Sample records for x-100 mixed micelles

  1. Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-pyrogallol red assay in the presence of Triton X-100 micelles.

    PubMed

    Romero, Max; Rojano, Benjamin; Mella-Raipán, Jaime; Pessoa-Mahana, Carlos David; Lissi, Eduardo; López-Alarcón, Camilo

    2010-09-01

    The protective effect of different antioxidants and complex mixtures on the consumption of pyrogallol red (PGR) induced by peroxyl radicals was studied in the absence and presence of Triton X-100 micelles. The presence of micelles decreased significantly the protection of PGR afforded by lipophilic antioxidants (β-carotene, octyl gallate), while no effect of micelles was observed for hydrophilic antioxidants such as Trolox, caffeic acid, gallic acid, and ascorbic acid. In the presence of complex mixtures a clear effect of Triton X-100 micelles was also observed in the protection afforded by wines, tea infusions, and seed extracts of Eugenia jambolana and Myrciaria cauliflora. On the other hand, no effect of micelles was observed for orange juice and pulp fruit extracts. The ORAC (Oxygen Radical Absorbance Capacity) index was evaluated in the absence (ORAC-PGR) and presence of Triton X-100 micelles (ORAC-PGR(MIC)). Triton X-100 micelles affect ORAC-PGR values of antioxidants in a lipophilicity-dependent way. From the obtained results, we conclude that ORAC-PGR and ORAC-PGR(MIC) assays could be considered as an alternative to estimate the antioxidant ability (ORAC-PGR) and to infer the association to Triton X-100 micelles (ORAC-PGR/ORAC-PGR(MIC)) of pure antioxidants and their complex mixtures.

  2. A Mixed Micelle Formulation for Oral Delivery of Vitamin K.

    PubMed

    Sun, Feilong; Jaspers, Tessa C C; van Hasselt, Peter M; Hennink, Wim E; van Nostrum, Cornelus F

    2016-09-01

    To develop a stable micellar formulation of vitamin K for oral delivery, because the commercial and clinically used formulation of vitamin K (Konakion® MM) destabilizes at gastric pH resulting in low bioavailability of this vitamin in neonates with cholestasis. Mixed micelles composed of EPC, DSPE-PEG 2000 and glycocholic acid, with and without vitamin K, were prepared by a film hydration method. The influence of pH on the stability of the micelles was analyzed by dynamic light scattering (DLS). The critical micelle concentration (CMC) was determined by fluorescence spectroscopy using pyrene and the morphology was evaluated by transmission electron microscopy . Caco-2 cells were used to study the cytocompatibilty. Mixed micelles with mean diameters from 7.1 to 11.0 nm and a narrow size distribution (PDI < 0.2) were obtained after 3 membrane extrusion cycles. Konakion® MM formed aggregated particles at gastric pH, which was avoided through steric stabilization by introducing PEG. TEM showed that mixed micelles had a spherical size (diameter of around 10 nm) with a narrow size distribution in agreement with the DLS results. The loading capacities for vitamin K of mixed micelles with varying molar fractions of DSPE-PEG and EPC (from 0/100 to 50/50 (mol/mol)) were 10.8-5.0 w%, respectively. The mixed micelles showed good cytocompatibility at concentrations of glycocholic acid between 0.12 and 1.20 mM. Mixed micelles with superior stability to Konakion® MM at low pH were obtained by introducing DSPE-PEG 2000. These are therefore attractive oral formulations for vitamin K.

  3. Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells.

