Sample records for x 40 alloy

  1. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr.

    PubMed

    Chen, Lianxi; Bin, Yuanhong; Zou, Wenqi; Wang, Xiaojian; Li, Wei

    2017-02-01

    In the present work, new magnesium (Mg) alloys (Mg-4Zn-0.6Zr-xSr, x=0, 0.4, 0.8, 1.2, 1.6wt%; ZK40xSr) were prepared and studied as potential biodegradable materials. The influence of strontium (Sr) addition on the properties of the new Mg alloys was investigated, which included microstructure, corrosion degradation, and the stress corrosion cracking (SCC) susceptibility. The average grain size of the ZK40Sr was approximately 100µm, which was significantly smaller than that of ZK40 alloy without Sr (402.3±40.2µm). The size of grain boundaries precipitates in the ZK40xSr alloys gradually increased with the increase of Sr content. The grain boundaries finally showed a continuously distribution and net-like shape. The degradation test showed that the average degradation rate of the ZK40xSr alloys increased with the increase of Sr addition. In the case of Mg-4Zn-0.6Zr, the degradation rate was 2.2mgcm -2 day -1 , which was lower than that of Mg-4Zn-0.6Zr-1.6Sr (4.93mgcm -2 day -1 ). When the ZK40xSr alloys were immersed in m-SBF, the rod-like Sr-contained hydroxyapatite (HA) substance was detected, which was known to enhance cell growth around bone implants. The fracture surfaces of the as-cast Mg-4Zn-0.6Zr-1.6Sr were shown intergranular stress corrosion cracking (IGSCC) patterns. The increase of SCC susceptibility of the higher Sr ZK40xSr alloys was attributed to the increase of micro-galvanic corrosion between the α-Mg and the grain boundaries precipitates. The SCC susceptibility values were ≈0.13 and ≈0.41 for the Mg-4Zn-0.6Zr-0.4Sr and the Mg-4Zn-0.6Zr-1.6Sr, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Phase Change Characteristics of InxSb40-xTe60 Chalcogenide Alloy for Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Yun, Jae-Jin; Lee, Won-Jong

    2011-07-01

    The InxSb40-xTe60 alloy was selected as a new alternative phase change material for Ge2Sb2Te5 (GST) for phase change random access memory (PRAM). The crystal structure of InxSb40-xTe60 was an α(Sb2Te3) rhombohedral (a=b=c, α=β=γ≠90°) single phase with identical lattice parameters in a wide composition range of In (0-28 at. %). The crystallization temperature and melting point of InxSb40-xTe60 were in the ranges of 149-219 °C and 608-614 °C, respectively, and similar to those of GST. The electric properties of InxSb40-xTe60 with a wide composition range of In contents showed the typical PRAM properties such as current-voltage (I-V), resistance-voltage (R-V), and switching behavior. The reset current of InxSb40-xTe60 decreased with increasing In content and the low power consumption and good retention can be realized by controlling In content. The ratio of the cell resistance and sheet resistance of amorphous InxSb40-xTe60 to those crystalline InxSb40-xTe60 were almost the same as or larger than those of GST. The cycling endurance test of InxSb40-xTe60 with a wide range of In contents showed the comparable results to GST. InxSb40-xTe60 was concluded to be a very promising phase change material for PRAM.

  3. Ordering and bandgap reduction in InAs{sub 1{minus}x}Sb{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follstaedt, D.M.; Biefeld, R.M.; Kurtz, S.R.

    1995-02-01

    InAs{sub 1{minus}x}Sb{sub x} alloys grown by MBE and MOCVD are found to have reduced emission energies due to CuPt-type order, even for Sb concentrations as low as x = 0.07 ({Delta}E = 25--65 meV). Cross-section TEM examination of such alloys shows the two {l_brace}111{r_brace}{sub B} variants are separated into regions 1--2 {mu}m across with platelet domains 10--40 nm thick on habit planes tilted {approximately}30{center_dot} from the (001) growth surface. Nomarski optical images show a cross-hatched surface pattern expected for lattice-mismatched layers. The local tilt of the surface correlates with the dominant variant in each region. InAs{sub 1{minus}x}Sb{sub x}/In{sub 1{minus}y}Ga{sub y}Asmore » strained-layer superlattices with low Sb content and flat surfaces also show CuPt ordering.« less

  4. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.

    PubMed

    Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L

    2015-05-29

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.

  5. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr

    PubMed Central

    Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.

    2015-01-01

    Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878

  6. First-principles study of alloying effects on fluorine incorporation in Al x Ga1-x N alloys

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Tan, Wei; Zhang, Jian; Chen, Feng-Xiang; Wei, Su-Huai

    2018-02-01

    Incorporation of fluorine (F) into the AlGaN layer is crucial to the fabrication of enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). However, the understanding of properties of F doping in AlGaN alloys is rather limited. Using first-principles calculations and the special quasirandom structure (SQS) approach, we investigate the alloying effects on the doping properties of F-incorporated Al x Ga1-x N alloys. We find that substitutional F on N sites (FN) and interstitial F (Fi) are dominant defects for F in Al x Ga1-x N alloys. For these two types of defects, both the global composition x and the local motif surrounding the dopant play important roles. On contrary, the incorporation of substitutional F on Ga sites (FGa) or Al sites (FAl) are affected only by the composition x. We also find that there exists a large asymmetric bowing for the effective formation energies of FN and Fi. These results are explained in terms of local structural distortion and electronic effects. The mechanism discussed in this paper can also be used in understanding doping in other semiconductor alloys.

  7. Theoretical investigation on thermodynamic properties of ZnO1-x Te x alloys

    NASA Astrophysics Data System (ADS)

    Long, Debing; Li, Mingkai; Luo, Minghai; Zhu, Jiakun; Yang, Hui; Huang, Zhongbing; Ahuja, Rajeev; He, Yunbin

    2017-05-01

    In this study, the formation energy, phase diagram (with/without phonon contribution) and the relationship between bond stiffness and bond length for wurtzite (WZ) and zincblende (ZB) structures of ZnO1-x Te x (0  ⩽  x  ⩽  1) alloys have been investigated by combining first-principles calculations and cluster expansion method. The formation energy of ZnO1-x Te x alloys is very high in both structures, which means that it is difficult for ZnO and ZnTe to form stable ternary alloys ZnO1-x Te x . In the phase diagrams, both structures do not have stable phase of ternary alloys and ZnO1-x Te x ternary alloys can only exist in the form of metastable phase. These results indicate that ZnO and ZnTe easily form solid solubility gap when they form alloys. After considering vibrational free energy, we found the solubility of Te in ZnO and O in ZnTe was increased and the vibrational entropy improved the solubility furthermore. The phonon contribution is not ignorable to improve solid solubility. The phonon density of states was analyzed for ZnO1-x Te x alloys and the contribution from vibrational entropy was discussed.

  8. Effect of the Microstructure and Distribution of the Second Phase on the Stress Corrosion Cracking of Biomedical Mg-Zn-Zr-xSr Alloys

    PubMed Central

    Chen, Lianxi; Sheng, Yinying; Zhao, Xueyang; Liu, Hui; Li, Wei

    2018-01-01

    The stress corrosion cracking (SCC) properties of the bi-directional forged (BDF) Mg-4Zn-0.6Zr-xSr (ZK40-xSr, x = 0, 0.4, 0.8, 1.2, 1.6 wt %) alloys were studied by the slow strain rate tensile (SSRT) testing in modified simulated body fluid (m-SBF). The average grain size of the BDF alloys were approximately two orders of magnitude smaller than those of the as-cast alloys. However, grain refinement increased the hydrogen embrittlement effect, leading to a higher SCC susceptibility in the BDF ZK40-0/0.4Sr alloys. Apart from the grain refinements effect, the forging process also changed the distribution of second phase from the net-like shape along the grain boundary to a uniformly isolated island shape in the BDF alloys. The SCC susceptibility of the BDF ZK40-1.2/1.6Sr alloys were lower than those of the as-cast alloys. The change of distribution of the second phase suppressed the adverse effect of Sr on the SCC susceptibility in high Sr–containing magnesium alloys. The results indicated the stress corrosion behavior of magnesium alloys was related to the average grain size of matrix and the distribution and shape of the second phase. PMID:29614043

  9. Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kursun, Celal; Gogebakan, Musa; Eskalen, Hasan

    2018-03-01

    We report on a work of the influence of the mechanical alloying on the microstructure, thermal and mechanical features of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys. The Mg-based alloys were produced by mechanical alloying technique from mixtures of pure crystalline Mg, Ni, Y and Si powders. These alloys were investigated using a variety of analytical techniques including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and differential scanning calorimetry (DSC). The mechanical properties of the alloys were investigated by Vickers microhardness (HV) tester. After 75 h of milling time, three different intermetallic phases were obtained. These phases were defined as Mg24Y5, Mg2Ni3Si and Mg2Ni by XRD data. The particle and crystallite sizes of the Mg-based alloys were decreased by increasing milling time and they were calculated 2 μm and ˜9 nm, respectively. From the EDX analysis, it was determined that compositional homogeneity of the Mg-based alloys was fairly high. The microhardness values of the Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys increased by increasing Si into the alloys and were determined 101, 131 and 158 HV, respectively.

  10. The effect of Mn and B on the magnetic and structural properties of nanostructured Fe60Al40 alloys produced by mechanical alloying.

    PubMed

    Rico, M M; Alcázar, G A Pérez; Zamora, L E; González, C; Greneche, J M

    2008-06-01

    The effect of Mn and B on the magnetic and structural properties of nanostructured samples of the Fe60Al40 system, prepared by mechanical alloying, was studied by 57Fe Mössbauer spectrometry, X-ray diffraction and magnetic measurements. In the case of the Fe(60-x)Mn(x)Al40 system, 24 h milling time is required to achieve the BCC ternary phase. Different magnetic structures are observed according to the temperature and the Mn content for alloys milled during 48 h: ferromagnetic, antiferromagnetic, spin-glass, reentrant spin-glass and superparamagnetic behavior. They result from the bond randomness behaviour induced by the atomic disorder introduced by the MA process and from the competitive interactions of the Fe-Fe ferromagnetic interactions and the Mn-Mn and Fe-Mn antiferromagnetic interactions and finally the presence of Al atoms acting as dilutors. When B is added in the Fe60Al40 alloy and milled for 12 and 24 hours, two crystalline phases were found: a prevailing FeAl BCC phase and a Fe2B phase type. In addition, one observes an additional contribution attributed to grain boundaries which increases when both milling time and boron composition increase. Finally Mn and B were added to samples of the Fe60Al40 system prepared by mechanical alloying during 12 and 24 hours. Mn content was fixed to 10 at.% and B content varied between 0 and 20 at.%, substituting Al. X-ray patterns show two crystalline phases, the ternary FeMnAl BCC phase, and a (Fe,Mn)2B phase type. The relative proportion of the last phase increases when the B content increases, in addition to changes of the grain size and the lattice parameter. Such behavior was observed for both milling periods. On the other hand, the magnetic hyperfine field distributions show that both phases exhibit chemical disorder, and that the contribution attributed to the grain boundaries is less important when the B content increases. Coercive field values of about 10(2) Oe slightly increase with boron content

  11. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys

    NASA Astrophysics Data System (ADS)

    Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.

    2013-10-01

    Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.

  12. Electrochemical properties of LaNi{sub 5{minus}x}Ge{sub x} alloys in Ni-MH batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witham, C.; Hightower, A.; Fultz, B.

    1997-11-01

    Electrochemical studies were performed on LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys with 0 {le} x {le} 0.5. The authors carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption. The electrochemical characteristics of the Ge-substituted alloys are compared to those of the Sn-substituted alloys reported earlier. LaNi{sub 5{minus}x}Ge{sub x} alloys show compositional trends similar to LaNi{sub 5{minus}x}Sn{sub x} alloys, but unlike the Sn-substituted alloys, Ge-substituted alloys continue to exhibit facile kinetics for hydrogen absorption/desorption at high solute concentrations. Cycle lives ofmore » LaNi{sub 5{minus}x}Ge{sub x} electrodes were measured in 300 mAh laboratory test cells and were found to be superior to the Sn-substituted LaNi{sub 5} and comparable to a Mm(Ni, Co, Mn, Al){sub 5} alloy. The optimum Ge content for LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys in alkaline rechargeable cells is in the range 0.4 {le} x {le} 0.5.« less

  13. Magnetic properties of Co2Fe(Ga1-xSix) alloys

    NASA Astrophysics Data System (ADS)

    Deka, Bhargab; Chakraborty, Dibyashree; Srinivasan, Ananthakrishnan

    2014-09-01

    Magnetic and crystallographic properties of bulk Co2Fe(Ga1-xSix) alloys with 0≤x≤1 are reported in this work. The alloys with x=0.75 and 1.00 exhibit L21 structure whereas the alloys with x=0, 0.25 and 0.50 crystallized in the disordered A2 phase. Unit cell volume of this series of alloys decreased from 189.1 to 178.5 Å3 as x was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (TC) which showed a systematic variation with x (1089 K, 1075 K, 1059 K, 1019 K and 1015 K for x=0, 0.25, 0.5, 0.75 and 1.00, respectively). The saturation magnetization moment Ms for the alloys with x=0, 0.25 and 0.50 are 5.05μB, 5.23μB, 5.49μB, respectively, in accordance with the Slater-Pauling rule, but alloys with x=0.75 and 1.00 deviated from this rule. The effective moment per magnetic atom (pc) of the alloys was estimated from the inverse DC magnetic susceptibility data above TC. A comparison of Ms with pc reveals the half-metallic character of the alloys.

  14. Strength design of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys based on empirical electron theory of solids and molecules

    NASA Astrophysics Data System (ADS)

    Li, Y. K.; Chen, Y. W.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    In this paper, the valence electron structure parameters of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys were calculated based on the empirical electron theory of solids and molecules (EET), and their performance through these parameters were predicted. Subsequently, the alloys with special valence electron structure parameters were prepared byarc melting. The hardness and high-temperature mechanical properties were analyzed to verify the prediction. Research shows that the influence of shared electron number nA on the strongest bond determines the strength of these alloys and the experiments are consistent with the theoretical prediction.

  15. Cast iron-base alloy for cylinder/regenerator housing

    NASA Technical Reports Server (NTRS)

    Witter, Stewart L.; Simmons, Harold E.; Woulds, Michael J.

    1985-01-01

    NASACC-1 is a castable iron-base alloy designed to replace the costly and strategic cobalt-base X-40 alloy used in the automotive Stirling engine cylinder/generator housing. Over 40 alloy compositions were evaluated using investment cast test bars for stress-rupture testing. Also, hydrogen compatibility and oxygen corrosion resistance tests were used to determine the optimal alloy. NASACC-1 alloy was characterized using elevated and room temperature tensile, creep-rupture, low cycle fatigue, heat capacity, specific heat, and thermal expansion testing. Furthermore, phase analysis was performed on samples with several heat treated conditions. The properties are very encouraging. NASACC-1 alloy shows stress-rupture and low cycle fatigue properties equivalent to X-40. The oxidation resistance surpassed the program goal while maintaining acceptable resistance to hydrogen exposure. The welding, brazing, and casting characteristics are excellent. Finally, the cost of NASACC-1 is significantly lower than that of X-40.

  16. Various physical properties of Mn_1-xFex alloy films

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Cho, K. H.; Nahm, T.-U.; Lee, Y. P.; Kim, K. W.; Kudryavtsev, Y. V.; Gontarz, R.; Szymanski, B.

    2003-03-01

    The structural dependences of the magneto-optical, the optical and the magnetic properties of Mn_1-xFex alloy films have been investigated. It was revealed that the EKE (equatorial Kerr effect) signal at 293 K for the Mn_1-xFex alloy films can be observed only for x > 0.50. All the EKE spectra have nearly the same spectral shape (Fe-like) and differ from each other only in the intensity. The observed experimental EKE spectra for the Fe-rich Mn_1-xFex alloy films can be nicely described by the simulated ones made in the framework of the effective medium approximation. The optical properties such as optical conductivity of all the investigated alloys can be separated into three groups which are related to the different crystalline structures of alloys: predominance of the α-Fe (0.8 < x < 0.97), the γ-Mn-Fe (0.2 < x < 0.6) and the α-Mn (0.02 < x < 0.23) phases, respectively.

  17. Electrical and structural properties of In-implanted Si 1–xGe x alloys

    DOE PAGES

    Feng, Ruixing; Kremer, F.; Sprouster, D. J.; ...

    2016-01-14

    Here, we report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si 1–xGe x alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si 1–xGe x alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with densitymore » functional theory calculations of two In atoms in a Si 1–xGe x supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si 1–xGe x alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si 1–xGe x alloys, and this combination of dopant and substrate represents an effective doping protocol.« less

  18. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    PubMed

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  19. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  20. Laboratory evaluation of compressor blades considered for use in CIP/CUP compressors. [GAT2, 214X, X224, and D-15Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, K.L.

    1976-04-30

    Four die-casting alloys, the external-pressure-pin and conventional casting methods, an accelerated aging heat treatment, and an airfoil fillet modification were evaluated for 33F-S1 compressor blades considered for use in axial flow compressors installed during the Cascade Improvement and Uprating Programs at the three gaseous diffusion plants. Based on castability, resonant frequency, resistance to fatigue cracking, and shank breaking load, the ranking of the four alloys from highest to lowest is GAT2, 214X, X224, and D-15. The GAT2 alloy ranked highest in all categories except impact value; the impact values of both X224 and 214X alloys exceeded that of the GAT2more » alloy, thus indicating the latter is relatively more brittle. However, in view of its other excellent properties, including fatigue cracking resistance, GAT2 alloy is worthy of consideration for use in blades for CIP/CUP or Add-on Plant compressors, particularly if castability becomes a problem with the presently used 214X alloy. Use of the external-pressure-pin casting method is not recommended because the resulting casting difficulties cannot be justified by the small increases in shank breaking loads. The airfoil fillet modification, which is a change from the conventional circular fillet to an elliptical fillet, resulted in increases (1.5 to 4.0 percent) in the average resonant frequency and in resistance to fatigue cracking (15 to 100 percent). The results of giving the blades an accelerated aging heat treatment, designed to simulate in excess of 10,000 hours of cascade exposure, showed that overaging had no significant effect on average resonant frequency but that overaging improved blade quality by reducing residual casting stress. (auth)« less

  1. Improving the corrosion resistance of Mg-4.0Zn-0.2Ca alloy by micro-arc oxidation.

    PubMed

    Xia, Y H; Zhang, B P; Lu, C X; Geng, L

    2013-12-01

    In this paper, corrosion resistance of the Mg-4.0Zn-0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg-4.0Zn-0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF2 was formed on the surface of Mg-4.0Zn-0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. © 2013.

  2. Electrodeposition of hydroxyapatite coating on Mg-4.0Zn-1.0Ca-0.6Zr alloy and in vitro evaluation of degradation, hemolysis, and cytotoxicity.

    PubMed

    Guan, Ren-Guo; Johnson, Ian; Cui, Tong; Zhao, Tong; Zhao, Zhan-Yong; Li, Xue; Liu, Huinan

    2012-04-01

    A novel biodegradable Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy was successfully produced using a series of metallurgical processes; including melting, casting, rolling, and heat treatment. The hardness and ultimate tensile strength of the alloy sheets increased to 71.2HV and 320 MPa after rolling and then aging for 12 h at 175°C. These mechanical properties were sufficient for load-bearing orthopedic implants. A hydroxyapatite (HA) coating was deposited on the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy using a novel coating process combining alkali heat pretreatment, electrodeposition, and alkali heat posttreatment. The microstructure, composition, and phases of the Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy and HA coating were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The degradation, hemolysis, and cytocompatibility of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy were studied in vitro. The corrosion potential (E(corr)) of Mg-4.0Zn-1.0Ca-0.6Zr alloy (-1.72 V) was higher than Mg (-1.95 V), Mg-0.6Ca alloy (-1.91 V) and Mg-1.0Ca alloy (-1.97 V), indicating the Mg-Zn-Ca-Zr alloy would be more corrosion resistant. The initial corrosion potential of the HA-coated Mg alloy sample (-1.51 V) was higher than the uncoated sample (-1.72 V). The hemolysis rates of the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples were both <5%, which met the requirements for implant materials. The HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy samples demonstrated the same cytotoxicity score as the negative control. The HA-coated samples showed a slightly greater relative growth rate (RGR%) of fibroblasts than the uncoated samples. Both the HA-coated and uncoated Mg-4.0Zn-1.0Ca-0.6Zr (wt %) alloy provided evidence of acceptable cytocompatibility for medical applications. Copyright © 2012 Wiley Periodicals, Inc.

  3. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  4. DFT study of structural and electronic properties of MoS2(1-x)Se2x alloy (x = 0.25)

    NASA Astrophysics Data System (ADS)

    Gusakova, Julia; Gusakov, Vasilii; Tay, Beng Kang

    2018-04-01

    First-principles calculations have been performed to study the structural features of the monolayer MoS2(1-x)Se2x (x = 0.25) alloy and its electronic properties. We studied the effects of the relative positions of Se atoms in a real monolayer alloy. It was demonstrated that the distribution of the Se atoms between the top and bottom chalcogen planes was most energetically favorable. For a more probable distribution of Se atoms, a MoS2(1-x)Se2x (x = 0.25) monolayer alloy is a direct semiconductor with a fundamental band gap equal to 2.35 eV (calculated with the GVJ-2e method). We also evaluated the optical band gap of the alloy at 77 K (1.86 eV) and at room temperature (1.80 eV), which was in good agreement with the experimentally measured band gap of 1.79 eV.

  5. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  6. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  7. Differential Thermal Analysis of Hg(1-x)Mn(x)Te Alloys in the X=0 to 0.3 Range

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Lehoczky, S. L.; Su, C-H

    1998-01-01

    Understanding the experimental conditions necessary for the development of radial and axial compositional homogeneity in directionally solidified Hg(0.89)Mn(0.11)Te(MMT) crystals has been difficult due to the lack of segregation coefficient data on the Hg(1-x)Mn(x)Te alloy system in the X = 0 to 0.3 composition range. Determining segregation coefficient data from the available Hg(1-x)Mn(x)Te alloy phase equilibria data is not practical due to discrepancies in the shape of the reported solidus and liquidus curves in the X = 0 to 0.3 range. To resolve these discrepancies and to obtain segregation coefficient data which can be used to understand homogeneity in directionally solidified MMT crystals, the solidus and liquidus temperatures of seven Hg(1-x)Mn(x)Te alloys in the X = 0 to 0.3 range were determined using differential thermal analysis (DTA). The Hg(1-x)Mn(x)Te phase diagram constructed for the X = 0 to 0.3 range of this alloy system from the DTA measurements clarifies the shape of the solidus and liquidus curves in this range. The segregation coefficient for the Hg(1-x)Mn(x)Te system was found to vary from 5 to 4.4 as the solidus composition increased from 0-30 atomic percent MnTe. This information will be useful in the analysis of axial and radial homogeneity of directionally solidified MMT crystals.

  8. Highly mismatched GaN1-x Sb x alloys: synthesis, structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Yu, K. M.; Sarney, W. L.; Novikov, S. V.; Segercrantz, N.; Ting, M.; Shaw, M.; Svensson, S. P.; Martin, R. W.; Walukiewicz, W.; Foxon, C. T.

    2016-08-01

    Highly mismatched alloys (HMAs) is a class of semiconductor alloys whose constituents are distinctly different in terms of size, ionicity and/or electronegativity. Electronic properties of the alloys deviate significantly from an interpolation scheme based on small deviations from the virtual crystal approximation. Most of the HMAs were only studied in a dilute composition limit. Recent advances in understanding of the semiconductor synthesis processes allowed growth of thin films of HMAs under non-equilibrium conditions. Thus reducing the growth temperature allowed synthesis of group III-N-V HMAs over almost the entire composition range. This paper focuses on the GaN x Sb1-x HMA which has been suggested as a potential material for solar water dissociation devices. Here we review our recent work on the synthesis, structural and optical characterization of GaN1-x Sb x HMA. Theoretical modeling studies on its electronic structure based on the band anticrossing (BAC) model are also reviewed. In particular we discuss the effects of growth temperature, Ga flux and Sb flux on the incorporation of Sb, film microstructure and optical properties of the alloys. Results obtained from two separate MBE growths are directly compared. Our work demonstrates that a large range of direct bandgap energies from 3.4 eV to below 1.0 eV can be achieved for this alloy grown at low temperature. We show that the electronic band structure of GaN1-x Sb x HMA over the entire composition range is well described by a modified BAC model which includes the dependence of the host matrix band edges as well as the BAC model coupling parameters on composition. We emphasize that the modified BAC model of the electronic band structure developed for the full composition of GaN x Sb1-x is general and is applicable to any HMA.

  9. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  10. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  11. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    NASA Astrophysics Data System (ADS)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  12. Anisotropic thermal transport in van der Waals layered alloys WSe2(1-x)Te2x

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Jiang, Puqing; Yu, Peng; Gu, Xiaokun; Liu, Zheng; Yang, Ronggui

    2018-06-01

    Transition metal dichalcogenide (TMD) alloys have attracted great interest in recent years due to their tunable electronic properties and the semiconductor-metal phase transition along with their potential applications in solid-state memories and thermoelectrics among others. However, the thermal conductivity of layered TMD alloys remains largely unexplored despite that it plays a critical role in the reliability and functionality of TMD-enabled devices. In this work, we study the composition- and temperature-dependent anisotropic thermal conductivity of the van der Waals layered TMD alloys WSe2(1-x)Te2x in both the in-plane direction (parallel to the basal planes) and the cross-plane direction (along the c-axis) using time-domain thermoreflectance measurements. In the WSe2(1-x)Te2x alloys, the cross-plane thermal conductivity is observed to be dependent on the heating frequency (modulation frequency of the pump laser) due to the non-equilibrium transport between different phonon modes. Using a two-channel heat conduction model, we extracted the anisotropic thermal conductivity at the equilibrium limit. A clear discontinuity in both the cross-plane and the in-plane thermal conductivity is observed as x increases from 0.4 to 0.6 due to the phase transition from the 2H to the Td phase in the layered alloys. The temperature dependence of thermal conductivity for the TMD alloys was found to become weaker compared with the pristine 2H WSe2 and Td WTe2 due to the atomic disorder. This work serves as an important starting point for exploring phonon transport in layered alloys.

  13. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    PubMed

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  14. Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-04-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.

  15. Kinetics of Hydrogen Diffusion in LaNi(sub 5-x)Sn(sub x) Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Hightower, A.; Witham, C.; Bowman, R. C.; Fultz, B.

    1996-01-01

    Solid-state diffusion of hydrogen in metal hydride (MH) alloys is recognized as the rate determining step in the discharge of MH alloys in alkaline Ni-MH rechargeable cells. In our pursuit of new ternary solutes in LaNi(sub 5) for extended cycle lifetimes, we have observed noticeable improvement in the cycle life with small substitutions of Sn and Ge for Ni. Furthermore, these substituents also facilitate enhanced charge transfer kinetics for hydriding-dehydriding process. In this paper, we report our studies on the kinetics of hydrogen diffusion in LaNi(sub 5-x) Sn(sub x) alloys by electrochemical pulse techniques, chronoamperometry and chronocoulometry.

  16. Special quasiordered structures: Role of short-range order in the semiconductor alloy (GaN) 1 -x(ZnO) x

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.

    2016-02-01

    This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.

  17. Ge1-xSnx alloys synthesized by ion implantation and pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Prucnal, S.; Huebner, R.; Baehtz, C.; Skorupa, I.; Wang, Yutian; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2014-07-01

    The tunable bandgap and the high carrier mobility of Ge1-xSnx alloys stimulate a large effort for bandgap and strain engineering for Ge based materials using silicon compatible technology. In this Letter, we present the fabrication of highly mismatched Ge1-xSnx alloys by ion implantation and pulsed laser melting with Sn concentration ranging from 0.5 at. % up to 1.5 at. %. According to the structural investigations, the formed Ge1-xSnx alloys are monocrystalline with high Sn-incorporation rate. The shrinkage of the bandgap of Ge1-xSnx alloys with increasing Sn content is proven by the red-shift of the E1 and E1 + Δ1 critical points in spectroscopic ellipsometry. Our investigation provides a chip technology compatible route to prepare high quality monocrystalline Ge1-xSnx alloys.

  18. Features of the Percolation Scheme of Vibrational Spectrum Reconstruction in the Ga1 - x Al x P Alloy

    NASA Astrophysics Data System (ADS)

    Kozyrev, S. P.

    2018-04-01

    Specific features of the properties of Ga-P lattice vibrations have been investigated using the percolation model of a mixed Ga1 - x Al x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga1 - x Al x P a percolation splitting of δ 13 cm-1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm-1 in the Ga1 - x Al x P ( x < 0.4) alloy.

  19. Synthesis of Large-Size 1T' ReS2x Se2(1-x) Alloy Monolayer with Tunable Bandgap and Carrier Type.

    PubMed

    Cui, Fangfang; Feng, Qingliang; Hong, Jinhua; Wang, Renyan; Bai, Yu; Li, Xiaobo; Liu, Dongyan; Zhou, Yu; Liang, Xing; He, Xuexia; Zhang, Zhongyue; Liu, Shengzhong; Lei, Zhibin; Liu, Zonghuai; Zhai, Tianyou; Xu, Hua

    2017-12-01

    Chemical vapor deposition growth of 1T' ReS 2 x Se 2(1- x ) alloy monolayers is reported for the first time. The composition and the corresponding bandgap of the alloy can be continuously tuned from ReSe 2 (1.32 eV) to ReS 2 (1.62 eV) by precisely controlling the growth conditions. Atomic-resolution scanning transmission electron microscopy reveals an interesting local atomic distribution in ReS 2 x Se 2(1- x ) alloy, where S and Se atoms are selectively occupied at different X sites in each Re-X 6 octahedral unit cell with perfect matching between their atomic radius and space size of each X site. This structure is much attractive as it can induce the generation of highly desired localized electronic states in the 2D surface. The carrier type, threshold voltage, and carrier mobility of the alloy-based field effect transistors can be systematically modulated by tuning the alloy composition. Especially, for the first time the fully tunable conductivity of ReS 2 x Se 2(1- x ) alloys from n-type to bipolar and p-type is realized. Owing to the 1T' structure of ReS 2 x Se 2(1- x ) alloys, they exhibit strong anisotropic optical, electrical, and photoelectric properties. The controllable growth of monolayer ReS 2 x Se 2(1- x ) alloy with tunable bandgaps and electrical properties as well as superior anisotropic feature provides the feasibility for designing multifunctional 2D optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, K. J.; Posthill, J. B.; Timmons, M. L.

    1991-01-01

    In this paper, we report the epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube OMCVD. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology has been achieved for x less than or equals to 0.05. Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10 exp 18 to 2 x 10 exp 17/cu cm. Absorption measurements indicate that the band tailing in the absorption spectra of the alloy has been shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material.

  1. Thermal conductivity of bulk and nanowire Mg₂Si xSn 1–x alloys from first principles

    DOE PAGES

    Li, Wu; Lindsay, L.; Broido, D. A.; ...

    2012-11-29

    The lattice thermal conductivity (κ) of the thermoelectric materials, Mg₂Si, Mg₂Sn, and their alloys, are calculated for bulk and nanowires, without adjustable parameters. We find good agreement with bulk experimental results. For large nanowire diameters, size effects are stronger for the alloy than for the pure compounds. For example, in 200 nm diameter nanowires κ is lower than its bulk value by 30%, 20%, and 20% for Mg₂Si₀.₆Sn₀.₄, Mg₂Si, and Mg₂Sn, respectively. For nanowires less than 20 nm thick, the relative decrease surpasses 50%, and it becomes larger in the pure compounds than in the alloy. At room temperature, κmore » of Mg₂Si xSn 1–x is less sensitive to nanostructuring size effects than Si xGe 1–x, but more sensitive than PbTe xSe 1–x. This suggests that further improvement of Mg₂Si xSn 1–x as a nontoxic thermoelectric may be possible.« less

  2. Solution treatment-delayed zirconium-strengthening behavior in Ti-7.5Mo-xZr alloy system

    NASA Astrophysics Data System (ADS)

    Chern Lin, Jiin-Huey; Fu, Yen-Han; Chen, Yen-Chun; Peng, Yu-Po; Ju, Chien-Ping

    2018-01-01

    The present study was devoted to investigate and compare the Zr-strengthening behavior in as-cast (AC) and solution-treated (ST) Ti-7.5Mo-xZr alloys. The experimental results indicated that AC Ti-7.5Mo and AC Ti-7.5Mo-1Zr alloys substantially had an orthorhombic {α }\\prime\\prime phase with a fine, acicular morphology. The content of equi-axed β phase continued to increase with increased Zr content at the expense of {α }\\prime\\prime phase. The threshold Zr content for the formation of β phase in the ST Ti-7.5Mo-xZr alloys was apparently higher than that in the AC Ti-7.5Mo-xZr alloys. The β granular structure was revealed in ST Ti-7.5Mo-5Zr alloy, which increased with increased Zr content. Unlike AC Ti-7.5Mo-9Zr alloy, within each grain of ST Ti-7.5Mo-9Zr alloy were still observed a significant portion of {α }\\prime\\prime morphology. AC Ti-7.5Mo alloy had the lowest YS, lowest tensile modulus and highest elongation among all AC Ti-7.5Mo-xZr alloys. When Zr content increased, both YS and modulus significantly increased while the elongation significantly decreased. Compared to AC Ti-7.5Mo alloy, AC Ti-7.5Mo-9Zr alloy had almost double YS, indicating the effectiveness of Zr-induced strengthening in the AC Ti-7.5Mo-xZr alloys. Compared to AC Ti-7.5Mo, ST Ti-7.5Mo alloys had lower YS, UTS and tensile modulus with almost the same elongation. All the XRD, metallography and tensile test results consistently indicated that the presence of Zr could accelerate the formation of β phase and effectively strengthen the AC Ti-7.5Mo-xZr alloys. A phenomenon of delayed β formation and delayed strengthening was noted in the ST Ti-7.5Mo-xZr alloys, compared to the AC Ti-7.5Mo-xZr alloys.

  3. Topological Weyl semimetals in Bi1 -xSbx alloys

    NASA Astrophysics Data System (ADS)

    Su, Yu-Hsin; Shi, Wujun; Felser, Claudia; Sun, Yan

    2018-04-01

    We investigated Weyl semimetal (WSM) phases in bismuth antimony (Bi1 -xSbx ) alloys by combination of atomic composition and arrangement. Via first-principles calculations, we found two WSM states with Sb concentrations of x =0.5 and 0.83 with specific inversion-symmetry-broken elemental arrangement. The Weyl points are close to the Fermi level in both of these two WSM states. Therefore, it is likely to obtain Weyl points in Bi-Sb alloy. The WSM phase provides a reasonable explanation for the current transport study of Bi-Sb alloy with the violation of Ohm's law [D. Shin, Y. Lee, M. Sasaki, Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim, K.-S. Kim, and J. Kim, Nat. Mater. 16, 1096 (2017), 10.1038/nmat4965]. This paper shows that the topological phases in Bi-Sb alloys depend on both elemental composition and their specific arrangement.

  4. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  5. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  6. Large low-field magnetocaloric effect in directionally solidified Ni55Mn18+xGa27-x (x = 0, 1, 2) alloys

    NASA Astrophysics Data System (ADS)

    Li, Zhenzhuang; Li, Zongbin; Yang, Bo; Yang, Yiqiao; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2018-01-01

    The magnetostructural transformation and magnetocaloric effect of directionally solidified polycrystalline Ni55Mn18+xGa27-x (x = 0, 1, 2) alloys were studied. It is shown the directionally solidified alloys form coarse columnar-shaped grains with strong 〈0 0 1〉A (the subscript A refers to austenite) preferred orientation along the solidification direction. Through Mn substitution for Ga, a coupled magnetostructural transformation was realized in Ni55Mn19Ga26 and Ni55Mn20Ga25 alloys. Large adiabatic temperature variation (ΔTad) of 1.47 K and 1.57 K under the low field change of 1.5 T were achieved in these two alloys, respectively. Such ΔTad values are obviously higher than that obtained from a single martensitic transformation and magnetic transition. The present results demonstrate that proper composition tuning to achieve magnetostructural transformation as well as increasing the grain size and preferential orientation degree through directional solidification could be an economical processing route to optimize magnetocaloric properties in polycrystalline Ni-Mn-Ga based alloys.

  7. New Alloys for Electroformed Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Engelhaupt, D.; Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Russell, J. K.

    2000-01-01

    The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit

  8. Organometallic chemical vapor deposition and characterization of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates

    NASA Technical Reports Server (NTRS)

    Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.

    1993-01-01

    The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.

  9. Magnetism of Ho 1-xTb xAl₂ alloys: Critical dependence of a first-order transition on Tb concentration

    DOE PAGES

    Khan, Mahmud; Mudryk, Ya.; Gschneidner, K. A.; ...

