assays for collagen type I secretion and MMP-1. To determine the effect of topically applied MSC-CdM on wrinkle formation, MSC-CdM (1% and 10%) and vehicle (propylene glycol: ethanol, 7 : 3) were applied to the dorsal skin of UVB-irradiated hairless mice for 8 weeks. We examined the effects on wrinkle formation by assessing visual skin grading, replica, tape stripping, transepidermal water loss (TEWL), and skin hydration measurement. We also examined histology of the lesions using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. MSC-CdM markedly reduced UV-induced matrix metalloproteinase-1 expression and increased pro-collagen synthesis in a dose-dependent manner. Our findings suggest that MSC-CdM induces repair of dermal damage and effacement of wrinkles on UVB-irradiated hairless mice through protective effect of hydration. These results support an anti-wrinkle effect of MSC-CdM that involves increased collagen synthesis and suggest that MSC-CdM might be a potential candidate for preventing UV-induced skin damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gender-dependent differences in degree of facial wrinkles.
Tsukahara, Kazue; Hotta, Mitsuyuki; Osanai, Osamu; Kawada, Hiromitsu; Kitahara, Takashi; Takema, Yoshinori
2013-02-01
This study aimed to reveal gender-dependent differences in the degree of facial wrinkles. Subjects comprised 173 Japanese men and women, divided into four groups according to age. Photographs were taken from nine facial regions and used to classify the intensity of wrinkles into five grades. In addition, replicas were taken from five facial sites and used to measure surface roughness. Data were compared between men and women within each age group. In all age groups, men showed increased forehead wrinkles compared with women. In contrast, no gender-dependent differences were found in upper eyelid wrinkles. Other facial wrinkles were greater in men than in women in all except the oldest group (age, 65-75 years), in which wrinkles in women were greater than or equal to those in men. Our results showed that gender-dependent differences exist in the degree of facial wrinkles. In general, men tend to have more severe wrinkles than women. This tendency disappeared or was reversed in some regions of the face and in individuals more than 60 years old. © 2011 John Wiley & Sons A/S.
Wang, Yu; Xiao, Jianliang
2017-08-09
Programmable, reversible and repeatable wrinkling of shape memory polymer (SMP) thin films on elastomeric polydimethylsiloxane (PDMS) substrates is realized, by utilizing the heat responsive shape memory effect of SMPs. The dependencies of wrinkle wavelength and amplitude on program strain and SMP film thickness are shown to agree with the established nonlinear buckling theory. The wrinkling is reversible, as the wrinkled SMP thin film can be recovered to the flat state by heating up the bilayer system. The programming cycle between wrinkle and flat is repeatable, and different program strains can be used in different programming cycles to induce different surface morphologies. Enabled by the programmable, reversible and repeatable SMP film wrinkling on PDMS, smart, programmable surface adhesion with large tuning range is demonstrated.
Kim, E J; Han, J Y; Lee, H K; He, Q Q; Cho, J C; Wei, L; Wang, X; Li, L; Wei, L; Liang, H; Gao, X; Kim, B J; Nam, G W
2014-11-01
There are ethnic differences in the skin characteristics, also the skin is susceptible to be influenced by the external environment such as UV radiation and the climates. It can be shown that the skin in same race or twins varies by the environment. This study was designed to investigate the skin characteristics and the early wrinkles of young Chinese women from four different regions, and to identify the correlation among the wrinkles, the other skin characteristics, and environmental conditions. A total of 441 healthy Chinese women aged between 20 and 35 years participated in the study: 110 from Beijing, 110 from Shanghai, 111 from Wuhan, and 110 from Guangzhou. The skin hydration, sebum contents, TEWL, pH, elasticity, and wrinkles were measured on the crow's feet area. There were regional differences in the skin characteristics and the wrinkles. Beijing women had dry skin and more wrinkles, but Guangzhou women had high sebum contents, low pH, and less wrinkles (P < 0.01). Shanghai women's TEWL and Wuhan's women's skin elasticity were higher compared with that of women from other regions. The wrinkles' form (area, depth, and length) was different from region to region. Beijing women's wrinkles were deep and large, but Guangzhou women's wrinkles were shallow and small. The skin physical parameters that influenced the wrinkles were low sebum content and hydration, high TEWL, and pH (P < 0.05). In the Chinese women aged 20-35 years, the skin was influenced by the climates, so they had regionally a different skin. The skin hydration, sebum contents, TEWL, and pH can affect the early wrinkle formation than skin elasticity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Magnolol reduces UVB-induced photodamage by regulating matrix metalloproteinase activity.
Im, A-Rang; Song, Jae Hyoung; Lee, Mi Young; Chae, Sungwook
2015-01-01
In this study, we evaluated the anti-photoaging activity of magnolol in UV-irradiated hairless mice, and hypothesized that magnolol would prevent photoaging in these animals. The inhibitory effect of magnolol on wrinkle formation was determined by analyzing the skin replica, histologically examining the epidermal thickness, and identifying damage to the collagen fibers. The protective effects of magnolol on UVB-induced skin photoaging were examined by determining the level of MMPs and mitogen-activated protein kinases (MAPKs). Exposure to UVB radiation significantly increased skin thickness and wrinkle grade, but magnolol treatment significantly reduced the average length and depth of wrinkles, and this was correlated with the inhibition of collagen fiber loss. The magnolol-treated group had remarkably decreased activity levels of MMP-1, -9, and -13 compared to the corresponding levels in the vehicle-treated UVB-irradiated group. These results indicate that magnolol prevents skin photoaging in UVB-irradiated hairless mice. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miao, Liming; Cheng, Xiaoliang; Chen, Haotian; Song, Yu; Guo, Hang; Zhang, Jinxin; Chen, Xuexian; Zhang, Haixia
2018-01-01
We report a simple method for fabricating two-dimensional and nested hierarchical wrinkle structures on polydimethylsiloxane surfaces via one-step C4F8 plasma treatment that innovatively combines two approaches to monolayer wrinkle structure fabrication. The wavelengths of the two dimensions of the wrinkle structures can be controlled by plasma treatment (radio frequency (RF) power and plasma treatment time) and stretching (stretching strain and axial stretching), respectively. We also analyze the different interactions between the two dimensions of wrinkle structures with different wavelengths and explain the phenomenon using Fourier waveform superposition. The character of the two dimensions and hierarchy is obvious when the wavelengths of the two wrinkles are different. In surface wetting tests, the hierarchical wrinkle shows great hydrophobicity and keeps the stretching property under 25%.
Cho, Minwoo; Kim, Jee Hyun; Kong, Hyoun Joong; Hong, Kyoung Sup; Kim, Sungwan
2018-05-01
The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos. One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM. The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions. We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhao, Zhi-Jun; Park, Sang-Hu
2016-07-01
This study demonstrates a simple and flexible out-of-plane induced mechanical stretching method for generating labyrinthic, waving, and straight orderly microscale directional wrinkles. Different complex wrinkling patterns were fabricated simultaneously using a UV-curable thin layer of resin NOA-68T that was coated on a soft foundation. Then an out-of-plane pre-straining deformation was applied by a specially designed punch to generate internal elastic instabilities. The surface wrinkling pattern characteristics (shapes and size) changed according to the amount of punch stroke (pre-strain) and the cross-sectional shape of the punch. This study confirms the usefulness of this method for controlling and generating local wrinkling patterns for diverse applications. As an example, the contact angles of a water droplet on a local area of the same pattern were measured to identify the change in wettability with respect to different wrinkling shapes. This method can be utilized in topographical tunable wrinkle fabrication for local surface modification.
Trelles, Mario A; Shohat, Michael; Urdiales, Fernando
2011-02-01
Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and clinicians. Treatment improved wrinkle aspect and scar condition, and no patient reported adverse effects or complications, irrespective of skin type, except for plaques of erythema in areas that received extra laser passes, which were not seen at the 2-month assessment. The results evaluated by clinicians were very much in correlation with those of patients. Immediately after treatment, vaporization was produced by stacked pulses, with clear ablation and collateral heat coagulation. An increased number of random pulses removed more epidermis, and with denser pulses per area, a thermal deposit was noted histologically. At 2 months, a thicker, multicelluar epidermis and an evident increase in collagen were observed. Fractional CO(2) laser permits a variety of resurfacing settings that obtain safe, effective skin rejuvenation and correct scar tissue in a single treatment.
Wrinkling of flexoelectric nano-film/substrate systems
NASA Astrophysics Data System (ADS)
Su, Shengkai; Huang, Huaiwei; Liu, Yijie; Zhu, Zheng H.
2018-02-01
The study of wrinkling mechanisms essentially helps to establish stable and controllable performance in electronic products. To gain some basic understanding of the wrinkling process in flexoelectric dielectrics, this paper models the wrinkling of nano-film/substrate systems, typically seen in stretchable electronics, subjected to substrate prestrain and voltage loading on electrodes. Flexoelectricity is considered through the constitutive equations proposed by Shen and Hu, and Euler-Bernoulli beam theory is applied to formulate the expressions of wrinkling wavelength and amplitude through the Ritz method. The effects of flexoelectricity, surface parameters, prestrain, applied voltage, structural scale etc on wrinkling behaviors, including wrinkling deformation and the wrinkling critical condition, are discussed. Results reveal that the action of both flexoelectric and surface effects is significant over only a small scale range, with film thickness less than 10 nm. Alongside these issues, the fundamental difference between flexoelectric and piezoelectric effects on wrinkling behaviors is highlighted. Piezoelectricity may act as a promoter or suppressor of wrinkling initiation and amplitude, depending on the applied voltage, while flexoelectricity not only reduces the critical prestrain or voltage required for wrinkling, but also decreases the wrinkling wavelength and amplitude.
Formation mechanism of photo-induced nested wrinkles on siloxane-photomonomer hybrid film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kazumasa; International Laboratory of Materials Science and Nanotechnology; Laboratorio di Scienz
Nested wrinkle structures, hierarchical surface wrinkles of different periodicities of sub-μm and tens-μm, have been fabricated on a siloxane-photomonomer hybrid film via a photo-induced surface polymerization of acrylamide. The formation mechanism of the nested wrinkle structures is examined based on a time-dependent structure observation and chemical composition analyses. In-situ observation of the evolving surface structure showed that sub-μm scale wrinkles first formed, subsequently the tens-μm scale ones did. In-situ FT-IR analysis indicated that the nested wrinkles formation took place along with the development of siloxane network of under layer. A cross sectional observation of the film revealed that the filmmore » was composed of three layers. FT-IR spectra of the film revealed that the surface and interior layers were polyacrylamide rich layer and siloxane-polymer rich layer, respectively. The intermediate layer formed as a diffusion layer by migration of acrylamide from interior to the surface. These three layers have different chemical compositions and therefore different mechanical characteristics, which allows the wrinkle formation. Shrinkage of siloxane-polymer interior layers, as a result of polycondensation of siloxane network, induced mechanical instabilities at interlayers, to form the nested wrinkle structures.« less
Wolff, Erin; Pal, Lubna; Altun, Tugba; Madankumar, Rajeevi; Freeman, Ruth; Amin, Hussein; Harman, Mitch; Santoro, Nanette; Taylor, Hugh S.
2010-01-01
Objective To characterize skin wrinkles and rigidity in recently menopausal women. Design Baseline assessment of participants prior to randomization to study drug. Setting Multicenter trial, university medical centers. Patients Recently menopausal participants enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Interventions Skin wrinkles were assessed at 11 locations on the face and neck using the Lemperle wrinkle scale. Skin rigidity was assessed at the forehead and cheek using a durometer. Outcome Skin wrinkles and rigidity were compared among race/ethnic groups. Skin wrinkles and rigidity were correlated with age, time since menopause, weight, and BMI. Results In early menopausal women, wrinkles, but not skin rigidity, vary significantly among races (p=0.0003), where Black women have the lowest wrinkle scores. In White women, chronological age was significantly correlated with worsening skin wrinkles, but not with rigidity(p<0.001). Skin rigidity correlated with increasing length of time since menopause, however only in the White subgroup (p<0.01). In the combined study group, increasing weight was associated with less skin wrinkling (p<0.05). Conclusions Skin characteristics of recently menopausal women are not well studied. Ethnic differences in skin characteristics are widely accepted, but poorly described. In recently menopausal women not using hormone therapy (HT), significant racial differences in skin wrinkling and rigidity exist. Continued study of the KEEPS population will provide evidence of the effects of HT on the skin aging process in early menopausal women. PMID:20971461
Wolff, Erin; Pal, Lubna; Altun, Tugba; Madankumar, Rajeevi; Freeman, Ruth; Amin, Hussein; Harman, Mitch; Santoro, Nanette; Taylor, Hugh S
2011-02-01
To characterize skin wrinkles and rigidity in recently menopausal women. Baseline assessment of participants before randomization to study drug. Multicenter trial, university medical centers. Recently menopausal participants enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Skin wrinkles were assessed at 11 locations on the face and neck using the Lemperle wrinkle scale. Skin rigidity was assessed at the forehead and cheek using a durometer. Skin wrinkles and rigidity were compared among race/ethnic groups. Skin wrinkles and rigidity were correlated with age, time since menopause, weight, and body mass index (BMI). In early menopausal women, wrinkles, but not skin rigidity, vary significantly among races, where black women have the lowest wrinkle scores. In white women, chronological age was significantly correlated with worsening skin wrinkles, but not with rigidity. Skin rigidity correlated with increasing length of time since menopause, however, only in the white subgroup. In the combined study group, increasing weight was associated with less skin wrinkling. Skin characteristics of recently menopausal women are not well studied. Ethnic differences in skin characteristics are widely accepted, but poorly described. In recently menopausal women not using hormone therapy (HT), significant racial differences in skin wrinkling and rigidity exist. Continued study of the KEEPS population will provide evidence of the effects of HT on the skin aging process in early menopausal women. Copyright © 2011 American Society for Reproductive Medicine. All rights reserved.
McDaniel, David; Weiss, Robert; Weiss, Margaret; Mazur, Chris; Griffen, Charmaine
2014-09-01
Multiple devices are currently on the market that employ radiofrequency to non-invasively treat skin laxity and wrinkle reduction. The study device was a unique monopolar radiofrequency device FDA cleared for the treatment of wrinkles and rhytids. The delivery system allows constant monitoring of the real-time local skin impedance changes, which allows radiofrequency energy to be more uniformly dosed over an entire treatment area. The objective was to validate effectiveness of a modified treatment protocol for a unique monopolar radiofrequency device, which has been engineered with greater power and self-monitoring circuitry. Twenty-four female subjects received bilateral monopolar radiofrequency treatments to the mid and lower face from the sub malar region to the submentum. Subjects completed 1 and 3 month follow ups with digital imaging. Skin biopsies (on 4 subjects) and ultrasound measurements (on 12 subjects) were completed. Assessments demonstrated a reduction in skin laxity of 35%, a reduction in fine lines/wrinkles of 42%, and a reduction in the appearance of global photodamage of 33%. Expert photograding demonstrated 92% of subjects showing at least a mild improvement in skin laxity at three months post treatment. 50 MHz ultrasound measurements in 12 subjects showed an increase of 19% in skin density. Histology showed a marked increase in dermal collagen and elastin fibers in two subjects who demonstrated a clinically noticeable reduction in skin laxity and minimal changes in two subjects who demonstrated minimal clinical improvements. There were no significant adverse events reported. This modified radiofrequency device and treatment protocol was well tolerated and produced improvements in the appearance of skin laxity and overall anti-aging effects in the majority of subjects. Objective measurements including ultrasound and histology help explain the clinical outcome.
Protective effect of skin-derived precursors on photoaging in nude mice.
Wang, Siyu; Zhong, Jianqiao; Li, Li
2018-06-25
Currently, innovative methods to prevent photoaging are needed. Skin-derived precursors (SKP) have been shown to play a crucial role in resisting UVB-induced apoptosis in vitro. The objective of this study was to explore the effect of SKP on preventing skin photoaging in vivo. Skin-derived precursors from neonatal BALB/c mice were isolated, identified and intradermally transplanted with a PKH26 label to track their survival. These were then injected at different concentrations into the buttock dermis of nude mice at 2-weekly intervals before UV irradiation. Photographs, assessment of live skin surface, histology with quantitative real-time polymerase chain reaction and immunohistochemistry were used to evaluate the impact of SKP on wrinkles and other relevant indicators of skin photoaging. SKP exhibited a sphere-like structure and could survive for at least 2 weeks after intradermal transplantation. A large dose of SKP transplantation (10 5 SKP +UV) at 2-weekly intervals were able to ameliorate coarse UV-induced wrinkles. Moreover, the skin smoothness value, dermal thickness and collagen percentage were significantly increased in mice that received a large dose of SKP (10 5 SKP +UV). UV radiation induced the mRNA expression of MMP-13 and decreased the mRNA and protein expression of TβRII, but these effects were diminished by SKP transplantation. The transplantation of SKP could increase the mRNA of TIMP-1. We found that transplanted SKP exert a beneficial impact on preventing UV-induced wrinkles in vivo, suggesting that SKP transplantation is a promising candidate for preventing photoaging. © 2018 The Australasian College of Dermatologists.
Yoo, M A; Seo, Y K; Shin, M K; Koh, J S
2016-02-01
Skin aging has been focused the wrinkle on the face than on the body, so most studies have been studied the change in Crow's feet for ages. Only little is known about the age-dependent changes of wrinkles on body sites. The aim of this study was to establish new grading criteria for severity of wrinkles on knees and to investigate the relationship of wrinkle severity with age- and site-dependent. The skin on the knee of 38 healthy Korean female volunteers, divided into two groups young and old, were photographed. Standard photograph for body wrinkle was established (grade 0~7), and then visual assessment, skin wrinkle, and skin elasticity were evaluated on Crow's feet and the knee. We examined for any significant differences and the correlation of skin aging parameters with age and two different sites. Skin wrinkle severity with standard photograph and wrinkle parameters (Ra, Rmax, Rz, and Rv) had a significantly positive correlation with age-dependent on the knee (P < 0.001). Also, skin elastic parameters (R2, R5, R6, R7, and Q1) showed a significant negative correlation with age on the knee (P < 0.001). Skin wrinkle severity with standard photograph was highly correlated with all skin wrinkle parameters and skin elastic parameters (R2, R5, R7, and Q1) on the knee (P < 0.001). In addition, all the skin aging parameters on the knee were significantly correlated with Crow's feet (P < 0.01). Skin aging on the knee had the same tendency as the Crow's feet. This study has shown the new grading criteria of wrinkles on the knee. Skin wrinkle and elasticity on the knee are age-dependent related and aging on the knee is highly related to Crow's feet. Those parameters are using a quantitative method to evaluate body aging. Also, the knee is considered that it could be a suitable site to evaluate body aging. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Anti-wrinkle creams with hyaluronic acid: how effective are they?].
Poetschke, Julian; Schwaiger, Hannah; Steckmeier, Stephanie; Ruzicka, Thomas; Gauglitz, Gerd G
2016-05-25
Anti-wrinkle creams containing hyaluronic-acid are often advertised as an efficacious option for the treatment of wrinkles and have even been presented as an option equal to some medical procedures in this regard. Evidence from conclusive and systematic research supporting those claims, however, is widely lacking. During this trial we examined whether the daily use of anti-wrinkle creams containing hyaluronic-acid has an influence on the depth of wrinkles as well as skin tightness and elasticity. We split up 20 patients into four groups, each of which were assigned an anti-wrinkle cream containing hyaluronic acid for daily use. Four different creams within different price ranges were chosen (Balea, Nivea, Lancôme, Chanel). Before and after the 3 month trial, wrinkle depth was assessed using the PRIMOS(pico) (GFMesstechnik, Teltow, Germany) and skin-tightness and elasticity were evaluated using the Cutometer MP580 (Courage+Khazaka, Cologne, Germany). Additionally, after the trial, questionnaire data on patient satisfaction with their individual product was collected. The depth of perioral and orbital wrinkles decreased significantly in all groups, with depth reduction ranging between 10% and 20%. Skin-tightness increased significantly in all groups, rising by 13 to 30%. Minimal significant changes in skin-elasticity could only be shown in individual groups. The regular use of hyaluronic-acid containing anti-wrinkle creams for over 3 months showed clear and positive effects on wrinkle-depth and skin-tightness. Due to the design of the study, however, no clear indication on the efficacy of hyaluronic acid could be shown.
Controlling and prevention of surface wrinkling via size-dependent critical wrinkling strain.
Han, Xue; Zhao, Yan; Cao, Yanping; Lu, Conghua
2015-06-14
Surface wrinkling may occur in a film-substrate system when the applied strain exceeds the critical value. However, the practically required strain for the onset of surface wrinkling can be different from the theoretically predicted value. Here we investigate the film size effect-dependent critical strain for the mechanical strain-induced surface wrinkling via a combination of experiments and theoretical analysis. In the poly(dimethylsiloxane)-based system fabricated by the smart combination of mechanical straining and selective O2 plasma (OP) exposure through Cu grids, the film size effect on the critical wrinkling strain is systematically studied by considering OP exposure duration, the mesh number and geometry of Cu grids. Meanwhile, a simple analytical solution revealing the film size effect is well established, which shows good consistency with the experimental results. This study provides an experimental and theoretical basis for finely tuning the critical wrinkling strain in a simple and quantitative manner, which can find a wide range of applications in such fields as microelectronic circuits and optical devices, where controlling and/or prevention of surface wrinkling are of great importance.
Diosmin/essential oil combination for dermal photo-protection using a lipoid colloidal carrier.
Kamel, Rabab; Abbas, Haidy; Fayez, Ahmed
2017-05-01
Solar irradiation induces skin inflammatory processes causing deleterious effects like premature ageing. In this study, the designed lipoid colloidal carrier (LCC) was loaded with Diosmin in combination with different essential oils, to be used as a topical photo-protective preparation. To investigate the ability of the essential oils to potentiate Diosmin effects, the Diosmin/essential oil-loaded LCCs (LCC2, LCC3 and LCC4) were compared to the Diosmin-loaded LCC (LCC1). The incorporated essential oils were those of Rosmarinus officinalis, Zingiber officinale or Vitis vinifera in LCC2, LCC3 and LCC4, respectively. All the LCCs had particle size (PS) values ranging from 121.1 to 144.3nm with uniform distribution and, zeta potential (Z) values around 30mV. Also, they all had high drug encapsulation efficiencies. LCC1 had the lowest anti-oxidant and in-vitro sun-blocking effect (p<0.05). In-vivo photo-protective studies showed that all the formulated LCCs had a skin protective effect when compared to the positive control (p<0.05); however LCC1 had the lowest anti-erythemal and anti-wrinkling effect. Histological studies proved the efficacy of the designed LCCs as skin anti-photoageing, with LCC1 showing the lowest anti-inflammatory and anti-wrinkling effect, while LCC2 had the highest anti-wrinkling effect. These results indicated that the suggested Diosmin/essential oil combinations improved the anti-oxidant, sun-blocking and anti-photoageing effects of Diosmin. After one year of storage, the LCCs showed satisfactory physical stability. This study presents the designed LCCs as safe and effective nano-structured dermal care products containing 'all-natural' components. Copyright © 2017 Elsevier B.V. All rights reserved.
Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice.
Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Lee, Tae Youp; Sun, Zheng-Wang; Yi, Tae Hoo
2014-12-01
Ultraviolet (UV) radiation is the primary factor in skin photoaging, which is characterized by wrinkle formation, dryness, and thickening. The mechanisms underlying skin photoaging are closely associated with degradation of collagen via upregulation of matrix metalloproteinase (MMP) activity, which is induced by reactive oxygen species (ROS) production. Gallic acid (GA), a phenolic compound, possesses a variety of biological activities including antioxidant and antiinflammatory activities. We investigated the protective effects of GA against photoaging caused by UVB irradiation using normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. The production levels of ROS, interlukin-6, and MMP-1 were significantly suppressed, and type I procollagen expression was stimulated in UVB-irradiated and GA-treated NHDFs. GA treatment inhibited the activity of transcription factor activation protein 1. The effects of GA following topical application and dietary administration were examined by measuring wrinkle formation, histological modification, protein expression, and physiological changes such as stratum corneum hydration, transepidermal water loss, and erythema index. We found that GA decreased dryness, skin thickness, and wrinkle formation via negative modulation of MMP-1 secretion and positive regulation of elastin, type I procollagen, and transforming growth factor-β1. Our data indicate that GA is a potential candidate for the prevention of UVB-induced premature skin aging. Copyright © 2014 John Wiley & Sons, Ltd.
Kawada, Akira; Konishi, Natsuko; Momma, Tomoyuki; Oiso, Naoki; Kawara, Shigeru
2009-11-01
Retinol is known to be effective in the treatment of sallowness, wrinkling, red blotchiness and hyperpigmented spots in aging skin. In this study, we have evaluated the anti-wrinkle effects of a new cosmetic containing retinol. An open study was performed in 30 healthy Japanese women who had wrinkles at the corners of the eyes. The tested lotion, Retin-OX+ (RoC SA, Colombes, France), was applied on wrinkles of one side of the face for 8 weeks, and not on the other site as a control. Anti-wrinkle effects were evaluated by two methods: (i) doctors' observation and photos based on the guideline of the Japan Cosmetic Industry Association; and (ii) the Robo Skin Analyzer. This lotion showed marked and moderate improvement in 34% of the subjects with a significant difference as compared with the control sites (P < 0.05). Moreover, the length and area decreased in the applied site more than the control site with a significant difference (P < 0.01). All the patients completed the study without significant adverse reactions. The tested lotion was well tolerated and may be an optional preparation for the treatment of wrinkles at the corner of the eyes.
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, Qingyang; Xiao, Jianliang
2018-02-01
Highly organized hierarchical surface morphologies possess various intriguing properties that could find important potential applications. In this paper, we demonstrate a facile approach to simultaneously form multiscale hierarchical surface morphologies through sequential wrinkling. This method combines surface wrinkling induced by thermal expansion and mechanical strain on a three-layer structure composed of an aluminum film, a hard Polydimethylsiloxane (PDMS) film, and a soft PDMS substrate. Deposition of the aluminum film on hard PDMS induces biaxial wrinkling due to thermal expansion mismatch, and recovering the prestrain in the soft PDMS substrate leads to wrinkling of the hard PDMS film. In total, three orders of wrinkling patterns form in this process, with wavelength and amplitude spanning 3 orders of magnitude in length scale. By increasing the prestrain in the soft PDMS substrate, a hierarchical wrinkling-folding structure was also obtained. This approach can be easily extended to other thin films for fabrication of multiscale hierarchical surface morphologies with potential applications in different areas.
Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion
NASA Astrophysics Data System (ADS)
Li, Minggan; Joung, Dehi; Hughes, Bethany; Waldman, Stephen D.; Kozinski, Janusz A.; Hwang, Dae Kun
2016-07-01
Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.
Wrinkle ridges, stress domains, and kinematics of venusian plains
NASA Technical Reports Server (NTRS)
Mcgill, George E.
1993-01-01
Wrinkle ridges are nearly ubiquitous landforms on the plains of Venus. By analogy with similar structures on other planets, venusian wrinkle ridges are inferred to trend normal to the direction of maximum principal compression in the crust, an inference that is verified by geometrical relationships with positive and negative relief features on Venus. Because plains are the dominant terrain on Venus, wrinkle ridges provide an excellent opportunity to determine the orientations of shallow crustal principal stress trajectories over most of the planet. In most places there are two or more sets of wrinkle ridges, and commonly one of these persists over a large area, defining a regional stress domain. Intersection relationships indicate that these domains differ in age.
The wrinkle-like slip pulse is not important in earthquake dynamics
Andrews, D.J.; Harris, R.A.
2005-01-01
A particular solution for slip on an interface between different elastic materials, the wrinkle-like slip pulse, propagates in only one direction with reduced normal compressive stress. More general solutions, and natural earthquakes, need not share those properties. In a 3D dynamic model with a drop in friction and heterogeneous initial stress, the wrinkle-like slip pulse is only a small part of the solution. Rupture propagation is determined primarily by the potential stress drop, not by the wrinkle-like slip pulse. A 2D calculation with much finer resolution shows that energy loss to friction might not be significantly reduced in the wrinkle-like slip pulse. Copyright 2005 by the American Geophysical Union.
Luebberding, Stefanie; Krueger, Nils; Kerscher, Martina
2014-01-01
Whereas the molecular mechanisms of skin aging are well understood, little information is available concerning the clinical onset and lifetime development of facial wrinkles. To perform the first systematic evaluation of the lifetime development of facial wrinkles and sex-specific differences using three-dimensional (3D) imaging and clinical rating. 200 men and women aged 20 to 70 were selected. Wrinkle severity of periorbital, glabellar, and forehead lines was evaluated using 3D imaging and validated assessment scales. Wrinkle severity was greater at all assessed locations with older age. In men, wrinkles manifested earlier and were more severe than in women. In women, periorbital lines were the first visible wrinkles, in contrast to the forehead lines in men. In both sexes, glabellar lines did not clinically manifest before the age of 40. The results of the present study confirm a progressive increase of crow's feet and forehead and glabellar lines in men and women. Although the development of facial wrinkles happens earlier and is more severe in men, perimenopause seems to particularly affect development in women. Clinical ratings and 3D measurements are suitable methods to assess facial wrinkle severity in men and women. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae
2018-01-10
One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.
Owen, Carter M; Pal, Lubna; Mumford, Sunni L; Freeman, Ruth; Isaac, Barbara; McDonald, Linda; Santoro, Nanette; Taylor, Hugh S; Wolff, Erin F
2016-10-01
To measure skin wrinkles and rigidity in menopausal women of varying race/ethnicity with or without hormone therapy (HT) for up to four years. Randomized, double-blind, placebo-controlled trial. Academic medical centers. Women (42-58 years of age) within 36 months of last menstrual period and enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). Treatment with 0.45 mg oral conjugated equine estrogens (CEE), transdermal E 2 (50 μg/d) with micronized P (200 mg daily), or placebo for 4 years. Skin wrinkles were assessed at 11 locations on the face and neck, and skin rigidity was assessed at the forehead and cheek at baseline and yearly for 4 years. Neither total wrinkle score nor total rigidity score was significantly different at baseline or over the 4-year follow-up among patients randomized to CEE, E 2 , or placebo. Skin wrinkle and rigidity scores were primarily affected by race/ethnicity, with scores being significantly different between races for almost all of the wrinkle parameters and for all of the rigidity measures. There was no association between race and response to HT for total wrinkle or rigidity scores. Black women had the lowest wrinkle scores compared with white women across all 4 years. In general, skin rigidity decreased in all groups over time, but black women had significantly reduced total facial rigidity compared with white women after 4 years. Race is the strongest predictor of the advancement of skin aging in the 4 years following menopause. HT does not appear to affect skin wrinkles or rigidity at most facial locations. NCT00154180. Published by Elsevier Inc.
Kong, Rong; Cui, Yilei; Fisher, Gary J; Wang, Xiaojuan; Chen, Yinbei; Schneider, Louise M; Majmudar, Gopa
2016-03-01
All-trans retinol, a precursor of retinoic acid, is an effective anti-aging treatment widely used in skin care products. In comparison, topical retinoic acid is believed to provide even greater anti-aging effects; however, there is limited research directly comparing the effects of retinol and retinoic acid on skin. In this study, we compare the effects of retinol and retinoic acid on skin structure and expression of skin function-related genes and proteins. We also examine the effect of retinol treatment on skin appearance. Skin histology was examined by H&E staining and in vivo confocal microscopy. Expression levels of skin genes and proteins were analyzed using RT-PCR and immunohistochemistry. The efficacy of a retinol formulation in improving skin appearance was assessed using digital image-based wrinkle analysis. Four weeks of retinoic acid and retinol treatments both increased epidermal thickness, and upregulated genes for collagen type 1 (COL1A1), and collagen type 3 (COL3A1) with corresponding increases in procollagen I and procollagen III protein expression. Facial image analysis showed a significant reduction in facial wrinkles following 12 weeks of retinol application. The results of this study demonstrate that topical application of retinol significantly affects both cellular and molecular properties of the epidermis and dermis, as shown by skin biopsy and noninvasive imaging analyses. Although the magnitude tends to be smaller, retinol induces similar changes in skin histology, and gene and protein expression as compared to retinoic acid application. These results were confirmed by the significant facial anti-aging effect observed in the retinol efficacy clinical study. © 2015 Wiley Periodicals, Inc.
Controlling morphology in swelling-induced wrinkled surfaces
NASA Astrophysics Data System (ADS)
Breid, Derek Ronald
Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more complex geometric and kinetic settings. In order to carefully control and measure the applied stresses on a wrinkling film, a swelling-based system was developed using poly(dimethylsiloxane) (PDMS), surface-oxidized with a UV-ozone treatment. The swelling of the oxidized surface upon exposure to an ethanol vapor atmosphere was characterized using beam-bending experiments, allowing quantitative measurements of the applied stress. The wrinkle morphologies were characterized as a function of the overstress, defined as the ratio of the applied swelling stress to the critical buckling stress of the material. A transition in the dominant morphology of the wrinkled surfaces from dimple patterns to ridge patterns was observed at an overstress value of ˜2. The pattern dependence of wrinkles on the ratio of the principal stresses was examined by fabricating samples with a gradient prestress. When swollen, these samples exhibited a smooth morphological transition from non-equibiaxial to equibiaxial patterns, with prestrains as low as 2.5% exhibiting non-equibiaxial characteristics. This transition was seen both in samples with low and high overstresses. To explore the impact of these stress states in more complex geometries, wrinkling hemispherical surfaces with radii of curvature ranging from 50--1000 μm were fabricated using the same material system. Upon wrinkling, the hemispheres formed complex hierarchical assemblies reminiscent of naturally occurring structures. The curvature of a surface exhibited a correlation with its critical buckling stress, independent of other factors. This enables the surface curvature to be used as an independent control over the dimple-to-ridge transition which occurs as a function of overstress. As in the flat buckling surfaces, this transition was shown to occur at an overstress value of ˜2. Surface curvature was also shown to improve the observed hexagonal ordering of the dimple arrays, resulting in the formation of regular "golf ball" structures. Geometric effects in finite flat plates were also examined. Using circular masks during the oxidation process, plates with radii ranging from 0.4--8.6 mm were created. Upon wrinkling, a dimple-to-ridge transition was observed with increasing plate size, with the morphological switch occurring at a radius of ˜2 mm. This observed transition was not found to be due to the inherent mechanics of plates of different sizes, but instead to a reduction in the oxide conversion due to shadowing or stagnation caused by the masking process, which lowered the applied overstress. The shape of the finite plate was found to have little impact on the resulting wrinkle morphologies. Kinetic aspects of wrinkling were qualitatively characterized by observing the wrinkling process over the course of swelling. Wrinkling was observed to frontally propagate across the surface, and the ordering of the patterns which developed showed a qualitative correlation with the degree of uniformity in the advancing wrinkle front. Swelling with different solvents was found to lead to the formation of different patterns, based on the swelling kinetics of the UVO-treated PDMS upon exposure to each solvent.
Subsurface wrinkle removal by laser treatment in combination with dynamic cooling
NASA Astrophysics Data System (ADS)
Paithankar, Dilip Y.; Hsia, James C.; Ross, E. V.
2000-05-01
Compared to traditional CO2 or Er:YAG laser resurfacing, sub-surface thermal injury to stimulate skin remodeling for the removal of wrinkles is attractive due to the lower morbidity associated with epidermal preservation. We have developed a technique that thermally damages dermal collagen while preserving the epidermis by a combination of infra-red laser irradiation and dynamic cooling of skin. Wound healing response to the thermal denaturation of collagen may trigger synthesis of fresh collagen and result in restoration of a more youthful appearance. The laser wavelength is chosen so as to thermally injure dermis in a narrow band at depths of 150 to 500 microns from the surface of the skin. The epidermis is preserved by a Candela dynamic cooling device (DCDTM) cryogen spray. Three-dimensional Monte Carlo calculations have been done to calculate the light distribution within tissue while taking into account light absorption and scattering. This light distribution has been used to calculate heat generation within tissue. Heat transfer calculations have been done while taking into consideration the cryogen cooling. The resulting temperature profiles have been used to suggest heating and cooling parameters. Freshly excised ex vivo pig skin was irradiated with laser and DCD at these heating and cooling parameters. Histological evaluation of the biopsies has shown that it is possible to spare the epidermis while thermally denaturing the dermal collagen. The modeling and histology results are discussed.
Achieving high aspect ratio wrinkles by modifying material network stress.
Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J
2017-06-07
Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.
Regimes of wrinkling in pressurized elastic shells
2017-01-01
We consider the point indentation of a pressurized elastic shell. It has previously been shown that such a shell is subject to a wrinkling instability as the indentation depth is quasi-statically increased. Here we present detailed analysis of this wrinkling instability using a combination of analytical techniques and finite-element simulations. In particular, we study how the number of wrinkles observed at the onset of instability grows with increasing pressurization. We also study how, for fixed pressurization, the number of wrinkles changes both spatially and with increasing indentation depth beyond onset. This ‘Far from threshold’ analysis exploits the largeness of the wrinkle wavenumber that is observed at high pressurization and leads to quantitative differences with the standard ‘Near threshold’ stability analysis. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373387
Are Eyes a Mirror of the Soul? What Eye Wrinkles Reveal about a Horse’s Emotional State
Hintze, Sara; Smith, Samantha; Patt, Antonia; Bachmann, Iris; Würbel, Hanno
2016-01-01
Finding valid indicators of emotional states is one of the biggest challenges in animal welfare science. Here, we investigated in horses whether variation in the expression of eye wrinkles caused by contraction of the inner eyebrow raiser reflects emotional valence. By confronting horses with positive and negative conditions, we aimed to induce positive and negative emotional states, hypothesising that positive emotions would reduce whereas negative emotions would increase eye wrinkle expression. Sixteen horses were individually exposed in a balanced order to two positive (grooming, food anticipation) and two negative conditions (food competition, waving a plastic bag). Each condition lasted for 60 seconds and was preceded by a 60 second control phase. Throughout both phases, pictures of the eyes were taken, and for each horse four pictures per condition and phase were randomly selected. Pictures were scored in random order and by two experimenters blind to condition and phase for six outcome measures: qualitative impression, eyelid shape, markedness of the wrinkles, presence of eye white, number of wrinkles, and the angle between the line through the eyeball and the highest wrinkle. The angle decreased during grooming and increased during food competition compared to control phases, whereas the two phases did not differ during food anticipation and the plastic bag condition. No effects on the other outcome measures were detected. Taken together, we have defined a set of measures to assess eye wrinkle expression reliably, of which one measure was affected by the conditions the horses were exposed to. Variation in eye wrinkle expression might provide valuable information on horse welfare but further validation of specific measures across different conditions is needed. PMID:27732647
Global survey of lunar wrinkle ridge formation times
NASA Astrophysics Data System (ADS)
Yue, Z.; Michael, G. G.; Di, K.; Liu, J.
2017-11-01
Wrinkle ridges are a common feature of the lunar maria and record subsequent contraction of mare infill. Constraining the timing of wrinkle ridge formation from crater counts is challenging because they have limited areal extent and it is difficult to determine whether superposed craters post-date ridge formation or have alternatively been uplifted by the deformation. Some wrinkle ridges do allow determination to be made. This is possible where a ridge shows a sufficiently steep boundary or scarp that can be identified as deforming an intersecting crater or the crater obliterates the relief of the ridge. Such boundaries constitute only a small fraction of lunar wrinkle ridge structures yet they are sufficiently numerous to enable us to obtain statistically significant crater counts over systems of structurally related wrinkle ridges. We carried out a global mapping of mare wrinkle ridges, identifying appropriate boundaries for crater identification, and mapping superposed craters. Selected groups of ridges were analyzed using the buffered crater counting method. We found that, except for the ridges in mare Tranquilitatis, the ridge groups formed with average ages between 3.5 and 3.1 Ga ago, or 100-650 Ma after the oldest observable erupted basalts where they are located. We interpret these results to suggest that local stresses from loading by basalt fill are the principal agent responsible for the formation of lunar wrinkle ridges, as others have proposed. We find a markedly longer interval before wrinkle ridge formation in Tranquilitatis which likely indicates a different mechanism of stress accumulation at this site.
Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials
NASA Astrophysics Data System (ADS)
Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.
2017-09-01
Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.
Redox-Switchable Surface Wrinkling on Polyaniline Film.
Xie, Jixun; Zong, Chuanyong; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Yang, Xiu; Lu, Conghua
2016-04-01
Here the redox-driven switch between the wrinkled and dewrinkled states on poly-aniline (PANI) film is reported. This switch is derived from the reversible transition in different intrinsic redox states of polyaniline (e.g., between emeraldine salt (ES) and leucoemeraldine base (LEB) or between ES and pernigraniline base (PB)) that are involved in the redox reaction, coupled with the corresponding volume expansion/shrinkage. Interestingly, the as-wrinkled ES film becomes deswollen and dewrinkled when reduced to the LEB state or oxidized to the PB state. Conversely, oxidation of the LEB film or reduction of the PB film into the swollen ES film leads to the reoccurrence of surface wrinkling. Furthermore, the reducibility of the dewrinkled LEB film and the oxidizability of the dewrinkled PB film are well utilized respectively to yield various wrinkled PANI-based composite films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protein Expression Level of Skin Wrinkle-Related Factors in Hairless Mice Fed Hyaluronic Acid.
Yun, Min-Kyu; Lee, Sung-Jin; Song, Hye-Jin; Yu, Heui-Jong; Rha, Chan Su; Kim, Dae-Ok; Choe, Soo-Young; Sohn, Johann
2017-04-01
The aim of this study was to evaluate the wrinkle improving effect of hyaluronic acid intakes. Wrinkles were induced by exposing the skin of hairless mice to ultraviolet B (UVB) irradiation for 14 weeks. Hyaluronic acid was administered to the mice for 14 weeks including 4 weeks before experiments. Skin tissue was assayed by enzyme-linked immunosorbent assay to determine protein expression of wrinkle-related markers. The group supplemented with high concentrations of hyaluronic acid appeared significantly better than control group for collagen, matrix metalloproteinase 1, interleukin (IL)-1β, and IL-6 assay. Transforming growth factor-β1 (TGF-β1) and hyaluronic acid synthase 2 (HAS-2) were not shown to be significantly different. In conclusion, hyaluronic acid administration regulated expression levels of proteins associated with skin integrity, and improved the wrinkle level in skin subjected to UVB irradiation.
Wrinkle Ridge Detachment Depth and Undetected Shortening at Solis Planum, Mars
NASA Astrophysics Data System (ADS)
Colton, S. L.; Smart, K. J.; Ferrill, D. A.
2006-03-01
Martian wrinkle ridges have estimated detachment depths of 0.25 to 60 km. Our alternative method for determining detachment depth reveals differences and has implications for the predominant scale of deformation at Solis Planum.
Feeling small: exploring the tactile perception limits.
Skedung, Lisa; Arvidsson, Martin; Chung, Jun Young; Stafford, Christopher M; Berglund, Birgitta; Rutland, Mark W
2013-01-01
The human finger is exquisitely sensitive in perceiving different materials, but the question remains as to what length scales are capable of being distinguished in active touch. We combine material science with psychophysics to manufacture and haptically explore a series of topographically patterned surfaces of controlled wavelength, but identical chemistry. Strain-induced surface wrinkling and subsequent templating produced 16 surfaces with wrinkle wavelengths ranging from 300 nm to 90 μm and amplitudes between 7 nm and 4.5 μm. Perceived similarities of these surfaces (and two blanks) were pairwise scaled by participants, and interdistances among all stimuli were determined by individual differences scaling (INDSCAL). The tactile space thus generated and its two perceptual dimensions were directly linked to surface physical properties - the finger friction coefficient and the wrinkle wavelength. Finally, the lowest amplitude of the wrinkles so distinguished was approximately 10 nm, demonstrating that human tactile discrimination extends to the nanoscale.
Elnehrawy, Naema Y; Ibrahim, Zeinab A; Eltoukhy, Azza M; Nagy, Hala M
2017-03-01
Platelet-rich plasma (PRP) is considered as a growing modality for tissue regeneration and a developing research area for clinicians and researchers. PRP injection treatment provides supraphysiological concentrations of growth factors that may help in accelerated tissue remodeling and regeneration. To evaluate the efficacy and safety of single autologous PRP intradermal injection for treatment of facial wrinkles and for facial rejuvenation. A total of 20 subjects with different types of facial wrinkles were included in this study. All subjects received single PRP intradermal injection and were clinically assessed before and after treatment for a period of 8 weeks using Wrinkle Severity Rating Scale (WSRS), Skin Homogeneity and Texture (SHnT) Scale, Physician Assessment Scale, and Subject Satisfaction Scale. The mean value of WSRS reduced from 2.90 ± 0.91 before treatment to 2.10 ± 0.79 after 8 weeks of treatment. The most significant results were with younger subjects that have mild and moderate wrinkles of the nasolabial folds (NLFs). Fourteen of seventeen subjects with NLFs showed more than 25% improvement in their appearance. Side effects of PRP treatment were minimal to mild and with excellent tolerability. Single PRP intradermal injection is well tolerated and capable of rejuvenating the face and producing a significant correction of wrinkles especially the NLFs. © 2016 Wiley Periodicals, Inc.
Shin, Hyun Tae; Kim, Jun Hwan; Shim, Joonho; Lee, Jong Hee; Lee, Dong Youn; Lee, Joo Heung; Yang, Jun Mo
2015-06-01
Photodynamic therapy (PDT) with intense pulsed light (IPL) was proven effective for photorejuvenation. Recently, a new formulation of 0.5% 5-aminolevulinic acid (ALA) liposomal spray has been available. We designed a randomized split face study to evaluate usefulness and safety of IPL-PDT using a liposomal spray for periorbital wrinkles in Asians. Patients received three treatments every 3 weeks. The half of the face was treated with IPL-PDT and the other half with long pulsed Nd:YAG laser (LPNY). Skin fluorescence was measured using a spectrophotometer for the guidance of PDT treatment. Wrinkle score was marked by two-blinded independent dermatologists. One patient dropped out due to 3-d lasting erythema on PDT side. The difference of mean reduction in lower and lateral periorbital wrinkle score on PDT side between the first and the last visit was statistically significant (p = 0.008 and p = 0.001, respectively). Lateral periorbital wrinkles treated with PDT showed better results than LPNY-treated sides. Twenty-five percent of patients reported good to excellent outcomes. This study demonstrated that PDT with a liposomal spray provided modest wrinkle reduction without serious adverse effect and it might be a promising treatment modality for wrinkle treatment in Asians.
Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.
Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang
2017-10-25
Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.
Montesi, Gianni; Calvieri, Stefano; Balzani, Alberto; Gold, Michael H
2007-09-01
Rapid progress in the technology for skin rejuvenation has allowed for shorter post-treatment times than ever before. An example of such technology is the radiofrequency (RF) device, which offers nonablative skin rejuvenation, particularly for skin tightening and wrinkle reduction. Medical devices that emit RF energy produce a change in the electrical charges of the treated skin creating an electron movement, and the resistance of the tissue to the electron movement generates heat. This article examines the mechanism of action of a new bipolar RF device, which emits RF energy through a handpiece with a bipolar electrode configuration, and assesses the clinical histological and immunohistochemical results on a sample group of patients who underwent a cycle of sessions with this device. Thirty patients affected with periocular wrinkles, glabellar wrinkles, slackness of the cheeks with accentuation of the nasogenian furrow, striae distensae at the scapulohumeral joint, abdomen, and gluteal-trochanteric areas, or acne scars were included. These patients underwent a cycle of 6 to 8 sessions with 2-week intervals with the new bipolar RF device undergoing photographic monitoring before treatment and at the end of the cycle of sessions. In addition, 15 patients from the sample group were subjected to 2 biopsies, one at the start of treatment and the other 3 months after the last treatment. All the patients showed improvement in treated imperfections from the second session onward, and they expressed their satisfaction at the end of the treatment cycle. The most notable clinical, histological, and immunohistochemical results were observed in the patients with abdominal striae distensae. In most cases, the temporary side effects observed consisted of rashes and ecchymosis. Two patients reported the formation of blisters on the treated area caused by excessively high RF settings. The new bipolar RF device proved to be effective, noninvasive, and easy to use. The improvement in the treated areas is progressive and continues to be apparent several months after the last session. The duration of the results achieved still remains to be accurately determined.
An evaluation method for nanoscale wrinkle
NASA Astrophysics Data System (ADS)
Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.
2016-06-01
In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.
Martian Wrinkle Ridge Topography: Evidence for Subsurface Faults from MOLA
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Anderson, F. S.; Zuber, M. T.
2000-01-01
Mars Orbiter Laser Altimeter (MOLA) profiles across wrinkle ridges are characterized by plains surfaces at different elevations on either side that appear best explained by subsurface thrust faults that underlie the ridges and produce the offset.
Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri
2017-01-01
Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65-85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream.
Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri
2017-01-01
Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65–85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream. PMID:28249037
A review of tazarotene in the treatment of photodamaged skin
Ogden, Stephanie; Samuel, Miny; Griffiths, Christopher EM
2008-01-01
Chronic sun exposure leads to photodamage, which is characterized clinically by fine and coarse wrinkles, dyspigmentation, telangiectasia, laxity, roughness and a sallow appearance. Many treatments claim to reduce the signs of photodamage, however evidence from randomized controlled trials (RCT) to support these claims is limited. The use of topical retinoids, particularly tretinoin, isotretinoin and tazarotene, has been shown to significantly reduce signs of photodamage both clinically and histologically. Over recent years a number of RCTs, have affirmed that topical tazarotene is an effective and safe treatment for photodamaged skin. PMID:18488880
Reversible and irreversible wrinkling in tube hydroforming process
NASA Astrophysics Data System (ADS)
El-Aty, Ali Abd; Ahmed, Tauseef; Farooq, Ahmed
2017-07-01
The aim of this research is to analyzeandoptimize the hydroforming process parameters in order to achieve a sound bulged tube without failure. Theoretical constitutive model is formulated to develop a working diagram including process window, which represents the optimize region to carry out the hydroforming process and predict the type of tube failure during the process accurately. The model is applied into different bulging ratios for low carbon steel (C1010). From this study, it is concluded that the tubes with bulging ratios up to 50% and 70% are successfully formed without defects. The tubes with bulging ratio of 90% are successfully formed by hydroforming with optimized the loading path (axial feed versus internal pressure) within the process window. The working diagram is modified due to different types of formation of wrinkling during the hydroforming process. The formation of wrinkles with increasing axial feed can be useful in terms of the achievement of higher bulging ratio and/or less thinning and this type of wrinkles can be overcome through the internal pressure in the later stage of the hydroforming process. On the other hand, the formation of wrinkles may be harmful, if it cannot be reversed.
Owais, Ahmed; Smith-Palmer, Truis; Gentle, Angus; Neto, Chiara
2018-06-26
Underwater superoleophobic surfaces can be considered a particular type of lubricant-infused surface, that have anti-fouling properties by virtue of a trapped water layer that repels oils. However, as their function relies on a water layer being trapped in the surface roughness, it is crucial to understand the factors that determine the layer stability. In this work, the forces that are responsible for the stability of thin liquid films within structured surfaces were quantified, and the conclusions were tested against the performance of wrinkled surfaces as underwater superoleophobic coatings. Here, the system studied was a family of wrinkled surfaces made of hydrophilic poly(4-vinylpyridine) (P4VP), whereby the wrinkle width could be controllably tuned in the range 90 nm to 8000 nm. The van der Waals free energy was quantified and the capillary forces trapping water in the surface micro- and nano-wrinkle structure were estimated. P4VP surfaces with micro-scale wrinkles had underwater superoleophobic properties, and low adhesion to different oils with droplet roll-off angle below 6° ± 1°. Despite the van der Waals free energy of the system pointing to the dewetting of a water film under oil on top of a smooth P4VP film, the wrinkled structure is sufficient to induce a Cassie state with a trapped water layer. The micro-scale wrinkles (average width 4-12 μm) were found to be particularly effective in the trapping of the water in a Cassie non-adhesive state. The P4VP wrinkled surfaces are superamphiphobic, as when they were first infused with oil, and then exposed to a droplet of water under oil, they exhibited superhydrophobic behavior. The P4VP wrinkles have the additional useful feature of being transparent underwater, which makes them useful candidates for the protection of underwater cameras and sensors.
The beneficial effects of honeybee-venom serum on facial wrinkles in humans
Han, Sang Mi; Hong, In Phyo; Woo, Soon Ok; Chun, Sung Nam; Park, Kwan Kyu; Nicholls, Young Mee; Pak, Sok Cheon
2015-01-01
Facial wrinkles are an undesirable outcome caused by extrinsic photodamage and intrinsic aging processes. Currently, no effective strategies are known to prevent facial wrinkles. We assessed the beneficial effects of bee-venom serum on the clinical signs of aging skin. Our results show that bee-venom serum treatment clinically improved facial wrinkles by decreasing total wrinkle area, total wrinkle count, and average wrinkle depth. Therefore, bee-venom serum may be effective for the improvement of skin wrinkles. PMID:26491274
Batool, Nazre; Chellappa, Rama
2014-09-01
Facial retouching is widely used in media and entertainment industry. Professional software usually require a minimum level of user expertise to achieve the desirable results. In this paper, we present an algorithm to detect facial wrinkles/imperfection. We believe that any such algorithm would be amenable to facial retouching applications. The detection of wrinkles/imperfections can allow these skin features to be processed differently than the surrounding skin without much user interaction. For detection, Gabor filter responses along with texture orientation field are used as image features. A bimodal Gaussian mixture model (GMM) represents distributions of Gabor features of normal skin versus skin imperfections. Then, a Markov random field model is used to incorporate the spatial relationships among neighboring pixels for their GMM distributions and texture orientations. An expectation-maximization algorithm then classifies skin versus skin wrinkles/imperfections. Once detected automatically, wrinkles/imperfections are removed completely instead of being blended or blurred. We propose an exemplar-based constrained texture synthesis algorithm to inpaint irregularly shaped gaps left by the removal of detected wrinkles/imperfections. We present results conducted on images downloaded from the Internet to show the efficacy of our algorithms.