    PubMed

    Tan, Ya'nan; Qi, Jianping; Lu, Yi; Hu, Fuqiang; Yin, Zongning; Wu, Wei

    2013-03-01

    This study was designed to investigate the cytotoxicity of bile salt-lecithin mixed micelles on the Caco-2 cell model. Cell viability and proliferation after mixed micelles treatments were evaluated with the MTT assay, and the integrity of Caco-2 cell monolayer was determined by quantitating the transepithelial electrical resistance and the flux of tracer, FITC-dextran 4400. The apoptosis induced by mixed micelles treatments was investigated with the annexin V/PI protocol. The particle size of mixed micelles was all smaller than 100 nm. The mixed micelles with lower than 0.2mM sodium deoxycholate (SDC) had no significant effects on cell viability and proliferation. When the level of SDC was higher than 0.4mM and the lecithin/SDC ratio was lower than 2:1, the mixed micelles caused significant changes in cell viability and proliferation. Furthermore, the mixed micelles affected tight junctions in a composition-dependent manner. Specifically, the tight junctions were transiently opened rather than damaged by the mixed micelles with SDC of between 0.2 and 0.6mM. The mixed micelles with more lecithin also induced less apoptosis. These results demonstrate that relatively higher concentrations of mixed micelles are toxic to Caco-2 cells, while phospholipids can attenuate the toxicity of the bile salts. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles.

    PubMed

    Huang, Shuling; Yu, Xiaohong; Yang, Linlin; Song, Fenglan; Chen, Gang; Lv, Zhufen; Li, Tiao; Chen, De; Zhu, Wanhua; Yu, Anan; Zhang, Yongming; Yang, Fan

    2014-10-15

    In order to develop and compare mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles, with the intention to develop a highly efficient formulation for nimodipine (NIM), NIM-loaded micelles and mixed micelles were made and their pharmacokinetics were studied. Single factor experiments and orthogonal experiments were designed to optimize the final preparation process, characterizations and drug release behaviors were studied. Pharmacokinetics of NIM micelles, NIM mixed micelles were researched and were compared to NIM solution. Micelles and mixed micelles were prepared by solvent evaporation method, with relatively high drug loading efficiency and within nano-particle size range. The CMC value of mPEG-PLA was lower than that of mPEG-PLA/TPGS. The results of FTIR and TEM confirmed the spherical core-shell structure of micelles as well as mixed micelles, and the encapsulation of NIM inside the cores. In vitro release showed that micelles and mixed micelles had sustained release effect in the forms of passive diffusion and dissolution process, respectively. Following intraperitoneal administration (5mg/kg), micelles and mixed micelles were absorbed faster than solution, and with larger MRT(0-t), smaller CLz and larger AUC(0-t) as compared to that of solution, which showed micelles and mixed micelles had higher retention, slower elimination and higher bioavailability. This experiment also showed that mixed micelles released NIM more stably than micelles. By evaluate the bioequivalence, NIM micelles and NIM mixed micelles were testified non-bioequivalent to NIM solution. Micelles and mixed micelles could sustain the NIM concentrations more efficiently in plasma as compared to solution. Mixed micelles were the best ones since they had high loading content and released more stably. Thus, apprehending micelles and mixed micelles were suited as poor aqueous solubility drug carriers, and mixed micelles were better due to their high loading content and more stable release

  5. Temperature-dependent magnetic field effect study on exciplex luminescence: probing the triton X-100 reverse micelle in cyclohexane.

    PubMed

    Das, Doyel; Nath, Deb Narayan

    2007-09-20

    The microenvironment within the reverse micelle of the nonionic surfactant Triton X-100 (TX-100) in cyclohexane has been investigated by studying the magnetic field effect (MFE) on pyrene-dimethylaniline exciplex luminescence. The nature of exciplex fluorescence and its behavior in the presence of a magnetic field have been found to vary significantly with the water content of the medium. Results are discussed in light of multiple exciplex formation within the micelle which is further supported by the fluorescence lifetime measurements. Those exciplexes emitting at longer wavelength are found to be magnetic field sensitive while those emitting toward the blue region of the spectrum are insensitive toward magnetic field. Since the exciplex's emission characteristics and magnetic field sensitivity depend on its immediate surrounding, it has been concluded that the environment within the micelle is nonuniform. With an increase in hydration level, different zones of varying polarity are created within the reverse micelle. It has been pointed out that the magnetic field sensitive components reside inside the polar core of the micelle while those located near the hydrocarbon tail are field insensitive. However it has been presumed that an interconversion between the different types of exciplexes is possible. The environment within the reverse micelle is found to be largely affected by the change in temperature, and this is reflected in the exciplex emission property and the extent of magnetic field effect. Interestingly, the variation of MFE with temperature follows different trends in the dry and the wet reverse micelle. A comparison has been drawn with the reverse micelle of the ionic surfactant to get an insight into the difference between the various types of micellar environment.