    2011-12-27

    HoAl₂ exhibits a first-order spin reorientation transition at 20 K, which is manifested as a sharp peak in the heat capacity. When Ho is partially replaced by only 5% of Tb, the sharp heat-capacity peak in Ho 1-xTb xAl₂ (x = 0.05) disappears, and then reappears again for x ≥ 0.07. For x = 0.05, the anomaly corresponding to the spin reorientation transition is barely seen in the heat capacity, but as x exceeds 0.07 the weak anomaly transforms to a sharp peak. The spin reorientation transition temperature increases to 29 K for x = 0.05, and as x increasesmore » further the transition shifts to lower temperature and returns to ~20 K for x = 0.25. The transition is no longer observed when x exceeds 0.60. Temperature-dependent x-ray powder-diffraction data confirm the first-order nature of the spin reorientation transition for the alloy with x = 0.40, and indicate that the compound retains the room-temperature cubic structure within the sensitivity of the technique. Experimental observations are discussed considering the easy magnetization directions of HoAl₂ and TbAl₂.« less

  10. Ab initio calculations of the structural, electronic, thermodynamic and thermal properties of BaSe1-x Te x alloys

    NASA Astrophysics Data System (ADS)

    Drablia, S.; Boukhris, N.; Boulechfar, R.; Meradji, H.; Ghemid, S.; Ahmed, R.; Omran, S. Bin; El Haj Hassan, F.; Khenata, R.

    2017-10-01

    The alkaline earth metal chalcogenides are being intensively investigated because of their advanced technological applications, for example in photoluminescent devices. In this study, the structural, electronic, thermodynamic and thermal properties of the BaSe1-x Te x alloys at alloying composition x = 0, 0.25, 0.50, 0.75 and 1 are investigated. The full potential linearized augmented plane wave plus local orbital method designed within the density functional theory was used to perform the total energy calculations. In this research work the effect of the composition on the results of the parameters and bulk modulus as well as on the band gap energy is analyzed. From our results, we found a deviation of the obtained results for the lattice constants from Vegard’s law as well as a deviation of the value of the bulk modulus from the linear concentration dependence. We also carried out a microscopic analysis of the origin of the band gap energy bowing parameter. Furthermore, the thermodynamic stability of the considered alloys was explored through the measurement of the miscibility critical temperature. The quasi-harmonic Debye model, as implemented in the Gibbs code, was used to predict the thermal properties of the BaSe1-x Te x alloys, and these investigations comprise our first theoretical predictions concerning the BaSe1-x Te x alloys.

  11. Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn 1–xCa xSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.

    We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less

  12. Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn 1–xCa xSe

    DOE PAGES

    Matthews, Bethany E.; Holder, Aaron M.; Schelhas, Laura T.; ...

    2017-07-21

    We grow and kinetically stabilize the isotropic rocksalt phase of SnSe thin films by alloying SnSe with CaSe. Thin polycrystalline films of the metastable heterostructural alloy Sn 1–xCa xSe are synthesized by pulsed laser deposition on amorphous SiO 2 over the entire composition range 0 < x < 1. We observe the theoretically-predicted, composition-driven change from a layered, orthorhombic structure to an isotropic, cubic structure near x = 0.18, in reasonable agreement with the theoretical value of x = 0.13 calculated from first principles. The optical band gap is highly non-linear in x and the trend agrees with theory predictions.more » Compared to the layered end-member SnSe, the isotropic alloy near the orthorhombic-to-rocksalt transition has a p-type electrical resistivity three orders of magnitude lower, and a thermoelectric power factor at least ten times larger. Furthermore manipulation of the structure of a functional material like SnSe via alloying may provide a new path to enhanced functionality, in this case, improved thermoelectric performance.« less

  13. First-principles study of electronic properties of FeSe{sub 1-x}S{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeep@phy.iitb.ac.in; Singh, Prabhakar P.

    2016-05-06

    We have studied the electronic and superconducting properties of FeSe{sub 1-x}S{sub x} (x = 0.0, 0.04) alloys by first-principles calculations using the Korringa-Kohn-Rostoker Atomic Sphere Approximation within the coherent potential approximation (KKR-ASA-CPA). The electronic structure calculations show the ground states of S-doped FeSe to be nonmagnetic. We present the results of our unpolarized calculations for these alloys in terms of density of states (DOS), band structures, Fermi surfaces and the superconducting transition temperature of FeSe and FeSe{sub 0.96}S{sub 0.04} alloys. We find that the substitution of S at Se site into FeSe exhibit the subtle changes in the electronic structuremore » with respect to the parent FeSe. We have also estimated bare Sommerfeld constant (γ{sub b}), electron-phonon coupling constant (λ) and the superconducting transition temperature (T{sub c}) for these alloys, which were found to be in good agreement with experiments.« less

  14. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  15. Microstructure Analysis of Ti-xPt Alloys and the Effect of Pt Content on the Mechanical Properties and Corrosion Behavior of Ti Alloys

    PubMed Central

    Song, Ho-Jun; Han, Mi-Kyung; Jeong, Hyeon-Gyeong; Lee, Yong-Tai; Park, Yeong-Joon

    2014-01-01

    The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti3Pt intermetallic phase. The mechanical properties and corrosion behavior of Ti-xPt alloys were sensitive to the Pt content. The addition of Pt contributed to hardening of cp-Ti and to improving its oxidation resistance. Electrochemical results showed that the Ti-xPt alloys exhibited superior corrosion resistance than that of cp-Ti. PMID:28788660

  16. Magnetic properties and microstructure of melt-spun Ce17Fe78-xB6Hfx (x = 0-1.0) alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzheng; Zhong, Minglong; Quan, Qichen; Lei, Weikai; Zeng, Qingwen; Hu, Yongfeng; Xu, Yaping; Hu, Xianjun; Zhang, Lili; Liu, Renhui; Ma, Shengcan; Zhong, Zhenchen

    2017-12-01

    Ce17Fe78-xB6Hfx (x = 0-1.0) alloys were fabricated by a melt-spinning technique in order to study their magnetic properties and microstructure. Magnetic investigations of Ce17Fe78-xB6Hfx (x = 0-1.0) alloys show that the room-temperature coercivity increases linearly from 352 kA/m at x = 0 to 420 kA/m at x = 1.0. The Curie temperature (Tc) decreases monotonically from 424.5 K to 409.1 K. The Ce L3-edge X-ray absorption near edge structure (XANES) spectrums reveal that there is more Ce4+ in ribbons under total electron yield (TEY) than fluorescence yield (FY). Hf addition has no effect on the weight of Ce3+ and Ce4+ in CeFeB-based alloys. The grain refinement and microstructure uniformity are essential for improving the magnetic properties of Hf-doped alloys. This paper may shed light on the further development of the Ce-based magnets and offer a feasible way for using the rare earth resources effectively.

  17. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE PAGES

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun; ...

    2017-04-27

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  18. X-ray absorption investigation of local structural disorder in Ni 1-xFe x (x=0.10, 0.20, 0.35, and 0.50) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang X.; Jin, Ke; Zhao, Shijun

    Defect energetics in structural materials has long been recognized to be affected by specific alloy compositions. Significantly enhanced radiation resistance has recently been observed in concentrated solid-solution alloys. However, the link between local structural disorder and modified defect dynamics in solid solutions remains unclear. To reveal the atomic-level lattice distortion, the local structures of Ni and Fe in Ni 1-xFe x (x=0.1, 0.2, 0.35 and 0.5) solid solution alloys were measured with extended X-ray absorption fine structure (EXAFS) technique. The lattice constant and the first-neighbor distances increase with the increase of Fe content in the solid solutions. EXAFS measurements havemore » revealed that the bond length of Fe with surrounding atoms is 0.01-0.03 larger than that of Ni in the alloy systems. Debye-Waller factor of the Fe-Fe bonds in all the systems is also slightly larger than that of the Ni-Ni bond. EXAFS fitting suggests that the local structural disorder is enhanced with the addition of Fe elements in the solid solution. The local bonding environments from ab initio calculation are in good agreement with the experimental results, which suggest that the Fe has a larger first-neighbor bonding distance than that of Ni, and thus Ni atom inside the Ni-Fe solid solution alloys undergoes compressive strain.« less

  19. AB INITIO STUDY OF STRUCTURAL, ELECTRONIC AND OPTICAL PROPERTIES OF MgxCd1-xX (X = S, Se, Te) ALLOYS

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Shaukat, A.

    2012-12-01

    This study describes structural, electronic and optical properties of MgxCd1-xX (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu-Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel-Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ɛ(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.

  20. New alloys for electroformed replicated x-ray optics

    NASA Astrophysics Data System (ADS)

    Engelhaupt, Darell E.; Ramsey, Brian D.; O'Dell, Stephen L.; Jones, William D.; Russell, J. Kevin

    2000-11-01

    The process of electroforming nickel x-ray mirror shells from superpolished mandrels has been widely used. The recently launched XMM mission by the European Space Agency (ESA) is an excellent example, containing 174 such mirror shells of diameters ranging from 0.3 - 0.7 meters and with a thickness range of 0.47 - 1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication, handling and launch processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics for the proposed Constellation-X project. Requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have very low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the processing must be done reasonably near room temperature, as large temperature changes will modify the figure of the mandrel. Also the environment must not be corrosive or otherwise damaging to the mandrel during the processing. The results of the development program are presented, showing the evolution of our plating processes and materials through to the present 'glassy' nickel alloy that satisfies the above requirements.

  1. Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Baldissera, Gustavo; Persson, Clas

    2016-01-01

    ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy Eg(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O,Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O,S) is more stable as alloy than Zn(O,Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, ΔEg(0.50) = Eg(ZnO) - Eg(x = 0.50) ≈ 2.2 eV) compared with that of the S-based alloy (ΔEg(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function ɛ(ω) = ɛ1(ω) + iɛ2(ω) and the absorption coefficient α(ω). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant ɛ∞ is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

  2. Au 329–xAg x(SR) 84 Nanomolecules: Plasmonic Alloy Faradaurate-329

    DOE PAGES

    Kumara, Chanaka; Zuo, Xiaobing; Cullen, David A.; ...

    2015-08-10

    Though significant progress has been made to improve the monodispersity of larger (>10 nm) alloy metal nanoparticles, there still exists a significant variation in nanoparticle composition, ranging from ±1000s of atoms. Here in this paper, for the first time, we report the synthesis of atomically precise (±0 metal atom variation) Au 329–xAg x(SCH 2CH 2Ph) 84 alloy nanomolecules. The composition was determined using high resolution electrospray ionization mass spectrometry. In contrast to larger (>10 nm) Au–Ag nanoparticles, the surface plasmon resonance (SPR) peak does not show a major shift, but a minor ~10 nm red-shift, upon increasing silver content. Themore » intensity of the SPR peak also varies in an intriguing manner, where a dampening is observed with medium silver incorporation, and a significant sharpening is observed upon higher Ag content. The report outlines (a) an unprecedented advance in nanoparticle mass spectrometry of high mass at atomic precision; and (b) the unexpected optical behavior of Au–Ag alloys in the region where nascent SPR emerges; specifically, in this work, the SPR-like peak does not show a major ~100 nm blue-shift with Ag alloying of Au 329 nanomolecules, as shown to be common in larger nanoparticles.« less

  3. Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys

    NASA Astrophysics Data System (ADS)

    Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.

    2017-07-01

    It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.

  4. Effect of microstructure on stress corrosion cracking of alloy 600 and alloy 690 in 40% NaOH

    NASA Astrophysics Data System (ADS)

    Kim, H. P.; Hwang, S. S.; Lim, Y. S.; Kuk, I. H.; Kim, J. S.

    2001-02-01

    Stress corrosion cracking (SCC) behaviors of Alloy 600, Alloy 690 and the Ni-10Cr-10Fe alloy have been studied using a C-ring in 40% NaOH solution at 315°C. The current density of Alloy 690 in polarization curves was higher at 200 mV above corrosion potential than that of Alloy 600. SCC resistance increased with Cr content for the chromium carbide free alloys, probably due to facilitation of SCC crack tip blunting with an increase in Cr content. Both thermally treated Alloy 600 and sensitized Alloy 600 have a comparable amount of intergranular carbide. But the former is more resistant to SCC than the latter, which might be attributed to the presence of the slight Cr depletion around the grain boundary in the former one. Sensitized Alloy 600 showed higher SCC resistance than the solution annealed one due to intergranular carbide in sensitized Alloy 600. This implies that the beneficial effect of intergranular carbide overrides the harmful effects of Cr depletion for sensitized Alloy 600. SCC resistance of Alloy 600 increased with grain size.

  5. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    PubMed

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  6. Structure and Mechanical Properties of As-Cast Ti-5Sn-xMo Alloys.

    PubMed

    Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu

    2017-04-27

    Ti-5Sn- x Mo ( x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti-5Sn- x Mo alloys are highly affected by their Mo content. The as-cast microstructures of Ti-5Sn- x Mo alloys transformed in the sequence of phases α' → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti-5Sn-7.5Mo (80 GPa) and β-phase Ti-5Sn-10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti-5Sn- x Mo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability.

  7. Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys

    PubMed Central

    Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu

    2017-01-01

    Ti–5Sn–xMo (x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti–5Sn–xMo alloys are highly affected by their Mo content. The as-cast microstructures of Ti–5Sn–xMo alloys transformed in the sequence of phases α′ → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti–5Sn–7.5Mo (80 GPa) and β-phase Ti–5Sn–10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti–5Sn–xMo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability. PMID:28772820

  8. Alloying effect on bright-dark exciton states in ternary monolayer Mo x W1-x Se2

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Tom, Kyle; Zhang, Xiaowei; Lou, Shuai; Liu, Yin; Yao, Jie

    2017-07-01

    Binary transition metal dichalcogenides (TMDCs) in the class MX2 (M = Mo, W; X = S, Se) have been widely investigated for potential applications in optoelectronics and nanoelectronics. Recently, alloy-based monolayers of TMDCs have provided a stable and versatile technique to tune the physical properties and optimize them for potential applications. Here, we present experimental evidence for the existence of an intermediate alloy state between the MoSe2-like and the WSe2-like behavior of the neutral exciton (X 0) using temperature-dependent photoluminescence (PL) of the monolayer Mo x W1-x Se2 alloy. The existence of a maximum PL intensity around 120 K can be explained by the competition between the thermally activated bright states and the non-radiative quenching of the bright states. Moreover, we also measured localized exciton (XB ) PL peak in the alloy and the observed behavior agrees well with a model previously proposed for the 3D case, which indicates the theory also applies to 2D systems. Our results not only shed light on bright-dark states and localized exciton physics of 2D semiconductors, but also offer a new route toward the control of the bright-dark transition and tailoring optical properties of 2D semiconductors through defect engineering.

  9. Hybrid functional study of band structures of GaAs1-xNx and GaSb1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2012-02-01

    Band structures of GaAs1-xNx and GaSb1-xNx alloys are studied in the framework of the density functional theory within the hybrid functional scheme (HSE06). We find that the scheme gives a clear improvement over the traditional (semi)local functionals in describing, in a qualitative agreement with experiments, the bowing of electron energy band gap in GaAs1-xNx alloys. In the case of GaSb1-xNx alloys, the hybrid functional used makes the study of band structures possible ab initio without any empirical parameter fitting. We explain the trends in the band gap reductions in the two materials that result mainly from the positions of the nitrogen-induced states with respect to the bottoms of the bulk conduction bands.

  10. Surface functionalized Cu2Zn1- x Cd x SnS4 quinternary alloyed nanostructure for DNA sensing

    NASA Astrophysics Data System (ADS)

    Ibraheam, A. S.; Al-Douri, Y.; Voon, C. H.; Foo, K. L.; Azizah, N.; Gopinath, S. C. B.; Ameri, M.; Ibrahim, Sattar S.

    2017-03-01

    A sensing plate of extended Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures, fabricated on an oxidized silicon substrate by the sol-gel method, is reported in this paper. The fabricated device was characterized and analyzed via field emission-scanning electron microscopy, X-ray diffraction (XRD), and photoluminescence (PL). The XRD peaks shifted towards the lower angle side alongside increasing concentration of cadmium. The average diameter of the Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures falls between 21.55 and 43.12 nm, while the shift of the PL bandgap was from 1.81 eV ( x = 0) to 1.72 eV ( x = 1). The resulting Cu2Zn1- x Cd x SnS4 quinternary alloy nanostructures components were functionalized with oligonucleotides probe DNA molecules and interacted with the target, exhibiting good sensing capabilities due to its large surface-to-volume ratio. The fabrication, immobilization, and hybridization processes were analyzed via representative current-voltage ( I- V) plots. Its electrical profile shows that the device is capable to distinguish biomolecules. Its high performance was evident from the linear relationship between the probe DNA from cervical cancer and the target DNA, showing its applicability for medical applications.

  11. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  12. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  13. Ti1-xAux Alloys: Hard Biocompatible Metals and Their Possible Applications

    NASA Astrophysics Data System (ADS)

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevzi; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Morosan, Emilia

    2015-03-01

    The search for new hard materials is often challenging from both theoretical and experimental points of view. Furthermore, using materials for biomedical applications calls for alloys with high biocompatibility which are even more sparse. The Ti1-xAux (0 . 22 <= x <= 0 . 8) exhibit extreme hardness and strength values, elevated melting temperatures (compared to those of constituent elements), reduced density compared to Au, high malleability, bulk metallicity, high biocompatibility, low wear, reduced friction, potentially high radio opacity, as well as osseointegration. All these properties render the Ti1-xAux alloys particularly useful for orthopedic, dental, and prosthetic applications, where they could be used as both permanent and temporary components. Additionally, the ability of Ti1-xAux alloys to adhere to ceramic parts could reduce the weight and cost of these components. The work at Rice was supported by NSF DMR 0847681 (E.M. and E.S.).

  14. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    NASA Astrophysics Data System (ADS)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  15. Properties of Cu 1–xK xInSe 2 alloys

    DOE PAGES

    Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan; ...

    2016-04-21

    Adding potassium to Cu(In,Ga)Se 2 absorbers has been shown to enhance photovoltaic power conversion efficiency. To illuminate possible mechanisms for this enhancement and limits to beneficial K incorporation, the properties of Cu 1-xK xInSe 2 (CKIS) thin-film alloys have been studied. Films with K/(K + Cu), or x, from 0 to 1 were grown by co-evaporation, and probed by XRF, EPMA, SEM, XRD, UV-Visible spectroscopy, current-voltage, and TRPL measurements. Composition from in situ quartz crystal and EIES monitoring was well correlated with final film composition. Crystal lattice parameters showed linear dependence on x, indicating complete K incorporation and coherent structuralmore » character at all compositions in the <100> and <010> lattice directions, despite the different symmetries of CuInSe 2 and KInSe 2. The band gap energy showed pronounced bowing with x composition, in excellent agreement with experimental reports and semiconductor theory. Films of Mo/CKIS/Ni were non-ohmic, and increasing x from 0 to 0.58 decreased the apparent CKIS resistivity. Further evidence of decreased CKIS resistivity was observed with photoluminescence response, which increased by about half a decade for x > 0, and indicates increased majority carrier concentration. Minority carrier lifetimes increased by about an order of magnitude for films grown at x = 0.07 and 0.14, relative to CuInSe 2 and x ≥ 0.30. As a result, this is the first report of a Cu-K-In-Se film with >1 at.% K, and the observed property changes at increased x (wider band gap; lower resistivity; increased lifetime) comprise valuable photovoltaic performance-enhancement strategies, suggesting that CKIS alloys have a role to play in future engineering advances.« less

  16. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  17. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  18. The investigation of topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Saeidi, Parviz; Nourbakhsh, Zahra

    2018-04-01

    Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.

  19. Structure and magnetic properties of Sm1-xZrx Fe10Si2 (x=0.2-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Gjoka, M.; Sarafidis, C.; Psycharis, V.; Devlin, E.; Niarchos, D.; Hadjipanayis, G.

    2017-10-01

    Structure and magnetic properties of Sm1-xZrxFe10Si2 (0.1 ≤ x ≤ 0.6) alloys have been characterized using X-ray diffraction, thermomagnetic analysis and Mössbauer spectroscopy. The formation of the tetragonal ThMn12 -type structure was been observed in all alloys, without further annealing. The Curie temperature decreases linearly with Zr substitution from 322 °C for x=0.1 to 395 °C for x=0.6. Mössbauer spectroscopy showed the iron hyperfine field values decrease with increasing Zr content, and also confirmed changes to the magnetic anisotropy with increasing Zr content observed by XRD on oriented samples.

  20. Density functional study for crystalline structures and electronic properties of Si1- x Sn x binary alloys

    NASA Astrophysics Data System (ADS)

    Nagae, Yuki; Kurosawa, Masashi; Shibayama, Shigehisa; Araidai, Masaaki; Sakashita, Mitsuo; Nakatsuka, Osamu; Shiraishi, Kenji; Zaima, Shigeaki

    2016-08-01

    We have carried out density functional theory (DFT) calculation for Si1- x Sn x alloy and investigated the effect of the displacement of Si and Sn atoms with strain relaxation on the lattice constant and E- k dispersion. We calculated the formation probabilities for all atomic configurations of Si1- x Sn x according to the Boltzmann distribution. The average lattice constant and E- k dispersion were weighted by the formation probability of each configuration of Si1- x Sn x . We estimated the displacement of Si and Sn atoms from the initial tetrahedral site in the Si1- x Sn x unit cell considering structural relaxation under hydrostatic pressure, and we found that the breaking of the degenerated electronic levels of the valence band edge could be caused by the breaking of the tetrahedral symmetry. We also calculated the E- k dispersion of the Si1- x Sn x alloy by the DFT+U method and found that a Sn content above 50% would be required for the indirect-direct transition.

  1. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  2. Preparation and Thermoelectric Properties of IR(sub x)Co(sub 1-x)Sb(sub 2) Alloys

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    1995-01-01

    The preparation and characterization of the binary arsenopyrite compounds CoSb2 and IrSb2 and IrxCo1-xSb2 alloys is reported. Single crystals of CoSb2 were grown by the vertical gradient freeze technique from solution rich in antimony. Polycrystalline samples of IrSb2 and IrxCo1-xSb2 alloys were prepared by hot-pressing of prereacted elemental powders. Samples were investigated by X-ray diffractometry, microprobe analysis and density measurements. It was found that a range of solid solution exist in the system IrxCo1-xSb2 for 0.1<x<0.8. Samples were also characterized by high temperature electrical resistivity, Seebeck coefficient and thermal conductivity measurements. All materials have p-type conductivity and are semiconductors. A band gap of about 0.98 eV was calculated for IrSb2. Preliminary measurements of the thermoelectric properties of these materials showed that their potential for thermoelectric applications is limited.

  3. Investigating the Electron-Phonon Coupling of Molecular Beam Epitaxy-Grown Hg1-x Cd x Se Semiconductor Alloys

    NASA Astrophysics Data System (ADS)

    Peiris, F. C.; Lewis, M. V.; Brill, G.; Doyle, Kevin; Myers, T. H.

    2018-03-01

    Using spectroscopic ellipsometry, the temperature-dependence of the dielectric functions of a series of Hg1-x Cd x Se thin films deposited on both ZnTe/Si(112) and GaSb(112) substrates were investigated. Initially, for each sample, room-temperature ellipsometric spectra were obtained from 35 meV to 6 eV using two different ellipsometers. Subsequently, ellipsometry spectra were obtained from 10 K to 300 K by incorporating a cryostat to the ellipsometer. Using a standard inversion technique, the spectroscopic ellipsometric data were modeled in order to obtain the temperature-dependent dielectric functions of each of the Hg1-x Cd x Se thin films. The results indicate that the E 1 critical point blue-shifts as a function of Cd-alloy concentration. The temperature-dependence of E 1 was fitted to a Bose-Einstein occupation distribution function, which consequently allowed us to determine the electron-phonon coupling of Hg1-x Cd x Se alloys. From the fitting results, we obtain a value of 17 ± 2 meV for the strength of the electron-phonon coupling for Hg1-x Cd x Se alloy system, which compares nominally with the binary systems, such as CdSe and CdTe, which have values around 38 meV and 16 meV, respectively. This implies that the addition of Hg into the CdSe binary system does not significantly alter its electron-phonon coupling strength. Raman spectroscopy measurements performed on all the samples show the HgSe-like transverse optic (TO) and longitudinal optic (LO) phonons (˜ 130 cm-1 and ˜ 160 cm-1, respectively) for all the samples. While there is a slight red-shift of the HgSe-like TO peak as a function of the Cd-concentration, HgSe-like LO peak does not significantly change with the alloy concentration.

  4. Composition anisotropy compensation and magnetostriction of Co-doped Laves compounds Tb0.2Dy0.8-xPrxFe1.93 (0 ≤ x ≤ 0.40)

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, J. J.; Zhu, X. Y.; Shen, W. C.; Lin, L. L.; Du, J.; Si, P. Z.

    2018-07-01

    Alloys of Tb0.2Dy0.8-xPrx(Fe0.8Co0.2)1.93 (0 ≤ x ≤ 0.40) are arc melted and investigated for structural, magnetic and magnetoelastic properties by means of X-ray diffraction (XRD), a vibrating sample magnetometer and a standard strain technique. The 20 at.% Co substitution for Fe is shown to enable the formation of the single Laves phase with a high Pr content up to x = 0.25. Experimental evidence for magnetocrystalline-anisotropy compensation between Pr3+ and Dy3+ ions is obtained in the Laves phase system. The easy magnetization direction (EMD) at room temperature rotates from <100> to <110> axis when x increases from 0 to 0.40. The linear anisotropic magnetostriction λa (=λ||-λ⊥) increases with increasing Pr content when x ≤ 0.25 ascribed to both the larger magnetostriction of PrFe2 than that of DyFe2 and the decrease of the resulted anisotropy due to compensation. The composition anisotropy compensation is found to be around x = 0.25, shifting to the Pr-rich side at room temperature as compared to the Co-free counterpart Tb0.2Dy0.8-xPrxFe1.93 system. The Tb0.2Dy0.55Pr0.25(Fe0.8Co0.2)1.93 alloy has good magnetoelastic properties at room temperature, that is, a low anisotropy and a high low-field magnetostriction λa ∼140 ppm at 1 kOe.

  5. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  6. Electronic and Thermoelectric Properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) Alloys: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Hamad, Bothina

    2018-04-01

    Ab initio investigations of the electronic and thermoelectric (TE) properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) alloys are performed using density functional theory. The TE properties are calculated using the semi-classical Boltzmann transport theory within the constant relaxation time approximation. Band gap values are found to range between 0.94 eV and 1.02 eV in agreement with the experimental findings and previous calculations. All alloys tend to exhibit p-type TE properties, indicated by a sharp peak near the Fermi level that indicates a heavy carrier concentration. Electrical conductivity is found to decrease, whereas the Seebeck coefficient and the power factor increase for higher concentrations. The three alloys, SnS, SnSe and SnSe0.75S0.25 alloys exhibit the same power factor of 3.5 × 10-3 W/m K2, which is promising for thermoelectric applications.

  7. Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films

    NASA Astrophysics Data System (ADS)

    Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.

    1995-01-01

    CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.

  8. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, N.Yu.

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less

  9. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  10. Transport properties of the Ce xY 1-x Pt alloy system: Unusual concenration dependence of the Curie temperature

    DOE PAGES

    Očko, M.; Zadro, K.; Drobac, Đ.; ...

    2016-11-16

    Here, in order to study Kondo ferromagnetism of CePt, we have investigated the transport properties, resistivity and thermopower, of the Ce xY 1-xPt alloy system from 2 K to 320 K. The extracted magnetic contribution to the total resistivity cannot be scaled to the concentration and is much higher than in the Ce xLa 1-xPt alloy system. The maximum of the magnetic contribution of the resistivity moves to lower temperatures with decreasing the Ce content while the temperature of the minimum of the thermopower does not change with concentration. These two facts seem to be in contradiction. Usually one assumesmore » that these extrema represent the Kondo temperature. To the contrary, we show that the Kondo temperature increases with decreasing Ce content. The most intriguing observation in this alloy system is the linear relationship between the Curie temperature and the concentration of the Ce ions and, moreover, that it is the same as in Ce xLa 1-xPt. Lastly, this fact is in contradiction with the conventional picture of small moment Kondo magnetism.« less

  11. Cation and Vacancy Disorder in U 1-yNd yO 2.00-X Alloys

    DOE PAGES

    Barabash, Rozaliya I.; Voit, Stewart L.; Aidhy, Dilpuneet S.; ...

    2015-09-14

    In this study, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U 1-yNd yO 2-X alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U 1-yNd yO 2-X alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U 1-yNd yO 2-X alloys were also foundmore » to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. Finally, the change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.« less

  12. New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.

    2017-10-01

    This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.

  13. Alloying and Properties of C14-NbCr₂ and A15-Nb₃X (X = Al, Ge, Si, Sn) in Nb-Silicide-Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-03-07

    The oxidation of Nb-silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB₂ Laves and A15-A₃X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and -0.503 < ∆χ < -0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr₂, the VEC decreased and ∆χ increased in Nb(Cr,Si)₂, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb₃X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb₃Sn, the ∆χ and hardness of Nb₃(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb₃(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and

  14. Ternary ceramic alloys of ZR-CE-HF oxides

    DOEpatents

    Becher, Paul F.; Funkenbusch, Eric F.

    1990-01-01

    A ternary ceramic alloy which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce.sub.x Hf.sub.y Zn.sub.1-x-y O.sub.2, is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites.

  15. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    DOE PAGES

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; ...

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. In this study, this x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  16. Anti-site disorder and improved functionality of Mn₂NiX (X = Al, Ga, In, Sn) inverse Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip, E-mail: subhra@iitg.ernet.in

    2014-10-07

    Recent first-principles calculations have predicted Mn₂NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn₂NiGa and Mn₂NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn₂NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizingmore » martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.« less

  17. X-ray absorption spectra: Graphene, h-BN, and their alloy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; Rusz, Jan; Eriksson, Olle

    2013-04-01

    Using first-principles density functional theory calculations, in conjunction with the Mahan-Nozières-de Dominicis theory, we calculate the x-ray absorption spectra of the alloys of graphene and monolayer hexagonal boron nitride on a Ni (111) substrate. The chemical neighborhood of the constituent atoms (B, C, and N) inside the alloy differs from that of the parent phases. In a systematic way, we capture the change in the K-edge spectral shape, depending on the chemical neighborhood of B, C, and N. Our work also reiterates the importance of the dynamical core-hole screening for a proper description of the x-ray absorption process in sp2-bonded layered materials.

  18. Debye temperatures and magnetic structures of UFe xAl 12- x (3.6⩽ x⩽5) intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Rećko, K.; Dobrzyński, L.; Szymański, K.; Hoser, A.

    2000-03-01

    Uranium ternary compounds UFe xAl 12- x crystallize in a body-centred tetragonal structure ThMn 12 (I 4/mmm No.139). The neutron powder diffraction, magnetization measurements as well as Mössbauer investigations clearly indicate the magnetic ordering within the iron sites. The rearrangement of iron magnetic moments from uncompensated antiferromagnetic system in UFe xAl 12- x with x<4, through coexistence of antiferro- and ferromagnetic iron components (4⩽ x<5) to pure ferromagnetic ordering for alloy with x=5 is observed. The neutron diffraction studies of magnetic structures of the aforementioned powder samples show a very rich world of possible uranium-iron magnetic interactions. For all these alloys the magnetic neutron scattering is generally weak in comparison to the nuclear one. Because of identical chemical and magnetic unit cells there are no pure magnetic reflections. Therefore, in order to extract magnetic part of the scattering one should be particularly careful in taking proper account of the thermal vibration effects.

  19. Hot Corrosion of Single-Crystal NiAl-X Alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1998-01-01

    Several single-crystal NiAl-X alloys (X=Hf, Ti, Cr, Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at 900 deg. C for 300 1-hr cycles. The surface morphology after testing consisted of either mounds or an inward, uniform-type of attack which preserved surface features. It was observed that the surface morphology was affected by the surface preparation treatments. Microstructurally, the hot corrosion attack initiated as pits but evolved to a rampant attack consisting of the rapid inward growth of Al2O3. Electropolishing and chemical milling produced many pits and grooves on the surface. However, the presence of pits and grooves did not appear to strongly influence the hot corrosion response. Attack on many samples was strongly localized which was attributed to compositional inhomogeneity within the samples. It was found that increasing the Ti content from 1% to 5 % degraded the hot corrosion response of these alloys. In contrast, the addition of 1-2% Cr reduced the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the 4-5% Ti addition.

  20. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    NASA Astrophysics Data System (ADS)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this

  1. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  2. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  3. Low-temperature sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N thin film alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haider, Ali, E-mail: ali.haider@bilkent.edu.tr, E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Ozgit-Akgun, Cagla

    In this work, the authors have performed sequential pulsed chemical vapor deposition of ternary B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N alloys at a growth temperature of 450 °C. Triethylboron, triethylgallium, trimethylindium, and N{sub 2} or N{sub 2}/H{sub 2} plasma have been utilized as boron, gallium, indium, and nitrogen precursors, respectively. The authors have studied the compositional dependence of structural, optical, and morphological properties of B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N ternary thin film alloys. Grazing incidence X-ray diffraction measurements showed that boron incorporation in wurtzite lattice of GaN and InN diminishes the crystallinity of B{sub x}Ga{sub 1-x}N and B{submore » x}In{sub 1-x}N sample. Refractive index decreased from 2.24 to 1.65 as the B concentration of B{sub x}Ga{sub 1-x}N increased from 35% to 88%. Similarly, refractive index of B{sub x}In{sub 1-x}N changed from 1.98 to 1.74 for increase in B concentration value from 32% to 87%, respectively. Optical transmission band edge values of the B{sub x}Ga{sub 1-x}N and B{sub x}In{sub 1-x}N films shifted to lower wavelengths with increasing boron content, indicating the tunability of energy band gap with alloy composition. Atomic force microscopy measurements revealed an increase in surface roughness with boron concentration of B{sub x}Ga{sub 1-x}N, while an opposite trend was observed for B{sub x}In{sub 1-x}N thin films.« less

  4. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  5. Magnetic properties and magnetostriction of PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tang, Shao-Long; Li, Yu-Long; Xie, Ren; Du, You-Wei

    2013-03-01

    The crystal structure, magnetic and magnetostrictive properties of high-pressure synthesized PrxNd1-xFe1.9 (0 <= x <= 1.0) alloys were studied. The alloys exhibit single cubic Laves phase with MgCu2-type structure. The initial magnetization curve reveals that Pr0.2Nd0.8Fe1.9 has a minimum magnetocrystalline anisotropy at 5 K. The magnetostriction curve at 5 K shows that Pr0.2Nd0.8Fe1.9 has a very good low-field magnetostrictive property, and the magnetostriction of the PrxNd1-xFe1.9 alloy in high magnetic field is attributable mainly to Pr. The temperature dependence of the magnetostriction (λ‖) at the field of 5 kOe shows that the substitution of Nd reduces the K1 remarkably, and the values of λ‖ of Pr0.2Nd0.8Fe1.9 and Pr0.8Nd0.2Fe1.9 alloys are nearly five times larger than that of the PrFe1.9 alloy below 50 K; the λ‖ of Pr0.8Nd0.2Fe1.9 reaches up to 1082 ppm at 100 K, which makes it a potential candidate for application in this temperature range.

  6. Ternary ceramic alloys of Zr-Ce-Hf oxides

    DOEpatents

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  7. Epitaxial Al{sub x}Ga{sub 1–x}As:Mg alloys with different conductivity types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Lenshin, A. S.; Arsentiev, I. N., E-mail: arsentyev@mail.ioffe.ru

    The structural, optical, and energy properties of epitaxial Al{sub x}Ga{sub 1–x}As:Mg/GaAs(100) heterostructures at different levels of doping with Mg are studied by high-resolution X-ray diffraction analysis and Raman and photoluminescence spectroscopies. It is shown that, by choosing the technological conditions of Al{sub x}Ga{sub 1–x}As:Mg alloy production, it is possible to achieve not only different conductivity types, but also substantially different charge-carrier concentrations in an epitaxial film.

  8. Effect of the Sm content on the structure and electrochemical properties of La 1.3 - xSm xCaMg 0.7Ni 9 ( x = 0-0.3) hydrogen storage alloys

    NASA Astrophysics Data System (ADS)

    Tang, Rui; Wei, Xuedong; Liu, Yongning; Zhu, Changchun; Zhu, Jiewu; Yu, Guang

    La 1.3 - xSm xCaMg 0.7Ni 9 (x = 0-0.3) hydrogen storage alloys were prepared by inductive melting and the effect of the Sm content on the structure and electrochemical properties was investigated in the paper. The Sm substitution for La in La 1.3 - xSm xCaMg 0.7Ni 9 (x = 0-0.3) alloys does not change the main phase structure (the rhombohedral PuNi 3-type structure), but leads to a shrinkage of unit cell and a decrease of hydrogen storage capacity. With the increase of the Sm content in the alloys, the maximum discharge capacity of electrode decreases from 400.2 (x = 0) to 346.6 mAh g -1 (x = 0.3), but the high-rate dischargeability and cycling stability is improved. After 100 cycles, the capacity retention rate increases from 75 (x = 0) to 85% (x = 0.3).