Nogales, Aurora; Del Campo, Adolfo; Ezquerra, Tiberio A; Rodriguez-Hernández, Juan
2017-06-14
An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.
Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhenhua; Wu, Leilei; Zhu, Shu
This paper presents a chip-scale random lasing action utilizing polydimethylsiloxane (PDMS) wrinkles with random periods as disordered medium. Nanoscale wrinkles with long range disorder structures are formed on the oxidized surface of a PDMS slab and confirmed by atomic force microscopy. Light multiply scattered at each PDMS wrinkle-dye interfaces is optically amplified in the presence of pump gain. The shift of laser emission wavelength when pumping at different regions indicates the randomness of the winkle period. In addition, a relatively low threshold of about 27 μJ/mm{sup 2} is realized, which is comparable with traditional optofluidic dye laser. This is due tomore » the unique sinusoidal Bragg-grating-like random structure. Contrast to conventional microfluidic dye laser that inevitably requires the accurate design and implementation of microcavity to provide optical feedback, the convenience in both fabrication and operation makes PDMS wrinkle based random laser a promising underlying element in lab-on-a-chip systems and integrated microfluidic networks.« less
Study of Wrinkle Resistant, Breathable, Anti-Uv Nanocoated Woven Polyester Fabric
NASA Astrophysics Data System (ADS)
Memon, Hafeezullah; Yasin, Sohail; Khoso, Nazakat Ali; Memon, Samiulah
2016-02-01
The multifunctional textiles are interesting areas to be researched on. In this paper, the effect of the fiber nanocoating on the wrinkle recovery, air permeability and anti-Ultraviolet (UV) property of different woven fabrics using sol-gel method has been studied. The sol-gel method has various advantages over other methods. Along with these properties, no change in visual appearance has also been discussed in this paper. The dispersion of nanoparticles of titanium was obtained into silica sol. The characterization of nanocoating was done using Field emission scanning electron micrograph (FESEM) and Fourier transform infrared spectroscopy (FTIR) studies. The fabric wrinkle recovery properties, air permeability and anti-UV performance were analyzed using three different immersion timings into the nanosol. The results revealed that both wrinkle recovery properties and anti-UV performance have increased with respect to immersing time of the nanocoating although a slight decrease in air permeability and whiteness index of the fabric was also observed.
Wrinkles in reinforced membranes
NASA Astrophysics Data System (ADS)
Takei, Atsushi; Brau, Fabian; Roman, Benoît; Bico, José.
2012-02-01
We study, through model experiments, the buckling under tension of an elastic membrane reinforced with a more rigid strip or a fiber. In these systems, the compression of the rigid layer is induced through Poisson contraction as the membrane is stretched perpendicularly to the strip. Although strips always lead to out-of-plane wrinkles, we observe a transition from out-of-plane to in plane wrinkles beyond a critical strain in the case of fibers embedded into the elastic membranes. The same transition is also found when the membrane is reinforced with a wall of the same material depending on the aspect ratio of the wall. We describe through scaling laws the evolution of the morphology of the wrinkles and the different transitions as a function of material properties and stretching strain.
Simulation of Forming and Wrinkling of Textile Composite Reinforcements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamila, N.; Wang, P.; Vidal-Salle, E.
Because of the very weak textile bending stiffness, wrinkles are frequent during composite reinforcement forming. The simulation of the shape of these wrinkles during the forming process permits to verify there is no wrinkle in the useful part of the preform. In this paper the role of tensions, in-plane shear and bending rigidities in wrinkling development are analyzed. In-plane shear plays a main role for onset of wrinkles in double-curved shape forming but wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and amore » membrane approach it is not sufficient to simulate wrinkles.« less
Polyfibroblast: A Self-Healing and Galvanic Protection Additive
2011-05-25
Laurel, MD 20723 Figure 3: Attempt to encapsulate DABCO 197 surfactant within a polyurea shell. Note the highly wrinkled appearance. The wrinkles...will be used in different concentrations to obtain the best performance. Special attention will be given to the durability of the OTS/ polyurea films
Modeling and Analysis of Wrinkled Membranes: An Overview
NASA Technical Reports Server (NTRS)
Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)
2001-01-01
Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.
Pereira, Thalita Rodrigues Christovam; Vassão, Patrícia Gabrielli; Venancio, Michele Garcia; Renno, Ana Cláudia Muniz; Aveiro, Mariana Chaves
2017-06-01
The objective of this study was to evaluate the effects of Non-ablative Radiofrequency (RF) associated or not with low-level laser therapy (LLLT) on aspect of facial wrinkles among adult women. Forty-six participants were randomized into three groups: Control Group (CG, n = 15), RF Group (RG, n = 16), and RF and LLLT Group (RLG, n = 15). Every participant was evaluated on baseline (T0), after eight weeks (T8) and eight weeks after the completion of treatment (follow-up). They were photographed in order to classify nasolabial folds and periorbital wrinkles (Modified Fitzpatrick Wrinkle Scale and Fitzpatrick Wrinkle Classification System, respectively) and improvement on appearance (Global Aesthetic Improvement Scale). Photograph analyses were performed by 3 blinded evaluators. Classification of nasolabial and periorbital wrinkles did not show any significant difference between groups. Aesthetic appearance indicated a significant improvement for nasolabial folds on the right side of face immediately after treatment (p = 0.018) and follow-up (p = 0.029) comparison. RG presented better results than CG on T8 (p = 0.041, ES = -0.49) and on follow-up (p = 0.041, ES = -0.49) and better than RLG on T8 (p = 0.041, ES = -0.49). RLG presented better results than CG on follow-up (p = 0.007, ES = -0.37). Nasolabial folds and periorbital wrinkles did not change throughout the study; however, some aesthetic improvement was observed. LLLT did not potentiate RF treatment.
Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films
NASA Astrophysics Data System (ADS)
Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi
2017-07-01
We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlaic, S.; Kimouche, A.; Coraux, J.
Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping
2018-03-01
Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.
Gallardo, Alberto; Lujan, Noelia; Reinecke, Helmut; García, Carolina; Campo, Adolfo Del; Rodriguez-Hernandez, Juan
2017-02-21
Facile procedures capable of simultaneously conferring hydrophilicity and tailored topography to surfaces of hydrophobic supports, such as polycarbonate (PC), are very attractive but rare. In this work, we describe a simple methodology to wrinkle PC surfaces after a process of (a) contacting with a photopolymerizable vinylic solution, (b) UV curing of such solutions, and (c) detachment of the formed polymer network, upon swelling in ethanol. The influence of different parameters such as contact lag time between the PC surface and the polymerizable solution, the monomer concentration and type of solvents, as well as the cross-linking degree on the formation of wrinkles, has been studied. The dimensions of the wrinkles can be tailored to some extent by altering the different parameters. Surface chemistry has been analyzed by contact angle measurements and by confocal Raman microscopy. The results are consistent with a chemical alteration of the surface and the formation of an outer hydrogel layer, which is interpenetrated into the PC structure. A mechanism of monomer diffusion and PC swelling that produces surface instabilities and wrinkling is proposed.
Shear deformation-induced anisotropic thermal conductivity of graphene.
Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze
2018-01-03
Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-06-01
In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.
Natural Curvature as Effective Confinement in Elastic Sheets
NASA Astrophysics Data System (ADS)
Albarran, Octavio; Katifori, Eleni; Goehring, Lucas
The wrinkling and folding transitions of thin elastic sheets have been extensively studied in the last decade. The exchange of energy from stretching to bending acts as a paradigm for a wide range of elastic instabilities, including the wrinkling of the gut, and the crinkling of leaves. In two dimensions this type of problem is typically considered by the model of an Euler-elastica in compressive confinement. We show that, even without any external forces, an elastic surface supported by a fluid can bend and wrinkle when it acquires a non-zero natural curvature. Locally, we will demonstrate how a preferential curvature can be related to an effective compression, and hence a confining force that can vary spatially. This suggests a simple experimental setup, where we have characterised a variety of wrinkle patterns that can be generated for different mechanical properties and natural curvatures.
Fracture characterization of inhomogeneous wrinkled metallic films deposited on soft substrates
NASA Astrophysics Data System (ADS)
Kishida, Hiroshi; Ishizaka, Satoshi; Nagakura, Takumi; Suzuki, Hiroaki; Yonezu, Akio
2017-12-01
This study investigated the fracture properties of wrinkled metallic films on a polydimethylsiloxane (PDMS) soft substrate. In particular, the crack density of the wrinkled film during tensile deformation was examined. In order to achieve better deformability of metallic thin films, a method to fabricate a wrinkled thin film on a PDMS soft substrate was first established. The copper (Cu) nano-film fabricated in this study possessed a wrinkled geometry, which plays a critical role in determining the extent of large elastic deformation. To create the wrinkled structure, wet-etching with a polymeric sacrificial layer was used. A sacrificial layer was first deposited onto a silicone rubber sheet. During the curing process of the layer, a compressive strain was applied such that the hardened surface layer buckled, and a wrinkled form was obtained. Subsequently, a PDMS solution was used to cover the layer in order to form a wrinkled PDMS substrate. Finally, the Cu film was deposited onto the wrinkled PDMS, such that the wrinkled Cu film on a soft PDMS substrate was fabricated. The use of uni-axial tensile tests resulted in film crack generation at the stress concentration zone in the wrinkled structure of the films. When the tensile loading was increased, the number of cracks increased. It was found that the increase in crack density was strongly related to the inhomogeneous nature of the wrinkled structure. Such a trend in crack density was investigated using FEM (finite element method) computations, such that this study established a simple mechanical model that may be used to predict the increase in crack density during tensile deformation. This model was verified through several experiments using various wrinkle patterns. The proposed mechanical model may be useful to predict the crack density of a wrinkled metallic film subject to tensile loading.
Choi, Jae Woo; Kwon, Soon Hyo; Huh, Chang Hun; Park, Kyoung Chan; Youn, Sang Woong
2013-02-01
Various skin parameters including skin visco-elasticity and hydration level affect the formation of wrinkles. The aim of this study was to investigate the comprehensive and objective relationship between age, skin visco-elasticity, hydration level, and the occurrence of wrinkles using bioengineering equipments for the first time. A total number of 97 healthy women were included in this study. Age, Fitzpatrick skin type, skin mechanical parameters obtained with Cutometer(R0~R9), hydration level measured with Corneometer, as well as wrinkle parameters (SEsm, SEr, SEsc, and SEw) assessed with Visioscan, were analyzed with the Pearson's correlation test. The skin fluidity (R6) increased while the elastic recovery ratio (R7) decreased with the age. The wrinkle parameter (SEw) also increased with the age. The higher skin hysteresis values (R4 and R9) coincided with the higher SEw values. Skin hydration significantly lowered the hysteresis (R9), the wrinkles (SEw), and the depth of wrinkle furrows (R3mr). The elderly have less elastic skin and more wrinkles. Skin hysteresis most closely related with the degree of wrinkles. Drier skin showed more wrinkles and deeper furrows, with wider intervals. On the basis of these objective findings, we propose several skin parameters associated with wrinkles, and hypothesize the mechanism of wrinkle generation. © 2012 John Wiley & Sons A/S.
Book: WRINKLES IN TIME Wrinkles in Time is a popular book on cosmology authored by George Smoot and (Spanish), Kachi (Korean), Mondadori (Italian), Haase (Danish), more in progress. "Wrinkles in Time -person account of the search for the primordial seeds of the universe. WRINKLES IN TIME By George Smoot
Han, Xue; Hou, Jing; Xie, Jixun; Yin, Jian; Tong, Yi; Lu, Conghua; Möhwald, Helmuth
2016-06-29
Here we report a simple, novel, yet robust nonlithographic method for the controlled fabrication of two-dimensional (2-D) ordered arrays of polyethylene glycol (PEG) microspheres. It is based on the synergistic combination of two bottom-up processes enabling periodic structure formation for the first time: dewetting and the mechanical wrinkle formation. The deterministic dewetting results from the hydrophilic polymer PEG on an incompatible polystyrene (PS) film bound to a polydimethylsiloxane (PDMS) substrate, which is directed both by a wrinkled template and by the template-directed in-situ self-wrinkling PS/PDMS substrate. Two strategies have been introduced to achieve synergism to enhance the 2-D ordering, i.e., employing 2-D in-situ self-wrinkling substrates and boundary conditions. As a result, we achieve highly ordered 2-D arrays of PEG microspheres with desired self-organized microstructures, such as the array location (e.g., selectively on the crest/in the valley of the wrinkles), diameter, spacing of the microspheres, and array direction. Additionally, the coordination of PEG with HAuCl4 is utilized to fabricate 2-D ordered arrays of functional PEG-HAuCl4 composite microspheres, which are further converted into different Au nanoparticle arrays. This simple versatile combined strategy could be extended to fabricate highly ordered 2-D arrays of other functional materials and achieve desirable properties and functionalities.
NASA Technical Reports Server (NTRS)
Vidal, A.; Mueller, K.; Golombek, M. P.
2003-01-01
We undertook axial surface mapping of selected wrinkle ridges on Solis Planum, Mars in order to assess the subsurface geometry of blind thrusts proposed to exist beneath them. This work builds on previous work that defined structural families of wrinkle ridges based on their surface morphology in this region. Although a growing consensus exists for models of wrinkle ridge kinematics and mechanics, a number of current problems remain. These include the origin of topographic offset across the edges of wrinkle ridges, the relationship between broad arches and superposed ridges, the origin of smaller wrinkles, and perhaps most importantly, the trajectory of blind thrusts that underlie wrinkle ridges and accommodate shortening at deeper crustal levels. We are particularly interested in defining the depths at which blind thrusts flatten under wrinkle ridges in order to provide constraints on the brittle-ductile transition during Early Hesperian time. We also seek to test whether wrinkle ridges on Solis Planum develop above reactivated faults or newly formed ones.
Association of Diet With Skin Histological Features in UV-B-Exposed Mice.
Bhattacharyya, Tapan K; Hsia, Yvonne; Weeks, David M; Dixon, Tatiana K; Lepe, Jessica; Thomas, J Regan
2017-09-01
Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B-exposed animals who received the obesity diet. Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. NA.
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...
49 CFR 192.315 - Wrinkle bends in steel pipe.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks. (2...
The skin aging index: a new approach for documenting anti-aging products or procedures.
Nkengne, Alex; Roure, Romain; Rossi, Ana Beatriz; Bertin, Christiane
2013-08-01
The overall appearance of an aged skin is characterized by a combination of several attributes such as wrinkles, brown spots and sagging. Our objective was to develop and validate a statistical framework to assess the overall anti-ageing benefits of products/procedures. Different skin attributes were evaluated by a clinical grader and combined using a Principal Component Analysis (PCA). The Skin Ageing Index was defined as the normalized projection of the clinical grading values on the first PCA axis. Several Skin Indexes were built by grouping specific parameters related to a skin condition such as overall ageing, wrinkles and sagging. The method was validated following two steps. Firstly, a clinical study was performed on 173 Caucasian women and the correlation between the Skin Indexes and the volunteers' real and perceived age was estimated. Secondly, a double-blinded placebo-controlled randomized study was performed on 87 Caucasian women to assess the efficacy of an anti-wrinkle cream containing retinol, hyaluronic acid and dihydroxymethylchromone. Facial wrinkles were clinically evaluated and a Wrinkle Index was built. All indexes were highly correlated with the real and the perceived age (0.57 ≤ Pearson R ≤ 0.92, P-value ≤ 0.05). Finally, the Wrinkle Index provides documented evidence that the tested product significantly reduced the appearance of wrinkles versus the placebo and the baseline assessment (-23.53% after 4 weeks, -27.83% after 8 weeks). Skin ageing Indexes capture information relevant to the visual transformation of facial skin with age, while providing documented product benefits. These tools may enable a simpler and more consistent comparison of anti-ageing products/procedures. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Schwartz, Steve; Frank, Emily; Gierhart, Dennis; Simpson, Paula; Frumento, Robert
2016-12-01
Dietary modification, through supplementation and elimination diets, has become an area of interest to help slow skin aging, reduce symptom severity or prevent reoccurrence of certain dermatologic conditions [Clinical Dermatology vol. 31 (2013) 677-700]. Free radical components (reactive oxygen species or ROS) or lipid peroxide (LPO) is involved in the pathogenesis and progression of accelerated skin aging when prolonged oxidative stress occurs. The use of antioxidant-related therapies such as nutraceuticals is of particular interest in restoring skin homeostasis. Antioxidant carotenoid zeaxanthin is concentrated in the eye and skin tissue and believed to decrease the formation of ROS associated with UV light exposure. With zeaxanthin, phytoceramides, and botanical extracts an oral and topical test product (with zeaxanthin, algae extracts, peptides, hyaluronate) have been developed to improve the appearance and condition of skin when used as directed. Subjects were divided into three groups: two tests (skin formula 1 - oral product alone (ZO-1), skin formula 2- oral product with topical product (ZO-2 + ZT)), and one placebo control. The study consisted of a washout visit, baseline (randomization), week two (2), week four (4), week six (6), week eight (8), and week twelve (12). Key parameters measured were as follows: fine lines, deep lines, total wrinkles, wrinkle severity, radiance/skin color (L, a*, b*), discolorations, and skin pigment homogeneity. Thirty-one subjects completed the twelve-week study; no adverse events were recorded during the study. Statistically significant improvements from baseline mean hydration score were observed in active groups at weeks 2, 6, and 8. A statistically significant difference was observed between mean differences from baseline scores for total wrinkle count at week 4 for the combination active groups compared to placebo. A statistically significant difference from baseline scores for fine lines count was also observed at the week 4 visit compared to placebo for both active groups. Statistically significant differences from baseline scores for average wrinkles severity were seen for week 12 visit for both active groups compared to placebo. We have shown that the combination of zeaxanthin-based dietary supplement plus a topical formulation produces superior hydration to that of placebo. Additionally, we have shown that the combination of oral and topical combination vs. oral alone has superior abilities to improve parameters associated with facial lines and wrinkles compared to placebo, although the dietary supplement alone proved most effective in reducing wrinkle count and severity. © 2016 Wiley Periodicals, Inc.
Microbial shaping of wrinkle structures in siliciclastic deposits
NASA Astrophysics Data System (ADS)
Bosak, T.; Mariotti, G.; Pruss, S. B.; Perron, J.; O'Grady, M.
2013-12-01
Wrinkle structures are millimeter- to centimeter-scale elongated or reticulate sedimentary structures that resemble symmetric ripples. Sharp-crested and flat-topped wrinkle structures up to 1 cm wide occur on numerous bedding planes in the Neoproterozoic and Cambrian, as well as in some Archean and Phanerozoic siliciclastic deposits. Because similar, but unlithified structures occur in some modern, microbially-colonized sands, wrinkle structures are typically interpreted as microbially induced sedimentary structures. However, it is unclear if physical processes, such as the motion of suspended sand grains, can produce similar features in sand even before microbial colonization. We introduced mat fragments to the surface of silica sand in wave tanks and generated sharp-crested, flat-topped and pitted wrinkle structures. The abrasion of the sandy surface by rolling, low density, millimeter-size fragments of microbial mats produces wrinkle structures at extremely weak orbital velocities that cannot move sand grains in the absence of light particles. Wrinkle structures form in a few hours and can become colonized by microbial mats within weeks. Thus, wrinkle structures are patterns formed by microbially mediated sand motion at low orbital velocities in the absence of bioturbation. Once formed, wrinkle structures can be colonized and stabilized by microbial mats, but the shape of these mats does not dictate the shape of wrinkle structures. These experiments bolster the interpretation of wrinkle structures as morphological signatures of organic particles and early life in Archean and Proterozoic siliciclastic deposits.
Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil
2014-01-01
BACKGROUND/OBJECTIVES Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression. PMID:25110559
Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil; Hwang, Jae-Kwan
2014-08-01
Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression.
Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria.
Deng, Shikai; Gao, Enlai; Wang, Yanlei; Sen, Soumyo; Sreenivasan, Sreeprasad Theruvakkattil; Behura, Sanjay; Král, Petr; Xu, Zhiping; Berry, Vikas
2016-09-27
Curvature-induced dipole moment and orbital rehybridization in graphene wrinkles modify its electrical properties and induces transport anisotropy. Current wrinkling processes are based on contraction of the entire substrate and do not produce confined or directed wrinkles. Here we show that selective desiccation of a bacterium under impermeable and flexible graphene via a flap-valve operation produces axially aligned graphene wrinkles of wavelength 32.4-34.3 nm, consistent with modified Föppl-von Kármán mechanics (confinement ∼0.7 × 4 μm(2)). Further, an electrophoretically oriented bacterial device with confined wrinkles aligned with van der Pauw electrodes was fabricated and exhibited an anisotropic transport barrier (ΔE = 1.69 meV). Theoretical models were developed to describe the wrinkle formation mechanism. The results obtained show bio-induced production of confined, well-oriented, and electrically anisotropic graphene wrinkles, which can be applied in electronics, bioelectromechanics, and strain patterning.
Flexible flapping wings with self-organized microwrinkles.
Tanaka, Hiroto; Okada, Hiroyuki; Shimasue, Yosuke; Liu, Hao
2015-06-29
Bio-inspired flapping wings with a wrinkled wing membrane were designed and fabricated. The wings consist of carbon fibre-reinforced plastic frames and a polymer film with microscale wrinkles inspired by bird feathers and the corrugations of insect wings. The flexural and tensile stiffness of the wrinkled film can be controlled by modifying the orientations and waveforms of the wrinkles, thereby expanding the design space of flexible wings for micro flapping-wing aerial robots. A self-organization phenomenon was exploited in the fabrication of the microwrinkles such that microscale wrinkles spanning a broad wing area were spontaneously created. The wavy shape of these self-organized wrinkles was used as a mould, and a Parylene film was deposited onto the mould to form a wrinkled wing film. The effect of the waveforms of the wrinkles on the film stiffness was investigated theoretically, computationally and experimentally. Compared with a flat film, the flexural stiffness was increased by two orders of magnitude, and the tensile stiffness was reduced by two orders of magnitude. To demonstrate the effect of the wrinkles on the actual deformation of the flapping wings and the resulting aerodynamic forces, the fabricated wrinkled wings were tested using a tethered electric flapping mechanism. Chordwise unidirectional wrinkles were found to prevent fluttering near the trailing edge and to produce a greater aerodynamic lift compared with a flat wing or a wing with spanwise wrinkles. Our results suggest that the fine stiffness control of the wing film that can be achieved by tuning the microwrinkles can improve the aerodynamic performance of future flapping-wing aerial robots.
NASA Astrophysics Data System (ADS)
Ahn, Sungsook; Lee, Sang Joon
2015-11-01
Wrinkle formation on the skin is an unwelcome guest to everybody. But if we truly understand how wrinkles can contribute to important biological functions, then we readily admit the wrinkles positively. In this study, we show how the wrinkles are advantageous and useful in many systems. In a plant system for example, by forming line patterned wrinkles the hydrogels covering on the seed surface contribute to delay the dehydration against varying water supply environments. Inspired by this plant hydrogel, it is experimentally and theoretically investigated how lined wrinkles are useful to conserve water inside while protect the individual from drying-out. This study would contribute to a variety of humidity-sensitive system development including artificial skin, humidity-actuated sensors and the like.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanathan, Muruganathan; Lokitz, Bradley S.; Messman, Jamie M.
We report a simple, one step process for developing wrinkling patterns in azlactone-based polymer thin films and brushes in 2D and 3D surfaces. The polymer used in this work wrinkles spontaneously upon deposition and solidification on a substrate without applying any external strain to the substrate, with the mode of deposition defining the direction of the wrinkles. Wrinkle formation is shown to occur on a variety of substrates over large areas. We also find that a very thin brush-like layer of an azlactone-containing block copolymer also exhibits wrinkled topology. Given the spontaneity and versatility of wrinkle formation, we further demonstratemore » two proofs-of-concept, i) that these periodic wrinkled structures are not limited to planar surfaces, but are also developed in complex geometries including tubes, cones and other 3D structures; and ii) that this one-step wrinkling process can be used to guide the deposition of metal nanoparticles and quantum dots, creating a periodic, nanopatterned film.« less
Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Marin; Sadowski, Jerzy T.; Siber, Antonio
The large-scale production of graphene monolayer greatly relies on epitaxial samples which often display stress-relaxation features in the form of wrinkles. Wrinkles of graphene on Ir(111) are found to exhibit a fairly well ordered interconnecting network which is characterized by low-energy electron microscopy (LEEM). The high degree of quasi-hexagonal network arrangement for the graphene aligned to the underlying substrate can be well described as a (non-Poissonian) Voronoi partition of a plane. The results obtained strongly suggest that the wrinkle network is frustrated at low temperatures, retaining the order inherited from elevated temperatures when the wrinkles interconnect in junctions which mostmore » often join three wrinkles. Such frustration favors the formation of multi-lobed wrinkles which are found in scanning tunneling microscopy (STM) measurements. The existence of multiple lobes is explained within a model accounting for the interplay of the van der Waals attraction between graphene and iridium and bending energy of the wrinkle. The presented study provides new insights into wrinkling of epitaxial graphene and can be exploited to further expedite its application.« less
Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure
Petrovic, Marin; Sadowski, Jerzy T.; Siber, Antonio; ...
2015-07-17
The large-scale production of graphene monolayer greatly relies on epitaxial samples which often display stress-relaxation features in the form of wrinkles. Wrinkles of graphene on Ir(111) are found to exhibit a fairly well ordered interconnecting network which is characterized by low-energy electron microscopy (LEEM). The high degree of quasi-hexagonal network arrangement for the graphene aligned to the underlying substrate can be well described as a (non-Poissonian) Voronoi partition of a plane. The results obtained strongly suggest that the wrinkle network is frustrated at low temperatures, retaining the order inherited from elevated temperatures when the wrinkles interconnect in junctions which mostmore » often join three wrinkles. Such frustration favors the formation of multi-lobed wrinkles which are found in scanning tunneling microscopy (STM) measurements. The existence of multiple lobes is explained within a model accounting for the interplay of the van der Waals attraction between graphene and iridium and bending energy of the wrinkle. The presented study provides new insights into wrinkling of epitaxial graphene and can be exploited to further expedite its application.« less
Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Ciarletta, P.
2014-12-01
Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.
Indications and limitations for the use of botulinum toxin for the treatment of facial wrinkles.
Sarrabayrouse, Manuel A M
2002-01-01
Botulin toxin is a strong blocking agent which has shown great usefulness in a variety of neuromuscular disorders related to hypertonicity and spasticity. Since 1992 it has been used in the attenuation of facial wrinkles. In this article we describe the different applications in the upper third, middle third, and lower third of the face, as well as the platysmal bands of the neck. We emphasize the use of this procedure for the upper third of the face. Limits are indicated when it is used on the middle and lower parts of the face. The author has found excellent results in the attenuation of wrinkles of the neck region.
New finding that might explain why the skin wrinkles more on various parts of the face.
Tamatsu, Yuichi; Tsukahara, Kazue; Sugawara, Yasushi; Shimada, Kazuyuki
2015-09-01
The mechanism of formation of facial wrinkles has not been fully clarified due to the existence of many distinct influential factors. To clarify the relationship between facial wrinkles and structures in the skin, especially sebaceous glands, image analysis was performed on the forehead and lateral canthus regions of cadaveric skin specimens; 58 male and female donated cadavers (age range at death 20s - 90 s) were included in the study. Specimens were obtained from forehead and lateral canthus region after measuring wrinkle depth. Then tissue slices were prepared to observe the sebaceous gland and its density was measured and analyzed in relation to wrinkle depth, retinacula cutis density, dermal thickness, and solar elastosis degree. A correlation was found between sebaceous gland density and wrinkle depth in forehead specimens with a lower retinacula cutis density. Wrinkles were shallower in specimens with a higher sebaceous gland density. However, no such correlation was found in lateral canthus wrinkles, presumably due to the lack of sebaceous glands in that region. In addition, specimens with a higher sebaceous gland density tended to have a thicker dermis and/or less solar elastosis. Sebaceous gland density seems to be one of the multiple factors that prevent wrinkle deepening, and that is why wrinkles are deeper in the lateral canthus area than in the forehead. Functional studies will elucidate the mechanism of wrinkle formation in the future. © 2015 Wiley Periodicals, Inc.
Modulation of the electronic property of phosphorene by wrinkle and vertical electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn
2015-09-14
The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasingmore » field, which is caused by charge separation of valence band maximum and conduction band minimum.« less
Improving lip wrinkles: lipstick-related image analysis.
Ryu, Jong-Seong; Park, Sun-Gyoo; Kwak, Taek-Jong; Chang, Min-Youl; Park, Moon-Eok; Choi, Khee-Hwan; Sung, Kyung-Hye; Shin, Hyun-Jong; Lee, Cheon-Koo; Kang, Yun-Seok; Yoon, Moung-Seok; Rang, Moon-Jeong; Kim, Seong-Jin
2005-08-01
The appearance of lip wrinkles is problematic if it is adversely influenced by lipstick make-up causing incomplete color tone, spread phenomenon and pigment remnants. It is mandatory to develop an objective assessment method for lip wrinkle status by which the potential of wrinkle-improving products to lips can be screened. The present study is aimed at finding out the useful parameters from the image analysis of lip wrinkles that is affected by lipstick application. The digital photograph image of lips before and after lipstick application was assessed from 20 female volunteers. Color tone was measured by Hue, Saturation and Intensity parameters, and time-related pigment spread was calculated by the area over vermilion border by image-analysis software (Image-Pro). The efficacy of wrinkle-improving lipstick containing asiaticoside was evaluated from 50 women by using subjective and objective methods including image analysis in a double-blind placebo-controlled fashion. The color tone and spread phenomenon after lipstick make-up were remarkably affected by lip wrinkles. The level of standard deviation by saturation value of image-analysis software was revealed as a good parameter for lip wrinkles. By using the lipstick containing asiaticoside for 8 weeks, the change of visual grading scores and replica analysis indicated the wrinkle-improving effect. As the depth and number of wrinkles were reduced, the lipstick make-up appearance by image analysis also improved significantly. The lip wrinkle pattern together with lipstick make-up can be evaluated by the image-analysis system in addition to traditional assessment methods. Thus, this evaluation system is expected to test the efficacy of wrinkle-reducing lipstick that was not described in previous dermatologic clinical studies.
Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property
NASA Astrophysics Data System (ADS)
Yang, Liusi; Niu, Tianxiao; Zhang, Hui; Xu, Wenjing; Zou, Mingchu; Xu, Lu; Cao, Guoxin; Cao, Anyuan
2017-12-01
Wrinkles exist universally in graphene-based structures, yet their controlled fabrication remains challenging; most graphene wrinkles have been produced either in attachment to elastic substrates or limited in small single sheets. Here, we utilize the phenomenon of gel-cracking to generate uniaxial strains locally on solution-precipitated graphene oxide (GO) sheets, thus creating suspended and aligned wrinkles over the trenches between cracked TiO2 islands. In particular, those GO wrinkles are subjected to a high pre-tension, which is important for making stable suspended configuration, as confirmed by theoretical calculations based on the wrinkle geometry and measured spring constants, respectively. As a result, in situ atomic force microscope indentation reveals elastic deformation with tunable spring constants depending on the gap width. We further obtain chemically reduced GO wrinkles with enhanced spring constants and reversible behavior after 1000 indentation cycles. Our suspended and aligned graphene wrinkles have potential applications in many areas such as sensors, actuators, and micro/nano electromechanical systems.
A review of blepharochalasis and other causes of the lax, wrinkled eyelid.
Held, J L; Schneiderman, P
1990-02-01
Cosmetically unappealing lax, wrinkled eyelid skin may result from various processes including connective tissue diseases, natural aging, and blepharochalasis. Since the end-stage eyelid changes due to several different processes are similar, the presence or absence of prior chronic or recurrent eyelid edema is an important differentiating point. We review blepharochalasis and provide a logical approach to its differential diagnosis.
Wrinkling instabilities in soft bilayered systems
Budday, Silvia; Andres, Sebastian; Walter, Bastian
2017-01-01
Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385
Jones, Isabela T; Vanaman Wilson, Monique J; Bolton, Joanna; Zaleski-Larsen, Lisa; Wu, Douglas C; Goldman, Mitchel P
2018-06-01
"Skin boosting" with injections of hyaluronic acid has been demonstrated to improve aged skin. The aim of this study was to determine the efficacy and safety of small-particle hyaluronic acid with lidocaine (SP-HAL) microaliquots for the correction of fine lines of the cheeks. Twenty subjects with mild to moderate static mid to lower cheek rhytides were enrolled. The right or left cheek was randomized to receive 1 mL of SP-HAL using a microdroplet technique, with the contralateral cheek treated with sham injection of sterile normal saline. The degree of cheek wrinkling and elastosis based on the Fitzpatrick-Goldman Wrinkle and Elastosis Scale was assessed at baseline and 7, 14, 30, 90, and 180 days after treatment. Subjects rated their satisfaction at days 90 and 180. Fourteen patients completed the study. There were no statistically significant improvements in wrinkling or elastosis of the SP-HAL-treated cheek or control cheek at any time point. In addition, there were no significant differences in wrinkling, elastosis, or patient satisfaction between the treatment cheek and control cheek. One treatment of intradermal microdroplet injections of SP-HAL to the mid to lower cheek failed to show superiority over normal saline in improving clinical signs of skin wrinkling and elastosis.
Duan, Jiahua; Chen, Runkun; Li, Jingcheng; Jin, Kuijuan; Sun, Zhigang; Chen, Jianing
2017-10-01
Interference-free hyperbolic phonon polaritons (HPPs) excited by natural wrinkles in a hexagonal boron nitride (hBN) microcrystal are reported both experimentally and theoretically. Although their geometries are off-resonant with the excitation wavelength, the wrinkles compensate for the large momentum mismatch between photon and phonon polariton, and launch the HPPs without interference. The spatial feature of wrinkles is about 200 nm, which is an order of magnitude smaller than resonant metal antennas at the same excitation wavelength. Compared with phonon polaritons launched by an atomic force microscopy tip, the phonon polaritons launched by wrinkles are interference-free, independent of the launcher geometry, and exhibit a smaller damping rate (γ ≈ 0.028). On the same hBN microcrystal, in situ nanoinfrared imaging of HPPs launched by different mechanisms is performed. In addition, the dispersion of HPPs is modified by changing the dielectric environments of hBN crystals. The wavelength of HPPs is compressed twofold when the substrate is changed from SiO 2 to gold. The findings provide insights into the intrinsic properties of hBN-HPPs and demonstrate a new way to launch and control polaritons in van der Waals materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.
Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W
2017-06-01
Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wrinkling and collapse of mesh reinforced membrane inflated beam under bending
NASA Astrophysics Data System (ADS)
Tao, Qiang; Wang, Changguo; Xue, Zhiming; Xie, Zhimin; Tan, Huifeng
2016-11-01
A novel concept of mesh reinforced membrane (MRM) is proposed in this paper. The tensile collapse mechanism of MRM is elucidated based on three obvious deformed stages. An improved Shell-Membrane model is used to predict the wrinkling and collapse of MRM inflated beam which is verified by a non-contact experiment based on the digital image correlation technique. Further the wrinkling details including the wrinkling evolution, pattern, shape, stress distribution are simulated to evaluate the functions of MRM for loading-carrying capacity of inflated beam. Pressure resistant performance of inflated beam was studied at last. The results revealed that MRM shows a great improvement on the collapse moment of inflated beam. MRM contributes to restrain wrinkling evolution by changing the transfer path of loadings which results from dispersing stress distribution and changing wrinkling pattern. The results show good references to the wrinkling control and the improvement of load-carrying capacity of inflated beam.
Improvement of formability of high strength steel sheets in shrink flanging
NASA Astrophysics Data System (ADS)
Hamedon, Z.; Abe, Y.; Mori, K.
2016-02-01
In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging.
Survey on skin aging status and related influential factors in Southeast China.
Wang, Yi-na; Fang, Hong; Zhu, Wei-fang
2009-01-01
To investigate cutaneous aging patterns of residents in Hangzhou, Zhejiang, China, and their contributing factors. Eight hundred and forty-eight Hangzhou residents received the survey between March 2004 and September 2004. Facial wrinkling first occurred at 21 years of age and skin elasticity began to lose at 22 years of age. In middle-aged and old people, facial wrinkling and looseness escalated with the increase of ultraviolet (UV)-exposure time, indicating the accelerating effect of a higher accumulative dose of UV radiation on skin aging. Only Fitzpatrick types II, III and IV were found in the skin phototypes of residents in Hangzhou area, and Fitzpatrick type II seemed to be much more subject to severe wrinkling, elasticity destruction and skin tumors than types III and IV. The oily skin was more protected against wrinkling and facial looseness than dry skin. However, as to concomitant cutaneous diseases, no difference was found among different skin types. Age, solar-exposure time, Fitzpatrick type and skin type are the associated forces in promoting skin aging, and emotional factor seems to be another independent risk factor. The age of 49 years and 2 h/d of solar-exposure time seem to be the turning points responsible for dramatic changes of cutaneous appearance in the process of skin aging in Southeast China.
Template-guided highly aligned, nano-scale wrinkle structure on a large-area
NASA Astrophysics Data System (ADS)
Lim, Jongcheon; Kim, Pilnam
This study presents a novel technique to induce aligned, nano-scale wrinkle on a polysiloxane-based UV curable resin. There have been studies on generating randomized sub-micron wrinkle using oxygen plasma treatment which causes equibiaxial compressive stress on the film surface. Few works have been reported on how to control the surface wrinkle orientation. Currently available approaches for regulating the wrinkle pattern typically require polydimethylsiloxane (PDMS)-based bilayer system under uniaxial stress condition which hampers various technological applications. Here, we demonstrate a method to generate aligned wrinkle with UV curable polymers. Highly regular array of nanoscale wrinkles were formed by elastic buckling of bilayered UV curable resin, resulting from a combination of confinement effect and anchor-guided propagation of structure. The wrinkle tends to align uniformly lateral to the template pattern as the resin filled in the pattern forms more convex meniscus. The wavelength of the wrinkle was controlled by UV exposure time yielding as small as 170nm. From our results, we suggest the confinement provided by the template pattern may have affected the direction of thin film's expansion yielding unidirectional compressive stress. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-02.
Corner Wrinkling at a Square Membrane Due to Symmetric Mechanical Loads
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Johnston, John D.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
Thin-film membrane structures are under consideration for use in many future gossamer spacecraft systems. Examples include sunshields for large aperture telescopes, solar sails, and membrane optics. The development of capabilities for testing and analyzing pre-tensioned, thin film membrane structures is an important and challenging aspect of gossamer spacecraft technology development. This paper presents results from experimental and computational studies performed to characterize the wrinkling behavior of thin-fi[m membranes under mechanical loading. The test article is a 500 mm square membrane subjected to symmetric comer loads. Data is presented for loads ranging from 0.49 N to 4.91 N. The experimental results show that as the load increases the number of wrinkles increases, while the wrinkle amplitude decreases. The computational model uses a finite element implementation of Stein-Hedgepeth membrane wrinkling theory to predict the behavior of the membrane. Comparisons were made with experimental results for the wrinkle angle and wrinkled region. There was reasonably good agreement between the measured wrinkle angle and the predicted directions of the major principle stresses. The shape of the wrinkle region predicted by the finite element model matches that observed in the experiments; however, the size of the predicted region is smaller than that determined in the experiments.
Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro
2013-01-15
Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Farris, Patricia K; Edison, Brenda L; Weinkauf, Ronni L; Green, Barbara A
2014-01-01
Facial lines and wrinkles are caused by many factors including constant exposure to external elements, such as UV rays, as well as the dynamic nature of facial expression. Many cosmetic products and procedures provide global improvement to aging skin, whereas injectable therapies are frequently utilized to diminish specific, target wrinkles. Despite their broad availability, some patients are unwilling to undergo injectables and would benefit from an effective topical option. A noninvasive option to volumize target wrinkle areas could also extend benefits of commonly used cosmetic anti-aging products. To this end, a two-step formulation containing the novel, cosmetic anti-aging ingredient, N-acetyl tyrosinamide, was developed for use on targeted wrinkle areas. The tolerability and efficacy of the serum plus cream were tested for 16 weeks in women with moderate facial photodamage on predetermined wrinkle areas (glabellar lines, nasolabial folds, under eye lines, and lateral canthal (crow's feet) wrinkles) in a single-center, randomized, double-blind, vehicle-controlled, clinical trial. Seventy women (47 Active group, 23 Vehicle group) completed the study. Digital photography, clinical grading, ultrasound and self-assessment scores confirmed improvement to wrinkle areas. The topical cosmetic formulation was statistically superior (P<0.05) to its vehicle in visually improving nasolabial folds, glabellar lines, crow's feet, and under eye wrinkles and in reducing pinch recoil time. Both the test formulation and its vehicle were tolerated well. The novel, two-step cosmetic formulation reduced the appearance of wrinkles and increased skin elasticity thus providing an effective anti-aging option for target wrinkle areas. This study suggests that in addition to its use as monotherapy for reducing targeted lines and wrinkles this cosmetic formulation may be also serve as an adjuvant to injectable therapies.
NASA Technical Reports Server (NTRS)
Mcgill, George E.
1992-01-01
The plains regions of Venus exhibit a complex array of structural features, including deformation belts of various types, wrinkle ridges, grabens, and enigmatic radar-bright linears. Probably the most pervasive of these structures are the wrinkle ridges, which appear to be morphologically identical to their counterparts on the Moon and Mars. Almost all workers agree that wrinkle ridges result from horizontal compressive stresses in the crust; they either are explained as flexural fold structures, or alternatively as scarps or folds related to reverse faults. Wrinkle ridges generally are narrow, have small amplitudes, and commonly are closely spaced as well, characteristics that imply a shallow crustal origin. If wrinkle ridges are due to horizontally directed compressive stresses in the shallow crust, as generally has been inferred, then the trends of these features provide a means to map both local and regional orientations of principal stresses in the uppermost part of the venusian crust: maximum compressive stress is normal to the ridges, minimum compressive stress is normal to the topographic surface, and thus the wrinkle ridge trends trace the orientation of the intermediate principal stress. Because there are few plains areas on Venus totally devoid of wrinkle ridges, it should be possible to establish a number of interesting relationships on a near-global scale by mapping the trends of wrinkle ridges wherever they occur. The present study is addressing three questions: (1) Do the trends of wrinkle ridges define domains that are large relative to the sizes of individual plains regions? If so, can these domains be related to large-scale topographic or geologic features? (2) Are regional trends of wrinkle ridges affected by local features such as coronae? If so, is it possible to determine the relative ages of the far-field and local stresses from detailed study of trend inheritance or superposition relationships? (3) What is the relationship between wrinkle ridges and the larger ridges that make up ridge belts?
On the Identication of Wrinkles of Membrane by Traveling Elastic Wave
NASA Astrophysics Data System (ADS)
Akaike, Yusuke; Yokozeki, Tomhiro
2012-07-01
Wrinkling is one of the critical factors that degrade the performance of space membrane structures. This paper proposes the way to detect the size and the position of wrinkles by observing reflection of the elastic waves at the boundary between the wrinkled section and the flat section. A wrinkle is modeled as a part of an annulus, and the effects of thickness, material properties and curvature of the membrane on the reflection rates of elastic waves are investigated. Finally, the proposed identification method is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Li, H; Yang, H; Zhan, M
2009-04-01
Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.
Tannase-converted green tea catechins and their anti-wrinkle activity in humans.
Hong, Yang-Hee; Jung, Eun Young; Shin, Kwang-Soon; Yu, Kwang-Won; Chang, Un Jae; Suh, Hyung Joo
2013-06-01
This study was performed to investigate the anti-wrinkle effects of topical applications of green tea extract with high antioxidant activity by tannase treatment. Increases in gallic acid (GA), (-)-epigallocatechin (EGC), and (-)-epicatechin (EC) were observed in the green tea extract after tannase treatment. This study was performed to investigate the anti-wrinkle effects of topical applications of green tea extract exhibiting high antioxidant activity after tannase treatment. Subjects, randomly divided into two groups, received the application of either tannase-converted green tea extract (TGE) or normal green tea extract (NGE) on their crow's feet for 8 weeks. The anti-wrinkle effects were evaluated with two methods: (i) self-assessment; and (ii) average roughness of skin surface (R(a), R(z), and R(t) value) using skin replica and Skin-Visiometer SV 600. The scavenging abilities of TGE against radicals were significantly higher compared to NGE. The evaluation of skin wrinkle index values after 8 weeks of treatment showed that reductions of R(a), R(z), and R(t) values in the TGE group were significantly greater than in the NGE group, which indicated that tannase treatment improved the anti-wrinkle effects of green tea extract. According to the overall ratings for wrinkle treatment by applying the formulations, most of the TGE group (63.60%) reported marked or moderate improvement in wrinkles compared with only 36.30% of the NGE group. Tannase treatment can improve the antioxidant activity of green tea extract, conferring anti-wrinkle activities. These results suggest that TGE may have beneficial properties as an anti-wrinkle agent. © 2013 Wiley Periodicals, Inc.
Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh
2018-04-01
There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value < 0.05), with no significant difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.
Holwerda, Femke M; Pol, Diego; Rauhut, Oliver W M
2015-01-01
The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic-early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity.
Holwerda, Femke M.; Pol, Diego; Rauhut, Oliver W. M.
2015-01-01
The early Middle Jurassic is regarded as the period when sauropods diversified and became major components of the terrestrial ecosystems. Not many sites yield sauropod material of this time; however, both cranial and postcranial material of eusauropods have been found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in Central Patagonia (Argentina), which may help to shed light on the early evolution of eusauropods. These eusauropod remains include teeth associated with cranial and mandibular material as well as isolated teeth found at different localities. In this study, an assemblage of sauropod teeth from the Cañadón Asfalto Formation found in four different localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites. By using dental enamel wrinkling, primarily based on the shape and orientation of grooves and crests of this wrinkling, we define and describe three different morphotypes. With the exception of one taxon, for which no cranial material is currently known, these morphotypes match the local eusauropod diversity as assessed based on postcranial material. Morphotype I is tentatively assigned to Patagosaurus, whereas morphotypes II and III correspond to new taxa, which are also distinguished by associated postcranial material. This study thus shows that enamel wrinkling can be used as a tool in assessing sauropod diversity. PMID:25692466
Quantifying Wrinkle Features of Thin Membrane Structures
NASA Technical Reports Server (NTRS)
Jacobson, Mindy B.; Iwasa, Takashi; Naton, M. C.
2004-01-01
For future micro-systems utilizing membrane based structures, quantified predictions of wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made. This work demonstrates that critical assumptions include: effects of gravity, supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 m x 02 m membrane is treated as a structural material with non-negligible bending stiffness. Finite element modeling is used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density and thickness for cases with differing initial conditions are independent of assumed initial conditions. In addition, analysis results indicate that the relationship between wrinkle amplitude scale (W/t) and structural scale (L/t) is independent of the nonlinear relationship between thickness and stiffness.
Kim, Do Un; Chung, Hee Chul; Kim, Changhee; Hwang, Jae-Kwan
2017-12-01
Photoaging is a severe skin damage that occurs as a result of exposure to external elements, primarily ultraviolet (UV) irradiation. Chronically, UV-irradiated skin exhibits the signs of sunburn and hyperpigmentation with the destruction of connective tissues. Previously, Boesenbergia pandurata (B. pandurata) and its active compound panduratin A showed antiphotoaging activities in vitro and in vivo. The aim of this study was to investigate the clinical efficacy of B. pandurata intake on skin hydration, gloss, wrinkling, and elasticity. A double-blind, placebo-controlled trial was conducted to clinically evaluate the effect of B. pandurata ethanol extract (BPE) containing 8% of panduratin A on human skin hydration, gloss, wrinkling, and elasticity. Ninety-two subjects were randomly assigned to receive tablets containing either BPE or placebo for 12 weeks. The test group had significantly increased skin hydration and gloss and decreased wrinkling compared to the placebo group at 12 weeks. There was no significant difference in skin elasticity between the two groups; however, the increment rate in the test group was higher than that in the placebo group at 12 weeks. None of the subjects developed adverse symptoms during the study period. These results suggest that BPE can be used as a nutraceutical or nutricosmetic material for improving human skin hydration, gloss, and wrinkling. © 2017 Wiley Periodicals, Inc.
Charkowski, A O; Sarreal, C Z; Mandrell, R E
2001-09-01
At least 14 separate outbreaks of food poisoning attributed to either Salmonella enterica or Escherichia coli O157:H7 have been traced to sprouts in the past decade. Seeds contaminated with human pathogens caused most of these outbreaks, thus many sprout growers are now treating alfalfa seeds with the sanitizing agent, calcium hypochlorite (Ca[OCl]2), prior to sprouting. The efficacy of alfalfa seed sanitation varies between seed lots and between seeds within each lot. Alfalfa seeds from different seed lots were sorted by type in an effort to determine if certain seed types carry more aerobic bacteria than other seed types. Seeds with a wrinkled type, characteristic of lygus bug damage, had significantly higher levels of culturable aerobic bacteria and were more difficult to sanitize than smooth, healthy seeds. After sanitation, wrinkled alfalfa seeds that had been inoculated with S. enterica ser. Newport carried significantly higher levels of Salmonella Newport than smooth seeds. If S. enterica is present on wrinkled seeds in naturally contaminated seed lots, it may be difficult to chemically sanitize the seed lot. Removal of the wrinkled alfalfa seeds from the seed lots, perhaps by adapting color sorting equipment similar to that used to sort rice grains and other seeds, should reduce the level of aerobic bacteria in seed lots and may result in lower levels of human pathogens on contaminated alfalfa seeds.
Membrane wrinkling patterns and control with SMA and SMPC actuators
NASA Astrophysics Data System (ADS)
Lu, Mingyu; Li, Yunliang; Tan, Huifeng; Zhou, Limin
2009-07-01
Wrinkling is a main factor affecting the performance of the membrane structures and is always considered to be a failure as it can cause dramatic decrease of shape accuracy. The study of membrane wrinkling control has the analytical and experimental meanings. In this paper, a feasible membrane shape control method is presented. An expression of wrinkle wavelength using stress extremum principle is established based on the tension field theory and the Von Karman large deflection formula which verifies the generation and evolution reason of membrane wrinkles. The control mechanism for membrane wrinkles is developed using shape memory alloy (SMA) and shape memory polymer composite (SMPC) actuators which are attached to the boundaries of the membrane for producing contraction/expansion forces to adjust the shape of the membrane. The whole control process is monitored by photogrammetric technique. Numerical simulations are also conducted using ANSYS finite element software with the nonlinear post-buckling analytical method. Both the experimental and numerical results show that the amplitudes of wrinkles are effectively controlled by SMA and SMPC actuators. The method introduced in this paper provides the foundation for shape control of the membrane wrinkling and is important to the future work on vibration control of space membrane structures.
Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period.
Oe, Mariko; Sakai, Seigo; Yoshida, Hideto; Okado, Nao; Kaneda, Haruna; Masuda, Yasunobu; Urushibata, Osamu
2017-01-01
Hyaluronan (HA) has critical moisturizing property and high water retention capacity especially for human skin. This study aimed to evaluate the effect of oral intake of HA. The mean molecular weight (MW) of HA is 2 k and 300 k. Sixty Japanese male and female subjects aged 22-59 years who presented with crow's feet wrinkles were randomly assigned to the HA 2 k or HA 300 k at 120 mg/day or the placebo group. The subjects were administered HA at a rate of 120 mg/day or a placebo for 12 weeks. The skin wrinkles were evaluated by image analysis of skin wrinkle replicas, and their skin condition was evaluated using a questionnaire survey. During the study period, the HA groups showed better level of the whole sulcus volume ratio, wrinkle area ratio, and wrinkle volume ratio than the placebo group. After 8 weeks of ingestion, the HA 300 k group showed significantly diminished wrinkles compared with the placebo group. Skin luster and suppleness significantly improved after 12 weeks in all groups compared with the baseline. The results suggest that oral HA (both HA 2 k and HA 300 k) inhibits skin wrinkles and improves skin condition.
Lee, Do Hyun; Oh, In Young; Koo, Kyo Tan; Suk, Jang Mi; Jung, Sang Wook; Park, Jin Oh; Kim, Beom Joon; Choi, Yoo Mi
2015-02-01
Skin aging is accompanied by wrinkle formation. At some sites, such as the periorbital skin, this is a relatively early phenomenon. We evaluated the anti-wrinkle effect of a preparation containing human growth factor and hyaluronic acid serum on periorbital wrinkles (crow's feet). In total, 23 Korean women (age range: 39-59 years), who were not pregnant, nursing, or undergoing any concurrent therapy, were enrolled in this study. All the patients completed an 8-week trial of twice-daily application of human growth factor and hyaluronic acid serum on the entire face. Efficacy was based on a global photodamage score, photographs, and image analysis using replicas and visiometer analysis every 4 weeks. The standard wrinkle and roughness parameters used in assessing skin by visiometer were calculated and statistically analyzed. Periorbital wrinkles were significantly improved after treatment, with improvements noted both by physician's assessment and visiometer analysis. Topical application of human growth factor and hyaluronic acid was beneficial in reducing periorbital wrinkles.