  6. Pluronic®-bile salt mixed micelles.

    PubMed

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mixed micelles of 7,12-dioxolithocholic acid and selected hydrophobic bile acids: interaction parameter, partition coefficient of nitrazepam and mixed micelles haemolytic potential.

    PubMed

    Poša, Mihalj; Tepavčević, Vesna

    2011-09-01

    The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate.

    PubMed

    Cirin, Dejan M; Poša, Mihalj M; Krstonošić, Veljko S

    2011-12-29

    In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.

  9. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    PubMed Central

    2011-01-01

    Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100) or anionic (sodium lauryl ether sulfate) surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate. PMID:22206681

  10. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    PubMed

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  11. Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release.

    PubMed

    Chen, Quan; Li, Siheng; Feng, Zixiong; Wang, Meng; Cai, Chengzhi; Wang, Jufang; Zhang, Lijuan

    2017-01-01

    We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95-5.25 mg/L). The resultant mixed micelles were found to be <100 nm and were used to encapsulate the anticancer drug doxorubicin (DOX) with pretty good drug-loading content (24%) and entrapment efficiency (55%). Most importantly, the micelle carrier exhibited a pH-dependent conformational conversion and promoted the DOX release at the tumorous pH. Our in vitro studies demonstrated the comparable level of DOX-loaded mixed micelle delivery into tumor cells with the free DOX (80% of the tumor cells were killed after 48 h incubation). The DOX-loaded mixed micelles were effective to inhibit the proliferation of tumor cells after prolonged incubation. Overall, the pH-responsive mixed micelle system provided desirable potential in the controlled release of anticancer therapeutics.

  12. pH and redox-responsive mixed micelles for enhanced intracellular drug release.

    PubMed

    Cai, Mengtan; Zhu, Kun; Qiu, Yongbin; Liu, Xinrong; Chen, Yuanwei; Luo, Xianglin

    2014-04-01

    In order to prepare pH and redox sensitive micelles, amphiphilic copolymers of poly (epsilon-caprolactone)-b-poly(2-(diethylamino) ethyl methacrylate) (PCL-PDEA) and disulfide-linked poly(ethyl glycol)-poly(epsilon-caprolactone) (mPEG-SS-PCL) were synthesized. The double-sensitive micelles were prepared simply by solvent-evaporating method with the mixed two copolymers. The pH sensitivity of the mixed micelles was confirmed by the change of micelle diameter/diameter distribution measured by dynamic lighting scattering (DLS) and the redox sensitivity of the mixed micelles was testified by the change of micellar morphous observed by scanning electron microscope (SEM). In vitro drug release showed that drug-loaded mixed micelles (mass ratio 5:5) could achieve above 90% of drug release under low pH and reducing condition within 10h. Moreover, the drug-loaded mixed micelles (mass ratio 5:5) showed the largest cellular toxicity compared with other drug-loaded micelles, while blank mixed micelles exhibited no toxicity. These results meant that the mixed micelles composed by the two amphiphilic copolymers can enhance intracellular drug release. It is concluded that the newly developed mixed micelles can serve as a potential drug delivery system for anticancer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preclinical safety evaluation of intravenously administered mixed micelles.