  9. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  10. Vapor-liquid-solid epitaxial growth of Si 1-xGe x alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGES

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si 1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane,more » silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si 1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  11. Cadmium effect on structural properties of Cu{sub 2}Zn{sub 1-x}Cd{sub x}SnS{sub 4} quinternary alloys nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibraheam, A. S.; Al-Douri, Y., E-mail: yaldouri@yahoo.com; Hashim, U.

    The study report novel sensing plat of extended quinternart materials, Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures were fabricated onto oxidized silicon substrate by sol-gel method and characterized were synthesized by X-ray diffraction (XRD). The XRD peaks were shifted towered the lower angle side with increasing cadmium content. The practical size average of the Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures between 34.55 to 63.30 nm.

  12. The optical spectrum of ternary alloy BBi1-xAsx

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Aslan, M.; Ozcan, M. H.; Rahnamaye Aliabad, H. A.

    2016-06-01

    Among the III-V semiconductors, boron BBi and BAs as well as their alloys have attracted both scientific and technological interest in recent years. We present a calculation of the structural, electronic and optical properties of ternary alloy BBi1-xAsx by means of the WIEN2k software package. The exchange-correlation potential is treated by the generalized gradient approximation (GGA) within the schema of Wu and Cohen. Also, we have used the modified Becke-Johnson (mBJ) formalism to improve the band gap results. All the calculations have been performed after geometry optimization. In this study, we have investigated structural properties such as the lattice constant (a0), bulk modulus (B0) and its pressure derivative (B‧), and calculated the electronic band structures of the studied materials. Accurate calculation of linear optical properties, such as real (ɛ 1) and imaginary (ɛ 2) dielectric functions, reflectivity (R), electron energy loss spectrum, absorption coefficient (α), refractive index (n) and sum rule (Neff) are investigated. Our obtained results for studied binary compounds, BBi and BAs, fairly coincide with other theoretical calculations and experimental measurements. According to the best of our knowledge, no experimental or theoretical data are presently available for the studied ternary alloy BBi1-xAsx (0 < x < 1). The role of electronic band structure calculation with regards to the linear optical properties of BBi1-xAsx is discussed. The effect of the spin-orbit interaction (SOI) is also investigated and found to be quite small.

  13. Hot-electron luminescence and polarization in GaAs/sub 1-x/P/sub x/ alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charfi, F.F.; Zouaghi, M.; Planel, R.

    1986-04-15

    The weak direct-gap luminescence originating from the GAMMA valley of GaAs/sub 1-x/P/sub x/ indirect-gap alloys is observed. Incident energy dependence and polarization correlation of the luminescence with the exciting light are presented. The luminescence is interpreted as recombination of hot electrons, with strong momentum anisotropy, on acceptors. The dynamics of conduction electrons in the GAMMA valley can be discussed.

  14. Origin of background electron concentration in In xGa 1-xN alloys

    DOE PAGES

    Pantha, B. N.; Wang, H.; Khan, N.; ...

    2011-08-15

    The origin of high background electron concentration (n) in In xGa 1-xN alloys has been investigated. A shallow donor was identified as having an energy level (E D1) that decreases with x (E D1 = 16 meV at x = 0 and E D1 = 0 eV at x ~ 0.5) and that crossover the conduction band at x ~ 0.5. This shallow donor is believed to be the most probable cause of high n in InGaN. This understanding is consistent with the fact that n increases sharply with an increase in x and becomes constant for x > 0.5.more » A continuous reduction in n was obtained by increasing the V/III ratio during the epilayer growth, suggesting that nitrogen vacancy-related impurities are a potential cause of the shallow donors and high background electron concentration in InGaN« less

  15. Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications

    NASA Astrophysics Data System (ADS)

    Park, Seon-Yeong; Choe, Han-Cheol

    2018-02-01

    In this study, Mn-coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetrons sputtering for dental applications were studied using different experimental techniques. Mn coating films were formed on Ti-29Nb-xHf alloys by a radio frequency magnetron sputtering technique for 0, 1, 3, and 5 min at 45 W. The microstructure, composition, and phase structure of the coated alloys were examined by optical microscopy, field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The microstructure of Ti-29Nb alloy showed α" phase in the needle-like structure and Ti-29Nb-15Hf alloy showed β phase in the equiaxed structure. As the sputtering time increased, the circular particles of Mn coatings on the Ti-29Nb alloy increased at inside and outside surfaces. As the sputtering time increased, [Mn + Ca/P] ratio of the plasma electrolytic oxidized films in Ti- 29Nb-xHf alloys increased. The corrosion potential (Ecorr) of Mn coatings on the Ti-29Nb alloy showed higher than that of Mn coatings on the Ti-29Nb-15Hf alloy. The passive current density (Ipass) of the Mn coating on the Ti-29Nb alloy and Mn coatings on the Ti-29Nb-15Hf alloy was less noble than the non-Mn coated Ti-29Nb and Ti-29Nb-15Hf alloys surface.

  16. Study on glass-forming ability and hydrogen storage properties of amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Peng; Wang, Zhong-min, E-mail: zmwang@guet.edu.cn; Zhang, Huai-gang

    2013-12-15

    Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0, 4) amorphous alloys were prepared by rapid solidification, using a melt-spinning technique. X-ray diffraction and differential scanning calorimetry analysis were employed to measure their microstructure, thermal stability and glass-forming ability, and hydrogen storage properties were studied by means of PCTPro2000. Based on differential scanning calorimetry results, their glass-forming ability and thermal stability were investigated by Kissinger method, Lasocka curves and atomic cluster model, respectively. The results indicate that glass-forming ability, thermal properties and hydrogen storage properties in the Mg-rich corner of Mg–Ni–La–Co system alloys were enhanced by Co substitution for La. Itmore » can be found that the smaller activation energy (ΔΕ) and frequency factor (υ{sub 0}), the bigger value of B (glass transition point in Lasocka curves), and higher glass-forming ability of Mg–Ni–La–Co alloys would be followed. In addition, atomic structure parameter (λ), deduced from atomic cluster model is valuable in the design of Mg–Ni–La–Co system alloys with good glass-forming ability. With an increase of Co content from 0 to 4, the hydrogen desorption capacity within 4000 s rises from 2.25 to 2.85 wt.% at 573 K. - Highlights: • Amorphous Mg{sub 60}Ni{sub 30}La{sub 10−x}Co{sub x} (x = 0 and 4) alloys were produced by melt spinning. • The GFA and hydrogen storage properties were enhanced by Co substitution for La. • With an increase of Co content, the hydrogen desorption capacity rises at 573 K.« less

  17. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    PubMed

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  18. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    PubMed Central

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  19. Electrolytic hydriding of LaFe(13-x)Si(x) alloys for energy efficient magnetic cooling.

    PubMed

    Lyubina, Julia; Hannemann, Ullrich; Ryan, Mary P; Cohen, Lesley F

    2012-04-17

    An effective, low-temperature and readily available electrochemical method for tuning the operation temperature of LaFe(13-x)Si(x)-type alloys is demonstrated. Electrolytically hydrided materials have the same high level magnetic properties as in high temperature gas-phase processed materials and offer an advantage of higher hydrogen absorption rate in the ferromagnetic state. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis, characterization and magnetic properties of CoxCu1-x (x ∼ 0.01 - 0.3) granular alloys

    NASA Astrophysics Data System (ADS)

    Dhara, S.; Roy Chowdhury, R.; Lahiri, S.; Ray, P.; Bandyopadhyay, B.

    2015-01-01

    Nanostructured CoCu granular alloys have been prepared by borohydride reduction of CuCl2 and CoCl2 salt solutions using cetyltrimethylammonium bromide (CTAB) as a surfactant. Characterization by inductively coupled plasma optical emission spectroscopy (ICPOES), X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies yields spherical particles of CoxCu1-x (x ∼ 0.01 - 0.3) of average size 8-25 nm formed in a face-centered-cubic (fcc) lattice as in copper. Studies of zero-field-cooled/field-cooled (ZFC/FC) magnetization and thermoremanent magnetization (TRM) have been performed in the temperature range 4-300 K, and the results have been analyzed by independent particle model. At the lowest cobalt concentration (x ∼ 0.01), the alloy is superparamagnetic and there is no blocking of magnetization down to 4 K. For all other samples, the magnetization at low magnetic field is characterized by a blocking temperature distribution which is not influenced by the Co content in samples. Study of hysteresis loops shows that the magnetization at any temperature 4-300 K is a sum of ferromagnetic (FM), superparamagnetic (SPM) and paramagnetic (PM) contributions. The FM part increases and SPM part decreases with increase in Co content. However, the values of coercivity and magnetic anisotropy constant do not depend on Co content. The results suggest that CoxCu1-x alloys are formed in a spherical core-shell type structure with cobalt being concentrated near the core of particles.

  1. On the Alloying and Properties of Tetragonal Nb₅Si₃ in Nb-Silicide Based Alloys.

    PubMed

    Tsakiropoulos, Panos

    2018-01-04

    The alloying of Nb₅Si₃ modifies its properties. Actual compositions of (Nb,TM)₅X₃ silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb₅Si₃ or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb₅Si₃ was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young's modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb₅Si₃ (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb₅Si₃ without Ge. The (Nb,Hf)₅(Si,Al)₃ had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb₅Si₃ alloyed with Ge. Deterioration of the creep of alloyed Nb₅Si₃ was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s).

  2. Study on magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys

    NASA Astrophysics Data System (ADS)

    Tan, G. S.; Xu, H.; Yu, L. Y.; Tan, X. H.; Zhang, Q.; Gu, Y.; Hou, X. L.

    2017-09-01

    In the present work, (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) permanent alloys are prepared by melt-spinning method. The hard magnetic properties of (Nd0.8Ce0.2)2-xFe12Co2B (x = 0-0.6) alloys annealed at optimum temperatures have been investigated systematically. Depending on the Nd, Ce concentration, the maximum energy product ((BH)max) and remanence (Br) increase gradually with x in the range of 0 ≤ x ≤ 0.4, whereas decrease gradually in the alloys with 0.4 < x ≤ 0.6. It is found that the optimum magnetic properties are obtained at x = 0.4: Hci = 4.9 kOe, Br = 10.1 kG, (BH)max = 13.7 MGOe. Specifically, magnetic field heat treatment below the Curie temperature is applied for (Nd0.8Ce0.2)1.6Fe12Co2B (x = 0.4) annealed ribbons. The magnetic properties Br, (BH)max and squareness are all enhanced after the magnetic field heat treatment. The (BH)max shows a substantial increase from 13.7 MGOe to 16.0 MGOe after the heat treatment at 623 K with a magnetic field of 1 T, which gets 17% improvement compared with that of the sample without a magnetic field heat treatment. We demonstrate that the magnetic field heat treatment plays a certain role in the magnetization reversal behavior and can improve the microstructure of (Nd0.8Ce0.2)1.6Fe12Co2B alloy.

  3. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    PubMed

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  4. High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Maurya, Sandeep Kumar; Liu, Ya; Xu, Xiaojie; Woods-Robinson, Rachel; Das, Chandan; Ager, Joel W., III; Balasubramaniam, K. R.

    2017-12-01

    p-type transparent conducting Cu alloyed ZnS thin films from Cu{x} Zn{1-x} S targets (x = 0.1 , 0.2, 0.3, 0.4, and 0.5) were deposited on glass substrates via radio frequency sputtering. x-ray diffraction and TEM-SAED analysis show that all the films have sphalerite ZnS as the majority crystalline phase. In addition, films with 30% and 40% Cu show the presence of increasing amounts of crystalline Cu2S phase. Conductivity values  ⩾400 S cm-1 were obtained for the films having 30% and 40% Cu, with the maximum conductivity of 752 S cm-1 obtained for the film with 40% Cu. Temperature dependent electrical transport measurements indicate metallic as well as degenerate hole conductivity in the deposited films. The reflection-corrected transmittance of this Cu alloyed ZnS (40% Cu) film was determined to be  ⩾75% at 550 nm. The transparent conductor figure of merit (ΦTC ) of the Cu alloyed ZnS (40% Cu), calculated with the average value of transmittance between 1.5 to 2.5 eV, was  ≈276 μS .

  5. Experimental and ab initio studies on sub-lattice ordering and magnetism in Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Bhargab; Kundu, Ashis; Ghosh, Subhradip

    2015-10-07

    Crystallographic and magnetic properties of bulk Co{sub 2}Fe(Ge{sub 1−x}Si{sub x}) alloys with 0 ≤ x ≤ 1, synthesized by arc melting method, have been studied. Co{sub 2}FeSi alloy has been found to crystallize with L2{sub 1} structure, but the super-lattice peaks are absent in the X-ray diffraction patterns of alloys containing high Ge concentration. Unit cell volume of this series of alloys decreased from 185.2 to 178.5 Å{sup 3} as Si content was increased from 0 to 1.00. All alloy compositions exhibit ferromagnetic behavior with a high Curie temperature (T{sub C}). T{sub C} showed a systematic variation with x. A comparison between the valuesmore » of saturation magnetization (M{sub s}) and effective moment per magnetic atom p{sub c} estimated from the temperature dependent susceptibility data above T{sub C}, shows that the alloys have half-metallic character. The alloy with x = 0 follows Slater-Pauling (S-P) rule with M{sub s} of 5.99μ{sub B}. However, M{sub s} for the alloy with x = 1.00 was found to be 5.42μ{sub B}, which is lower than the value of 6.0μ{sub B} predicted by S-P rule. Since atomic disorder is known to affect the M{sub s} and electronic structure of these alloys, ab initio calculations were carried out to explain the deviation in observed M{sub s} from S-P rule prediction and the half-metallic character of the alloys. Ab initio calculations reveal that alloys with L2{sub 1} structure have M{sub s} value as predicted by S-P rule. However, introduction of 12.5% DO{sub 3} disorder, which occurs due to swapping of Co and Fe atoms in the unit cell, decreases M{sub s} of alloys with x > 0 from the S-P prediction to values obtained experimentally. The results analyzed from the view point of electronic structure of the alloys in different ordered states bring out the influence of disorder on the observed magnetic properties of these technologically important alloys.« less

  6. Mechanical Characterization and Corrosion Testing of X608 Al Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Ramprashad; Choi, Jung-Pyung; Stephens, Elizabeth V.

    2016-02-07

    This paper describes the mechanical characterization and corrosion testing of X608 Al alloy that is being considered for A-pillar covers for heavy-duty truck applications. Recently, PNNL developed a thermo-mechanical process to stamp A-pillar covers at room temperature using this alloy, and the full-size prototype was successfully stamped by a tier-1 supplier. This study was conducted to obtain additional important information related to the newly developed forming process, and to further improve its mechanical properties. The solutionization temperature, pre-strain and paint-bake heat-treatment were found to influence the alloy’s fabricability and mechanical properties. Natural aging effect on the formability was investigated bymore » limiting dome height (LDH) tests. Preliminary corrosion experiments showed that the employed thermo-mechanical treatments did not significantly affect the corrosion behavior of Al X608.« less

  7. On the Alloying and Properties of Tetragonal Nb5Si3 in Nb-Silicide Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The alloying of Nb5Si3 modifies its properties. Actual compositions of (Nb,TM)5X3 silicides in developmental alloys, where X = Al + B + Ge + Si + Sn and TM is a transition and/or refractory metal, were used to calculate the composition weighted differences in electronegativity (Δχ) and an average valence electron concentration (VEC) and the solubility range of X to study the alloying and properties of the silicide. The calculations gave 4.11 < VEC < 4.45, 0.103 < Δχ < 0.415 and 33.6 < X < 41.6 at.%. In the silicide in Nb-24Ti-18Si-5Al-5Cr alloys with single addition of 5 at.% B, Ge, Hf, Mo, Sn and Ta, the solubility range of X decreased compared with the unalloyed Nb5Si3 or exceeded 40.5 at.% when B was with Hf or Mo or Sn and the Δχ decreased with increasing X. The Ge concentration increased with increasing Ti and the Hf concentration increased and decreased with increasing Ti or Nb respectively. The B and Sn concentrations respectively decreased and increased with increasing Ti and also depended on other additions in the silicide. The concentration of Sn was related to VEC and the concentrations of B and Ge were related to Δχ. The alloying of Nb5Si3 was demonstrated in Δχ versus VEC maps. Effects of alloying on the coefficient of thermal expansion (CTE) anisotropy, Young’s modulus, hardness and creep data were discussed. Compared with the hardness of binary Nb5Si3 (1360 HV), the hardness increased in silicides with Ge and dropped below 1360 HV when Al, B and Sn were present without Ge. The Al effect on hardness depended on other elements substituting Si. Sn reduced the hardness. Ti or Hf reduced the hardness more than Cr in Nb5Si3 without Ge. The (Nb,Hf)5(Si,Al)3 had the lowest hardness. VEC differentiated the effects of additions on the hardness of Nb5Si3 alloyed with Ge. Deterioration of the creep of alloyed Nb5Si3 was accompanied by decrease of VEC and increase or decrease of Δχ depending on alloying addition(s). PMID:29300327

  8. Localization-delocalization transition of electrons at the percolation threshold of semiconductor GaAs 1–xN x alloys: The appearance of a mobility edge

    DOE PAGES

    Alberi, K.; Fluegel, B.; Beaton, D. A.; ...

    2012-07-09

    Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs₁₋ xN x as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.

  9. X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov, V.D., E-mail: svil@mail.rb.ru; Laboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, 28 Universitetsky pr., Saint Petersburg 198504; Chizhov, P.S.

    In this work, X-ray scattering methods were applied for a quantitative characterization of the microstructure of an aluminum alloy of the Al–Mg–Si system during dynamic aging realized through the high pressure torsion technique. A qualitative and quantitative phase analysis of the alloy was performed, together with Al alloy lattice parameter determination. From the reflections broadening the effective size of the coherent scattering domains and the lattice microstrain were determined in the framework of the Halder–Wagner approach. Using the method of small-angle X-ray scattering, the quantitative characteristics of the size, shape and spatial distribution of the secondary phase particles formed inmore » the Al alloy during dynamic aging were established. In order to validate the obtained results, the method of small-angle X-ray scattering was preliminarily tested on similar samples after artificial aging and compared with the results from small-angle neutron diffraction widely known in literature. - Highlights: • Spherical fcc β-Mg2Si precipitates formed in Al 6201 alloy during dynamic aging in the course of severe plastic deformation. • The size, shape and distribution of the precipitates due to artificial and dynamic aging were revealed by SAXS method. • Monoclinic needle-like β' precipitates and Al5FeSi intermetallic phase were detected in 6201 alloy after T6 treatment.« less

  10. X-40A Free Flight #5

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.

  11. X-40A Free Flight #5

    NASA Image and Video Library

    2001-05-08

    X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  12. Topological phase transitions of (BixSb1-x)2Se3 alloys by density functional theory.

    PubMed

    Abdalla, L B; Padilha José, E; Schmidt, T M; Miwa, R H; Fazzio, A

    2015-07-01

    We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial → topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 < x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

  13. Effects of TiN coating on the corrosion of nanostructured Ti-30Ta-xZr alloys for dental implants

    NASA Astrophysics Data System (ADS)

    Kim, Won-Gi; Choe, Han-Cheol

    2012-01-01

    Electrochemical characteristics of a titanium nitride (TiN)-coated/nanotube-formed Ti-Ta-Zr alloy for biomaterials have been researched by using the magnetic sputter and electrochemical methods. Ti-30Ta-xZr (x = 3, 7 and 15 wt%) alloys were prepared by arc melting and heat treated for 24 h at 1000 °C in an argon atmosphere and then water quenching. The formation of oxide nanotubes was achieved by anodizing a Ti-30Ta-xZr alloy in H3PO4 electrolytes containing small amounts of fluoride ions at room temperature. Anodization was carried out using a scanning potentiostat, and all experiments were conducted at room temperature. The microstructure and morphology of nanotube arrays were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The TiN coatings were obtained by the radio-frequency (RF) magnetron sputtering technique. The depositions were performed from pure Ti targets on Ti-30Ta-xZr alloys substrates. The corrosion properties of the specimens were examined using potentiodynamic test in a 0.9% NaCl solution by using potentiostat. The microstructures of Ti-30Ta-xZr alloys were changed from an equiaxed to a needle-like structure with increasing Zr content. The interspace between the nanotubes was approximately 20, 80 and 200 nm for Zr contents of 3, 7 and 15 wt%, respectively. The corrosion resistance of the TiN-coated on the anodized Ti-30Ta-xZr alloys was higher than that of the untreated Ti alloys, indicating a better protective effect.

  14. Microstructure and magnetic behavior of Cu-Co-Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Chabri, Sumit; Bera, S.; Mondal, B. N.; Basumallick, A.; Chattopadhyay, P. P.

    2017-03-01

    Microstructure and magnetic behavior of nanocrystalline 50Cu-40Co-10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450-650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  15. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    PubMed

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  16. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  17. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  18. Large magnetic entropy change and magnetoresistance in a Ni 41Co 9Mn 40Sn 10 magnetic shape memory alloy

    DOE PAGES

    Huang, L.; Cong, D. Y.; Ma, L.; ...

    2015-07-02

    A polycrystalline Ni 41Co 9Mn 40Sn 10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by ourmore » in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  19. Effect of boron on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}B{sub x} Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramudu, M., E-mail: macrams2@gmail.com; Raja, M. Manivel; Kamat, S. V.

    2016-05-23

    The partial substitution of Si with B on the structural and magnetic properties of Co{sub 2}FeSi{sub 1-x}Bx (x = 0-0.5) alloys was systematically investigated. X-ray and microstructural investigations show the presence of second phase at the grain boundaries which increases with increasing boron content. From thermal analysis studies, it was observed that L2{sub 1}-B2 ordering temperature remain constant whereas the melting point decreases with increase in boron addition and merges with ordering temperature at x = 0.5. The increase in T{sub C} for the alloys x ≥ 0.25 was attributed to the increase in second phase due to boron.

  20. Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge{sub 1−x}Sn{sub x} alloys for field-effect transistors applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn, E-mail: junxu@tsinghua.edu.cn; Wang, Jing

    The carrier transport and tunneling capabilities of biaxially strained Ge{sub 1−x}Sn{sub x} alloys with (001), (110), and (111) orientations were comprehensively investigated and compared. The electron band structures of biaxially strained Ge{sub 1−x}Sn{sub x} alloys were calculated by the nonlocal empirical pseudopotential method and the modified virtual crystal approximation was adopted in the calculation. The electron and hole effective masses at the band edges were extracted using a parabolic line fit. It is shown that the applied biaxial strain and the high Sn composition are both helpful for the reduction of carrier effective masses, which leads to the enhanced carriermore » mobility and the boosted direct band-to-band-tunneling probability. Furthermore, the strain induced valance band splitting reduces the hole interband scattering, and the splitting also results in the significantly enhanced direct tunneling rate along the out-of-plane direction compared with that along the in-plane direction. The biaxially strained (111) Ge{sub 1−x}Sn{sub x} alloys exhibit the smallest band gaps compared with (001) and (110) orientations, leading to the highest in-plane and out-of-plane direct tunneling probabilities. The small effective masses on (110) and (111) planes in some strained conditions also contribute to the enhanced carrier mobility and tunneling probability. Therefore, the biaxially strained (110) and (111) Ge{sub 1−x}Sn{sub x} alloys have the potential to outperform the corresponding (001) Ge{sub 1−x}Sn{sub x} devices. It is important to optimize the applied biaxial strain, the Sn composition, and the substrate orientation for the design of high performance Ge{sub 1−x}Sn{sub x} field-effect transistors.« less

  1. Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2015-03-01

    The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.

  2. Elastic and optical properties of Cu2ZnSn(SexS1 - x)4 alloys: density functional calculations

    NASA Astrophysics Data System (ADS)

    Camps, I.; Coutinho, J.; Mir, M.; da Cunha, A. F.; Rayson, M. J.; Briddon, P. R.

    2012-11-01

    Cu2ZnSn(S1 - xSex)4 (CZT(S, Se)) is emerging as a very credible alternative to CuIn1 - xGaxSe2 (CIGS) as the absorber layer for thin film solar cells. The former compound has the important advantage of using abundant Zn and Sn instead of the expensive In and Ga. A better understanding of the properties of CZT(S, Se) is being sought through experimental and theoretical means. Thus far, however, very little is known about the fundamental properties of the CZT(S, Se) alloys. In this work, theoretical studies on the structural, elastic, electronic and optical properties of CZT(S, Se) alloys through first-principles calculations are reported. We use a density functional code (aimpro), along with the Padé parametrization for the local density approximation to the exchange correlation potential. For the alloying calculations we employed 64 atom supercells (approximately cubic) with a 2 × 2 × 2 k-point sampling set. These supercells possess a total of 32 chalcogen species and the CZTSexS1 - x alloys are described by using the ordered alloy approximation. Accordingly, to create a perfectly diluted alloying host, the species type of the 32 chalcogen sites is selected randomly with uniform probability x and 1 - x for Se and S, respectively. Properties of alloys (structural, elastic, electronic and optical) are obtained by averaging the results of ten supercell configurations generated for each composition. For each configuration, lattice vectors and atomic positions were allowed to relax (although enforcing the tetragonal lattice type) and the Murnaghan equation of state was fitted to the total energy data. The results presented here permit a better understanding of the properties of the CZT(S, Se) alloys which in turn result in the design of more efficient solar cells.

  3. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  4. Effects of uniaxial strain on electron effective mass and tunneling capability of direct gap Ge{sub 1−x}Sn{sub x} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn; Wang, Jing

    2016-01-15

    Direct gap Ge{sub 1−x}Sn{sub x} alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge{sub 1−x}Sn{sub x} alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorablemore » for high-performance direct gap Ge{sub 1−x}Sn{sub x} electronic devices.« less

  5. Forming a structure of the CoNiFe alloys by X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  6. Ferromagnetism and superconductivity in CeFeAs1-xPxO (0⩽x⩽40)

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Förster, T.; Spehling, J.; Nicklas, M.; de Souza, M.; Gumeniuk, R.; Luetkens, H.; Goltz, T.; Krellner, C.; Lang, M.; Sichelschmidt, J.; Klauss, H.-H.; Geibel, C.

    2012-07-01

    We report on superconductivity in CeFeAs1-xPxO and the possible coexistence with Ce ferromagnetism (FM) in a small homogeneity range around x=30% with ordering temperatures of TSC≅TC≅4 K. The antiferromagnetic (AFM) ordering temperature of Fe at this critical concentration is suppressed to TNFe≈40 K and does not shift to lower temperatures with a further increase of the P concentration. Therefore, a quantum-critical-point scenario with TNFe→0 K which is widely discussed for the iron based superconductors can be excluded for this alloy series. Surprisingly, thermal expansion and x-ray powder diffraction indicate the absence of an orthorhombic distortion despite clear evidence for short-range AFM Fe ordering from muon-spin-rotation measurements. Furthermore, we discovered the formation of a sharp electron spin resonance signal unambiguously connected with the emergence of FM ordering.

  7. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  8. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  9. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  10. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  11. Alloy and method of producing the same

    DOEpatents

    Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo

    2005-07-19

    In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.

  12. Nitrogen-related intermediate band in P-rich GaN xP yAs 1-x-y alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelazna, K.; Gladysiewicz, M.; Polak, M. P.

    The electronic band structure of phosphorus-rich GaN xP yAs 1-x-y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. Here, it is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate bandmore » (E - band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E + band using contactless electroreflectance spectroscopy.« less

  13. Nitrogen-related intermediate band in P-rich GaN xP yAs 1-x-y alloys

    DOE PAGES

    Zelazna, K.; Gladysiewicz, M.; Polak, M. P.; ...

    2017-11-16

    The electronic band structure of phosphorus-rich GaN xP yAs 1-x-y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. Here, it is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate bandmore » (E - band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E + band using contactless electroreflectance spectroscopy.« less

  14. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    PubMed

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  15. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  16. Alloying and Properties of C14–NbCr2 and A15–Nb3X (X = Al, Ge, Si, Sn) in Nb–Silicide-Based Alloys

    PubMed Central

    Tsakiropoulos, Panos

    2018-01-01

    The oxidation of Nb–silicide-based alloys is improved with Al, Cr, Ge or Sn addition(s). Depending on addition(s) and its(their) concentration(s), alloyed C14-AB2 Laves and A15-A3X phases can be stable in the microstructures of the alloys. In both phases, A is the transition metal(s), and B and X respectively can be Cr, Al, Ge, Si or Sn, and Al, Ge, Si or Sn. The alloying, creep and hardness of these phases were studied using the composition weighted differences in electronegativity (∆χ), average valence electron concentrations (VEC) and atomic sizes. For the Laves phase (i) the VEC and ∆χ were in the ranges 4.976 < VEC < 5.358 and −0.503 < ∆χ < −0.107; (ii) the concentration of B (=Al + Cr + Ge + Si + Sn) varied from 50.9 to 64.5 at %; and (iii) the Cr concentration was in the range of 35.8 < Cr < 51.6 at %. Maps of ∆χ versus Cr, ∆χ versus VEC, and VEC versus atomic size separated the alloying behaviours of the elements. Compared with unalloyed NbCr2, the VEC decreased and ∆χ increased in Nb(Cr,Si)2, and the changes in both parameters increased when Nb was substituted by Ti, and Cr by Si and Al, or Si and Ge, or Si and Sn. For the A15 phase (i) the VEC and ∆χ were in the ranges 4.38 < VEC < 4.89 and 0.857 < ∆χ < 1.04, with no VEC values between 4.63 and 4.72 and (ii) the concentration of X (=Al + Ge + Si + Sn) varied from 16.3 to 22.7 at %. The VEC versus ∆χ map separated the alloying behaviours of elements. The hardness of A15-Nb3X was correlated with the parameters ∆χ and VEC. The hardness increased with increases in ∆χ and VEC. Compared with Nb3Sn, the ∆χ and hardness of Nb3(Si,Sn) increased. The substitution of Nb by Cr had the same effect on ∆χ and hardness as Hf or Ti. The ∆χ and hardness increased with Ti concentration. The addition of Al in Nb3(Si,Sn,Al) decreased the ∆χ and increased the hardness. When Ti and Hf, or Ti, Hf and Cr, were simultaneously present with Al, the ∆χ was decreased and the

  17. Element Specific Spin and Orbital Moments in Fe1-x Vx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Y.; Scheck, C; Bailey, W

    2009-01-01

    We present transmission-mode X-ray magnetic circular dichroism (XMCD) measurements of element-specific magnetic moments for Fe and V at the L2,3 edges in polycrystalline Fe1-xVx ultrathin films. We find that the orbital-to-spin moment ratio of Fe does not change within experimental error. The V XMCD is not very informative, and a nearly pure-spin type V impurity moment ({approx}1.0 {mu}{sub B}/atom, antiparallel to the Fe host moment) is assumed to match known magnetization data. Data are further reduced to a two-sublattice model and found to be compatible with known spectroscopic splitting g-factor data in the alloy. The results confirm that the verymore » low Gilbert damping, attained through the introduction of V into epitaxial Fe1-xVx films and found by ferromagnetic resonance (FMR), does not result from the reduction of orbital moment content in the alloy.« less

  18. Material properties of Cd1-xMgxO alloys synthesized by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Guibin; Yu, K. M.; Reichertz, L. A.; Walukiewicz, W.

    2013-07-01

    We have studied structural, electrical, and optical properties of sputter deposited ternary CdMgO alloy thin films with total Mg concentration as high as 44%. We found that only a fraction (50%-60%) of Mg is incorporated as substitutional Mg contributing to the modification of the electronic structures of the alloys. The electrical and optical results of the Cd1-xMgxO alloys are analyzed in terms of a large upward shift of the conduction band edge with increasing Mg concentration. With the increase of the intrinsic bandgap, appropriately doped Cd-rich CdMgO alloys can be potentially useful as transparent conductors for photovoltaics.

  19. Structural and compositional dependence of the CdTexSe 1-x alloy layer photoactivity in CdTe-based solar cells

    DOE PAGES

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; ...

    2016-07-27

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTe xSe 1₋x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTe xSe 1₋x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTe xSe 1₋xmore » alloy with respect to the degree of Se diffusion. Finally, the results show that the CdTe xSe 1₋x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations.« less

  20. First-Principle Electronic Properties of Dilute-P GaN(1-x)P(x) Alloy for Visible Light Emitters.

    PubMed

    Tan, Chee-Keong; Borovac, Damir; Sun, Wei; Tansu, Nelson

    2016-04-14

    A study on the electronic properties of the dilute-P GaN(1-x)P(x)alloy using First-Principle Density Functional Theory (DFT) calculations is presented. Our results indicate a band gap energy coverage from 3.645 eV to 2.697 eV, with P-content varying from 0% to 12.5% respectively. In addition, through line fitting of calculated and experimental data, a bowing parameter of 9.5 ± 0.5 eV was obtained. The effective masses for electrons and holes are analyzed, as well as the split-off energy parameters where findings indicate minimal interband Auger recombination. The alloy also possesses the direct energy band gap property, indicating its strong potential as a candidate for future photonic device applications.

  1. Growth of In x Ga1-x Sb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments.

    PubMed

    Inatomi, Y; Sakata, K; Arivanandhan, M; Rajesh, G; Nirmal Kumar, V; Koyama, T; Momose, Y; Ozawa, T; Okano, Y; Hayakawa, Y

    2015-01-01

    In x Ga 1- x Sb is an important material that has tunable properties in the infrared (IR) region and is suitable for IR-device applications. Since the quality of crystals relies on growth conditions, the growth process of alloy semiconductors can be examined better under microgravity (μG) conditions where convection is suppressed. To investigate the dissolution and growth process of In x Ga 1- x Sb alloy semiconductors via a sandwiched structure of GaSb(seed)/InSb/GaSb(feed) under normal and μG conditions. In x Ga 1- x Sb crystals were grown at the International Space Station (ISS) under μG conditions, and a similar experiment was conducted under terrestrial conditions (1G) using the vertical gradient freezing (VGF) method. The grown crystals were cut along the growth direction and its growth properties were studied. The indium composition and growth rate of grown crystals were calculated. The shape of the growth interface was nearly flat under μG, whereas under 1G, it was highly concave with the initial seed interface being nearly flat and having facets at the peripheries. The quality of the μG crystals was better than that of the 1G samples, as the etch pit density was low in the μG sample. The growth rate was higher under μG compared with 1G. Moreover, the growth started at the peripheries under 1G, whereas it started throughout the seed interface under μG. Kinetics played a dominant role under 1G. The suppressed convection under μG affected the dissolution and growth process of the In x Ga 1- x Sb alloy semiconductor.

  2. X-ray characterization of short-pulse laser illuminated hydrogen storage alloys having very high performance

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Abe, Hiroshi; Shobu, Takahisa; Shimomura, Takuya; Tokuhira, Shinnosuke; Takenaka, Yusuke; Furuyama, Takehiro; Nishimura, Akihiko; Uchida, Hirohisa; Ohshima, Takeshi

    2015-09-01

    Hydrogen storage alloys become more and more important in the fields of electric energy production and stage and automobiles such as Ni-MH batteries. The vacancies introduced in hydrogen absorption alloy by charged particle beams were found to be positive effect on the increase in the initial hydrogen absorption reaction rate in the previous study. The initial reaction rates of hydrogen absorption and desorption of the alloy are one of the important performances to be improved. Here, we report on the characterization of the hydrogen absorption reaction rate directly illuminated by a femtosecond and nanosecond lasers instead of particle beam machines. A laser illuminates the whole surface sequentially on a tip of a few cm square LaNi4.6Al0.4 alloy resulting in significant improvement in the hydrogen absorption reaction rate. For characterization of the surface layer, we perform an x-ray diffraction experiment using a monochromatized intense x-ray beam from SPring-8 synchrotoron machine.

  3. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  4. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  5. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  6. Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho

    2014-11-01

    In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.

  7. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  8. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  9. First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, N.

    2018-04-01

    Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.

  10. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  11. Stability of Cd 1–xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE PAGES

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; ...

    2017-02-08

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  12. Stability of Cd 1–xZn xO yS 1–y Quaternary Alloys Assessed with First-Principles Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se 2 and Cu 2ZnSn(S,Se) 4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd 1–xZn xO yS 1–y) alloys within a regular solution model. Our results identify that full miscibility of most Cd 1–xZn xO yS 1–y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phasesmore » such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.« less

  13. Spinodal decomposition regions of InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z alloys

    NASA Astrophysics Data System (ADS)

    Elyukhin, Vyacheslav A.