The Constitutive Modeling of Thin Films with Randon Material Wrinkles
NASA Technical Reports Server (NTRS)
Murphey, Thomas W.; Mikulas, Martin M.
2001-01-01
Material wrinkles drastically alter the structural constitutive properties of thin films. Normally linear elastic materials, when wrinkled, become highly nonlinear and initially inelastic. Stiffness' reduced by 99% and negative Poisson's ratios are typically observed. This paper presents an effective continuum constitutive model for the elastic effects of material wrinkles in thin films. The model considers general two-dimensional stress and strain states (simultaneous bi-axial and shear stress/strain) and neglects out of plane bending. The constitutive model is derived from a traditional mechanics analysis of an idealized physical model of random material wrinkles. Model parameters are the directly measurable wrinkle characteristics of amplitude and wavelength. For these reasons, the equations are mechanistic and deterministic. The model is compared with bi-axial tensile test data for wrinkled Kaptong(Registered Trademark) HN and is shown to deterministically predict strain as a function of stress with an average RMS error of 22%. On average, fitting the model to test data yields an RMS error of 1.2%
Self-organization of maze-like structures via guided wrinkling.
Bae, Hyung Jong; Bae, Sangwook; Yoon, Jinsik; Park, Cheolheon; Kim, Kibeom; Kwon, Sunghoon; Park, Wook
2017-06-01
Sophisticated three-dimensional (3D) structures found in nature are self-organized by bottom-up natural processes. To artificially construct these complex systems, various bottom-up fabrication methods, designed to transform 2D structures into 3D structures, have been developed as alternatives to conventional top-down lithography processes. We present a different self-organization approach, where we construct microstructures with periodic and ordered, but with random architecture, like mazes. For this purpose, we transformed planar surfaces using wrinkling to directly use randomly generated ridges as maze walls. Highly regular maze structures, consisting of several tessellations with customized designs, were fabricated by precisely controlling wrinkling with the ridge-guiding structure, analogous to the creases in origami. The method presented here could have widespread applications in various material systems with multiple length scales.
Díaz-Ley, B; Cuevast, J; Alonso-Castro, L; Calvo, M I; Ríos-Buceta, L; Orive, G; Anitua, E; Jaén, P
2015-01-01
Skin ageing is characterized by small and fine wrinkles, roughness, laxity, and pigmentation as a result of epidermal thinning, collagen degradation, dermal atrophy, and fewer fibroblasts. Plasma rich in growth factors (PRGF) is an autologous plasma preparation enriched in proteins obtained from patient's own blood aimed at accelerating tissue repair and regeneration. To evaluate the benefits of PRGF in skin photodamage, 10 healthy volunteers were treated with three consecutive intradermal injections of PRGF in the facial area. Clinical outcomes and histological analysis were performed. A statistically significant increase in the epidermis and papillary dermis thickness was seen after PRGF treatment (p < 0.001). Skin thickening was observed in all patients studied, being more intense in the group of patients with photodamage (p < 0.001). After PRGF treatment, a reduction of the average area fraction of solar elastosis was observed in patients with clinical and histological signs of skin photodamage (p < 0.05).No changeswere observed in the number of CD31, XIIIa factor, cKit, CD10, nor p53-positive cells. The improvement score after PRGF use was 0.75 (9/12) for the group of patients with signs of skin photodamage. Intradermal PRGF infiltration appears to be an effective treatment for the photodamaged skin. © 2015 Wiley Periodicals, Inc.
Skin condition measurement by using multispectral imaging system (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jung, Geunho; Kim, Sungchul; Kim, Jae Gwan
2017-02-01
There are a number of commercially available low level light therapy (LLLT) devices in a market, and face whitening or wrinkle reduction is one of targets in LLLT. The facial improvement could be known simply by visual observation of face, but it cannot provide either quantitative data or recognize a subtle change. Clinical diagnostic instruments such as mexameter can provide a quantitative data, but it costs too high for home users. Therefore, we designed a low cost multi-spectral imaging device by adding additional LEDs (470nm, 640nm, white LED, 905nm) to a commercial USB microscope which has two LEDs (395nm, 940nm) as light sources. Among various LLLT skin treatments, we focused on getting melanin and wrinkle information. For melanin index measurements, multi-spectral images of nevus were acquired and melanin index values from color image (conventional method) and from multi-spectral images were compared. The results showed that multi-spectral analysis of melanin index can visualize nevus with a different depth and concentration. A cross section of wrinkle on skin resembles a wedge which can be a source of high frequency components when the skin image is Fourier transformed into a spatial frequency domain map. In that case, the entropy value of the spatial frequency map can represent the frequency distribution which is related with the amount and thickness of wrinkle. Entropy values from multi-spectral images can potentially separate the percentage of thin and shallow wrinkle from thick and deep wrinkle. From the results, we found that this low cost multi-spectral imaging system could be beneficial for home users of LLLT by providing the treatment efficacy in a quantitative way.
Wrinkling of solidifying polymeric coatings
NASA Astrophysics Data System (ADS)
Basu, Soumendra Kumar
2005-07-01
In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.
Oyama, Ayuko; Ueno, Tomomi; Uchiyama, Shigeto; Aihara, Tomohiko; Miyake, Akira; Kondo, Sumio; Matsunaga, Kayoko
2012-02-01
The aim of this study was to investigate the effects of the natural S-equol supplement on skin aging in equol-nonproducing Japanese postmenopausal women. A randomized, double-blind, placebo-controlled trial examined the use of the natural S-equol supplement for 12 weeks in 101 postmenopausal Japanese women who were equol nonproducers. They were randomly assigned to one of three groups: placebo (n = 34), 10 mg S-equol/day (EQL10; n = 34), or 30 mg S-equol/day (EQL30; n = 33). Skin parameters of crow's-feet wrinkles (area and depth), hydration, transepidermal water loss, and elasticity were measured at baseline and at monthly intervals during treatment. Vaginal cytology, endometrial thickness, and mammography were performed before and after treatment. Serum hormone concentrations were measured at the same time as skin parameters. The EQL10 and EQL30 groups showed significant reductions in wrinkle area compared with the placebo group (P < 0.05). There was a significant difference in wrinkle depth between the placebo group and the EQL30 group (P < 0.05). Other skin parameters did not show significant differences after the treatment in any group. There were no abnormal results in hormone status or gynecological examinations. Our data suggest that natural S-equol supplementation (EQL10 and EQL30) may have a beneficial effect on crow's-feet wrinkles in postmenopausal women without serious adverse events.
Association of Diet With Skin Histological Features in UV-B–Exposed Mice
Hsia, Yvonne; Weeks, David M.; Dixon, Tatiana K.; Lepe, Jessica; Thomas, J. Regan
2017-01-01
Importance Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. Objectives To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. Design, Setting, and Participants In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Main Outcomes and Measures Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Results Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals receiving the calorie-restricted diet lost weight when exposed to long-term UV-B irradiation. Wrinkles were reduced in the calorie-restricted control group and in UV-B–exposed animals who received the obesity diet. Conclusions and Relevance Dietary alterations seem to modify histopathological responses to UV-B exposure in the skin of hairless mice. Level of Evidence NA. PMID:28418519
Kim, Da Som; Lee, Ho Won; Lee, Jong Hyun; Kwon, Hyuck Gi; Lee, Sang Wook; Han, Seung Jin; Jeong, Ok Chan
2018-06-18
Spontaneous wrinkling of a polydimethylsiloxane (PDMS) surface was induced by repeated thermal shrinkage of liquid PDMS coated onto a cured PDMS layer. We investigated and evaluated the potential of the resulting surface as a cell culture substrate by monitoring the viability, spreading area, and proliferation rate of MG-63 cells cultured on native, wrinkled, and poly-L-lysine (PLL)-coated PDMS surfaces. Cells seeded on the wrinkled and PLL-coated PDMS surfaces spread and adhered better than those on native surfaces. The numbers of attached cells growing on wrinkled and PLL-coated PDMS surfaces were higher than those of cells on a native PDMS surface. The spreading area of cells on the wrinkled surface was similar to that of cells on the PLL-coated surface, and was much larger than that on native PDMS. The proliferation rate of cells on the wrinkled surface was more than double that of cells on native PDMS. Reverse-transcription polymerase chain reaction (RT-PCR) analysis of integrin mRNA expression showed that cells on the wrinkled surface were more tightly attached due to higher expression of the protein than exhibited in cells on native PDMS. Thus, the novel findings of this study are that the induction of a wrinkled PDMS surface through a simple curing process produces a suitable cell culture substrate without need of surface modification, and that its effectiveness is comparable to that of a PLL-coated PDMS surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Lu; Tang, Meng-Yao; Jin, Rong; Zhang, Ying; Shi, Yao-Ming; Sun, Bao-Shan; Zhang, Yu-Guang
2015-07-01
One of the earliest signs of aging appears in the nasolabial fold, which is a special anatomical region that requires many factors for comprehensive assessment. Hence, it is inadequate to rely on a single index to facilitate the classification of nasolabial folds. Through clinical observation, we have observed that traditional filling treatments provide little improvement for some patients, which prompted us to seek a more specific and scientific classification standard and assessment system. A total of 900 patients who sought facial rejuvenation treatment in Shanghai 9th People's Hospital were invited in this study. We observed the different nasolabial fold traits for different age groups and in different states, and the results were compared with the Wrinkle Severity Rating Scale (WSRS). We summarized the data, presented a classification scheme, and proposed a selection of treatment options. Consideration of the anatomical and histological features of nasolabial folds allowed us to divide nasolabial folds into five types, namely the skin type, fat pad type, muscular type, bone retrusion type, and hybrid type. Because different types of nasolabial folds require different treatments, it is crucial to accurately assess and correctly classify the conditions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Choi, Young-Jun; Kim, Han-Saem; Min, Joon Hong; Nam, Jae-Hui; Lee, Ga-Young; Kim, Won-Serk
2017-06-01
Recently, the efficacy of autologous plasma filler for the reduction of facial wrinkles has been demonstrated. The aim of our study is to validate the efficacy and safety of autologous plasma filler in treating nasolabial fold wrinkles. Twenty Korean patients with moderate-to-severe nasolabial fold wrinkles were enrolled. The patients were treated with one session of autologous plasma filler. The wrinkle improvement effects were evaluated at 1-week, 4-week, 8-week, and 12-week after the treatment. Three assessment methods were applied. First, two independent dermatologists assessed cosmetic results using a 5-point wrinkle assessment scale. Second, global aesthetic improvement score was used for assessment of the final cosmetic results. Third, patient satisfaction was surveyed. Also, the adverse effects associated to treatment were observed. Mean age of the patients was 44.5 years. The average 5-point wrinkle assessment scale score was significantly improved at 1, 4, 8, and 12 weeks after treatment, comparing to before treatment (p < 0.01). The patients' average global aesthetic improvement score also indicated better cosmetic outcomes. The clinical improvement with sufficient patients' satisfaction and no significant adverse events demonstrated that novel autologous plasma filler could be considered as efficient and safety treatment option for nasolabial fold wrinkles.
Oral hyaluronan relieves wrinkles: a double-blinded, placebo-controlled study over a 12-week period
Oe, Mariko; Sakai, Seigo; Yoshida, Hideto; Okado, Nao; Kaneda, Haruna; Masuda, Yasunobu; Urushibata, Osamu
2017-01-01
Background Hyaluronan (HA) has critical moisturizing property and high water retention capacity especially for human skin. This study aimed to evaluate the effect of oral intake of HA. Methods The mean molecular weight (MW) of HA is 2 k and 300 k. Sixty Japanese male and female subjects aged 22–59 years who presented with crow’s feet wrinkles were randomly assigned to the HA 2 k or HA 300 k at 120 mg/day or the placebo group. The subjects were administered HA at a rate of 120 mg/day or a placebo for 12 weeks. The skin wrinkles were evaluated by image analysis of skin wrinkle replicas, and their skin condition was evaluated using a questionnaire survey. Results During the study period, the HA groups showed better level of the whole sulcus volume ratio, wrinkle area ratio, and wrinkle volume ratio than the placebo group. After 8 weeks of ingestion, the HA 300 k group showed significantly diminished wrinkles compared with the placebo group. Skin luster and suppleness significantly improved after 12 weeks in all groups compared with the baseline. Conclusion The results suggest that oral HA (both HA 2 k and HA 300 k) inhibits skin wrinkles and improves skin condition. PMID:28761365
Influence of skin ageing features on Chinese women's perception of facial age and attractiveness.
Porcheron, A; Latreille, J; Jdid, R; Tschachler, E; Morizot, F
2014-08-01
Ageing leads to characteristic changes in the appearance of facial skin. Among these changes, we can distinguish the skin topographic cues (skin sagging and wrinkles), the dark spots and the dark circles around the eyes. Although skin changes are similar in Caucasian and Chinese faces, the age of occurrence and the severity of age-related features differ between the two populations. Little is known about how the ageing of skin influences the perception of female faces in Chinese women. The aim of this study is to evaluate the contribution of the different age-related skin features to the perception of age and attractiveness in Chinese women. Facial images of Caucasian women and Chinese women in their 60s were manipulated separately to reduce the following skin features: (i) skin sagging and wrinkles, (ii) dark spots and (iii) dark circles. Finally, all signs were reduced simultaneously (iv). Female Chinese participants were asked to estimate the age difference between the modified and original images and evaluate the attractiveness of modified and original faces. Chinese women perceived the Chinese faces as younger after the manipulation of dark spots than after the reduction in wrinkles/sagging, whereas they perceived the Caucasian faces as the youngest after the manipulation of wrinkles/sagging. Interestingly, Chinese women evaluated faces with reduced dark spots as being the most attractive whatever the origin of the face. The manipulation of dark circles contributed to making Caucasian and Chinese faces being perceived younger and more attractive than the original faces, although the effect was less pronounced than for the two other types of manipulation. This is the first study to have examined the influence of various age-related skin features on the facial age and attractiveness perception of Chinese women. The results highlight different contributions of dark spots, sagging/wrinkles and dark circles to their perception of Chinese and Caucasian faces. © 2014 The Authors. International Journal of Cosmetic Science published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.
The Central Symmetry Analysis of Wrinkle Ridges in Lunar Mare Serenitatis
NASA Astrophysics Data System (ADS)
Yao, Meijuan; Chen, Jianping
2018-03-01
Wrinkle ridges are one of the most common structures usually found in lunar mare basalts, and their formations are closely related to the lunar mare. In this paper, wrinkle ridges in Mare Serenitatis were identified and mapped via high-resolution data acquired from SELENE, and a quantitative method was introduced to analyze the degree of central symmetry of the wrinkle ridges distributed in a concentric or radial pattern. Meanwhile, two methods were used to measure the lengths and orientations of wrinkle ridges before calculating their central symmetry value. Based on the mapped wrinkle ridges, we calculated the central symmetry value of the wrinkle ridges for the whole Mare Serenitatis as well as for the four circular ridge systems proposed by a previous study via this method. We also analyzed the factors that would cause discrepancies when calculating the central symmetry value. The results indicate that the method can be used to quantitatively analyze the degree of central symmetry of the linear features that were concentrically or radially oriented and can reflect the stress field characteristics.
Near-infrared light-responsive dynamic wrinkle patterns.
Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong
2018-04-01
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.
Swelling-induced wrinkling in layered gel beams
NASA Astrophysics Data System (ADS)
Nardinocchi, P.; Puntel, E.
2017-11-01
Gels are widely employed in smart mechanical devices and biomedical applications. Swelling-induced bending actuation can be obtained by means of a simple bilayer gel beam. We show that this system can also exhibit wrinkling patterns of potential interest for structural morphing and sensing. We study swelling-induced wrinkling at the extrados of a bilayer gel beam with the softer layer on top. The bent configuration at finite strain is recovered first and, starting from it, a linear perturbation analysis is performed. We delimit the zone corresponding to wrinkling modes in a parameter plane encompassing a mechanical stiffness ratio and a geometric top layer to total height ratio. Interestingly, we observe that surface instability precedes and envelopes wrinkling modes of finite wavelength. Finally, we discuss the effect of changes in stiffness and of the Flory-Huggins parameters χ on the size of the wrinkling domain.
Oresajo, Christian; Yatskayer, Margarita; Hansenne, Isabelle
2008-12-01
Several chemical agents are currently used to perform superficial peels of the face to reduce facial hyperpigmentation and fine lines/wrinkles. Some of the most commonly used agents are alpha hydroxyl acids, such as glycolic acid (GA), or beta hydroxy acid, such as salicylic acid. This study aims to compare the efficacy of GA to that of a novel derivative of salicylic acid, capryloyl salicylic acid (LHA). In a split-face study, 50 female volunteers between the ages of 35 and 60 years with mild to moderate facial hyperpigmentation and fine lines/wrinkles were randomized and LHA or GA peel was applied to one side of the face. Increasing peel concentrations were applied (5-10% LHA or 20-50% GA) based on the tolerance level of the subjects and clinical observations of an expert dermatologist for 12 weeks at biweekly intervals. Of the 44 volunteers who completed the study, at 12 weeks 41% of LHA-treated and 30% of GA-treated subjects demonstrated significant reduction of fine lines/wrinkles compared to baseline. Forty-six percent of LHA-treated subjects and 34% of GA-treated subjects showed significant reduction of hyperpigmentation compared to baseline. LHA treatment was better than GA peels, although there were no statistically significant differences between the two groups. Five percent to 10% of LHA peel is generally safe and as effective as 20-50% GA peel in reducing facial hyperpigmentation and fine lines/wrinkles.
Patient satisfaction and efficacy of accent radiofrequency for facial skin wrinkle reduction
Jaffary, Fariba; Nilforoushzadeh, Mohammad Ali; Zarkoob, Hajar
2013-01-01
Background: Radiofrequency (RF) is a new technique to treat facial wrinkles. This study was designed to assess the efficacy of Accent RF in wrinkle reduction of different areas of the face. Materials and Methods: Patients with mild to severe facial wrinkles were treated with Accent using RF energies of 35-145 W. The average energy used in this study was 83.11 W. Patients received four subsequent weekly RF sessions. Wrinkle improvement was rated by two physicians comparing 6-month post treatment photographs with pretreatment photos. Moreover, patient satisfaction was assessed at 1 and 6 months after the last session of the treatment. Results: A total of 45 women participated in this study. In terms of patient satisfaction one month after the last treatment, 8.9% of the patients declared their dissatisfaction, 53.3% were somehow satisfied, 33.3% were satisfied, and 4.4% were very satisfied. At 6 months, patient satisfaction was as follows: 4.4% dissatisfied, 31.1% somehow satisfied, 46.7% satisfied, and 17.8% very satisfied. Patient satisfaction 6 months after the last treatment was significantly higher than 1 month post treatment (P = 0.006). At 6 months, patient satisfaction was not more than 75% in any treatment areas of the face. Conclusion: The results of this study suggest that Accent RF may be considered as a possible effective option for facial skin rejuvenation although its efficacy and safety needs to be evaluated further in randomized controlled trials. PMID:24523783
Hwang, In Sik; Kim, Ji Eun; Choi, Sun Il; Lee, Hye Ryun; Lee, Young Ju; Jang, Min Ju; Son, Hong Ju; Lee, Hee Seob; Oh, Chung Hun; Kim, Bae Hwan; Lee, Sang Hak; Hwang, Dae Youn
2012-08-01
Oxidative stress and oxidative photodamage induced by UV radiation can cause serious skin damage that is characterized by wrinkling, roughness, laxity and pigmentation. The effects of a sea buckthorn (Hippophae rhamnoides L.) fruit blend (SFB) containing sea buckthorn fruit extract, blueberry extract and collagen on UV-induced skin aging were examined by treating hairless mice for 6 weeks with UV irradiation and SFB administered orally. The effects of SFB were measured in the skin of these mice by phenotypical and histological analysis and western blotting. According to wrinkle formation analysis, the oral intake of SFB induced a decrease in wrinkle formation in the damaged skin of UV-irradiated mice. The thickness of the epidermis and dermis in the vitamin extracts (Vit)- and SFB-treated group was lower than that in the vehicle-treated group, but the group treated with SFB50 was the most effective group. The mice treated with the Vit- or SFB solution maintained a normal moisture content through the inhibition of transdermal water loss (TEWL) and an increase in skin moisture content. Furthermore, the levels of matrix metalloproteinase (MMP) and collagen protein expression were assessed in five groups to examine the mechanisms underlying the effects of SFB oral intake. The application of SFB induced a decrease in MMP-1 and -9 expression to the levels observed in the vehicle-treated group, but MMP-9 expression showed a much larger decrease than MMP-1. Furthermore, the expression of collagen-1 in the skin corresponded to MMP expression except for the SFB30-treated group, whereas the superoxide dismutase (SOD) activity was increased dramatically in the SFB50-treated group. These results suggest that SFB has potential as a protective and therapeutic drug candidate against skin aging that functions by regulating the moisture content, MMP expression levels and SOD activity.
Edge wrinkling of a soft ridge with gradient thickness
NASA Astrophysics Data System (ADS)
Zhao, Yan; Shao, Zhi-Chun; Li, Guo-Yang; Zheng, Yang; Zhang, Wan-Yu; Li, Bo; Cao, Yanping; Feng, Xi-Qiao
2017-06-01
We investigate the edge wrinkling of a soft ridge with gradient thickness under axial compression. Our experiments show that the wrinkling wavelength undergoes a considerable increase with increasing load. Simple scaling laws are derived based on an upper-bound analysis to predict the critical buckling conditions and the evolution of wrinkling wavelength during the post-buckling stage, and the results show good accordance with our finite element simulations and experiments. We also report a pattern transformation triggered by the edge wrinkling of soft ridge arrays. The results and method not only help understand the correlation between the growth and form observed in some natural systems but also inspire a strategy to fabricate advanced functional surfaces.
Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano
2015-01-01
On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174
Bending, wrinkling, and folding of thin polymer film/elastomer interfaces
NASA Astrophysics Data System (ADS)
Ebata, Yuri
This work focuses on understanding the buckling deformation mechanisms of bending, wrinkling, and folding that occur on the surfaces and interfaces of polymer systems. We gained fundamental insight into the formation mechanism of these buckled structures for thin glassy films placed on an elastomeric substrate. By taking advantage of geometric confinement, we demonstrated new strategies in controlling wrinkling morphologies. We were able to achieve surfaces with controlled patterned structures which will have a broad impact in optical, adhesive, microelectronics, and microfluidics applications. Wrinkles and strain localized features, such as delaminations and folds, are observed in many natural systems and are useful for a wide range of patterning applications. However, the transition from sinusoidal wrinkles to more complex strain localized structures is not well understood. We investigated the onset of wrinkling and strain localizations under uniaxial strain. We show that careful measurement of feature amplitude allowed not only the determination of wrinkle, fold, or delamination onset, but also allowed clear distinction between each feature. The folds observed in this experiment have an outward morphology from the surface in contrast to folds that form into the plane, as observed in a film floating on a liquid substrate. A critical strain map was constructed, where the critical strain was measured experimentally for wrinkling, folding, and delamination with varying film thickness and modulus. Wrinkle morphologies, i.e. amplitude and wavelength of wrinkles, affect properties such as electron transport in stretchable electronics and adhesion properties of smart surfaces. To gain an understanding of how the wrinkle morphology can be controlled, we introduced a geometrical confinement in the form of rigid boundaries. Upon straining, we found that wrinkles started near the rigid boundaries where maximum local strain occurred and propagated towards the middle as more global strain was applied. In contrast to homogeneous wrinkling with constant amplitude that is observed for an unconfined system, the wrinkling observed here had varying amplitude as a function of distance from the rigid boundaries. We demonstrated that the number of wrinkles can be tuned by controlling the distance between the rigid boundaries. Location of wrinkles was also controlled by introducing local stress distributions via patterning the elastomeric substrate. Two distinct wrinkled regions were achieved on a surface where the film is free-standing over a circular hole pattern and where the film is supported by the substrate. The hoe diameter and applied strain affected the wavelength and amplitude of the free-standing membrane. Using discontinuous dewetting, a one-step fabrication method was developed to selectively deposit a small volume of liquid in patterned microwells and encapsulate it with a polymeric film. The pull-out velocity, a velocity at which the sample is removed from a bath of liquid, was controlled to observe how encapsulation process is affected. The polymeric film was observed to wrinkle at low pull-out velocity due to no encapsulation of liquid; whereas the film bent at medium pull-out velocity due to capillary effect as the liquid evaporated through the film. To quantify the amount of liquid encapsulated, we mixed salt in water and measured the size of the deposited salt crystals. The salt crystal size, and hence the amount of liquid encapsulated, was controlled by varying either the encapsulation velocity or the size of the patterned microwells. In addition, we showed that the deposited salt crystals are protected by the laminated film until the film is removed, providing advantageous control for delivery and release. Yeast cells were also captured in the microwells to show the versatility. This encapsulation method is useful for wide range of applications, such as trapping single cells for biological studies, growing microcrystals for optical and magnetic applications, and single-use sensor technologies.
Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.
Shumaker, Peter R; England, Laura J; Dover, Jeffrey S; Ross, E Victor; Harford, Robert; Derienzo, Damian; Bogle, Melissa; Uebelhoer, Nathan; Jacoby, Mark; Pope, Karl
2006-03-01
Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. Cosmetic fillers are used to soften deep facial lines and wrinkles. Patients who have had dermal fillers implanted may also benefit from or are candidates for monopolar RF skin tightening. This study examined the effect of RF treatment on various dermal filler substances. This is the second part of a two-part study. A juvenile farm pig was injected with dermal fillers including cross-linked human collagen (Cosmoplast), polylactic acid (PLA) (Sculptra), liquid injectable silicone (Silikon 1000), calcium hydroxylapatite (CaHA) (Radiesse), and hyaluronic acid (Restylane). Skin injected with dermal fillers was RF-treated using a 1.5-cm2 treatment tip and treatment levels typically used in the clinical setting. Fillers were examined histologically 5 days, 2 weeks, or 1 month after treatment. Histological specimens were scored for inflammatory response, foreign body response, and fibrosis in order to assess the effect of treatment on early filler processes, such as inflammation and encapsulation. Each filler substance produced a characteristic inflammatory response. No immediate thermal effect of RF treatment was observed histologically. RF treatment resulted in statistically significant increases in the inflammatory, foreign body, and fibrotic responses associated with the filler substances. Monopolar RF treatment levels that are typically used in the clinical setting were employed in this animal study. RF treatment resulted in measurable and statistically significant histological changes associated with the various filler materials. Additional clinical and histological studies are required to determine the optimal timing of monopolar RF treatment and filler placement for maximal potential aesthetic outcome. 2006 Wiley-Liss, Inc.
Protective effects of Aloe sterols against UVB-induced photoaging in hairless mice.
Misawa, Eriko; Tanaka, Miyuki; Saito, Marie; Nabeshima, Kazumi; Yao, Ruiqing; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi
2017-03-01
Aloe vera is a traditional medical plant whose gel has been widely used in skin care. Previously, we have identified Aloe sterols from Aloe vera as active ingredients. This study investigated the protective effects of Aloe sterols without polysaccharides, against ultraviolet B (UVB)-induced skin photoaging in mice using Aloe vera gel extract (AVGE) obtained by supercritical fluid extraction. Aloe vera gel extract was supplemented in the diet (12 or 120 ppm), and HR-1 hairless mice were exposed to UVB irradiation for 7 weeks. Skin measurements and histological and analytical studies were performed. Repeated UVB irradiation induced rough wrinkling of skin with water content reduction and hyperkeratosis. AVGE administration resulted in the significant improvement of UVB-induced skin dryness, epidermal thickness, and wrinkle formation. The AVGE group also suppressed the degenerations of dermal collagen fibers and the appearance of cutaneous apoptosis cells induced by UVB. Furthermore, AVGE administration reduced the excess elevation of pro-inflammatory cytokines (IL-1β and TNF-α) and matrix metalloproteinases (MMP-2, MMP-9, MMP-12, and MMP-13) in UVB-exposed skin. The dietary ingestion of Aloe sterols protected against chronic UVB damage in mouse skin, and our results suggest that Aloe sterols may prevent skin photoaging through the anti-inflammation and MMP regulation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua
2015-11-12
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.
Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun
2016-08-01
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantification of skin wrinkles using low coherence interferometry
NASA Astrophysics Data System (ADS)
Oh, Jung-Taek; Kim, Beop-Min; Son, Sang-Ryoon; Lee, Sang-Won; Kim, Dong-Yoon; Kim, Youn-Soo
2004-07-01
We measure the skin wrinkle topology by means of low coherence interferometry (LCI), which forms the basis of the optical coherence tomography (OCT). The skin topology obtained using LCI and corresponding 2-D fast Fourier transform allow quantification of skin wrinkles. It took approximately 2 minutes to obtain 2.1 mm x 2.1 mm topological image with 4 um and 16 um resolutions in axial and transverse directions, respectively. Measurement examples show the particular case of skin contour change after-wrinkle cosmeceutical treatments and atopic dermatitis
Clinical and histopathological results following TriPollar radiofrequency skin treatments.
Kaplan, Haim; Gat, Andrea
2009-06-01
Skin laxity, wrinkles and cellulite are common aesthetic problems associated with the aging process. These symptoms are due to the weakening and thinning of dermal connective tissue and the enlargement of hypodermal fat cells. The aim of this study was to evaluate the safety and efficacy of the TriPollar RF technology in reducing fat and collagen regeneration. Twelve healthy patients underwent weekly treatments on different body sites using the TriPollar technology. Treatment areas were photographed and measured and patient satisfaction was monitored. One abdominal patient consented to a series of TriPollar treatments prior to her scheduled abdominoplasty. A controlled histopathology analysis was performed on skin samples taken during the abdominoplasty procedure. Histopathological examination revealed marked differences between treated and non-treated abdominal skin areas. An increase of 49% in dermal thickness, focal thickening of collagen fibers and focal shrinkage of fat cells was shown following TriPollar treatments. Average patient satisfaction indicated clear satisfaction with the clinical results achieved. The TriPollar is a safe and effective non-invasive technology leading to skin tightening and body shaping. Histology results indicate changes at the dermal and fat layers following TriPollar treatments resulting in increased collagen regeneration and stimulated fat metabolism.
Impact of deformed extreme-ultraviolet pellicle in terms of CD uniformity
NASA Astrophysics Data System (ADS)
Kim, In-Seon; Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun
2015-07-01
The usage of the extreme ultraviolet (EUV) pellicle is regarded as the solution for defect control since it can protect the mask from airborne debris. However some obstacles disrupt real-application of the pellicle such as structural weakness, thermal damage and so on. For these reasons, flawless fabrication of the pellicle is impossible. In this paper, we discuss the influence of deformed pellicle in terms of non-uniform intensity distribution and critical dimension (CD) uniformity. It was found that non-uniform intensity distribution is proportional to local tilt angle of pellicle and CD variation was linearly proportional to transmission difference. When we consider the 16 nm line and space pattern with dipole illumination (σc=0.8, σr=0.1, NA=0.33), the transmission difference (max-min) of 0.7 % causes 0.1 nm CD uniformity. Influence of gravity caused deflection to the aerial image is small enough to ignore. CD uniformity is less than 0.1 nm even for the current gap of 2 mm between mask and pellicle. However, heat caused EUV pellicle wrinkle might cause serious image distortion because a wrinkle of EUV pellicle causes a transmission loss variation as well as CD non-uniformity. In conclusion, local angle of a wrinkle, not a period or an amplitude of a wrinkle is a main factor to CD uniformity, and local angle of less than ~270 mrad is needed to achieve 0.1 nm CD uniformity with 16 nm L/S pattern.
NASA Astrophysics Data System (ADS)
Mège, Daniel; Reidel, Stephen P.
The Yakima folds on the central Columbia Plateau are a succession of thrusted anticlines thought to be analogs of planetary wrinkle ridges. They provide a unique opportunity to understand wrinkle ridge structure. Field data and length-displacement scaling are used to demonstrate a method for estimating two-dimensional horizontal contractional strain at wrinkle ridges. Strain is given as a function of ridge length, and depends on other parameters that can be inferred from the Yakima folds and fault population displacement studies. Because ridge length can be readily obtained from orbital imagery, the method can be applied to any wrinkle ridge population, and helps constrain quantitative tectonic models on other planets.
The Effect of Asymmetric Mechanical and Thermal Loading on Membrane Wrinkling
NASA Technical Reports Server (NTRS)
Blandino, Joseph R.; Johnston, John D.; Miles, Jonathan J.; Dharamsi, Urmil K.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
Large, tensioned membranes are being considered for future gossamer spacecraft systems. Examples include sunshields, solar sails, and membrane optics. In many. cases a relatively flat membrane with minimal wrinkling is desired. Developing methods to predict and measure membrane wrinkling is important to the future development of gossamer spacecraft. Numerical and experimental data are presented for a 0.5 m square, tensioned membrane. The membrane is subjected to symmetric and asymmetric mechanical loading. Data are also presented for a symmetrically loaded membrane subjected to spot heating in the center. The numerical model shows good agreement with the experiment for wrinkle angle data. There is. also reasonable agreement for the wrinkled area for both isothermal and elevated temperature tests.
Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment
NASA Astrophysics Data System (ADS)
Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik
2015-07-01
We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.
Kang, Jin Soo; Lim, Joohyun; Rho, Won-Yeop; Kim, Jin; Moon, Doo-Sik; Jeong, Juwon; Jung, Dongwook; Choi, Jung-Woo; Lee, Jin-Kyu; Sung, Yung-Eun
2016-08-04
Efficient light harvesting is essential for the realization of high energy conversion efficiency in dye-sensitized solar cells (DSCs). State-of-the-art mesoporous TiO2 photoanodes fall short for collection of long-wavelength visible light photons, and thus there have been efforts on introduction of scattering nanoparticles. Herein, we report the synthesis of wrinkled silica/titania nanoparticles with tunable interwrinkle distances as scattering materials for enhanced light harvesting in DSCs. These particles with more than 20 times larger specific surface area (>400 m(2)/g) compared to the spherical scattering particles (<20 m(2)/g) of the similar sizes gave rise to the dye-loading amounts, causing significant improvements in photocurrent density and efficiency. Moreover, dependence of spectral scattering properties of wrinkled particles on interwrinkle distances, which was originated from difference in overall refractive indices, was observed.
Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice.
Urikura, Itaru; Sugawara, Tatsuya; Hirata, Takashi
2011-01-01
Fucoxanthin, a major carotenoid in brown algae, has various beneficial effects. In this study, we evaluated the effect of topical fucoxanthin on UVB-induced skin photoaging in hairless mice. The dorsal skins were treated topically with a 0.001% fucoxanthin solution 2 h each time before UVB irradiation (5 times a week) for 10 weeks. The formation of wrinkles in UVB-irradiated skin treated with vehicle alone significantly increased, as compared with the non-irradiated control. Treatment with fucoxanthin tended to suppress UVB-induced wrinkle formation, but there was no significant difference between wrinkle formation in the control group and the fucoxanthin treatment group. However, topical treatment with fucoxanthin significantly lessened UVB-induced epidermal hypertrophy, VEGF, and MMP-13 expression in the epidermis and thiobarbituric acid reactive substances (TBARS) in the skin. These results indicate that topical treatment with fucoxanthin prevents skin photoaging in UVB-irradiated hairless mice, possibly via antioxidant and antiangiogenic effects.
The interactive bending wrinkling behaviour of inflated beams
Liu, Y. P.; Tan, H. F.; Wadee, M. K.
2016-01-01
A model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of the inflated beam can then be predicted. The global–local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated finally. The results reveal that the interactive buckling characteristics of an inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that for beams which are simply supported at both ends or clamped and simply supported, boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending wrinkling behaviour of inflated beams. PMID:27713665
Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets
Hohlfeld, Evan; King, Hunter; Huang, Jiangshui; Qiu, Zhanlong; Russell, Thomas P.; Menon, Narayanan; Vella, Dominic; Davidovitch, Benny
2016-01-01
Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles—their wavelength—is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film. PMID:26787902
Critical thickness ratio for buckled and wrinkled fruits and vegetables
NASA Astrophysics Data System (ADS)
Dai, Hui-Hui; Liu, Yang
2014-11-01
This work aims at establishing the geometrical constraint for buckled and wrinkled shapes by modeling a fruit/vegetable with exocarp and sarcocarp as a hyperelastic layer-substrate structure subjected to uniaxial compression. A careful analysis on the derived bifurcation condition leads to the finding of a critical thickness ratio which separates the buckling and wrinkling modes, and remarkably, which is independent of the material stiffnesses. More specifically, it is found that if the thickness ratio is smaller than this critical value a fruit/vegetable should be in a buckled shape (under a sufficient stress); if a fruit/vegetable is in a wrinkled shape the thickness ratio is always larger than this critical value. To verify the theoretical prediction, we consider four types of buckled fruits/vegetables and four types of wrinkled fruits/vegetables with three samples in each type. The geometrical parameters for the 24 samples are measured and it is found that indeed all the data fall into the theoretically predicted buckling or wrinkling domains.
Near-infrared light–responsive dynamic wrinkle patterns
Hou, Honghao; Yin, Jie
2018-01-01
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light–responsive dynamic wrinkles by using a carbon nanotube (CNT)–containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics. PMID:29740615
Nakajima, Hiroaki; Terazawa, Shuko; Niwano, Takao; Yamamoto, Yorihiro; Imokawa, Genji
2016-01-01
We recently reported that the over-expression of skin fibroblast-derived neutral endopeptidase (NEP) plays a pivotal role in impairing the three-dimensional architecture of dermal elastic fibers during the biological mechanism of ultraviolet (UV)-induced skin wrinkling. In that process, a UVB-associated epithelial-mesenchymal cytokine interaction as well as a direct UVA-induced cellular stimulation are associated with the up-regulation of NEP in human fibroblasts. In this study, we characterized the mode of action of ubiquinol10 which may abrogate the up-regulation of NEP by dermal fibroblasts, resulting in a reported in vivo anti-wrinkling action, and compared that with 3 other anti-oxidants, astaxanthin (AX), riboflavin (RF) and flavin mononucleotide (FMN). Post-irradiation treatment with all 4 of those anti-oxidants elicited an interrupting effect on the UVB-associated epithelial-mesenchymal cytokine interaction leading to the up-regulation of NEP in human fibroblasts but with different modes of action. While AX mainly served as an inhibitor of the secretion of wrinkle-inducing cytokines, such as interleukin-1α (IL-1α) and granulocyte macrophage colony stimulatory factor (GM-CSF) in UVB-exposed epidermal keratinocytes, ubiquinol10, RF and FMN predominantly interrupted the IL-1α and GM-CSF-stimulated expression of NEP in dermal fibroblasts. On the other hand, as for the UVA-associated mechanism, similar to the abrogating effects reported for AX and FMN, ubiquinol10 but not RF had the potential to abrogate the increased expression of NEP and matrix-metalloproteinase-1 in UVA-exposed human fibroblasts. Our findings strongly support the in vivo anti-wrinkling effects of ubiquinol10 and AX on human and animal skin and provide convincing proof of the UV-induced wrinkling mechanism that essentially focuses on the over-expression of NEP by dermal fibroblasts as an intrinsic causative factor. PMID:27648570
Taub, Amy; Bucay, Vivian; Keller, Gregory; Williams, Jay; Mehregan, Darius
2018-04-01
Anti-aging strategies utilizing stem cells are in the forefront. Alpha and beta defensins are natural immune peptides that have been shown to activate an LGR6-positive stem cell locus in the hair follicle, identified as the source of most new epidermal cells during acute wound healing. We investigated the ability of biomimetic alpha and beta defensin molecules, supplemented with supportive cosmetic ingredients, formulated into three skin care products, at improving the structure and function of aging skin. A participant- and investigator -blinded, placebo-controlled, multi-center trial was performed in outpatient settings. Forty-four healthy female subjects, aged 41-71 years, skin types I-V, completed the study with 2/3 receiving full formula and 1/3 receiving the placebo formula. A skin care regimen of 3 products (serum, cream, and mask) containing alpha-defensin 5 and beta-defensin 3, and other cosmetic ingredients, was applied to the face, post-auricular, and neck skin two times per day for 12 weeks in those receiving full formula, whereas the placebo group received the identically packaged regimen without the active ingredients. Methods of evaluation included histopathology and immunohistochemistry (7 subjects), clinical evaluation of pores, superficial and deep wrinkles based on Griffiths scale, and high-resolution photography (all subjects). In addition, a subset of 15 patients were evaluated with the QuantifiCare system (3-dimensional imaging and skin care scores for evenness, pores, oiliness) and Cortex measurements (high-resolution skin ultrasound, TEWL, elasticity, color, and hydration). Data points for evaluation included baseline, 6 weeks, and 12 weeks. All patients used the same sunscreen and cleanser, which was provided to them. The full formula regimen caused a significantly (P equals 0.027) increased thickness of the epidermis as seen in histology, not seen in the placebo group, with no signs of inflammation. No excessive cell proliferation was detected in either group as measured by Ki67-immunohistochemistry. Reduction in visible pores, superficial wrinkles, oiliness, pigmentation, and improvement of skin evenness, were statistically significant. A trend for improvement was also observed in skin elasticity, TEWL, and hydration; these did not achieve statistical significance. Ultrasound and histopathology demonstrated increases in dermal thickness in individual patients, without statistical significance. Comprehensive improvement in all 5 parameters, including visible pores, hyperpigmentation, superficial and deep wrinkles, and epidermal thickness, was statistically significant when the subset of participants assigned for histology in full formula group was compared with the placebo group participants. A 3-product skin care regimen containing alpha and beta defensins globally improves the visual appearance and structure of aging skin without irritation, dryness, or inflammation. Specifically, this regimen increases epidermal thickness, reduces appearance of pores, reduces wrinkles, and reduces melanin. This skin care regimen stimulates rejuvenation without evidence of increase of a marker of carcinogenic stimulation. This data is consistent with the hypothesis that a defensin-containing skin care regimen activates the body's own dormant stem cells to generate healthy new epidermal cells.
J Drugs Dermatol. 2018;17(4):426-441.
THIS ARTICLE HAD BEEN MADE AVAILABLE FREE OF CHARGE. PLEASE SCROLL DOWN TO ACCESS THE FULL TEXT OF THIS ARTICLE WITHOUT LOGGING IN. NO PURCHASE NECESSARY. PLEASE CONTACT THE PUBLISHER WITH ANY QUESTIONS.Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure
NASA Technical Reports Server (NTRS)
Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.
1998-01-01
Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.
USDA-ARS?s Scientific Manuscript database
This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...
Micro-wrinkling and delamination-induced buckling of stretchable electronic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyewole, O. K.; Department of Materials Science and Engineering, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State; Yu, D.
This paper presents the results of experimental and theoretical/computational micro-wrinkles and buckling on the surfaces of stretchable poly-dimethylsiloxane (PDMS) coated with nano-scale Gold (Au) layers. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. The critical stresses required for wrinkling and buckling are analyzed using analytical models. The possible interfacial cracking that can occur along with film buckling is also studied using finite element simulations of the interfacial crack growth. The implications of the results are discussedmore » for potential applications of micro-wrinkles and micro-buckles in stretchable electronic structures and biomedical devices.« less
Microbead-regulated surface wrinkling patterns in a film-substrate system
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wang, Jiawen; Cao, Yan-Ping; Lu, Conghua; Li, Bo; Feng, Xi-Qiao
2017-10-01
The control of surface wrinkling patterns at the microscale is a concern in many applications. In this letter, we regulate surface wrinkling patterns on a film-substrate system by introducing microbeads atop the film. Both experiments and theoretical analysis reveal the changes in surface wrinkles induced by microbeads. Under equibiaxial compression, the film-substrate system without microbeads bonded on its upper surface often buckles into global, uniform labyrinths, whereas the labyrinthine pattern locally gives way to radial stripes emanating from the microbeads. This regulation of surface wrinkles depends on the sizes and spacing of microbeads. We combine the finite element method and the Fourier spectral method to explore the physical mechanisms underlying the phenomena. This study offers a viable technique for engineering surfaces with tunable functions.
Longitudinal study of skin aging: from microrelief to wrinkles.
Bazin, Roland; Lévêque, Jean Luc
2011-05-01
To study the changes in skin microrelief and periocular wrinkles during the aging process. Replicas of the crow's feet area of volunteers were recorded in 1987 and 2008 and observed comparatively. Characteristic features were quantified by image analysis. Observation shows that some microrelief features disappear and even merge with wrinkles that become more marked. Some primary lines also tend to merge to form thin new wrinkles. Quantitative data support these observations: the size of small and medium objects of skin relief decreases with age while large objects are becoming larger. Over 21 years, in the group studied, the total area of the detected objects remains quite constant. Only the distribution between small and large detected objects (microrelief features and wrinkles, respectively) is modified. © 2011 John Wiley & Sons A/S.
Responsive and Adaptive Micro Wrinkles on Organic-inorganic Hybrid Materials.
Takahashi, Masahide
2018-04-24
A buckling induced wrinkling is a general phenomenon in daily life, which is induced by mechanical instability at the interface of multi-layered systems. Variety of applications have been proposed for wrinkles in nano to micrometer periodicity on the surface of soft materials. In recent decades, researchers are trying to use wrinkles for variety of sophisticated applications such as micro pattern fabrication, control of wettability, templating/directing substrate for elongated nano materials or virus, size-selective adsorption/desorption of functional objects, cells or microorganisms, delamination induced material fabrication such as micro-rolls, substrates for stretchable electronics, valves for microfluidic devices and soft actuators. Herein, recent advances on the fabrication and application of micro-wrinkles are reviewed. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generation of diffraction-free optical beams using wrinkled membranes
Li, Ran; Yi, Hui; Hu, Xiao; Chen, Leng; Shi, Guangsha; Wang, Weimin; Yang, Tian
2013-01-01
Wrinkling has become a well developed bottom-up technique to make artificial surface textures in about the last decade. However, application of the optical properties of long range ordered wrinkles has been limited to one dimensional gratings to date. We report the demonstration of macroscopic optical focusing using wrinkled membranes, in which concentric wrinkle rings on a gold-PDMS bilayer membrane convert collimated illuminations to diffraction-free focused beams. Beam diameters of 300–400 μm have been observed in the visible range, which are dominantly limited by the eccentricity of the current devices. Based upon agreement between theoretical and experimental results on eccentricity effects, we predict a decrease of the beam diameter to no more than around 50 μm, if eccentricity is eliminated. PMID:24072139
Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.; Wang, John T.
2003-01-01
Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.
Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J
2017-11-01
Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.
Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV
NASA Astrophysics Data System (ADS)
Steinberg, Adam M.; Driscoll, James F.; Ceccio, Steven L.
2008-06-01
A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140 μm, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles.
Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua
2016-01-01
Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries. PMID:27827459
Coupling of wrinkled laminar flames with gravity
NASA Technical Reports Server (NTRS)
Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.
1995-01-01
The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.
Microbial shaping of sedimentary wrinkle structures
NASA Astrophysics Data System (ADS)
Mariotti, G.; Pruss, S. B.; Perron, J. T.; Bosak, T.
2014-10-01
Wrinkle structures on sandy bed surfaces were present in some of the earliest sedimentary environments, but are rare in modern environments. These enigmatic millimetre- to centimetre-scale ridges or pits are particularly common in sediments that harbour trace fossils and imprints of early animals, and appeared in the aftermath of some large mass extinctions. Wrinkle structures have been interpreted as possible remnants of microbial mats, but the formation mechanism and associated palaeoenvironmental and palaeoecological implications of these structures remain debated. Here we show that microbial aggregates can form wrinkle structures on a bed of bare sand in wave tank experiments. Waves with a small orbital amplitude at the bed surface do not move sand grains directly. However, they move millimetre-size, light microbial fragments and thereby produce linear sand ridges and rounded scour pits at the wavelengths observed in nature within hours. We conclude that wrinkle structures are morphological biosignatures that form at the sediment-water interface in wave-dominated environments, and not beneath microbial mats as previously thought. During early animal evolution, grazing by eukaryotic organisms may have temporarily increased the abundance of microbial fragments and thus the production of wrinkle structures.
Early Triassic wrinkle structures on land: stressed environments and oases for life
NASA Astrophysics Data System (ADS)
Chu, Daoliang; Tong, Jinnan; Song, Haijun; Benton, Michael J.; Bottjer, David J.; Song, Huyue; Tian, Li
2015-06-01
Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao
With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. Themore » wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.« less
Corneal lenticular wrinkling after automated lamellar keratoplasty.
Steinemann, T L; Denton, N C; Brown, M F
1998-10-01
To report complications of automated lamellar keratoplasty in two eyes of two patients. Case reports. Two eyes of two patients underwent automated lamellar keratoplasty for myopia. Both patients complained of visual distortion and glare in the postoperative eye. The postoperative eye of both patients showed evidence of wrinkling of the corneal lenticule accompanied by irregular astigmatism. Patient 1 showed persistent lenticular wrinkling and corneal scarring 2.5 years later. Patient 2 showed evidence of interface scar and overcorrection. The use of a microkeratome can be complicated by lenticular displacement and wrinkling, resulting in visual aberration for the patient.
Facesheet Wrinkling in Sandwich Structures
NASA Technical Reports Server (NTRS)
Ley, Robert P.; Lin, Weichuan; Mbanefo, Uy
1999-01-01
The purpose of this paper is to provide a concise summary of the state-of-the-art for the analysis of the facesheet wrinkling mode of failure in sandwich structures. This document is not an exhaustive review of the published research related to facesheet wrinkling. Instead, a smaller number of key papers are reviewed in order to provide designers and analysts with a working understanding of the state-of-the-art. Designers and analysts should use this survey to guide their judgement when deciding which one of a wide variety of available facesheet wrinkling design formulas is applicable to a specific design problem.
Stretching-induced wrinkling in plastic-rubber composites.
Yang, Junyu; Damle, Sameer; Maiti, Spandan; Velankar, Sachin S
2017-01-25
We examine the mechanics of three-layer composite films composed of an elastomeric layer sandwiched between two thin surface layers of plastic. Upon stretching and releasing such composite films, they develop a highly wrinkled surface texture. The mechanism for this texturing is that during stretching, the plastic layers yield and stretch irreversibly whereas the elastomer stretches reversibly. Thus upon releasing, the plastic layers buckle due to compressive stress imposed by the elastomer. Experiments are conducted using SEPS elastomer and 50 micron thick LLDPE plastic films. Stretching and releasing the composites to 2-5 times their original length induces buckles with wavelength on the order of 200 microns, and the wavelength decreases as the stretching increases. FEM simulations reveal that plastic deformation is involved at all stages during this process: (1) during stretching, the plastic layer yields in tension; (2) during recovery, the plastic layer first yields in-plane in compression and then buckles; (3) post-buckling, plastic hinges are formed at high-curvature regions. Homogeneous wrinkles are predicted only within a finite window of material properties: if the yield stress is too low, the plastic layers yield in-plane, without wrinkling, whereas if the yield stress is too high, non-homogeneous wrinkles are predicted. This approach to realizing highly wrinkled textures offers several advantages, most importantly the fact that high aspect ratio wrinkles (amplitude to wavelength ratios exceeding 0.4) can be realized.
NASA Astrophysics Data System (ADS)
Mege, D.
1999-03-01
Field data and length/displacement scaling laws applied to the Yakima fold belt on the Columbia Plateau are used to demonstrate a method for estimating surface shortening of wrinkle ridge areas. Application to martian wrinkle ridges is given in another abstract.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0551] Compliance Policy Guide Sec. 393.200 Laser(s) as Medical Devices for Facelift, Wrinkle Removal, Acupuncture... Compliance Policy Guide Sec. 393.200 Laser(s) as Medical Devices for Facelift, Wrinkle Removal, Acupuncture...
Clinical Assessment of a Novel Jasmonate Cosmeceutical, LR2412-Cx, for the Treatment of Skin Aging.
Alexiades, Macrene
2016-02-01
The jasmonates are a novel class of plant-derived anti-aging compounds. Among these, LR2412-Cx (tetrahydrojasmonic acid, Visionnaire) has been demonstrated to reduce photoaging and the appearance of wrinkles, as well as to upregulate collagens, hyaluronic acid and fibrillin. To clinically study the cosmetic effects of a novel jasmonate complex LR2412-Cx in the treatment of visible skin aging. LR2412-Cx was evaluated in a 15-subject open-label prospective clinical trial for the treatment of fine wrinkle appearance, texture, and pores. Subjects were evaluated by an investigator at baseline, day 1, day 3, and week 6 with the Alexiades comprehensive grading scale of skin aging, and introducing a novel pore-grading scale and subject quality of life assessments. The mean (SEM) at baseline and at week 6 following twice-daily application were: for the appearance of wrinkles 2.91 (0.12) and 2.70 (0.10); for texture 2.91 (0.10) and 2.55 (0.10); and for pores 3.29 (0.08) and 2.46 (0.09), respectively. The differences in all 3 categories at all follow-up intervals were statistically significant (P<.005). The percentage improvement in investigator-assessed grades relative to baseline at day 1, day 3, and week 6 were: 2.3%, 4.9%, and 7.4% for the appearance of wrinkles, 5.7%, 9.4%, and 12.4% for texture, and 14.2%, 21.6% and 25.2% for pores, respectively. No significant untoward effects were reported. Visionnaire LR2412-Cx is a novel jasmonate-containing compound that is safe and effective for the cosmetic treatment of fine wrinkle appearance, texture, and pores of the facial skin.