    2017-07-01

    Considerable interest in highly mismatched semiconductor alloys as materials for device applications has recently been shown. However, the spinodal instability can be a serious obstacle to their use. Here, the spinodal decomposition regions of dilute nitride InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z quinary alloys lattice matched to III-V compounds are studied from 0 °C to 1000 °C. The alloys contain six types of chemical bonds corresponding to the constituent compounds, and rearrangement of atoms changes the bonds between them. Therefore, a size and location of the spinodal decomposition regions depend on the enthalpies of constituent compounds, internal strain energy, coherency strain energy and entropy. Among the considered alloys, InxGa1-xSbyAszN1-y-z lattice matched to InAs, InxGa1-xSbyPzN1-y-z lattice matched to GaP and InP and InxGa1-xAsyPzN1-y-z lattice matched to GaAs and InP are most suitable for device applications.

  14. Microstructure and bio-corrosion behaviour of Mg-5Zn-0.5Ca -xSr alloys as potential biodegradable implant materials

    NASA Astrophysics Data System (ADS)

    Yan, Li; Zhou, Jiaxing; Sun, Zhenzhou; Yang, Meng; Ma, Liqun

    2018-04-01

    Magnesium alloys are widely studied as biomedical implants owing to their biodegradability. In this work, novel Mg-5Zn-0.5Ca-xSr (x = 0, 0.14, 0.36, 0.50, 0.70 wt%) alloys were prepared as biomedical materials. The influence of strontium (Sr) addition on the microstructure, corrosion properties and corrosion morphology of the as-cast Mg-5Zn-0.5Ca-xSr alloys is investigated by a variety of techniques such as scanning electron microscopy, x-ray diffraction, and electrochemical measurements. The Sr-free alloy is composed of three phases, namely, α-Mg, CaMg2 and Ca2Mg6Zn3, while the alloys with the Sr addition consist of α-Mg, CaMg2 and Ca2Mg6Zn3 and Mg17Sr2. Corrosion experiments in Hank’s solution show that the addition of a small amount of Sr can improve the corrosion resistance of the Mg-5Zn-0.5Ca alloy. The corrosion products include Mg(OH)2, Zn(OH)2, Ca(OH)2, and HA (Ca5(PO4)3(OH)). Mg-5Zn-0.5Ca-0.36Sr alloy has the minimum weight loss rate (0.68 mm/a), minimal hydrogen evolution (0.08 ml/cm2/d) and minimum corrosion current density (7.4 μA/cm2), indicating that this alloy shows the best corrosion resistance.

  15. Effects of Sn Addition on the Microstructures and Mechanical Properties of Mg-6Zn-3Cu- xSn Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Shen, Jun; Sang, Jia-Xin; Li, Yang; He, Pei-Pei

    2015-08-01

    In this paper, Mg-6Zn-3Cu- xSn (ZC63- xSn) magnesium alloys with different Sn contents (0, 1, 2, 4 wt pct) were fabricated and subjected to different heat treatments. The microstructures and mechanical properties of the obtained ZC63- xSn samples were investigated by optical microscopy, X-ray diffraction, scanning electron microscopy, Vickers hardness testing, and tensile testing. It was found that the As-cast Mg-6Zn-3Cu (ZC63) magnesium alloy mainly contained α-Mg grains and Mg(Zn,Cu) particles. Sn dissolved in α-Mg grains when Sn content was below 2 wt pct while Mg2Sn phase forms in the case of Sn content was above 4 wt pct. Addition of Sn refined both α-Mg grains and Mg(Zn,Cu) particles, and increased the volume fraction of Mg(Zn,Cu) particles. Compared with the Sn-free alloy, the microhardness of Sn-containing alloys increased greatly and that of As-extrude ZC63-4Sn sample achieved the highest value. The strength of ZC63 magnesium alloy was significantly enhanced because of Sn addition, which was attributed to grain refinement strengthening, solid solution strengthening, and precipitation strengthening. Furthermore, the ultimate yield stress, yield strength, and elongation of ZC63- xSn magnesium alloys were increased owing to the deceasing grain size induced by extrusion process.

  16. Synthesis and thermoelectric properties of the (GeTe) 1-x(PbTe) x alloys

    NASA Astrophysics Data System (ADS)

    Li, S. P.; Li, J. Q.; Wang, Q. B.; Wang, L.; Liu, F. S.; Ao, W. Q.

    2011-02-01

    The Ge-rich (GeTe) 1-x(PbTe) x alloys with x = 0.10, 0.14, 0.18 and 0.22 were prepared by induction melting, ball milling and spark plasma sintering techniques. The thermoelectric properties of the samples were investigated. The experimental results show that all samples consist of the solid solutions of the two phases GeTe and PbTe. The samples are of p-type semiconductors. The existence of PbTe solution in GeTe increases its resistivity and Seebeck coefficient slightly, but reduces its thermal conductivity significantly. As result, the figures of merit for the materials can be enhanced. The maximum figure of merit ZT value of 0.81 was obtained in the sample (GeTe) 0.82(PbTe) 0.18 at 673K.

  17. Nanoscopy of Phase Separation in InxGa1-xN Alloys.

    PubMed

    Abate, Yohannes; Seidlitz, Daniel; Fali, Alireza; Gamage, Sampath; Babicheva, Viktoriia; Yakovlev, Vladislav S; Stockman, Mark I; Collazo, Ramon; Alden, Dorian; Dietz, Nikolaus

    2016-09-07

    Phase separations in ternary/multinary semiconductor alloys is a major challenge that limits optical and electronic internal device efficiency. We have found ubiquitous local phase separation in In1-xGaxN alloys that persists to nanoscale spatial extent by employing high-resolution nanoimaging technique. We lithographically patterned InN/sapphire substrates with nanolayers of In1-xGaxN down to few atomic layers thick that enabled us to calibrate the near-field infrared response of the semiconductor nanolayers as a function of composition and thickness. We also developed an advanced theoretical approach that considers the full geometry of the probe tip and all the sample and substrate layers. Combining experiment and theory, we identified and quantified phase separation in epitaxially grown individual nanoalloys. We found that the scale of the phase separation varies widely from particle to particle ranging from all Ga- to all In-rich regions and covering everything in between. We have found that between 20 and 25% of particles show some level of Ga-rich phase separation over the entire sample region, which is in qualitative agreement with the known phase diagram of In1-xGaxN system.

  18. Real-Time X-Ray Transmission Microscopy of Solidifying Al-In Alloys

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Kaukler, William F.

    1997-01-01

    Real-time observations of transparent analog materials have provided insight, yet the results of these observations are not necessarily representative of opaque metallic systems. In order to study the detailed dynamics of the solidification process, we develop the technologies needed for real-time X ray microscopy of solidifying metallic systems, which has not previously been feasible with the necessary resolution, speed, and contrast. In initial studies of Al-In monotectic alloys unidirectionally solidified in an X-ray transparent furnace, in situ records of the evolution of interface morphologies, interfacial solute accumulation, and formation of the monotectic droplets were obtained for the first time: A radiomicrograph of Al-30In grown during aircraft parabolic maneuvers is presented, showing the volumetric phase distribution in this specimen. The benefits of using X-ray microscopy for postsolidification metallography include ease of specimen preparation, increased sensitivity, and three-dimensional analysis of phase distribution. Imaging of the solute boundary layer revealed that the isoconcentration lines are not parallel (as is often assumed) to the growth interface. Striations in the solidified crystal did not accurately decorate the interface position and shape. The monotectic composition alloy under some conditions grew in an uncoupled manner.

  19. Band gap bowing and crossing of BxGa1-xN alloy investigated by hybrid functional method

    NASA Astrophysics Data System (ADS)

    Jiaping, Jiang; Yanqin, Gai; Gang, Tang

    2016-02-01

    The electronic properties of zinc-blende BxGa1-xN alloys are comparatively investigated by employing both the Perdewe-Burkee-Ernzerhof generalized-gradient approximation (PBE-GGA) and the Heyd-Scuseria-Ernzerhof screened hybrid functional methods (HSE06). HSE06 reproduced much closer ground-state properties to experiments. Large and composition-dependent bowing parameters bγ for the direct band gaps were obtained from both PBE and HSE06. The crossover composition where alloy switches from direct to indirect was predicted to occur at very similar x from PBE and HSE06. We can obtain direct gap BxGa1-xN with a gap value much larger than that of GaN by alloying x < 0.557 boron into GaN. Project supported by the Fundamental Research Funds for the Central Universities (No. 2010LKWL03), the Special Fund for Theoretical Physics (No. 11047130), and the National Natural Science Foundation of China (No. 11104345).

  20. Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin

    2018-03-01

    In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.

  1. New Cu(TiBN x ) copper alloy films for industrial applications

    NASA Astrophysics Data System (ADS)

    Lin, Chon-Hsin

    2016-06-01

    In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.

  2. Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy

    PubMed Central

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-01-01

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo–40Ni–13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo–Ni–Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy—including wear resistance, friction coefficient, and metallic tribological compatibility—were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear. PMID:28774106

  3. First principle study of electronic nanoscale structure of In x Ga1- x P with variable size, shape and alloying percentage

    NASA Astrophysics Data System (ADS)

    Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.

    2013-11-01

    In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.

  4. The structural and magnetic properties of Fe2-xNiGa1+x Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang (张玉洁), Y. J.; Xi (郗学奎), X. K.; Meng (孟凡斌), F. B.; Wang (王文洪), W. H.; Liu (刘恩克), E. K.; Chen (陈京兰), J. L.; Wu (吴光恒), G. H.

    2015-04-01

    The structural and magnetic properties of Fe2-xNiGa1+x (x=0~1) Heusler alloys have been investigated by experimental observation and calculation. In this system, a structural transition is found as a function of composition. A higher Ga content leads to an atomic-order transformation from Hg2CuTi to B2. The magnetization decreases due to the dilution effect and the competition between the magnetic interactions and enhanced covalent bonding. The calculation of electronic structure indicates that adding Ga enhances the p-d orbital hybridization between the transition-metal and main-group-element atoms at nearest-neighbor distance. A magnetic and a structural phase diagram have been obtained in which the composition dependences of the lattice constant, the ordering temperature and the Curie temperature show cusps at a critical composition of x=0.32.

  5. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    NASA Astrophysics Data System (ADS)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  6. Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy

    NASA Astrophysics Data System (ADS)

    Lany, Stephan; Stevanovic, Vladan

    2013-03-01

    The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.

  7. Segregation at the surfaces of CuxPd1-x alloys in the presence of adsorbed S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, James B.; Priyadarshini, Deepika; Gellman, Andrew J.

    2012-10-01

    The influence of adsorbed S on surface segregation in Cu{sub x}Pd{sub 1 - x} alloys (S/Cu{sub x}Pd{sub 1 - x)} was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/Cu{sub x}Pd{sub 1 - x} CSAF was observed at all bulk compositions, x, but themore » extent of Cu segregation to the S/Cu{sub x}Pd{sub 1 - x} surface was lower than the Cu segregation to the surface of a clean Cu{sub x}Pd{sub 1 - x} CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔH{sub seg}(x) and ΔS{sub seg}(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean Cu{sub x}Pd{sub 1 - x} is exothermic (ΔH{sub seg} < 0) for all bulk Cu compositions, it is endothermic (ΔH{sub seg} > 0) for S/Cu{sub x}Pd{sub 1 - x}. Segregation to the S/Cu{sub x}Pd{sub 1 - x} surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto Cu{sub x}Pd{sub 1 - x} appear to be related to formation of energetically favored Pd{single bond}S bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.« less

  8. On the chemical homogeneity of In xGa 1–xN alloys – Electron microscopy at the edge of technical limits

    DOE PAGES

    Specht, Petra; Kisielowski, Christian

    2016-08-30

    Ternary In xGa 1–xN alloys became technologically attractive when p-doping was achieved to produce blue and green light emitting diodes (LED)s. Starting in the mid 1990th, investigations of their chemical homogeneity were driven by the need to understand carrier recombination mechanisms in optical device structures to optimize their performance. Transmission electron microscopy (TEM) is the technique of choice to complement optical data evaluations, which suggests the coexistence of local carrier recombination mechanisms based on piezoelectric field effects and on indium clustering in the quantum wells of LEDs. We summarize the historic context of homogeneity investigations using electron microscopy techniques thatmore » can principally resolve the question of indium segregation and clustering in In xGa 1–xN alloys if optimal sample preparation and electron dose-controlled imaging techniques are employed together with advanced data evaluation.« less

  9. Ab-initio study of liquid systems: Concentration dependence of electrical resistivity of binary liquid alloy Rb1-xCsx

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.

    2013-02-01

    The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.

  10. EFFECT OF Mg AND TEMPERATURE ON Fe-Al ALLOY LAYER IN Fe/(Zn-6%Al-x%Mg) SOLID-LIQUID DIFFUSION COUPLES

    NASA Astrophysics Data System (ADS)

    Liang, Liu; Liu, Ya-Ling; Liu, Ya; Peng, Hao-Ping; Wang, Jian-Hua; Su, Xu-Ping

    Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe-Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe-Al alloy layer. It was found that the Fe2Al5Znx phase layer forms close to the iron sheet and the FeAl3Znx phase layer forms near the side of the melted Zn-6%Al-3%Mg in diffusion couples. When the Fe/(Zn-6%Al-3%Mg) diffusion couple is kept at 510∘C for more than 15min, a continuous Fe-Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples, the Fe-Al alloy layer on the interface of the Fe/(Zn-6% Al-3% Mg) diffusion couple is the thinnest. The Fe-Al alloy layer forms only when the diffusion temperature is above 475∘. These results show that the Fe-Al alloy layer in Fe/(Zn-6%Al-x%Mg) solid-liquid diffusion couples is composed of Fe2Al5Znx and FeAl3Znx phase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe-Al alloy layer. When the Mg content in the Fe/(Zn-6%Al-x%Mg) diffusion couples is 3%, the growth of the Fe-Al alloy layer is inhibited. These results may explain why there is no obvious Fe-Al alloy layer formed on the interface of steel with a Zn-6%Al-3%Mg coating.

  11. Design of Semiconducting Tetrahedral Mn 1-xZn xO Alloys and Their Application to Solar Water Splitting

    DOE PAGES

    Peng, Haowei; Ndione, Paul F.; Ginley, David S.; ...

    2015-03-18

    Transition metal oxides play important roles as contact and electrode materials, but their use as active layers in solar energy conversion requires achieving semiconducting properties akin to those of conventional semiconductors like Si or GaAs. In particular, efficient bipolar carrier transport is a challenge in these materials. Based on the prediction that a tetrahedral polymorph of MnO should have such desirable semiconducting properties, and the possibility to overcome thermodynamic solubility limits by nonequilibrium thin-film growth, we exploit both structure-property and composition-structure relationships to design and realize novel wurtzite-structure Mn 1₋xZn xO alloys. At Zn compositions above x≈0.3, thin films ofmore » these alloys assume the tetrahedral wurtzite structure instead of the octahedral rocksalt structure of MnO, thereby enabling semiconductor properties that are unique among transition metal oxides, i.e., a band gap within the visible spectrum, a band-transport mechanism for both electron and hole carriers, electron doping, and a band lineup suitable for solar hydrogen generation. In conclusion, a proof of principle is provided by initial photo-electrocatalytic device measurements, corroborating, in particular, the predicted favorable hole-transport properties of these alloys.« less

  12. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  13. Alloy composition effects on oxidation products of VIA, B-1900, 713C, and 738X: A high temperature diffractometer study

    NASA Technical Reports Server (NTRS)

    Garlick, R. G.; Lowell, C.

    1973-01-01

    High temperature X-ray diffraction studies were performed to investigate isothermal and cyclic oxidation at 1000 and 1100 C of the nickel-base superalloys VIA, B-1900, 713C, and 738X. Oxidation was complex. The major oxides, Al2O3, Cr2O3, and the spinels, formed in amounts consistent with alloy chemistry. The alloys VIA and B-1900 (high Al, low Cr alloys) tended to form Al2O3 and NiAl2O4; 738X (high Cr, low Al) formed Cr2O3 and NiCr2O4. A NiTa2O6 type of oxide formed in amounts approximately proportional to the refractory metal content of the alloy. One of the effects of cycling was to increase the amount of spinels formed.

  14. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.

    PubMed

    Guo, Sai; Lu, Yanjin; Wu, Songquan; Liu, Lingling; He, Mengjiao; Zhao, Chaoqian; Gan, Yiliang; Lin, Junjie; Luo, Jiasi; Xu, Xiongcheng; Lin, Jinxin

    2017-03-01

    In this study, a series of Cu-bearing Ti6Al4V-xCu (x=0, 2, 4, 6wt%) alloys (shorten by Ti6Al4V, 2C, 4C, and 6C, respectively.) with antibacterial function were successfully fabricated by selective laser melting (SLM) technology with mixed spherical powders of Cu and Ti6Al4V for the first time. In order to systematically investigate the effects of Cu content on the microstructure, phase constitution, corrosion resistance, antibacterial properties and cytotoxicity of SLMed Ti6Al4V-xCu alloys, experiments including XRD, SEM-EDS, electrochemical measurements, antibacterial tests and cytotoxicity tests were conducted with comparison to SLMed Ti6Al4V alloy (Ti6Al4V). Microstructural observations revealed that Cu had completely fused into the Ti6Al4V alloy, and presented in the form of Ti 2 Cu phase at ambient temperature. With Cu content increase, the density of the alloy gradually decreased, and micropores were obviously found in the alloy. Electrochemical measurements showed that corrosion resistance of Cu-bearing alloys were stronger than Cu-free alloy. Antibacterial tests demonstrated that 4C and 6C alloys presented strong and stable antibacterial property against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared to the Ti6Al4V and 2C alloy. In addition, similar to the Ti6Al4V alloy, the Cu-bearing alloys also exerted good cytocompatibility to the Bone Marrow Stromal Cells (BMSCs) from Sprague Dawley (SD) rats. Based on those results, the preliminary study verified that it was feasible to fabricated antibacterial Ti6Al4V-xCu alloys direct by SLM processing mixed commercial Ti6Al4V and Cu powder. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  16. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  17. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  18. Influence of Fe/Co ratio on structural and magnetic properties of (Fe100-xCox)84.5Nb5B8.5P2 alloy

    NASA Astrophysics Data System (ADS)

    Gehlot, K.; Kane, S. N.; Sinha, A. K.; Ghodke, N.; Varga, L. K.

    2018-05-01

    Structural and magnetic properties of a series of (Fe100-xCox)84.5Nb5B8.5P2 (x = 20, 40, 60) have been investigated respectively by using synchrotron x-ray diffraction and magnetic measurements. Results show that Fe/Co ratio: i) affects stability of the alloy against crystallization, ii) shows evidence for ordering, which has considerable effect on magnetic properties, iii) influences the grain diameter and volume fraction of the formed nano-grains range between 4.8 - 9.5 nm and 1.5 - 9 %, affects magnetic properties considerably. An empirical relation is obtained, which shows linear relationship between interatomic distances for 1st, 2nd co-ordination shell, suggests strong correlation between structural, magnetic properties.

  19. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  20. Structure of metal-oxide Ti-Ta-(Ti,Ta)xOy coatings during spark alloying and induction-thermal oxidation

    NASA Astrophysics Data System (ADS)

    Koshuro, V.; Fomin, A.; Fomina, M.; Rodionov, I.; Brzhozovskii, B.; Martynov, V.; Zakharevich, A.; Aman, A.; Oseev, A.; Majcherek, S.; Hirsch, S.

    2016-08-01

    The study focuses on combined spark alloying of titanium and titanium alloy surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of metal- oxide system Ti-Ta-(Ti,Ta)xOy.

  1. Modeling Bi-induced changes in the electronic structure of GaAs1-xBix alloys

    NASA Astrophysics Data System (ADS)

    Virkkala, Ville; Havu, Ville; Tuomisto, Filip; Puska, Martti J.

    2013-12-01

    We suggested recently [V. Virkkala , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.88.035204 88, 035204 (2013)] that the band-gap narrowing in dilute GaAs1-xNx alloys can be explained to result from the broadening of the localized N states due to the N-N interaction along the zigzag chains in the <110> directions. In that study our tight-binding modeling based on first-principles density-functional calculations took into account the random distribution of N atoms in a natural way. In this work we extend our modeling to GaAs1-xBix alloys. Our results indicate that Bi states mix with host material states. However, the states near the valence-band edge agglomerate along the zigzag chains originating from individual Bi atoms. This leads to Bi-Bi interactions in a random alloy broadening these states in energy and causing the band-gap narrowing.

  2. Effect of Alloying Elements on Nb-Rich Portion of Nb-Si-X Ternary Systems and In Situ Crack Observation of Nb-Si-Based Alloys

    NASA Astrophysics Data System (ADS)

    Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo

    2014-03-01

    To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.

  3. High-temperature tensile-hold crack-growth behavior of HASTELLOY® X alloy compared to HAYNES® 188 and HAYNES® 230® alloys

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Lu, Y. L.; Liaw, P. K.; Choo, H.; Thompson, S. A.; Blust, J. W.; Browning, P. F.; Bhattacharya, A. K.; Aurrecoechea, J. M.; Klarstrom, D. L.

    2008-03-01

    The creep-fatigue crack-growth tests of HASTELLOY® X alloy were carried out at the temperatures of 649°C, 816°C, and 927°C in laboratory air. The experiments were conducted under a constant stress-intensity-factor-range (Δ K) control mode with a R-ratio of 0.05. In the constant Δ K tests, a Δ K of 27.5 MPa sqrt{m} and a triangular waveform with a frequency of 0.333 Hz were used. Various tensile hold times at the maximum load were imposed to study fatigue and creep-fatigue interactions. Crack lengths were measured by a direct current potential drop method. In this paper, effects of hold time and temperature on the crack-growth rates are discussed. Furthermore, the crack-growth rates of the HASTELLOY® X alloy are compared to those of the HAYNES® 188 and HAYNES® 230® superalloys.

  4. Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Fine, M. E.

    1983-06-01

    Fatigu crack initiation in extruded X7091 RSP-P/M aluminum type alloys o°Curs at grain boundaries at both low and high stresses. By a process of elimination this grain boundary embrittlement was attributed to Al2O3 particles formed mainly during atomization and segregated to some grain boundaries. It is not due to the small grain size, to Co2Al9, to η precipitates at grain boundaries, nor to a precipitate free zone. Thermomechanical processing after extrusion of X7091 with 0.8 pct Co was done by Alcoa to produce large recrystallized grains. This resulted in initiation of fatigue cracks at slip bands, and the resistance to initiation of fatigue cracks at low stresses was much greater. Microcrack growth is, however, much faster in the thermomechanically treated samples, as well as in ingot alloys, than in extruded and aged X7091.

  5. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    NASA Astrophysics Data System (ADS)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.

  6. Al and Mg Alloys for Aerospace Applications Using Rapid Solidification and Powder Metallurgy Processing.

    DTIC Science & Technology

    1986-11-14

    5wt % Si was completely different from that of the alloy without silicon. The (X phase formed around the primary Mg2 Si crystals, and an irregular...content, and primary crystals in a binary Mg- 5wt % Si alloy did not exhibit this behavior. The surface of the rapidly solidified melt pools was rough and...Microhardness* of the laser treated alloys . Alloy As-cast Laser treated Mg- 5wt %Li 40.8 55.7 o, Mg- 5wt %Li- 5wt % Si 51.1 74.1 Mg-8wt%Li 42.8 71.2

  7. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shan, C. X.; Liu, Z.; Ng, C. M.; Hark, S. K.

    2005-07-01

    We show that preferentially oriented, single-crystalline ZnxCd1-xSe alloy nanowires can be grown on GaAs (100) surface using Au as a catalyst over the entire compositional range in a metalorganic chemical vapor deposition system. The composition of the alloy nanowires can be simply adjusted through the ratio of the flow rates of group-II precursors. Electron microscopy shows that the nanowires are smooth and uniform in shape; their diameters range from 20 to 80 nm and lengths exceed a few micrometers. Nanowires containing more than 13% Zn are zinc blende structured and grow along the ⟨110⟩ direction. Those containing less Zn are wurtzite structured and grow along the ⟨210⟩ direction. Compared with the bulk alloy, the change from zinc blende to wurtzite structure in nanowires occurs at far smaller x. The preferred orientation and the persistence of the zinc blende structure both reflect the influence of the substrate on the growth of the nanowires. Photoluminescence measurements identify a strong near-band-edge emission for all samples and show that its peak energy tracks the band gap of ZnxCd1-xSe epilayer for x>0.13. The growth of alloy nanowires at many compositions opens up the possibility of realizing quasi-one-dimensional heterojunctions.

  8. Density functional theory study of structural, electronic, and thermal properties of Pt, Pd, Rh, Ir, Os and PtPd X (X = Ir, Os, and Rh) alloys

    NASA Astrophysics Data System (ADS)

    Shabbir, Ahmed; Muhammad, Zafar; M, Shakil; M, A. Choudhary

    2016-03-01

    The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.

  9. Alloying Behavior and Properties of FeSiBAlNiCo x High Entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Li, Boyu; Zhai, Sicheng; Xu, Juan; Niu, Zuozhe; Xu, Jing; Wang, Yan

    2018-02-01

    In this paper, FeSiBAlNiCo x (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCo x (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.

  10. Structural and compositional dependence of the CdTexSe1−x alloy layer photoactivity in CdTe-based solar cells

    PubMed Central

    Poplawsky, Jonathan D.; Guo, Wei; Paudel, Naba; Ng, Amy; More, Karren; Leonard, Donovan; Yan, Yanfa

    2016-01-01

    The published external quantum efficiency data of the world-record CdTe solar cell suggests that the device uses bandgap engineering, most likely with a CdTexSe1−x alloy layer to increase the short-circuit current and overall device efficiency. Here atom probe tomography, transmission electron microscopy and electron beam-induced current are used to clarify the dependence of Se content on the photoactive properties of CdTexSe1−x alloy layers in bandgap-graded CdTe solar cells. Four solar cells were prepared with 50, 100, 200 and 400 nm-thick CdSe layers to reveal the formation, growth, composition, structure and photoactivity of the CdTexSe1−x alloy with respect to the degree of Se diffusion. The results show that the CdTexSe1−x layer photoactivity is highly dependent on the crystalline structure of the alloy (zincblende versus wurtzite), which is also dependent on the Se and Te concentrations. PMID:27460872

  11. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  12. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  13. Microstructural Examination of Oxidized Fe_(14-x) Nb5_x Alloy Produced from Powders Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Demirkıran, A. Şükran; Sen, Saduman; Ozdemir, Ozkan; Sen, Ugur

    In the present study, ferrous niobium, ferrous boron and iron were used as starting powders. The mixture of the powders which were calculated to give the designed compositions was prepared by using planetary high energy ball mill. Mechanically alloyed powders were pressed and sintered at 1350°C for 120 min in Ar atmosphere. The cyclic oxidation experiments were carried out in an electrical furnace at 650, 750 and 850 °C in open atmosphere for 96 h. The specimens were periodically weighed for the determination of weight change. Before and after oxidation, the present phases of the samples were determined by X-ray diffraction analysis (XRD). The microstructural characterizations were realized using scanning electron microscopy (SEM) with EDS attachment.

  14. FAST TRACK COMMUNICATION: Variation of equation of state parameters in the Mg2(Si1 - xSnx) alloys

    NASA Astrophysics Data System (ADS)

    Pulikkotil, J. J.; Alshareef, H. N.; Schwingenschlögl, U.

    2010-09-01

    Thermoelectric performance peaks up for intermediate Mg2(Si1 - xSnx) alloys, but not for isomorphic and isoelectronic Mg2(Si1 - xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green's function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1 - xSnx) but not in the Mg2(Si1 - xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1 - xSnx) is distinguished by a strong renormalization of the anion-anion hybridization.

  15. Structural and magnetic properties of FeCoC system obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.

    2017-11-01

    Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.

  16. Unusual Carrier Thermalization in a Dilute GaAs1-xNx Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, P. H.; Xu, Z. Y.; Luo, X. D.

    2007-01-01

    Photoluminescence (PL) properties of the E{sub 0}, E{sub 0} + {Delta}{sub 0}, and E{sub +} bands in an x=0.62% GaAs{sub 1-x}N{sub x} alloy were investigated in detail, including their peak position, linewidth, and line shape dependences on the excitation energy, excitation power, and temperature, using micro-PL. The hot electrons within the E{sub +} band are found to exhibit highly unusual thermalization, which results in a large blueshift in its PL peak energy by >2k{sub B}T, suggesting peculiar density of states and carrier dynamics of the E{sub +} band.

  17. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  18. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  19. Thermal conductivity of Bi2(SexTe1-x)3 alloy films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Taehee; Lee, Eungkyu; Dong, Sining; Li, Xiang; Liu, Xinyu; Furdyna, Jacek K.; Dobrowolska, Margaret; Luo, Tengfei

    2017-06-01

    We studied the thermal conductivity of Bi2Se3, Bi2Te3, and their alloy Bi2(SexTe1-x)3 at room temperature using time-domain thermoreflectance measurements. The Bi2(SexTe1-x)3 films with various concentrations of Se and Te prepared by molecular beam epitaxy on GaAs substrates were investigated to study the dependence of thermal conductivity on film composition. We observed that the Bi2(SexTe1-x)3 ternary alloys can have much lower thermal conductivity values compared to those of Bi2Se3 and Bi2Te3. These results may provide useful information for developing and engineering low thermal conductivity materials for thermoelectric applications.

  20. High-pressure high-temperature stability of hcp-Ir xOs 1-x (x = 0.50 and 0.55) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim

    2016-12-23

    Hcp-Ir 0.55Os 0.45 and hcp-Ir 0.50Os 0.50 alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH 4) 2[Ir 0.55Os 0.45Cl 6] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has beenmore » investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir 0.55Os 0.45 alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10 -5 K -1 at ambient pressure and α = 0.3·10 -5 K -1 at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.« less

  1. Microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys observed by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Z. Y.; Han, S. H.; Wang, Y. T.; Wang, W. H.; Han, B. S.

    2005-03-01

    The microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys have been achieved simultaneously by employing a magnetic force microscope directly on the as-cast cylinder rod surface for the first time. By varying the content of Fe, the microstructure of the Pr-based alloy changes progressively from a full glassy state to a composite state with nanocrystalline particles embedded in the glassy matrix, and finally into a nanostructured state. The accompanying magnetic property gradually changes from paramagnetic to hard. The experiment directly evidences the existence of exchange coupling between the crystallites and the variety of the grain-size-dependent magnetic properties can be well explained by Löffler et al.'s new random-anisotropy model (Löffler, et al., Phys. Rev. Lett. 85 (9) (2000) 1990).

  2. Production and mechanical properties of Ti-5Al-2.5Fe-xCu alloys for biomedical applications.

    PubMed

    Yamanoglu, Ridvan; Efendi, Erdinc; Kolayli, Fetiye; Uzuner, Huseyin; Daoud, Ismail

    2018-01-30

    In this study, the mechanical, antibacterial properties and cell toxicity response of Ti-5Al2.5Fe alloy with different copper contents were investigated. The alloys were prepared by high-energy ball milling using elemental Ti, Al, Fe, and Cu powders and consolidated by a uniaxial vacuum hot press. Staphylococcus aureus strain ATCC 29213 and Escherichia coli strain ATCC 25922 were used to determine the antibacterial properties of the sintered alloys. The in vitro cytotoxicity of the samples was evaluated with HeLa (ATTC, CCL-2) cells using thiazolyl blue tetrazolium bromide. The mechanical behavior of the samples was determined as a function of hardness and bending tests and analyzed by scanning electron microscopy, energy dispersive x-ray spectroscopy, optical microscopy and x-ray diffraction (XRD). The results showed that the Cu content significantly improved the antibacterial properties. Cu addition prevented the formation of E. coli and S. aureus colonies on the surface of the samples. All samples exhibited very good cell biocompatibility. The alloys with different copper contents showed different mechanical properties, and the results were correlated by microstructural and XRD analyses in detail. Our results showed that Cu has a great effect on the Ti5Al2.5Fe alloy and the alloy is suitable for biomedical applications with enhanced antibacterial activity.

  3. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOEpatents

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  4. Structural and magnetic properties of Co{sub 2}Ti{sub 1−x}Fe{sub x}Al (0 ≤ x ≤ 0.5) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Lakhan, E-mail: lakhanbainsla@gmail.com; Gupta, Sachin, E-mail: lakhanbainsla@gmail.com; Suresh, K. G., E-mail: lakhanbainsla@gmail.com

    2014-04-24

    In this work we studied the effect of partial Fe substitution for Ti on the structural and magnetic properties of the Co{sub 2}TiAl. X-ray diffraction analysis indicates the presence of B2 type disorder for x > 0, (111) reflections are absent for x > 0 which is the characteristic of B2 type disorder. XRD analysis also shows presence of second phase. Magnetization measurements also confirm the presence of dual phase. Curie temperature of the alloys increases with increase in Fe concentration. Saturation magnetic moments agree very well with those calculated by Slater-Pauling rule.

  5. van der Waals epitaxial two-dimensional CdSxSe(1-x) semiconductor alloys with tunable-composition and application to flexible optoelectronics.

    PubMed

    Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min

    2017-09-21

    Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.

  6. Undoped p-type GaN1-xSbx alloys: Effects of annealing

    NASA Astrophysics Data System (ADS)

    Segercrantz, N.; Baumgartner, Y.; Ting, M.; Yu, K. M.; Mao, S. S.; Sarney, W. L.; Svensson, S. P.; Walukiewicz, W.

    2016-12-01

    We report p-type behavior for undoped GaN1-xSbx alloys with x ≥ 0.06 grown by molecular beam epitaxy at low temperatures (≤400 °C). Rapid thermal annealing of the GaN1-xSbx films at temperatures >400 °C is shown to generate hole concentrations greater than 1019 cm-3, an order of magnitude higher than typical p-type GaN achieved by Mg doping. The p-type conductivity is attributed to a large upward shift of the valence band edge resulting from the band anticrossing interaction between localized Sb levels and extended states of the host matrix.

  7. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].

    PubMed

    Mizutani, M

    1990-03-01

    The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr

  8. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shownmore » that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.« less

  9. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  10. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    NASA Astrophysics Data System (ADS)

    Kaira, Chandrashekara Shashank

    Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy's solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven't rendered an authoritative microstructural understanding in such materials. The effect of the precipitates' inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established. The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To

  11. The magnetic phase transition in Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} magnetocaloric alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg

    Mn-Fe-P-Ge alloys are promising, low cost, high performance candidates for magnetic cooling applications based on the magnetocaloric effect. These alloys undergo a magnetic phase transition which induces a large entropy change (ΔS). Experimental and modeling studies were conducted to study this transition for varying Ge content. Landau theory and the Bean-Rodbell model were applied to Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} (x = 0.26, 0.3, and 0.32) melt spun ribbons to model the phase transition and the associated entropy change. The critical behavior of these alloys was studied. The critical composition range at which the cross over from first order to second ordermore » magnetic transition occurs was determined. The calculated thermodynamic values and critical temperatures were in good agreement with our experimental results. A high maximum entropy change (ΔS) of ∼44.9 J kg{sup −1} K{sup −1} was observed in Mn{sub 1.1}Fe{sub 0.9}P{sub 0.74}Ge{sub 0.26} in a 5 T applied magnetic field. The results suggest that Mn-Fe-P-Ge alloys are very attractive materials for near room temperature magnetic cooling.« less

  12. Oxidation resistant coating for titanium alloys and titanium alloy matrix composites

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)

    1992-01-01

    An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.

  13. Electrochemical Properties of LaNi(sub 5-x)Ge(sub x) Alloys in Ni-MH Batteries

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Witham, C.

    1997-01-01

    Electrochemical studies were performed on LaNi(sub 5-x)Ge(sub x) metal hydride alloys with 0 <= x <= 0.5. We carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption.

  14. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  15. First principles examination of electronic structure and optical features of 4H-GaN1-xPx polytype alloys

    NASA Astrophysics Data System (ADS)

    Laref, A.; Hussain, Z.; Laref, S.; Yang, J. T.; Xiong, Y. C.; Luo, S. J.

    2018-04-01

    By using first-principles calculations, we compute the electronic band structures and typical aspects of the optical spectra of hexagonally structured GaN1-xPx alloys. Although a type III-V semiconductor, GaP commonly possesses a zinc-blende structure with an indirect band gap; as such, it may additionally form hexagonal polytypes under specific growth conditions. The electronic structures and optical properties are calculated by combining a non-nitride III-V semiconductor and a nitride III-V semiconductor, as GaP and GaN crystallizing in a 4H polytype, with the N composition ranging between x = 0-1. For all studied materials, the energy gap is found to be direct. The optical properties of the hexagonal materials may illustrate the strong polarization dependence owing to the crystalline anisotropy. This investigation for GaN1-xPx alloys is anticipated to supply paramount information for applications in the visible/ultraviolet spectral regions. At a specific concentration, x, these alloys would be exclusively appealing candidates for solar-cell applications.