Fu, J J J; Hillebrand, G G; Raleigh, P; Li, J; Marmor, M J; Bertucci, V; Grimes, P E; Mandy, S H; Perez, M I; Weinkle, S H; Kaczvinsky, J R
2010-03-01
Tretinoin is considered the benchmark prescription topical therapy for improving fine facial wrinkles, but skin tolerance issues can affect patient compliance. In contrast, cosmetic antiwrinkle products are well tolerated but are generally presumed to be less efficacious than tretinoin. To compare the efficacy of a cosmetic moisturizer regimen vs. a prescription regimen with 0.02% tretinoin for improving the appearance of facial wrinkles. An 8-week, randomized, parallel-group study was conducted in 196 women with moderate to moderately severe periorbital wrinkles. Following 2 weeks washout, subjects on the cosmetic regimen (n = 99) used a sun protection factor (SPF) 30 moisturizing lotion containing 5% niacinamide, peptides and antioxidants, a moisturizing cream containing niacinamide and peptides, and a targeted wrinkle product containing niacinamide, peptides and 0.3% retinyl propionate. Subjects on the prescription regimen (n = 97) used 0.02% tretinoin plus moisturizing SPF 30 sunscreen. Subject cohorts (n = 25) continued treatment for an additional 16 weeks. Changes in facial wrinkling were assessed by both expert grading and image analysis of digital images of subjects' faces and by self-assessment questionnaire. Product tolerance was assessed via clinical erythema and dryness grading, subject self-assessment, and determinations of skin barrier integrity (transepidermal water loss) and stratum corneum protein changes. The cosmetic regimen significantly improved wrinkle appearance after 8 weeks relative to tretinoin, with comparable benefits after 24 weeks. The cosmetic regimen was significantly better tolerated than tretinoin through 8 weeks by all measures. An appropriately designed cosmetic regimen can improve facial wrinkle appearance comparably with the benchmark prescription treatment, with improved tolerability.
Fu, JJJ; Hillebrand, GG; Raleigh, P; Li, J; Marmor, MJ; Bertucci, V; Grimes, PE; Mandy, SH; Perez, MI; Weinkle, SH; Kaczvinsky, JR
2010-01-01
Background Tretinoin is considered the benchmark prescription topical therapy for improving fine facial wrinkles, but skin tolerance issues can affect patient compliance. In contrast, cosmetic antiwrinkle products are well tolerated but are generally presumed to be less efficacious than tretinoin. Objectives To compare the efficacy of a cosmetic moisturizer regimen vs. a prescription regimen with 0·02% tretinoin for improving the appearance of facial wrinkles. Methods An 8-week, randomized, parallel-group study was conducted in 196 women with moderate to moderately severe periorbital wrinkles. Following 2 weeks washout, subjects on the cosmetic regimen (n=99) used a sun protection factor (SPF) 30 moisturizing lotion containing 5% niacinamide, peptides and antioxidants, a moisturizing cream containing niacinamide and peptides, and a targeted wrinkle product containing niacinamide, peptides and 0·3% retinyl propionate. Subjects on the prescription regimen (n=97) used 0·02% tretinoin plus moisturizing SPF 30 sunscreen. Subject cohorts (n=25) continued treatment for an additional 16 weeks. Changes in facial wrinkling were assessed by both expert grading and image analysis of digital images of subjects’ faces and by self-assessment questionnaire. Product tolerance was assessed via clinical erythema and dryness grading, subject self-assessment, and determinations of skin barrier integrity (transepidermal water loss) and stratum corneum protein changes. Results The cosmetic regimen significantly improved wrinkle appearance after 8 weeks relative to tretinoin, with comparable benefits after 24 weeks. The cosmetic regimen was significantly better tolerated than tretinoin through 8 weeks by all measures. Conclusions An appropriately designed cosmetic regimen can improve facial wrinkle appearance comparably with the benchmark prescription treatment, with improved tolerability. PMID:20374604
Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei
2015-11-01
There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.
Wrinkling of a thin circular sheet bonded to a spherical substrate
Kohn, Robert V.
2017-01-01
We consider a disc-shaped thin elastic sheet bonded to a compliant sphere. (Our sheet can slip along the sphere; the bonding controls only its normal displacement.) If the bonding is stiff (but not too stiff), the geometry of the sphere makes the sheet wrinkle to avoid azimuthal compression. The total energy of this system is the elastic energy of the sheet plus a (Winkler-type) substrate energy. Treating the thickness of the sheet h as a small parameter, we determine the leading-order behaviour of the energy as h tends to zero, and we give (almost matching) upper and lower bounds for the next-order correction. Our analysis of the leading-order behaviour determines the macroscopic deformation of the sheet; in particular, it determines the extent of the wrinkled region, and predicts the (non-trivial) radial strain of the sheet. The leading-order behaviour also provides insight about the length scale of the wrinkling, showing that it must be approximately independent of the distance r from the centre of the sheet (so that the number of wrinkles must increase with r). Our results on the next-order correction provide insight about how the wrinkling pattern should vary with r. Roughly speaking, they suggest that the length scale of wrinkling should not be exactly constant—rather, it should vary slightly, so that the number of wrinkles at radius r can be approximately piecewise constant in its dependence on r, taking values that are integer multiples of h−a with . This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373380
Spatial and directional control of self-assembled wrinkle patterns by UV light absorption
NASA Astrophysics Data System (ADS)
Kortz, C.; Oesterschulze, E.
2017-12-01
Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.
Hydrostatic and Flow Measurements on Wrinkled Membrane Walls
NASA Astrophysics Data System (ADS)
Ozsun, Ozgur; Ekinci, Kamil
2013-03-01
In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael S.; Einstein, Theodore L.; Cullen, William G.
2012-10-01
Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.
Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice.
Song, Jae Hyoung; Bae, Eun Young; Choi, Goya; Hyun, Jin Won; Lee, Mi Young; Lee, Hye Won; Chae, Sungwook
2013-04-01
Mangifera indica L. (Anacardiaceae) is a medicinal plant whose extracts have been described as an antioxidant with anti-inflammatory and immunomodulatory activities. Skin aging is a consequence of chronic sun exposure to the sun and therefore ultraviolet (UV) radiation. Naturally occurring antioxidants are known to reduce skin aging. Therefore, the aim of the present study was to evaluate the protective role of mango extract against UVB-induced skin aging in hairless mice. HR-1 hairless male mice (6 weeks old) were divided into three groups: control (n = 5), UVB-treated vehicle (n = 5), and UVB-treated mango extract (n = 5) groups. UVB-irradiated mice from the mango extract group were orally administered 0.1 ml of water containing 100 mg of mango extract/kg body weight per day. The inhibitory activity of mango extract on wrinkle formation was determined by the analysis of the skin replica, epidermal thickness based on histological examination, and damage to collagen fiber. The mean length of wrinkles in UVB-treated vehicle group significantly improved after the oral administration of mango extract, which significantly inhibited the increase in epidermal thickness and epidermal hypertrophy (P < 0.05). Furthermore, a marked increase in collagen bundles was observed in the UVB-treated group after the administration of mango extract by Masson's trichrome staining. These results indicate that mango extract showed anti-photoaging activity in UVB-irradiated hairless mice. © 2013 John Wiley & Sons A/S.
Radiofrequency facial rejuvenation: evidence-based effect.
el-Domyati, Moetaz; el-Ammawi, Tarek S; Medhat, Walid; Moawad, Osama; Brennan, Donna; Mahoney, My G; Uitto, Jouni
2011-03-01
Multiple therapies involving ablative and nonablative techniques have been developed for rejuvenation of photodamaged skin. Monopolar radiofrequency (RF) is emerging as a gentler, nonablative skin-tightening device that delivers uniform heat to the dermis at a controlled depth. We evaluated the clinical effects and objectively quantified the histologic changes of the nonablative RF device in the treatment of photoaging. Six individuals of Fitzpatrick skin type III to IV and Glogau class I to II wrinkles were subjected to 3 months of treatment (6 sessions at 2-week intervals). Standard photographs and skin biopsy specimens were obtained at baseline, and at 3 and 6 months after the start of treatment. We performed quantitative evaluation of total elastin, collagen types I and III, and newly synthesized collagen using computerized histometric and immunohistochemical techniques. Blinded photographs were independently scored for wrinkle improvement. RF produced noticeable clinical results, with high satisfaction and corresponding facial skin improvement. Compared with the baseline, there was a statistically significant increase in the mean of collagen types I and III, and newly synthesized collagen, while the mean of total elastin was significantly decreased, at the end of treatment and 3 months posttreatment. A limitation of this study is the small number of patients, yet the results show a significant improvement. Although the results may not be as impressive as those obtained by ablative treatments, RF is a promising treatment option for photoaging with fewer side effects and downtime. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
The pressure sensitivity of wrinkled B-doped nanocrystalline diamond membranes
Drijkoningen, S.; Janssens, S. D.; Pobedinskas, P.; Koizumi, S.; Van Bael, M. K.; Haenen, K.
2016-01-01
Nanocrystalline diamond (NCD) membranes are promising candidates for use as sensitive pressure sensors. NCD membranes are able to withstand harsh conditions and are easily fabricated on glass. In this study the sensitivity of heavily boron doped NCD (B:NCD) pressure sensors is evaluated with respect to different types of supporting glass substrates, doping levels and membrane sizes. Higher pressure sensing sensitivities are obtained for membranes on Corning Eagle 2000 glass, which have a better match in thermal expansion coefficient with diamond compared to those on Schott AF45 glass. In addition, it is shown that larger and more heavily doped membranes are more sensitive. After fabrication of the membranes, the stress in the B:NCD films is released by the emergence of wrinkles. A better match between the thermal expansion coefficient of the NCD layer and the underlying substrate results in less stress and a smaller amount of wrinkles as confirmed by Raman spectroscopy and 3D surface imaging. PMID:27767048
Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne
2017-10-01
Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study.
Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne
2017-01-01
Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study. PMID:29228816
Hypsibius vaskelae, a new species of Tardigrada (Eutardigrada, Hypsibiidae) from Russia.
Tumanov, Denis V
2018-03-21
Hypsibius vaskelae sp. nov. (Tardigrada, Eutardigrada, Hypsibiidae) is described from a freshwater sample collected in the vicinity of Saint-Petersburg. The new species has wrinkled cuticle, bucco-pharyngeal apparatus with two elongate macroplacoids and septulum, and cuticular bars between the bases of inner and outer claw and near the base of the inner claw on legs I-IV. Hypsibius vaskelae sp. nov. is most similar to Hypsibius marcelli Pilato, 1990 and H. septulatus Pilato, Binda, Napolitano Moncada, 2004, but differs from both in having wrinkled dorsal cuticle, thinner claws, and presence of lunules on the claws of all legs.
Voltage-controlled surface wrinkling of elastomeric coatings.
van den Ende, Daan; Kamminga, Jan-Dirk; Boersma, Arjen; Andritsch, Thomas; Steeneken, Peter G
2013-07-05
Wrinkling of elastomeric coatings by an electric field is reported. The associated changes in the coating's optical properties yield switchable mirrors and windows. The field Ec needed to induce wrinkling is a factor of 4.4 lower than the theoretically predicted value, which is attributed to space-charge injection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toward Effective Shell Modeling of Wrinkled Thin-Film Membranes Exhibiting Stress Concentrations
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.
2004-01-01
Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns. An element-level, strain-energy density criterion is suggested for facilitating automated, adaptive mesh refinements specifically aimed at the modeling of thin-film membranes undergoing wrinkling deformations.
Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure
NASA Astrophysics Data System (ADS)
Mao, Guoyong; Wu, Lei; Fu, Yimou; Liu, Junjie; Qu, Shaoxing
2018-03-01
Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles.
Chen, Kee-Hsin; Tam, Ka-Wai; Chen, I-Fan; Huang, Shihping Kevin; Tzeng, Pei-Chuan; Wang, Hsian-Jenn; Chen, Chiehfeng Cliff
2017-08-01
Laser resurfacing is used to minimize wrinkles, solar scars and sequelae of acne. Purpose of the systematic review was to compare resurfacing outcomes of CO 2 laser and erbium: yttrium aluminium garnet (erb:YAG) laser therapies. Medline, Cochrane Library, EMBASE and Google Scholar databases were searched until 9 April 2015 using the following terms: laser, carbon dioxide/CO 2 , facial wrinkles, rhytides and erbium-doped yttrium aluminium garnet/erbium:YAG/Er:YAG. Two-armed controlled split faced studies that compared CO 2 laser and erbium:YAG laser in patients with mild-to-moderate facial wrinkles or rhytides were included. The pooled data in this study and findings of other studies support the greater efficacy with the CO 2 laser in improving facial wrinkles, but the erb:YAG laser was associated with a better complication profile compared with the CO 2 laser. Except one case of hypopigmentation, other complications (i.e., erythema, hyperpigmentation and crusting) and their rates were reported by studies examining both lasers. In general, the CO 2 laser appeared to be more efficacious then the erb:YAG laser in treating facial wrinkles. Both lasers treatments were well tolerated.
Fabrication and Design of Optical Nanomaterials
NASA Astrophysics Data System (ADS)
Huntington, Mark D.
Over the past several decades, advances in nanometer scale fabrication has sparked interes in applications that take advantage of materials that are structured at these small length scales. Specifically, metallic optical nanomaterials have emerged as a new way to control light at length scales that are smaller than the wavelength of light and have optical properties that are distinctly different from their macroscale counterparts. Although there have been may advances in nanofabrication, the performance and widespread use of optical nanomaterials is still limited by fabrication and design challenges. This dissertation describes advances in the fabrication, characterization, and design of optical nanomaterials. First we demonstrate how a portable and compact photolithography system can be made using a light source composed of UV LEDs. Our solid-state photolithography (SSP) system brings the capabilities of one of the most important yet workhorse tools of micro- and nanotechnology--the mask aligner--to the benchtop. The two main highlights of chapter 2 include: (i) portable, low-cost photolithography and (ii) high quality patterning. We replace the mask aligner with a system composed of UV LEDs and a diffuser that can be built for as little as $30. The design of the SSP system alleviates the need for dedicated power supplies, vacuum lines and cooling systems, which makes it a true benchtop photolithography system. We further show that sub-wavelength features can be fabricated across 4-in wafers and that these patterns are of high quality such that they can be easily transferred into functional materials. Chapter 3 describes a parallel method to create nanometer scale textures over large areas with unprecedented control over wrinkle wavelength. The main points of this chapter include: (i) a new material system for nanowrinkles, (ii) wrinkles with tunable wavelengths, and (iii) a method for measuring the skin thickness. First, we show that RIE treatment of PS with fluorinated molecules can be used to create nanometer-scale wrinkles. Next, we found that wrinkle wavelength could be controlled by either (i) changing the gas used during RIE treatment or (ii) by changing the plasma exposure time for a specific gas. We fabricated wrinkles with wavelengths ranging from 250 nm to 50 nm by chemically treating PS thermoplastic films with RIE gases SF6, CF4, CHF3 or Ar. Unique to the CHF3 gas, the wrinkle wavelength could be continuously tuned from several microns down to as small as 30 nm simply by decreasing the RIE exposure time. Finally, in previous work on polymeric wrinkle systems it was not possible to measure the thickness of the skin layer using ellipsometry because there was not enough refractive difference contrast between the skin and substrate layer. Therefore, more complicated and destructive techniques were used such as secondary ion mass spectroscopy and x-ray photoelectron spectroscopy. Here we showed that the fluorination of the top layer causes a significant shift in the refractive index of the top layer, so that ellipsometry could be used measure the thickness of the modified layer. The thickness of the skin layer was used to determine the Young's moduli of the skin and substrate. We continue the discussion of nanowrinkles in chapter 4, which shows unprecedented control the amplitude and the complex hierarchical wrinkle structures and nanofolds that form at high strains. The three main highlights of this paper are: (i) wrinkles with nanometer wavelengths with large amplitudes, (ii) modulation of type of secondary structure with macroscale strain distribution, and (iii) patterning strain to control the orientation of nanowrinkles and nanofolds. Typically, nonlinear strain between the skin and substrate limit the amplitude of nanowrinkles (lambda < 100 nm) to less than 10 nm. Because of the unique mechanical properties of the PS substrate, we could increase the amplitude of the nanowrinkles approximately 10 times greater than the previously reported limit. Next we describe the two types of secondary structures that form at high strain (i) self-similar hierarchical wrinkles, and (ii) folds. Previous studies have focused on changes in material properties to explain the type of secondary structure that will emerge at high strains. Here we show that the macroscale strain distribution (1D or 2D) can be used to regulate the type of structure that forms. Furthermore, we found that we could pattern strain distribution in the skin layer by fabricating strain relief features using inverse solvent assisted nanoscale embossing (inSANE). These strain relief features can be used to direct the orientation of wrinkles with sub-200 nm wavelengths. Furthermore, by carefully engineering the ratio between periodicity of the pattern and the wavelength of the wrinkles, we could induce folds to align along the edges of the directions of least strain. In chapters 5 and 6, we focus on the design of optical nanomaterials. These chapters introduce a new type of artificially structured material--lattice opto-materials--that can achieve arbitrary light profiles with deep subwavelength accuracy in three dimensions. The driving innovation is the nexus of a computational approach to obtain a nano-optics genome and a paradigm shift in how to achieve structured optics that can operate at visible wavelengths based on different configurations of discrete units. We believe that lattice opto-materials represent a new class of engineered materials that have the potential to revolutionize micro and nano-optics. The development of new optics has a long history of driving key scientific discoveries, and we expect that lattice opto-materials could have a similarly transformative impact. For example, substrates with multiple focal points and in different planes could resolve different spatial locations in a cell simultaneously. Polarization-sensitive lattice opto-materials could also be used to prepare dynamic nano-optical traps for nanoparticles or even single atoms. We expect that lattice opto-materials designed by algorithmic approaches will open a wide range of new and unexpected applications.
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System.
Rhie, Jong Won; Shim, Jeong Su; Choi, Won Seok
2015-01-01
The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color.
Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements
NASA Technical Reports Server (NTRS)
Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.
2004-01-01
For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.
A Pilot Study of Skin Resurfacing Using the 2,790-nm Erbium:YSGG Laser System
Rhie, Jong Won; Choi, Won Seok
2015-01-01
Background The erbium:yttrium scandium gallium garnet (Er:YSGG) laser differs from other laser techniques by having a faster and higher cure rate. Since the Er:YSGG laser causes an appropriate proportion of ablation and coagulation, it has advantages over the conventional carbon dioxide (CO2) laser and the erbium-doped yttrium aluminum garnet (Er:YAG) laser, including heating tendencies and explosive vaporization. This research was conducted to explore the effects and safety of the Er:YSGG laser. Methods Twenty patients participated in the pilot study of a resurfacing system using a 2,790-nm Er:YSGG laser. All patients received facial treatment by the 2,790-nm Er:YSGG laser system (Cutera) twice with a 4-week interval. Wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture were measured. Results Study subjects included 15 women and five men. Re-epithelization occurred in all subjects 3 to 4 days after treatment, and wrinkle reduction, reduction in pigment inhomogeneity, and improvement in tone and texture within 6 months of treatment. Conclusions The 2,790-nm YSGG laser technique had fewer complications and was effective in the improvement of scars, pores, wrinkles, and skin tone and color with one or two treatments. We expect this method to be effective for people with acne scars, pore scars, deep wrinkles, and uneven skin texture and color. PMID:25606490
Vierkötter, Andrea; Hüls, Anke; Yamamoto, Ai; Stolz, Sabine; Krämer, Ursula; Matsui, Mary S; Morita, Akimichi; Wang, Sijia; Li, Zhiwen; Jin, Li; Krutmann, Jean; Schikowski, Tamara
2016-09-01
It has been suggested that extrinsic skin ageing manifests differently in Caucasians versus East Asians. In particular, from previous studies it was concluded that Caucasians are more prone to develop wrinkles, whereas pigment spot formation is the hallmark of extrinsic skin ageing in East Asians. However, these assumptions are based on a very limited number of studies which did not include different East Asian populations. We here compare the manifestation of extrinsic skin ageing signs in German, Japanese and Chinese women by specifically elucidating the age and anatomical site dependence of any potential ethnic difference. In the present study, we assessed skin ageing in N=902 German, N=165 Japanese and N=1260 Chinese women ranging from 30 to 90 years by means of SCINEXA™. Linear regression analysis was used to test for ethnic differences and their age and site dependence adjusted for educational level, sun exposure, smoking and sun protection behaviours. Pigment spots and wrinkles on the face were present among all three ethnic groups and differences were influenced by age and anatomical sites independently of further influencing factors. Pigment spots on the forehead were most pronounced over the whole age range in Chinese and German women and least developed in Japanese. Pigment spots on cheeks were a typical extrinsic skin an ageing sign in the two East Asian populations in all age groups. However, in older German women they reach the same level as observed in the two East Asian populations. In contrast, pigment spots on arms and hands were significantly more pronounced in German women ≥45years of age. Wrinkles were not exclusively a skin an ageing sign of German women, but were also very pronounced in Chinese women on forehead, between the eyebrows and in the crow's feet area. These results corroborate the previous notion that the occurrence of pigments spots and wrinkles is different between Caucasians and East Asians. In addition, this study shows that this difference depends on age and anatomical site and that it also differs between different ethnic groups from East Asia. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Physical and Chemical Processes in Turbulent Flames
2015-06-23
positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if
Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael
Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less
Wrinkle-free design of thin membrane structures using stress-based topology optimization
NASA Astrophysics Data System (ADS)
Luo, Yangjun; Xing, Jian; Niu, Yanzhuang; Li, Ming; Kang, Zhan
2017-05-01
Thin membrane structures would experience wrinkling due to local buckling deformation when compressive stresses are induced in some regions. Using the stress criterion for membranes in wrinkled and taut states, this paper proposed a new stress-based topology optimization methodology to seek the optimal wrinkle-free design of macro-scale thin membrane structures under stretching. Based on the continuum model and linearly elastic assumption in the taut state, the optimization problem is defined as to maximize the structural stiffness under membrane area and principal stress constraints. In order to make the problem computationally tractable, the stress constraints are reformulated into equivalent ones and relaxed by a cosine-type relaxation scheme. The reformulated optimization problem is solved by a standard gradient-based algorithm with the adjoint-variable sensitivity analysis. Several examples with post-bulking simulations and experimental tests are given to demonstrate the effectiveness of the proposed optimization model for eliminating stress-related wrinkles in the novel design of thin membrane structures.
Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets
Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael; ...
2015-05-11
Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping ismore » achieved using a large-angle tilt-series of electron diffraction patterns. As a result, application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness.« less
Development of a benchmark factor to detect wrinkles in bending parts
NASA Astrophysics Data System (ADS)
Engel, Bernd; Zehner, Bernd-Uwe; Mathes, Christian; Kuhnhen, Christopher
2013-12-01
The rotary draw bending process finds special use in the bending of parts with small bending radii. Due to the support of the forming zone during the bending process, semi-finished products with small wall thicknesses can be bent. One typical quality characteristic is the emergence of corrugations and wrinkles at the inside arc. Presently, the standard for the evaluation of wrinkles is insufficient. The wrinkles' distribution along the longitudinal axis of the tube results in an average value [1]. An evaluation of the wrinkles is not carried out. Due to the lack of an adequate basis of assessment, coordination problems between customers and suppliers occur. They result from an imprecision caused by the lack of quantitative evaluability of the geometric deviations at the inside arc. The benchmark factor for the inside arc presented in this article is an approach to holistically evaluate the geometric deviations at the inside arc. The classification of geometric deviations is carried out according to the area of the geometric characteristics and the respective flank angles.
Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering
NASA Astrophysics Data System (ADS)
Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore
2013-03-01
We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.
Lee, Seung Goo; Kim, Haena; Choi, Hyun Ho; Bong, Hyojin; Park, Yeong Don; Lee, Wi Hyoung; Cho, Kilwon
2013-04-18
The evaporation-induced self-alignment of semiconductor nanowires is achieved using wrinkled elastomeric templates. The wrinkled templates, which have a surface topography that can be tuned via changes in the mechanical strain, are used as both a template to align the nanowires and as a stamp to transfer the aligned nanowires to target substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets
NASA Astrophysics Data System (ADS)
Ma, Yu-Lan; Li, Bang-Qing
2018-03-01
The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla
2017-01-01
Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal. PMID:28211898
An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young
2013-12-01
Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gabardo, Christine M.; Adams-McGavin, Robert C.; Fung, Barnabas C.; Mahoney, Eric J.; Fang, Qiyin; Soleymani, Leyla
2017-02-01
Three-dimensional electrodes that are controllable over multiple lengthscales are very important for use in bioanalytical systems that integrate solid-phase devices with solution-phase samples. Here we present a fabrication method based on all-solution-processing and thin film wrinkling using smart polymers that is ideal for rapid prototyping of tunable three-dimensional electrodes and is extendable to large volume manufacturing. Although all-solution-processing is an attractive alternative to vapor-based techniques for low-cost manufacturing of electrodes, it often results in films suffering from low conductivity and poor substrate adhesion. These limitations are addressed here by using a smart polymer to create a conformal layer of overlapping wrinkles on the substrate to shorten the current path and embed the conductor onto the polymer layer. The structural evolution of these wrinkled electrodes, deposited by electroless deposition onto a nanoparticle seed layer, is studied at varying deposition times to understand its effects on structural parameters such as porosity, wrinkle wavelength and height. Furthermore, the effect of structural parameters on functional properties such as electro-active surface area and surface-enhanced Raman scattering is investigated. It is found that wrinkling of electroless-deposited thin films can be used to reduce sheet resistance, increase surface area, and enhance the surface-enhanced Raman scattering signal.
Home-use TriPollar RF device for facial skin tightening: Clinical study results.
Beilin, Ghislaine
2011-04-01
Professional, non-invasive, anti-aging treatments based on radio-frequency (RF) technologies are popular for skin tightening and improvement of wrinkles. A new home-use RF device for facial treatments has recently been developed based on TriPollar™ technology. To evaluate the STOP™ home-use device for facial skin tightening using objective and subjective methods. Twenty-three female subjects used the STOP at home for a period of 6 weeks followed by a maintenance period of 6 weeks. Facial skin characteristics were objectively evaluated at baseline and at the end of the treatment and maintenance periods using a three-dimensional imaging system. Additionally, facial wrinkles were classified and subjects scored their satisfaction and sensations. Following STOP treatment, a statistically significant reduction of perioral and periorbital wrinkles was achieved in 90% and 95% of the patients, respectively, with an average periorbital wrinkle reduction of 41%. This objective result correlated well with the periorbital wrinkle classification result of 40%. All patients were satisfied to extremely satisfied with the treatments and all reported moderate to excellent visible results. The clinical study demonstrated the safety and efficacy of the STOP home-use device for facial skin tightening. Treatment can maintain a tighter and suppler skin with improvement of fine lines and wrinkles.
NASA Astrophysics Data System (ADS)
Chen, Zhongbi; Krishnaswamy, Sridhar
2014-03-01
In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.
Prototype tactile feedback system for examination by skin touch.
Lee, O; Lee, K; Oh, C; Kim, K; Kim, M
2014-08-01
Diagnosis of conditions such as psoriasis and atopic dermatitis, in the case of induration, involves palpating the infected area via hands and then selecting a ratings score. However, the score is determined based on the tester's experience and standards, making it subjective. To provide tactile feedback on the skin, we developed a prototype tactile feedback system to simulate skin wrinkles with PHANToM OMNI. To provide the user with tactile feedback on skin wrinkles, a visual and haptic Augmented Reality system was developed. First, a pair of stereo skin images obtained by a stereo camera generates a disparity map of skin wrinkles. Second, the generated disparity map is sent to an implemented tactile rendering algorithm that computes a reaction force according to the user's interaction with the skin image. We first obtained a stereo image of skin wrinkles from the in vivo stereo imaging system, which has a baseline of 50.8 μm, and obtained the disparity map with a graph cuts algorithm. The left image is displayed on the monitor to enable the user to recognize the location visually. The disparity map of the skin wrinkle image sends skin wrinkle information as a tactile response to the user through a haptic device. We successfully developed a tactile feedback system for virtual skin wrinkle simulation by means of a commercialized haptic device that provides the user with a single point of contact to feel the surface roughness of a virtual skin sample. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The use of optical coherence tomography to analyze the efficacy of skin care products
NASA Astrophysics Data System (ADS)
Irani, Sarosh; Turani, Zahra; Fotouhi, Audrey; Daveluy, Steven; Mehregan, Darius; Chen, Wei; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-02-01
In this study, we assess the applicability of optical coherence tomography (OCT) for non-invasive imaging of skin morphology for the assessment of efficacy of cosmetic skin wrinkle-reduction products in humans. Evaluation of skin care products for reduction of facial wrinkles is largely limited to photographic (non-quantitative) comparison of skin surface texture before and after either single or prolonged application of skin care product. OCT could be a technique for monitoring changes in cross-sectional skin morphology. An optical attenuation coefficient analysis is also carried out to quantitatively study the changes in different layers of the skin.
Wang, Jun; Chen, Baoliang; Xing, Baoshan
2016-04-05
To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.
Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines
Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.
2013-01-01
ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. PMID:23362320
Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M
2017-10-21
We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.
NASA Astrophysics Data System (ADS)
Chung, Jun Young; Douglas, Jack F.; Stafford, Christopher M.
2017-10-01
We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition Tg by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and Tg (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below Tg, indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature—both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.
Strike-slip faulting of ridged plains near Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Schultz, R. A.
1989-10-01
This paper identifies and documents several well-preserved examples of Martian strike-slip faults and examines their relationships to wrinkle-ridges. The strike-slip faulting predates or overlaps periods of wrinkle-ridge growth southeast of Valles Marineris, and some wrinkle ridges may have nucleated and grown as a result of strike-slip displacements along the echelon fault arrays. Lateral displacements of several km inferred along these arrays may be related to tectonism in Tharsis.
Hwang, Young Ji; Lee, Yu Na; Lee, Yang Won; Choe, Yong Beom; Ahn, Kyu Joong
2013-11-01
Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians.
Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.
Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai
2017-08-01
Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN < WGN-1 < WGN-2. This suggests that the reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.
Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.
2006-01-01
Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.
Wrinkle-free atomically thin CdS nanosheets for photocatalytic hydrogen evolution
NASA Astrophysics Data System (ADS)
Pan, Ziwei; Li, Junnan; Zhou, Kebin
2018-05-01
Two-dimensional (2D) nanosheets of atomic thickness have attracted extensive research interest recently. In this work, atomically thin (0.7 nm) flat CdS (F-CdS) nanosheets of several tens of micrometers in lateral size were synthesized by a solvent-thermal method. The as-synthesized F-CdS could maintain flat morphology well in solution, while irreversible wrinkles could be generated after drying, forming wrinkled CdS (W-CdS) samples. It was revealed that the formation of wrinkles could reduce light absorbance, narrow the band gap, move down the conduction band position and accelerate electron–hole recombination. As photocatalysts, the F-CdS achieved a photocatalytic H2 evolution rate of 138.7 mmol g‑1 h‑1 without any co-catalyst under visible light, which was much higher than that of the W-CdS sample (with an H2 evolution rate of only 52.8 mmol g‑1 h‑1). This work demonstrates that great attention should be paid to the wrinkles in 2D materials as photocatalysts.
Son, Woo-Chan; Yun, Jun-Won; Kim, Bae-Hwan
2015-01-01
Adipose-derived mesenchymal stem cells (AdMSCs) have been reported to have therapeutic benefit in skin. The aim of this study was to examine the effects of AdMSCs in UV-irradiated human dermal fibroblasts (HDFs) for therapeutic potential in skin wrinkling. UV irradiation, a model naturally mimic skin wrinkle formation, is known to increase matrix metalloproteinase-1 (MMP-1), making MMP-1 a target for skin photoaging. Our findings identified that AdMSCs reduce MMP-1 level in UV-irradiated HDFs and increase type 1 procollagen in HDFs. A dose-dependent increase in type 1 procollagen was confirmed by AdMSC-conditioned medium. Importantly, our current findings showing the effects of AdMSCs on the induction of MMP-1 in UV-radiated HDFs and the expression of collagen in HDFs can provide an evidence of relationship between MMP-1 and procollagen production for the protection against wrinkle formation. Collectively, AdMSCs may contribute to anti-wrinkle effects in skin but further experiments are needed to identify the mechanism.
Wrinkling instability in graphene supported on nanoparticle-patterned SiO2
NASA Astrophysics Data System (ADS)
Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Einstein, Theodore; Fuhrer, Michael
2012-02-01
Atomically-thin graphene is arguably the thinnest possible mechanical membrane: graphene's effective thickness (the thickness of an isotropic continuum slab which would have the same elastic and bending stiffness) is significantly less than 1 å, indicating that graphene can distort out-of-plane to conform to sub-nanometer features. Here we study the elastic response of graphene supported on a SiO2 substrate covered with SiO2 nanoparticles. At a low density of nanoparticles, graphene is largely pinned to the substrate due to adhesive interaction. However, with increasing nanoparticle density, graphene's elasticity dominates adhesion and strain is relieved by the formation of wrinkles which connect peaks introduced by the supporting nanoparticles. At a critical density, the wrinkles percolate, resulting in a wrinkle network. We develop a simple elastic model allowing for adhesion which accurately predicts the critical spacing between nanoparticles for wrinkle formation. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.
Wrinkling of Stretched Films: Shear Stress
NASA Technical Reports Server (NTRS)
Zak, M. A.
1982-01-01
Report presents theoretical investigation on nonlinear shearing characteristics of wrinkling films under applied shear stress. Report helps explain force/deflection characteristic of in-planeboom and solar-array blanket structural combinations.
NASA Technical Reports Server (NTRS)
Watters, Thomas R.; Tuttle, Michael J.; Simpson, Debra
1991-01-01
Wrinkle ridge-upland scarp transitions are structures that occur at the contact between smooth plains material and highlands or uplands materials on the Moon and Mars. In the smooth plains material the structures have a morphology typical of wrinkle ridges, interpreted to be the result of a combination of folding and thrust faulting. Where the structures extend into the uplands, a distinct change in the morphology occurs. The generally asymmetric cross sectional geometry characteristics of wrinkle ridges becomes that of a one-sided, often lobate scarp. The scarp is indistinguishable from other highland/upland scarps, interpreted to be the result of reverse or thrust faulting. Although these structures are rare, they provide important insight into the mechanical properties of deformed materials. These insights are discussed.
The Effect in Topical Use of Lycogen(TM) via Sonophoresis for Anti-aging on Facial Skin.
Hsin-Ti, Lai; Wen-Sheng, Liu; Yi-Chia, Wu; Ya-Wei, Lai; Wen, Zhi-Hong; David, Wang Hui-Min; Su-Shin, Lee
2015-01-01
Anti-aging skin care is a growing popular topic in cosmetic and aesthetic fields, and skin care rather then makeup tips draw more attention nowadays. The phenomenon of skin aging includes thinning of skin losses of elasticity and moisture, pigmented spot formation, and wrinkle development. Along with growth in age, the decreased rates of epithelium renewal and cellular recovery as well as the reduced contents of elastin, collagen, and glycosaminoglycans all contribute to creases or folds of skin. Available strategies for wrinkle treatments include topical use of skin care products with anti-aging contents, dermabrasion, laser, Botox injection, fillers injection, and facelift. Though all of these above options can provide different degrees of improvement in facial wrinkles, the cost-effect, pain of intervention therapy, and necessity of repetitive treatment may impact on choices made. Topical use of anti-aging skin products is the most convenient and cheap way to achieve skin anti-aging effect. Lycogen(TM) is an antioxidant, which can prevent the downregulation of pro-collagen I, intracellular accumulation of malondialdehyde (MDA) and achieve the aim of skin rejuvenation. Twenty-six female patients were included in our study with ages between 30 and 45. They were randomly assigned to two groups: the vehicle control group and the experimental group. Patients in the control group applied a skin care product without Lycogen(TM)to the face via sonophoresis after facial cleanser use in the morning and at night. The experimental group applied a Lycogen(TM) -containing skin care product via sonophoresis in the same time schedule. We evaluated results, including pigmented spots, wrinkles, texture, pores, and red area by VISIA on weeks 0, 1, 2, 4, 6, 8, and 10 respectively. In the aspect of pigmented spots, the experimental group showed significant difference in comparison with the vehicle control group on weeks 2, 6, 8, and 10. For wrinkles, the experimental group had better results on weeks 1, 2, 4, 8, and 10. Measured by texture, the experimental group had better results on weeks 1, 2, 4, 6, 8, and 10. Determined by pores, the experimental group had better results on weeks 2, 4, 6, 8, and 10. Concerning red areas, the experimental group had better results on weeks 6, 8, and 10. (p < 0.05). In our study, we applied a Lycogen(TM)- containing product by sonophoresis as the experimental group in comparison with a skin care product without LycogenTM. VISIA (Canfield Imaging Systems, Fairfield, NJ) was used to evaluate facial skin in aspects of pigmented spots, wrinkles, texture, pores, and red area. Overall, Lycogen(TM) had proven effectiveness on anti-oxidation as patients who used the Lycogen TM -containing product had better outcomes.
Accurately Assessing Lines on the Aging Face.
Renton, Kim; Keefe, Kathy Young
The ongoing positive aging trend has resulted in many research studies being conducted to determine the characteristics of aging and what steps we can take to prevent the extrinsic signs of aging. Much of this attention has been focused on the prevention and treatment of facial wrinkles. To treat or prevent facial wrinkles correctly, their causative action first needs to be determined. published very compelling evidence that the development of wrinkles is complex and is caused by more factors than just the combination of poor lifestyle choices.
Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics.
Qin, Zhao; Taylor, Michael; Hwang, Mary; Bertoldi, Katia; Buehler, Markus J
2014-11-12
Graphene has attracted intense attention to the use in extreme applications. However, its small thickness facilitates wrinkle formation, and it is not clear how such structural change affects its area-specific capacitance. Herein, we combine molecular dynamics and continuum mechanics-based simulations to study the changes in surface area induced by wrinkles. We find that the high specific surface area of graphene can only be affected up to 2% regardless of loading conditions, geometry, and defects.
Gold, Alan H; Pozner, Jason; Weiss, Robert
2016-10-01
A variety of techniques and energy-based technologies are currently utilized for the treatment of facial wrinkles. Fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light have both been reported to be safe and effective for the non-invasive treatment of wrinkles and overall facial rejuvenation. A multicenter, prospective clinical trial evaluated a protocol of treatment with a device incorporating bipolar radiofrequency and infrared light followed by treatment with a fractional bipolar radiofrequency device for facial wrinkle reduction and improvement in the overall appearance of aged facial skin. Fifty-six patients with mild to moderate facial wrinkles received three full-face treatments (forehead, nose, cheeks, periorbital, and perioral areas) at 4 to 6 week intervals and were evaluated at 12 and 24 weeks after the last treatment. Clinical photographs at baseline and follow-ups were assessed by both the investigators and patients using the Global Aesthetic Improvement scale. Treatment safety was evaluated. Study participants also completed a satisfaction and improvement questionnaire. Fitzpatrick Wrinkling and Elastosis Score was decreased significantly at three months (P < .01; paired t test) and at six months (P < .001; paired t test) after the final treatment. Investigators' assessments of overall improvement in facial appearance, demonstrated 88% improvement at 12 weeks and 82% at 24 weeks after the final treatment. Subject evaluations were similar, consistently reporting improvement in wrinkles and overall facial skin appearance throughout the study, and high a degree of satisfaction with their final results. Subjects tolerated the procedures well, with only transient mild to moderate erythema and edema occurring in most patients, and without complications. A combined protocol of bipolar radiofrequency and infrared light treatment followed by fractionated bipolar radiofrequency treatment results in safe, well tolerated, and effective improvement in overall skin tone and texture and reduction of facial wrinkles. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Tretinoin for the treatment of photodamaged skin.
Ting, William
2010-07-01
Interest in and interventions for photodamaged skin have dramatically increased over the last few years. Although a number of topical therapies have been used for the treatment of photodamaged skin, many therapies remain unproven in efficacy, unapproved, or only supported with limited clinical evidence. Topical retinoids, particularly tretinoin, are the most extensively studied. They have been shown to attenuate and reverse the signs of photodamage, such as coarse wrinkling. In addition, the clinical changes achieved with tretinoin are accompanied by histologic evidence of benefit. The main drawbacks to retinoid use are local irritation and erythema that can limit utility in some patients. New retinoids and formulations specifically optimized to improve cutaneous tolerability have been introduced. Two case reports of patients using low-concentration tretinoin gel 0.05% for the treatment of photodamaged skin are discussed. Over a relatively short treatment period of 4 weeks, tretinoin gel 0.05% was shown to provide both chemoprevention and reversal of photodamage.
NASA Technical Reports Server (NTRS)
Zak, M.
1982-01-01
An analytical investigation of the equilibrium of wrinkling films is conducted. Zak (1979) has shown that wrinkling occurs in connection with the instability of a smooth film having no resistance to bending in the case of compression. The governing equation for the equilibrium of a film with possible regions of wrinkling is considered. The introduction of fictitious stress reduces the governing equation to a form which formally coincides with the governing equation for a string. Equilibrium conditions in the case of an absence of external forces are explored, taking into account the stretching of a semispherical film, the torsion of a convex film of revolution, and stress singularities. A study is conducted of the equilibrium under conditions in which external forces normal to the surface of a film are present. Attention is also given to the equilibrium in a potential field.
Hwang, Young Ji; Lee, Yu Na; Choe, Yong Beom; Ahn, Kyu Joong
2013-01-01
Background Although ablative fractional resurfacing is known to be effective against photoaging and acne scars, studies on its efficacy, safety and changes in the skin characteristics of Asians are limited. Objective The aim of this study is to assess the efficacy and safety of carbon dioxide fractional laser (CO2FL) in Koreans treated for wrinkles and acne scars, and to define the changes in skin characteristics during recovery period. Methods We administered one session of CO2FL on 10 acne scar patients and 14 wrinkles patients with skin types IV and V. The surveillance of efficacy and side effects along with the measurement of biophysical properties was carried out before 1 day, 1 week, 1 month and 3 months after treatment. Results Using a non-invasive method, skin barrier damage, erythema and bronzing of skin during the recovery period were assessed, and all of the items eventually returned to the pre-treatment level. Skin elasticity was measured in the wrinkle group, and the statistically significant effect was sustained throughout the next three months. The outcome of treatment was found to be better than 'moderate improvement' in both the acne scar and wrinkle groups. Further, there were no serious side effects three months post-procedure. Conclusion CO2 FL is thought to be an effective and safe method for treating moderate to severe acne scars and wrinkles in Asians. PMID:24371392
Wrinkling Phenomena to Explain Vertical Fold Defects in DC-Cast Al-Mg4.5
NASA Astrophysics Data System (ADS)
Davis, J. Lee; Mendez, Patricio F.
Some aluminum ingots cast by the direct chill method are subject to surface defects on the molten ingot head during casting while others are not. These defects -commonly called "vertical folds" -are frozen into the casting and must be removed prior to rolling. Vertical folds are found on top of the molten ingot surface where areas of thin oxide are (a) bounded by physical constraints and (b) stretched. Physical constraints include (1) substantially thicker oxide or (2) a refractory skim ring adjacent to the thin oxide. The mechanism of wrinkling is suggested for the formation of vertical folds. Wrinkling behavior is described by physical expressions for an elastic sheet in tension whose behavior depends upon thickness h, length L, Young's modulus E, and Poisson's ratio v. The depth and frequency of folds in the thin, elastic sheet parallel to the tensile axis between the two "constraints" can be calculated from these parameters. The observed frequency (and amplitude) of vertical folds in DC-cast aluminum has been found to obey similar wrinkling laws. The frequency-dependence (λ) is examined and found to be related to classic wrinkling parameters but with significant scaling deviations. These deviations may be related to the pseudo-plasticity (self-healing behavior) of the oxide film on the molten surface. A wrinkling model coupled with pseudo-plasticity predicts subtle behaviors in DC casting of Al-Mg4.5 that are not explained by other theories.
Harnessing Disorder in Compression Based Nanofabrication
NASA Astrophysics Data System (ADS)
Engel, Clifford John
The future of nanotechnologies depends on the successful development of versatile, low-cost techniques for patterning micro- and nanoarchitectures. While most approaches to nanofabrication have focused primarily on making periodic structures at ever smaller length scales with an ultimate goal of massively scaling their production, I have focused on introducing control into relatively disordered nanofabrication systems. Well-ordered patterns are increasingly unnecessary for a growing range of applications, from anti-biofouling coatings to light trapping to omniphobic surfaces. The ability to manipulate disorder, at will and over multiple length scales, starting with the nanoscale, can open new prospects for textured substrates and unconventional applications. Taking advantage of previously considered defects; I have been able to develop nanofabrication techniques with potential for massive scalability and the incorporation into a wide range of potential application. This thesis first describes the manipulation of the non-Newtonian properties of liquid Ga and Ga alloys to confine the metal and metal alloys in gratings with sub-wavelength periodicities. Through a solid to liquid phase change, I was able to access the superior plasmonic properties of liquid Ga for the generation of surface plasmon polaritons (SPP). The switching contract between solid and liquid Ga confine in the nanogratings allowed for reversible manipulation of SPP properties through heating and cooling around the relatively low melting temperature of Ga (29.8 °C). The remaining chapters focus on the development and characterization of an all polymer wrinkle material system. Wrinkles, spontaneous disordered features that are produced in response to compressive force, are an ideal for a growing number of applications where fine feature control is no longer the main motivation. However the mechanical limitations of many wrinkle systems have restricted the potential applications of wrinkled surfaces. We developed a wrinkle material system that could be both tuned in feature size from as small as 30 nm up 10 ?m while maximizing the wrinkle amplitude at all wavelengths. By charactering the material properties of both the skin and substrate, we were able to generate wrinkle patterns with fine control over periodicity, amplitude, and orientation. The final chapters of this thesis focuses on the transfer of the wrinkle structure into functional materials aimed at manipulating biological adhesion of cells, optical absorption of solar cells, and sensor sensitivity of Raman substrates. The success of these applications was directly relative to the capabilities of our wrinkle system in controlling the surface chemistry, tuning the periodicity, and maximizing the amplitude for each application.
Messaraa, C; Metois, A; Walsh, M; Hurley, S; Doyle, L; Mansfield, A; O'Connor, C; Mavon, A
2018-01-24
Skin topographic measurements are of paramount importance in the field of dermo-cosmetic evaluation. The aim of this study was to investigate how the Antera 3D, a multi-purpose handheld camera, correlates with other topographic techniques and changes in skin topography following the use of a cosmetic product. Skin topographic measurements were collected on 26 female volunteers aged 45-70 years with the Antera 3D, the DermaTOP and image analysis on parallel-polarized pictures. Different filters for analysis from the Antera 3D were investigated for repeatability, correlations with other imaging techniques and ability to detect improvements of skin topography following application of a serum. Most of Antera 3D parameters were found to be strongly correlated with the DermaTOP parameters. No association was found between the Antera 3D parameters and measurements on parallel-polarized photographs. The measurements repeatability was comparable among the different filters for analysis, with the exception of wrinkle max depth and roughness Rt. Following a single application of a tightening serum, both Antera 3D wrinkles and texture parameters were able to record significant improvements, with the best improvements observed with the large filter. The Antera 3D demonstrated its relevance for cosmetic product evaluation. We also provide recommendations for the analysis based on our findings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Monheit, Gary D; Gendler, Ellen C; Poff, Bradley; Fleming, Laura; Bachtell, Nathan; Garcia, Emily; Burkholder, David
2010-11-01
Various scoring techniques prone to subjective interpretation have been used to evaluate soft tissue augmentation of nasolabial folds (NLFs). To design and validate a reliable wrinkle assessment scoring scale. Six photographed wrinkles of varying severity were electronically copied onto the same facial image to become a 6-point grading scale (GGS). A pilot training program (13 investigators) determined reliability, and a 12-week multicenter survey study validated the GGS scoring method. Pilot study inter- and intrarater scoring reliability were high (weighted kappa scores of 0.85 and 0.86, respectively). Seventy-five percent of survey investigators and independent review panel (IRP) members considered a GGS score difference of 0.5 to be a minimally perceivable difference. Interrater weighted kappa scores were 0.91 for the IRP and 0.80 for investigators. Intrarater agreements after repeat testing were 0.91 and 0.89, respectively. The baseline "live" assessment GGS mean score was 3.34, and the baseline blinded photographic assessment GGS mean score was 2.00 for the IRP and 2.16 for the investigators. The GGS is a reproducible method of grading the severity of NLF wrinkles. Treatment effectiveness of a dermal filler can be reliably evaluated using the GGS by comparing "live" assessments with the standard GGS photographic panel. © 2010 by the American Society for Dermatologic Surgery, Inc.
Mechanics of fluid flow over compliant wrinkled polymeric surfaces
NASA Astrophysics Data System (ADS)
Raayai, Shabnam; McKinley, Gareth; Boyce, Mary
2014-03-01
Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.
NASA Astrophysics Data System (ADS)
Wei, Yun-Yun; Sun, Xiao-Ting; Xu, Zhang-Run
2018-07-01
Wrinkled structures can provide enlarged surface areas for some living organisms to ingest nutrients. Imitating biological wrinkle structures offers an efficient way to enhance the adsorption surface for removing hazardous pollutants in wastewater. In this work, poly-(ethylene glycol) double acrylate (PEGDA)/TiO2 composite film with tunable surface wrinkles was synthesized. TiO2 nanoparticles were evenly immobilized in the PEGDA hydrogel simply by a facile photopolymerization method within 700 ms. Various wrinkle morphologies were obtained by precisely controlling UV exposure time. The composite film was characterized by X-ray diffraction, scanning electron microscopy, diffuse reflection spectroscopy, etc. Congo red was chosen as a model pollutant to demonstrate the adsorption and degradation capacity of the composite film. The experimental results showed that the introduction of wrinkled polymer improved the dispersibility of TiO2 nanoparticles. The removal efficiency reached 100% after 180-min adsorption in the darkness and 180-min UV irradiation. The composite film exhibited a much higher enrichment and photocatalysis capacity than the pure TiO2 powder, and could be developed as a reusable film for the removal of the organic pollutants in wastewater.
Liao, Chuh-Kai; Tsai, Feng-Chou; Fong, Tsorng-Harn; Huang, Chin-Ju; Shen, Yi-Chin; Ku, Yuan-Hao; Su, Ching-Hua
2013-12-01
In this study, we analyzed the key parameters of modified transcutaneous lower blepharoplasty based on multidisciplinary principles (biochemical findings and biophysical wrinkling theory). A total of 408 female patients received our subciliary lower blepharoplasty between March 2002 and January 2010. The severity of the eyebags (dynamic wrinkle numbers and prolapse) was evaluated through preoperative and postoperative photography, whereas the excised lower eyelid skin specimens from 56 patients were investigated with hematoxylin and eosin staining. The modified techniques produced significant improvements in the severity of eyebags in all age groups (P < 0.001). Poor surgical outcome was found to correlate significantly with preoperative dynamic wrinkle numbers (P < 0.001). Age, dynamic wrinkle numbers, and prolapse correlated significantly with dermal fiber density (P = 0.004, 0.000, and 0.000, respectively) but not epidermal, rete ridge, and dermal thickness or the number of rete ridges. In conclusion, modified transcutaneous lower blepharoplasty provides significant improvement to dynamic wrinkles and prolapse in the eyebags. Periorbital aging progressively disturbs the dermal compactness (fiber density) until the structure can no longer hold its integrity at the critical age (around the age of 40).
Yoon, Hyun-Sun; Kim, Jong Rhan; Park, Gyeong Yul; Kim, Jong-Eun; Lee, Dong Hun; Lee, Ki Won; Chung, Jin Ho
2016-01-01
The consumption of dietary antioxidants is considered to be a good strategy against photo-aging. However, the results of previous clinical trials that investigated the effects of oral consumption of high-flavanol cocoa products on skin photo-aging have been contradictory. The aim of this study was to investigate whether high-flavanol cocoa supplementation would improve the moderately photo-aged facial skin of female participants, by assessing skin wrinkles and elasticity. We performed a 24-wk, randomized, double-blind, placebo-controlled study to evaluate the effects of oral supplementation of cocoa flavanols on cutaneous photo-aging. All participants were moderately photo-aged Korean women with visible facial wrinkles (age range: 43-86 y). Participants were randomly assigned to receive a placebo beverage or cocoa beverage that contained 320 mg total cocoa flavanols/d. We measured wrinkles, skin elasticity, and hydration at baseline and at 12 and 24 wk. The primary endpoint was the mean percentage change in the average roughness value (Rz) at 24 wk. At 24 wk, the mean percentage change in Rz (primary endpoint) was significantly lower in the cocoa group than in the placebo group (-8.7 percentage points; 95% CI: -16.1, -1.3 percentage points; P = 0.023). The mean percentage changes in gross elasticity, as determined by a cutometer, also differed between the groups at 12 wk (9.1 percentage points; 95% CI: 1.5, 16.7 percentage points; P = 0.020) and 24 wk (8.6 percentage points; 95% CI: 1.0, 16.2 percentage points; P = 0.027). However, there were no significant differences in skin hydration and barrier integrity between the 2 groups. In moderately photo-aged women, regular cocoa flavanol consumption had positive effects on facial wrinkles and elasticity. Cocoa flavanol supplementation may contribute to the prevention of the progression of photo-aging. This trial was registered at clinicaltrials.gov as NCT02060097. © 2016 American Society for Nutrition.