  16. 40x40: Curriculum for Academic Excellence and Holistic Development

    ERIC Educational Resources Information Center

    Cárdenas, Alejandra Natalia

    2016-01-01

    The arts school partnerships under the policy "40x40" in Bogotá-Colombia are an example of the international interest in new ways to redress social and educational disadvantages. The main purpose of the policy is to improve education by gradually extending school daytime. This vignette explores three important issues for the…

  17. Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting Nanocrystals

    NASA Astrophysics Data System (ADS)

    Merritt, Travis R.

    The techniques of optoperforation, spectral characterization of alloy disorder, and metal-enhanced uorescence were applied to previously unconsidered or disregarded systems in order to demonstrate that such applications are both feasible and consequential. These applications were the subject of three disparate works and, as such, are independently discussed. Despite being ostensibly restricted to mammalian cells, optoperforation was demonstrated in intact plant cells by means of successful femtosecond-laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into cells of vital Arabidopsis seedling stems. By monitoring the rate of dye uptake, and the reaction of both CFP-expressing vacuoles and nanocellulose substrates, the intensity and exposure time of the perforating laser were adjusted to values that both preserved cell vitality and permitted the laser-assisted uptake of the uorophore. By using these calibrated laser parameters, dye was injected and later observed in targeted cells after 72 hours, all without deleteriously affecting the vital functions of those cells. In the context of alloy disorder, photoluminescence of excitonic transitions in two InAsxP1--x alloys were studied through temperature and magnetic field strength dependencies, as well as compositionally-dependent time-resolved behavior. The spectral shape, behavior of the linewidths at high magnetic fields, and the divergence of the peak positions from band gap behavior at low temperatures indicated that alloy disorder exists in the x=0.40 composition while showing no considerable presence in the x=0.13 composition. The time-resolved photoluminescence spectrum for both compositions feature a fast and slow decay, with the slow decay lifetime in x=0.40 being longer than that of x=0.13, which may be due to carrier migration between localized exciton states in x=0.40. In order to achieve broadband metal-enhanced uorescence in upconverting NaYF4:Yb,Er nanocrystals, two nanocomposite

  18. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr-B additives

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Jiang, Qingzheng; Ge, Qing; Lei, Weikai; Zhang, Lili; Zeng, Qingwen; ul Haq, A.; Liu, Renhui; Zhong, Zhenchen

    2018-04-01

    Alnico alloys are prepared with nominal composition of 31.4-xFe-7.0Al-36.0Co-4.0Cu-1.0Nb-14.0Ni-6.0Ti-0.6Zr-xB (x = 0.02, 0.04, 0.06, 0.08, in wt%) by arc melting and casting techniques and subsequent heat treatment. The alloys are characterized by X-ray diffraction method, optical microscope, scanning electron microscope and pulse field magnetometer by plotting magnetic hysteresis demagnetization curve. The results of HRSEM show at least two new phases at α-grain boundaries and triple junctions. These phases, when retained at low concentration, help in enhancing magnetic properties of alnico alloys by purifying spinodal phases and reducing the adverse effects of impurity elements. Two different heat treatment cycles are employed. In the first phase, the alloys are processed by using heat treatment cycles without magnetic field; and Hc of 1.35 kOe, Br of 4.87 kGs and (BH)max of 1.96 MGOe are obtained by furnace cooling below TC and subsequent tempering at 680 °C and 550 °C. In the second phase, the alloy with best magnetic properties is treated thermo-magnetically; and Hc of 1.68 kOe, Br of 7.1 kG and (BH)max of 4.45 MGOe are obtained.

  19. Multiple exciton generation in cluster-free alloy Cd(x)Hg(1-x)Te colloidal quantum dots synthesized in water.

    PubMed

    Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Shen, Qing; Oshima, Takuya; Yindeesuk, Witoon; Toyoda, Taro; Rogach, Andrey L

    2014-12-21

    A number of different composition CdxHg1-xTe alloy quantum dots have been synthesized using a modified aqueous synthesis and ion exchange method. The benefits of good stoichiometric control and high emission quantum yield were retained whilst also ensuring that the tendency to form gel-like clusters and adsorb excess cations in the stabilizing ligand shells was mitigated using a sequestering method to remove excess ionic material during and after the synthesis. This was highly desirable for ultrafast carrier dynamics measurements, avoiding strong photocharging effects which may mask fundamental carrier signals. Transient grating measurements revealed a composition dependent carrier multiplication process which competes with phonon mediated carrier cooling to deplete the initial hot carrier population. The interplay between these two mechanisms is strongly dependent on the electron effective mass which in these alloys has a marked composition dependence and may be considerably lower than the hole effective mass. For a composition x = 0.52 we measured a maximum carrier multiplication quantum yield of 199 ± 19% with pump photon energy 3 times the bandgap energy, Eg, whilst the threshold energy is calculated to be just 2.15Eg. There is some evidence to suggest an impact ionization process analogous to the inverse Auger S mechanism seen in bulk CdxHg1-xTe.

  20. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  1. Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2016-08-01

    The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.

  2. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  3. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    NASA Astrophysics Data System (ADS)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  4. Anomalous thermodynamic properties and phase stability of δ -Pu1 -xMx (M =Ga andAl ) alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Chun-Mei; Yang, Rui; Johansson, Börje; Vitos, Levente

    2016-12-01

    The composition-dependent crystal structure, volume, elastic constants, and electronic structure of δ -Pu1 -xMx (M =Ga and Al,0 ≤x ≤0.1 ) alloys are systematically studied by using first-principles EMTO-CPA calculations. It is shown that the fcc and L 12 structures co-exist in the alloys with x ≤0.04 whereas for x >0.04 , the L 12 structure is more and more preferable and around x =0.1 , it tends to be stabilized alone. The evaluated V ˜x of the L 12 structure, being negative deviation from Vegard's law, turns out to be in good agreement with the experimental result. For x ≤0.04 , the estimated E , G , ν , and Θ of both the fcc and L 12 structures are in line with the measured data, whereas when x >0.04 , only those of the L 12 structure are close to the experimental results. The electronic hybridization between Pu and M atoms is dominated by Pu for the s ,d , and f states but M for the p state. The strong interactions between Pu and M atoms in the same site of the L 12 structure should be responsible for its relative stability in the alloys with x >0.04 . The electron-phonon coupling further decreases the phase stability of δ -Pu1 -xMx with increasing x .

  5. X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys

    NASA Astrophysics Data System (ADS)

    Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi

    2009-01-01

    We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.

  6. Ab-initio study of electronic structure and magnetic properties of half-metallic Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Go, Anna, E-mail: annago@alpha.uwb.edu.pl

    2014-11-15

    Ab-initio electronic structure calculations are carried out for quinternary Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} alloys. When x=0 the alloy is half-metallic ferromagnet, with magnetic moment following the Slater–Pauling rule. Replacement of Mn by V, changes its electronic and magnetic structure. V-doped alloys exhibit half-metallic behavior for x≤0.25. However, even for higher V concentrations, electronic spin polarization is still very high, what makes the alloys interesting for spintronic applications. - Graphical abstract: Densities of states of Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} and magnetic moments of Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5}. - Highlights: • Fe{sub 2}MnSi{sub 0.5}Al{sub 0.5} is a half-metallicmore » ferromagnet with a minority band gap of 0.49 eV. • Half-metallic band gap is very stable against the change of the lattice parameter. • Half-metallic band gap is obtained for Fe{sub 2}Mn{sub 1−x}V{sub x}Si{sub 0.5}Al{sub 0.5} for x≤0.25. • Electronic spin polarization is very high and equal to at least 95% for x≤0.625. • The main carrier of magnetism of the compound is manganese.« less

  7. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  8. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  9. Effect of magnetic field annealing on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys with low permeability

    NASA Astrophysics Data System (ADS)

    Fan, Xingdu; Li, Meng; Zhang, Tao; Yuan, Chenchen; Shen, Baolong

    2018-05-01

    The effect of transverse magnetic field annealing (TFA) on soft magnetic properties of Co71Fe2Si14-xB9+xMn4 amorphous alloys was investigated with the aim of reducing effective permeability (μe). It was revealed that the increasing B content improved thermal stability, increased saturation magnetic flux density (Bs) of as-quenched alloys, while the samples exhibited a slightly larger coercivity (Hc) when the atom percentages of Si and B were similar. Permeability decreased dramatically after TFA. The decrease of permeability mainly depended on annealing temperature and magnetic field intensity. Besides, flat hysteresis loops were obtained after TFA, Lorentz micrograph observation revealed the TFA sample exhibited denser magnetic domain walls, which confirmed it was more difficult to be saturated. The Co71Fe2Si9B14Mn4 alloy was successful prepared with low μe of 3020, low Hc of 1.7 A/m and high resistance to DC bias 6 times that of as-quenched alloy at the DC field of 300 A/m.

  10. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  11. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  12. Bond-center hydrogen in dilute Si1-xGex alloys: Laplace deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonde Nielsen, K.; Dobaczewski, L.; Peaker, A. R.; Abrosimov, N. V.

    2003-07-01

    We apply Laplace deep-level transient spectroscopy in situ after low-temperature proton implantation into dilute Si1-xGex alloys and identify the deep donor state of hydrogen occupying a strained Si-Si bond-center site next to Ge. The activation energy of the electron emission from the donor is ˜158 meV when extrapolated to zero electrical field. We construct a configuration diagram of the Ge-strained site from formation and annealing data and deduce that alloying with ˜1% Ge does not significantly influence the low-temperature migration of hydrogen as compared to elemental Si. We observe two bond-center-type carbon-hydrogen centers and conclude that carbon impurities act as much stronger traps for hydrogen than the alloy Ge atoms.

  13. On the AC-conductivity mechanism in nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys

    NASA Astrophysics Data System (ADS)

    Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh

    2017-10-01

    In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.

  14. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    NASA Astrophysics Data System (ADS)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  15. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  16. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  17. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  18. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  19. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  20. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  1. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  2. 40 CFR Appendix X to Part 268 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] X Appendix X to Part 268 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Appendix X to Part 268 [Reserved] ...

  3. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  4. 40 CFR Appendix X to Part 266 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] X Appendix X to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR... FACILITIES Appendix X to Part 266 [Reserved] ...

  5. Alleviation of Fermi level pinning at metal/n-Ge interface with lattice-matched Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer on Ge

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Nakatsuka, Osamu; Sakashita, Mitsuo; Zaima, Shigeaki

    2018-06-01

    The impact of a silicon germanium tin (Si x Ge1‑ x ‑ y Sn y ) ternary alloy interlayer on the Schottky barrier height (SBH) of metal/Ge contacts with various metal work functions has been investigated. Lattice matching at the Si x Ge1‑ x ‑ y Sn y /Ge heterointerface is a key factor for controlling Fermi level pinning (FLP) at the metal/Ge interface. The Si x Ge1‑ x ‑ y Sn y ternary alloy interlayer having a small lattice mismatch with the Ge substrate can alleviate FLP at the metal/Ge interface significantly. A Si0.11Ge0.86Sn0.03 interlayer increases the slope parameter for the work function dependence of the SBH to 0.4. An ohmic behavior with an SBH below 0.15 eV can be obtained with Zr and Al/Si0.11Ge0.86Sn0.03/n-Ge contacts at room temperature.

  6. First principles study on structural, electronic and optical properties of Ga1-xBxP ternary alloys (x = 0, 0.25, 0.5, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Rivas Silva, J. F.; Méndez Blas, A.

    2018-07-01

    The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1-xBxP (x = 0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE), Wu-Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran-Blaha modified Becke-Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect-direct band gap transition can be reached from x = 0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.

  7. Magnetocaloric Effect in Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0, 2) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Emelyanova, S. M.; Bebenin, N. G.; Dyakina, V. P.; Chistyakov, V. V.; Dyachkova, T. V.; Tyutyunnik, A. P.; Wang, R. L.; Yang, C. P.; Sauerzopf, F.; Marchenkov, V. V.

    2018-02-01

    The temperature dependences of the electrical resistivity and magnetization of the Ni50Mn36Sb14- x Z x (Z = Al, Ge; x = 0; 2) alloys have been used to determine the characteristic phase transition temperatures. The isothermal entropy change Δ S was determined using Maxwell's equation and the field dependences of magnetization. The partial substitution of Ge for Sb has been shown to result in a slight increase in Δ S and a shift in the Δ S maximum to the low-temperature range. The substitution of Al for Sb leads to a decrease in the effect and shift in the Δ S maximum to the high-temperature range. It has been found that the maximum magnetocaloric effect has been observed for the Ni50Mn36Sb12Ge2 composition and is equal to Δ S = 1.3 J/(kg K) in a field change of 10 kOe.

  8. X-40A on runway after Free Flight #2A

    NASA Image and Video Library

    2001-04-12

    Second free-flight of the X-40A at the NASA Dryden Flight Research Center, on Edwards AFB, Calif., was made on Apr. 12, 2001. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, is proving the capability of an autonomous flight control and landing system in a series of glide flights at Edwards. The April 12 flight introduced complex vehicle maneuvers during the landing sequence. The X-40A was released from an Army Chinook helicopter flying 15,050 feet overhead. Ultimately, the unpiloted X-37 is intended as an orbital testbed and technology demonstrator, capable of landing like an airplane and being quickly serviced for a follow-up mission.

  9. Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.

    2015-06-01

    Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.

  10. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using

  11. Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie

    2016-10-01

    The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.

  12. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  13. Magnetic Properties of the Ferromagnetic Shape Memory Alloys Ni50+xMn27−xGa23 in Magnetic Fields

    PubMed Central

    Sakon, Takuo; Otsuka, Kohei; Matsubayashi, Junpei; Watanabe, Yuushi; Nishihara, Hironori; Sasaki, Kenta; Yamashita, Satoshi; Umetsu, Rie Y.; Nojiri, Hiroyuki; Kanomata, Takeshi

    2014-01-01

    Thermal strain, permeability, and magnetization measurements of the ferromagnetic shape memory alloys Ni50+xMn27−xGa23 (x = 2.0, 2.5, 2.7) were performed. For x = 2.7, in which the martensite transition and the ferromagnetic transition occur at the same temperature, the martensite transition starting temperature TMs shift in magnetic fields around a zero magnetic field was estimated to be dTMs/dB = 1.1 ± 0.2 K/T, thus indicating that magnetic fields influences martensite transition. We discussed the itinerant electron magnetism of x = 2.0 and 2.5. As for x = 2.5, the M4 vs. B/M plot crosses the origin of the coordinate axis at the Curie temperature, and the plot indicates a good linear relation behavior around the Curie temperature. The result is in agreement with the theory by Takahashi, concerning itinerant electron ferromagnets. PMID:28788645

  14. A theoretical investigation of mixing thermodynamics, age-hardening potential, and electronic structure of ternary M11–xM2xB2 alloys with AlB2 type structure

    PubMed Central

    Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.

    2015-01-01

    Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11–xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1–xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2. PMID:25970763

  15. Corrosion of pre-oxidized nickel alloy X-750 in simulated BWR environment

    NASA Astrophysics Data System (ADS)

    Tuzi, Silvia; Lai, Haiping; Göransson, Kenneth; Thuvander, Mattias; Stiller, Krystyna

    2017-04-01

    Samples of pre-oxidized Alloy X-750 were exposed to a simulated boiling water reactor environment in an autoclave at a temperature of 286 °C and a pressure of 80 bar for four weeks. The effect of alloy iron content on corrosion was investigated by comparing samples with 5 and 8 wt% Fe, respectively. In addition, the effect of two different surface pre-treatments was investigated. The microstructure of the formed oxide scales was studied using mainly electron microscopy. The results showed positive effects of an increased Fe content and of removing the deformed surface layer by pickling. After four weeks of exposure the oxide scale consists of oxides formed in three different ways. The oxide formed during pre-oxidization at 700 °C, mainly consisting of chromia, is partly still present. There is also an outer oxide consisting of NiFe2O4 crystals, reaching a maximum size of 3 μm, which has formed by precipitation of dissolved metal ions. Finally, there is an inner nanocrystalline and porous oxide, with a metallic content reflecting the alloy composition, which has formed by corrosion.

  16. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  17. A study of the Al content impact on the properties of MmNi 4.4- xCo 0.6Al x alloys as precursors for negative electrodes in NiMH batteries

    NASA Astrophysics Data System (ADS)

    Bliznakov, S.; Lefterova, E.; Dimitrov, N.; Petrov, K.; Popov, A.

    AB 5-type hydrogen storage alloys with MmNi 4.4- xCo 0.6Al x (Mm-mischmetal) composition are synthesized, structurally and thermodynamically characterized, and electrochemically tested in 6 M KOH electrolyte. It is shown that an increase of the Al content in the alloy results in expansion of both the alloy lattice cell size and the unit cell volume. These structural changes lead to decrease of the plateau pressure and increase of the plateau width in the pressure-composition-temperature desorption isotherms. Improvement of the specific electrode capacity is also registered with the increase of the cell parameters. In addition to that the higher Al content is found to enhance the stability of the alloy components' hydrides. Maximum discharge capacity of 278 mAh g -1 is measured with an electrode made from a MmNi 3.6Co 0.6Al 0.8 alloy. Cycle life tests of the accordingly prepared electrodes suggest a stability that is comparable to the stability of commercially available hydrogen storage electrodes.

  18. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  19. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  20. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  1. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  2. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young's modulus [In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    DOE PAGES

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2015-11-04

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less

  3. Reversible Li-ion conversion reaction for a Ti xGe alloy in a Ti/Ge multilayer

    DOE PAGES

    Chen, Xiao; Fister, Tim T.; Esbenshade, Jennifer; ...

    2017-02-13

    Group IV inter-metallics electrochemically alloy with Li with stoichiometries as high as Li 4.4M (M=Si, Ge, Sn or Pb). Furthermore, this provides the second highest known specific capacity (after pure lithium metal) for lithium ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the hetero-layer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensionalmore » Ti xGe/Ti/Ti xGe core-shell planar structure embedded in a Ge matrix. The interfacial Ti xGe alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e. a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.« less

  4. Effect of multi-element addition of Alnico alloying elements on structure and magnetic properties of SmCo5-based ribbons

    NASA Astrophysics Data System (ADS)

    Bian, Lu-peng; Li, Ying; Han, Xu-hao; Cheng, Jin-yun; Qin, Xiao-ning; Zhao, Yan-qiu; Sun, Ji-bing

    2018-02-01

    New SmCo5 + x wt% Alnico composite ribbons melt-spun at 40 m/s are designed by multi-element addition of Alnico alloy into SmCo5 matrix, and their structure and magnetic properties are investigated. The results show that the main phase in x ≤ 2.5 ribbons is Sm(Co,M)5, whereas the main phase changes into Sm(Co,M)7 at x = 4.0-8.5, and simultaneously that the content of Al-rich and amorphous phases increases with increasing x. The hard magnetic properties of the ribbons are found to improve with an increase in Alnico content, and particularly the average magnetic properties reach maximum, i.e., Hc = 19.6 ± 1.2 kOe, Mr = 47.7 ± 3.4 emu/g and M2T = 59.1 ± 5.6 emu/g, at x = 4.0. The main reasons for such improvement are that the finer grains divided by three grain boundaries exist in main phase, the dispersed Al-Ni and Al-Co-rich phases distribute in grains and grain boundaries, and the Fe-rich Alnico alloying elements dissolve into Sm(Co,M)7 matrix phase. However, when x > 4.0, the gradually increasing Al-Co and amorphous phases lead to the reduction of hard magnetic properties.

  5. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  6. Theoretical investigation of structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys using DFT based FP-LAPW approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-11-01

    Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  7. Iron titanium manganase alloy hydrogen storage

    DOEpatents

    Reilly, James J.; Wiswall, Jr., Richard H.

    1979-01-01

    A three component alloy capable of reversible sorption of hydrogen having the chemical formula TiFe.sub.1-x Mn.sub.x where x is in the range of about 0.02 to 0.5 and the method of storing hydrogen using said alloy.

  8. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  9. Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1-xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys.

    PubMed

    Laref, Amel; AlMudlej, Abeer; Laref, Slimane; Yang, Jun Tao; Xiong, Yong-Chen; Luo, Shi Jun

    2017-07-07

    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga 1- x Mn x P ( x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level ( E F ) in the spin-down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga 1- x Mn x P alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices.

  10. Composition design for Laves phase-related body-centered cubic-V solid solution alloys with large hydrogen storage capacities.

    PubMed

    Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X

    2008-03-19

    This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.

  11. Application of the bond valence method in the non-isovalent semiconductor alloy (GaN) 1–x (ZnO) x

    DOE PAGES

    Liu, Jian

    2016-09-29

    This paper studies the bond valence method (BVM) and its application in the non-isovalent semiconductor alloy (GaN) 1-x(ZnO) x. Particular attention is paid to the role of short-range order (SRO). A physical interpretation based on atomic orbital interaction is proposed and examined by density-functional theory (DFT) calculations. Combining BVM with Monte-Carlo simulations and a DFT-based cluster expansion model, bond-length distributions and bond-angle variations are predicted. The correlation between bond valence and bond stiffness is also revealed. Lastly the concept of bond valence is extended into the modelling of an atomistic potential.

  12. Evolution of phase transformation and magnetic properties with Fe content in Ni55-x Fe x Mn20Ga25 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlei; Li, Zhe; He, Xijia; Huang, Yinsheng; Xu, Kun; Jing, Chao

    2018-02-01

    A series of Ni55-x Fe x Mn20Ga25 (0  ⩽  x  ⩽  5) Heusler alloys was prepared to investigate their phase transitions and magnetic properties. At room temperature, these alloys present various crystal structures, and the unit cell volume enlarges with increase of Fe content in both austenite and martensite. Multiple magneto-structural transformations were observed in the parent alloy (x  =  0). In the process of cooling, it undergoes martensitic transformation (MT) from L21-type paramagnetic austenite to L10-type ferromagnetic martensite, accompanying an intermartensitic transformation (IMT, 7M  →  L10). By establishing a detailed phase diagram, we found that both MT and IMT shift to lower temperature simultaneously, while the ferromagnetic (FM) transition of austenite moves to higher temperature as Fe increases. With the further increase of Fe content beyond a critical value, both the IMT and the FM transitions split off from MT, and the former follows with the transforming sequence of 7M  →  5M. Based on the experimental data, some key magnetic parameters have been obtained in this system. The calculated magnetocrystalline anisotropy constant ({{K}1} ) of martensite quickly increases as Fe increases, and then it almost reaches a saturated value (~5.5  ×  105 J m-3) for the alloys with x  >  3. However, the spontaneous magnetic moment ({μs} ) attains a peak value of about 4.2 μ B/f.u. in the alloy with x  =  4, which is not consistent with the linear increasing of effective magnetic moment ({μef f} ). Further magnetic measurements with hydrostatic pressure indicate that such a discrepancy could be ascribed to the competition between the magnetic exchange interaction and the volume change of unit cell governed by the dopant Fe content.

  13. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    NASA Astrophysics Data System (ADS)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  14. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  15. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    NASA Astrophysics Data System (ADS)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  16. Pressure-induced phase transition in titanium alloys

    NASA Astrophysics Data System (ADS)

    Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin

    2018-05-01

    The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.

  17. Dynamic oxidation behavior at 1000 and 1100 C of four nickel-base cast alloys, NASA-TRW VIA, B-1900, 713C, and 738X

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.

    1974-01-01

    The superalloys NASA-TRW VIA, B-1900, 713C, and 738X were tested cyclically and isothermally for resistance to oxidation in high velocity gas streams for 100 hours at specimen temperatures of 1000 C and 1100 C. Alloys VIA and B-1900, which were the most oxidation resistant, displayed slight and very similar weight changes and metal losses. Alloy 713C also sustained only slight metal losses, but it exhibited some tendency to spall. Alloy 738X was found to be the most susceptible to cyclic oxidation; this resulted in heavy spalling, which in turn caused high weight losses and high metal losses. Oxidation test results are related to the amounts of chromium aluminum, and the refractory metals in the alloys investigated.

  18. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  19. Alloy Engineering of Topological Semimetal Phase Transition in MgTa2 -xNbxN3

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Jin, Kyung-Hwan; Liu, Feng

    2018-03-01

    Dirac, triple-point, and Weyl fermions represent three topological semimetal phases, characterized with a descending degree of band degeneracy, which have been realized separately in specific crystalline materials with different lattice symmetries. Here we demonstrate an alloy engineering approach to realize all three types of fermions in one single material system of MgTa2 -xNbx N3 . Based on symmetry analysis and first-principles calculations, we map out a phase diagram of topological order in the parameter space of alloy concentration and crystalline symmetry, where the intrinsic MgTa2 N3 with the highest symmetry hosts the Dirac semimetal phase, which transforms into the triple-point and then the Weyl semimetal phases with increasing Nb concentration that lowers the crystalline symmetries. Therefore, alloy engineering affords a unique approach for the experimental investigation of topological transitions of semimetallic phases manifesting different fermionic behaviors.

  20. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIBmore » tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.« less

  1. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    NASA Astrophysics Data System (ADS)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  2. First-principles study on the thermal expansion of Ni-X binary alloys based on the quasi-harmonic Debye model

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Jung, Woo-Sang; Lee, Young-Su

    2016-11-01

    In this study, we use the quasi-harmonic Debye model to predict the coefficient of thermal expansion of Ni- X binary alloys. The method bridges between the macroscopic elastic behavior and thermodynamic properties of materials without an expensive calculation of the volume dependence of the phonon density of states. Furthermore, the Grüneisen parameter is derived from the volume dependence of the Debye temperature, which is calculated from the first-principles elastic stiffness constants. The experimental coefficient of thermal expansion (CTE) of pure nickel is well reproduced, especially in the low temperature region. Among the few alloying elements tested, Al is predicted to slightly decrease the CTE whereas Mo and W are more effective in reducing the CTE. For the cases of Ni-X binary alloy systems, where the variation in the CTE is relatively small, the method used here appears to perform better than certain other formulations that rely entirely on the energy vs. volume relationship.

  3. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. H. Jackson; S. P. Teysseyre

    2012-10-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less

  4. Baseline Fracture Toughness and CGR testing of alloys X-750 and XM-19 (EPRI Phase I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. H. Jackson; S. P. Teysseyre

    2012-02-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF) and Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials as a pilot program toward establishing guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase I (of three phases) that entails baseline fracture toughness, stress corrosion cracking (SCC), and tensile testing of selected materials for comparison to similar tests conducted at GE Global Research. The intent of this Phase I research program is to determine baseline properties for the materials ofmore » interest prior to irradiation, and to ensure comparability between laboratories using similar testing techniques, prior to applying these techniques to the same materials after having been irradiated at the Advanced Test Reactor (ATR). The materials chosen for this research are the nickel based super alloy X-750, and nitrogen strengthened austenitic stainless steel XM-19. A spare core shroud upper support bracket of alloy X-750 was purchased by EPRI from Southern Co. and a section of XM-19 plate was purchased by EPRI from GE-Hitachi. These materials were sectioned at GE Global Research and provided to INL.« less

  5. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    NASA Astrophysics Data System (ADS)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  6. Computational alloy design of (Co1-xNix)88Zr7B4Cu1 nanocomposite soft magnets

    NASA Astrophysics Data System (ADS)

    Dong, B.; Healy, J.; Lan, S.; Daniil, M.; Willard, M. A.

    2018-05-01

    The dependence of coercivity on composition is an important factor for establishing optimized soft magnetic properties. In this study, we have used the random anisotropy and coherent rotation models to estimate the variation of coercivity with composition in (Co1-xNix)88Zr7B4Cu1 nanocomposite alloys. Our calculations that the magnetoelastic anisotropy contribution to coercivity dominates for Ni rich compositions (x > 0.5). A small range of compositions (0.65 < x < 0.75) is predicted to result in low values of coercivity (<10 A/m). To validate this prediction, (Co1-xNix)88Zr7B4Cu1 nanocomposites in this range were prepared by melt spinning followed by 3600 s isothermal annealing at the primary crystallization peak temperature (˜673 K). Hysteresis loops were measured using vibrating sample magnetometry at room temperature and saturation magnetostriction was measured using a strain gage based magnetostrictometer. Moderately small coercivities (30-40 A/m) and magnetostrictions (3-4 ppm) were measured at for samples with 0.685 < x < 0.725. Our measured coercivity had a minimum value of 32 A/m at x = 0.725, a shift in composition of about 5 at% in the direction of higher Ni content and without the anticipated low value of coercivity. Several reasons for the inaccuracy of this approach are described, including: ignored contributions from amorphous phase (especially in magnetoealstic anisotropy), composition segregation during crystallization leading to unpredictable compositional shifts in prediction, and the general observation that the predictability of minimum coercivity from minimal combined anisotropies has unexplained deviation even in far less complicated materials.

  7. Structural and electrochemical properties of annealed La1-xYxNi3.55Mno.4Alo.3Coo.75 hydrogen storage alloys.

    PubMed

    Du, Yulei; Li, Wei

    2011-06-01

    The effects of the annealing and partial substitution of Y for La on the structural and electrochemical properties of La1-xYxNi3.55Mno.4Alo.3Cro.75 (x = 0, 0.1 and 0.2) alloys were reported in the present work. The single-phased CaCu5-type structure was retained after La was partially substituted by Y. However, the increase of Y content leads to decrease of the lattice parameters and the unit-cell volume. The annealed Lao.9Yo.1Ni3.55Mno.4Alo.3Coo.75 alloys shows typical isometric microstructure, indicating that the composition segregation is improved by annealing. Y substitution for La in the alloys is effective to improve the electrochemical properties at both room temperature and high temperature. A critical substitution content of Y is found at x = 0.1. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  8. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    PubMed

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  9. XRMON-GF: A novel facility for solidification of metallic alloys with in situ and time-resolved X-ray radiographic characterization in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Nguyen-Thi, H.; Reinhart, G.; Salloum Abou Jaoude, G.; Mathiesen, R. H.; Zimmermann, G.; Houltz, Y.; Voss, D.; Verga, A.; Browne, D. J.; Murphy, A. G.

    2013-07-01

    As most of the phenomena involved during the growth of metallic alloys from the melt are dynamic, in situ and time-resolved X-ray imaging should be retained as the method of choice for investigating the solidification front evolution. On Earth, the gravity force is the major source of various disturbing effects (natural convection, buoyancy/sedimentation, and hydrostatic pressure) which can significantly modify or mask certain physical mechanisms. Therefore solidification under microgravity is an efficient way to eliminate such perturbations to provide unique benchmark data for the validation of models and numerical simulations. Up to now, in situ observation during microgravity solidification experiments were limited to the investigations on transparent organic alloys, using optical methods. On the other hand, in situ observation on metallic alloys generally required synchrotron facilities. This paper reports on a novel facility we have designed and developed to investigate directional solidification on metallic alloys in microgravity conditions with in situ X-ray radiography observation. The facility consists of a Bridgman furnace and an X-ray radiography device specifically devoted to the study of Al-based alloys. An unprecedented experiment was recently performed on board a sounding rocket, with a 6 min period of microgravity. Radiographs were successfully recorded during the entire experiment including the melting and solidification phases of the sample, with a Field-of-View of about 5 mm×5 mm, a spatial resolution of about 4 µm and a frequency of 2 frames per second. Some preliminary results are presented on the solidification of the Al-20 wt% Cu sample, which validate the apparatus and confirm the potential of in situ X-ray characterization for the investigation of dynamical phenomena in materials processing, and particularly for the studying of metallic alloys solidification.

  10. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  11. The effect of alloying on gamma and gamma prime in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Wallace, J. F.

    1972-01-01

    An investigation was conducted to determine the compositional limits of gamma and gamma prime phases in nickel-base superalloys. Fifty-one nickel-base alloys were melted under vacuum and heat treated for 4 hours at 1190 C followed by 1008 hours at 850 C. The alloys had the following composition ranges: A1 4.0 to 13 atomic percent, Cr 6.5 to 20.5 percent, Ti 0.25 to 4.75 percent, Mo 0.0 to 6.0 percent, and W 0.0 to 4.0 percent. The residues from the ammonium sulfate electrolytic extraction for the two-phase alloys were analyzed chemically and by X-ray diffraction. The results of the investigation were used to assemble a mathematical model of the gamma-gamma prime region of the Ni-Al-Cr-Ti-Mo-W system. A computer program was written to analyze the model of the phase diagram. Some of these results are also presented graphically. The resulting model is capable of satisfactorily predicting the compositions of conjugate gamma-gamma prime phases in the alloys investigated and twelve of fifteen commercial superalloys studied.

  12. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  13. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  14. Electronic and magnetic properties of Zn1-xFexSe alloys

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-12-01

    The spin polarized density functional theory along with self consistent plane wave pseudopotential method is used to investigate electronic and magnetic properties of ternary Zn1-xFexSe alloys with x = 0.125, 0.25, 0.5 and 0.75. The exchange-correlation potential treated within generalized gradient approximation is used. The calculated spin-polarized band structures, partial and total density of states reveal that Zn0.875Fe0.125Se and Zn0.75Fe0.25Se exhibit half metallic ferromagnetic characteristics and Zn0.50Fe0.50Se is nearly half metallic in nature. The half metallic band gaps for x = 0.125 and 0.25 are 0.69 and 0.39 eV respectively, while the corresponding band gaps are 0.86 and 0.81 eV. The p-d hybridization reduces the magnetic moment of Fe atoms from its free space charge value of 4 μB and induces the small magnetic moments on Zn and Se sites. The results are compared with available experimental data.

  15. Independence of solitary-cation properties on the atomic neighborhood in In1 -xGaxN alloys: A novel perspective for material engineering

    NASA Astrophysics Data System (ADS)

    Filippone, Francesco; Mattioli, Giuseppe; Amore Bonapasta, Aldo

    2017-11-01

    In InN, a genuine band gap opening observed after hydrogenation has been explained by means of the "solitary cation" model, a multi-H complex in which the central cation, In*, is fully separated from the structure [Pettinari et al., Adv. Funct. Mater. 25, 5353 (2015), 10.1002/adfm.201501858]. Similar effects of H on the host band gap have been observed in In-rich In1-xGaxN alloys. Paying attention to these materials, we have theoretically investigated the In* properties against three kinds of disorder, structural, compositional, and configurational, all of them possibly occurring in In1-xGaxN alloys. As a first major result we have found that a same, general solitary-cation model and mechanism explain the effects of hydrogenation on the electronic properties of both InN and In-rich In1-xGaxN alloys. Even more interestingly, in these alloys, both the energetics of the In* solitary cations and their effects on the band gap result to be thoroughly independent of their atomic neighborhood, in particular, of the number and spatial distribution of their cation neighbors. Significantly, this implies that band-gap opening effects can be safely predicted in whatever hydrogenated In-rich nitride alloy containing different In companions (e.g., B, Al, or Ga) as well as in InN-containing, unconventional compounds (e.g., ZnO-InN), thus offering novel opportunities for material engineering.

  16. Effect of Ti content on the microstructure and mechanical behavior of (Fe 36Ni 18Mn 33Al 13) 100–xTi x high entropy alloys

    DOE PAGES

    Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou; ...

    2016-06-13

    The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less

  17. Effect of Ti content on the microstructure and mechanical behavior of (Fe 36Ni 18Mn 33Al 13) 100–xTi x high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangwei; Wu, Margaret; Cai, Zhonghou

    The microstructure and mechanical properties studies of a series of two-phase f.c.c./B2 (ordered b.c.c.) lamellar-structured, high entropy alloys (HEA) Fe 36Ni 18Mn 33Al 13Ti x with x up to 6 at. % Ti have been investigated. X-ray microanalysis in a TEM showed that the Ti resided mostly in the B2 phase. The lamellar spacing decreased significantly with increasing Ti content from 1.56 μm for the undoped alloy to 155 nm with an addition of 4 at. % Ti, leading to a sharp increase in room-temperature yield strength,σ y, from 270 MPa to 953 MPa, but with a concomitant decrease inmore » ductility from 22% elongation to 2.3%. Annealing at 1173 K for 20 h greatly increased the lamellar spacing of Fe 36Ni 18Mn 33Al 13Ti 4 to 577 nm, producing a corresponding decrease in σy to 511 MPa. The yield strengths of all the doped alloys decreased significantly when tensile tested at 973 K with a concomitant increase in ductility due to softening of the B2 phase. The fracture mode changed from cleavage at room temperature to a ductile dimple-type rupture at 973 K. Lastly, the results are discussed in terms of the Hall-Petch-type relationship.« less

  18. X-ray analyses of thermally grown and reactively sputtered tantalum oxide films on NiTi alloy

    NASA Astrophysics Data System (ADS)

    McNamara, Karrina; Tofail, Syed A. M.; Conroy, Derek; Butler, James; Gandhi, Abbasi A.; Redington, Wynette

    2012-08-01

    Sputter deposition of tantalum (Ta) on the surface of NiTi alloy is expected to improve the alloy's corrosion resistance and biocompatibility. Tantalum is a well-known biomaterial which is not affected by body fluids and is not irritating to human tissue. Here we compare the oxidation chemistry crystal structure evolution of tantalum oxide films grown on NiTi by reactive O2 sputtering and by thermal oxidation of sputter deposited Ta films. The effect of sputtering parameters and post-sputtering treatments on the morphology, oxidation state and crystal structure of the tantalum oxide layer have been investigated by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The study has found that it may be better to avoid oxidation at and above 600 °C. The study establishes that reactive sputtering in presence of low oxygen mixture yields thicker film with better control of the film quality except that the surface oxidation state of Ta is slightly lower.

  19. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  20. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  1. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  2. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  3. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olvera, S.; Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid; Sánchez-Marcos, J.

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment ismore » approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.« less

  4. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  5. Preliminary in situ and real-time study of directional solidification of metallic alloys by x-ray imaging techniques

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, H.; Jamgotchian, H.; Gastaldi, J.; Härtwig, J.; Schenk, T.; Klein, H.; Billia, B.; Baruchel, J.; Dabo, Y.

    2003-05-01

    During directional solidification of a binary alloy, the solid-liquid interface exhibits a variety of patterns that are due to the Mullins-Sekerka instability and governed by the growth conditions. It is well known that properties of the grown material are largely controlled by the microstructures left in the solid during processing. Thus, a precise mastering of the solidification is essential to tailor products in a reproducible fashion to a specified quality. One major difficulty for this study is the real-time and in situ observation of the interface, especially for metallic alloys. A possibility is to use an intense and coherent third generation x-ray beam. By combining different x-ray imaging techniques (absorption/phase contrast radiography and diffraction topography), we have studied the directional melting and solidification of aluminium-based alloys. The preliminary results show the great potential of these techniques for the study of the coupling between stress effects and microstructure formation in solidification processing.

  6. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  7. Localization-delocalization transition of electrons at the percolation threshold of semiconductor GaAs1-xNx alloys: The appearance of a mobility edge

    NASA Astrophysics Data System (ADS)

    Alberi, K.; Fluegel, B.; Beaton, D. A.; Ptak, A. J.; Mascarenhas, A.

    2012-07-01

    Electrons in semiconductor alloys have generally been described in terms of Bloch states that evolve from constructive interference of electron waves scattering from perfectly periodic potentials, despite the loss of structural periodicity that occurs on alloying. Using the semiconductor alloy GaAs1-xNx as a prototype, we demonstrate a localized to delocalized transition of the electronic states at a percolation threshold, the emergence of a mobility edge, and the onset of an abrupt perturbation to the host GaAs electronic structure, shedding light on the evolution of electronic structure in these abnormal alloys.

  8. Soft X-ray magnetic circular dichroism of Heusler-type alloy Co 2MnGe

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Iori, K.; Kimura, A.; Xie, T.; Taniguchi, M.; Qiao, S.; Tsuchiya, K.

    2003-10-01

    Co and Mn 2p core absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectra have been measured for the ferromagnetic ternary alloy Co 2MnGe. The observed Co 2p XAS spectrum can be understood on the basis of the unoccupied Co 3d partial density of states, whereas the overall features of the Mn 2p XAS and XMCD spectra have been partly reproduced by the Mn 2p 53d 6 final state multiplets. We have found that the orbital polarization of the Co 3d and even the Mn 3d states are recognizable, which suggests that a spin-orbit coupling should be taken into account in the energy band structure in order to reproduce the half metallic nature of this alloy.

  9. Ab initio construction of magnetic phase diagrams in alloys: The case of Fe 1-xMn xPt

    DOE PAGES

    Pujari, B. S.; Larson, P.; Antropov, V. P.; ...

    2015-07-28

    A first-principles approach to the construction of concentration-temperature magnetic phase diagrams of metallic alloys is presented. The method employs self-consistent total energy calculations based on the coherent potential approximation for partially ordered and noncollinear magnetic states and is able to account for competing interactions and multiple magnetic phases. The application to the Fe 1–xMn xPt “magnetic chameleon” system yields the sequence of magnetic phases at T = 0 and the c-T magnetic phase diagram in good agreement with experiment, and a new low-temperature phase is predicted at the Mn-rich end. The importance of non-Heisenberg interactions for the description of themore » magnetic phase diagram is demonstrated.« less

  10. Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi

    2017-03-01

    The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.

  11. Single crystals of (FeIn{sub 2}S{sub 4}){sub x} · (CuIn{sub 5}S{sub 8}){sub 1–x} alloys: Crystal structure, nuclear gamma resonance spectra, and thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodnar, I. V., E-mail: chemzav@bsuir.by; Zhafar, M. A.; Kasyuk, Yu. V.

    FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and (FeIn{sub 2}S{sub 4}){sub x} · (CuIn{sub 5}S{sub 8}){sub 1–x} alloy single crystals are grown by planar crystallization. It is shown that both of the initial FeIn{sub 2}S{sub 4} and CuIn{sub 5}S{sub 8} compounds and alloys on their basis crystallize with the formation of the cubic spinel structure. It is established that the unit-cell parameter a linearly varies with the composition parameter x. By means of nuclear gamma resonance spectroscopy in the transmission mode of measurements, the local states of iron ions in the alloys are studied. For the single crystals grownmore » in the study, thermal expansion is explored using the dilatometry technique, the thermal-expansion coefficients are determined, and the Debye temperature and rms (root-mean-square) dynamic displacements are calculated.« less

  12. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  13. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio < ea > in the range 5.05<=< ea ><=6.40 in fair agreement with previous results for these systems and contrary to the Tc vs < ea > behavior of both amorphous and crystalline transition-metal alloys formed

  14. Crystal structure and electrochemical properties of rare earth non-stoichiometric AB5-type alloy as negative electrode material in Ni-MH battery

    NASA Astrophysics Data System (ADS)

    Zhang, Xinbo; Chai, Yujun; Yin, Wenya; Zhao, Minshou

    2004-07-01

    The La 0.85Mg xNi 4.5Co 0.35Al 0.15 (0.05⩽ x⩽0.35) system compounds have been prepared by arc melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La 0.85Mg 0.25Ni 4.5Co 0.35Al 0.15 alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40°C.

  15. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranularmore » failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.« less

  16. Structural Characterisation and Mechanical FE Analysis of Conventional and M-Wire Ni-Ti Alloys Used in Endodontic Rotary Instruments

    PubMed Central

    Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho

    2014-01-01

    The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature. PMID:24574937

  17. Structural characterisation and mechanical FE analysis of conventional and M-Wire Ni-Ti alloys used in endodontic rotary instruments.

    PubMed

    Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho

    2014-01-01

    The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.

  18. Pre-Columbian alloys from the royal tombs of Sipán; energy dispersive X-ray fluorescence analysis with a portable equipment.

    PubMed

    Cesareo, R; Calza, C; Dos Anjos, M; Lopes, R T; Bustamante, A; Fabian S, J; Alva, W; Chero Z, L

    2010-01-01

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the "Tumbas Reales de Sipán". About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the "Tumbas Reales de Sipán" are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Collective thermal transport in pure and alloy semiconductors.

    PubMed

    Torres, Pol; Mohammed, Amr; Torelló, Àlvar; Bafaluy, Javier; Camacho, Juan; Cartoixà, Xavier; Shakouri, Ali; Alvarez, F Xavier

    2018-03-07

    Conventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of Si 1-x Ge x and In x Ga 1-x As alloys. The calculated thermal conductivities match well with the experimental data for all alloy concentrations. The model shows that the collective contribution must be taken into account at very low impurity concentrations. For higher concentrations, the collective contribution is suppressed, but normal collisions have the effect of significantly reducing the kinetic contribution. The study thus shows the importance of the proper inclusion of normal processes even for alloys for accurate modeling of thermal transport. Furthermore, the phonon spectral distribution of the thermal conductivity is studied in the framework of KCM, providing insights to interpret the superdiffusive regime introduced in the truncated Lévy flight framework.

  20. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  1. Composition-dependent magnetic response properties of Mn1 -xFexGe alloys

    NASA Astrophysics Data System (ADS)

    Mankovsky, S.; Wimmer, S.; Polesya, S.; Ebert, H.

    2018-01-01

    The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn1 -xFexGe alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈0.85 in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at x ≈0.8 . A corresponding behavior with a sign change at x ≈0.5 is predicted also for the Fermi-sea contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall effect and the sign change of the spin Hall effect conductivities.

  2. Overcoming Limitations in Semiconductor Alloy Design

    NASA Astrophysics Data System (ADS)

    Christian, Theresa Marie

    Inorganic semiconductors provide an astonishingly versatile, robust, and efficient platform for optoelectronic energy conversion devices. However, conventional alloys and growth regimes face materials challenges that restrict the full potential of these devices. Novel alloy designs based on isoelectronic co-doping, metamorphic growth and controllable atomic ordering offer new pathways to practical and ultra-high-efficiency optoelectronic devices including solar cells and light-emitting diodes. Abnormal isoelectronic alloys of GaP1-xBix, GaP 1-x-yBixNy, and GaAs1-xBix with unprecedented bismuth incorporation fractions and crystalline quality are explored in this thesis research. Comparative studies of several GaP1-xBix and GaP1-x-yBixNy alloys demonstrate that the site-specific incorporation of bismuth during epitaxial growth is sensitive to growth temperature and has dramatic effects on carrier transfer processes in these alloys. Additionally, distinctive bismuth-related localized states are spectrally identified for the first time in samples of GaAs1-xBix grown by laser-assisted epitaxial growth. These results address fundamental questions about the nature of bismuth-bismuth inter-impurity interactions. Finally, a metamorphic growth strategy for a novel light-emitting diode (LED) design is also discussed. This work utilized direct-bandgap AlxIn1-xP active layers with atomic ordering-based electron confinement to improve emission in the yellow and green spectral regions, where incumbent technologies are least effective, and demonstrated the feasibility of non-lattice-matched LED active materials for visible light emission.

  3. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  4. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  5. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  6. Negative differential velocity in ultradilute GaAs1-xNx alloys

    NASA Astrophysics Data System (ADS)

    Vogiatzis, N.; Rorison, J. M.

    2011-04-01

    We present theoretical results on steady state characteristics in bulk GaAs1-xNx alloys (x ≤ 0.2) using the single electron Monte-Carlo method. Two approaches have been used; the first assumes a GaAs band with a strong nitrogen scattering resonance and the second uses the band anti-crossing model, in which the localized N level interacts with the GaAs band strongly perturbing the conduction band. In the first model we observe two negative differential velocity peaks, the lower one associated with nitrogen scattering while the higher one with polar optical phonon emission accounting for the nonparabolicity effect. In the second model one negative differential velocity peak is observed associated with polar optical phonon emission. Good agreement with experimental low field mobility is obtained from the first model. We also comment on the results from both Models when the intervalley Г → L transfer is accounted for.

  7. Corrosion and Corrosion-Fatigue Behavior of 7075 Aluminum Alloys Studied by In Situ X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Stannard, Tyler

    7XXX Aluminum alloys have high strength to weight ratio and low cost. They are used in many critical structural applications including automotive and aerospace components. These applications frequently subject the alloys to static and cyclic loading in service. Additionally, the alloys are often subjected to aggressive corrosive environments such as saltwater spray. These chemical and mechanical exposures have been known to cause premature failure in critical applications. Hence, the microstructural behavior of the alloys under combined chemical attack and mechanical loading must be characterized further. Most studies to date have analyzed the microstructure of the 7XXX alloys using two dimensional (2D) techniques. While 2D studies yield valuable insights about the properties of the alloys, they do not provide sufficiently accurate results because the microstructure is three dimensional and hence its response to external stimuli is also three dimensional (3D). Relevant features of the alloys include the grains, subgrains, intermetallic inclusion particles, and intermetallic precipitate particles. The effects of microstructural features on corrosion pitting and corrosion fatigue of aluminum alloys has primarily been studied using 2D techniques such as scanning electron microscopy (SEM) surface analysis along with post-mortem SEM fracture surface analysis to estimate the corrosion pit size and fatigue crack initiation site. These studies often limited the corrosion-fatigue testing to samples in air or specialized solutions, because samples tested in NaCl solution typically have fracture surfaces covered in corrosion product. Recent technological advancements allow observation of the microstructure, corrosion and crack behavior of aluminum alloys in solution in three dimensions over time (4D). In situ synchrotron X-Ray microtomography was used to analyze the corrosion and cracking behavior of the alloy in four dimensions to elucidate crack initiation at corrosion pits

  8. Study on the Anti-Poison Performance of Al–Y–P Master Alloy for Impurity Ca in Aluminum Alloys

    PubMed Central

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-01-01

    In this article, the anti-poison performance of novel Al–6Y–2P master alloy for impurity Ca in hypereutectic Al–Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al–6Y–2P master alloy, types of Al–xSi–2Ca–3Y–1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al–2Ca–3Y–1P alloy. With the increase of Si content in Al–xSi–2Ca–3Y–1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al–6Y–2P master alloy for hypereutectic Al–18Si alloys. PMID:29186862

  9. Study on the Anti-Poison Performance of Al-Y-P Master Alloy for Impurity Ca in Aluminum Alloys.

    PubMed

    Zuo, Min; Dong, Yu; Zhao, Degang; Wang, Yan; Teng, Xinying

    2017-11-26

    In this article, the anti-poison performance of novel Al-6Y-2P master alloy for impurity Ca in hypereutectic Al-Si alloys was investigated in detail. According to the microstructural analysis, it can be found that the primary Si and eutectic Si particles could be relatively modified and refined. In order to investigate the influence mechanism of Ca on the limited refinement performance of Al-6Y-2P master alloy, types of Al-xSi-2Ca-3Y-1P (x = 0, 6, 12, 18, and 30) alloys were prepared. It is observed that Ca takes the form of more stable Ca3P2 compounds by reacting with YP, and the surface of Ca3P2 particles are unsmooth, and even some have wrinkles in Al Al-2Ca-3Y-1P alloy. With the increase of Si content in Al-xSi-2Ca-3Y-1P (x = 6, 12, 18 and 30) systems, the multi-encapsulation structures, i.e., the phosphide (AlP and YP), hexagonal Al2Si2Ca, the Al3Si2Y2 or primary Si from inside to outside in order were examined.The excapsulation of YP and AlP caused by Al2Si2Ca might be the reason for the limited refinement effect of Al-6Y-2P master alloy for hypereutectic Al-18Si alloys.

  10. In situ Growth of NixCu1-x Alloy Nanocatalysts on Redox-reversible Rutile (Nb,Ti)O4 Towards High-Temperature Carbon Dioxide Electrolysis

    PubMed Central

    Wei, Haoshan; Xie, Kui; Zhang, Jun; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Cui, Jiewu; Yan, Jian; Wu, Yucheng

    2014-01-01

    In this paper, we report the in situ growth of NixCu1-x (x = 0, 0.25, 0.50, 0.75 and 1.0) alloy catalysts to anchor and decorate a redox-reversible Nb1.33Ti0.67O4 ceramic substrate with the aim of tailoring the electrocatalytic activity of the composite materials through direct exsolution of metal particles from the crystal lattice of a ceramic oxide in a reducing atmosphere at high temperatures. Combined analysis using XRD, SEM, EDS, TGA, TEM and XPS confirmed the completely reversible exsolution/dissolution of the NixCu1-x alloy particles during the redox cycling treatments. TEM results revealed that the alloy particles were exsolved to anchor onto the surface of highly electronically conducting Nb1.33Ti0.67O4 in the form of heterojunctions. The electrical properties of the nanosized NixCu1-x/Nb1.33Ti0.67O4 were systematically investigated and correlated to the electrochemical performance of the composite electrodes. A strong dependence of the improved electrode activity on the alloy compositions was observed in reducing atmospheres at high temperatures. Direct electrolysis of CO2 at the NixCu1-x/Nb1.33Ti0.67O4 composite cathodes was investigated in solid-oxide electrolysers. The CO2 splitting rates were observed to be positively correlated with the Ni composition; however, the Ni0.75Cu0.25 combined the advantages of metallic nickel and copper and therefore maximised the current efficiencies. PMID:24889679

  11. Construction of the 40x80 Foot Wind Tunnel at Ames.

    NASA Image and Video Library

    1943-07-07

    Looking South from inside the diffuser of the 40x80 foot wind tunnel at NACA's Ames Research Center. Construction began in late 1941, the mammoth construction task sorely taxing the resources of the new center. Two and a half years later, in dune 1944, the 40 x 80-foot full-scale tunnel went into operation.

  12. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  13. Isothermal and cyclic oxidation at 1000 and 1100 deg C of four nickel-base alloys: NASA-TRW VIA, B-1900, 713C, and 738X

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Santoro, G. J.; Lowell, C. E.

    1973-01-01

    The isothermal and cyclic oxidation resistance of four cast Ni-base gamma + gamma prime alloys, NASA-TRW Via, B-1900, 713C, and 738X, was determined in still air at 1000 and 1100 C. The oxidation process was evaluated by specific sample weight change with time, sample thickness change, X-ray diffraction of the scales, and sample metallography. The behavior is discussed in terms of the Cr, Al, and refractory metal contents of the alloys.

  14. Studies of surface modified NiTi alloy

    NASA Astrophysics Data System (ADS)

    Shevchenko, N.; Pham, M.-T.; Maitz, M. F.

    2004-07-01

    A corrosion resistant and nickel free surface on NiTi (nitinol) for biomedical applications should be produced by ion implantation. Ar + and/or N + implantation in NiTi alloy was performed at energies of 20-40 keV and fluences of (3-5) × 10 17 cm -2 by means of plasma immersion ion implantation. The modification of the NiTi alloy and its biocompatibility properties were studied. The near surface layers were analysed by Auger electron spectroscopy (AES), grazing incidence X-ray diffraction (GIXRD) and cell culture tests, and electrochemical corrosion analysis of these layers was performed. A nickel depleted surface layer is produced by the implantation, which was sealed by the formation of TiN or Ti oxide layers at the different implantation regimes, respectively. No differences in biocompatibility were seen on the modified compared with the initial surfaces. The corrosion stability increased by this treatment.

  15. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  16. Nanocrystalline Fe/Zr alloys: preparation by using mechanical alloying and mechanical milling processes

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.

    2011-11-01

    Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.

  17. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  18. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  20. Raman Scattering Signature of a Localized-to-Delocalized Transition at the Inception of a Dilute Abnormal GaAs1-xNx Alloy

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej V.; Mascarenhas, Angelo

    2013-05-01

    We identify the signature of a localized-to-delocalized transition in the resonant Raman scattering spectra from GaAs1-xNx. Our measurements in the ultradilute nitrogen doping concentrations demonstrate an energy shift in the line width resonance of the LO phonon. With decreasing nitrogen concentration, the EW line width resonance energy reduces abruptly by ca. 47 meV at x≈0.35%. This value corresponds to the concentration at which GaAs1-xNx has been recently shown to transition from an impurity regime to an alloy regime. Our study elucidates the evolution of dilute abnormal alloys and their Raman response.

  1. The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films.

    PubMed

    Zhao, J T; Zhang, J Y; Hou, Z Q; Wu, K; Feng, X B; Liu, G; Sun, J

    2018-05-11

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu-W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C-600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu-W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu-W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu-W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu-W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu-W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  2. The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Zhang, J. Y.; Hou, Z. Q.; Wu, K.; Feng, X. B.; Liu, G.; Sun, J.

    2018-05-01

    In order to achieve desired mechanical properties of alloys by manipulating grain boundaries (GBs) via solute decoration, it is of great significance to understand the underlying mechanisms of microstructural evolution and plastic deformation. In this work, nanocrystalline (NC) Cu–W alloyed films with W concentrations spanning from 0 to 40 at% were prepared by using magnetron sputtering. Thermal stability (within the temperature range of 200 °C–600 °C) and hardness of the films were investigated by using the x-ray diffraction, transmission electron microscope (TEM) and nanoindentation, respectively. The NC pure Cu film exhibited substantial grain growth upon all annealing temperatures. The Cu–W alloyed films, however, displayed distinct microstructural evolution that depended not only on the W concentration but also on the annealing temperature. At a low temperature of 200 °C, all the Cu–W alloyed films were highly stable, with unconspicuous change in grain sizes. At high temperatures of 400 °C and 600 °C, the microstructural evolution was greatly controlled by the W concentrations. The Cu–W films with low W concentration manifested abnormal grain growth (AGG), while the ones with high W concentrations showed phase separation. TEM observations unveiled that the AGG in the Cu–W alloyed thin films was rationalized by GB migration. Nanoindentation results showed that, although the hardness of both the as-deposited and annealed Cu–W alloyed thin films monotonically increased with W concentrations, a transition from annealing hardening to annealing softening was interestingly observed at the critical W addition of ∼25 at%. It was further revealed that an enhanced GB segregation associated with detwinning was responsible for the annealing hardening, while a reduced solid solution hardening for the annealing softening.

  3. Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys

    NASA Astrophysics Data System (ADS)

    Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet

    2018-05-01

    The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.

  4. Surface characterization of U(AlxSi1-x)3 alloy and its interaction with O2 and H2O, at room temperature

    NASA Astrophysics Data System (ADS)

    Matmor, M.; Cohen, S.; Rafailov, G.; Vaknin, M.; Shamir, N.; Gouder, T.; Zalkind, S.

    2018-02-01

    Surface characterization and the interactions of U(AlxSi1-x)3 alloy (x = 0.57) with oxygen and water vapor were studied, utilizing X-Ray Photoelectron Spectroscopy and Direct Recoil Spectrometry, at room temperature. The U 4f spectrum of U(AlxSi1-x)3 alloy exhibits weak correlation satellites, suggesting an itinerant description of the U 5f states for this compound. The Al and Si 2p lines are chemically shifted to lower binding energies. Exposing the alloy to oxygen and water vapor results in oxidation of mainly the uranium and aluminum components, while silicon is only slightly oxidized. Oxygen was found to be a stronger oxidizer than water vapor and the trend is consistent with the more negative enthalpies of formation of metal oxides produced by the O2 reaction, as compared to H2O. During oxygen exposure, fast oxidation occurs by oxide islands nucleation and lateral growth, followed by oxidation of the sub-surface, up to ∼4 nm, at 1000 L exposure. Water initially reacts with the surface by full dissociation and oxide islands formation, which is then covered by hydroxides. Only a minor increase in the oxide thickness of up to ∼2.5 nm, was observed after coalescence.

  5. Synthesis of colloidal Zn(Te,Se) alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Asano, H.; Arai, K.; Kita, M.; Omata, T.

    2017-10-01

    Colloidal Zn(Te1-x Se x ) quantum dots (QDs), which are highly mismatched semiconductor alloys, were synthesized by the hot injection of an organometallic solution, and the composition and size dependence of their optical gap were studied together with the theoretical calculation using the finite-depth-well effective mass approximation. The optical gaps exhibited considerable negative deviation from the mole fraction weighted mean optical gaps of ZnTe and ZnSe, i.e. a large optical gap bowing was observed, similar to the bulk and thin-film alloys. The composition and size dependence of optical gaps agreed well with theoretically calculated ones employing a bowing parameter similar to that of the bulk alloys; therefore, the extent of the optical gap bowing in these alloy QDs is concluded to be the same as that in bulk and thin-film alloys. The optical gaps of Zn(Te1-x Se x ) QDs with diameters of 3.5-5 nm, where x ~ 0.35, were close to the energy corresponding to green light, indicating that those QDs are very promising as green QD-phosphors.

  6. Structural and magnetic properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si Heusler alloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftab, M.; Department of Physics, Quaid-i-Azam University, Islamabad; Hassnain Jaffari, G.

    2011-09-01

    We present the structural, magnetic, and transport properties of quaternary Co{sub 2}Mn{sub 1-x}Cr{sub x}Si (0 {<=} x {<=} 1) Heusler alloy thin films prepared by DC magnetron sputtering on commercially available glass substrates without any buffer layer. Recent theoretical calculations have shown the compositions to be half-metallic. XRD patterns show the presence of L2{sub 1} structure in the films for x = 0, however, the peaks intensities are not in accordance with the literature. High resolution transmission electron microscopy images of films show granular morphologies, crystalline growth, and an ordered L2{sub 1} structure for x {<=} 0.6. For higher Crmore » concentrations, secondary phases start to appear in the films. Magnetization measurements as a function of applied magnetic field show that the saturation moments for x {<=} 0.2 follow the Slater-Pauling rule, however, for 0.2 < x {<=} 0.6 the saturation moments fall short of the theoretically predicted values. Transport measurements at room temperature show a monotonic increase in resistivity with increasing Cr concentration. These results are explained in terms of texturing effects, Co-Cr antisite disorder, presence of secondary phases, and the amount of disorder present in the films.« less

  7. X-ray and neutron diffraction anomalies preceding martensitic phase transformation in AuCuZn2 alloys

    NASA Astrophysics Data System (ADS)

    Nagasawa, A.; Makita, T.; Nakanishi, N.; Iizumi, M.; Morii, Y.

    1988-04-01

    The present paper gives the results obtained by the X-ray and neutron diffraction studies on the single crystals of the beta-1 AuCuZn2 alloys. As precursor phenomena, the dispersion relation of the [110] TA1 phonon exhibits significant dip near 2/3 [110] q max position and anomalous peaks appear around 1/3 and 2/3 [110] q max positions. Characteristics of the interplanar force constants, obtained by the analysis of the dispersion relation, and the positions of the anomalous peaks predict the martensite structures to be formed in the beta phase alloys. In the present case, both the 6R and 18R martensites will be formed by cooling and/or under the stress field.

  8. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  9. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  10. Non-destructive identification of unknown minor phases in polycrystalline bulk alloys using three-dimensional X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yiming, E-mail: yangyiming1988@outlook.com

    Minor phases make considerable contributions to the mechanical and physical properties of metals and alloys. Unfortunately, it is difficult to identify unknown minor phases in a bulk polycrystalline material using conventional metallographic methods. Here, a non-destructive method based on three-dimensional X-ray diffraction (3DXRD) is developed to solve this problem. Simulation results demonstrate that this method is simultaneously able to identify minor phase grains and reveal their positions, orientations and sizes within bulk alloys. According to systematic simulations, the 3DXRD method is practicable for an extensive sample set, including polycrystalline alloys with hexagonal, orthorhombic and cubic minor phases. Experiments were alsomore » conducted to confirm the simulation results. The results for a bulk sample of aluminum alloy AA6061 show that the crystal grains of an unexpected γ-Fe (austenite) phase can be identified, three-dimensionally and nondestructively. Therefore, we conclude that the 3DXRD method is a powerful tool for the identification of unknown minor phases in bulk alloys belonging to a variety of crystal systems. This method also has the potential to be used for in situ observations of the effects of minor phases on the crystallographic behaviors of alloys. - Highlights: •A method based on 3DXRD is developed for identification of unknown minor phase. •Grain position, orientation and size, is simultaneously acquired. •A systematic simulation demonstrated the applicability of the proposed method. •Experimental results on a AA6061 sample confirmed the practicability of the method.« less

  11. Characterization of Al-ALLOYS (50xx) by Using Positron Annihilation, X-Ray Diffraction and Vibrating Reed Techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.

    A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.

  12. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURE AND AC MAGNETIC PROPERTIES OF Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1.0, 1.5, 2.0) NANOCRYSTALLINE SOFT MAGNETIC ALLOYS

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.

  13. Improved thermoelectric properties of Bi2Te3-xSex alloys by melt spinning and resistance pressing sintering

    NASA Astrophysics Data System (ADS)

    Cai, Xinzhi; Fan, Xi'an; Rong, Zhenzhou; Yang, Fan; Gan, Zhanghua; Li, Guangqiang

    2014-03-01

    Starting from bismuth, tellurium and selenium chunks, n-type Bi2Te3-xSex (x ⩽ 0.3) alloys were obtained by melt spinning (MS) combined with a resistance pressing sintering (RPS) process. The phases, microstructures and compositions of the samples were evaluated by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive x-ray spectroscopy during each step in the preparation process, respectively. The influences of Se doping, MS and RPS processes on the thermoelectric (TE) properties of Bi2Te3-xSex alloys were investigated in detail. The Bi2Te3-xSex powders could be well compacted by the RPS process and the relative densities of the bulks prepared by RPS were all higher than 96%. The partially oriented lamellar structure could be observed at some regions of the samples prepared by RPS, and the monolayer thickness of the lamellar structure in the MS-RPS samples was smaller than that in the smelting-RPS sample. The MS process was confirmed as an excellent method to obtain fine microstructures and low lattice thermal conductivity for the TE materials. All evidence about electrical and thermal transport properties suggested that suitably increasing the Se content could effectively improve the ZT value. The maximum ZT value of 0.84 was obtained for the Bi2Te2.7Se0.3 prepared by MS-RPS at 423 K. As opposed to the conventional hot pressing and spark plasma sintering, the RPS method introduced here is more suitable for practical industrial application due to its cost saving and high efficiency.

  14. Improved Mo-Re VPS Alloys for High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Martin, James; McKechnie, Timothy; O'Dell, John Scott

    2011-01-01

    Dispersion-strengthened molybdenum- rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications. The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion- strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 m, ZrO2 particles having sizes of about 1 m, HfO2 particles having sizes <45 m, or HfN particles having sizes <1 m. These materials were chosen for evaluation on the basis of previously published thermodynamic stability data. For comparison, Mo-Re feedstock powders without dispersoids were also prepared.

  15. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  16. Thermomechanical deformation behavior of a dynamic strain aging alloy, Hastelloy X

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Miner, Robert V.; Robinson, David N.

    1992-01-01

    An experimental study was performed to identify the effects of dynamic strain aging (solute drag) and metallurgical instabilities under thermomechanical loading conditions. The study involved a series of closely controlled thermomechanical deformation tests on the solid-solution-strenghened nickel-base superalloy, Hastelloy X. This alloy exhibits a strong isothermal strain aging peak at approximately 600 C, promoted by the effects of solute drag and precipitation hardening. Macroscopic thermomechanical hardening trends are correlated with microstructural characteristics through the use of transmission electron microscopy. These observations are compared and contrasted with isothermal conditions. Thermomechanical behavior unique to the isothermal database is identified and discussed. The microstructural characteristics were shown to be dominated by effects associated with the highest temperature of the thermomechanical cycle. Results indicate that the deformation behavior of Hastelloy X is thermomechanically path dependent. In addition, guidance is given pertaining to deformation modeling in the context of macroscopic unified theory. An internal state variable is formulated to qualitatively reflect the isotropic hardening trends identified in the TMD experiments.

  17. Peculiarities of structure formation of layered metal-oxide system Ti-Ta-(Ti,Ta)xOy during electro-spark alloying and thermally stimulated modification

    NASA Astrophysics Data System (ADS)

    Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Skaptsov, Aleksandr A.; Zakharevich, Andrey M.; Aman, Alexander; Oseev, Aleksandr; Hirsch, Soeren; Majcherek, Soeren

    2016-04-01

    The study focuses on high-performance combined electro-spark alloying of titanium and titanium alloy (VT1-0, VT16) surface and porous matrix structure oxidation. The metal-oxide coatings morphology is the result of melt drop transfer, heat treatment, and oxidation. The study establishes the influence of technological regimes of alloying and oxidation on morphological heterogeneity of biocompatible layered metal-oxide system Ti-Ta-(Ti,Ta)xOy. It was found that during electro-spark alloying the concentration of tantalum on the titanium surface ranges from 0.1 to 3.2 at.%. Morphology of the deposited splats is represented by uniformly grown crystals of titanium and tantalum oxides, which increase from nano- to submicron size.

  18. Multicomponent homogeneous alloys and method for making same

    DOEpatents

    Dutta, Partha S.; Miller, Thomas R.

    2003-09-02

    The present application discloses a method for preparing a homogeneous ternary or quaternary alloy from a quaternary melt. The method includes providing a family of phase diagrams for the quaternary melt which shows (i) composition/temperature data, (ii) tie lines connecting equilibrium liquid and solid compositions, and (iii) isotherms representing boundaries of a miscibility gap. Based on the family of phase diagrams, a quaternary melt composition and an alloy growth temperature is selected. A quaternary melt having the selected quaternary melt composition is provided and a ternary or quaternary alloy is grown from the quaternary melt at the selected alloy growth temperature. A method for making homogeneous ternary or quaternary alloy from a ternary or quaternary melt is also disclosed, as are homogeneous quaternary single-crystal alloys which are substantially free from crystal defects and which have the formula A.sub.x B.sub.1-x C.sub.y D.sub.1-y, x and y being the same or different and in the range of 0.001 to 0.999.

  19. Doping of AlxGa1-xN

    NASA Astrophysics Data System (ADS)

    Stampfl, C.; Van de Walle, Chris G.

    1998-01-01

    N-type AlxGa1-xN exhibits a dramatic decrease in the free-carrier concentration for x⩾0.40. Based on first-principles calculations, we propose that two effects are responsible for this behavior: (i) in the case of doping with oxygen (the most common unintentional donor), a DX transition occurs, which converts the shallow donor into a deep level; and (ii) compensation by the cation vacancy (VGa or VAl), a triple acceptor, increases with alloy composition x. For p-type doping, the calculations indicate that the doping efficiency decreases due to compensation by the nitrogen vacancy. In addition, an increase in the acceptor ionization energy is found with increasing x.

  20. Characterizing Semiconductor Alloys for Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Lehoczky, B. S. L.; Szofran, F. R.; Martin, B. G.

    1986-01-01

    Report presents results of continuing program aimed at characterizing mercury/cadmium/tellurium alloys and eventually developing improved methods of preparing alloys for use as infrared sensors. Work covered by report includes series of differential thermal analysis (DTA) measurements of alloy compositions with x varied from 9 to 1 in 0.1 increments.

  1. Structural and dynamical properties of Bridgman-grown CdSexTe1-x (0alloys

    NASA Astrophysics Data System (ADS)

    Talwar, Devki N.; Feng, Zhe Chuan; Lee, Jyh-Fu; Becla, P.

    2013-04-01

    Measurements of the Raman scattering and extended x-ray-absorption fine-structure (EXAFS) spectroscopy are reported on a series of Bridgman-grown zinc-blende CdTe1-xSex (0.35 ≥ x > 0.05) ternary alloys to empathize their lattice dynamical and structural properties. Low-temperature Raman spectra have revealed the classic CdTe-like (TO1, LO1) and CdSe-like (TO2, LO2) pairs of optical phonons. The composition-dependent peak positions of the LO2 modes exhibited shifts towards the higher-energy side, while those of the LO1 phonon frequencies have unveiled the slight redshifts. Detailed analyses of EXAFS data by using the first-principles bond orbital model have enabled us to estimate both the lattice relaxations and nearest-neighbor radial force constants around the Se/Te atoms in the CdTe/CdSe matrix. These results are methodically integrated in the “average t-matrix” formalism within the Green's-function theory for defining the impurity perturbations to comprehend the composition-dependent optical phonons in CdTe1-xSex alloys. Based on our comprehensive calculations of impurity modes in the low-composition regime x→ 0, we have assigned the weak phonon feature observed near ˜175 cm-1 in the low-temperature infrared reflectivity spectroscopy study to a SeTe localized vibrational mode.

  2. Direct Observation of Inherent Atomic-Scale Defect Disorders responsible for High-Performance Ti1-x Hfx NiSn1-y Sby Half-Heusler Thermoelectric Alloys.

    PubMed

    Kim, Ki Sung; Kim, Young-Min; Mun, Hyeona; Kim, Jisoo; Park, Jucheol; Borisevich, Albina Y; Lee, Kyu Hyoung; Kim, Sung Wng

    2017-09-01

    Structural defects often dominate the electronic- and thermal-transport properties of thermoelectric (TE) materials and are thus a central ingredient for improving their performance. However, understanding the relationship between TE performance and the disordered atomic defects that are generally inherent in nanostructured alloys remains a challenge. Herein, the use of scanning transmission electron microscopy to visualize atomic defects directly is described and disordered atomic-scale defects are demonstrated to be responsible for the enhancement of TE performance in nanostructured Ti 1- x Hf x NiSn 1- y Sb y half-Heusler alloys. The disordered defects at all atomic sites induce a local composition fluctuation, effectively scattering phonons and improving the power factor. It is observed that the Ni interstitial and Ti,Hf/Sn antisite defects are collectively formed, leading to significant atomic disorder that causes the additional reduction of lattice thermal conductivity. The Ti 1- x Hf x NiSn 1- y Sb y alloys containing inherent atomic-scale defect disorders are produced in one hour by a newly developed process of temperature-regulated rapid solidification followed by sintering. The collective atomic-scale defect disorder improves the zT to 1.09 ± 0.12 at 800 K for the Ti 0.5 Hf 0.5 NiSn 0.98 Sb 0.02 alloy. These results provide a promising avenue for improving the TE performance of state-of-the-art materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetic and magnetocaloric properties of Co2-xFexVGa Heusler alloys

    NASA Astrophysics Data System (ADS)

    Schroeder, K.; Waybright, J.; Kharel, P.; Zhang, W.; Valloppilly, S.; Herran, J.; Lukashev, P.; Huh, Y.; Skomski, R.; Sellmyer, D. J.