Wrinkle ridges in the floor material of Kasei Valles, Mars: Nature and origin
NASA Technical Reports Server (NTRS)
Watters, Thomas R.; Craddock, Robert A.
1991-01-01
Wrinkle ridges on Mars occur almost exclusively in smooth plains material referred to as ridged plains. One of the largest contiguous units of ridged plains occurs on Lunae Planum on the eastern flank of the Tharsis rise. The eastern, western, and northern margins of the ridged plains of Lunae Planum suffered extensive erosion in early Amazonian channel-forming events. The most dramatic example of erosion in early Amazonian plains is in Kasei Valles. The nature an origin of the wrinkle ridges in the floor material of Kasei Valles are discussed.
NASA Astrophysics Data System (ADS)
Nketsia-Tabiri, Josephine
1998-06-01
The effects of pre-irradiation storage time (7-21 days), radiation dose (0-75 Gy) and post-irradiation storage time (2-20 weeks) on sprouting, wrinkling and weight loss of ginger was investigated using a central composite rotatable design. Predictive models developed for all three responses were highly significant. Weight loss and wrinkling decreased as pre-irradiation storage time increased. Dose and post-irradiation storage time had significant interactive effects on weight loss and sprouting. Processing conditions for achieving minimal sprouting resulted in maximum weight loss and wrinkling.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Ni, Yuheng; Liu, Chunli
2018-04-01
Wrinkle ridges are complex thrust faults commonly found in lunar mare basalts and caused by compressional stresses from both local basin and global Moon. In this paper, we select 59 single wrinkle ridges in Mare Serenitatis and 39 single wrinkle ridges in Mare Tranquillitatis according to WAC mosaic image. For each wrinkle ridge, several topographic profiles near its midpoint are generated to measure its height and maximum displacement (Dmax) through LOLA DEM data. Then we make 2D plots of displacement-length (L) for ridge population in the two maria. The Dmax-L ratios (γ) are derived by a linear fit method according to the D-L data. The γ value (2.13 × 10-2) of ridges in Mare Tranquillitatis is higher than the γ value (1.73 × 10-2) of ridges in Mare Serenitatis. In the last, the contractional strains (ε) in Mare Serenitatis and Mare Tranquillitatis are estimated to be ∼0.36% and 0.14% (assuming the fault plane dip θ is 25°). The values of the free-air gravity anomalies in Mare Serenitatis range from 78 to 358 mGal higher than those of the gravity anomalies in Mare Tranquillitatis which range from -70 to 120 mGal. The average thickness of basalts in Mare Tranquillitatis is 400 m, while that of basalts in Mare Serenitatis is 798 m. Moreover, the average age for ridge group in Mare Serenitatis is bigger than the wrinkle ridge's age in Mare Tranquillitatis. The formation of ridge group in Mare Serenitatis takes longer time than that in Mare Serenitatis. Therefore, we think the higher value of gravity anomalies, thicker basaltic units and longer formation time for wrinkle ridge in Mare Serenitatis maybe result in the higher value of contractional strain, although the formation of Tranquillitatis basin is earlier than that of Serenitatis basin.
Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K
2014-02-26
Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to dynamically tune the highly ordered herringbone patterning through mechanical stretching or other actuation makes these wrinkles excellent candidates for tunable multifunctional surfaces properties such as reflectivity, friction, anisotropic liquid flow or boundary layer control.
Buckling of Aluminium Sheet Components
NASA Astrophysics Data System (ADS)
Hegadekatte, Vishwanath; Shi, Yihai; Nardini, Dubravko
Wrinkling is one of the major defects in sheet metal forming processes. It may become a serious obstacle to implementing the forming process and assembling the parts, and may also play a significant role in the wear of the tool. Wrinkling is essentially a local buckling phenomenon that results from compressive stresses (compressive instability) e.g., in the hoop direction for axi-symmetric systems such as beverage cans. Modern beverage can is a highly engineered product with a complex geometry. Therefore in order to understand wrinkling in such a complex system, we have started by studying wrinkling with the Yoshida buckling test. Further, we have studied the buckling of ideal and dented beverage cans under axial loading by laboratory testing. We have modelled the laboratory tests and also the imperfection sensitivity of the two systems using finite element method and the predictions are in qualitative agreement with experimental data.
Wrinkling reduction of membrane structure by trimming edges
NASA Astrophysics Data System (ADS)
Liu, Mingjun; Huang, Jin; Liu, Mingyue
2017-05-01
Thin membranes have negligible bending stiffness, compressive stresses inevitably lead to wrinkling. Therefore, it is important to keep the surface of membrane structures flat in order to guarantee high precision. Edge-trimming is an effective method to passively diminish wrinkles, however a key difficulty in this process is the determination of the optimal trimming level. In this paper, regular polygonal membrane structures subjected to equal radial forces were analyzed, and a new stress field distribution model for arc-edge square membrane structure was proposed to predict the optimal trimming level. This model is simple and applicable to any polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model accurately described the stress field distribution and guaranteed that there are no wrinkles appear inside the effective inscribed circle region for the optimal trimming level.
Compressive strain in Lunae Planum-shortening across wrinkle ridges
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1991-01-01
Wrinkle ridges have long been considered to be structural or structurally controlled features. Most, but not all, recent studies have converged on a model in which wrinkle ridges are structural features formed under compressive stress; the deformation being accommodated by faulting and folding. Given that wrinkle ridges are compressive tectonic features, an analysis of the associated shortening and strain provides important quantitative information about local and regional deformation. Lunae Planum is dominated by north-south trending ridges extending from Kasei Valles in the north to Valles Marineris in the south. To quantify the morphometric character, a photoclinometric study was undertaken for ridges on Lunae Planum using the Davis and Soderblom. More than 25 ridges were examined between long. 57 and 80 deg, lat. 5 to 25 deg N. For each ridge, several profiles were obtained along its length. Ridge width, total relief, and elevation offset were measured for each ridge. Analyses are given.
Graphene in ohmic contact for both n-GaN and p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Haijian; Liu, Zhenghui; Shi, Lin
The wrinkles of single layer graphene contacted with either n-GaN or p-GaN were found both forming ohmic contacts investigated by conductive atomic force microscopy. The local I–V results show that some of the graphene wrinkles act as high-conductive channels and exhibiting ohmic behaviors compared with the flat regions with Schottky characteristics. We have studied the effects of the graphene wrinkles using density-functional-theory calculations. It is found that the standing and folded wrinkles with zigzag or armchair directions have a tendency to decrease or increase the local work function, respectively, pushing the local Fermi level towards n- or p-type GaN andmore » thus improving the transport properties. These results can benefit recent topical researches and applications for graphene as electrode material integrated in various semiconductor devices.« less
Wrinkled Few-Layer Graphene as Highly Efficient Load Bearer.
Androulidakis, Charalampos; Koukaras, Emmanuel N; Rahova, Jaroslava; Sampathkumar, Krishna; Parthenios, John; Papagelis, Konstantinos; Frank, Otakar; Galiotis, Costas
2017-08-09
Multilayered graphitic materials are not suitable as load-bearers due to their inherent weak interlayer bonding (for example, graphite is a solid lubricant in certain applications). This situation is largely improved when two-dimensional (2D) materials such as a monolayer (SLG) graphene are employed. The downside in these cases is the presence of thermally or mechanically induced wrinkles which are ubiquitous in 2D materials. Here we set out to examine the effect of extensive large wavelength/amplitude wrinkling on the stress transfer capabilities of exfoliated simply supported graphene flakes. Contrary to common belief we present clear evidence that this type of "corrugation" enhances the load-bearing capacity of few-layer graphene as compared to "flat" specimens. This effect is the result of the significant increase of the graphene/polymer interfacial shear stress per increment of applied strain due to wrinkling and paves the way for designing affordable graphene composites with highly improved stress-transfer efficiency.
Trelles, Mario A; Vélez, Mariano; Mordon, Serge
2008-03-01
Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat deposition in the upper dermis. When performing ablative fractional resurfacing with an Er:YAG laser, treatment of varying degrees of damage could be achieved by varying the number of passes. (c) 2008 Wiley-Liss, Inc.
From wrinkling to global buckling of a ring on a curved substrate
NASA Astrophysics Data System (ADS)
Lagrange, R.; López Jiménez, F.; Terwagne, D.; Brojan, M.; Reis, P. M.
2016-04-01
We present a combined analytical approach and numerical study on the stability of a ring bound to an annular elastic substrate, which contains a circular cavity. The system is loaded by depressurizing the inner cavity. The ring is modeled as an Euler-Bernoulli beam and its equilibrium equations are derived from the mechanical energy which takes into account both stretching and bending contributions. The curvature of the substrate is considered explicitly to model the work done by its reaction force on the ring. We distinguish two different instabilities: periodic wrinkling of the ring or global buckling of the structure. Our model provides an expression for the critical pressure, as well as a phase diagram that rationalizes the transition between instability modes. Towards assessing the role of curvature, we compare our results for the critical stress and the wrinkling wavelength to their planar counterparts. We show that the critical stress is insensitive to the curvature of the substrate, while the wavelength is only affected due to the permissible discrete values of the azimuthal wavenumber imposed by the geometry of the problem. Throughout, we contrast our analytical predictions against finite element simulations.
NASA Astrophysics Data System (ADS)
Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro
The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Adam M.; Driscoll, James F.
2009-12-15
The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configurationmore » were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)« less
Mata, Scott A; Bottjer, David J
2009-11-01
Wrinkle structures are microbially mediated sedimentary structures that are a common feature of Proterozoic and earliest Phanerozoic siliciclastic seafloors on Earth and occur only rarely in post-Cambrian strata. These macroscopic microbially induced sedimentary structures are readily identifiable at the outcrop scale, and their recognition on other planetary bodies by landed missions may suggest the presence of past microbial life. Wrinkle structures of the Lower Triassic (Spathian) Virgin Limestone Member of the Moenkopi Formation in the western United States record an occurrence of widespread microbialite formation in the wake of the end-Permian mass extinction, the largest biotic crisis of the Phanerozoic. Wrinkle structures occur on proximal sandy tempestites deposited within the offshore transition. Storm layers appear to have been rapidly colonized by microbial mats and were subsequently buried by mud during fair-weather conditions. Wrinkle structures exhibit flat-topped crests and sinuous troughs, with associated mica grains oriented parallel to bedding, suggestive of trapping and binding activity. Although Lower Triassic wrinkle structures postdate the widespread occurrence of these features during the Proterozoic and Cambrian, they exhibit many of the same characteristics and environmental trends, which suggests a conservation of microbial formational and preservational processes in subtidal siliciclastic settings on Earth from the Precambrian into the Phanerozoic. In the search for extraterrestrial life, it may be these conservative characteristics that prove to be the most useful and robust for recognizing microbial features on other planetary bodies, and may add to an ever-growing foundation of knowledge for directing future explorations aimed at seeking out macroscopic microbial signatures.
Chronology of wrinkle ridge formation and rate of crustal shortening on Lunae Planum, Mars
NASA Astrophysics Data System (ADS)
Karagoz, Oguzcan; Aksoy, M. Ersen; Erkeling, Gino
2017-04-01
The Lunae Planum, a plain between the Tharsis Montes and the Acidalia Planitia on Mars, represents a transitional zone from a volcanic rise to a lowland plain, respectively. From West to East at N20°, topography changes from 600 m to -750 m. Here, several wrinkle ridges that are compressional tectonic features formed by folding and thrust faulting [1], mark the surficial deformation of the martian crust. From the analysis of >25 wrinkle ridges in earlier studies a total shortening of ˜1840 m and a compressive strain of 0.29% has been suggested for the Lunae Planum [2]. In this study, we investigate the chronological order of geomorphic structures and determine the timing and duration of the crustal shortening of Lunae Planum. We use remote sensing mapping techniques [3] and crater size-frequency distribution measurements (CSFD) [e.g.,4,5]. In our analyses, we use HRSC (12.5 m/pixel), CTX (6 m/pixel) and HiRISE (0.3 m/pixel) satellite images and digital terrain models to document geomorphic structures such as wrinkles ridges, impact craters, crater ejecta blankets and intermontane plains. Our CSFD measurements of wrinkle ridges reveal an age distribution from 3.9 Ga to 3.0 Ga, with surfaces getting younger towards the East. Our findings are in accordance with earlier observations of greater shortening amounts towards the West (in older ridges) [2]. The age distribution of wrinkle ridges suggests a 9 Ma time interval for the proposed 1840 m horizontal shortening at a deformation rate of 2.04 x 10-3 mm/yr for compressional deformation on the Lunae Planum. [1] Watters, T.R., 2004, Elastic dislocation modeling of wrinkle ridges on Mars, Icarus, 171, 284-294. [2] Plescia, J.B., 1991.Wrinkle ridges in Lunae Planum, Mars: implications for shortening and strain. Geophys. Res. Lett. 18, 913-916. [3] Greeley, R. and Guest, J.E., 1987. Geologic map of the eastern equatorial region of Mars. USGS Miscellaneous Investigations Series Map. [4] Hartmann, W. K., and Neukum, G., 2001, Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165-194. [5] Ivanov, B., 2001, Mars / Moon cratering ration estimates. Space Sci. Rev. 96, 87-104.
NASA Astrophysics Data System (ADS)
Taber, Larry A.
2018-05-01
The folded structure of the human brain is a hallmark of our intelligence — an optimized packing of neurons into a confined space. Similar wrinkling in brain-on-a-chip experiments provides a way of understanding the physics of how this occurs.
Wrinkle Ridges and Young Fresh Crater
2002-06-04
This NASA Mars Odyssey image is of the ridged plains of Lunae Planum in the northern hemisphere of Mars. Wrinkle ridges, a very common landform on Mars, Mercury, Venus, and the Moon, are found mostly along the eastern side of the image.
Mucosal wrinkling in animal antra induced by volumetric growth
NASA Astrophysics Data System (ADS)
Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Yu, Shou-Wen
2011-04-01
Surface wrinkling of animal mucosas is crucial for the biological functions of some tissues, and the change in their surface patterns is a phenotypic characteristic of certain diseases. Here we develop a biomechanical model to study the relationship between morphogenesis and volumetric growth, either physiological or pathological, of mucosas. Theoretical analysis and numerical simulations are performed to unravel the critical characteristics of mucosal wrinkling in a spherical antrum. It is shown that the thicknesses and elastic moduli of mucosal and submucosal layers dictate the surface buckling morphology. The results hold clinical relevance for such diseases as inflammation and gastritis.
Choi, Sun Young; Hong, Ji Yeon; Ko, Eun Jung; Kim, Beom Joon; Hong, Sung-Woon; Lim, Mi Hyoung; Yeon, Sung Hum; Son, Rak Ho
2018-02-01
Oxidative stress and photodamage resulting from ultraviolet radiation exposure play key roles in skin aging. Fermented Cyclopia intermedia, which is used to brew honeybush tea, exerts antioxidant and anti-wrinkle effects by inhibiting reactive oxygen species production and downregulating matrix metalloproteinase activity. This randomized, double-blinded, placebo-controlled study aimed to evaluate the efficacy and safety of fermented honeybush (Cyclopia intermedia) extract (HU-018) for skin rejuvenation. 120 Korean subjects with crow's feet wrinkles were randomized to receive either low-dose extract (400 mg/day), high-dose extract (800 mg/day), or placebo (negative control, only dextran) for 12 weeks. Wrinkles were evaluated using JANUS ® and PRIMO pico ® . Skin elasticity, hydration and transepidermal water loss were measured. Global skin wrinkle grade was significantly improved in both low-dose and high-dose groups compared to placebo group, as well as for skin hydration and elasticity. Both the low- and high-dose groups showed significantly decreased TEWL compared to the placebo group. There were no adverse effects during the entire study period. Our data indicate that HU-018 is effective for improving skin wrinkles, elasticity, and hydration. Therefore, daily supplementation with fermented honeybush could be helpful for protecting against skin aging.
Park, Hye-Jin; Cho, Jun-Hyo; Hong, Shin-Hyub; Kim, Dong-Hee; Jung, Hee-Young; Kang, In-Kyu; Cho, Young-Je
2018-01-01
Ferulic acid isolated from Tetragonia tetragonioides was tested for its whitening effect on the B16F10 mouse melanoma cell line and its anti-wrinkle activity on the CCD-986sk human dermal fibroblast cell line. Ferulic acid, one of the primary phenolic compounds that can be isolated from T. tetragonioides, has been reported to show potential as a functional food, for its whitening effect and anti-wrinkle activity. To measure its whitening and anti-wrinkle activities, cells were treated with ferulic acid isolated from T. tetragonioides at concentrations between 5 and 20 μM. Ferulic acid showed no cytotoxicity at concentrations up to 20 μM. Ferulic acid inhibited melanin synthesis, tyrosinase expression, and microphthalmia transcription factor expression in B16F10 cells stimulated with α-melanocyte stimulating hormone. Ferulic acid induced procollagen synthesis, hyaluronic acid synthesis, tissue inhibitor of metalloproteinase synthesis, and inhibited matrix metalloproteinase (MMP)-1 and MMP-9 expression in CCD-986sk cells stimulated with UV-B. On the basis of these results, we conclude that ferulic acid isolated from T. tetragonioides shows potential for use as a functional food, with whitening and anti-wrinkle activities.
Imokawa, Genji; Ishida, Koichi
2015-01-01
The repetitive exposure of skin to ultraviolet B (UVB) preferentially elicits wrinkling while ultraviolet A (UVA) predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs) in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. PMID:25856675
Goldman, Mitchel P.
2017-01-01
Background: Fractionated, ablative lasers are usually associated with post-treatment erythema, edema, and crusting, which can last from 5 to 14 days. Conjugated linolenic acid, an omega-5 fatty acid, has significant antioxidant and anti-inflammatory properties, and has been shown to stimulate keratinocyte proliferation and epidermal regeneration. By modulating the early inflammatory milieu and directly affecting skin structure and function, conjugated linolenic acid might therefore shorten downtime following fractionated ablative laser resurfacing of the face. Objective: To evaluate the efficacy and subject satisfaction of a topical regimen containing conjugated linolenic acid derived from pomegranate seed extract in accelerating wound healing and improving skin quality following fractionated ablative laser resurfacing of the face. Materials and Methods: Thirty-four subjects were enrolled and received fractionated CO2 laser resurfacing. Subjects were randomized to use the test healing regimen (n=24) or 1% dimethicone ointment (n=10) post-procedure. The primary endpoint was the degree of erythema, edema, crusting, and exudation evaluated by a blinded clinician at post-treatment Days 1,3,7,10, 14, and 30. Secondary endpoints included a blinded evaluator assessment of the degree of wrinkling and elastosis using the Fitzpatrick-Goldman Wrinkle and Elastosis Scale; subject-assessed degree of pain, itching, tightness, oozing, and crusting; and subject overall satisfaction. Results: Subjects who applied the topical conjugated linolenic acid healing regimen experienced significantly reduced edema on post-procedure Day 3 (p=0.04), and itching on Days 1 and 3 (p=0.03 and p=0.04). Both regimens produced significant improvements in wrinkling and elastosis at Days 14 and 30 post-treatment, with conjugated linolenic acid outperforming placebo in improvements in wrinkling at Day 14. Both regimens were well tolerated with no statistical differences in adverse events or subject satisfaction. Conclusion: The topical conjugated linolenic acid formulation outperformed placebo by decreasing acute pruritus and edema, and enabling a faster positive outcome in wrinkle improvement. Additionally, topical conjugated linolenic acid does not raise any safety or tolerability issues as compared to current standard of care. PMID:29344315
Wu, Douglas C; Goldman, Mitchel P
2017-10-01
Background: Fractionated, ablative lasers are usually associated with post-treatment erythema, edema, and crusting, which can last from 5 to 14 days. Conjugated linolenic acid, an omega-5 fatty acid, has significant antioxidant and anti-inflammatory properties, and has been shown to stimulate keratinocyte proliferation and epidermal regeneration. By modulating the early inflammatory milieu and directly affecting skin structure and function, conjugated linolenic acid might therefore shorten downtime following fractionated ablative laser resurfacing of the face. Objective: To evaluate the efficacy and subject satisfaction of a topical regimen containing conjugated linolenic acid derived from pomegranate seed extract in accelerating wound healing and improving skin quality following fractionated ablative laser resurfacing of the face. Materials and Methods: Thirty-four subjects were enrolled and received fractionated CO2 laser resurfacing. Subjects were randomized to use the test healing regimen (n=24) or 1% dimethicone ointment (n=10) post-procedure. The primary endpoint was the degree of erythema, edema, crusting, and exudation evaluated by a blinded clinician at post-treatment Days 1,3,7,10, 14, and 30. Secondary endpoints included a blinded evaluator assessment of the degree of wrinkling and elastosis using the Fitzpatrick-Goldman Wrinkle and Elastosis Scale; subject-assessed degree of pain, itching, tightness, oozing, and crusting; and subject overall satisfaction. Results: Subjects who applied the topical conjugated linolenic acid healing regimen experienced significantly reduced edema on post-procedure Day 3 ( p =0.04), and itching on Days 1 and 3 ( p =0.03 and p =0.04). Both regimens produced significant improvements in wrinkling and elastosis at Days 14 and 30 post-treatment, with conjugated linolenic acid outperforming placebo in improvements in wrinkling at Day 14. Both regimens were well tolerated with no statistical differences in adverse events or subject satisfaction. Conclusion: The topical conjugated linolenic acid formulation outperformed placebo by decreasing acute pruritus and edema, and enabling a faster positive outcome in wrinkle improvement. Additionally, topical conjugated linolenic acid does not raise any safety or tolerability issues as compared to current standard of care.
Heydari, Saman; Ghanbarzadeh, Saeed; Anoush, Behzad; Ranjkesh, Mohammadreza; Javadzadeh, Yousef; Kouhsoltani, Maryam; Hamishehkar, Hamed
2017-07-01
Free radical scavengers and antioxidants, with the main focus on enhanced targeting to the skin layers, can provide protection against skin ageing. The aim of the present study was to prepare nanoethosomal formulation of gammaoryzanol (GO), a water insoluble antioxidant, for its dermal delivery to prevent skin aging. Nanoethosomal formulation was prepared by a modified ethanol injection method and characterized by using laser light scattering, scanning electronic microscope (SEM) and X-ray diffraction (XRD) techniques. The effects of formulation parameters on nanoparticle size, encapsulation efficiency percent (EE%) and loading capacity percent (LC%) were investigated. Antioxidant activity of GO-loaded formulation was investigated in vitro using normal African green monkey kidney fibroblast cells (Vero). The effect of control and GO-loaded nanoethosomal formulation on superoxide dismutase (SOD) and malondialdehyde (MDA) content of rat skin was also probed. Furthermore, the effect of GO-loaded nanoethosomes on skin wrinkle improvement was studied by dermoscopic and histological examination on healthy humans and UV-irradiated rats, respectively. The optimized nanoethosomal formulation showed promising characteristics including narrow size distribution 0.17 ± 0.02, mean diameter of 98.9 ± 0.05 nm, EE% of 97.12 ± 3.62%, LC% of 13.87 ± 1.36% and zeta potential value of -15.1 ± 0.9 mV. The XRD results confirmed uniform drug dispersion in the nanoethosomes structure. In vitro and in vivo antioxidant studies confirmed the superior antioxidant effect of GO-loaded nanoethosomal formulation compared with control groups (blank nanoethosomes and GO suspension). Nanoethosomes was a promising carrier for dermal delivery of GO and consequently had superior anti-aging effect.
Choi, Hyeon-Son; Park, Eu Ddeum; Park, Yooheon; Han, Sung Hee; Hong, Ki Bae; Suh, Hyung Joo
2016-06-08
The aim of this study was to evaluate the protective effect of spent coffee ground (SCG) on ultraviolet (UV) B-induced photoaging in hairless mice. The oil fraction (OSCG) and ethanol extract (ESCG) of SCG were prepared from SCG. OSCG contained a much higher level of caffeine (547.32 ± 1.68 μg mg(-1)) when compared to the sum of its chlorogenic acid derivatives (∼119 μg mg(-1)), and pyrazines were the major aromatic compounds in OSCG. OSCG effectively inhibited the UVB-induced increase in intracellular reactive oxygen species in HaCaT cells. Topical application of OSCG or ESCG significantly reduced the UVB-induced wrinkle formation in mice dorsal skin. The combined application of OSCG and ESCG (OEH) led to a decrease in the wrinkle area by over 35% when compared with the UVB-treated control (UVBC). Epidermal thickness was also reduced by 40%. This result was connected to the significant reduction in transdermal water loss (27%) and erythema formation (48%) that result from UVB irradiation. Polarization-sensitive optical coherence tomography (PS-OCT) and antibody-based histological analyses showed that OSCG and ESCG effectively suppressed the UVB-induced decrease in collagen content. The level of type 1 collagen (COL1) in the OEH group was enhanced by around 40% compared with the UVB control group (UVBC). This was attributed to the down-regulation of matrix metalloproteinases (MMP2, 9, and 13), which are known to be responsible for collagen destruction. Our results indicate that topical treatment with OSCG/ESCG protects mouse skin from UVB-induced photoaging by down-regulating MMPs; therefore, suggesting the potential of SCG extracts as a topical anti-photoaging agent.
NASA Astrophysics Data System (ADS)
Peterson, G. A.; Johnson, C. L.; Byrne, P. K.; Phillips, R. J.
2018-05-01
Wrinkle ridges within volcanic plains on Mercury host just as much shortening strain as lobate scarps and high relief ridges, suggesting that wrinkle ridges have accommodated much more strain from global contraction than previously thought.
Robati, Reza M; Asadi, Elmira
2017-02-01
Ablative fractional lasers were introduced for treating facial rhytides. Few studies have compared fractional CO 2 and Er:YAG lasers on cutaneous photodamages by a split trial. The aim of the present study was to compare these modalities in a randomized controlled double-blind split-face design with multiple sessions and larger sample size compared to previous studies done before. Forty patients with facial wrinkles were enrolled. Patients were randomly assigned to receive three monthly treatments on each side of the face, one with a fractional CO 2 and one with a fractional Er:YAG laser. The evaluations included investigating clinical outcome determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of cheeks using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, possible side effects and patients' satisfaction have been recorded at baseline, 1 month after each treatment, and 3 months after the last treatment session. Clinical assessment showed both modalities significantly reduce facial wrinkles (p value < 0.05), with no appreciable difference between two lasers. Mean CRRT values also decreased significantly after the laser treatment compared to the baseline in both laser groups. There was no serious long-standing adverse effect after both laser treatments, but the discomfort was more pronounced by the participants after CO 2 laser treatment. According to the present study, both fractional CO 2 and fractional Er:YAG lasers show considerable clinical improvement of facial skin wrinkles with no serious adverse effects, but post-treatment discomfort seems to be lower with Er:YAG laser.
NASA Astrophysics Data System (ADS)
Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.
2017-09-01
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.
Cho, Soyun; Lee, Serah; Lee, Min-Jung; Lee, Dong Hun; Won, Chong-Hyun; Kim, Sang Min
2009-01-01
Background No studies have yet been undertaken to determine the effect of aloe gel on the clinical signs and biochemical changes of aging skin. Objective We wanted to determine whether dietary aloe vera gel has anti-aging properties on the skin. Methods Thirty healthy female subjects over the age of 45 were recruited and they received 2 different doses (low-dose: 1,200 mg/d, high-dose: 3,600 mg/d) of aloe vera gel supplementation for 90 days. Their baseline status was used as a control. At baseline and at completion of the study, facial wrinkles were measured using a skin replica, and facial elasticity was measured by an in vivo suction skin elasticity meter. Skin samples were taken before and after aloe intake to compare the type I procollagen and matrix metalloproteinase 1 (MMP-1) mRNA levels by performing real-time RT-PCR. Results After aloe gel intake, the facial wrinkles improved significantly (p<0.05) in both groups, and facial elasticity improved in the lower-dose group. In the photoprotected skin, the type I procollagen mRNA levels were increased in both groups, albeit without significance; the MMP-1 mRNA levels were significantly decreased in the higher-dose group. Type I procollagen immunostaining was substantially increased throughout the dermis in both groups. Conclusion Aloe gel significantly improves wrinkles and elasticity in photoaged human skin, with an increase in collagen production in the photoprotected skin and a decrease in the collagen-degrading MMP-1 gene expression. However, no dose-response relationship was found between the low-dose and high-dose groups. PMID:20548848
Wang, X; Shu, X; Li, Z; Huo, W; Zou, L; Tang, Y; Li, L
2018-01-27
Skin imaging analysis, acting as a supplement to noninvasive bioengineering devices, has been widely used in medical cosmetology and cosmetic product evaluation. The main aim of this study is to assess the differences and correlations in measuring skin spots, wrinkles, vascular features, porphyrin, and pore between two commercially available image analysis software. Seventy healthy women were included in the study. Before taking pictures, the dermatologist evaluated subjects' skin conditions. Test sites included the forehead, cheek, and periorbital skin. A 2 × 2 cm cardboard was used to make a mark on the skin surface. Pictures were taken using VISIA ® under three kinds light conditions and analyzed using VISIA ® and IPP ® respectively. (1) Skin pore, red area, ultraviolet spot, brown spot, porphyrin, and wrinkle measured with VISIA ® were correlated with those measured with IPP ® (P < .01). (2) Spot, wrinkle, fine line, brown spot, and red area analyzed with VISIA ® were correlated with age on the forehead and periorbital skin (P < .05). L-value, Crow's feet, ultraviolet spot, brown spot, and red area analyzed with IPP ® were correlated with age on the periorbital skin (P < .05). (3) L-value, spot, wrinkle, fine line, porphyrin, red area, and pore analyzed with VISIA ® and IPP ® showed correlations with the subjective evaluation scores (P < .05). VISIA ® and IPP ® showed acceptable correlation in measuring various skin conditions. VISIA ® showed a high sensibility when measured on the forehead skin. IPP ® is available as an alternative software program to evaluate skin features. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gold, Michael H; Biesman, Brian S; Taylor, Mark
2017-06-01
Fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light have been shown in previous trials to safely and effectively improve the appearance of facial wrinkles. To evaluate a high-energy protocol with combined bipolar radiofrequency and infrared light energies for improvement in photoaged facial skin. Seventy-two patients presenting with mild to moderate facial wrinkles underwent a single full-face treatment (n=54) or two treatments (n=18) at 6-week intervals. Independent blinded assessment and investigator assessment were performed, using the Fitzpatrick Wrinkle and Elastosis Scale (0-9) and the Global Aesthetic Improvement scale. Patients also completed a self-assessment questionnaire concerning satisfaction with the treatment. All patients achieved some degree of improvement in their wrinkles and skin appearance, following a single treatment or two treatments with the enhanced-energy protocol. Blinded evaluation demonstrated 71% and 70% of the patients showing improvement of one unit or greater on the Fitzpatrick Scale, at the 12-week and 24-week follow-ups post-treatment, respectively. Similar results were reported by investigators. Under the Global Aesthetic Improvement Scale, investigators observed 87%, 91% and 81% of patients showing improvement at the 6-, 12-, and 24-week post-treatment end, respectively. Patients tolerated the treatments well and were satisfied with the clinical results. The enhanced-energy treatment protocol, with fractional bipolar radiofrequency treatment and treatment with bipolar radiofrequency combined with infrared light applications, yields significant improvement of skin texture, wrinkling, and overall appearance following a single treatment. The results appear gradually over time and are maintained for at least 6 months' post-treatment. © 2017 Wiley Periodicals, Inc.
Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.
Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul
2013-01-01
Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC.
Multisource radiofrequency for fractional skin resurfacing-significant reduction of wrinkles.
Dahan, Serge; Rousseaux, Isabelle; Cartier, Hugues
2013-04-01
Skin roughness, color change, wrinkles and skin laxity are the main characteristics of aging skin. Dermatologists and plastic surgeons look for a treatment that will provide both epidermal resurfacing for the improvement of skin roughness and deep volumetric heating that will trigger collagen remodeling in the dermis to reduce wrinkles and skin laxity. These goals should be achieved with minimal pain and downtime. The study included 10 subjects (Fitzpatrick's skin type 2-3) with Fitzpatrick wrinkle and elastosis scale of 5-8 (average 7.3). Treatment was done with the Fractional skin resurfacing handpiece of the EndyMed PRO multisource radiofrequency system (EndyMed Ltd, Cesarea, Israel). Treatment was repeated each month up to a total of three treatment sessions. Patients photographs were graded according to accepted scales by a board certified dermatologists. Patients' pain and satisfaction were scored using dedicated questionnaires. Doctors' satisfaction was also evaluated. Post treatment skin erythema was noted in all treated patients, lasting up to 10 hours. Fifty six percent of patients reported no pain after treatment, and the rest (44%) reported minimal pain. All patients showed significant reduction in the Fitzpatrick wrinkle score. Average Fitzpatrick wrinkle score was 7.3 at baseline, 4.9 at 1 month after the first treatment, 4.2 at 1 month after the second treatment, and 4.1 at 1 month after the third treatment. The score was similar at 3 months after the third treatment with a score of 4.1. When asked at the end of three treatment sessions, all patients answered they will recommend the treatment to their friends (66% "definitely yes" and 33% "yes"). When asked the same question 3 months after the end of treatment, all patients (100%) answered "definitely yes".
Kulick, Michael
2005-06-01
Nonablative wrinkle reduction or skin tightening is desired by individuals who, ideally, hope to have the skin improvement associated with chemical or laser ablative techniques but without the undesirable recovery process. Electro-optical synergy (ELOS) technology that combines radio frequency (RF) and diode laser energy (900 nm) was used to treat 15 patients in this IRB sanctioned study. Energy settings were based on the depth of wrinkles (the greater the depth and concentration of wrinkles, the higher the RF setting) and ranged from 50-100 J/cm2 RF and 15 J/cm2 for the optical, laser component. Patients received three full-face treatments, and results were evaluated by comparison of standardized photographs and patient questionnaire given prior to each treatment and one month after the third treatment. The primary investigator and three other "blinded" physicians evaluated these photographs using Fitzpatrick's wrinkle classification to assess the improvement, if any, between the initial and final visit. Eight patients completed the study. Explanation for the exclusion of the remaining six patients were: one decided to have surgery, two felt the treatment was too painful, and three moved out of the area. Following treatment, all patients had mild swelling (resolved <48 hours) and skin hyperemia (resolved <24 hours). Results observed one month after the last treatment in eight patients demonstrated an average of 25% reduction in skin wrinkles (range 14%-32%). There were no adverse side effects. The major concern of the patients was the discomfort associated with the treatment. As part of an FDA investigation to assess efficacy, long-term follow-up was not a part of this study protocol.
Tribology of bio-inspired nanowrinkled films on ultrasoft substrates
Lackner, Juergen M.; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul
2013-01-01
Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial friction coefficient of the film against the sliding counterpart low, e.g. found for DLC. PMID:24688710
de Jesus, Luciano Henrique; de Campos Hildebrand, Laura; Martins, Manoela Domingues; da Rosa, Francinne Miranda; Danilevicz, Chris Krebs; Sant’Ana Filho, Manoel
2015-01-01
Polymethylmethacrylate (PMMA) has been widely used in the correction of wrinkles because of its long-lasting cosmetic improvements. However, side effects and complications may occur, and its clinical appearance on the oral mucosa can be similar to that of inflammatory or neoplastic disease. The aim of this research was to compare the clinical and histopathologic responses to PMMA injected by two different methods. Twenty-two rats received an injection of PMMA using the tunneling technique (gold standard), with subcutaneous deposition of the filler in the face, or a variation of the technique with transcutaneous submucosal deposition of the filler in the cheek. The tissue reaction was analyzed clinically every 24 hours during the first week, then once a week for the following 3 months. Histologic evaluation was based on the local inflammatory response to the filler. No clinical changes were observed during the initial evaluation period (0–14 days). After 14 days, only the submucosal group showed extra-oral enlargement (n=4, 18.2%). Histopathologic analysis revealed nodule formation in four animals (18.2%) in the submucosal group, with no nodules observed in the subcutaneous group. The data obtained in this study demonstrate that the technique used to deliver the filler may influence the risk of adverse reactions. PMID:26346665
Vargas, K; Wertz, P W; Drake, D; Morrow, B; Soll, D R
1994-04-01
Cells of the laboratory strain 3153A of Candida albicans can be stimulated to undergo high-frequency phenotypic switching by a low dose of UV. We have compared the adhesive properties of cells exhibiting the basic original smooth (o-smooth) phenotype and three switch phenotypes (star, irregular wrinkle, and revertant smooth) to buccal epithelium and stratum corneum. The generalized hierarchy of adhesion is as follows: o-smooth > irregular wrinkle > revertant smooth > star. This is the inverse of the hierarchy of the proportions of elongate hyphae formed by these phenotypes in culture. These results suggest that the differences in adhesion between o-smooth and the three switch phenotypes of strain 3153A reflect, at least in part, the level of interference due to the formation of elongate hyphae, which tend to cause clumping in suspension. No major differences in the levels of adhesion of cells of the different phenotypes between buccal epithelium and stratum corneum were observed. Results which demonstrate that buccal epithelium induces germination (hypha formation) by conditioning the medium are also presented.
Is It True That Smoking Causes Wrinkles?
... to the heat from burning cigarettes and the facial expressions you make when smoking — such as pursing your lips when inhaling and squinting your eyes to keep out smoke — may contribute to ... factors associated with facial wrinkling in men and women. Journal of Investigative ...
Pattern Transitions in a Soft Cylindrical Shell
NASA Astrophysics Data System (ADS)
Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel
2018-05-01
Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.
Wrinkling of a spherical lipid interface induced by actomyosin cortex
NASA Astrophysics Data System (ADS)
Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi
2015-12-01
Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex.
Defects controlled wrinkling and topological design in graphene
NASA Astrophysics Data System (ADS)
Zhang, Teng; Li, Xiaoyan; Gao, Huajian
2014-07-01
Due to its atomic scale thickness, the deformation energy in a free standing graphene sheet can be easily released through out-of-plane wrinkles which, if controllable, may be used to tune the electrical and mechanical properties of graphene. Here we adopt a generalized von Karman equation for a flexible solid membrane to describe graphene wrinkling induced by a prescribed distribution of topological defects such as disclinations (heptagons or pentagons) and dislocations (heptagon-pentagon dipoles). In this framework, a given distribution of topological defects in a graphene sheet is represented as an eigenstrain field which is determined from a Poisson equation and can be conveniently implemented in finite element (FEM) simulations. Comparison with atomistic simulations indicates that the proposed model, with only three parameters (i.e., bond length, stretching modulus and bending stiffness), is capable of accurately predicting the atomic scale wrinkles near disclination/dislocation cores while also capturing the large scale graphene configurations under specific defect distributions such as those leading to a sinusoidal surface ruga2
Enhanced emission of fluorophores on shrink-induced wrinkled composite structures.
Sharma, Himanshu; Digman, Michelle A; Felsinger, Natasha; Gratton, Enrico; Khine, Michelle
2014-01-01
We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite 'wrinkles'. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution.
Aufan, M Rifqi; Sumi, Yang; Kim, Semin; Lee, Jae Young
2015-10-28
Electrically conducting biomaterials have gained great attention in various biomedical studies especially to influence cell and tissue responses. In addition, wrinkling can present a unique topography that can modulate cell-material interactions. In this study, we developed a simple method to create wrinkle topographies of conductive polypyrrole (wPPy) on soft polydimethylsiloxane surfaces via a swelling-deswelling process during and after PPy polymerization and by varying the thickness of the PPy top layers. As a result, various features of wPPy in the range of the nano- and microscales were successfully obtained. In vitro cell culture studies with NIH 3T3 fibroblasts and PC12 neuronal cells indicated that the conductive wrinkle topographies promote cell adhesion and neurite outgrowth of PC12 cells. Our studies help to elucidate the design of the surface coating and patterning of conducting polymers, which will enable us to simultaneously provide topographical and electrical signals to improve cell-surface interactions for potential tissue-engineering applications.
Wrinkles, folds, and plasticity in granular rafts
NASA Astrophysics Data System (ADS)
Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie
2017-09-01
We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.
NASA Astrophysics Data System (ADS)
Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo
2016-11-01
To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.
Ceccarelli, Maurizio; Marchetti, Massimiliano; Piattelli, Adriano; Mortellaro, Carmen
2016-01-01
Background. Facial aging is a dynamic process involving both soft tissue and bony structures. Skin atrophy, with loss of tone, elasticity, and distribution of facial fat, coupled with gravity and muscle activity, leads to wrinkling and folds. Purpose. The aim of the study was to evaluate microporous tricalcium phosphate (β-TCP) and autologous platelet gel (APG) mix in mice for oral and maxillofacial soft tissue augmentation. The hypothesis was that β-TCP added with APG was able to increase the biostimulating effect on fibroblasts and quicken resorption. Materials and Methods. Ten female, 6–8-week-old black-haired mice were selected. β-TCP/APG gel was injected into one cheek; the other was used as control. The animals were sacrificed at 8 weeks and histologically evaluated. Results. The new fibroblast was intensively stained with acid fuchsin and presented in contact with β-TCP. At higher magnification, actively secreting fibroblasts were observed at the periphery of β-TCP with a well differentiated fibroblast cell line and blood vessels. Acid fuchsin stained cutaneous structures in pink: no epidermal/dermal alterations or pathological inflammatory infiltrates were detected. The margins of β-TCP granules were clear and not diffused near tissues. Conclusion. APG with β-TCP preserves skin morphology, without immune response, with an excellent tolerability and is a promising scaffold for cells and biomaterial for soft tissue augmentation. PMID:27478828
Scarano, Antonio; Ceccarelli, Maurizio; Marchetti, Massimiliano; Piattelli, Adriano; Mortellaro, Carmen
2016-01-01
Background. Facial aging is a dynamic process involving both soft tissue and bony structures. Skin atrophy, with loss of tone, elasticity, and distribution of facial fat, coupled with gravity and muscle activity, leads to wrinkling and folds. Purpose. The aim of the study was to evaluate microporous tricalcium phosphate (β-TCP) and autologous platelet gel (APG) mix in mice for oral and maxillofacial soft tissue augmentation. The hypothesis was that β-TCP added with APG was able to increase the biostimulating effect on fibroblasts and quicken resorption. Materials and Methods. Ten female, 6-8-week-old black-haired mice were selected. β-TCP/APG gel was injected into one cheek; the other was used as control. The animals were sacrificed at 8 weeks and histologically evaluated. Results. The new fibroblast was intensively stained with acid fuchsin and presented in contact with β-TCP. At higher magnification, actively secreting fibroblasts were observed at the periphery of β-TCP with a well differentiated fibroblast cell line and blood vessels. Acid fuchsin stained cutaneous structures in pink: no epidermal/dermal alterations or pathological inflammatory infiltrates were detected. The margins of β-TCP granules were clear and not diffused near tissues. Conclusion. APG with β-TCP preserves skin morphology, without immune response, with an excellent tolerability and is a promising scaffold for cells and biomaterial for soft tissue augmentation.
Electro-optical Synergy Technique
El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.
2010-01-01
Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352
Saha, Sourabh K.
2017-01-11
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Wrinkling pattern evolution of cylindrical biological tissues with differential growth.
Jia, Fei; Li, Bo; Cao, Yan-Ping; Xie, Wei-Hua; Feng, Xi-Qiao
2015-01-01
Three-dimensional surface wrinkling of soft cylindrical tissues induced by differential growth is explored. Differential volumetric growth can cause their morphological stability, leading to the formation of hexagonal and labyrinth wrinkles. During postbuckling, multiple bifurcations and morphological transitions may occur as a consequence of continuous growth in the surface layer. The physical mechanisms underpinning the morphological evolution are examined from the viewpoint of energy. Surface curvature is found to play a regulatory role in the pattern evolution. This study may not only help understand the morphogenesis of soft biological tissues, but also inspire novel routes for creating desired surface patterns of soft materials.
16 CFR § 1611.4 - Flammability test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... wrinkles. Five specimens from each direction (machine and transverse) of a given material shall be tested... D618, Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...
A new gene that controls seed coat wrinkling in soybean
USDA-ARS?s Scientific Manuscript database
Seed coat wrinkling is a major factor affecting the germinability of soybean [Glycine max (L.) Merr.] seed produced in high-temperature environments, such as in the early soybean production system (ESPS) of the midsouthern United States. Exposure of seed to high temperatures, coupled with alternatin...
Wrinkled Peas and White-Eyed Fruit Flies: The Molecular Basis of Two Classical Genetic Traits.
ERIC Educational Resources Information Center
Guilfoile, Patrick
1997-01-01
Focuses on bridging the gap between classical and molecular genetics for two traits: wrinkled seeds in garden peas and white eye color in fruit flies. Discusses the molecular details of the underlying basis of these traits. Contains 15 references. (JRH)
Prototypical model for tensional wrinkling in thin sheets
Davidovitch, Benny; Schroll, Robert D.; Vella, Dominic; Adda-Bedia, Mokhtar; Cerda, Enrique A.
2011-01-01
The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length—a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications. PMID:22042841
The effect of mimosa and syntan mixture on the quality of tanned red snapper leather
NASA Astrophysics Data System (ADS)
Pratama, M.; Sahubawa, L.; Pertiwiningrum, A.; Rahmadian, Y.; Puspita, I. D.
2018-03-01
This study aimed to determine the effect of syntan and mimosa combination on the quality of tanned red snapper leather. The study was designed using complete randomized design (CRD) and the advanced test of Least Significant Difference (LSD) with three replications and three treatments of combined syntan and mimosa, namely: p1 (4 % syntan, 5 % mimosa), p2 (8 % syntan, 5 %mimosa), p3 (12 % syntan, 5 % mimosa). Data were analyzed using SPSS 18. The measured parameters were tensile strength (N·cm-2), elongation (%), tear strength (N·cm-1), enervation (mm), wrinkle temperature (°C), fat/oil content (%) and water content (%). The results indicate that the combined syntan and mimosa tanners gave no significant effect on the physical parameters (tensile strength, elongation, tear strength, enervation and wrinkle temperature) and chemical parameters (moisture and fat/oil). All treatments (p1, p2 and p3) met the Indonesian National Standard (SNI) 06-4586-1998 for chrome tanned freshwater snake leather for the parameters of tensile strength, tear strength, enervation, wrinkle temperature and moisture. The parameter of elongation and fat/oil content did not meet with the SNI 06-4586-1998. Among the three combinations of a tanner, syntan 4 % and mimosa 5 % treatment gave the best leather quality.
Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers.
Hu, Han-Wen; Haider, Golam; Liao, Yu-Ming; Roy, Pradip Kumar; Ravindranath, Rini; Chang, Huan-Tsung; Lu, Cheng-Hsin; Tseng, Chang-Yang; Lin, Tai-Yung; Shih, Wei-Heng; Chen, Yang-Fang
2017-11-01
A stretchable, flexible, and bendable random laser system capable of lasing in a wide range of spectrum will have many potential applications in next- generation technologies, such as visible-spectrum communication, superbright solid-state lighting, biomedical studies, fluorescence, etc. However, producing an appropriate cavity for such a wide spectral range remains a challenge owing to the rigidity of the resonator for the generation of coherent loops. 2D materials with wrinkled structures exhibit superior advantages of high stretchability and a suitable matrix for photon trapping in between the hill and valley geometries compared to their flat counterparts. Here, the intriguing functionalities of wrinkled reduced graphene oxide, single-layer graphene, and few-layer hexagonal boron nitride, respectively, are utilized to design highly stretchable and wearable random laser devices with ultralow threshold. Using methyl-ammonium lead bromide perovskite nanocrystals (PNC) to illustrate the working principle, the lasing threshold is found to be ≈10 µJ cm -2 , about two times less than the lowest value ever reported. In addition to PNC, it is demonstrated that the output lasing wavelength can be tuned using different active materials such as semiconductor quantum dots. Thus, this study is very useful for the future development of high-performance wearable optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wrinkle ridges on Mars: Absence of décollement tectonics
NASA Astrophysics Data System (ADS)
Schultz, Richard; Nahm, Amanda; Montési, Laurent
2010-05-01
Wrinkle ridges, anticlines formed above blind thrust faults, are common structures on the terrestrial planets. Domains of wrinkle ridges on Mars and Venus are characterized by approximately regular spacings to form distributed arrays of low-strain folds across large areas. Precision topographic data for Mars demonstrate both very low regional slopes across wrinkle-ridged terranes such as Solis and Hesperia Plana (<0.5°) and vergence directions for the subjacent blind thrust faults equally up- and down-slope, implying that gravity-induced sliding was not a significant factor in wrinkle ridge deformation. We test the long-standing assumption that wrinkle ridges are associated with slip along a common basal décollement. Critical taper wedge mechanics, used in this analysis, relates décollement strength to the strength and cross-sectional geometry of the deforming stratigraphic section; slip along the décollement occurs once the section has deformed into a critical wedge-shaped taper. By using measured topography across Solis Planum (regional slope of 0.2°) with plausible values of stratigraphic properties (strength, density, pore fluid pressures) we show that décollement dip angles as low as 1-2° may be possible, but only for restricted conditions including nearly frictionless stratigraphic contacts. The lowest décollement slopes require a near-zero coefficient of friction on the décollement, implying either near-lithostatic pore fluid pressure or a horizon of intrinsically weak material. The weakest material that can be justified at the inferred décollement depth is water-saturated talc, with a coefficient of friction of 0.15. High pore fluid pressure requires a steady supply of water, typically provided on Earth by sediment compaction and clay dewatering, to replenish the fluids lost though the wedge. Its presence at Solis Planum would imply that a sediment layer lies buried underneath the near-surface basaltic unit; rapid emplacement of massive flood basalts might then have triggered compaction and dewatering of the underlying sediments. Although high pore fluid pressures and weak horizons may be conceptually possible for Solis Planum, they are not sufficient in themselves to promote translation of the overlying stratigraphic section. Even if the décollement was nearly frictionless, and sloped by only 2°, its depth would change by more than 50 km over the width of Solis Planum. This cannot be reconciled with ridge morphology unless Solis Planum is organized as a series of independent wedges, each less than ~115 km wide in the direction of shortening, containing only two or three wrinkle ridges each. In this case the growth of wrinkle ridges and any associated décollements would have progressively swept across Solis Planum. We conclude that wrinkle ridges more likely formed in association with unstable compression of the lithosphere with slipping basal décollements requiring special conditions, with the compressive stress supplied on Mars by Tharsis and/or global contraction and on Venus by global climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Wei; Reese, Cassandra M.; Xiong, Li
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
16 CFR 1611.4 - Flammability test.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Test specimens shall be 3 in. in width and 9 in. in length. They shall be free from folds or wrinkles..., Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c) Procedure... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...
16 CFR 1611.4 - Flammability test.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Test specimens shall be 3 in. in width and 9 in. in length. They shall be free from folds or wrinkles..., Tentative Methods of Conditioning Plastics and Electrical Insulating Materials for Testing. (c) Procedure... flame. The sample shall be free from wrinkles or distortion when the holder is closed. The specimen...
New Wrinkles on Retirement: Program Notes.
ERIC Educational Resources Information Center
Wray, Robert P.; Thorson, James A.
The program notes were prepared to accompany the television series "New Wrinkles on Retirement." The eight units in the series are: facing inflation, which covers the decreasing value of the dollar, transportation costs, medical expenses, cutting expenses, family budgeting, investments, and places to live; vigor regained, which covers exercise and…
Zhang, Haoran; Zhang, Yanhui; Zhang, Yaqian; Chen, Zhiying; Sui, Yanping; Ge, Xiaoming; Yu, Guanghui; Jin, Zhi; Liu, Xinyu
2016-02-21
During cooling, considerable changes such as wrinkle formation and edge passivation occur in graphene synthesized on the Cu substrate. Wrinkle formation is caused by the difference in the thermal expansion coefficients of graphene and its substrate. This work emphasizes the cooling-induced edge passivation. The graphene-edge passivation can limit the regrowth of graphene at the domain edge. Our work shows that silicon-containing particles tend to accumulate at the graphene edge, and the formation of these particles is related to cooling. Furthermore, a clear curvature can be observed at the graphene edge on the Cu substrate, indicating the sinking of the graphene edge into the Cu substrate. Both the sinking of the graphene edge and the accumulation of silicon-containing particles are responsible for edge passivation. In addition, two kinds of graphene edge morphologies are observed after etching, which were explained by different etching mechanisms that illustrate the changes of the graphene edge during cooling.
Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates
Tang, Jun; Guo, Hao; Zhao, Miaomiao; Yang, Jiangtao; Tsoukalas, Dimitris; Zhang, Binzhen; Liu, Jun; Xue, Chenyang; Zhang, Wendong
2015-01-01
This paper demonstrates a fabrication technology of Ag wrinkled electrodes with application in highly stretchable wireless sensors. Ag wrinkled thin films that were formed by vacuum deposition on top of pre-strained and relaxed polydimethylsiloxane (PDMS) substrates which have been treated using an O2 plasma and a surface chemical functionalization process can reach a strain limit up to 200%, while surface adhesion area can reach 95%. The electrical characteristics of components such as resistors, inductors and capacitors made from such Ag conductors have remained stable under stretching exhibiting low temperature and humidity coefficients. This technology was then demonstrated for wireless wearable electronics using compatible processing with established micro/nano fabrication technology. PMID:26585636
The Wrinkling of a Twisted Ribbon
NASA Astrophysics Data System (ADS)
Kohn, Robert V.; O'Brien, Ethan
2018-02-01
Recent experiments by Chopin and Kudrolli (Phys Rev Lett 111:174302, 2013) showed that a thin elastic ribbon, when twisted into a helicoid, may wrinkle in the center. We study this from the perspective of elastic energy minimization, building on recent work by Chopin et al. (J Elast 119(1-2):137-189, 2015) in which they derive a modified von Kármán functional and solve the relaxed problem. Our main contribution is to show matching upper and lower bounds for the minimum energy in the small-thickness limit. Along the way, we show that the displacements must be small where we expect that the ribbon is helicoidal, and we estimate the wavelength of the wrinkles.
77 FR 57529 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... the fuselage skin along chem- mill steps at certain crown skin and shear wrinkle areas, and repair if... the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods: Federal eRulemaking... to non-chem-mill areas at antenna and door bearstrap installations, and shear wrinkle areas at...
78 FR 25372 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... fuselage skin along chem-mill steps at certain crown skin and shear wrinkle areas, and repair if necessary... at certain crown skin and shear wrinkle areas, and repair if necessary. Comments We gave the public... airplanes on which STC ST00830SE is installed, a ``change in product'' alternative method of compliance...
78 FR 24338 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... the fuselage skin along chem-mill steps at certain crown skin and shear wrinkle areas, and repair if... at certain crown skin and shear wrinkle areas, and repair if necessary. Comments We gave the public...'' alternative method of compliance (AMOC) approval request is not necessary to comply with the requirements of...
Indentation of a floating elastic sheet: geometry versus applied tension
NASA Astrophysics Data System (ADS)
Box, Finn; Vella, Dominic; Style, Robert W.; Neufeld, Jerome A.
2017-10-01
The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.
Indentation of a floating elastic sheet: geometry versus applied tension.
Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A
2017-10-01
The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.
Lifestyle Factors and Visible Skin Aging in a Population of Japanese Elders
Asakura, Keiko; Nishiwaki, Yuji; Milojevic, Ai; Michikawa, Takehiro; Kikuchi, Yuriko; Nakano, Makiko; Iwasawa, Satoko; Hillebrand, Greg; Miyamoto, Kukizo; Ono, Masaji; Kinjo, Yoshihide; Akiba, Suminori; Takebayashi, Toru
2009-01-01
Background The number of studies that use objective and quantitative methods to evaluate facial skin aging in elderly people is extremely limited, especially in Japan. Therefore, in this cross-sectional study we attempted to characterize the condition of facial skin (hyperpigmentation, pores, texture, and wrinkling) in Japanese adults aged 65 years or older by using objective and quantitative imaging methods. In addition, we aimed to identify lifestyle factors significantly associated with these visible signs of aging. Methods The study subjects were 802 community-dwelling Japanese men and women aged at least 65 years and living in the town of Kurabuchi (Takasaki City, Gunma Prefecture, Japan), a mountain community with a population of approximately 4800. The facial skin condition of subjects was assessed quantitatively using a standardized facial imaging system and subsequent computer image analysis. Lifestyle information was collected using a structured questionnaire. The association between skin condition and lifestyle factors was examined using multivariable regression analysis. Results Among women, the mean values for facial texture, hyperpigmentation, and pores were generally lower than those among age-matched men. There was no significant difference between sexes in the severity of facial wrinkling. Older age was associated with worse skin condition among women only. After adjusting for age, smoking status and topical sun protection were significantly associated with skin condition among both men and women. Conclusions Our study revealed significant differences between sexes in the severity of hyperpigmentation, texture, and pores, but not wrinkling. Smoking status and topical sun protection were significantly associated with signs of visible skin aging in this study population. PMID:19700917
Application of optical 3D measurement on thin film buckling to estimate interfacial toughness
NASA Astrophysics Data System (ADS)
Jia, H. K.; Wang, S. B.; Li, L. A.; Wang, Z. Y.; Goudeau, P.
2014-03-01
The shape-from-focus (SFF) method has been widely studied as a passive depth recovery and 3D reconstruction method for digital images. An important step in SFF is the calculation of the focus level for different points in an image by using a focus measure. In this work, an image entropy-based focus measure is introduced into the SFF method to measure the 3D buckling morphology of an aluminum film on a polymethylmethacrylate (PMMA) substrate at a micro scale. Spontaneous film wrinkles and telephone-cord wrinkles are investigated after the deposition of a 300 nm thick aluminum film onto the PMMA substrate. Spontaneous buckling is driven by the highly compressive stress generated in the Al film during the deposition process. The interfacial toughness between metal films and substrates is an important parameter for the reliability of the film/substrate system. The height profiles of different sections across the telephone-cord wrinkle can be considered a straight-sided model with uniform width and height or a pinned circular model that has a delamination region characterized by a sequence of connected sectors. Furthermore, the telephone-cord geometry of the thin film can be used to calculate interfacial toughness. The instability of the finite element model is introduced to fit the buckling morphology obtained by SFF. The interfacial toughness is determined to be 0.203 J/m2 at a 70.4° phase angle from the straight-sided model and 0.105 J/m2 at 76.9° from the pinned circular model.
The Effects of Gravity on Wrinkled Laminar Flames
NASA Technical Reports Server (NTRS)
Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.
1993-01-01
The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.
Gold, Michael H; Biron, Julie; Levi, Liora; Sensing, Whitney
2017-03-01
The aging process is often associated with undesirable effects on facial skin such as skin redundancy, reduction of elasticity, and increased wrinkling. Radiofrequency (RF) and light-emitting diodes (LEDs) are widely used, clinically proven technologies for skin rejuvenation. This study aimed to evaluate the safety, efficacy, and usage compliance of the home-use device, utilizing RF and LED energies, for self-treatment of periorbital wrinkles and improvement of skin appearance. Thirty-three subjects performed 21 treatment sessions every other day, over 6 weeks on the periorbital areas. In addition, two maintenance treatments were conducted 1 and 2 months following treatment end. Each subject served as his/her own control, comparing results before treatment, and 3 months following treatment end. Thirty subjects completed the study. A blinded, independent photographs assessment of three dermatologists demonstrated an average reduction of 1.49 Fitzpatrick scores (P < 0.001). Analysis revealed improvement (downgrade of at least 1 score) in almost all subjects. No unexpected adverse events were reported. Post-treatment erythema was seen in all subjects and disappeared within 1 h. In some subjects, post-treatment edema was detected and resolved within 24 h. High satisfaction with the device operation, ease of treatments, safety, and wrinkle reduction was reported. The Silk'n Home Skin Tightening (HST) device offers a safe and effective in-home noninvasive technique to improve the appearance of age-related periorbital wrinkles. © 2016 Wiley Periodicals, Inc.
The amelioration effect of tranexamic acid in wrinkles induced by skin dryness.
Hiramoto, Keiichi; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi
2016-05-01
Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medical amino acid widely used as an anti-inflammatory and a whitening agent. This study examined the effect of tranexamic acid administration in wrinkle formation following skin dryness. We administered tranexamic acid (750mg/kg/day) orally for 20 consecutive days to Naruto Research Institute Otsuka Atrichia (NOA) mice, which naturally develop skin dryness. In these NOA mice, deterioration of transepidermal water loss (TEWL), generation of wrinkles, decrease of collagen type I, and increases in mast cell proliferation and tryptase and matrix metalloproteinase (MMP-1) release were observed. However, these symptoms were improved by tranexamic acid treatment. Moreover, the increase in the β-endorphin level in the blood and the expression of μ-opioid receptor on the surface of fibroblasts increased by tranexamic acid treatment. In addition, when the fibroblasts induced by tranexamic acid treatment were removed, the amelioration effect by tranexamic acid treatment was halved. On the other hand, tranexamic acid treated NOA mice and mast cell removal in tranexamic acid treated NOA mice did not result in changes in the wrinkle amelioration effect. Additionally, the amelioration effect of mast cell deficient NOA mice was half that of tranexamic acid treated NOA mice. These results indicate that tranexamic acid decreased the proliferation of mast cells and increases the proliferation of fibroblasts, subsequently improving wrinkles caused by skin dryness. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Phetcharat, L; Wongsuphasawat, K; Winther, K
2015-01-01
To evaluate the effects of a rose hip powder (Hyben Vital(®)) made from seeds and shells on cell senescence, skin wrinkling, and aging. A total of 34 healthy subjects, aged 35-65 years, with wrinkles on the face (crow's-feet) were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05. In the double-blinded study, the rose hip group showed statistically significant improvements in crow's-feet wrinkles (P<0.05), skin moisture (P<0.05), and elasticity (P<0.05) after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank. Results suggest that intake of the standardized rose hip powder (Hyben Vital(®)) improves aging-induced skin conditions. The apparent stabilizing effects of the rose hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging.
Wrinkle structures—a critical review
NASA Astrophysics Data System (ADS)
Porada, Hubertus; Bouougri, El Hafid
2007-04-01
In this paper, a variety of so-called 'wrinkle structures' is reviewed in an attempt to help distinguish between crinkly decorations arising from physical processes that acted on siliciclastic bedding surfaces, and true microbially induced 'wrinkle structures'. Two types of small-scale, microbially induced sedimentary structures are prominent due to their distinct geometry and mode of occurrence: (1) 'elephant skin' textures, characterized by reticulate patterns of sharp-crested ridges forming mm- to cm-scale polygons, occurring on argillite or argillaceous veneers above fine-grained sandstone and likely reflecting growth structures of microbial, mats (2) 'Kinneyia' structures, characterized by mm-scale flat-topped, winding ridges and intervening troughs and pits, sometimes resembling small-scale interference ripples. 'Kinneyia' structures usually occur on upper surfaces of siltstone/sandstone beds, themselves frequently event deposits, and are thought to have formed beneath microbial mats. Additionally, more linear variations of mat growth structures, partly resembling small-scale 'α-petees' may be developed. Finally, some wrinkly structures resulting from tractional mat deformation or mat slumping are occasionally preserved. These may appear as arcuate belts of non-penetrative, small-scale folds or as wrinkled bulges on otherwise flat surfaces. 'Wrinkle structures' as indicators for the former presence of mats gain in importance if other mat-related structures are additionally observed in the same clastic succession, e.g. 'sand chips' (sandy intraclasts) or spindle-shaped or sinuously curved to circular sand cracks, frequently combined in networks. Furthermore, appropriate lithologies and facies are required. For instance, if compared with the distribution of modern cohesive microbial mats, laminated siltstone/argillite with intercalated siltstone/sandstone beds representing event deposits in tidal flat successions would be compatible with microbial mat development. Within a variety of physically induced small-scale wrinkly structures, miniature load structures may, above all, be misinterpreted as microbially induced 'wrinkle structures', due to their similar size and appearance, and their comparatively frequent occurrence.
Akita, Hirotaka; Sasaki, Ryosuke; Yokoyama, Yusuke; Negishi, Kei; Matsunaga, Kayoko
2014-10-01
Bipolar radiofrequency (RF) technology is developed based on fractional thermolysis, and the literature concerning the efficacy of the rejuvenation and treatment of acne scars has been reported in Europe and the United States of America. Therefore, we examined bipolar RF treatment using fractional thermolysis to evaluate the efficacy and safety of the treatment of Asian photo-aging skin, particularly 'wrinkles' and 'sagging.' Ten Japanese women (mean age: 58.6, skin type III-IV) received three fractional bipolar RF treatments every 4-6 weeks. For the objective evaluation, we evaluated the improvement of the wrinkles on the forehead, lateral canthus (crow's feet) and lower eyelid, and the sagging of the nasolabial fold using digital photographs captured using Visia(™) . For the subjective evaluation, the participants were asked to describe the improvements observed in the wrinkles on the forehead, lateral canthus (crow's feet) and lower eyelid, and sagging nasolabial fold and to evaluate the level pain experienced using a 10-point VAS score. The objective evaluation in each category showed significant improvements in the wrinkles on the lateral canthus (crow's feet) and lower eyelid. As for the nasolabial fold, 60% of the subjects showed improvements, scoring from good to excellent (51-100% improvement), although there was a little improvement of the wrinkle on the forehead. Similar improvements were observed in the subjective evaluation. During each treatment, oedema and erythema were observed in all participants, but the oedema disappeared the following day in all cases. However, mild erythema persisted for an average of 3.1 days. Micro debris disappeared after an average of 5.2 days. The participants were satisfied, as we allowed them to apply make-up the next day. There were no other severe adverse reactions observed during the treatment. The 10-point VAS score was 3.8, and no participants dropped out due to discomfort. Little improvement was observed in the forehead wrinkles in either the objective or the subjective evaluation. The results obtained in this study indicate that fractional bipolar RF is an effective and safe treatment for the 'wrinkling' and 'sagging' of Asian photo-aging skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Formation and disruption of aquifers in southwestern Chryse Planitia, Mars
Rodriguez, J.A.P.; Tanaka, K.L.; Kargel, J.S.; Dohm, J.M.; Kuzmin, R.; Fairen, A.G.; Sasaki, S.; Komatsu, G.; Schulze-Makuch, D.; Jianguo, Y.
2007-01-01
We present geologic evidence suggesting that after the development of Mars' cryolithosphere, the formation of aquifers in southwestern Chryse Planitia and their subsequent disruption led to extensive regional resurfacing during the Late Hesperian, and perhaps even during the Amazonian. In our model, these aquifers formed preferentially along thrust faults associated with wrinkle ridges, as well as along fault systems peripheral to impact craters. The characteristics of degraded wrinkle ridges and impact craters in southwestern Chryse Planitia indicate a profound role of subsurface volatiles and especially liquid water in the upper crust (the upper one hundred to a few thousands of meters). Like lunar wrinkle ridges, the martian ones are presumed to mark the surface extensions of thrust faults, but in our study area the wrinkle ridges are heavily modified. Wrinkle ridges and nearby plains have locally undergone collapse, and in other areas they are associated with domical intrusions we interpret as mud volcanoes and mud diapirs. In at least one instance, a sinuous valley emanates from a modified wrinkle ridge, further indicating hydrological influences on these thrust-fault-controlled features. A key must be the formation of volatile-rich crust. Primary crustal formation and differentiation incorporated juvenile volatiles into the global crust, but the crustal record here was then strongly modified by the giant Chryse impact. The decipherable rock record here begins with the Chryse impact and continues with the resulting basin's erosion and infilling, which includes outflow channel activity. We propose that in Simud Vallis surface flow dissection into the base of the cryolithosphere-produced zones where water infiltrated and migrated along SW-dipping strata deformed by the Chryse impact, thereby forming an extensive aquifer in southwestern Chryse Planitia. In this region, compressive stresses produced by the rise of Tharsis led to the formation of wrinkle ridges. Zones of high fracture density within the highly strained planes of the thrust faults underlying the wrinkle ridges formed regions of high permeability; thus, groundwater likely flowed and gathered along these tectonic structures to form zones of elevated permeability. Volatile depletion and migration within the upper crustal materials, predominantly along fault systems, led to structurally controlled episodic resurfacing in southwestern Chryse Planitia. The erosional modification of impact craters in this region is linked to these processes. This erosion is scale independent over a range of crater diameters from a few hundred meters to tens of kilometers. According to our model, pressurized water and sediment intruded and locally extruded and caused crustal subsidence and other degradational activity across this region. The modification of craters across this wide range of sizes, according to our model, implies that there was intensive mobilization of liquid water in the upper crust ranging from about one hundred to several thousand meters deep. ?? 2007 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tate, A.; Golombek, M. P.; Mueller, K. J.
2001-01-01
Mars Orbiter Laser Altimeter (MOLA) topography is used to define the detailed morphology and kinematic development of martian wrinkle ridges on Lunae and Solis Plana. Changes in ridge morphology suggest they form as fault-propagation folds, often with significant backthrusts. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Mathar, J
1930-01-01
This paper presents a relative determination of the wrinkling of a plate wall beam with variable number of supports and methods of attachment. The discussion is based entirely on tests with extensometer readings and number of wrinkles, with complete web and with cutout sections. The author notes that the number of corrugations increase with added stress, keeping constant edge spacing.
77 FR 63285 - Airworthiness Directives; Brantly International, Inc. Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
..., 2012. ADDRESSES: You may send comments by any of the following methods: Federal eRulemaking Docket: Go...-101, 248-202, or 248- 404, visually inspecting the M/R blade for a crack, nick, wrinkle, or bend..., wrinkle, bend, added hole (such as a drilled hole to stop the spread of a crack), extra rivet, or...
77 FR 57539 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-18
... cracking of the fuselage skin along chem-mill steps at certain crown skin and shear wrinkle areas, and... comments, using the procedures found in 14 CFR 11.43 and 11.45, by any of the following methods: Federal e... adjacent to non-chem-mill areas at antenna and door bearstrap installations, and shear wrinkle areas at...
Chen, Aaron; Lieu, Deborah K; Freschauf, Lauren; Lew, Valerie; Sharma, Himanshu; Wang, Jiaxian; Nguyen, Diep; Karakikes, Ioannis; Hajjar, Roger J; Gopinathan, Ajay; Botvinick, Elliot; Fowlkes, Charless C; Li, Ronald A; Khine, Michelle
2011-12-22
A biomimetic substrate for cell-culture is fabricated by plasma treatment of a prestressed thermoplastic shrink film to create tunable multiscaled alignment "wrinkles". Using this substrate, the functional alignment of human embryonic stem cell derived cardiomyocytes is demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.
Chen, Tao; Xue, Yuhua; Roy, Ajit K; Dai, Liming
2014-01-28
Transparent and/or stretchable energy storage devices have attracted intense attention due to their unique optical and/or mechanical properties as well as their intrinsic energy storage function. However, it remains a great challenge to integrate transparent and stretchable properties into an energy storage device because the currently developed electrodes are either transparent or stretchable, but not both. Herein, we report a simple method to fabricate wrinkled graphene with high stretchability and transparency. The resultant wrinkled graphene sheets were used as both current collector and electrode materials to develop transparent and stretchable supercapacitors, which showed a high transparency (57% at 550 nm) and can be stretched up to 40% strain without obvious performance change over hundreds of stretching cycles.
Atobe, Takashi; Osada, Yutaka; Takeda, Hayato; Kuroe, Misako; Miyashita, Tadashi
2014-07-07
Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics
NASA Astrophysics Data System (ADS)
Rofouie, P.; Pasini, D.; Rey, A. D.
2015-09-01
Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.
Luebberding, Stefanie; Krueger, Nils; Kerscher, Martina
2014-02-01
The assessment of wrinkle severity is an important evaluation criterion to determine the efficacy of aesthetic treatments. Aim of the present study was to compare Validated Assessment Scales (VAS) and 3D fringe projection (PRIMOS(®) ) for the evaluation of facial wrinkles in men and to determine standard values for each level of the VAS. 150 male subjects (20 to 70 years) were selected following strict criteria. Wrinkle severity at periorbital, glabella and forehead lines was evaluated using the 3D fringe projection and 5-point photonumeric VAS. The results of both methods were matched by determining quantitative values for each level of the clinical rating scale. High average correlation with age was found for VAS, Wd, maxWd, lWd, Wv, aWa and pWa. With a Wd of 60 to 70μm crow's feet and forehead lines are pronounced first, whereas glabella lines develop in subject's mid-forties, by an Wd of 180μm. Wrinkle severity increases at all locations every 10 years of age by one level of the VAS. This increase corresponds to an increase of Wd about 100 μm at glabella and forehead lines, and about 50 μm at crow's feet. The presented reference values for the Validated Assessment Scale are an important step towards an optimized assessment of skin aging and aesthetic dermatological treatments. The data helps to combine the precession of a biophysical measurement with the practical relevance of a clinical rating. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.
Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni
2015-06-01
Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.
Wrinkling of reinforced plates subjected to shear stresses
NASA Technical Reports Server (NTRS)
Seydel, Edgar
1931-01-01
An analysis is made here of the problem of long plates with transverse stiffeners subject to shear. A typical example would be a long Wagner beam. The shear stress is calculated at which the web wrinkles and shear stress becomes a maximum. The equation is solved for both a condition of free support and rigidity of support on the edges.
Buckling Instabilities in Polymer Brush Surfaces via Postpolymerization Modification
Guo, Wei; Reese, Cassandra M.; Xiong, Li; ...
2017-10-30
We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using postpolymerization modification (PPM), where the length scale of the buckled features can be tuned using PPM reaction time. Here, we show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling.
NASA Astrophysics Data System (ADS)
Chae, Sang Hoon; Yu, Woo Jong; Bae, Jung Jun; Duong, Dinh Loc; Perello, David; Jeong, Hye Yun; Ta, Quang Huy; Ly, Thuc Hue; Vu, Quoc An; Yun, Minhee; Duan, Xiangfeng; Lee, Young Hee
2013-05-01
Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10-13 A. The resulting devices exhibited an excellent on/off ratio of ~105, a high mobility of ~40 cm2 V-1 s-1 and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.
A grillage model for predicting wrinkles in annular graphene under circular shearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Duan, W. H.; Wang, C. M.
This paper is concerned with a Timoshenko grillage model for modeling the wrinkling phenomenon in annular graphene under circular shearing applied at its inner edge. By calibrating the grillage model results against the molecular mechanics (MM) results, the grillage model comprising beams of elliptical cross-section orientated along the carbon-carbon bond has section dimensions of 0.06 nm for the major axis length and 0.036 nm for the minor axis length. Moreover, the beams are connected to one another at 0.00212 nm from the geometric centric. This eccentric connection of beams allows the proposed grillage model to cater for the cross-couplings amongmore » bonds that produce the out-of-plane wrinkling pattern. The out-of-plane to in-plane bending stiffnesses' ratio is 0.36, and the cross bending stiffness provided by the ellipse eccentricity is 0.025 times that of the in-plane bending stiffness. Besides furnishing identical wave numbers as well as amplitudes and wavelengths that are in good agreement with MM results, the grillage model can capture wrinkling patterns with a boundary layer, whereas plate and membrane models could not mimic the boundary layer.« less
The underlying structure of skin wrinkles: a hyperspectral approach to crows feet
NASA Astrophysics Data System (ADS)
Puccetti, G.
2017-02-01
Skin wrinkles are visually perceived by consumers but they are also known to possess an underlying structure not apparent at the surface of the skin. This underlying structure can be brought out by polarized hyperspectral imaging. Wrinkle patterns of eye crow's feet are used as example to show a deeper existing pattern and their characterization versus age on a group of volunteers. The skin inhomogeneity changes within each layer of the skin and can be observed in the shorter wavelength region of the spectrum, about 450nm to 500nm which are well suited to image skin surface inhomogeneities within the central and deep epidermis. Imaging in the 550nm range can serve as a larger scale topology reference because of its deeper penetration into the upper dermis. This serves to bring out the underlying wrinkle pattern as imprinted by collagen anisotropies around deep folds but unapparent to the eye yet. The approach has potential applications in evaluating the internal skin patterns non visible to the eye by mapping their spectral dispersion. This method has thus potentials to evaluate the extent of subsurface structures such as acne and other scars and thereby the efficacy of treatments.
Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang
2017-07-19
Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.
Human Brain Organoids on a Chip Reveal the Physics of Folding.
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Human brain organoids on a chip reveal the physics of folding
NASA Astrophysics Data System (ADS)
Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly
2018-05-01
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
2008-01-01
Introduction Skin disorders associated with photodamage from ultraviolet light include wrinkles, hyperpigmentation, tactile roughness, and telangiectasia, and are more common in people with white compared with other skin types. Wrinkles are also associated with ageing, hormonal status, smoking, and intercurrent disease. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent and treat skin wrinkles? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 20 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: alpha and beta hydroxyl acids, carbon dioxide laser, chemical peel, dermabrasion, facelifts, isotretinoin, natural cartilage polysaccharides (oral or topical), retinyl esters, sunscreens, tazarotene, tretinoin, variable pulse erbium:YAG laser, and vitamin C or E (topical). PMID:19445782
Manríquez, Juan Jorge; Majerson Gringberg, Daniela; Nicklas Diaz, Claudia
2008-12-16
Skin disorders associated with photodamage from ultraviolet light include wrinkles, hyperpigmentation, tactile roughness, and telangiectasia, and are more common in people with white compared with other skin types. Wrinkles are also associated with aging, hormonal status, smoking, and intercurrent disease. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of interventions to prevent and treat skin wrinkles? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 20 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: carbon dioxide laser, chemical peel, dermabrasion, facelifts, glycolic acid, isotretinoin, lactic acid, natural cartilage polysaccharides (oral or topical), retinyl esters, sunscreens, tazarotene, tretinoin, variable pulse erbium:YAG laser, and vitamin C or E (topical).
Indentation of a floating elastic sheet: geometry versus applied tension
Box, Finn; Style, Robert W.; Neufeld, Jerome A.
2017-01-01
The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth’s tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force–indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force–indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes. PMID:29118662
A Combination of Soybean and Haematococcus Extract Alleviates Ultraviolet B-Induced Photoaging
Shin, Jieun; Kim, Jong-Eun; Pak, Kum-Ju; Kang, Jung Il; Kim, Tae-Seok; Lee, Sang-Yoon; Yeo, Ik-Hyun; Park, Jung Han Yoon; Kim, Jong Hun; Kang, Nam Joo; Lee, Ki Won
2017-01-01
Soybean-derived isoflavones have been investigated for their preventative effects against UV-induced symptoms of skin damage including wrinkle formation and inflammation. Haematococcus pluvialis is a freshwater species of Chlorophyta that contains high concentrations of the natural carotenoid pigment astaxanthin. Astaxanthin is known to be involved in retinoic acid receptor (RAR) signaling and previously been associated with the inhibition of activator protein (AP)-1 dependent transcription. Based on previous studies, we hypothesized that a combination of soy extract (SE) and Haematococcus extract (HE) may prevent UVB-induced photoaging through specific signaling pathways, as measured by UVB-induced wrinkling on hairless mice skin and expression changes in human dermal fibroblasts (HDFs). The 1:2 ratio of SE and HE mixture (SHM) showed the optimal benefit in vivo. SHM was found to inhibit wrinkle formation via the downregulation of matrix metalloproteinase (MMP)-1 mRNA and protein expression. SHM also inhibited mitogen-activated protein kinase (MAPK) phosphorylation and the transactivation of AP-1 which plays an important role in regulating MMP expression. These results highlight the potential for SHM to be developed as a therapeutic agent to prevent UVB-induced skin wrinkling. PMID:28327532
A Combination of Soybean and Haematococcus Extract Alleviates Ultraviolet B-Induced Photoaging.
Shin, Jieun; Kim, Jong-Eun; Pak, Kum-Ju; Kang, Jung Il; Kim, Tae-Seok; Lee, Sang-Yoon; Yeo, Ik-Hyun; Park, Jung Han Yoon; Kim, Jong Hun; Kang, Nam Joo; Lee, Ki Won
2017-03-22
Soybean-derived isoflavones have been investigated for their preventative effects against UV-induced symptoms of skin damage including wrinkle formation and inflammation. Haematococcus pluvialis is a freshwater species of Chlorophyta that contains high concentrations of the natural carotenoid pigment astaxanthin. Astaxanthin is known to be involved in retinoic acid receptor (RAR) signaling and previously been associated with the inhibition of activator protein (AP)-1 dependent transcription. Based on previous studies, we hypothesized that a combination of soy extract (SE) and Haematococcus extract (HE) may prevent UVB-induced photoaging through specific signaling pathways, as measured by UVB-induced wrinkling on hairless mice skin and expression changes in human dermal fibroblasts (HDFs). The 1:2 ratio of SE and HE mixture (SHM) showed the optimal benefit in vivo. SHM was found to inhibit wrinkle formation via the downregulation of matrix metalloproteinase (MMP)-1 mRNA and protein expression. SHM also inhibited mitogen-activated protein kinase (MAPK) phosphorylation and the transactivation of AP-1 which plays an important role in regulating MMP expression. These results highlight the potential for SHM to be developed as a therapeutic agent to prevent UVB-induced skin wrinkling.
A comparative analysis of numerical approaches to the mechanics of elastic sheets
NASA Astrophysics Data System (ADS)
Taylor, Michael; Davidovitch, Benny; Qiu, Zhanlong; Bertoldi, Katia
2015-06-01
Numerically simulating deformations in thin elastic sheets is a challenging problem in computational mechanics due to destabilizing compressive stresses that result in wrinkling. Determining the location, structure, and evolution of wrinkles in these problems has important implications in design and is an area of increasing interest in the fields of physics and engineering. In this work, several numerical approaches previously proposed to model equilibrium deformations in thin elastic sheets are compared. These include standard finite element-based static post-buckling approaches as well as a recently proposed method based on dynamic relaxation, which are applied to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Numerical solutions are compared to analytic predictions of the ground state, enabling a quantitative evaluation of the predictive power of the various methods. Results indicate that static finite element approaches produce local minima that are highly sensitive to initial imperfections, relying on a priori knowledge of the equilibrium wrinkling pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial imperfections and can generate low-energy solutions for a wide variety of loading conditions without requiring knowledge of the equilibrium solution beforehand.
Trojahn, Carina; Dobos, Gabor; Lichterfeld, Andrea; Blume-Peytavi, Ulrike; Kottner, Jan
2015-01-01
Facial skin ageing is caused by intrinsic and extrinsic mechanisms. Intrinsic ageing is highly related to chronological age. Age related skin changes can be measured using clinical and biophysical methods. The aim of this study was to evaluate whether and how clinical characteristics and biophysical parameters are associated with each other with and without adjustment for chronological age. Twenty-four female subjects of three age groups were enrolled. Clinical assessments (global facial skin ageing, wrinkling, and sagging), and biophysical measurements (roughness, colour, skin elasticity, and barrier function) were conducted at both upper cheeks. Pearson's correlations and linear regression models adjusted for age were calculated. Most of the measured parameters were correlated with chronological age (e.g., association with wrinkle score, r = 0.901) and with each other (e.g., residual skin deformation and wrinkle score, r = 0.606). After statistical adjustment for age, only few associations remained (e.g., mean roughness (R z) and luminance (L *), β = −0.507, R 2 = 0.377). Chronological age as surrogate marker for intrinsic ageing has the most important influence on most facial skin ageing signs. Changes in skin elasticity, wrinkling, sagging, and yellowness seem to be caused by additional extrinsic ageing. PMID:25767806
Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.
2015-01-01
Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137
Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer.
Yan, Wei; He, Wen-Yu; Chu, Zhao-Dong; Liu, Mengxi; Meng, Lan; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin
2013-01-01
It is well established that strain and geometry could affect the band structure of graphene monolayer dramatically. Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature, which are found to strongly affect the local band structures of the twisted graphene bilayer. The energy difference of the two low-energy van Hove singularities decreases with increasing lattice deformation and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive chiral fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.
Direct observation of resistive heating at graphene wrinkles and grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse, Kyle L.; Dorgan, Vincent E.; Estrada, David
We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small temperature increase at select wrinkles and a large (100 K) temperature increase at GBs between coalesced hexagonal grains. Comparisons of measurements with device simulations estimate the GB resistivity (8 150 X lm) among the lowest reported for graphene grown by chemical vapor deposition. An analytical model is developed, showing that GBs can experience highly localized resistive heating and temperature rise, most likely affecting the reliability ofmore » graphene devices. Our studies provide an unprecedented view of thermal effects surrounding nanoscale defects in nanomaterials such as graphene.« less
Probing Mechanics of Crumpled Two-Dimensional Membranes and Cantilevers
NASA Astrophysics Data System (ADS)
Nicholl, Ryan; Conley, Hiram; Lavrik, Nickolay; Vlassiouk, Ivan; Puzyrev, Yevgeniy; Sreenivas, Vijayashree Parsi; Pantelides, Sokrates; Bolotin, Kirill
Two-dimensional materials (2DMs) are inevitably crumpled in the out-of-plane direction due to both static wrinkling associated with uneven stresses and dynamic wrinkling resulting from flexural phonons. Here, we investigate the effect of this crumpling on mechanical properties of 2DMs - in-plane stiffness and bending rigidity. To carry out these measurements, we developed techniques to fabricate graphene membranes and singly clamped graphene cantilevers that are stable in vacuum and air. The measurements are performed by actuating these devices electrostatically and monitoring their displacement via sensitive interferometric profilometry both at room and low temperatures. We find that crumpling lowers the in-plane stiffness and strongly increases the bending rigidity of 2DMs. Furthermore, we unravel the relative contribution of static and dynamic wrinkling to observed renormalization of the effective mechanical constants.
ERIC Educational Resources Information Center
Wilson, Suzanne M.; Wineburg, Samuel S.
1993-01-01
Responses of two high school history teachers on three performance assessments of teaching, part of the Stanford University Teacher Assessment Project, were analyzed. Differences that emerged in teacher attitudes and knowledge level illustrate what performance assessment can reveal about pedagogical knowledge and the implications for educational…
Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?
Yang, Jae-Man; Lee, Jung-Hoon
2018-01-01
Background It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). Material/Methods Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin temperature was measured before, immediately after application, 5 min later, 15 min later, and after the removal of the tape. Results Both CTM and NCTM showed a slight, but significant, decrease in skin temperature for up to 5 min. The skin temperature at 15 min and after the removal of the tape was not significantly different from the initial temperature for CTM and NCTM. There were also no significant differences in the skin temperatures between CTM and NCTM. Conclusions Our findings do not support a therapeutic effect of wrinkling the skin with elastic tape application as a technique to increase local blood flow. PMID:29332101
Study the effect of elevated dies temperature on aluminium and steel round deep drawing
NASA Astrophysics Data System (ADS)
Lean, Yeong Wei; Azuddin, M.
2016-02-01
Round deep drawing operation can only be realized by expensive multi-step production processes. To reduce the cost of processes while expecting an acceptable result, round deep drawing can be done at elevated temperature. There are 3 common problems which are fracture, wrinkling and earing of deep drawing a round cup. The main objective is to investigate the effect of dies temperature on aluminium and steel round deep drawing; with a sub-objective of eliminate fracture and reducing wrinkling effect. Experimental method is conducted with 3 different techniques on heating the die. The techniques are heating both upper and lower dies, heating only the upper dies, and heating only the lower dies. 4 different temperatures has been chosen throughout the experiment. The experimental result then will be compared with finite element analysis software. There is a positive result from steel material on heating both upper and lower dies, where the simulation result shows comparable as experimental result. Heating both upper and lower dies will be the best among 3 types of heating techniques.
Is Kinesio Taping to Generate Skin Convolutions Effective for Increasing Local Blood Circulation?
Yang, Jae-Man; Lee, Jung-Hoon
2018-01-14
BACKGROUND It is unclear whether traditional application of Kinesio taping, which produces wrinkles in the skin, is effective for improving blood circulation. This study investigated local skin temperature changes after the application of an elastic therapeutic tape using convolution and non-convolution taping methods (CTM/NCTM). MATERIAL AND METHODS Twenty-eight pain-free men underwent CTM and NCTM randomly applied to the right and left sides of the lower back. Using infrared thermography, skin temperature was measured before, immediately after application, 5 min later, 15 min later, and after the removal of the tape. RESULTS Both CTM and NCTM showed a slight, but significant, decrease in skin temperature for up to 5 min. The skin temperature at 15 min and after the removal of the tape was not significantly different from the initial temperature for CTM and NCTM. There were also no significant differences in the skin temperatures between CTM and NCTM. CONCLUSIONS Our findings do not support a therapeutic effect of wrinkling the skin with elastic tape application as a technique to increase local blood flow.
Wrinkle-Free Hydroforming of Wire Mesh
NASA Technical Reports Server (NTRS)
Fadness, J.
1986-01-01
Plastic films lubricate workpiece so it deforms smoothly. Thin layers of plastic below top die and above bottom die ensure wire screen slides as shaped by hydroforming. Plastic layers are 0.0043 in. (0.11 m) thick. Preformed to contours of dies and final workpiece. New method of hydroforming fine-wire-mesh heat-shield screens eliminates wrinkles and marks. Prevents screen from being damaged and pores from becoming blocked.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption... Appendix D2 to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Clothes... forced air circulation to remove moisture from the clothing, remove wrinkles or prevent wrinkling of the...
Phetcharat, L; Wongsuphasawat, K; Winther, K
2015-01-01
Objective To evaluate the effects of a rose hip powder (Hyben Vital®) made from seeds and shells on cell senescence, skin wrinkling, and aging. Methods A total of 34 healthy subjects, aged 35–65 years, with wrinkles on the face (crow’s-feet) were subjected to a randomized and double-blinded clinical study of the effects of the rose hip powder, as compared to astaxanthin, a well-known remedy against wrinkles. During the 8-week study, half of the participants ingested the standardized rose hip product, while the other half ingested astaxanthin. Objective measurements of facial wrinkles, skin moisture, and elasticity were made by using Visioscan, Corneometer, and Cutometer at the beginning of the study, after 4 weeks, and after 8 weeks. Evaluation of participant satisfaction of both supplements was assessed using questionnaires. In addition, the effect of the rose hip preparation on cell longevity was measured in terms of leakage of hemoglobin through red cell membranes (hemolytic index) in blood samples kept in a blood bank for 5 weeks. Significance of all values was attained with P≤0.05. Results In the double-blinded study, the rose hip group showed statistically significant improvements in crow’s-feet wrinkles (P<0.05), skin moisture (P<0.05), and elasticity (P<0.05) after 8 weeks of treatment. A similar improvement was observed for astaxanthin, with P-values 0.05, 0.001, and 0.05. Likewise, both groups expressed equal satisfaction with the results obtained in their self-assessment. The rose hip powder further resulted in increased cell longevity of erythrocyte cells during storage for 5 weeks in a blood bank. Conclusion Results suggest that intake of the standardized rose hip powder (Hyben Vital®) improves aging-induced skin conditions. The apparent stabilizing effects of the rose hip product on cell membranes of stored erythrocyte cells observed in this study may contribute to improve the cell longevity and obstructing skin aging. PMID:26604725
Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Ryu, J; Baek, J; Jung, H
2018-04-01
Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P < 0.05). The dissolving microneedle patches had a long-lasting effect on the average wrinkle depth (P < 0.05), only showed efficacy in dermal density (P < 0.05), had an early improving effect on elasticity (P < 0.05), and demonstrated better hydration efficacy (P < 0.001). No adverse effects were observed in either group during the test period. In the clinical efficacy test of four skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Jung, Yu Ri; Kim, Dae Hyun; Kim, So Ra; An, Hye Jin; Lee, Eun Kyeong; Tanaka, Takashi; Kim, Nam Deuk; Yokozawa, Takako; Park, Jin Nam; Chung, Hae Young
2014-01-01
Skin is in direct contact with the environment and therefore undergoes aging as a consequence of environmentally induce damage. Wrinkle formation is a striking feature of intrinsic and photo-induced skin aging, which are both associated with oxidative stress and inflammatory response. The present study was undertaken to identify the mechanisms responsible for the anti-wrinkle effects of MLB, and thus, we investigated whether magnesium lithospermate B (MLB) from Salvia miltiorrhiza BUNGE associated with wrinkle formation caused by intrinsic and extrinsic skin aging using Sprague-Dawley rats aged 5 and 20 months and ultraviolet B (UVB)-irradiated human skin fibroblasts cells, respectively. The results obtained showed that the oral administration of MLB significantly upregulated the level of type I procollagen and downregulated the activities and expressions of matrix-metalloproteinases (MMPs) in rat skin. In fibroblasts, MLB suppressed the transactivation of nuclear factor-kB (NF-kB) and activator protein 1(AP-1), which are the two transcription factors responsible for MMP expression, by suppressing oxidative stress and the mitogen activated protein kinase (MAPK) pathway. Our results show that the antioxidant effect of MLB is due to the direct scavenging of reactive oxygen species (ROS) and its inhibitory effects on NF-kB-dependent inflammation genes, such as, cyclooxygenase-2 and inducible nitric oxide synthase. MLB was found to reverse both age- and UVB-related reductions in skin procollagen levels by suppressing the expressions and activities of NF-kB and AP-1-dependent MMPs by modulating ROS generation and the MAPK signaling pathway. We suggest that MLB potentially has anti-wrinkle and anti-skin aging effects. PMID:25099178
Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning themore » film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance.
Fang, Bo; Xi, Jiabin; Liu, Yingjun; Guo, Fan; Xu, Zhen; Gao, Weiwei; Guo, Daoyou; Li, Peigang; Gao, Chao
2017-08-24
The interfacial adhesion between graphene and metals is poor, as metals tend to generate superlubricity on smooth graphene surface. This problem renders the free assembly of graphene and metals to be a big challenge, and therefore, some desired conducting properties (e.g., stable metal-like conductivities in air, lightweight yet flexible conductors, and ultralow temperature coefficient of resistance, TCR) likely being realized by integrating the merits of graphene and metals remains at a theoretical level. This work proposes a wrinkle-stabilized approach to address the poor adhesion between graphene surface and metals. Cyclic voltammetry (CV) tests and theoretical analysis by Scharifker-Hills models demonstrate that multiscale wrinkles effectively induce nucleation of metal particles, locking in metal nuclei and guiding the continuous growth of metal islands in an instantaneous model on rough graphene surface. The universality and practicability of the wrinkle-stabilized approach is verified by our investigation through the electrodeposition of nine kinds of metals on graphene fibers (GF). The strong interface bonding permits metal-graphene hybrid fibers to show metal-level conductivities (up to 2.2 × 10 7 S m -1 , a record high value for GF in air), reliable weatherability and favorable flexibility. Due to the negative TCR of graphene and positive TCR of metals, the TCR of Cu- and Au-coated GFs reaches zero at a wide temperature range (15 K-300 K). For this layered model, the quantitative analysis by classical theories demonstrates the suitable thickness ratio of graphene layer and metal layer to achieve zero TCR to be 0.2, agreeing well with our experimental results. This wrinkle-stabilized approach and our theoretical analysis of zero-TCR behavior of the graphene-metal system are conducive to the design of high-performance conducting materials based on graphene and metals.
Mesguich Batel, F; Bertrand, B; Magalon, J; François, P; Velier, M; Veran, J; Mallet, S; Jouve, E; Sabatier, F; Casanova, D
2018-02-01
Emulsified fat injection showed its interest in aesthetic facial surgery. The adipose tissue harvested is mechanically emulsified and filtered. The suspension obtained is injected into the dermis through small diameter needles (27 to 30 gauges). The objective of our study was to evaluate the biological composition of emulsified fat and its clinical effectiveness in the treatment of peri-oral wrinkles in 4 patients aged 50 to 59 years. Each patient received an intradermal injection of emulsified fat in the peri-oral wrinkles prepared from abdominal fat under local anesthesia. The cell viability, stromal vascular fraction (FVS) composition in emulsified fat and the adipocyte differentiation capacity of mesenchymal stem cells (MSC) were studied. The clinical results were evaluated by standardized photographs, 3D microphotography, confocal microscopy, and self-evaluation of patient satisfaction over a period of 4 months. The biological study of the emulsified fat found a lysis of all the adipocytes. The mean number of FVS cells was 126,330±2758 cells by cc of emulsified fat with preserved cell viability (85.1±6.84 %) and a good proportion of regeneratives cells (18.77±6.2 %). The clinical study found a tendency to decrease the volume of wrinkles on standardized photography and 3D microphotography no significative. Patients were satisfied with treatment with an average score of 7±1.15/10 to 4 months. Intradermal injection of emulsified fat seems to be an interesting treatment of face wrinkles. Our study has shown its safety, but additional studies seems necessary to confirm its clinical efficacy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Trelles, M A; Alvarez, X; Martín-Vázquez, M J; Trelles, O; Velez, M; Levy, J L; Allones, I
2005-05-01
Rhytides represent an aesthetic problem for a large percentage of the population. Many methods, both noninvasive and invasive, have been used for the treatment of wrinkles. Recently, the long-pulsed 1064-nm Nd:YAG laser has been shown to enhance dermal collagen synthesis without damaging the epidermis. The purpose of this preliminary study is to evaluate the use of the long-pulsed Nd:YAG laser in the nonablative treatment of periocular and perioral wrinkles. Ten patients with facial wrinkles were treated with the long-pulsed 1064-nm Nd:YAG laser, at a spot size of 5 mm in diameter, energy density of 13 J/cm2, exposure time per pulse of 300 microseconds, and a repetition rate of 7 Hz. All patients had a total of three treatments, once every 2 weeks. Subjective (patient satisfaction index [SI]) and objective (both physician- and computer program-based clinical index [CI]) assessments were performed before the first and third treatment sessions, and at 2, 4, and 6 months after the last treatment. At 6 months after the final treatment session, the patients' subjective SI was maintained at 40%, and had peaked at 50% 2 months after the final session. Physician assessment showed a CI of 40% at the 6-month assessment point and the computer program showed a 50% CI. The greatest level of effect with long-pulsed Nd:YAG laser nonablative skin rejuvenation for facial wrinkles was seen 2 months after the final treatment. Effects were still visible at the 6-month period, but showed a tendency to decrease. Maintenance treatments are required to achieve good patient satisfaction.
Multicenter clinical trial of a home-use nonablative fractional laser device for wrinkle reduction.
Leyden, James; Stephens, Thomas J; Herndon, James H
2012-11-01
Until now, nonablative fractional treatments could only be delivered in an office setting by trained professionals. The goal of this work was to perform clinical testing of a nonablative fractional laser device designed for home-use. This multicenter trial consisted of two clinical studies with slightly varying treatment protocols in which subjects performed at-home treatments of periorbital wrinkles using a handheld nonablative fractional laser. Both studies included an active treatment phase (daily treatments) and a maintenance phase (twice-weekly treatments). In all, 36 subjects were followed up for as long as 5 months after completion of the maintenance phase and 90 subjects were followed up until the completion of the maintenance phase. Evaluations included in-person investigator assessment, independent blinded review of high-resolution images using the Fitzpatrick Wrinkle Scale, and subject self-assessment. All 124 subjects who completed the study were able to use the device following written instructions for use. Treatments were well tolerated with good protocol compliance. Independent blinded evaluations by a panel of physicians showed Fitzpatrick Wrinkle Scale score improvement by one or more grades in 90% of subjects at the completion of the active phase and in 79% of subjects at the completion of the maintenance phase. The most prevalent side effect was transient posttreatment erythema. Lack of a control group and single-blinded study groups were limitations. Safety testing with self-applications by users demonstrated the utility of the device for home use. Independent blinded review of clinical images confirmed the device's proficiency for improving periorbital wrinkles. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Voltage-programmable liquid optical interface
NASA Astrophysics Data System (ADS)
Brown, C. V.; Wells, G. G.; Newton, M. I.; McHale, G.
2009-07-01
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at micrometre-scale pitches or more complex non-sinusoidal profiles with higher Fourier components at longer pitches. This opens up the possibility of developing rapidly responsive voltage-programmable, polarization-insensitive transmission and reflection diffraction devices and arbitrary surface profile optical devices.
NASA Astrophysics Data System (ADS)
Choi, Hong-seok; Ha, Se-yoon; Cha, Seung-hoon; kang, Chung-gil; Kim, Byung-min
2011-08-01
The hot stamping process has been used in the automotive industry to reduce the weight of the body-in-white and to increase passenger safety via improved crashworthiness. In this study, a new form die with a simple structure that can prevent defects such as wrinkle and fracture is proposed for the manufacture of hot stamped components. The wrinkling at the flange cannot be eliminated when using a conventional form die. It is known that the initiation of wrinkling is influenced by many factors such as the mechanical properties of the sheet material, geometry of the sheet and tool, and other process parameters, including the blank holding force (BHF) and the contact conditions. In this research, channel type indirect blank holder (CIBH) is introduced to replace general blank holder for manufacturing the hot stamped center pillar. First, we investigate the tension force acting on the blank according to the channel shapes. We determine the appropriate range by comparing the tension force with the upper and lower BHFs in a conventional stamping process. We then use FE-analysis to study the influence of the slope angle and corner radius of the channel on the formability. Finally, the center pillar is manufactured using the form die with the selected channel.
Lee, Kyung-Eun; Park, Ji-Eun; Jung, Eunsun; Ryu, Jahyun; Kim, Youn Joon; Youm, Jong-Kyung; Kang, Seunghyun
2016-04-01
Solar ultraviolet (UV) irradiation is a primary cause of premature skin aging that is closely associated with the degradation of collagens caused by up-regulation of matrix metalloproteinases (MMPs) or a decrease in collagen synthesis. The phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from fruits, vegetables and medicinal mushrooms. VA has been reported to have anti-inflammatory, anti-oxidant and photo-protective effects. In this study, anti-photoaging effects were investigated through the photo-protective mechanisms of VA against UV irradiation in human dermal fibroblasts and the reconstructed human epidermal model. We used reverse transcription-polymerase chain reaction, Western blot analysis, hematoxylin and eosin staining (H&E) and immunohistochemistry assays. Finally, we further investigated the clinical effects of VA on facial wrinkle improvements in humans. Our results demonstrate that VA attenuated the expression of MMPs, increased cell proliferation, type Ι procollagen, tissue inhibitors of metalloproteinases, and filaggrin against UV radiation; however, has no effect on improvement expressions of elastic fiber. In addition, treatment with cream containing VA improved facial wrinkles in a clinical trial. These findings indicate that VA improves wrinkle formation by modulating MMPs, collagens and epidermal layer integrity, suggesting its potential use in UV-induced premature skin aging.
Metabolic cutis laxa syndromes.
Mohamed, Miski; Kouwenberg, Dorus; Gardeitchik, Thatjana; Kornak, Uwe; Wevers, Ron A; Morava, Eva
2011-08-01
Cutis laxa is a rare skin disorder characterized by wrinkled, redundant, inelastic and sagging skin due to defective synthesis of elastic fibers and other proteins of the extracellular matrix. Wrinkled, inelastic skin occurs in many cases as an acquired condition. Syndromic forms of cutis laxa, however, are caused by diverse genetic defects, mostly coding for structural extracellular matrix proteins. Surprisingly a number of metabolic disorders have been also found to be associated with inherited cutis laxa. Menkes disease was the first metabolic disease reported with old-looking, wrinkled skin. Cutis laxa has recently been found in patients with abnormal glycosylation. The discovery of the COG7 defect in patients with wrinkled, inelastic skin was the first genetic link with the Congenital Disorders of Glycosylation (CDG). Since then several inborn errors of metabolism with cutis laxa have been described with variable severity. These include P5CS, ATP6V0A2-CDG and PYCR1 defects. In spite of the evolving number of cutis laxa-related diseases a large part of the cases remain genetically unsolved. In metabolic cutis laxa syndromes the clinical and laboratory features might partially overlap, however there are some distinct, discriminative features. In this review on metabolic diseases causing cutis laxa we offer a practical approach for the differential diagnosis of metabolic cutis laxa syndromes.
NASA Astrophysics Data System (ADS)
Mordon, Serge R.; Capon, Alexandre; Creusy, Collette; Fleurisse, Laurence; Buys, Bruno; Faucheux, Marc A.; Servell, Pascal
2000-05-01
Selective dermal remodeling using diode or 1.32 micrometer Nd:YAG lasers has been recently proposed for skin rejuvenation. This new technique consists in inducing collagen tightening and/or neocollagen synthesis without significant damage of the overlying epidermis. Such an approach requires (1) a cooling system in order to target dermal collagen with relatively good protection of the epidermal layer, (2) a specific wavelength for confining the thermal damage into the upper dermis (100 to 400 micrometer). Based on previous studies, demonstrating a better water absorption and a reduced melanin absorption at 1.54 micrometer compared to the 1.32 micrometer, this experimental study aimed to evaluate a new laser (co-doped Yb-Er:phosphate glass material, Aramis, Quantel-France) emitting at 1.54 micrometer. This laser was used in combination with the Dermacool system (Dermacool, Mableton, USA) in order to achieve epidermis cooling before, during and after irradiation. Male hairless rats were used for the study. Pulse train irradiation (1.1 J, 3 Hz, 30 pulses) and different cooling temperatures (+5 degree(s)C, 0 degree(s)C, -5 degree(s)C) were screened with clinical examination and histological evaluation at 1, 3, and 7 days after laser irradiation. The clinical effects showed that pulse train irradiation produced reproducible epidermal preservation and confinement of the thermal damage into the dermis. The different cooling temperatures did not provide detectable differences in terms of size and depth of thermal damage. New collagen synthesis was confirmed by a marked fibroblastic proliferation, detected in the lower dermis at D3 and clearly seen in the upper dermis at D7. This new laser appears to be a promising new tool for the treatment of skin laxity, solar elastosis, facial rhytids and mild reduction of wrinkles.
[Oxygen plasma-vulcanized deformable polydimethylsiloxane sheet culture substrates].
Zhang, Yiyi; Tao, Zulai
2003-06-01
A method of preparing deformable polydimethylsiloxane sheet culture substrates by oxygen plasma vulcanization was developed. As compared with the traditional heating vulcanization method, the substrates prepared in this way have hydrophilic surfaces, the adhesion and spreading of cells both occur quickly, and the wrinkling deformation of substrates develops quickly, too. In addition, the changes of wrinkles during treatment of cytochalasin D were observed, and the result shows that this technique has high temporal resolution.
Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes
2013-12-18
High-Performance Supercapacitors Based onWrinkledGraphene Electrodes Tao Chen,† Yuhua Xue,† Ajit K. Roy,‡ and Liming Dai†,* †Center of Advanced Science...electrodes and the associated supercapacitor cells cannot be both trans- parent and stretchable.1318 It is highly desirable to integrate the...devices (e.g., supercapacitors ) because most of the exist- ing electrodes are neither stretchable nor transparent (e.g., metal electrodes) with some of them
Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors
Yu, Xiuxiu; Wang, Ying; Li, Li; Li, Hongbian; Shang, Yuanyuan
2017-01-01
Biomass materials are promising precursors for the production of carbonaceous materials due to their abundance, low cost and renewability. Here, a freestanding wrinkled carbon membrane (WCM) electrode material for flexible supercapacitors (SCs) was obtained from flower petal. The carbon membrane was fabricated by a simple thermal pyrolysis process and further activated by heating the sample in air. As a binder and current collector-free electrode, the activated wrinkled carbon membrane (AWCM) exhibited a high specific capacitance of 332.7 F/g and excellent cycling performance with 92.3% capacitance retention over 10000 cycles. Moreover, a flexible all-solid supercapacitor with AWCM electrode was fabricated and showed a maximum specific capacitance of 154 F/g and great bending stability. The development of this flower petal based carbon membrane provides a promising cost-effective and environmental benign electrode material for flexible energy storage. PMID:28361914
Simulating Thin Sheets: Buckling, Wrinkling, Folding and Growth
NASA Astrophysics Data System (ADS)
Vetter, Roman; Stoop, Norbert; Wittel, Falk K.; Herrmann, Hans J.
2014-03-01
Numerical simulations of thin sheets undergoing large deformations are computationally challenging. Depending on the scenario, they may spontaneously buckle, wrinkle, fold, or crumple. Nature's thin tissues often experience significant anisotropic growth, which can act as the driving force for such instabilities. We use a recently developed finite element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets. The model uses subdivision surface shape functions in order to guarantee convergence of the method, and to allow a finite element description of anisotropically growing sheets in the classical Rayleigh-Ritz formalism. We illustrate the great potential in this approach by simulating the inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially confined sheets subject to growth and shrinking confinement to find that the two processes are equivalent.
Wrinkling of graphene membranes supported by silica nanoparticles on substrates
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team
2011-03-01
The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471
Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State
Okegbe, Chinweike; Price-Whelan, Alexa; Sakhtah, Hassan; Hunter, Ryan C.; Newman, Dianne K.
2013-01-01
Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans. PMID:23292774
Sadick, Neil S; Alexiades-Armenakas, Macrene; Bitter, Patrick; Hruza, George; Mulholland, R Stephen
2005-01-01
The authors previously reported their experience achieving non-ablative skin enhancement with serial, full-face, intense pulsed light treatments in a large series of patients. A new method for skin renewal electro-optical synergy (ELOS), which combines intense pulsed optical energy and conducted bipolar radiofrequency (RF) energy into a single pulse, has been recently introduced. Intense pulsed optical energy and bipolar RF energy have been used in dermatologic surgery for many years; however, this study represents the therapeutic impact of the combined energies. The authors report their experience using an ELOS system (Aurora SR, Syneron, Yokneam, Israel) on 108 consecutive patients treated with a series of full-face procedures. Patients received 5 full-face treatments every 3 weeks. Each treatment consisted of 1 to 8 full-face and segmental passes. The number of passes, specific wavelength of pulsed optical energy, and RF energy were determined by the patient's skin type, dyschromia, wrinkle pathology, and presence of a tan. A total of 540 treatments were performed on 108 subjects. All patients had pre- and post-procedural photographs. Results were assessed by double-blinded physician photographic evaluation and patient satisfaction scales. Overall skin improvement was rated at 75.3%. Overall average wrinkle improvement was 41.2%, with an average Class 1 wrinkle improvement of 64.7%, Class 2 wrinkle improvement of 38.6%, and Class 3 wrinkle improvement of 20.4%. Improvement in skin laxity was rated at 62.9%. Skin texture was reported to improve 74.1%. Improvement in the appearance of pore size was rated at 65.1%. Average improvement in erythema and telangiectasia was 68.4%. Average improvement in hyperpigmentation and dyschromia was 79.3%. Overall patient satisfaction was 92%. The overall minor complication rate, including blistering, crusting, and stripping was 8.3%, and the major complication rate was less than 1%. One small, depressed nasal scar was observed in one patient. This study demonstrates the safety and efficacy of a new technology using combined optical and conducted bipolar RF energies for noninvasive skin rejuvenation. The results show improvement in wrinkle reduction and amelioration of erythema, telangiectasia, and hyperpigmentation comparable to that reported for other intense pulsed light technologies.
Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites
M. R., Nurul Fazita; Jayaraman, Krishnan; Bhattacharyya, Debes
2016-01-01
Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters. PMID:28773662
2016-02-01
certification process. INTRODUCTION The ultrasonic inspection of aerospace composites has been demonstrated to be one of the most effective methods to...normal part conditions. Anomalous indications studied in this program include inserted materials, porosity, ply ‘laps and gaps’, and wrinkles . Inserted...partially scanned inserts at the radii. Wrinkles , laps and gaps have also been included in the truth table, but detection rates for these flaws are
Jung, Hee Jin; Lee, A Kyoung; Park, Yeo Jin; Lee, Sanggwon; Kang, Dongwan; Jung, Young Suk; Chung, Hae Young; Moon, Hyung Ryong
2018-06-11
Ultraviolet (UV) radiation exposure is the primary cause of extrinsic skin aging, which results in skin hyperpigmentation and wrinkling. In this study, we investigated the whitening effect of (2 E ,5 E )-2,5-bis(3-hydroxy-4-methoxybenzylidene)cyclopentanone (BHCP) on B16F10 melanoma and its anti-wrinkle activity on Hs27 fibroblasts cells. BHCP was found to potently inhibit tyrosinase, with 50% inhibition concentration (IC 50 ) values of 1.10 µM and 8.18 µM for monophenolase (l-tyrosine) and diphenolase (l-DOPA), and the enzyme kinetics study revealed that BHCP is a competitive-type tyrosinase inhibitor. Furthermore, BHCP significantly inhibited melanin content and cellular tyrosinase activity, and downregulated the levels of microphthalmia-associated transcription factor (MITF), phosphorylated levels of cAMP response element-binding (CREB) protein, and tyrosinase in α-melanocyte stimulating hormone (α-MSH)-induced B16F10 melanoma cells. Moreover, BHCP inhibited the phosphorylation of p65 and expression of matrix metalloproteinases (MMP-1, MMP-9, MMP-12, and MMP-13) in Hs27 fibroblasts stimulated with UV radiation. Therefore, our results demonstrate that BHCP may be a good candidate for the development of therapeutic agents for diseases associated with hyperpigmentation and wrinkling.
Wrinkles and creases in the bending, unbending and eversion of soft sectors
NASA Astrophysics Data System (ADS)
Sigaeva, Taisiya; Mangan, Robert; Vergori, Luigi; Destrade, Michel; Sudak, Les
2018-04-01
We study what is clearly one of the most common modes of deformation found in nature, science and engineering, namely the large elastic bending of curved structures, as well as its inverse, unbending, which can be brought beyond complete straightening to turn into eversion. We find that the suggested mathematical solution to these problems always exists and is unique when the solid is modelled as a homogeneous, isotropic, incompressible hyperelastic material with a strain-energy satisfying the strong ellipticity condition. We also provide explicit asymptotic solutions for thin sectors. When the deformations are severe enough, the compressed side of the elastic material may buckle and wrinkles could then develop. We analyse, in detail, the onset of this instability for the Mooney-Rivlin strain energy, which covers the cases of the neo-Hookean model in exact nonlinear elasticity and of third-order elastic materials in weakly nonlinear elasticity. In particular, the associated theoretical and numerical treatment allows us to predict the number and wavelength of the wrinkles. Guided by experimental observations, we finally look at the development of creases, which we simulate through advanced finite-element computations. In some cases, the linearized analysis allows us to predict correctly the number and the wavelength of the creases, which turn out to occur only a few per cent of strain earlier than the wrinkles.
Large-particle calcium hydroxylapatite injection for correction of facial wrinkles and depressions.
Alam, Murad; Havey, Jillian; Pace, Natalie; Pongprutthipan, Marisa; Yoo, Simon
2011-07-01
Small-particle calcium hydroxylapatite (Radiesse, Merz, Frankfurt, Germany) is safe and effective for facial wrinkle reduction, and has medium-term persistence for this indication. There is patient demand for similar fillers that may be longer lasting. We sought to assess the safety and persistence of effect in vivo associated with use of large-particle calcium hydroxylapatite (Coaptite, Merz) for facial augmentation and wrinkle reduction. This was a case series of 3 patients injected with large-particle calcium hydroxylapatite. Large-particle calcium hydroxylapatite appears to be effective and well tolerated for correction of facial depressions, including upper mid-cheek atrophy, nasolabial creases, and HIV-associated lipoatrophy. Adverse events included erythema and edema, and transient visibility of the injection sites. Treated patients, all of whom had received small-particle calcium hydroxylapatite correction before, noted improved persistence at 6 and 15 months with the large-particle injections as compared with prior small-particle injections. This is a small case series, and there was no direct control to compare the persistence of small-particle versus large-particle correction. For facial wrinkle correction, large-particle calcium hydroxylapatite has a safety profile comparable with that of small-particle calcium hydroxylapatite. The large-particle variant may have longer persistence that may be useful in selected clinical circumstances. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, Suresh
1999-01-01
A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko
Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recoverymore » of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.« less
Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.
Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won
2016-05-01
Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Philipp-Dormston, Wolfgang G; Wong, Cindy; Schuster, Bernd; Larsson, Markus K; Podda, Maurizio
2018-06-01
Hyaluronic acid (HA) fillers are commonly used in treating facial wrinkles and folds but have not been studied with standardized methodology to include assessment of standard facial expressions. To assess perceived naturalness of facial expression after treatment with 2 HA fillers manufactured with XpresHAn Technology (also known as Optimal Balance Technology). Treatment was directed to the nasolabial folds (NLFs) and at least 1 additional lower face wrinkle or fold. Maintenance of naturalness, attractiveness, and age at 1 month after optimal treatment were assessed using video recordings and photographs capturing different facial animations. Global aesthetic improvement, subjects' satisfaction, and safety were also evaluated. The treatment was well tolerated. Naturalness of facial expression in motion was determined to be at least maintained in 95% of subjects. Attractiveness was enhanced in 89% of subjects and 79% of subjects were considered to look younger. Most subjects assessed their aesthetic appearance as improved and were satisfied with their treatment. Naturalness and attractiveness can be assessed using video recordings and photographs capturing different facial animations. XpresHAn Technology HA filler treatments create natural-looking results with high subject satisfaction.
Makino, Elizabeth T; Jiang, Lily I; Tan, Priscilla; Cheng, Tsing; Mehta, Rahul C
2018-03-01
The growing male skincare market reflects the increased interest of men in addressing facial aging concerns and maintaining a healthy youthful appearance. Because of differences in skin structure and aging as well as in lifestyle and behavior, male facial skin presents unique challenges that may result in different priorities or treatment strategies compared to female skin. A clinical study was conducted to assess clinical efficacy and tolerability of a topical skincare treatment product that was developed to address several male facial skin concerns related to skin quality, skin aging, and shaving. The treatment product provided significant improvements in all clinical efficacy parameters including overall photodamage, tactile roughness, fine line/wrinkles, and coarse lines/wrinkles. Furthermore, significant improvements in erythema as well as dryness/scaling were observed. Subject self-assessment questionnaires showed that the treatment product was highly rated in both self-perceived efficacy as well as product attributes. Use of skincare treatment products that tackle specific male facial skin concerns could further optimize skin quality and support healthy and youthful looking skin in men.
J Drugs Dermatol. 2018;17(3):301-306.
.Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J.
2018-01-01
Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace level. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species diffuse and react with the materials, decrease charge transfer rate and block intense hot-spots. No ex-situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decrease the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays, by exploiting a shock pressure generated by laser ablation of graphite and water impermeability nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities are investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, chemical/thermal stability, instantaneous, scale and room temperature processing capability, and can be further extended to integrate other 2D material with various 0-3D nanomaterials. PMID:26394237
Proksch, E; Schunck, M; Zague, V; Segger, D; Degwert, J; Oesser, S
2014-01-01
Dietary consumption of food supplements has been found to modulate skin functions and can therefore be useful in the treatment of skin aging. However, there is only a limited number of clinical studies supporting these claims. In this double-blind, placebo-controlled study, the effectiveness of the specific bioactive collagen peptide (BCP) VERISOL® on eye wrinkle formation and stimulation of procollagen I, elastin and fibrillin biosynthesis in the skin was assessed. A hundred and fourteen women aged 45-65 years were randomized to receive 2.5 g of BCP or placebo, once daily for 8 weeks, with 57 subjects being allocated to each treatment group. Skin wrinkles were objectively measured in all subjects, before starting the treatment, after 4 and 8 weeks as well as 4 weeks after the last intake (4-week regression phase). A subgroup was established for suction blister biopsies analyzing procollagen I, elastin and fibrillin at the beginning of the treatment and after 8 weeks of intake. The ingestion of the specific BCP used in this study promoted a statistically significant reduction of eye wrinkle volume (p < 0.05) in comparison to the placebo group after 4 and 8 weeks (20%) of intake. Moreover a positive long-lasting effect was observed 4 weeks after the last BCP administration (p < 0.05). Additionally, after 8 weeks of intake a statistically significantly higher content of procollagen type I (65%) and elastin (18%) in the BCP-treated volunteers compared to the placebo-treated patients was detected. For fibrillin, a 6% increase could be determined after BCP treatment compared to the placebo, but this effect failed to reach the level of statistical significance. In conclusion, our findings demonstrate that the oral intake of specific bioactive collagen peptides (Verisol®) reduced skin wrinkles and had positive effects on dermal matrix synthesis. © 2014 S. Karger AG, Basel.
Hahn, Hyung Jin; Jung, Ho Jung; Schrammek-Drusios, Med Christine; Lee, Sung Nae; Kim, Ji-Hyun; Kwon, Seung Bin; An, In-Sook; An, Sungkwan; Ahn, Kyu Joong
2016-08-01
Anti-aging cosmetics are widely used for improving signs of aged skin such as skin wrinkles, decreased elasticity, low dermal density and yellow skin tone. The present study evaluated the effects of cosmetic formulations, eye cream and facial cream, containing palmitoyl peptides, Silybum marianum ( S. marianum ) seed oil, vitamin E and other functional ingredients on the improvement of facial wrinkles, elasticity, dermal density and skin tone after 4 weeks period of application on aged human skin. Healthy volunteers (n=20) with aged skin were recruited to apply the test materials facially twice per day for 4 weeks. Skin wrinkles, elasticity, dermal density and skin tone were measured instrumentally for assessing the improvement of skin aging. All the measurements were conducted prior to the application of test materials and at 2 and 4 weeks of treatment. Crow's feet wrinkles were decreased 5.97% after 2 weeks of test material application and 14.07% after 4 weeks of application in comparison of pre-application. Skin elasticity was increased 6.81% after 2 weeks and 8.79% after 4 weeks. Dermal density was increased 16.74% after 2 weeks and 27.63% after 4 weeks. With the L* value indicating skin brightness and the a* value indicating erythema (redness), the results showed that brightness was increased 1.70% after 2 weeks and 2.14% after 4 weeks, and erythema was decreased 10.45% after 2 weeks and 22.39% after 4 weeks. Hence, the test materials appear to exert some degree of anti-aging effects on aged human skin. There were no abnormal skin responses from the participants during the trial period. We conclude that the facial and eye cream containing palmitoyl peptides and S. marianum seed oil, vitamin E and other ingredients have effects on the improvement of facial wrinkles, elasticity, dermal density and skin tone.
NASA Astrophysics Data System (ADS)
Schug, Alexander; Winkelbauer, Jonas; Hinterhölzl, Roland; Drechsler, Klaus
2017-10-01
The aim of this study was to analyse the forming behaviour of glass fibre reinforced polypropylene and to identify the influence of several process parameters on the resulting part quality. For this purpose, a complex forming tool was designed, consisting of several areas with single and double curvature. The specimens were produced from unidirectional (UD) tape using the Fiberforge RELAY2000® automated tape laying machine and a subsequent consolidation step. They were then fixed in a support frame, pre-heated in an infrared oven, and formed in the forming tool, which was mounted into a hydraulic heating press. The investigated process parameters were the number and force of the springs in the support frame, the tool temperature and the forming pressure and speed. The layups of the specimens were [0/90/0/90/0¯]s and [0/45/90/-45/0¯]s. After the forming process, the parts were analysed in terms of their quality, with a special focus on wrinkles, undulations, gaps and surface roughness. In addition to optical analysis with a statistical evaluation of the results, 3D scans of the specimens at different steps of the forming process were made to gain an impression of the forming mechanisms and the development of failures. The ATOS system of GOM was used for these 3D scans. The results show that the undulations were influenced by the tool temperature and the spring force. By contrast, the surface quality was most strongly dependent on the forming pressure, which also influenced the size and the number of gaps. The forming speed affected the gaps as well. The tool temperature had the largest influence on the development of wrinkles. As expected, the quasi-isotropic layup showed distinctly more wrinkles and undulations, but it also presented a better surface quality than the orthotropic layup.
Perfect Lighting for Facial Photography in Aesthetic Surgery: Ring Light.
Dölen, Utku Can; Çınar, Selçuk
2016-04-01
Photography is indispensable for plastic surgery. On-camera flashes can result in bleached out detail and colour. This is why most of the plastic surgery clinics prefer studio lighting similar to professional photographers'. In this article, we want to share a simple alternative to studio lighting that does not need extra space: Ring light. We took five different photographs of the same person with five different camera and lighting settings: Smartphone and ring light; point and shoot camera and on-camera flash; point and shoot camera and studio lighting; digital single-lens reflex (DLSR) camera and studio lighting; DSLR and ring light. Then, those photographs were assessed objectively with an online survey of five questions answered by three distinct populations: plastic surgeons (n: 28), professional portrait photographers (n: 24) and patients (n: 22) who had facial aesthetic procedures. Compared to the on-camera flash, studio lighting better showed the wrinkles of the subject. The ring light facilitated the perception of the wrinkles by providing homogenous soft light in a circular shape rather than bursting flashes. The combination of a DSLR camera and ring light gave the oldest looking subject according to 64 % of responders. The DSLR camera and the studio lighting demonstrated the youngest looking subject according to 70 % of the responders. The majority of the responders (78 %) chose the combination of DSLR camera and ring light that exhibited the wrinkles the most. We suggest using a ring light to obtain well-lit photographs without loss of detail, with any type of cameras. However, smartphones must be avoided if standard pictures are desired. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Differential growth of wrinkled biofilms
NASA Astrophysics Data System (ADS)
Espeso, D. R.; Carpio, A.; Einarsson, B.
2015-02-01
Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.
NASA Astrophysics Data System (ADS)
Yang, Jiangtao; Tang, Jun; Guo, Hao; Liu, Wenyao; Shen, Chong; Liu, Jun; Qin, Li
2017-10-01
Here, a simple and low-cost fabrication strategy to efficiently construct well-ordered micron and submicron gratings on polymeric substrates by oxygen plasma treatment is reported. The Polydimethylsiloxane (PDMS) substrate is prepared on the polyethylene (PET) by spin-coating method, then the curved PDMS-PET substrates are processed in oxygen plasma. After appropriate surface treatment time in plasma the curved substrates are flattened, and well-ordered wrinkling shape gratings are obtained, due to the mechanical buckling instability. It is also demonstrated that changing the curvature radius of PDMS-PET substrates and the time of plasma treatment, the period of the wrinkling patterns and the amplitude of grating also change accordingly. It is found the period of the wrinkling patterns increased with the radius of curvature; while the amplitude decreased with that. It also shows good optical performance in transmittance diffraction testing experiments. Thus the well-ordered grating approach may further develop portable and economical applications and offer a valuable method to fabricate other optical micro strain gauges devices.
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle
2014-01-01
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
Geologic Mapping in the Hesperia Planum Region of Mars
NASA Technical Reports Server (NTRS)
Gregg, Tracy K. P.; Crown, David A.
2010-01-01
Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of <3 km [4-10]. The wrinkle ridges on its surface make Hesperia Planum the type locale for "Hesperian-aged ridged plains" on Mars, and wrinkle-ridge formation occurred in more than one episode. Hesperia Planum s stratigraphic position and crater-retention age define the base of the Hesperian System. However, preliminary results of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.
Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa
2012-01-01
We describe a modified technique for loading donor corneal endothelial lamella onto a Busin glide® without causing wrinkles, as part of the procedure of Descemet-stripping automated endothelial keratoplasty. Briefly, after punching out a composite of the donor-endothelial lamella and a microkeratome-dissected cap, several drops of dispersive ophthalmic viscosurgical device are placed onto the endothelial surface. The Busin glide surface is then wetted with several drops of balanced salt solution. After the composite is transferred onto the Busin glide, hydrodissection of the potential space between the donor-endothelial lamella and the microkeratome-dissected cap is carefully performed to enable smooth detachment of these two lamellae. Whereas simply dragging the donor-endothelial lamella directly onto the glide can cause wrinkling or folding of the donor lamella, this technique enables smooth detachment of the composite without wrinkle or fold formation, and results in less endothelial cell damage. PMID:22927732
Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens
Nixon, M. R.; Orr, A. G.; Vukusic, P.
2015-01-01
The dorsal surfaces of the hindwings of the dragonfly Rhyothemis resplendens (Odonata: Libellulidae) reflect a deep blue from the multilayer structure in its wing membrane. The layers within this structure are not flat, but distinctly ‘wrinkled’, with a thickness of several hundred nanometres and interwrinkle crest distances of 5 µm and greater. A comparison between the backscattered light from R. resplendens and a similar, but un-‘wrinkled’ multilayer in the damselfly Matronoides cyaneipennis (Odonata: Calopterygidae) shows that the angle over which incident light is backscattered is increased by the wrinkling in the R. resplendens structure. Whereas the reflection from the flat multilayer of M. cyaneipennis is effectively specular, the reflection from the wrinkled R. resplendens multilayer spans 1.47 steradians (equivalent to ±40° for all azimuthal angles). This property enhances the visibility of the static wing over a broader angle range than is normally associated with a smooth multilayer, thereby markedly increasing its conspicuousness. PMID:25540236
ERIC Educational Resources Information Center
Harris, Phyllis Braudy
2008-01-01
The concept of "successful aging" is a contested discourse in gerontology. Two conflicting paradigms dominate the discussion: a health promotion activity model, and a model critical of the concept of successful aging. However, this study takes a different perspective and proposes that perhaps we have been striving for the wrong goal. The true…
Assessment of a Comprehensive Anti-Aging Neck Cream.
Saxena, Subhash J; Duque, Deysi; Schirripa, Michael J
2015-09-01
With many effective anti-aging solutions for the face, consumer focus is now turning to other parts of the body including the delicate skin on the neck. This study investigates the effect of a new neck cream on the appearance of texture, fine lines and wrinkles, laxity, and hydration. 85 adult females ages 35-65 with Fitzpatrick skin types I through IV applied the test neck cream twice daily for a 3-month study period. Screening was conducted at Baseline, 2, 30, 60, and 90 days via a virtual trial. Subjects rated satisfaction in each of 4 anti-aging categories including hydration, texture, appearance of wrinkles, and appearance of laxity as well as three product attributes including application, feel, and smell. Improvement was statistically significant for all measured categories (hydration, texture, appearance of wrinkles, and appearance of laxity) with 94% of study subjects noting improvement in one or more of the measured categories. Further, the quantity of "Satisfied" and "Highly Satisfied" assessments increased 8-fold from baseline with a 94x increase in the quantity of "Highly Satisfied" assessments. The results demonstrate the product's rapid and continuing ability to improve the self-perceived signs of aging in the neck area including improvement in skin texture on the neck and a reduction in the appearance of wrinkles and laxity along the jawline. Future studies are recommended to determine the primary action mechanisms and to assess the degree of improvement by blinded physician assessment.
Impact of Salt and Nutrient Content on Biofilm Formation by Vibrio fischeri.
Marsden, Anne E; Grudzinski, Kevin; Ondrey, Jakob M; DeLoney-Marino, Cindy R; Visick, Karen L
2017-01-01
Vibrio fischeri, a marine bacterium and symbiont of the Hawaiian bobtail squid Euprymna scolopes, depends on biofilm formation for successful colonization of the squid's symbiotic light organ. Here, we investigated if culture conditions, such as nutrient and salt availability, affect biofilm formation by V. fischeri by testing the formation of wrinkled colonies on solid media. We found that V. fischeri forms colonies with more substantial wrinkling when grown on the nutrient-dense LBS medium containing NaCl relative to those formed on the more nutrient-poor, seawater-salt containing SWT medium. The presence of both tryptone and yeast extract was necessary for the production of "normal" wrinkled colonies; when grown on tryptone alone, the colonies displayed a divoting phenotype and were attached to the agar surface. We also found that the type and concentration of specific seawater salts influenced the timing of biofilm formation. Of the conditions assayed, wrinkled colony formation occurred earliest in LBS(-Tris) media containing 425 mM NaCl, 35 mM MgSO4, and 5 mM CaCl2. Pellicle formation, another measure of biofilm development, was also enhanced in these growth conditions. Therefore, both nutrient and salt availability contribute to V. fischeri biofilm formation. While growth was unaffected, these optimized conditions resulted in increased syp locus expression as measured by a PsypA-lacZ transcriptional reporter. We anticipate these studies will help us understand how the natural environment of V. fischeri affects its ability to form biofilms and, ultimately, colonize E. scolopes.
A systematic review of dermal fillers for age-related lines and wrinkles.
Sturm, Lana P; Cooter, Rodney D; Mutimer, Keith L; Graham, John C; Maddern, Guy J
2011-01-01
Dermal fillers are gaining popularity for rapid aesthetic improvement. Long-term efficacy and safety have not been well documented. The aim of this systematic review was to assess the safety and efficacy of injectable dermal fillers compared with other facial augmentation techniques for the management of age-related lines and wrinkles. Studies including patients receiving injectable semi-permanent or permanent dermal fillers for age-related lines and wrinkles were included in this review. Efficacy outcomes (including changes in skin thickness and patient satisfaction) and safety outcomes (including mortality, lumps and infections) were examined. Three randomized control trials and six case series were included. Permanent and semi-permanent dermal fillers improved subjective ratings of appearance and resulted in higher patient satisfaction than temporary fillers. Long-term efficacy appeared good in the few studies that reported it. Short-term safety appeared favourable. Lumps were reported in all but one study but received little follow-up. Long-term safety data were limited. The treatment of age-related lines and wrinkles with permanent and semi-permanent dermal fillers is more efficacious compared with temporary fillers in those studies that compared them. Case series evidence suggests that these fillers achieve their objective, which is to decrease the visible effects of age-related changes. These fillers appear at least as safe as temporary fillers in the short term in those studies that compared them. Long-term safety could not be determined. © 2010 The Authors. ANZ Journal of Surgery © 2010 Royal Australasian College of Surgeons.
Deregulation of versican and elastin binding protein in solar elastosis.
Knott, Anja; Reuschlein, Katja; Lucius, Ralph; Stäb, Franz; Wenck, Horst; Gallinat, Stefan
2009-04-01
Several changes in skin appearance including loss of elasticity and wrinkle formation are associated with alterations in the composition of the dermal extracellular matrix. They are induced by intrinsic aging or by environmental factors such as UV light referred to as photoaging. A general characteristic in the histology of photoaged skin is the accumulation of elastotic material suggesting impaired formation and/or massive breakdown of elastic fibres. In order to shed light on some of the underlying mechanisms we tracked two of the major players in elastic fibre formation in different skin conditions: EBP (elastin binding protein), a regulator of elastic fibre assembly and VER (versican), a component of functional elastic fibres as well as non-functional elastotic material. Using quantitative RT-PCR on skin biopsies we found that the expression levels of VER and EBP were unaltered during intrinsic skin aging. Upon acute UV stress however, VER and EBP showed different regulation patterns: VER mRNA increased after 6 h and was further up-regulated until 24 h. The EBP mRNA by contrast was reduced after 6 h but showed massive induction at 24 h after acute UV stress. In chronically sun-exposed skin, VER protein was accumulated similar to elastotic material in the extracellular space, whereas its mRNA level was consistently reduced compared to sun-protected skin. The EBP mRNA by contrast showed slightly increased expression levels in the sun-exposed area compared to its sun-protected counterpart. Based on these data we propose a model which may help to explain parts of the mechanisms leading to the formation of elastotic masses. We further hypothesize that the presence of elastotic material triggers some yet unknown feedback mechanism(s) resulting in altered expression patterns of VER and EBP in chronically sun-exposed skin.
Manna, Uttam; Carter, Matthew C D; Lynn, David M
2013-06-11
An approach to the design of flexible superhydrophobic surfaces based on thermally induced wrinkling of thin, hydrophobic polymer multilayers on heat-shrinkable polymer films is reported. This approach exploits shrinking processes common to "heat-shrink" plastics, and can thus be used to create "shrink-to-fit" superhydrophobic coatings on complex surfaces, manipulate the dimensions and densities of patterned features, and promote heat-activated repair of full-thickness defects. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Goldman, Mitchel P.
2017-01-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356
Wu, Douglas C; Goldman, Mitchel P
2017-05-01
Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.
Randomized clinical efficacy of superficial peeling with 85% lactic acid versus 70% glycolic acid.
Prestes, Paula Souza; Oliveira, Márcia Motta Maia de; Leonardi, Gislaine Ricci
2013-01-01
Peeling is a procedure which aims to accelerate the process of skin exfoliation. Development of formulations containing lactic acid at 85% or glycolic acid at 70% and the evaluation of these formulations on clinical efficacy in reduction of fine wrinkles. Preliminary stability tests were carried out and an in vivo study was performed with three groups with 9 representatives each. One was the control group, which used only sunscreen; another one used lactic acid+sunscreen, and the last group used acid glycolic+sunscreen. Clinical efficacy was assessed with a CCD color microscope, through the digitization of images before and after treatment. The applications were carried out by a dermatologist, once a mont h every 30 days, during 3 months. The area with wrinkles was calculated by planimetry point counting, in accordance with Mandarin-de-Lacerda. The formulations were stable in the visual and Ph evaluation. There was no improvement in the control group; for lactic acid, there was significant improvement after the second peeling application on the outer lateral area of the right eye and after the third application on the outer lateral area of the left eye. For the glycolic acid group, there was significant improvement in the outer lateral area of the left eye after the first application, and of the right eye region, after three applications. The formulations used must be kept under refrigeration and should be manipulated every 30 days. Both peelings were effective in reducing fine wrinkles of the outer lateral eye area after three applications (p ≤ 0.05%). It was observed that peeling efficacy in the external-lateral region of one eye might be different compared with that in skin of the external-lateral region of the other eye, relative to the speed of skin improvement.
Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R
2013-02-01
The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.
Influence of facial skin ageing characteristics on the perceived age in a Russian female population.
Merinville, E; Grennan, G Z; Gillbro, J M; Mathieu, J; Mavon, A
2015-10-01
The desire for a youthful look remains a powerful motivator in the purchase of cosmetics by women globally. To develop an anti-ageing solution that targets the need of end consumers, it is critical to understand which signs of ageing really matter to them and which influence their age perception. To date, such research has not been performed in a Russian population. The aim of this work was to identify the signs of ageing that contribute the most to an 'older' or 'younger' look for Russian women aged 40 years old and above. The age of 203 Russian female volunteers was estimated from their standard photographs by a total of 629 female naïve assessors aged 20-65 years old. Perceived age data were related to 23 facial skin features previously measured using linear correlation coefficients. Differences in average severity of the correlating skin ageing features were evaluated between women perceived older and women perceived younger than their chronological age. Volunteers' responses to a ranking question on their key ageing skin concerns previously collected were analysed to provide an additional view on facial ageing from the consumer perspective. Nine facial skin ageing features were found to correlate the most with perceived age out of the 23 measured. Such results showed the importance of wrinkles in the upper part of the face (crow's feet, glabellar, under eye and forehead wrinkles), but also wrinkles in the lower half of the face associated with facial sagging (upper lip, nasolabial fold). Sagging was confirmed of key importance to female volunteers aged 41-65 years old who were mostly concerned by the sagging of their jawline, ahead of under eye and crow's feet wrinkle. The severity of hyperpigmented spots, red and brown, was also found to contribute to perceived age although to a weaker extent. By providing a clear view on the signs of ageing really matter to Russian women who are aged 40 years old and above, this research offers key information for the development of relevant anti-ageing solutions specifically targeting their needs and their desire to achieve younger-looking skin. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Irritancy potential of 17 detergents used commonly by the Indian household.
Austoria, A J; Lakshmi, Chembolli; Srinivas, C R; Anand, C V; Mathew, A C
2010-01-01
Detergents are used by almost every household in the developed and developing world. Soap and most detergents are anionic surfactants and attack the horny layer of the skin and increase its permeability with little or no inflammatory change and may result in hand eczema, which is very distressing and incapacitating. To evaluate the irritant potential of common household detergents (laundry and dish wash) used by the Indian population using a 24-hour patch test and to convincingly educate the patients on the detergents less likely to cause irritation in the particular individual. Seventeen commonly used detergents found in Indian market were included in the study, of which, 12 were laundry detergents (powders--seven, bar soap--five) and five were dish wash detergents (powder--one, liquid--one, bar soap--three). The irritant potential of the 17 detergents were evaluated in 30 volunteers. Thirty microliters of each of the detergent bar solutions, distilled water (negative control), and 20% SDS (positive control) were applied to Finn chambers with a micropipette and occluded for 24 hours. Erythema, scaling, and edema were graded in comparison to the reaction at the negative control site (distilled water) for each volunteer separately. The scoring of erythema/dryness and wrinkling on a 0-4 point scale and edema on another 0-4 point scale was based on the Draize scale. The pH of each of the detergent solutions was determined using litmus papers (Indikrom papers from Qualigens fine chemicals). The difference between detergents (F value) was significant for erythema/dryness and wrinkling (F = 3.374; p = 0.000), but not significant for edema (F = 1.297; p = 0.194). [Table 2] lists the means for erythema/dryness and wrinkling, and edema. The F value of the totals of the means for erythema/dryness and wrinkling and edema was significant (F = 2.495; p = 0.001). The pH of all the detergents was found to be alkaline except Pril utensil cleaner which tested acidic (pH 6). The positive control, 20% SDS also tested acidic (pH 6). Similar to patch testing in allergic contact dermatitis, 24-hour patch testing with detergent solutions (8% w/v), will educate the patient on what detergent to avoid. This may bring down the total medication requirement and frequent hospital consultations for these patients.
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
NASA Technical Reports Server (NTRS)
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
NASA Astrophysics Data System (ADS)
Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin
2018-02-01
Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.
Sripathi, Vangipuram Canchi; Kumar, Ramarathnam Krishna; Balakrishnan, Komarakshi R
2004-03-01
This study aims to find the fundamental differences in the mechanism of opening and closing of a normal aortic valve and a valve with a stiff root, using a dynamic finite element model. A dynamic, finite element model with time varying pressure was used in this study. Shell elements with linear elastic properties for the leaflet and root were used. Two different cases were analyzed: (1) normal leaflets inside a compliant root, and (2) normal leaflets inside a stiff root. A compliant aortic root contributes substantially to the smooth and symmetrical leaflet opening with minimal gradients. In contrast, the leaflet opening inside a stiff root is delayed, asymmetric, and wrinkled. However, this wrinkling is not associated with increased leaflet stresses. In compliant roots, the effective valve orifice area can substantially increase because of increased root pressure and transvalvular gradients. In stiff roots this effect is strikingly absent. A compliant aortic root contributes substantially to smooth and symmetrical leaflet opening with minimal gradients. The compliance also contributes much to the ability of the normal aortic valve to increase its effective valve orifice in response to physiologic demands of exercise. This effect is strikingly absent in stiff roots.
Koh, Eun Kyoung; Kim, Ji Eun; Go, Jun; Song, Sung Hwa; Sung, Ji Eun; Son, Hong Joo; Jung, Young Jin; Kim, Bae Hwan; Jung, Young Suk; Hwang, Dae Youn
2016-11-01
Ultraviolet (UV) radiation is considered a primary cause of skin damage, which is characterized by deep wrinkles, roughness, laxity and pigmentation through oxidative stress and oxidative photodamage. To examine the therapeutic effects of ethanol extract of Styela clava tunics (EtSCT) on UV radiation-induced skin aging in hairless mice, alterations in skin phenotype, histological structures, inflammation, endoplasmic reticulum (ER) stress, oxidative conditions and toxicity were investigated during 13 weeks of UV irradiation and topical application of EtSCT. EtSCT showed high reducing power (3.1%), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (92.7%) and NO scavenging activity (15.6%) due to its high total flavonoids (15.3 mg/ml) and total phenolics (36.8 mg/ml). The topical application of EtSCT suppressed photoaging of the skin of UV-irradiated mice, and this was demonstrated by the inhibition of wrinkle formation, the suppression of the erythema index as well as the prevention of transepidermal water loss. Additionally, the epidermal thickness and adipocytes number were recovered to a similar level as that in the no radiation group in the UV + EtSCT‑treated groups compared with the UV + vehicle‑treated group, and the expression of collagen I increased. The attenuation of mitogen‑activated protein kinase and ER stress signaling pathways activated by reactive oxygen species was also detected in the UV + EtSCT‑treated group. Inflammatory responses including the infiltration of mast cells, CD31 expression and interleukin-6 secretion were significantly lower in the UV + EtSCT-treated groups. Moreover, the concentration of malondialdehyde was reduced and the activity of superoxide dismutase was effectively recovered in the UV + EtSCT-treated groups compared with that in the vehicle-treated groups. Liver and kidney toxicity factors were maintained at a constant level. These results suggest that EtSCT has the potential for use as therapeutic drug which protects against skin aging by regulating the skin morphology, histopathological structures, ER stress, inflammation and oxidative conditions.
Jensen, Gitte S; Shah, Bijal; Holtz, Robert; Patel, Ashok; Lo, Donald C
2016-01-01
Objective The aim of this study was to evaluate the effects of water-soluble egg membrane (WSEM) on wrinkle reduction in a clinical pilot study and to elucidate specific mechanisms of action using primary human immune and dermal cell-based bioassays. Methods To evaluate the effects of topical application of WSEM (8%) on human skin, an open-label 8-week study was performed involving 20 healthy females between the age of 45 years and 65 years. High-resolution photography and digital analysis were used to evaluate the wrinkle depth in the facial skin areas beside the eye (crow’s feet). WSEM was tested for total antioxidant capacity and effects on the formation of reactive oxygen species by human polymorphonuclear cells. Human keratinocytes (HaCaT cells) were used for quantitative polymerase chain reaction analysis of the antioxidant response element genes Nqo1, Gclm, Gclc, and Hmox1. Evaluation of effects on human primary dermal fibroblasts in vitro included cellular viability and production of the matrix components collagen and elastin. Results Topical use of a WSEM-containing facial cream for 8 weeks resulted in a significant reduction of wrinkle depth (P<0.05). WSEM contained antioxidants and reduced the formation of reactive oxygen species by inflammatory cells in vitro. Despite lack of a quantifiable effect on Nrf2, WSEM induced the gene expression of downstream Nqo1, Gclm, Gclc, and Hmox1 in human keratinocytes. Human dermal fibroblasts treated with WSEM produced more collagen and elastin than untreated cells or cells treated with dbcAMP control. The increase in collagen production was statistically significant (P<0.05). Conclusion The topical use of WSEM on facial skin significantly reduced the wrinkle depth. The underlying mechanisms of this effect may be related to protection from free radical damage at the cellular level and induction of several antioxidant response elements, combined with stimulation of human dermal fibroblasts to secrete high levels of matrix components. PMID:27789968
Efficacy of cocoa pod extract as antiwrinkle gel on human skin surface.
Abdul Karim, Azila; Azlan, Azrina; Ismail, Amin; Hashim, Puziah; Abd Gani, Siti Salwa; Zainudin, Badrul Hisyam; Abdullah, Nur Azilah
2016-09-01
Cocoa pods are abundant waste materials of cocoa plantation, which are usually discarded onto plantation floors. However, due to poor plantation management, the discarded cocoa pods can create suitable breeding ground for Phytophthora palmivora, which is regarded as the causal agent of the black pod disease. On the other hand, cocoa pods potentially contain antioxidant compounds. Antioxidant compounds are related to the protection of skin from wrinkles and can be used as functional cosmetic ingredients. Therefore, in this study, cocoa pods were extracted and to be used as active ingredients for antiwrinkles. The active compounds in cocoa pod extracts (CPE) were screened using liquid chromatography-mass spectrometry (LC-MS). Fibroblast cells were used to determine the effective concentration of CPE to maintain the viability for at least 50% of the cells (EC50 ). The gel was tested by 12 panelists to determine the efficacy of CPE in gel form using Visioscan to reduce skin wrinkles and improve skin condition. CPE was detected to contain malic acid, procyanidin B1, rosmarinic acid, procyanidin C1, apigenin, and ellagic acid, all of which may contribute to functional cosmetic properties of CPE. The EC50 value of cocoa pod extracts was used to calculate the amount of CPE to be incorporated into gel so that the formulated product could reach an effective concentration of extract while being nonintoxicant to the skin cell. The results showed that CPE is potential ingredient to reduce wrinkles. Skin wrinkles reduced at 6.38 ± 1.23% with the application of the CPE gel within 3 weeks and significantly improved further (12.39 ± 1.59%) after 5 weeks. The skin hydration increased (3.181 ± 1.06%) after 3 weeks of the CPE gel application. Flavonoid compounds in CPE contributed to the functional cosmetic properties of CPE. The CPE which is nontoxic to skin cells help to reduce wrinkles on skin after 3 weeks of application. CPE can be used as the active ingredients in antiwrinkle products, and prolonged application may result in significant visual changes to the naked eyes. © 2016 Wiley Periodicals, Inc.
The frictional response of patterned soft polymer surfaces
NASA Astrophysics Data System (ADS)
Rand, Charles J.
2008-10-01
Friction plays an intricate role in our everyday lives, it is therefore critical to understand the underlying features of friction to better help control and manipulate the response anywhere two surfaces in contact move past each other by a sliding motion. Here we present results targeting a thorough understanding of soft material friction and how it can be manipulated with patterns. We found that the naturally occurring length scale or periodicity (lambda) of frictionally induced patterns, Schallamach waves, could be described using two materials properties (critical energy release rate Gc and complex modulus (E*), i.e. lambdainfinity Gc /E*). Following this, we evaluated the effect of a single defect at a sliding interface. Sliding over a defect can be used to model the sliding from one feature to another in a patterned surface. Defects decreased the sliding frictional force by as much as 80% sliding and this decrease was attributed to changes in tangential stiffness of the sliding interface. The frictional response of surface wrinkles, where multiple edges or defects are acting in concert, was also evaluated. Wrinkles were shown to decrease friction (F) and changes in contact area (A) could not describe this decrease. A tangential stiffness correction factor (fx) and changes in the critical energy release rate were used to describe this deviation (F infinity Gc *A*fx/ℓ, where ℓ is a materials defined length scale of dissipation). This scaling can be used to describe the friction of any topographically patterned surface including the Gecko's foot, where the feature size is smaller than ℓ and thus replaces ℓ, increasing the friction compared to a flat surface. Also, mechanically-induced surface defects were used to align osmotically driven surface wrinkles by creating stress discontinuities that convert the global biaxial stress state to local uniaxial stresses. Defect spacing was used to control the alignment process at the surface of the wrinkled rigid film/soft elastomer interface. These aligned wrinkled surfaces can be used to tune the adhesion and friction of an interface. The work presented here gives insight into tuning the friction of a soft polymeric surface as well as understanding the friction of complex hierarchical structures.
Lifting properties of the alkamide fraction from the fruit husks of Zanthoxylum bungeanum.
Artaria, C; Maramaldi, G; Bonfigli, A; Rigano, L; Appendino, G
2011-08-01
The fruits of various Zanthoxylum species are used as a spice in the Chinese and Japanese cuisine because of their delicate flavour and tingling properties. The lipophilic hydroxyalkamides hydroxy α- and β-sanshools (1a,b) have been identified as the tingling principles of these plants, and previous studies have validated a sanshool-rich lipophilic extract from the fruit husks of Z. bungeanum Maxim. (Zanthalene ® ) as an anti-itching cosmetic ingredient. Because tingling is a sort of 'paralytic pungency', and Zanthalene ® potently inhibits synaptic transmission, we have investigated its capacity to relax subcutaneous muscles and act as a topical lifting agent for wrinkles. An anti-wrinkles extract rich in spilanthol (2), a lipophilic alkamide having sensory properties similar to those of Zanthalene ® , was used as a reference. Short-term (lifting effect) and long-term (anti-wrinkle) improvements of skin roughness parameters were evaluated by both objectives' and subjectives' measurements. An immediate 'lifting' effect was observed with the sanshool-rich lipophilic extract, at dosages at which the reference alkamide extract was inactive in the objective assays. Limited desensitization after repeated application and good overall tolerability were observed, although a modest long-term anti-wrinkle effect was shown by both products. Taken together, these observations validate the use of sanshool-rich lipophilic extracts as an efficacious, immediate-action lifting agent, and exemplify the relevance of sensory observations to foster the development of innovative cosmetic ingredients. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Geometric prepatterning-based tuning of the period doubling onset strain during thin-film wrinkling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Wrinkling of thin films is an easy-to-implement and low-cost technique to fabricate stretch-tunable periodic micro and nanoscale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period-doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric prepatterning-based technique is introduced that can be implemented even with limited system knowledge to predictively delay period doubling. The technique comprises prepatterning the film/base bilayer with a sinusoidal pattern that has the same period as themore » natural period of the system. This technique has been verified via physical and computational experiments on the polydimethylsiloxane (PDMS)/glass bilayer system. It is observed that the onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest prepattern aspect ratio (2·amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain increases with increasing prepattern amplitude and (ii) the delaying effect can be captured entirely by the prepattern geometry. Therefore, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Furthermore, geometric prepatterning is a practical scheme to increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
Geometric prepatterning-based tuning of the period doubling onset strain during thin-film wrinkling
Saha, Sourabh K.
2017-04-05
Wrinkling of thin films is an easy-to-implement and low-cost technique to fabricate stretch-tunable periodic micro and nanoscale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period-doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric prepatterning-based technique is introduced that can be implemented even with limited system knowledge to predictively delay period doubling. The technique comprises prepatterning the film/base bilayer with a sinusoidal pattern that has the same period as themore » natural period of the system. This technique has been verified via physical and computational experiments on the polydimethylsiloxane (PDMS)/glass bilayer system. It is observed that the onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest prepattern aspect ratio (2·amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain increases with increasing prepattern amplitude and (ii) the delaying effect can be captured entirely by the prepattern geometry. Therefore, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Furthermore, geometric prepatterning is a practical scheme to increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.« less
Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging.
Kim, Jina; Kang, Sujin; Kwon, HanJin; Moon, HoSang; Park, Min Chul
2018-06-19
Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging. © 2018 Wiley Periodicals, Inc.
Darrieus-Landau instability of premixed flames enhanced by fuel droplets
NASA Astrophysics Data System (ADS)
Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno
2017-07-01
Recent experiments on spray flames propagating in a Wilson cloud chamber have established that spray flames are much more sensitive to wrinkles or corrugations than single-phase flames. To propose certain elements of explanation, we numerically study the Darrieus-Landau (or hydrodynamic) instability (DL-instability) developing in premixtures that contain an array of fuel droplets. Two approaches are compared: numerical simulation starting from the general conservation laws in reactive media, and the numerical computation of Sivashinsky-type model equations for DL-instability. Both approaches provide us with results in deep agreement. It is first shown that the presence of droplets in fuel-air premixtures induces initial perturbations which are large enough to trigger the DL-instability. Second, the droplets are responsible for additional wrinkles when the DL-instability is developed. The latter wrinkles are of length scales shorter than those of the DL-instability, in such a way that the DL-unstable spray flames have a larger front surface and therefore propagate faster than the single-phase ones when subjected to the same instability.
Indenting a Thin Floating Film: Force and First-fold Formation
NASA Astrophysics Data System (ADS)
Ripp, Monica; Paulsen, Joseph
2017-11-01
When a thin elastic sheet is gently pushed into a liquid bath, a pattern of radial wrinkles is generated where the film is locally compressed. Despite the simplicity of this setting, basic questions remain about the mechanics and morphology of indented thin films. Recent work shows that traditional post-buckling analysis must be supplanted with an analysis where wrinkles completely relax compressive stresses. Support for this ``far-from-threshold'' theory has been built on measurements of wrinkle extent and wavelength, but direct force measurements have been absent. Here we measure the force response of floating ultrathin ( 100 nm) polystyrene films in indentation experiments. Our measurements are in good agreement with recent predictions for two regimes of poking: Early on force depends on film properties (thickness and Young's modulus) and later is independent of film properties, simply transferring forces from the substrate (gravity and surface tension) to the poker. At larger indentations compression localizes into a single fold. We present scaling arguments and experiments that show the existing model of this transition must be modified. NSF IGERT, NSF CAREER.
NASA Astrophysics Data System (ADS)
Palmieri, Valentina; Barba, Marta; Di Pietro, Lorena; Gentilini, Silvia; Chiara Braidotti, Maria; Ciancico, Carlotta; Bugli, Francesca; Ciasca, Gabriele; Larciprete, Rosanna; Lattanzi, Wanda; Sanguinetti, Maurizio; De Spirito, Marco; Conti, Claudio; Papi, Massimiliano
2018-01-01
Graphene and graphene oxide (GO) are capable of inducing stem cells differentiation into bone tissue with variable efficacy depending on reductive state of the material. Thus, modulation of osteogenic process and of bone mineral density distribution is theoretically possible by controlling the GO oxidative state. In this study, we laser-printed GO surfaces in order to obtain both a local photo-thermal GO reduction and the formation of nano-wrinkles along precise geometric pattern. Initially, after cells adhered on the surface, stem cells migrated and accumulated on the reduced and wrinkled surface. When the local density of the stem cells on the reduced stripes was high, cells started to proliferate and occupy the oxidized/flat area. The designed surfaces morphology guided stem cell orientation and the reduction accelerated differentiation. Furthermore the reduced sharp nano-wrinkles were able to enhance the GO antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), a common cause of prosthetic joints infections. This strategy can offer a revolution in present and future trends of scaffolds design for regenerative medicine.
Enhanced emission of fluorophores on shrink-induced wrinkled composite structures
Sharma, Himanshu; Digman, Michelle A.; Felsinger, Natasha; Gratton, Enrico
2014-01-01
We introduce a manufacturable and scalable method for creating tunable wrinkled ferromagnetic-metallic structures to enhance fluorescence signals. Thin layers of nickel (Ni) and gold (Au) were deposited onto a pre-stressed thermoplastic (shrink wrap film) polymer. Heating briefly forced the metal films to buckle when the thermoplastic retracted, resulting in multi-scale composite ‘wrinkles’. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. We observed more than three orders of magnitude enhancement in the fluorescence signal of a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody conjugated to fluorescein isothiocyanate, FITC, (FITC-IgG) by two-photon excitation with these structures. These large enhancements in the fluorescence signal at the nanoscale gaps between the composite wrinkles corresponded to shortened lifetimes due to localized surface plasmons. To characterize these structures, we combined fluctuation correlation spectroscopy (FCS), fluorescence lifetime imaging microscopy (FLIM), and two-photon microscopy to spatially and temporally map the hot spots with high resolution. PMID:25383253
NASA Technical Reports Server (NTRS)
Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.
2000-01-01
The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.
Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow
NASA Astrophysics Data System (ADS)
Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick
2014-11-01
When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.
Wrinkling and folding of nanotube-polymer bilayers
NASA Astrophysics Data System (ADS)
Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.
2014-07-01
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.
NASA Astrophysics Data System (ADS)
Candra, S.; Batan, I. M. L.; Berata, W.; Pramono, A. S.
2017-11-01
This paper presents the mathematical approach of minimum blank holder force to prevent wrinkling in deep drawing process of the cylindrical cup. Based on the maximum of minor-major strain ratio, the slab method was applied to determine the modeling of minimum variable blank holder force (VBHF) and it compared to FE simulation. The Tin steel sheet of T4-CA grade, with the thickness of 0.2 mm was used in this study. The modeling of minimum VBHF can be used as a simple reference to prevent wrinkling in deep drawing.
Wrinkle Ridges and Pit Craters
2016-10-19
Tectonic stresses highly modified this area of Ganges Catena, north of Valles Marineris. The long, skinny ridges (called "wrinkle ridges") are evidence of compressional stresses in Mars' crust that created a crack (fault) where one side was pushed on top of the other side, also known as a thrust fault. As shown by cross-cutting relationships, however, extensional stresses have more recently pulled the crust of Mars apart in this region. (HiRISE imaged this area in 2-by-2 binning mode, so a pixel represents a 50 x 50 square centimeter.) http://photojournal.jpl.nasa.gov/catalog/PIA21112
Kircik, Leon H
2012-01-01
Clinical studies as well as histologic data maintain that tretinoin improves the appearance of photodamage; however, the long-term benefits of tretinoin 0.02% in moderate to severe photodamage have not been established. We performed independent assessments to demonstrate the long-term safety and efficacy of tretinoin emollient cream 0.02% for moderate to severe facial photodamage. A single-center, open-label, single-group observational study followed 19 patients over 52 weeks. Efficacy assessments consisted of the Glogau Photodamage Classification Scale and severity grading of photodamage signs and symptoms. Facial photography and biopsies were taken from three subjects at baseline and final visits. Tolerability was assessed by the investigator. Twelve patients completed 52 weeks of treatment. Mean change in Glogau photodamage demonstrated statistically significant differences at 3, 6, 9, and 12 months (P<.0005). All patients with moderate to severe photodamage had improved to mild photodamage status by 9 months. Statistically significant improvements (P<.05) were observed at all time points for fine wrinkling, tactile roughness, and mottled hyperpigmentation as well as for lentigines at 6, 9, and 12 months and telangiectasia at 12 months. Biopsy samples revealed microscopic improvement in photodamage. Tretinoin cream 0.02% was generally well-tolerated, with few subjects experiencing adverse events. Our pilot study is limited by lack of control and the small study sample. Tretinoin cream 0.02% was safe and effective for moderate to severe photodamage of facial skin and demonstrated sustainable benefits over an entire year based on the clinically validated Glogau classification system and expert visual grading analysis.
Efficacy of monopolar radiofrequency on skin collagen remodeling: a veterinary study.
Fritz, Klaus; Bernardy, Jan; Tiplica, George Sonn; Machovcova, Alena
2015-01-01
The aesthetic market offers various radiofrequency treatments for the reduction of wrinkles and rhytids. Even though this not an uncommon aesthetic therapy, there is considerable lack of clinical evidence on the various energy delivery systems available (unipolar, bipolar, tripolar, multipolar, etc.). The purpose of this study was to demonstrate the efficacy of a monopolar radiofrequency device (Exilis Elite, BTL Industries Inc., Boston, MA, USA) on the skin collagen in an animal model. The study treatment was done on the abdominal area of the potbellied Vietnamese mini pigs in the Veterinary Research Institute facility. All pigs were treated once per week for 4 weeks. The treatment area was sized 20 × 10 cm. The surface temperature was kept in the therapeutic interval from 39 °C to 43 °C and the therapy lasted for 10 minutes after reaching the therapeutic temperature. Biopsy samples were taken before the therapy and at the 3-month follow-up. The histology samples were stained and magnified (×400) before computer processing. The collagen volume was calculated using the stereological analysis and the data were statistically processed (using the nonparametric two-sample t-test). The collagen content tissue increased from average of 9.0% before the therapy up to 25.9% after the 3-month follow-up period. The statistical comparison of 54 samples taken before and after the treatment acknowledged the significant difference (p = 0.018). The stereological analysis proved large-scale improvement of collagen in the treated area. We have observed that the monopolar radiofrequency therapy significantly increases collagen remodeling. © 2015 Wiley Periodicals, Inc.
What’s The Hold Up Reconciling Acquisition Timeline Differences
2016-02-16
methods might limit the flexibility of acquisition programs in terms of schedule and budget, resulting in a situation where program execution is...adapt to 12 future challenges.44 The intent, from the start, was to design for affordability, but Congress added a wrinkle . There were only two...54 The team attacked on all fronts. Two examples of their work follow. A redesign of the ship itself and modification to the construction method
Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows
NASA Astrophysics Data System (ADS)
Raayai-Ardakani, Shabnam; McKinley, Gareth H.
2017-09-01
Inspired by the design of the ribbed structure of shark skin, passive drag reduction methods using stream-wise riblet surfaces have previously been developed and tested over a wide range of flow conditions. Such textures aligned in the flow direction have been shown to be able to reduce skin friction drag by 4%-8%. Here, we explore the effects of periodic sinusoidal riblet surfaces aligned in the flow direction (also known as a "wrinkled" texture) on the evolution of a laminar boundary layer flow. Using numerical analysis with the open source Computational Fluid Dynamics solver OpenFOAM, boundary layer flow over sinusoidal wrinkled plates with a range of wavelength to plate length ratios ( λ / L ), aspect ratios ( 2 A / λ ), and inlet velocities are examined. It is shown that in the laminar boundary layer regime, the riblets are able to retard the viscous flow inside the grooves creating a cushion of stagnant fluid that the high-speed fluid above can partially slide over, thus reducing the shear stress inside the grooves and the total integrated viscous drag force on the plate. Additionally, we explore how the boundary layer thickness, local average shear stress distribution, and total drag force on the wrinkled plate vary with the aspect ratio of the riblets as well as the length of the plate. We show that riblets with an aspect ratio of close to unity lead to the highest reduction in the total drag, and that because of the interplay between the local stress distribution on the plate and stream-wise evolution of the boundary layer the plate has to exceed a critical length to give a net decrease in the total drag force.
Mei, Xue-Ling; Wang, Li
2018-01-01
Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Optical coherence tomography applied to tests of skin care products in humans--a case study.
Vasquez-Pinto, L M C; Maldonado, E P; Raele, M P; Amaral, M M; de Freitas, A Z
2015-02-01
When evaluating skin care products for human skin, quantitative test methods need to be simple, precise and reliable. Optical coherence tomography (OCT), provides high-resolution sectional images of translucent materials to a depth of a few millimeters, a technique usually applied to medical measurements in ophthalmology and dermatology. This study aimed to demonstrate the application of OCT as the main technique for monitoring changes in skin topography during tests of a wrinkle-reduction product in humans. We used a commercial OCT apparatus to perform clinical examinations of skin roughness in treated and non-treated sites in the periorbital region of thirty human voluntaries who were using an anti-aging product commercially available: Natura Chronos® Flavonóides de Passiflora 45+ FPS15, from Natura Cosméticos, Brazil. Measurements were performed days 0, 7, 14 and 28 of treatment. Equipment and software allowed real-time recording of skin roughness parameters and wrinkle depths. The OCT measurements have allowed the monitoring of changes in skin roughness, which have shown reduction in treated sites around 10%. The obtained depth distributions also indicate reduction in the occurrence of wrinkles deeper than 170 μm. The verified results are consistent with those typically obtained after successful treatment with modern anti-aging products. By using the OCT technique, it was possible to quantify changes in skin roughness and in the distribution of depths of skin wrinkles, with adequate sensitivity. OCT imaging allows the direct visualization of the skin topography with resolution of micrometers, a reliable and interactive tool for clinical use. Therefore, for the first time, we demonstrated the use of OCT technique to verify the efficacy of cosmetic products in real time. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Why Some Women Look Young for Their Age
Gunn, David A.; Rexbye, Helle; Griffiths, Christopher E. M.; Murray, Peter G.; Fereday, Amelia; Catt, Sharon D.; Tomlin, Cyrena C.; Strongitharm, Barbara H.; Perrett, Dave I.; Catt, Michael; Mayes, Andrew E.; Messenger, Andrew G.; Green, Martin R.; van der Ouderaa, Frans; Vaupel, James W.; Christensen, Kaare
2009-01-01
The desire of many to look young for their age has led to the establishment of a large cosmetics industry. However, the features of appearance that primarily determine how old women look for their age and whether genetic or environmental factors predominately influence such features are largely unknown. We studied the facial appearance of 102 pairs of female Danish twins aged 59 to 81 as well as 162 British females aged 45 to 75. Skin wrinkling, hair graying and lip height were significantly and independently associated with how old the women looked for their age. The appearance of facial sun-damage was also found to be significantly correlated to how old women look for their age and was primarily due to its commonality with the appearance of skin wrinkles. There was also considerable variation in the perceived age data that was unaccounted for. Composite facial images created from women who looked young or old for their age indicated that the structure of subcutaneous tissue was partly responsible. Heritability analyses of the appearance features revealed that perceived age, pigmented age spots, skin wrinkles and the appearance of sun-damage were influenced more or less equally by genetic and environmental factors. Hair graying, recession of hair from the forehead and lip height were influenced mainly by genetic factors whereas environmental factors influenced hair thinning. These findings indicate that women who look young for their age have large lips, avoid sun-exposure and possess genetic factors that protect against the development of gray hair and skin wrinkles. The findings also demonstrate that perceived age is a better biomarker of skin, hair and facial aging than chronological age. PMID:19956599
New insights into classical solutions of the local instability of the sandwich panels problem
NASA Astrophysics Data System (ADS)
Pozorska, Jolanta; Pozorski, Zbigniew
2016-06-01
The paper concerns the problem of local instability of thin facings of a sandwich panel. The classic analytical solutions are compared and examined. The Airy stress function is applied in the case of the state of plane stress and the state of plane strain. Wrinkling stress values are presented. The differences between the results obtained using the differential equations method and energy method are discussed. The relations between core strain energies are presented.
Light radiation pressure upon an optically orthotropic surface
NASA Astrophysics Data System (ADS)
Nerovny, Nikolay A.; Lapina, Irina E.; Grigorjev, Anton S.
2017-11-01
In this paper, we discuss the problem of determination of light radiation pressure force upon an anisotropic surface. The optical parameters of such a surface are considered to have major and minor axes, so the model is called an orthotropic model. We derive the equations for force components from emission, absorption, and reflection, utilizing a modified Maxwell's specular-diffuse model. The proposed model can be used to model a flat solar sail with wrinkles. By performing Bayesian analysis for example of a wrinkled surface, we show that there are cases in which an orthotropic model of the optical parameters of a surface may be more accurate than an isotropic model.
Skincare Bootcamp: The Evolving Role of Skincare.
Rodan, Katie; Fields, Kathy; Majewski, George; Falla, Timothy
2016-12-01
Although cosmetic procedures have a significant impact on certain aspects of aging, such as deep, wrinkling, sagging, and volume loss, they fail to address the overall quality of the skin. Daily skincare routines potentially can have a significant long-term impact on the overall quality of a person's complexion. By expanding our product knowledge, we can help our patients individualize their at-home skincare routine using effective products and ingredients designed to address their specific skin concern and support the professional care we deliver. Here, we discuss the types of products and ingredients suitable for the most common dermatologic concerns, from wrinkling to skin sensitivity, acne to sun damage.
Polarization-resolved second-harmonic-generation imaging of photoaged dermal collagen fiber
NASA Astrophysics Data System (ADS)
Yasui, Takeshi; Takahashi, Yu; Araki, Tsutomu
2009-02-01
Polarization-resolved second-harmonic-generation (SHG) microscopy is useful for assessment of collagen fiber orientation in tissues. In this paper, we investigated the relation between wrinkle direction and collagen orientation in ultraviolet-B-exposed (UVB-exposed) skin using polarization-resolved SHG microscopy. A polarization anisotropic image of the SHG light indicated that wrinkle direction in UVB-exposed skin is predominantly parallel to the orientation of dermal collagen fibers whereas no-UVB-exposed skin was dominated by collagen orientation parallel to the meridian line of body. The method proposed has the potential to become a powerful non-invasive tool for assessment of cutaneous photoaging.
Characterization of palmprints by wavelet signatures via directional context modeling.
Zhang, Lei; Zhang, David
2004-06-01
The palmprint is one of the most reliable physiological characteristics that can be used to distinguish between individuals. Current palmprint-based systems are more user friendly, more cost effective, and require fewer data signatures than traditional fingerprint-based identification systems. The principal lines and wrinkles captured in a low-resolution palmprint image provide more than enough information to uniquely identify an individual. This paper presents a palmprint identification scheme that characterizes a palmprint using a set of statistical signatures. The palmprint is first transformed into the wavelet domain, and the directional context of each wavelet subband is defined and computed in order to collect the predominant coefficients of its principal lines and wrinkles. A set of statistical signatures, which includes gravity center, density, spatial dispersivity and energy, is then defined to characterize the palmprint with the selected directional context values. A classification and identification scheme based on these signatures is subsequently developed. This scheme exploits the features of principal lines and prominent wrinkles sufficiently and achieves satisfactory results. Compared with the line-segments-matching or interesting-points-matching based palmprint verification schemes, the proposed scheme uses a much smaller amount of data signatures. It also provides a convenient classification strategy and more accurate identification.
NASA Astrophysics Data System (ADS)
Wei, Weishu; Yang, Charles Q.
1998-06-01
Durable press finishing processes are commonly used in the textile industry to produce wrinkle-free cotton fabrics and garments. A durable press finishing agent forms covalent bands with cellulosic hydroxyl groups, thus crosslinking the cellulose molecules. The crosslinking of cellulose increases wrinkle resistance of the treated cotton fabric and reduces fabric mechanical strength. Wrinkle recovery angle (WRA) and tensile strength are the two most important parameters used to evaluate the performance of the crosslinked cotton fabrics and garments. In this study, we investigated the correlation between WRA and tensile strength on one hand, and the amount of crosslinkages formed by the crosslinking agents including dimethyloldihydroxylethyleneurea (DMDHEU) and 1,2,3,4-butanetetracarboxylic acid (BTCA) determined by FT-IR spectroscopy on the other hand. Linear regression curves between the carbonyl band absorbance, and WRA and tensile strength of the treated cotton fabric were developed. The data indicated that FT-IR spectroscopy is a reliable technique for predicting the performance of durable press finished cotton fabrics, therefore can be used as a convenient instrumental method for quality control in the textile and garment industry.
Gerodermia osteodysplastica and wrinkly skin syndrome: are they the same?
Al-Gazali, L I; Sztriha, L; Skaff, F; Haas, D
2001-07-01
Gerodermia osteodysplastica (GO) is a connective tissue disorder characterized by premature aging, wrinkled, and lax skin with reduced elasticity which is more marked on the dorsum of the hands and feet associated with hyperextensible joints and osteoporosis. The wrinkly skin syndrome (WSS) is characterized by wrinkled skin over the dorsum of the hands, feet, and abdomen; hyperextensible joints, particularly of the hands; intrauterine growth retardation; postnatal failure to thrive; and mental and developmental delay. We report on five children from two consanguineous Arab families with features overlapping both GO and WSS. All five children had similar dysmorphic facial features consisting of broad and prominent forehead, hypotelorism with epicanthal folds, prominent bulbous nose, flat malar region, and large protruding ears. All had wrinkling of the skin more marked on the dorsum of the hands, feet, and abdomen; hyperextensibility of the joints, particularly of the hands; and aged appearance. Intrauterine growth retardation, subsequent failure to thrive, developmental delay, and variable degree of osteoporosis was also present in all of them. The older three children developed progressive prognathism. We suggest that GO and WSS could represent variable manifestation of the same disorder. Copyright 2001 Wiley-Liss, Inc.
YouTube Videos on Botulinum Toxin A for Wrinkles: A Useful Resource for Patient Education.
Wong, Katharine; Doong, Judy; Trang, Trinh; Joo, Sarah; Chien, Anna L
2017-12-01
Patients interested in botulinum toxin type A (BTX-A) for wrinkles search for videos on YouTube, but little is known about the quality and reliability of the content. The authors examined the quality, reliability, content, and target audience of YouTube videos on BTX for wrinkles. In this cross-sectional study, the term "Botox" was searched on YouTube. Sixty relevant videos in English were independently categorized by 2 reviewers as useful informational, misleading informational, useful patient view, or misleading patient view. Disagreements were settled by a third reviewer. Videos were rated on the Global Quality Scale (GQS) (1 = poor, 5 = excellent). Sixty-three percent of the BTX YouTube videos were useful informational (GQS = 4.4 ± 0.7), 33% as useful patient view (GQS = 3.21 ± 1.2), 2% as misleading informational (GQS = 1), and 2% as misleading patient view (GQS = 2.5). The large number of useful videos, high reliability, and the wide range of content covered suggests that those who search for antiwrinkle BTX videos on YouTube are likely to view high-quality content. This suggests that YouTube may be a good source of videos to recommend for patients interested in BTX.
Matsuura-Hachiya, Yuko; Arai, Koji Y; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio
2013-12-06
Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin. Copyright © 2013 Elsevier Inc. All rights reserved.
Evidence for Young Lunar Wrinkle Ridges: Ongoing Tectonic Activity on the Surface of the Moon?
NASA Astrophysics Data System (ADS)
Valantinas, A.; Kinch, K. M.
2017-12-01
The conventional understanding of the Moon states that it is a differentiated but currently a geologically `dead' body. Most of the lunar mare volcanism took place 4-3 Ga ago and basin related extensional tectonics ended 3.6 Ga ago [1]. There is evidence for much younger (0.9Ga -1.2 Ga) volcanic units [2,3] and some degree of contractional tectonics up to 1.2 Ga [4]. Other studies, however, identified evidence for ongoing tectonics based on narrow fractures and several young wrinkle ridges crossing the highlands and small craters [5]. In addition, there is evidence for young (<100 Ma) Irregular Mare Patches (IMPs) but their origin is still debated [6,7]. More recently high resolution images provided by NASA's Lunar Reconnaissance Orbiter revealed a number of surface tectonic expressions such as small graben and lobate scarps were found to be < 100 Ma [8,9]. In our work, we analyze several contractional lunar wrinkle ridge systems which are thought to be manifestations of global stress fields along nearside maria edges [10]. Stratigraphic relationships and the lack of large superimposing craters suggests that all wrinkle ridges in our study regions are Copernican. We derive model ages from crater size frequency distributions which result in ages all below 50 Ma. Analyzed lunar wrinkle ridges appear morphologically crisp and include various degrees of pristine rocky outcrops. High abundances of boulders suggest that they could be still tectonically active because meter size rock populations are obliterated by meteorite bombardment in 300 Ma [11,12]. [1] Basaltic Volcanism Study Project, Basaltic volcanism on the terrestrial planets, 948-974, 1981. [2] Schultz, P. H. & Spudis, P. D., Nature, 302, 184-186, 1983. [3] Hiesinger, H. et al., Geological Society of America Special Papers, 477, 2011.[4] Watters, T. R. & Johnson, C. L., Planetary Tectonics, 121-182, 2010. [5] Schultz, P. H., Moon Morphology, 1976. [6] Schultz, P. H. et al., Nature, 444, 184-186, 2006. [7] Braden, S. E. et al., Nature Geosci., 7, 787-791, 2014. [8] Watters, T. R. et al., Nature Geosci, 5, 181-185, 2012. [9] Clark, J. D. et al., LPSC XLVI, #1730, 2015. [10] Yue, Z. et al., J. Geophys. Res. Planets, 120, 978-994, 2015. [11] Basilevsky, A. T. et al., Planet. Space Sci., 89, 118-126, 2013. [12] Ghent, R. R. et al., Geology, 42, 1059-1062, 2014.
Yoshimura, Yuri; Kasuya, Eiiti
2013-01-01
The roles played by nonfatal secretions of adult anurans in the avoidance of predation remain unknown. The adult Wrinkled frog (Rana rugosa) has warty skin with the odorous mucus secretion that is not fatal to the snake Elaphe quadrivirgata. We fed R. rugosa or Fejervarya limnocharis, which resembles R. rugosa in appearance and has mucus secretion, to snakes and compared the snakes’ responses to the frogs. Compared to F. limnocharis, R. rugosa was less frequently bitten or swallowed by snakes. The snakes that bit R. rugosa spat out the frogs and showed mouth opening (gaping) behavior, while the snakes that bit F. limnocharis did not show gaping behavior. We also compared the responses of the snakes to R. rugosa and F. limnocharis secretions. We coated palatable R. japonica with secretions from R. rugosa or F. limnocharis. The frogs coated by R. rugosa secretion were less frequently bitten or swallowed than those coated by F. limnocharis secretion. We concluded that compared to different frog species of similar sizes, the adult R. rugosa was less frequently preyed upon by, and that its skin secretion was effective in avoiding predation by snakes. PMID:24278410
Tuning electronic properties by oxidation-reduction reactions at graphene-ruthenium interface
Kandyba, Viktor; Al-Mahboob, Abdullah; Giampietri, Alessio; ...
2018-06-06
Mass production of graphene is associated with the growth on catalysts used also in other chemical reactions. In this study, we exploit the oxidation-reduction to tailor the properties of single layer graphene domains with incorporated bi-layer patches on ruthenium. Using photoelectron spectromicroscopy techniques, we find that oxygen, intercalating under single layer and making it p-doped by the formation of Ru-O x, does not intercalate under the bilayer patches with n-doped upper layer, but decorates them under single layer surrounding creating lateral p-n junctions with chemical potential difference of 1.2 eV. O-reduction by thermal treatment in vacuum results in C-vacancy defectsmore » enhancing electronic coupling of remained graphene to Ru, whereas in H 2, vacancy formation is suppressed. Also, for the domains below 15–25 μm size, after O-reduction in H 2, graphene/Ru coupling is restored, while wrinkle pattern produced by O-intercalation is irreversible and can trap reaction products between the wrinkles and Ru surface step edges. In fact, in certain regions of bigger domains, the products, containing H 2O and/or its fragments, remain at the interface, making graphene decoupled and undoped.« less
Yoshimura, Yuri; Kasuya, Eiiti
2013-01-01
The roles played by nonfatal secretions of adult anurans in the avoidance of predation remain unknown. The adult Wrinkled frog (Rana rugosa) has warty skin with the odorous mucus secretion that is not fatal to the snake Elaphe quadrivirgata. We fed R. rugosa or Fejervarya limnocharis, which resembles R. rugosa in appearance and has mucus secretion, to snakes and compared the snakes' responses to the frogs. Compared to F. limnocharis, R. rugosa was less frequently bitten or swallowed by snakes. The snakes that bit R. rugosa spat out the frogs and showed mouth opening (gaping) behavior, while the snakes that bit F. limnocharis did not show gaping behavior. We also compared the responses of the snakes to R. rugosa and F. limnocharis secretions. We coated palatable R. japonica with secretions from R. rugosa or F. limnocharis. The frogs coated by R. rugosa secretion were less frequently bitten or swallowed than those coated by F. limnocharis secretion. We concluded that compared to different frog species of similar sizes, the adult R. rugosa was less frequently preyed upon by, and that its skin secretion was effective in avoiding predation by snakes.
Shemer, Avner; Levy, Hanna; Sadick, Neil S; Harth, Yoram; Dorizas, Andrew S
2014-11-01
In the last decade, energy-based aesthetic treatments, using light, radiofrequency (RF), and ultrasound, have gained scientific acceptance as safe and efficacious for non-invasive treatment for aesthetic skin disorders. The phase-controlled multisource radiofrequency technology (3DEEP™), which is based on the simultaneous use of multiple RF generators, was proven to allow significant pigment-independent dermal heating without pain or the need of epidermal cooling. This study was performed in order to evaluate the efficacy and safety of a new handheld device delivering multisource radiofrequency to the skin for wrinkle reduction and skin tightening in the home setting. A total of 69 participants (age 54.3 years ± 8.09; age range 37-72 years) were enrolled in the study after meeting all inclusion/exclusion criteria (100%) and providing informed consent. Participants were provided with the tested device together with a user manual and treatment diary, to perform independent treatments at home for 4 weeks. The tested device, (Newa™, EndyMed Medical, Cesarea, Israel) emits 12 W of 1Mhz, RF energy through six electrodes arranged in a linear fashion. Independent control of RF polarity through each one of the 6 electrodes allows significant reduction of energy flow through the epidermis with increased dermal penetration. Participants were instructed to perform at least 5 treatments a week, for one month. Four follow-up visits were scheduled (once a week) during the period of independent treatments at home, following 4 weeks of home treatments, 1 month follow-up visit (1 month after treatment end) and at 3 months follow-up (3 months following treatment end). Analysis of pre-and post treatment images was conducted by three uninvolved physicians experienced with the Fitzpatrick Wrinkle and Elastosis Scale. Fitzpatrick Wrinkle and Elastosis score of each time point (4 weeks following home use treatments; 1 month follow-up, 3 months follow-up) was compared to baseline. Participants were asked a series of questions designed to explore usability concerns and level of satisfaction regarding the device use and subjective efficacy. Altogether, 62 subjects completed the study course and follow-up visits. No unexpected adverse effects were detected or reported throughout the independent treatment. All study participants did not experience any difficulties while operating the tested device for independent wrinkle reduction treatments. Photographic analysis of pre- and post-one month of independent home use treatments, and one and three months follow-up after end of treatment course, was conducted by three uninvolved board certified dermatologists. Analysis of results revealed improvement (downgrade of at least 1 score according to the Fitzpatrick scale) in 91.93%, 96.77%, and 98.39% of study subjects (according to the first, second, and third reviewer, respectively). Results were found to be statistically significant. The majority of study participants were very satisfied from the results of the independent treatment using the tested device for wrinkle reduction.
Improved Digitization of Lunar Mare Ridges with LROC Derived Products
NASA Astrophysics Data System (ADS)
Crowell, J. M.; Robinson, M. S.; Watters, T. R.; Bowman-Cisneros, E.; Enns, A. C.; Lawrence, S.
2011-12-01
Lunar wrinkle ridges (mare ridges) are positive-relief structures formed from compressional stress in basin-filling flood basalt deposits [1]. Previous workers have measured wrinkle ridge orientations and lengths to investigate their spatial distribution and infer basin-localized stress fields [2,3]. Although these plots include the most prominent mare ridges and their general trends, they may not have fully captured all of the ridges, particularly the smaller-scale ridges. Using Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) global mosaics and derived topography (100m pixel scale) [4], we systematically remapped wrinkle ridges in Mare Serenitatis. By comparing two WAC mosaics with different lighting geometry, and shaded relief maps made from a WAC digital elevation model (DEM) [5], we observed that some ridge segments and some smaller ridges are not visible in previous structure maps [2,3]. In the past, mapping efforts were limited by a fixed Sun direction [6,7]. For systematic mapping we created three shaded relief maps from the WAC DEM with solar azimuth angles of 0°, 45°, and 90°, and a fourth map was created by combining the three shaded reliefs into one, using a simple averaging scheme. Along with the original WAC mosaic and the WAC DEM, these four datasets were imported into ArcGIS, and the mare ridges of Imbrium, Serenitatis, and Tranquillitatis were digitized from each of the six maps. Since the mare ridges are often divided into many ridge segments [8], each major component was digitized separately, as opposed to the ridge as a whole. This strategy enhanced our ability to analyze the lengths, orientations, and abundances of these ridges. After the initial mapping was completed, the six products were viewed together to identify and resolve discrepancies in order to produce a final wrinkle ridge map. Comparing this new mare ridge map with past lunar tectonic maps, we found that many mare ridges were not recorded in the previous works. It was noted in some cases, the lengths and orientations of previously digitized ridges were different than those of the ridges digitized in this study. This method of multi-map digitizing allows for a greater accuracy in spatial characterization of mare ridges than previous methods. We intend to map mare ridges on a global scale, creating a more comprehensive ridge map due to higher resolution. References Cited: [1] Schultz P.H. (1976) Moon Morphology, 308. [2] Wilhelms D.E. (1987) USGS Prof. Paper 1348, 5A-B. [3] Carr, M.H. (1966) USGS Geologic Atlas of the Moon, I-498. [4] Robinson M.S. (2010) Space Sci. Rev., 150:82. [5] Scholten F. et al. (2011) LPSC XLII, 2046. [6] Fielder G. and Kiang T. (1962) The Observatory: No. 926, 8. [7] Watters T.R. and Konopliv A.S. (2001) Planetary and Space Sci. 49. 743-748. [8] Aubele J.C. (1988) LPSC XIX, 19.
Karsai, Syrus; Czarnecka, Agnieszka; Jünger, Michael; Raulin, Christian
2010-02-01
Ablative fractional lasers were introduced for treating facial rhytides in an attempt to achieve results comparable to traditional ablative resurfacing but with fewer side effects. However, there is conflicting evidence on how well this goal has generally been achieved as well as on the comparative value of fractional CO(2) and Er:YAG lasers. The present study compares these modalities in a randomized controlled double-blind split-face study design. Twenty-eight patients were enrolled and completed the entire study. Patients were randomly assigned to receive a single treatment on each side of the peri-orbital region, one with a fractional CO(2) and one with a fractional Er:YAG laser. The evaluation included the profilometric measurement of wrinkle depth, the Fitzpatrick wrinkle score (both before and 3 months after treatment) as well as the assessment of side effects and patient satisfaction (1, 3, 6 days and 3 months after treatment). Both modalities showed a roughly equivalent effect. Wrinkle depth and Fitzpatrick score were reduced by approximately 20% and 10%, respectively, with no appreciable difference between lasers. Side effects and discomfort were slightly more pronounced after Er:YAG treatment in the first few days, but in the later course there were more complaints following CO(2) laser treatment. Patient satisfaction was fair and the majority of patients would have undergone the treatment again without a clear preference for either method. According to the present study, a single ablative fractional treatment session has an appreciable yet limited effect on peri-orbital rhytides. When fractional CO(2) and Er:YAG lasers are used in such a manner that there are comparable post-operative healing periods, comparable cosmetic improvement occurs. Multiple sessions may be required for full effect, which cancels out the proposed advantage of fractional methods, that is, fewer side effects and less down time.
Randomized clinical efficacy of superficial peeling with 85% lactic acid versus 70% glycolic acid*
Prestes, Paula Souza; de Oliveira, Márcia Motta Maia; Leonardi, Gislaine Ricci
2013-01-01
BACKGROUND: Peeling is a procedure which aims to accelerate the process of skin exfoliation. OBJECTIVES Development of formulations containing lactic acid at 85% or glycolic acid at 70% and the evaluation of these formulations on clinical efficacy in reduction of fine wrinkles. METHODS Preliminary stability tests were carried out and an in vivo study was performed with three groups with 9 representatives each. One was the control group, which used only sunscreen; another one used lactic acid+sunscreen, and the last group used acid glycolic+sunscreen. Clinical efficacy was assessed with a CCD color microscope, through the digitization of images before and after treatment. The applications were carried out by a dermatologist, once a mont h every 30 days, during 3 months. The area with wrinkles was calculated by planimetry point counting, in accordance with Mandarin-de-Lacerda. RESULTS The formulations were stable in the visual and Ph evaluation. There was no improvement in the control group; for lactic acid, there was significant improvement after the second peeling application on the outer lateral area of the right eye and after the third application on the outer lateral area of the left eye. For the glycolic acid group, there was significant improvement in the outer lateral area of the left eye after the first application, and of the right eye region, after three applications. The formulations used must be kept under refrigeration and should be manipulated every 30 days. CONCLUSIONS Both peelings were effective in reducing fine wrinkles of the outer lateral eye area after three applications (p≤0.05%). It was observed that peeling efficacy in the external-lateral region of one eye might be different compared with that in skin of the external-lateral region of the other eye, relative to the speed of skin improvement. PMID:24474097
Nonablative laser treatment of facial rhytides
NASA Astrophysics Data System (ADS)
Lask, Gary P.; Lee, Patrick K.; Seyfzadeh, Manouchehr; Nelson, J. Stuart; Milner, Thomas E.; Anvari, Bahman; Dave, Digant P.; Geronemus, Roy G.; Bernstein, Leonard J.; Mittelman, Harry; Ridener, Laurie A.; Coulson, Walter F.; Sand, Bruce; Baumgarder, Jon; Hennings, David R.; Menefee, Richard F.; Berry, Michael J.
1997-05-01
The purpose of this study is to evaluate the safety and effectiveness of the New Star Model 130 neodymium:yttrium aluminum garnet (Nd:YAG) laser system for nonablative laser treatment of facial rhytides (e.g., periorbital wrinkles). Facial rhytides are treated with 1.32 micrometer wavelength laser light delivered through a fiberoptic handpiece into a 5 mm diameter spot using three 300 microsecond duration pulses at 100 Hz pulse repetition frequency and pulse radiant exposures extending up to 12 J/cm2. Dynamic cooling is used to cool the epidermis selectively prior to laser treatment; animal histology experiments confirm that dynamic cooling combined with nonablative laser heating protects the epidermis and selectively injures the dermis. In the human clinical study, immediately post-treatment, treated sites exhibit mild erythema and, in a few cases, edema or small blisters. There are no long-term complications such as marked dyspigmentation and persistent erythema that are commonly observed following ablative laser skin resurfacing. Preliminary results indicate that the severity of facial rhytides has been reduced, but long-term follow-up examinations are needed to quantify the reduction. The mechanism of action of this nonablative laser treatment modality may involve dermal wound healing that leads to long- term synthesis of new collagen and extracellular matrix material.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.
Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae
2015-01-01
Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518
An asymptotic membrane model for wrinkling of very thin films
NASA Astrophysics Data System (ADS)
Battista, Antonio; Hamdouni, Aziz; Millet, Olivier
2018-05-01
In this work, a formal deduction of a two-dimensional membrane theory, similar to Landau-Lifshitz model, is performed via an asymptotic development of the weak formulation of the three-dimensional equations of elasticity. Some interesting aspects of the deduced model are investigated, in particular the property of obtaining a hyperbolic equation for the out-of-plane displacement under a certain class of boundary conditions and loads. Some simple cases are analyzed to show the relevant aspects of the model and the phenomenology that can be addressed. In particular, it is shown how this mathematical formulation is capable to describe instabilities well known as wrinkling, often observed for the buckling of very thin membranes.
Major, Roman; Lackner, Juergen M; Sanak, Marek; Major, Boguslaw
2017-11-01
The future and development of science are in interdisciplinary areas, such as biomedical engineering. Self-assembled structures, similar to stem cell niches, inhibit rapid cellular division processes and enable the capture of stem cells from blood flow. By modifying the surface topography and stiffness properties, progenitor cells were differentiated towards the formation of endothelial cell monolayers to effectively inhibit the coagulation cascade. Wrinkled material layers in the form of thin polymeric coatings were prepared. An optimized surface topography led to proper cell differentiation and influenced the appropriate formation of endothelial cell monolayers. Blood activation was decelerated by the formed endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.
Total Facelift: Forehead Lift, Midface Lift, and Neck Lift
2015-01-01
Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381
Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagani, K.; Bhattacharya, A.; Kaur, J.
In this report, we present the temperature dependence of the magnetic coercivity of graphene oxide (GO) and reduced graphene oxide (RGO). We observe an anomalous decrease in coercivity of GO and RGO with decreasing temperature. The observation could be understood by invoking the inherent presence of wrinkles on graphene oxide due to presence of oxygen containing groups. Scanning electron microscopic image reveals high wrinkles in GO than RGO. We observe higher coercivity in RGO than in GO. At room temperature, we observe antiferromagnetic and ferromagnetic behaviours in GO and RGO, respectively. Whereas, at low temperatures (below T = 60–70 K), both materials showmore » paramagnetic behaviour.« less
Skincare Bootcamp: The Evolving Role of Skincare
Rodan, Katie; Fields, Kathy; Majewski, George
2016-01-01
Background: Although cosmetic procedures have a significant impact on certain aspects of aging, such as deep, wrinkling, sagging, and volume loss, they fail to address the overall quality of the skin. Methods: Daily skincare routines potentially can have a significant long-term impact on the overall quality of a person’s complexion. Results: By expanding our product knowledge, we can help our patients individualize their at-home skincare routine using effective products and ingredients designed to address their specific skin concern and support the professional care we deliver. Conclusions: Here, we discuss the types of products and ingredients suitable for the most common dermatologic concerns, from wrinkling to skin sensitivity, acne to sun damage. PMID:28018771
Study of Turbulent Premixed Flame Propagation using a Laminar Flamelet Model
NASA Technical Reports Server (NTRS)
Im, H. G.
1995-01-01
The laminar flamelet concept in turbulent reacting flows is considered applicable to many practical combustion systems (Linan & Williams 1993). For turbulent premixed combustion, the laminar flamelet regime is valid when turbulent Karlovitz number is less than unity, which is equivalent to stating that the characteristic thickness of the flame is less than that of a Kolmogorov eddy; this is known as the Klimov-Williams criterion (Williams 1985). In such a case, the flame maintains its laminar structure, and the effect of turbulent flow is merely to wrinkle and strain the flame front. The propagating wrinkled premixed flame can then be described as an infinitesimally thin surface dividing the unburnt fresh mixture and the burnt product.
Comparative analysis of quantitative methodologies for Vibrionaceae biofilms.
Chavez-Dozal, Alba A; Nourabadi, Neda; Erken, Martina; McDougald, Diane; Nishiguchi, Michele K
2016-11-01
Multiple symbiotic and free-living Vibrio spp. grow as a form of microbial community known as a biofilm. In the laboratory, methods to quantify Vibrio biofilm mass include crystal violet staining, direct colony-forming unit (CFU) counting, dry biofilm cell mass measurement, and observation of development of wrinkled colonies. Another approach for bacterial biofilms also involves the use of tetrazolium (XTT) assays (used widely in studies of fungi) that are an appropriate measure of metabolic activity and vitality of cells within the biofilm matrix. This study systematically tested five techniques, among which the XTT assay and wrinkled colony measurement provided the most reproducible, accurate, and efficient methods for the quantitative estimation of Vibrionaceae biofilms.
Jiang, Yueqi; Zhang, Xuting; Lu, Zhong; Gold, Michael H
2018-04-18
Skin aging, as a natural course, is a gradual process. It can be classified as either intrinsic or photo-aging. In recent years, as the attention to lower face wrinkles and laxity has raised significantly, the demands to facial rejuvenation also increased, along with a variety of technologies coming into being. Fractional bipolar RF as a novel means of rejuvenation has been used in clinical practice, but questions remain in terms of its efficacy and safety. Considering a large population in our country and huge demands for skin tightening, we did this research to evaluate the efficacy and safety of fractional bipolar radiofrequency.
Bae, Sung Hae; Park, Jung Jun; Song, Eun Jeung; Lee, Jung Ah; Byun, Kyung Soo; Kim, Nam Soo; Moon, Tae Kee
2016-12-01
The skin brightness is determined according to the amount and type of melanin. People with darker skin have a greater amount of melanin that makes their skin less susceptible to UV damages. They live in lower latitude and receive a greater amount of the intensity of the UV radiation. We wanted to know how the latitude and skin brightness affect skin aging. Three thousand volunteers from seven countries (Korea, China, India, Thailand, Vietnam, Indonesia, and Malaysia), aged 20-59 years, participated in this study. We measured skin brightness, Ra (wrinkles parameter), and R2 (elasticity parameter) under controlled environmental conditions. The skin brightness of the face was measured using the Janus ® which is a facial analysis system. Cutometer ® the elasticity was measured by on the cheeks, and PRIMOS lite ® was used to evaluate wrinkles on crow's feet. Latitude and skin brightness showed a positive correlation (0.346). Also, the correlations of Ra and R2 with skin brightness were significantly negative (-0.181) and positive (0.105), respectively. Results of comparison of Ra and R2 with age among the countries showed no significant difference among the 20s, but there was a significant difference among the 50s between countries with high latitude and low latitude. The long-term exposure of UV radiation, the natural environmental factor, seems to have more decisive effect on the skin aging process than the photoprotective effect of melanin of epidermal skin. This study helps to understand differences of the skin properties among countries in Asia. © 2016 Wiley Periodicals, Inc.
Ichibori, Ryoko; Fujiwara, Takashi; Tanigawa, Tomoko; Kanazawa, Shigeyuki; Shingaki, Kenta; Torii, Kosuke; Tomita, Koichi; Yano, Kenji; Sakai, Yasuo; Hosokawa, Ko
2014-01-01
Twin studies, especially those involving monozygotic (MZ) twins, facilitate the analysis of factors affecting skin aging while controlling for age, gender, and genetic susceptibility. The purpose of this study was to objectively assess various features of facial skin and analyze the effects of environmental factors on these features in MZ twins. At the Osaka Twin Research Center, 67 pairs of MZ twins underwent medical interviews and photographic assessments, using the VISIA® Complexion Analysis System. First, the average scores of the right and left cheek skin spots, wrinkles, pores, texture, and erythema were calculated; the differences between the scores were then compared in each pair of twins. Next, using the results of medical interviews and VISIA data, we investigated the effects of environmental factors on skin aging. The data were analyzed using Pearson's correlation coefficient test and the Wilcoxon signed-rank test. The intrapair differences in facial texture scores significantly increased as the age of the twins increased (P = 0.03). Among the twin pairs who provided answers to the questions regarding history differences in medical interviews, the twins who smoked or did not use skin protection showed significantly higher facial texture or wrinkle scores compared with the twins not exposed to cigarettes or protectants (P = 0.04 and 0.03, respectively). The study demonstrated that skin aging among Japanese MZ twins, especially in terms of facial texture, was significantly influenced by environmental factors. In addition, smoking and skin protectant use were important environmental factors influencing skin aging. PMID:24910280
Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics
Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue
2017-01-01
Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress–strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress–strain relation, with quantitative correspondence to finite element analysis and experiments. PMID:29033714
Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics.
Ma, Yinji; Jang, Kyung-In; Wang, Liang; Jung, Han Na; Kwak, Jean Won; Xue, Yeguang; Chen, Hang; Yang, Yiyuan; Shi, Dawei; Feng, Xue; Rogers, John A; Huang, Yonggang
2016-08-02
Recently developed classes of electronics for biomedical applications exploit substrates that offer low elastic modulus and high stretchability, to allow intimate, mechanically biocompatible integration with soft biological tissues. A challenge is that such substrates do not generally offer protection of the electronics from high peak strains that can occur upon large-scale deformation, thereby creating a potential for device failure. The results presented here establish a simple route to compliant substrates with strain-limiting mechanics based on approaches that complement those of recently described alternatives. Here, a thin film or mesh of a high modulus material transferred onto a prestrained compliant substrate transforms into wrinkled geometry upon release of the prestrain. The structure formed by this process offers a low elastic modulus at small strain due to the small effective stiffness of the wrinkled film or mesh; it has a high tangent modulus (e.g., >1000 times the elastic modulus) at large strain, as the wrinkles disappear and the film/mesh returns to a flat geometry. This bilinear stress-strain behavior has an extremely sharp transition point, defined by the magnitude of the prestrain. A theoretical model yields analytical expressions for the elastic and tangent moduli and the transition strain of the bilinear stress-strain relation, with quantitative correspondence to finite element analysis and experiments.
Wrinkle surface instability of an inhomogeneous elastic block with graded stiffness
NASA Astrophysics Data System (ADS)
Yang, Shengyou; Chen, Yi-chao
2017-04-01
Surface instabilities have been studied extensively for both homogeneous materials and film/substrate structures but relatively less for materials with continuously varying properties. This paper studies wrinkle surface instability of a graded neo-Hookean block with exponentially varying modulus under plane strain by using the linear bifurcation analysis. We derive the first variation condition for minimizing the potential energy functional and solve the linearized equations of equilibrium to find the necessary conditions for surface instability. It is found that for a homogeneous block or an inhomogeneous block with increasing modulus from the surface, the critical stretch for surface instability is 0.544 (0.456 strain), which is independent of the geometry and the elastic modulus on the surface of the block. This critical stretch coincides with that reported by Biot (1963 Appl. Sci. Res. 12, 168-182. (doi:10.1007/BF03184638)) 53 years ago for the onset of wrinkle instabilities in a half-space of homogeneous neo-Hookean materials. On the other hand, for an inhomogeneous block with decreasing modulus from the surface, the critical stretch for surface instability ranges from 0.544 to 1 (0-0.456 strain), depending on the modulus gradient, and the length and height of the block. This sheds light on the effects of the material inhomogeneity and structural geometry on surface instability.
Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae
2016-08-03
We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation.
Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae
2016-01-01
We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation. PMID:27484958
Kim, So Jung; Park, So Yun; Hong, Sun-Mee; Kwon, Eun-Hye; Lee, Taek-Kyun
2016-10-01
To determine skin whitening and wrinkle improvement efficacy, glycoprotein fractions were extracted from liquid extracts of boiled sea cucumber and their effects on tyrosine and elastase inhibitory activities were assayed. Fractions above and below 50 kDa (>50 kDa and <50 kDa) were extracted via a series of steps involving: boiling, filtering, desalting and freeze drying. Cytotoxicity, skin whitening and wrinkle-removing effects of boiled liquid were determined. Our MTT data showed that neither glycoprotein fraction of boiled liquid induces cellular cytotoxicity up to a concentration of 10 mg/mL treatment of the mouse melanoma cell line, B16F10, with 10 mg/mL >50 kDa enhanced tyrosinase and elastase inhibitory activities by 50.84% and 28.78%, respectively. Correlations of the >50 kDa concentration with tyrosinase inhibitory (R2 = 0.968) and elastase inhibitory (R2 = 0.983) efficacy were significant. >50 kDa glycoprotein fraction isolated from liquid extracts of boiled sea cucumber, which can serve as a functional cosmetic ingredient for whitening and wrinkle improvement of skin. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Retinaldehyde/hyaluronic acid fragments: a synergistic association for the management of skin aging.
Cordero, Andres; Leon-Dorantes, Gladys; Pons-Guiraud, Annick; Di Pietro, Anonio; Asensi, Santiago Vidal; Walkiewicz-Cyraska, Barbara; Litvik, Radek; Turlier, Virginie; Mery, Sophie; Merial-Kieny, Christelle
2011-06-01
Retinaldehyde (RAL) was proven effective in treating photodamaged skin. Topical treatments with specific intermediate-size hyaluronate fragments (HAFi, 50-400 kDa) have been shown to stimulate keratinocytes proliferation and epidermal hyperplasia. The aim of this open, multicentric, international study was to assess the efficacy of the combination RAL-HAFi in the correction of skin photoaging. Either RAL 0.05%-HAFi 0.5% (Eluage® cream; group 1) or RAL 0.05%-HAFi 1% (Eluage® antiwrinkle concentrate; group 2) or both products (group 3) were applied daily to the 1462 subjects during 90 days. Overall photoaging severity was evaluated in the three groups by the dermatologists at D0, D30, and D90 based on the Larnier's scale. Wrinkles and/or furrows and clinical signs of aging were evaluated using a 4-point scale. The skin microrelief of the crow's feet, evaluated by optical profilometry, was performed in subjects from group 3. The 3-month application significantly improved overall photoaging through decrease of the Larnier's score in the three groups (P<0.001). At D90, significant improvement of wrinkles was shown in groups 2 and 3 [forehead wrinkles (-19% and -10%, respectively, P<0.001), nasolabial folds (-20% and -16%, P<0.001), crow's feet (-27% in the two groups, P<0.001), and perioral wrinkles (-34% and -23%, P<0.001)]. Clinical signs of photoaging on the entire face improved significantly in groups 1 and 3 [elasticity (-32% and -33%, respectively, P<0.001), hyperpigmentation (-34% and -31%, P<0.001), and ptosis (-18% and -22%; P<0.001)]. Results were confirmed using an optical profilometry technique. Products were very well tolerated. This clinical study showed the efficacy and value of the RAL-HAFi combination in the management of aging skin in a large cohort of patients. © 2011 Wiley Periodicals, Inc.
Kohl, Elisabeth; Meierhöfer, Julia; Koller, Michael; Zeman, Florian; Groesser, Leopold; Karrer, Sigrid; Hohenleutner, Ulrich; Landthaler, Michael; Hohenleutner, Silvia
2015-02-01
Fractional CO2 -laser resurfacing is increasingly used for treating rhytides and photoaged skin because of its favorable benefit-risk ratio. A key outcome measure and treatment goal in aesthetic laser therapy is patient satisfaction. However, few data are available on patient-reported outcomes after fractional ablative skin-resurfacing. To compare patient expectations before and patient satisfaction after three fractional CO2 -laser treatments and to correlate objectively measured wrinkle reduction with patient satisfaction after treatment. We investigated patient expectation and satisfaction using a 14-item questionnaire in 24 female patients. We assessed the skin-related quality of life and patient satisfaction with skin appearance. We profilometrically measured wrinkle size in four facial areas before and three months after treatment and investigated correlations between wrinkle reduction and patient satisfaction. The high patient expectations before treatment (ceiling effect) were actually slightly exceeded. The average score of 14 items delineating patient satisfaction with laser treatment was higher (4.64 ± 0.82; n = 24) than the respective expectations before treatment (4.43 ± 0.88; n = 24). Skin-related quality of life and patient satisfaction with skin appearance had significantly improved after the last treatment. Patients dissatisfied with their skin appearance before treatment (mean 2.1 ± 1.5; evaluated on a scale ranging from 0-6) were satisfied (mean 5.1 ± 1.2) (P < 0.001) with skin appearance at the follow-up. Patient satisfaction with skin appearance was not correlated to the profilometrically measured reduction of wrinkle size of any facial area. Our results show high patient satisfaction with ablative fractional skin resurfacing, also regarding improved self-esteem and self-satisfaction despite high pre-treatment expectations. Skin-specific quality of life had significantly improved. Thus, this treatment modality can be recommended for patients with photoaged skin wishing to improve skin appearance. © 2015 Wiley Periodicals, Inc.
Investigating the Tectonics of Mare Crisium with Topographic Data
NASA Astrophysics Data System (ADS)
Byrne, P. K.; Klimczak, C.; Solomon, S. C.
2013-12-01
Mare Crisium is a 560-km-diameter lunar mare, 170,500 km2 in area. Like other lunar maria, Crisium has been tectonically deformed by wrinkle ridges. Early studies of the tectonics of Crisium were hampered by poor resolution or illumination conditions, however. The recent availability of high-resolution digital topographic models (DTMs) from Lunar Orbiter Laser Altimeter (LOLA) data enables a fresh assessment of lunar tectonics, including those in Mare Crisium. LOLA DTMs show that the basin is replete with wrinkle ridges, consistent with previous observations; we observe over 170. The largest such structures follow the basin outline and verge towards the interior, most notably from 30°-180° and 270°-330° azimuth (measured clockwise from north). Artificially illuminated hillshade maps derived from the DTMs, for solar azimuth angles of 0° and 180°, reveal ~east-west-orientated structures that are not readily visible in photogeological data. We identify 10 partially buried craters within Crisium, but we note a further five demarcated only by wrinkle ridges, the largest of which is ~95 km in diameter, that have no other surface manifestation. Moreover, LOLA topographic data reveal subtle ridge-like changes in relief across the mare that are virtually impossible to detect otherwise. We interpret these 13 ridges, ~30-100 km in length, as additional shortening structures that have no surficial faulted component. Surface displacement models can be fit to topographic profiles across structures to estimate displacements and geometries of the underlying faults. Models fit to one such profile (see accompanying figure) across an inward-verging ridge with 500 m of relief in the southeast of Crisium indicate that its fault dips 22°, penetrates to a depth of ~20 km (far beneath the base of the mare deposits), and accumulated ~1 km of along-slip displacement. This result, given the other large structures and inferred buried ridges in Crisium, implies that this mare experienced substantial shortening. Lunar wrinkle ridges are ascribed to some combination of mare subsidence and global contraction; if representative of lunar maria in general, our findings for Crisium suggest that these processes have shaped lunar tectonics to an extent greater than previously recognized. Structural map of Mare Crisium showing wrinkle ridges (flags give down-dip direction), buried ridges (arrows give down-slope direction), buried craters, superposed craters >5 km in diameter, and the location of the topographic profile (green line); inset shows topographic (green) and model (blue) profiles. Graticule has 10° increments in latitude and longitude.
Qu, Di; Venzon, Dawna; Murray, Mary; Depauw, Mathew
Using skin autofluorescence (SAF) as a marker of advanced glycation end-products (AGEs) has been extensively studied in the last decade since the introduction of the noninvasive in vivo measurement technique. Data have shown the level of skin AGEs increases with chronological age in healthy human beings, and this increase is substantially higher in age-matched diabetic patients. In skin research, glycation with the accompanying accumulation of skin AGEs has been regarded as one of the primary skin aging mechanisms that contribute to skin wrinkling and the loss of skin elasticity. To date, the totality of SAF data reported in literature has been obtained from measurements on the arm, and noninvasive measurement of facial skin AGE accumulation would add great value to skin aging research. In this study, we report the levels of facial and forearm skin AGEs in 239 men and women of 21-65 year of age. Significantly lower levels of AGEs were detected in the facial skin than in the forearm skin from the young Caucasian groups, and the difference was much larger for men than for women. The rate of change in skin AGE level over age was found to be about 50% higher in men than in women, which further highlights the gender difference. A statistically significant correlation between the levels of skin AGE and facial wrinkling was also observed. The facial skin AGE data may provide new insight into skin aging research.
El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni
2012-01-01
Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276
Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner
2010-04-01
Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca; Pasini, D.
Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and themore » Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.« less
To, Alexandra; Joubès, Jérôme; Barthole, Guillaume; Lécureuil, Alain; Scagnelli, Aurélie; Jasinski, Sophie; Lepiniec, Loïc; Baud, Sébastien
2012-01-01
Acyl lipids are essential constituents of all cells, but acyl chain requirements vary greatly and depend on the cell type considered. This implies a tight regulation of fatty acid production so that supply fits demand. Isolation of the Arabidopsis thaliana WRINKLED1 (WRI1) transcription factor established the importance of transcriptional regulation for modulating the rate of acyl chain production. Here, we report the isolation of two additional regulators of the fatty acid biosynthetic pathway, WRI3 and WRI4, which are closely related to WRI1 and belong to the APETALA2–ethylene-responsive element binding protein family of transcription factors. These three WRIs define a family of regulators capable of triggering sustained rates of acyl chain synthesis. However, expression patterns of the three WRIs differ markedly. Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol production, the three WRIs are required in floral tissues to provide acyl chains for cutin biosynthesis and prevent adherence of these developing organs and subsequent semisterility. The targets of these WRIs encode enzymes providing precursors (acyl chain and glycerol backbones) for various lipid biosynthetic pathways, but not the subsequent lipid-assembling enzymes. These results provide insights into the developmental regulation of fatty acid production in plants. PMID:23243127