    2018-05-01

    The magnetic and magnetocaloric properties of iron-substituted Co2VGa alloys, Co2-xFexVGa (x = 0, 0.1, 0.15, 0.2, 0.3), were investigated. The Fe-substituted samples, prepared by arc melting, melt spinning, and annealing, crystallized in the L21 Heusler structure, without any secondary phases. The Curie temperature and high-field magnetization at 50 K decreased from 345 K and 44 emu/g (1.90 μB/f.u.) for Co2VGa to 275 K and 39 emu/g (1.66 μB/f.u.) for Co1.7Fe0.3VGa, respectively, but the maximum entropy change remained almost insensitive to Fe concentration for x ≤ 0.2, the highest value being 3.3 J/kgK at 7 T for Co1.85Fe0.15VGa. First-principle calculations show that Co2VGa retains its half-metallic band structure until at least 30% of the cobalt atoms are replaced by Fe atoms. The wide operating temperature window near room temperature and the lack of thermal and magnetic hysteresis are the interesting features of these materials for application in room-temperature magnetic refrigeration.

  4. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  5. Probing He bubbles in naturally aged and annealed δ-Pu alloys using ultra-small-angle x-ray scattering

    DOE PAGES

    Jeffries, J. R.; Hammons, J. A.; Willey, T. M.; ...

    2017-10-31

    We report the self-irradiation of Pu alloys generates He that is trapped within the metal matrix in the form of He bubbles. The distribution of these He bubbles in δ-phase Pu-Ga alloys exhibits a peak near a radius of 0.7 nm, and this size is remarkably stable as function of time. When annealed, the He bubbles in δ-Pu alloys grow, coarsening the distribution. However, the magnitude of this coarsening is uncertain, as different experimental methods reveal bubbles that differ by at least one order of magnitude. Small-angle x-ray scattering results, which can probe a wide range of bubble sizes, implymore » only a mild coarsening of the He bubble distribution for an annealing treatment of 425 °C for 24 h, and analysis of the He bubble content suggests that He is actually lost from the bubbles with annealing.« less

  6. Microstructure and phase composition of hypoeutectic Te-Bi alloy as evaporation source for photoelectric cathode

    NASA Astrophysics Data System (ADS)

    Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai

    2018-05-01

    A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.

  7. Bond strength of luting cement to casting and soldering alloy.

    PubMed

    Kumbuloglu, O; Lassila, L V J; User, A; Toksavul, S; Vallittu, P K

    2006-03-01

    Adjustment of metal alloy framework of the porcelain-fused-to-metal crown by soldering minor marginal deficiences prior insertion may sometimes be needed. The aim of this study was to compare shear bond strengths of four luting cements to casting metal alloy and soldering metal alloy. A total of 64 flame cast non-precious metal alloy and flame soldered metal alloy samples were used. Durelon, Panavia F, RelyX Unicem Applicap and RelyX ARC stubs were bonded to the alloy substrate surface. After stored in water at 37 degrees C for 1 week, shear bond strength of the cement to the alloy was measured. Differences were analyzed using one way ANOVA (p<0.05). There were no difference between the cast metal alloy and soldering metal alloy substrate.

  8. Crystal nucleation in metallic alloys using x-ray radiography and machine learning

    PubMed Central

    Arteta, Carlos; Lempitsky, Victor

    2018-01-01

    The crystallization of solidifying Al-Cu alloys over a wide range of conditions was studied in situ by synchrotron x-ray radiography, and the data were analyzed using a computer vision algorithm trained using machine learning. The effect of cooling rate and solute concentration on nucleation undercooling, crystal formation rate, and crystal growth rate was measured automatically for thousands of separate crystals, which was impossible to achieve manually. Nucleation undercooling distributions confirmed the efficiency of extrinsic grain refiners and gave support to the widely assumed free growth model of heterogeneous nucleation. We show that crystallization occurred in temporal and spatial bursts associated with a solute-suppressed nucleation zone. PMID:29662954

  9. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations

    PubMed Central

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-01-01

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction. PMID:27466045

  10. Identification of a cast iron alloy containing nonstrategic elements

    NASA Technical Reports Server (NTRS)

    Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.

    1989-01-01

    A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.

  11. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni 50–xCo xMn₄₀Sn₁₀ alloys

    DOE PAGES

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...

    2012-04-27

    The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  12. Anisotropy induced anomalies in Dy 1$-$xTb xAl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M.; Miami Univ., Oxford, OH; Pathak, A. K.

    2017-01-02

    The Dy 1$-$xTb xAl 2 alloys have been investigated by X-ray powder diffraction, heat capacity, and magnetic measurements. All samples exhibit cubic Laves phase crystal structure at room temperature but at T C, DyAl2 and TbAl 2 show tetragonal and rhombohedral distortions, respectively. First order phase transitions are observed below T C (at the spin-reorientation transition, T SR) in the alloys with 0.15 ≤ x ≤ 0.35. These transitions are signified by sharp heat capacity peaks and corresponding anomalies in the magnetization and ac magnetic susceptibility data. The observations are interpreted by taking into consideration the differences in easy magnetizationmore » directions of DyAl 2 and TbAl 2. Due to the competing magnetic structures, the anisotropy-related instability and magnetic frustrations are prominent in the Dy 1$-$xTb xAl 2 alloys at certain concentrations resulting in the first order transitions.« less

  13. Structural, electronic, magnetic and thermodynamic properties of Ni1-xTixO alloys an ab initio calculation and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.

    2018-06-01

    Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.

  14. Rationally Controlled Synthesis of CdSexTe1-x Alloy Nanocrystals and Their Application in Efficient Graded Bandgap Solar Cells.

    PubMed

    Wen, Shiya; Li, Miaozi; Yang, Junyu; Mei, Xianglin; Wu, Bin; Liu, Xiaolin; Heng, Jingxuan; Qin, Donghuan; Hou, Lintao; Xu, Wei; Wang, Dan

    2017-11-08

    CdSe x Te 1-x semiconductor nanocrystals (NCs), being rod-shaped/irregular dot-shaped in morphology, have been fabricated via a simple hot-injection method. The NCs composition is well controlled through varying molar ratios of Se to Te precursors. Through changing the composition of the CdSe x Te 1-x NCs, the spectral absorption of the NC thin film between 570-800 nm is proved to be tunable. It is shown that the bandgap of homogeneously alloyed CdSe x Te 1-x active thin film is nonlinearly correlated with the different compositions, which is perceived as optical bowing. The solar cell devices based on CdSe x Te 1-x NCs with the structure of ITO/ZnO/CdSe/CdSe x Te 1-x /MoO x /Au and the graded bandgap ITO/ZnO/CdSe( w / o )/CdSe x Te 1-x /CdTe/MoO x /Au are systematically evaluated. It was found that the performance of solar cells degrades almost linearly with the increase of alloy NC film thickness with respect to ITO/ZnO/CdSe/CdSe 0.2 Te 0.8 /MoO x /Au. From another perspective, in terms of the graded bandgap structure of ITO/ZnO/CdSe/CdSe x Te 1-x /CdTe/MoO x /Au, the performance is improved in contrast with its single-junction analogues. The graded bandgap structure is proved to be efficient when absorbing spectrum and the solar cells fabricated under the structure of ITO/ZnO/CdSe 0.8 Te 0.2 /CdSe 0.2 Te 0.8 /CdTe/MoO x /Au indicate power conversion efficiency (PCE) of 6.37%, a value among the highest for solution-processed inversely-structured CdSe x Te 1-x NC solar cells. As the NC solar cells are solution-processed under environmental conditions, they are promising for fabricating solar cells at low cost, roll by roll and in large area.

  15. X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Murashkin, M. Yu; Khasanov, M. R.; Kasatkin, I. A.; Chizhov, P. S.; Bobruk, E. V.

    2014-08-01

    Recently it has been established that during high pressure torsion dynamic aging takes place in aluminum Al-Mg-Si alloys resulting in formation of nanosized particles of strengthening phases in the aluminum matrix, which greatly improves the electrical conductivity and strength properties. In the present paper structural characterization of ultrafine-grained (UFG) samples of aluminum 6201 alloy produced by severe plastic deformation (SPD) was performed using X-ray diffraction analysis. As a result, structure features (lattice parameter, size of coherent scattering domains) after dynamic aging of UFG samples were determined. The size and distribution of second- phase particles in the Al matrix were assessed with regard to HPT regimes. Impact of the size and distribution of the formed secondary phases on the strength, ductility and electrical conductivity is discussed.

  16. Mechanical properties and grindability of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  17. Synthesis and Characterization of TiNi1+xSn Thermoelectric Alloys

    NASA Astrophysics Data System (ADS)

    Young, Jacob Steele

    Thermoelectric materials, a unique semiconductor-like class of materials, can convert waste heat into electricity and vice versa. An investigation into the synthesis and characterization of half-Heusler TiNi1+xSn alloys was conducted. An arc-melting and annealing procedure was conducted to achieve the desired phase equilibrium. Additional Ni was added as an interstitial dopant to form a small amount of full-Heusler TiNi2Sn phase, which has been seen to improve upon thermoelectric properties in the literature. Annealing time (0 to 21 days), annealing temperature (700 to 900 °C), and nickel content (x = 0, 0.15) were investigated as key synthesis parameters. Results illustrate that before annealing, many binary and ternary phases are present. The final phase distribution after annealing, a two-phase mixture containing TiNiSn and TiNi2Sn, was analyzed using XRD, SEM, EBSD, and EDS techniques. The electrical conductivity (1515 to 1618 S cm -1 from 30 to 340 °C), Seebeck coefficient (-25 to -53 microV K-1 from 30 to 414 °C), thermal conductivity (6.68 to 6.90 W m-1 K-1 from 318 to 414 °C), and thermoelectric figure of merit, ZT, (0.009 to 0.046 from 30 to 430 °C) of single phase TiNiSn using the arc-melting and annealing synthesis method was measured and compared to other methods found in literature. The lattice constants of TiNiSn and TiNi2Sn as a function of annealing time, annealing temperature, and composition were calculated based on XRD and deviated slightly from the ICDD standards due to Ni-defect behavior (TiNiSn: +0.04 to 0.47% deviation, TiNi2Sn: -0.09 to -0.40%). The activation energy for conduction (bandgap) of TiNiSn was derived from the measured electrical conductivity and was approximately 0 eV, implying a metallic conduction behavior. Optimum annealing conditions were determined in order to achieve phase equilibrium with minimum time (14 to 21 days) and temperature required (700 °C).

  18. Physical Properties of Liquid Fe-S Alloys at High Pressure

    NASA Astrophysics Data System (ADS)

    Antonangeli, D.; Morard, G.; Marret, A.; Prescher, C.; Boulard, E.; Mezouar, M.; Rivoldini, A.

    2016-12-01

    Sulfur is classically considered the dominant light element alloyed to iron in the core of small telluric planets such as Mercury and Mars. The expected pressure (P) and temperature (T) conditions are: P between 6 and 40 GPa and T between 1300 and 2300 K for Mercury's core and P between 24 and 42 GPa and T between 1800 and 2600 K for Mars'core. The presence of an internally generated magnetic field and the amplitude of its 88d libration support the liquid nature of a portion of Merury's core, and various independent lines of evident suggest that Mars's core has been liquid throughout its history. However, as only few experiments, mostly based on sink/float methods studied liquid Fe-S alloys, little is known about the physical properties at these P-T conditions, greatly limiting our capability to produce accurate planetary models. Here we present results of in-situ x-ray diffraction experiments on Fe-S liquids compressed in laser heated diamond anvil cell and of ex-situ electron microcopy analysis of the recovered samples. Our data allowed us to determine the evolution of the eutectic composition with pressure and to establish the eutectic melting curve up to 50 GPa. The x-ray diffuse signal from the liquid is analyzed to derive the density and compressibility of the Fe-S liquid alloys as a function of the S content.

  19. Strong Enhancement of the Spin Hall Effect by Spin Fluctuations near the Curie Point of FexPt1 -x Alloys

    NASA Astrophysics Data System (ADS)

    Ou, Yongxi; Ralph, D. C.; Buhrman, R. A.

    2018-03-01

    Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic FexPt1 -x alloys near their Curie point, tunable with x . This results in a dampinglike spin-orbit torque being exerted on an adjacent ferromagnetic layer that is strongly temperature dependent in this transition region, with a peak value that indicates a lower bound 0.34 ±0.02 for the peak spin Hall ratio within the FePt. We also observe a pronounced peak in the effective spin-mixing conductance of the FM /FePt interface, and determine the spin diffusion length in these FexPt1 -x alloys. These results establish new opportunities for fundamental studies of spin dynamics and transport in ferromagnetic systems with strong spin fluctuations, and a new pathway for efficiently generating strong spin currents for applications.

  20. Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications

    DOE PAGES

    Gomez-Vidal, Judith C.; Noel, John; Weber, Jacob

    2016-07-30

    Here, stainless steels (SS) 310, 321, 347, Incoloy 800H (In800H), alumina-forming austenitic (AFA-OC6), Ni superalloy Inconel 625 (IN625), and MCrAlX (M: Ni, and/or Co; X: Y, Hf, Si, and/or Ta) coatings were corroded in molten carbonates in N 2 and bone-dry CO 2 atmospheres. Electrochemical tests in molten eutectics K 2CO 3-Na 2CO 3 and Na 2CO 3-K 2CO 3-Li 2CO 3 at temperatures higher than 600 °C were evaluated using an open-circuit potential followed by a potentiodynamic polarization sweep to determine the corrosion rates. Because the best-performing alloys at 750 °C were In800H followed by SS310, these two alloysmore » were selected as the substrate material for the MCrAlX coatings. The coatings were able to mitigate corrosion in molten carbonates environments. The corrosion of substrates SS310 and In800H was reduced from ~2500 um/year to 34 um/year when coated with high-velocity oxyfuel (HVOF) NiCoCrAlHfSiY and pre-oxidized (air, 900 °C, 24 h, 0.5 °C/min) before molten carbonate exposure at 700 °C in bone-dry CO 2 atmosphere. Metallographic characterization of the corroded surfaces showed that the formation of a uniform alumina scale during the pre-oxidation seems to protect the alloy from the molten carbonate attack.« less

  1. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  2. Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires.

    PubMed

    Lei, Teng; Lai, Minliang; Kong, Qiao; Lu, Dylan; Lee, Woochul; Dou, Letian; Wu, Vincent; Yu, Yi; Yang, Peidong

    2018-06-13

    Alloying different semiconductors is a powerful approach to tuning the optical and electronic properties of semiconductor materials. In halide perovskites (ABX 3 ), alloys with different anions have been widely studied, and great band gap tunability in the visible range has been achieved. However, perovskite alloys with different cations at the "B" site are less understood due to the synthetic challenges. Herein, we first have developed the synthesis of single-crystalline CsPb x Sn 1- x I 3 nanowires (NWs). The electronic band gaps of CsPb x Sn 1- x I 3 NWs can be tuned from 1.3 to 1.78 eV by varying the Pb/Sn ratio, which leads to the tunable photoluminescence (PL) in the near-infrared range. More importantly, we found that the electrical conductivity increases as more Sn 2+ is alloyed with Pb 2+ , possibly due to the increase of charge carrier concentration when more Sn 2+ is introduced. The wide tunability of the optical and electronic properties makes CsPb x Sn 1- x I 3 alloy NWs promising candidates for future optoelectronic device applications.

  3. X-ray online detection for laser welding T-joint of Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  4. Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.

    NASA Astrophysics Data System (ADS)

    Liou, Sy-Hwang

    The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x < x(,c)) samples and the Fe-rich (x > x(,c)) samples have distinctive differences in (rho)(T) at low temperature

  5. Phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) cermet obtained by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Suryana, Anis, Muhammad; Manaf, Azwar

    2018-04-01

    In this paper, we report the phase and crystallite size analysis of (Ti1-xMox)C-(Ni,Cr) with x = 0-0.5 cermet obtained by mechanical alloying of Ti, Mo, Ni, Cr and C elemental powders using a high-energy shaker ball mill under wet condition for 10 hours. The process used toluene as process control agent and the ball to mass ratio was 10:1. The mechanically milled powder was then consolidated and subsequently heated at a temperature 850°C for 2 hours under an argon flow to prevent oxidation. The product was characterized by X-ray diffraction (XRD) and scanning electron microscope equipped with energy dispersive analyzer. Results shown that, by the selection of appropriate condition during the mechanical alloying process, a metastable Ti-Ni-Cr-C powders could be obtained. The powder then allowed the in situ synthesis of TiC-(Ni,Cr) cermet which took place during exposure time at a high temperature that applied in reactive sintering step. Addition to molybdenum has caused shifting the TiC XRD peaks to a slightly higher angle which indicated that molybdenum dissolved in TiC phase. The crystallite size distribution of TiC is discussed in the report, which showing that the mean size decreased with the addition of molybdenum.

  6. Quasi-thermodynamic analysis of MOVPE growth of Ga xAl yIn 1- x- yN

    NASA Astrophysics Data System (ADS)

    Lu, Da-Cheng; Duan, Shukun

    2002-01-01

    A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of Ga xAl yIn 1- x- yN alloys has been proposed. In view of the complex growth behavior of Ga xAl yIn 1- x- yN, we focus our attention on the gallium-rich quaternary alloys that are lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of Ga xAl yIn 1- x- yN alloy lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N.

  7. Engineering Group-IV Monochalcogenides by Doping and Alloying

    NASA Astrophysics Data System (ADS)

    Sirikumara, Hansika; Fitzpatrick, Trevor; Jayasekera, Thushari

    Group-IV monochalcogenides, MX (M=Sn,Ge and X=S,Se) have shown to be promising materials for thermoelectric and photovoltaic applications. These properties can be further engineered by substitutional doping and alloying. Using the results from ab initio Density Functional Theory calculations, we identified a series of new class of monochalcogenide alloys in the form Ge(1-x)SnxS, Ge(1-x)SnxSe, GeSxSe(1- x), SnSxSe(1-x). Stability of their two-dimensional counterparts will also be discussed in this presentation.

  8. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  9. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    NASA Astrophysics Data System (ADS)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  10. Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys

    NASA Astrophysics Data System (ADS)

    Li, R.; Stoica, M.; Liu, G.; Eckert, J.

    2010-07-01

    Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.

  11. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  12. Hydrogen absorption properties of Mg-Ni alloys prepared by bulk mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kuji, Toshiro

    2001-04-01

    The thermodynamic properties of the hydrides of Mg2-xNi (x=0-0.5) alloys produced by bulk mechanical alloying (BMA) were determined from pressure-composition (PC) isotherms for absorption over temperatures from 623 to 423 K. The vant Hoff plot for the plateau pressures of isotherms clearly indicated the existence of high and low temperature hydrides with different entropy and enthalpy for hydride formation. It was found that both the entropy and enthalpy values for the high temperature hydride were more negative than for the low temperature hydride. The phase transition temperature was 525 K for Mg2.0Ni and decreased while increasing the value of x. This allotropic transformation was well confirmed by in-situ XRD observations from RT to 673 K under hydrogen atmosphere or in vacuum.

  13. Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys

    NASA Astrophysics Data System (ADS)

    Jin, Moon-Seog; Kim, Chang-Dae; Jang, Kiwan; Park, Sang-An; Kim, Duck-Tae; Kim, Hyung-Gon; Kim, Wha-Tek

    2006-09-01

    Optical absorption spectra of substitutional Co2+ ions in Mgx Cd1-x Se alloys were investigated in the composition region of 0.0 x 0.4 and in the wavelength region of 300 to 2500 nm at 4.8 K and 290 K. We observed several absorption bands in the wavelength regions corresponding to the 4A2(4F) 4T1(4P) transition and the 4A2(4F) 4T1(4F) transition of Co2+ at a tetrahedral Td point symmetry point in the host crystals, as well as unknown absorption bands. The several absorption bands were analyzed in the framework of the crystal-field theory along with the second-order spin-orbit coupling. The unknown absorption bands were assigned as due to phonon-assisted absorption bands. We also investigated the variations of the crystal-field parameter Dq and the Racah parameter B with composition x in the Mgx Cd1-x Se system. The results showed that the crystal-field parameter (Dq ) increases, on the other hand, the Racah parameter (B ) decreases with increasing composition x, which may be connected with an increase in the covalency of the metal-ligand bond with increasing composition x in the Mgx Cd1-x Se system.

  14. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  15. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  16. Development of nanotopography during SIMS characterization of thin films of Ge1-xSnx alloy

    NASA Astrophysics Data System (ADS)

    Secchi, M.; Demenev, E.; Colaux, J. L.; Giubertoni, D.; Dell'Anna, R.; Iacob, E.; Gwilliam, R. M.; Jeynes, C.; Bersani, M.

    2015-11-01

    This work presents a study of application of secondary ion mass spectrometry (SIMS) to measure tin concentration in Ge1-xSnx alloy with x higher than solid solubility ∼1%, i.e. well above the diluted regime where SIMS measurements usually provide the most reliable quantitative results. SIMS analysis was performed on Sn+ ion implanted Ge films, epitaxially deposited on Si, and on chemical vapor deposition deposited Ge0.93Sn0.07 alloy. Three SIMS conditions were investigated, varying primary beam ion species and secondary ion polarity keeping 1 keV impact energy. Best depth profile accuracy, best agreement with the fluences measured by Rutherford backscattering spectrometry, good detection limit (∼1 × 1017 at/cm3) and depth resolution (∼2 nm/decade) are achieved in Cs+/SnCs+ configuration. However, applied sputtering conditions (Cs+ 1 keV, 64° incidence vs. normal) induced an early formation of surface topography on the crater bottom resulting in significant variation of sputtering yield. Atomic force microscopy shows a peculiar topography developed on Ge: for oblique incidence, a topography consisting in a sequence of dots and ripples was observed on the crater bottom. This behavior is unusual for grazing incidence and has been observed to increase with the Cs+ fluence. Rotating sample during sputtering prevents this ripple formation and consequently improves the depth accuracy.

  17. Gamma rays shielding parameters for white metal alloys

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  18. A Comparative Study on Dwell Fatigue of Ti-6Al-2Sn-4Zr- xMo ( x = 2 to 6) Alloys on a Microstructure-Normalized Basis

    NASA Astrophysics Data System (ADS)

    Qiu, Jianke; Ma, Yingjie; Lei, Jiafeng; Liu, Yuyin; Huang, Aijun; Rugg, David; Yang, Rui

    2014-12-01

    The dwell effects of Ti624 x ( x = 2 to 6) alloys, including dwell fatigue life debit, fracture mode and strain accumulation, were characterized and compared. With increasing Mo content, the dwell fatigue life debit decreases quickly, and dwell fatigue fracture exhibits a transition from subsurface to surface initiation. Accompanying these changes, the accumulated strain decreases, and the pattern of secondary cracks loses morphological features typical of dwell cracks. These variations in the fatigue behavior of Ti624 x were attributed on the fundamental level to the dual effects of Mo: It decreases the β transus of titanium and, as a slow diffuser, reduces the rate of phase transformation from β to α. A higher Mo content encourages nucleation of multiple variants of α laths and promotes the transition from aligned colonies to basketweave microstructure during cooling after β forging. As a result both the grain size and microtexture intensity of α grains in the two-phase processed and heat treated microstructure are reduced. Smaller grain size of the alloys with higher Mo content produces smaller slip band spacing and reduces accumulated strain during dwell fatigue, thus reducing propensity for crack initiation. Microtexture was shown to be the direct cause of dwell sensitivity, and their relationship was described with the aid of a two-region redistribution model based on a previous two-element redistribution model proposed by Bache.

  19. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    DTIC Science & Technology

    2013-11-01

    More recently, alloys using a variety of the rare earth elements have been developed. Typically, these alloys have shown significant improvements...in mechanical properties and to a lesser degree in corrosion performance. However, rare earth elements are often costly and heavier than Mg. Thus...1.0 0.004 Max — — Note: Fe = iron; RE = rare earth . SEM micrograph and energy-dispersive x-ray (EDX) results for selected alloys are shown in

  20. Evolution of Nano-structured Quasicrystals from Amorphous alloys

    NASA Astrophysics Data System (ADS)

    Xing, L. Q.; Kelton, K. F.

    2002-03-01

    Ta shows a significant effect on the precipitation of quasicrystals in (Zr_1-xTa_x)_64Cu_18Ni_8Al_10 amorphous alloys. The amorphous alloy made without Ta forms precipitates of tetragonal Zr_2Cu primary phases upon annealing. The addition of a small amount of Ta ( ~ 3 at%) to the alloy initiates the precipitation of primary icosahedral quasicrystal phases. Moreover, as the Ta concentration increases, the size of the precipitates decreases dramatically. To study the effect of Ta in this alloy system and to understand the mechanism for the precipitation of nano-structured quasicrystals, we have investigated the crystallization characteristics of the alloys made with different Ta concentration using DSC, checked the structures of the annealed samples with TEM and X-ray diffraction, and analyzed the kinetics of the crystallization processes. The kinetic parameter and the measured crystal size distribution will be compared with theoretical predictions from conventional nucleation and growth model and from a new model for nucleation that couples the long-range diffusion flux with the interfacial attachment processes.

  1. Phase transition and ductile behavior of IrxOs1-xN alloys from theoretical point of view

    NASA Astrophysics Data System (ADS)

    Sarwan, Madhu; Singh, Sadhna

    2018-05-01

    Present paper reports theoretical investigation of less explored nitrides of Iridium and Osmium using semi-empirical model with charge transfer effect (CTE). This work indicates the presence of structural phase transition in these nitrides from zinc-blend (B3) to rock-salt (B1) structure on application of pressure on them. Transitions occurred at 71 GPa and 86 GPa, with sudden drops in volume of 9.54% and 8.35% in IrN and OsN. The effect of pressure on elastic properties for B3-IrN and B3-OsN is investigated for the first time. On the basis of mechanical properties, it is observed that both compounds are ductile in nature. The present study is extended to investigate transition metal alloy IrxOs1-xN via Vegard's law. To widen the applicability of our model and to explore this alloy we report structural, elastic, mechanical and thermophysical properties. The effect of pressure on Debye temperature with different concentration (x = 0, 0.25, 0.5, 0.75, 1) have also been analyzed. The results are in general in good agreement with available theoretical results.

  2. Temperature-dependence of current-perpendicular-to-the-plane giant magnetoresistance spin-valves using Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.

    2016-04-21

    The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content,more » despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.« less

  3. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Lin, E-mail: wangwl77@gmail.com; Tsai, Yi-Chia, E-mail: tij@itri.org.tw

    2012-06-15

    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on themore » titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.« less

  4. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    PubMed Central

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  5. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    PubMed

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  6. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  7. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  8. Structural and magnetic correlation of Finemet alloys with Ge addition

    NASA Astrophysics Data System (ADS)

    Muraca, D.; Cremaschi, V.; Moya, J.; Sirkin, H.

    The correlation between saturation magnetization and the magnetic moment per Fe atom in the nanocrystalline state is studied for Finemet-type alloys. These studies were performed on nanocrystalline ribbons whose compositions were Fe 73.5Si 13.5-xGe xNb 3B 9Cu 1 ( x=8, 10 and 13.5 at%). We used a simple lineal model, X-ray diffraction and Mössbauer spectroscopy data to calculate the magnetic contribution of the nanocrystals and the results were contrasted with the measured saturation magnetization of the different alloys. The technique presented here provides a very simple and powerful tool to compute the magnetic contribution of the nanocrystalline phase to the alloy. This calculus could be used to determine the volume fraction of nanocrystalline and amorphous phases in the nanocrystallized alloy, without using a very sophisticated microscopy method.

  9. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  10. Dynamic mechanical properties of straight titanium alloy arch wires.

    PubMed

    Kusy, R P; Wilson, T W

    1990-10-01

    Eight straight-wire materials were studied: an orthodontic titanium-molybdenum (Ti-Mo) product, TMA; three orthodontic nickel-titanium (Ni-Ti) products, Nitinol, Titanal, and Orthonol; three prototype alloys, a martensitic, an austenitic, and a biphasic alloy; and a hybrid shape-memory-effect product, Biometal. Each wire was prepared with a length-to-cross-sectional area of at least 3600 cm-1. With an Autovibron Model DDV-II-C used in the tensile mode, each sample was scanned from -120 to +200 degrees C at 2 degrees C/min. From the data base, plots of the log storage modulus, log tan delta, and percent change in length vs. temperature were generated. Results showed that the dynamic mechanical properties of the alloys within this TI system are quite different. The Ti-Mo alloy, TMA, was invariant with temperature, having a modulus of 7.30 x 10(11) dyne/cm2 (10.6 x 10(6) psi). The three cold-worked alloys--Nitinol, Titanal, and Orthonol--appeared to be similar, having a modulus of 5.74 x 10(11) dyne/cm2 (8.32 x 10(6) psi). The biphasic shape-memory alloy displayed a phase transformation near ambient temperature; whereas the hybrid shape-memory product, Biometal, underwent a 3-5% change in length during its transformation between 95 and 125 degrees C. Among the Ni-Ti wires tested, several different types of alloys were represented by this intermetallic material.

  11. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  12. Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser

    2014-12-01

    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.

  13. Structural studies of liquid Co–Sn alloys

    PubMed Central

    Yakymovych, A.; Shtablavyi, I.; Mudry, S.

    2014-01-01

    An analysis of the structure features of liquid Co–Sn alloys has been performed by means of X-ray diffraction method, viscosity coefficient analysis and computer simulation method. The X-ray diffraction investigations were carried out over a wide concentration range at the temperature 1473 K. It was found that the structure of these alloys can be described in the frame of independent X-ray scattering model. The viscosity coefficient was calculated by an excess entropy scaling and compared with experimental data. PMID:25328282

  14. Texture and structure contribution to low-temperature plasticity enhancement of Mg-Al-Zn-Mn Alloy MA2-1hp after ECAP and annealing

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; D'yakonov, G. S.; Kopylov, V. I.; Salishchev, G. A.; Dobatkin, S. V.

    2013-05-01

    Equal channel angular pressing (ECAP) in magnesium alloys due to severe plastic shear deformations provides both grain refinement and the slope of the initial basal texture at 40°-50° to the pressing direction. These changes in microstructure and texture contribute to the improvement of low-temperature plasticity of the alloys. Quantitative texture X-ray diffraction analysis and diffraction of backscattered electrons are used to study the main textural and structural factors responsible for enhanced low-temperature plasticity based on the example of magnesium alloy MA2-1hp of the Mg-Al-Zn-Mn system. The possible mechanisms of deformation that lead to this positive effect are discussed.

  15. Mechanical Alloying of W-Mo-V-Cr-Ta High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Das, Sujit; Robi, P. S.

    2018-04-01

    Recent years have seen the emergence of high-entropy alloys (HEAs) consisting of five or more elements in equi-atomic or near equi-atomic ratios. These alloys in single phase solid solution exhibit exceptional mechanical properties viz., high strength at room and elevated temperatures, reasonable ductility and stable microstructure over a wide range of temperatures making it suitable for high temperature structural materials. In spite of the attractive properties, processing of these materials remains a challenge. Reports regarding fabrication and characterisation of a few refractory HEA systems are available. The processing of these alloys have been carried out by arc melting of small button sized materials. The present paper discusses the development of a novel refractory W-Mo-V-Cr-Ta HEA powder based on a new alloy design concept. The powder mixture was milled for time periods up to 64 hours. Single phase alloy powder having body centred cubic structure was processed by mechanical alloying. The milling characteristics and extent of alloying during the ball milling were characterized using X-ray diffractiometre (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). A single phase solid solution alloy powder having body-centred cubic (BCC) structure with a lattice parameter of 3.15486 Å was obtained after milling for 32 hours.

  16. Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si

    NASA Technical Reports Server (NTRS)

    Manasevit, H. M.; Gergis, I. S.; Jones, A. B.

    1982-01-01

    Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.

  17. ARC-1969-AAL-5993. Six, 40-Foot-Diameter Fans in the Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1944-06-09

    Motor and propeller blades in 40x80ft wind tunnel. Six 40-foot-diameter fans, each powered by a 6000-horsepower electric motor maintained airflow at 230 mph or less (these are still tornado velocities).

  18. Effect of deformation twin on toughness in magnesium binary alloys

    NASA Astrophysics Data System (ADS)

    Somekawa, Hidetoshi; Inoue, Tadanobu; Tsuzaki, Kaneaki

    2015-08-01

    The impact of alloying elements on toughness was investigated using eight kinds of Mg-0.3 at.% X (X = Al, Ag, Ca, Gd, Mn, Pb, Y and Zn) binary alloys with meso-grained structures. These binary alloys had an average grain size of approximately 20 μm. The fracture toughness and crack propagation behaviour were influenced by the alloying elements; the Mg-Ag and Mg-Pb alloys had the highest and the lowest toughness amongst the alloys, respectively, irrespective of presence in their ? type deformation twins. The twin boundaries affected the crack propagation behaviour in most of the alloys; in contrast, not only was the fracture related to the twin boundaries, but also the intergranular fracture occurred in the alloys that included rare earth elements. The influential factor for toughness in the meso- and the coarse-grained magnesium alloys, which readily formed deformation twins during plastic deformation, was not the change in lattice parameter with chemical composition, but the twin boundary segregation energy.

  19. Tuning the transition temperature of WSi$$_{x}$$ alloys for use in cryogenic microcalorimeters

    DOE PAGES

    Cecil, T.; Gades, L.; Madden, T.; ...

    2016-03-10

    Here, microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the Thermal Kinetic Inductance Detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20% of T C, the T C of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSimore » $$_{x}$$ alloy system as a material for these detectors. By co-sputtering from a Si andW2Si target, we have deposited WSi$$_{x}$$ films with a tunable T C that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the T C, resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSi$$_{x}$$ is a good candidate for TKIDs.« less

  20. Hf--Co--B alloys as permanent magnet materials

    DOEpatents

    McGuire, Michael Alan; Rios, Orlando; Ghimire, Nirmal Jeevi

    2017-01-24

    An alloy composition is composed essentially of Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0<X<2 and 0alloy composition is composed essentially of ferromagnetic Hf.sub.2-XZr.sub.XCo.sub.11B.sub.Y, wherein 0.ltoreq.X<2 and 0alloys can be melt-spun with in-situ and/or ex-situ annealing to produce the nanoscale crystalline structure.

  1. Heteroepitaxial growth of ɛ-(AlxGa1-x)2O3 alloy films on c-plane AlN templates by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2018-04-01

    In this study, ɛ-(AlxGa1-x)2O3 alloy films were grown on c-plane AlN templates by mist chemical vapor deposition. The Al content of two samples was determined by Rutherford backscattering analysis. The lattice constant of the ɛ-(AlxGa1-x)2O3 alloy films followed Vegard's law, and the Al contents of other samples were determined to be as high as x = 0.395 by Vegard's law. The direct bandgap was obtained in the range of 5.0-5.9 eV by transmittance measurements. The valence-band offset between ɛ-(Al0.395Ga0.605)2O3 and ɛ-Ga2O3 was analyzed to be 0.2 eV, and the conduction-band offset was calculated to be 0.7 eV by X-ray photoelectron spectroscopy. The ɛ-(AlxGa1-x)2O3/ɛ-Ga2O3 interface band discontinuity was type I. Our experimental results will be important for the actual application of ɛ-(AlxGa1-x)2O3/ɛ-Ga2O3 heterojunction devices.

  2. Reversible magnetic-field-induced martensitic transformation over a wide temperature window in Ni42-xCoxCu8Mn37Ga13 alloys

    NASA Astrophysics Data System (ADS)

    Hua, Hui; Wang, Jingmin; Jiang, Chengbao; Xu, Huibin

    2018-05-01

    Ni42-xCoxCu8Mn37Ga13 (0 ≤ x ≤ 14) alloys are reported to exhibit a magnetostructural transition from weakly-magnetic martensite to ferromagnetic austenite over a rather wide temperature window ranging from 200 K to 380 K. Simultaneously a large magnetization change Δσ of up to 105 Am2 kg-1 is obtained at the martensitic transformation. A reversible magnetic-field-induced martensitic transformation is realized, resulting in a large magnetocaloric effect related to the high magnetic entropy change with a broad working temperature span. This work shows how it is possible to effectively tailor the magnetostructural transition in Ni-Mn-Ga alloys so as to achieve a reversible magnetic-field-induced martensitic transformation and associated functionalities.

  3. Thermal conductivity of disordered two-dimensional binary alloys.

    PubMed

    Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2016-10-20

    Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.

  4. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys.

    PubMed

    Iijima, Masahiro; Endo, Kazuhiko; Yuasa, Toshihiro; Ohno, Hiroki; Hayashi, Kazuo; Kakizaki, Mitsugi; Mizoguchi, Itaru

    2006-07-01

    The purpose of this study was to provide a quantitative assessment of galvanic corrosion behavior of orthodontic archwire alloys coupled to orthodontic bracket alloys in 0.9% NaCl solution and to study the effect of surface area ratios. Two common bracket alloys, stainless steels and titanium, and four common wire alloys, nickel-titanium (NiTi) alloy, beta-titanium (beta-Ti) alloy, stainless steel, and cobalt-chromium-nickel alloy, were used. Three different area ratios, 1:1, 1:2.35, and 1:3.64, were used; two of them assumed that the multibracket appliances consists of 14 brackets and 0.016 inch of round archwire or 0.016 x 0.022 inch of rectangular archwire. The galvanic current was measured for 3 successive days using zero-impedance ammeter. When the NiTi alloy was coupled with Ti (1:1, 1:2.35, and 1:3.64 of the surface area ratio) or beta-Ti alloy was coupled with Ti (1:2.35 and 1:3.64 of the surface area ratio), Ti initially was the anode and corroded. However, the polarity reversed in 1 hour, resulting in corrosion of the NiTi or beta-Ti. The NiTi alloy coupled with SUS 304 or Ti exhibited a relatively large galvanic current density even after 72 hours. It is suggested that coupling SUS 304-NiTi and Ti-NiTi may remarkably accelerate the corrosion of NiTi alloy, which serves as the anode. The different anode-cathode area ratios used in this study had little effect on galvanic corrosion behavior.

  5. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    PubMed

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  6. Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) as materials for vertical-cavity surface-emitting lasers in the mid-infrared spectral range of 4–5 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashkeev, D. A., E-mail: d.pashkeev@gmail.com; Selivanov, Yu. G.; Chizhevskii, E. G.

    2016-02-15

    The optical properties of epitaxial layers and heterostructures based on Pb{sub 1–x}Eu{sub x}Te alloys (0 ⩽ x ⩽ 1) are analyzed in the context of designing Bragg mirrors and vertical-cavity surface-emitting lasers for the midinfrared spectral range. It is shown that the optimal heteropair for laser microcavities is Pb{sub 1–x}Eu{sub x}Te(x ≈ 0.06)/EuTe. On the basis of this heteropair, highly reflective Bragg mirrors consisting of just three periods and featuring a reflectance of R ⩾ 99.8% at the center of the stop band are grown by molecular-beam epitaxy on BaF{sub 2} (111) substrates. Single-mode optically pumped vertical-cavity surface-emitting lasers formore » the 4–5 μm spectral range operating at liquid-nitrogen temperatures are demonstrated.« less

  7. Effect of Service Stress on Impact Resistance, X-ray Diffraction Patterns, and Microstructure of 25s Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Kies, J A; Quick, G W

    1939-01-01

    Report presents the results of a great number of tests made to determine the effect of service stresses on the impact resistance, the x-ray diffraction patterns, and the microstructure of 25s aluminum alloy. Many of the specimens were taken from actual propeller blades and others were cut from 13/16-inch rod furnished by the Aluminum Company of America.

  8. Enhancement of magnetocaloric effect in mischmetal doped La-Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaofeng; Zhao, Zengru; Zhang, Xuefeng; Ma, Qiang; Li, Yongfeng; Liu, Yanli; Mu, Lijuan; Zhang, Yan

    2018-05-01

    The influence of partial substitution of mischmetal on the structure, Curie temperature and magnetocaloric effect has been investigated in La1-xMxFe11.5Si1.5 alloys. X-ray diffraction patterns indicate the alloys crystallize mainly in NaZn13-type cubic structure and the amount of secondary α-Fe phase obviously reduces in the mischmetal doped alloys. As the content of mischmetal increases, the Curie temperature is reduced from 198.1 K for x = 0 to 184.2 K for x = 0.3 and the thermal hysteresis is enlarged from 3.5 K for x = 0 to 8.2 K for x = 0.3. Upon a field change from 0 to 3 T, the obtained maximum isothermal entropy change values are 17.2, 19.8, 37.8 and 47.9 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The entropy changes due to the latent heat of first-order transitions are estimated to be 11.3, 14.7, 18.5 and 23.4 J/kgK for x = 0, 0.1, 0.2 and 0.3, respectively. The enhancement of giant magnetocaloric MCE in La1-xMxFe11.5Si1.5 alloys originates from the strengthened itinerant electron metamagnetic transitions by adding the mischmetal. Our result suggests that the mischmetal doped NaZn13-type La-Fe-Si alloys are potential candidates of refrigerants for magnetic refrigeration.

  9. Corrosion behavior and microstructures of experimental Ti-Au alloys.

    PubMed

    Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Okabe, Toru

    2004-06-01

    Anodic polarization was performed in 0.9% NaCl and 1% lactic acid solutions to characterize the relationship between the corrosion behavior and microstructures of cast Ti-Au (5-40%) alloys. An abrupt increase in the current density occurred at approximately 0.6 V vs. SCE for the 30% and 40% Au alloys in the 0.9% NaCl solution. The microstructures after corrosion testing indicated that this breakdown may have been caused by the preferential dissolution of the Ti3Au. However, the potential for preferential dissolution was higher than the breakdown potential of stainless steel or Co-Cr alloy, which meant that the corrosion resistance of the Ti-Au alloys was superior. In 1% lactic acid solution, the corrosion resistance of the Ti-Au alloys was excellent, with no breakdown at any composition. In the present test solutions, the Ti-Au alloys up to 20% Au had good corrosion resistance comparable to that for pure titanium.

  10. Observation of divergent La{sup 3+} ion dilute effect in two series of 3-D fluorescent lanthanide-MOFs-based molecular alloys RE{sub x}La{sub 1−x}–EBTC (RE{sup 3+}=Eu{sup 3+} or Tb{sup 3+}; EBTC{sup 4−}=1,1′-ethynebenzene-3,3′,5,5′-etracarboxylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Lu; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093; Zhang, Wen-Wei, E-mail: wwzhang@nju.edu.cn

    The lanthanide metal-organic frameworks (MOFs) [Ln{sub 2}(EBTC){sub 1.5}(CH{sub 3}OH){sub 4}]·6H{sub 2}O are isostructural to each other, where EBTC{sup 4−}=1,1′-ethynebenzene-3,3′,5,5′-tetracarboxylate; Ln{sup 3+}=La{sup 3+}, Eu{sup 3+} and Tb{sup 3+}; and the corresponding MOF is abbreviated as Ln–EBTC. MOFs Eu–EBTC and Tb–EBTC emit intense red and green luminescence (visible by bare eyes), respectively. The molecular alloys of Eu{sub x}La{sub 1−x}–EBTC and Tb{sub x}La{sub 1−x}–EBTC have been successfully prepared by mixing Eu{sup 3+}/Tb{sup 3+} and La{sup 3+} salts with the desired molar ratio in the starting material. Two series of Eu{sub x}La{sub 1−x}–EBTC and Tb{sub x}La{sub 1−x}–EBTC molecular alloys are isomorphic to the parentmore » Ln–EBTC MOFs, while exhibit divergent La{sup 3+} ion diluting effect, namely, with increasing the relative amount of La{sup 3+}, the intensity of characteristic emission arising from Tb{sup 3+} ion monotonely increases in Tb{sub x}La{sub 1−x}–EBTC molecular alloys, whereas that of Eu{sup 3+} ion shows non-monotone decrease in Eu{sub x}La{sub 1−x}–EBTC molecular alloys. The possible origin is discussed for such a divergent behavior between Eu{sub x}La{sub 1−x}–EBTC and Tb{sub x}La{sub 1−x}–EBTC molecular alloys. - Graphical abstract: Two series of 3-D fluorescent lanthanide-MOFs-based molecular alloys RE{sub x}La{sub 1−x}–EBTC (RE{sup 3+}=Eu{sup 3+} or Tb{sup 3+}; EBTC{sup 4−}=1,1′-ethynebenzene-3,3′,5,5′-tetracarboxylate) have been successfully prepared by mixing Eu{sup 3+}/Tb{sup 3+} and La{sup 3+} salts with the desired molar ratio in the starting material and showed photoluminescence property with divergent La{sup 3+} ion dilute effect. - Highlights: • 3-D molecular alloys of Eu{sub x}La{sub 1−x}–EBTC and Tb{sub x}La{sub 1−x}–EBTC were prepared. • They are isomorphic to the parent Ln–EBTC MOFs. • They show photoluminescence property with divergent

  11. Growth of InxGa1−xSb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments

    PubMed Central

    Inatomi, Y; Sakata, K; Arivanandhan, M; Rajesh, G; Nirmal Kumar, V; Koyama, T; Momose, Y; Ozawa, T; Okano, Y; Hayakawa, Y

    2015-01-01

    Background: InxGa1−xSb is an important material that has tunable properties in the infrared (IR) region and is suitable for IR-device applications. Since the quality of crystals relies on growth conditions, the growth process of alloy semiconductors can be examined better under microgravity (μG) conditions where convection is suppressed. Aims: To investigate the dissolution and growth process of InxGa1−xSb alloy semiconductors via a sandwiched structure of GaSb(seed)/InSb/GaSb(feed) under normal and μG conditions. Methods: InxGa1−xSb crystals were grown at the International Space Station (ISS) under μG conditions, and a similar experiment was conducted under terrestrial conditions (1G) using the vertical gradient freezing (VGF) method. The grown crystals were cut along the growth direction and its growth properties were studied. The indium composition and growth rate of grown crystals were calculated. Results: The shape of the growth interface was nearly flat under μG, whereas under 1G, it was highly concave with the initial seed interface being nearly flat and having facets at the peripheries. The quality of the μG crystals was better than that of the 1G samples, as the etch pit density was low in the μG sample. The growth rate was higher under μG compared with 1G. Moreover, the growth started at the peripheries under 1G, whereas it started throughout the seed interface under μG. Conclusions: Kinetics played a dominant role under 1G. The suppressed convection under μG affected the dissolution and growth process of the InxGa1−xSb alloy semiconductor. PMID:28725715

  12. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  14. Electrochemical Formation of Mg-Li-Sm Alloys by Codeposition from LiCl-KCl-MgCl2-SmCl3 Molten Salts

    NASA Astrophysics Data System (ADS)

    Han, Wei; Wang, Fengli; Tian, Yang; Zhang, Milin; Yan, Yongde

    2011-12-01

    In this article, the electrochemical method of preparing Mg-Li-Sm alloys by codeposition in LiCl-KCl-MgCl2-SmCl3 melts was investigated. Transient electrochemical techniques, such as cyclic voltammetry, chronopotentiometry, and chronoamperometry were used to explore the electrochemical formation of Mg-Li-Sm alloys. Chronopotentiograms demonstrated that the codepositon of Mg, Li, and Sm occurred when current densities were more negative than -0.31 A cm-2. Chronoamperograms indicated that the onset potential for the codeposition of Mg, Li, and Sm was -2.40 V, and the codeposition of Mg, Li, and Sm was formed when the applied potentials were more negative than -2.40 V. The different phases of Mg-Li-Sm alloys were prepared by galvanostatic electrolysis and characterized by X-ray diffraction (XRD), optical microscope (OM), and scanning electron microscopy (SEM). An inductively coupled plasma (ICP) analysis showed that the lithium and samarium contents in Mg-Li-Sm alloys could be controlled by the concentrations of MgCl2 and SmCl3. The results demonstrated that Sm could refine the grains dramatically. When the Sm content was 0.8 wt pct, the grain size was the finest.

  15. Unassisted Water Splitting Using a GaSb xP (1- x ) Photoanode

    DOE PAGES

    Martinez-Garcia, Alejandro; Russell, Harry B.; Paxton, William; ...

    2018-02-21

    Here in this work, unbiased water splitting with 2% solar-to-hydrogen efficiency under AM 1.5 G illumination using new materials based on GaSb 0.03P 0.97 alloy is reported. Freestanding GaSb xP 1-x is grown using halide vapor phase epitaxy. The native conductivity type of the alloy is modified by silicon doping, resulting in an open-circuit potential (OCP) of 750 mV, photocurrents of 7 mA cm -2 at 10 sun illumination, and corrosion resistance in an aqueous acidic environment. Alloying GaP with Sb at 3 at% improves the absorption of high-energy photons above 2.68 eV compared to pure GaP material. Electrochemical Impedancemore » Spectroscopy and illuminated OCP measurements show that the conduction band of GaSb xP 1-x is at -0.55 V versus RHE irrespective of the Sb concentration, while photocurrent spectroscopy indicates that only radiation with photon energies greater than 2.68 eV generate mobile and extractable charges, thus suggesting that the higher-laying conduction bands in the Γ 1 valley of the alloys are responsible for exciton generation.« less

  16. Unassisted Water Splitting Using a GaSb xP (1- x ) Photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Alejandro; Russell, Harry B.; Paxton, William

    Here in this work, unbiased water splitting with 2% solar-to-hydrogen efficiency under AM 1.5 G illumination using new materials based on GaSb 0.03P 0.97 alloy is reported. Freestanding GaSb xP 1-x is grown using halide vapor phase epitaxy. The native conductivity type of the alloy is modified by silicon doping, resulting in an open-circuit potential (OCP) of 750 mV, photocurrents of 7 mA cm -2 at 10 sun illumination, and corrosion resistance in an aqueous acidic environment. Alloying GaP with Sb at 3 at% improves the absorption of high-energy photons above 2.68 eV compared to pure GaP material. Electrochemical Impedancemore » Spectroscopy and illuminated OCP measurements show that the conduction band of GaSb xP 1-x is at -0.55 V versus RHE irrespective of the Sb concentration, while photocurrent spectroscopy indicates that only radiation with photon energies greater than 2.68 eV generate mobile and extractable charges, thus suggesting that the higher-laying conduction bands in the Γ 1 valley of the alloys are responsible for exciton generation.« less

  17. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  18. Development of epitaxial Al xSc 1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE PAGES

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; ...

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The Al xSc 1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity rangemore » for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt Al xSc 1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt Al xSc 1-xN alloys enable high quality epitaxial rocksalt metal/Al xSc 1-xN superlattices with a wide range of accessible metamaterials properties.« less

  19. Fabrication of imaging X-ray optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Joki, E. G.; Brookover, W. J.

    The design, fabrication, and performance of optics for X-ray astronomy and laboratory applications are described and illustrated with diagrams, drawings, graphs, photographs, and sample images. Particular attention is given to the Wolter I telescope developed for spectroscopic observation of 8-30-A cosmic X-ray sources from a rocketborne X-ray Objective Grating Spectrometer; this instrument employs three nested paraboloid-hyperboloid mirrors of 5083 Al alloy, figured by diamond turning and covered with a thin coating of acrylic lacquer prior to deposition of a 40-nm-thick layer of Sn. In calibration tests at NASA Marshall, the FWHM of the line-spread function at 1.33 nm was found to be 240 microns, corresponding to 21 arcsec. Also presented are the results of reflectivity measurements on C and W multilayers sputtered on Si and fusion glass substrates.

  20. Design of Metastable Tin Titanium Nitride Semiconductor Alloys

    DOE PAGES

    Bikowski, Andre; Siol, Sebastian; Gu, Jing; ...

    2017-07-07

    Here, we report on design of optoelectronic properties in previously unreported metastable tin titanium nitride alloys with spinel crystal structure. Theoretical calculations predict that Ti alloying in metastable Sn 3N 4 compound should improve hole effective mass by up to 1 order of magnitude, while other optical bandgaps remains in the 1–2 eV range up to x ~ 0.35 Ti composition. Experimental synthesis of these metastable alloys is predicted to be challenging due to high required nitrogen chemical potential (Δμ N ≥ +1.0 eV) but proven to be possible using combinatorial cosputtering from metal targets in the presence of nitrogenmore » plasma. Characterization experiments confirm that thin films of such (Sn 1–xTi x) 3N 4 alloys can be synthesized up to x = 0.45 composition, with suitable optical band gaps (1.5–2.0 eV), moderate electron densities (10 17 to 10 18 cm –3), and improved photogenerated hole transport (by 5×). Overall, this study shows that it is possible to design the metastable nitride materials with properties suitable for potential use in solar energy conversion applications.« less

  1. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  2. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  3. Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X Na3PO4 + Y Na2HPO4) Using Electrochemical Impedance Spectroscopy and Mott-Schottky Techniques

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Asgari, Hamed

    2018-05-01

    In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.

  4. Grindability of cast Ti-Cu alloys.

    PubMed

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  5. Metallurgical characterization of experimental Ag-based soldering alloys.

    PubMed

    Ntasi, Argyro; Al Jabbari, Youssef S; Silikas, Nick; Al Taweel, Sara M; Zinelis, Spiros

    2014-10-01

    To characterize microstructure, hardness and thermal properties of experimental Ag-based soldering alloys for dental applications. Ag12Ga (AgGa) and Ag10Ga5Sn (AgGaSn) were fabricated by induction melting. Six samples were prepared for each alloy and microstructure, hardness and their melting range were determined by, scanning electron microscopy, energy dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD), Vickers hardness testing and differential scanning calorimetry (DSC). Both alloys demonstrated a gross dendritic microstructure while according to XRD results both materials consisted predominately of a Ag-rich face centered cubic phase The hardness of AgGa (61 ± 2) was statistically lower than that of AgGaSn (84 ± 2) while the alloys tested showed similar melting range of 627-762 °C for AgGa and 631-756 °C for AgGaSn. The experimental alloys tested demonstrated similar microstructures and melting ranges. Ga and Sn might be used as alternative to Cu and Zn to modify the selected properties of Ag based soldering alloys.

  6. Solubility limits in quaternary SnTe-based alloys [Metastability and solubility limits in quaternary SnTe-based alloys guided by combinatorial sputtering

    DOE PAGES

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.; ...

    2017-05-09

    Here, the controlled decomposition of metastable alloys is an attractive route to form nanostructured thermoelectric materials with reduced thermal conductivity. The ternary SnTe–MnTe and SnTe–SnSe heterostructural alloys have been demonstrated as promising materials for thermoelectric applications. In this work, the quaternary Sn 1–yMnyTe 1–xSe x phase space serves as a relevant model system to explore how a combination of computational and combinatorial-growth methods can be used to study equilibrium and non-equilibrium solubility limits. Results from first principle calculations indicate low equilibrium solubility for x,y < 0.05 that are in good agreement with results obtained from bulk equilibrium synthesis experiments andmore » predict significantly higher spinodal limits. An experimental screening using sputtered combinatorial thin film sample libraries showed a remarkable increase in non-equilibrium solubility for x,y > 0.2. These theoretical and experimental results were used to guide the bulk synthesis of metastable alloys. The ability to reproduce the non-equilibrium solubility levels in bulk materials indicates that such theoretical calculations and combinatorial growth can inform bulk synthetic routes. Further, the large difference between equilibrium and non-equilibrium solubility limits in Sn 1–yMn yTe 1–xSe x indicates these metastable alloys are attractive in terms of nano-precipitate formation for potential thermoelectric applications.« less

  7. Raman and and x-ray diffraction study of iron and iron-nickel alloys at varying P-T conditions

    NASA Astrophysics Data System (ADS)

    Goncharov, A.; Struzhkin, V.; Gregoryanz, E.; Maddury, S.; Huang, E.; Hemley, R. J.; Mao, H.

    2002-05-01

    High-pressure properties of iron and iron-rich alloys are crucial for understanding of the Earth interior, because iron is the major constitute element of the Earth core. Using recently developed [1,2] Raman spectroscopy technique for shear elastic modulus determination, we studied iron-rich alloys of Ni (0 to 20 % Ni) up to 150 GPa, and also at varying temperatures (78-400 K). We find substantial decrease of the Raman hcp-phonon frequency compared to the pure iron, and also considerable anharmonic temperature effects. In contrast, low-temperature x-ray diffraction measurements indicate a usual temperature variation of the lattice constants. Possible implications to the Earth core composition and properties are discussed. [1] A. P. Jephcoat, H. Olijnyk, K. Refson, Eos 80, F929 (1999). [2] S. Merkel et al., Science 288, 1626 (2000).

  8. Transport properties in magnetic field of Pb1-xSnxTe alloys doped with Indium

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Joottu-Thiagaraj, S.; West, J.; Heremans, J. P.; Khokhlov, D.

    2007-03-01

    The galvanomagnetic and thermomagnetic transport properties of single-crystal In-doped Pb1-xSnxTe are presented as a function of Sn (10 to 30%) and In (0 to 10%) concentrations. The concept is that the In level might pin the Fermi energy in a position with and enhanced density of states, which might increase the thermoelectric figure of merit. The transport properties were measured in a transverse magnetic field and at temperatures varying from 80 to 380K. Depending on the Sn concentrations, the prepared samples are p and n type semiconductors. The measurements of the electrical conductivity, Hall, Seebeck and transverse Nernst-Ettingshausen effects yield the carrier density and mobility, the density of states effective mass, and the scattering exponent, following the method of the four coefficients. The transport properties are interpreted in terms of hybridization of the In levels and density of state of the host alloy and observations are discussed in terms of Mahan-Sofo theory. The model provides an explanation for unexpected variation in thermoelectric and thermomagnetic properties of these alloys.

  9. Kondo temperature and Heavy Fermion behavior in Yb1-xYxCuAl series of alloys

    NASA Astrophysics Data System (ADS)

    Rojas, D. P.; Gandra, F. G.; Medina, A. N.; Fernández Barquín, L.; Gómez Sal, J. C.

    2018-05-01

    Results on x-ray diffraction, electrical resistivity, specific heat and magnetization on the Yb1-xYxCuAl series of compounds are reported. The analysis of the x-ray data shows the increase of the unit cell volume with the Y dilution. The electrical resistivity shows an evolution from Kondo lattice regime for x ≤ 0.6 to single impurity behavior for x = 0.8 and 0.94. The electronic coefficient γ shows values of Heavy Fermion systems along the series for 0 ≤ x < 1 . On the other hand, dc magnetic susceptibility measurements show typical curves of intermediate valence systems with a maximum around 25 K. Below this maximum, the values of low temperature susceptibility (χ (0)) decrease with the increase of Y content. From the dependence of χ (0) and γ upon Y substitution, an increase of 12% of the Kondo temperature (TK) for x = 0.8 alloy respect to the reference YbCuAl (x = 0) is estimated. This is further supported by the evolution of the temperature of the maximum in the magnetic contribution of the specific heat. The overall results can be explained by the increase of the hybridization as consequence of negative pressure effects obtained by the chemical substitution of Yb by Y, thus leading to the increase of TK, in agreement with the Doniach's diagram.

  10. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  12. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  13. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    NASA Astrophysics Data System (ADS)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  14. Refractive index of B1-xGaxN semiconductors

    NASA Astrophysics Data System (ADS)

    Vyas, P. S.; Baria, J. K.; Jivani, A. R.; Gajjar, P. N.; Jani, A. R.

    2013-06-01

    A theoretical procedure is presented for the study of refractive index of ternary alloy B1-xGaxN. The calculations based on the pseudopotential formalism in which local potential coupled with the virtual crystal approximation (VCA) is applied to evaluate energy band gap at point X on the Jones-zone face, refractive index for the entire range of the alloy composition x of the ternary alloy B1-xGaxN. To include exchange and correlation effects, local field correction function due to Nagy is employed. Our results for parent compounds are compared to experiment and other available theoretical findings and showed generally good agreement. During present study it is found that the refractive index of the ternary alloy B1-xGaxN has minimum value at gallium concentration x = 0.4.

  15. Oxide compounds on Ni-Cr alloys.

    PubMed

    Baran, G R

    1984-11-01

    Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).

  16. [Microanalytical determinations of gold alloys for fixed dentures].

    PubMed

    Lotito, M; Negri, P; Fraschini, M

    1993-01-01

    In this work the authors analyse gold alloys for fixed prosthesis by X-ray spectrometry in energy dispersion (EDS). The results of this analysis, given in graphic and table form, show remarkable differences in alloy composition. For this reason recommended dentists are to be attentive and severe in the control of gold alloys for fixed prosthesis.

  17. Phase Structure and Site Preference Behavior of Ternary Alloying Additions to PdTi and PtTi Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    The phasc structure and concentration dependence of the lattice parameter and energy of formation of ternary Pd-'I-X and Pt-Ti-X alloys for a large number of ternary alloying additions X (X = Na, Mg, Al, Si, Sc. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir) are investigated with an atomistic modeling approach. In addition, a detailed description of the site preference behavior of such additions showing that the elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice is provided.

  18. Study on Microstructure and Mechanical Properties of Al-Li Based Alloys Processed by Extrusion.

    PubMed

    Kim, Yong-Ho; Yoo, Hyo-Sang; Jung, Chang-Gi; Son, Hyeon-Taek

    2018-03-01

    Aluminum and its alloys, due to their low density, high specific strength and high corrosion resistance amongst various structural materials, are used in a wide range of industrial applications for different aqueous solutions. In the present study, we studied effects of Ce addition on microstructure and mechanical properties of Al-2Li-1Cu-0.8Mg-0.1Zr alloys. The melt was held at 780 °C for 20 min and poured into a mold. And as-cast Al alloys were hot-extruded into a plate that was 4 mm in thickness with a reduction ratio of 14:1. The extruded plates were held at 540 °C for 4 hr in water quenching to solution treatment them. As-extruded Al-2Li-1Cu-0.8Mg-0.1Zr-xCe (x = 0.3, 0.6, 0.9 and 1.2 wt.%) alloys are composed of Al, AlLi, AlCuLi and Al11Ce3 phases. By increasing the Ce content from 0 to 1.2 wt.%, the Al11Ce3 phase is increased, after solution treatment the AlLi and AlCuLi phases are decreased. With increasing Ce addition from 0 to 1.2 wt.%, the average grain size of the as-extruded Al alloys were decreased slightly from 100.7, 113.74, 84.3, 74.7 and 61.7 μm and ultimate tensile strength was decreased slightly from 267.59, 264.92, 237.40, 220.93 and 207.83 MPa at room temperature. After solution treatment, ultimate tensile strength was measured with 205.13, 198.12, 195.50, 198.27 and 208.01 MPa at room temperature.

  19. Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS.

    PubMed

    Kaur, Prabhjot; Bera, Chandan

    2017-09-20

    The effect of alloying on the thermoelectric properties of cobaltite, CoAsS, and paracostibite, CoSbS, has been investigated in this study. Density functional theory and the Boltzmann transport equation have been applied to explore the role of phonon-phonon scattering and atomistic scattering due to alloying in phonon transport. An almost 44% reduction in thermal conductivity of CoAs 0.8 Sb 0.2 S alloy compared to pure CoAsS and an ∼15% reduction in thermal conductivity of CoAs 0.2 Sb 0.8 S compared to pure CoSbS were found. Simultaneously, the thermoelectric (TE) figure of merit (ZT) increased by ∼11% in p-type CoAs 0.8 Sb 0.2 S alloy and ∼8% in n-type CoAs 0.2 Sb 0.8 S alloy as compared to their base pure materials at 800 K. We found that by tuning the composition of CoAs x Sb (1-x) S alloy, very similar ZT values for both p-type and n-type can be achieved in a large temperature range. We also calculated the TE properties of CoAsSe (1-x) S x and CoSbS (1-x) Se x alloys. This study will help in designing CoAs x Sb (1-x) S based alloys for efficient thermoelectric devices.

  20. Localization behavior at bound Bi complex states in GaA s 1 - x B i x

    DOE PAGES

    Alberi, K.; Christian, T. M.; Fluegel, B.; ...

    2017-07-01

    While bismuth-related states are known to localize carriers in GaAs 1-xBi x alloys, the localization behavior of distinct Bi pair, triplet and cluster states bound above the valence band is less well understood. We probe localization at three different Bi complex states in dilute GaAs 1-xBi x alloys using magneto-photoluminescence and time-resolved photoluminescence spectroscopy. The mass of electrons Coulomb-bound to holes trapped at Bi pair states is found to increase relative to the average electron mass in the alloy. This increase is attributed to enhanced local compressive strain in the immediate vicinity of the pairs. The dependence of energy transfermore » between these states on composition is also explored.« less

  1. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  2. Effect of thermomechanical treatment on the microstructure, phase composition, and mechanical properties of Al-Cu-Mn-Mg-Zr alloy

    NASA Astrophysics Data System (ADS)

    Zuiko, I. S.; Gazizov, M. R.; Kaibyshev, R. O.

    2016-09-01

    The effect of the thermomechanical treatment on the microstructure, phase composition, and mechanical properties of heat-treatable AA2519 aluminum alloy (according to the classification of the Aluminum Association) has been considered. After solid-solution treatment, quenching, and artificial aging (T6 treatment) at 180°C for the peak strength, the yield stress, ultimate tensile strength, and elongation to failure are ~300 MPa, 435 MPa, and 21.7%, respectively. It has been shown that treatments that include intermediate plastic deformations with degrees of 7 and 15% (T87 and T815 treatments, respectively) have a significant effect on the phase composition and morphology of strengthening particles precipitated during peak aging T8X type, where X is pre-strain percent, treatments initiate the precipitation of significant amounts of particles of the θ'- and Ω-phases. After T6 treatment, predominantly homogeneously distributed particles of θ″-phase have been observed. Changes in the microstructure and phase composition of the AA2519 alloy, which are caused by intermediate deformation, lead to a significant increase in the yield stress and ultimate tensile strength (by ~40 and ~8%, respectively), whereas the plasticity decreases by 40-50%.

  3. The relation between lattice parameters and very low twinning stress in Ni50Mn25+x Ga25-x magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Straka, L.; Drahokoupil, J.; Pacherová, O.; Fabiánová, K.; Kopecký, V.; Seiner, H.; Hänninen, H.; Heczko, O.

    2016-02-01

    In search of the origins of the extraordinary low twinning stress of Ni-Mn-Ga 10M martensite, we studied the temperature induced changes in lattice parameters of Ni50Mn25+x Ga25-x (x = 2.7-3.9) single crystal samples and compared them with twinning stress dependences. The alloys exhibited transformation to five-layered (10M) martensite structure (cubic to monoclinic) between 297 to 328 K and exhibited the magnetic shape memory effect in martensite. The structural changes were monitored using x-ray diffraction in the temperature range 200-343 K. The 10M structure was approximated by monoclinic lattice, a = b > c, γ > 90° with the coordinates derived from the cubic unit cell of the parent L21 phase. The lattice parameters γ and c/a correlate well with the universal linear increase of twinning stress of type 1 twins with decreasing temperature. On the contrary, the twinning stress is not affected by differences between a and b and thus a/b twins seem to play no role in a - c twin boundary motion resulting in magnetically induced reorientation.

  4. Bismuth-induced Raman modes in GaP 1– xBi x

    DOE PAGES

    Christian, Theresa M.; Fluegel, Brian; Beaton, Daniel A.; ...

    2016-09-02

    Here, dilute bismide semiconductor alloys are a promising material platform for optoelectronic devices due to drastic impacts of bismuth on the electronic structure of the alloy. At the same time, the details of bismuth incorporation in the lattice are not fully understood. In this work, we conduct Raman scattering spectroscopy on GaP 1- xBi x epilayers grown by molecular beam epitaxy (MBE) and identify several bismuth-related Raman features including gap vibration modes at 296, 303, and 314 cm -1. This study paves the way for more detailed analysis of the local symmetry at bismuth incorporation sites in the dilute bismidemore » alloy regime.« less

  5. Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Dey, S.; Gayathri, N.; Mukherjee, P.

    2018-04-01

    The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.

  6. Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study

    DOE PAGES

    Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.; ...

    2017-11-07

    In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less

  7. Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.

    In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less

  8. Influence of testing environment on the room temperature ductility of FeAl alloys

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Nathal, M. V.

    1990-01-01

    The effects of testing atmospheres (air, O2, N2, and vacuum) on the room-temperature ductility of Fe-40Al, Fe-40Al-0.5B, and Fe-50Al alloys were investigated. The results confirmed the decrease in room-temperature ductility of Fe-rich FeAl alloys by the interaction of the aluminide with water vapor, reported previously by Liu et al. (1989). The highest ductilities were measured in the atmosphere with the lowest moisture levels, i.e., in vacuum. It was found that significant ductility is still restricted to Fe-rich alloys (Fe-40Al), as the Fe-50Al alloy remained brittle under all testing conditions. It was also found that slow cooling after annealing was beneficial, and the effect was additive to the environmental effect. The highest ductility measurements in this study were 9 percent elongation in furnace-cooled Fe-40Al and in Fe-40Al-0.5B, when tested in vacuum.

  9. From Solidification Processing to Microstructure to Mechanical Properties: A Multi-scale X-ray Study of an Al-Cu Alloy Sample

    NASA Astrophysics Data System (ADS)

    Tourret, D.; Mertens, J. C. E.; Lieberman, E.; Imhoff, S. D.; Gibbs, J. W.; Henderson, K.; Fezzaa, K.; Deriy, A. L.; Sun, T.; Lebensohn, R. A.; Patterson, B. M.; Clarke, A. J.

    2017-11-01

    We follow an Al-12 at. pct Cu alloy sample from the liquid state to mechanical failure, using in situ X-ray radiography during directional solidification and tensile testing, as well as three-dimensional computed tomography of the microstructure before and after mechanical testing. The solidification processing stage is simulated with a multi-scale dendritic needle network model, and the micromechanical behavior of the solidified microstructure is simulated using voxelized tomography data and an elasto-viscoplastic fast Fourier transform model. This study demonstrates the feasibility of direct in situ monitoring of a metal alloy microstructure from the liquid processing stage up to its mechanical failure, supported by quantitative simulations of microstructure formation and its mechanical behavior.

  10. Phase transformation in δ-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.

    2009-09-01

    In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.

  11. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  12. First principles investigations of Fe2CrSi Heusler alloys by substitution of Co at Fe site

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh; Lakshmi, N.; Jain, Vivek Kumar; Chandra, Aarti R.

    2018-04-01

    Electronic structure and magnetic properties of Fe2-xCoxCrSi Heusler alloys have been investigated by varying Co concentration from x = 0 to 2. On increasing Co concentration, lattice constant and magnetic moment of Fe2-xCoxCrSi alloys increase. These alloys show true half metallic Ferromagnetic behavior with 100% spin polarization. Band gap of the alloys also increase from 0.54 eV to 0.85 eV on increasing Co concentration making these alloys promising materials for spintronics based device applications.

  13. Growth and Properties of MERCURY(1-X) Cadmium (x) Tellurium Alloys and Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Whan

    1990-01-01

    Photoassisted molecular beam epitaxy was employed to grow Hg-based films, which include Hg_{1-x}Cd_{x}Te alloys, modulation-doped HgCdTe, modulation-doped HgCdTe quantum well structures and HgCdTe heterostructures. The structural, electrical and optical properties of these films were studied. A series of Hg_{1 -x}Cd_{x}Te films were deposited on lattice-matched (111)B CdZnTe substrates. The rm Hg_{1-x}Cd_{x}Te films grown under the optimum growth conditions exhibited both high structural perfections and outstanding electrical properties, which can be attributed to the role played by the photons in the growth process. For the first time, conducting p-type and n-type modulation-doped HgCdTe were successfully prepared using arsenic and indium as the p-type and n-type dopants, respectively. Most of them exhibited both excellent structural qualities and very sharp interfaces. The hole concentrations of p-type samples showed no evidence of carrier freeze-out at low temperatures. The electron concentrations of n-type samples also exhibited temperature independence up to 300K. PL measurements exhibited two peaks due to the subband transitions. Many of the modulation-doped HgCdTe superlattices samples exhibited very bright and narrow PL peaks at 4.2K. Both electron and hole mobilities of modulation-doped HgCdTe superlattices increase monotonically with decreasing temperature. The electrical properties of n-type modulation-doped HgCdTe heterostructures having spacer layers were also studied. A series of p-type HgTe-Hg_ {0.15}Cd_{0.85}Te superlattices were grown on (100) CdTe substrates by MBE for an extensive study of the optical and electrical properties of such structures. The absorption coefficient versus photon energy spectra show consecutive rises and plateaus characteristic of two-dimensional quantum structures. Temperature-dependent free carrier mobilities and densities were obtained from a mixed-conduction analysis of the Hall and resistivity data as a function of

  14. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  15. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  16. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris E. Fine; Gautam Ghosh; Dieter Isheim

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloymore » matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.« less

  17. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  18. X-ray and optical crystallographic parameters investigations of high frequency induction melted Al-(alpha-Al(2)O(3)) alloys.

    PubMed

    Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y

    2010-01-01

    This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.

  19. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    NASA Astrophysics Data System (ADS)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  20. Investigations on the electronic transport and piezoresistivity properties of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) Heusler alloys under hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarajan, U.; Kalai Selvan, G.; Sivaprakash, P.

    2014-12-22

    The resisitivity of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) magnetic shape memory alloys has been investigated as a function of temperature (4–300 K) and hydrostatic pressure up to 30 kilobars. The resistivity is suppressed (X = 0) and enhanced (X = 0.15) with increasing pressure. A change in piezoresistivity with respect to pressure and temperature is observed. The negative and positive piezoresistivity increases with pressure for both the alloys. The residual resistivity and electron-electron scattering factor as a function of pressure reveal that for Ni{sub 2}MnGa the electron-electron scattering is predominant, while the X = 0.15 specimen is dominated by the electron-magnon scattering. The value of electron-electronmore » scattering factor is positive for both the samples, and it is decreasing (negative trend) for Ni{sub 2}MnGa and increasing (positive trend) for X = 0.15 with pressure. The martensite transition temperature is found to be increased with the application of external pressure for both samples.« less