    PubMed

    Teelmann, K; Schläppi, B; Schüpbach, M; Kistler, A

    1984-01-01

    Mixed micelles, with their main constituents lecithin and glycocholic acid, form a new principle for the parenteral administration of compounds which are poorly water-soluble. Their composition of mainly physiological substances as well as their comparatively good stability substantiate their attractivity in comparison to existing solvents. A decomposition due to physical influences such as heat or storage for several years will almost exclusively affect the lecithin component in the form of hydrolysis into free fatty acids and lysolecithin. Their toxicity was examined experimentally in various studies using both undecomposed and artificially decomposed mixed micelles. In these studies the mixed micelles were locally and systemically well tolerated and proved to be neither embryotoxic, teratogenic nor mutagenic. Only when comparatively high doses of the undecomposed mixed micelles were administered, corresponding to approximately 30 to 50 times the anticipated clinical injection volume (of e.g. diazepam mixed micelles), did some vomitus (dogs), slight liver enzyme elevation (rats and dogs), and slightly increased liver weights (dogs) occur. After repeated injections of the artificially decomposed formulation (approximately 25% of lecithin hydrolyzed to free fatty acids and lysolecithin) effects such as intravascular haemolysis, liver enzyme elevations and intrahepatic cholestasis (dogs only) were observed but only when doses exceeding a threshold of approximately 40 to 60 mg lysolecithin/kg body weight were administered. All alterations were reversible after cessation of treatment.

  14. Comparison of bile salt/phosphatidylcholine mixed micelles in solubilization to sterols and stability.

    PubMed

    Guo, Qin; Cai, Jie; Li, Pengyu; Xu, Dongling; Ni, Xiaomin; Wen, Hui; Liu, Dan; Lin, Suizhen; Hu, Haiyan

    2016-01-01

    Androst-3β,5α,6β-triol (Triol) is a promising neuroprotective agent, but its poor solubility restricts its development into parenteral preparations. In this study, Triol is significantly solubilized by bile salt/phosphatidylcholine mixed micelles (BS/PC-MM). All BS/PC-MM systems are tested to remarkably improve the drug solubility with various stabilities after drug loading. Among them, the sodium glycocholate (SGC)/egg phosphatidylcholine (EPC) system with 2:1 ratio in weight and the total concentration of SGC and EPC of 100 mg/mL is proved to produce stable mixed micelles with high drug loading. It is found that the stability of drug-loaded mixed micelles is quite different, which might be related to the change in critical micelle concentration (CMC) after incorporating drugs. SGC/EPC and SGC/soya phosphatidylcholine (SPC) remain transparent under accelerated conditions and manifest a decreased CMC (dropping from 0.105 to 0.056 mg/mL and from 0.067 to 0.024 mg/mL, respectively). In contrast, swine bile acid-sodium salt (SBA-Na)/PC and sodium deoxycholate (SDC)/PC are accompanied by drug precipitation and reached the maximum CMC on the first and the third days, respectively. Interestingly, the variation of CMC under accelerated testing conditions highly matches the drug-precipitating event in the primary stability experiment. In brief, the bile salt/phosphatidylcholine system exists as a potential strategy of improving sterol drug solubility. CMC variation under accelerated testing conditions might be a simple and easy method to predict the stability of drug-loaded mixed micelles.

  15. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    NASA Astrophysics Data System (ADS)

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-12-01

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  16. Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy

    PubMed Central

    Ribeiro, Andreza; Sosnik, Alejandro; Chiappetta, Diego A.; Veiga, Francisco; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2012-01-01

    Polymeric micelles of single and mixed poloxamines (Tetronic) were evaluated regarding their ability to host the antiglaucoma agent ethoxzolamide (ETOX) for topical ocular application. Three highly hydrophilic varieties of poloxamine (T908, T1107 and T1307) and a medium hydrophilic variety (T904), possessing a similar number of propylene oxide units but different contents in ethylene oxide, were chosen for the study. The critical micellar concentration and the cloud point of mixed micelles in 0.9 per cent NaCl were slightly greater than the values predicted from the additive rule, suggesting that the co-micellization is hindered. Micellar size ranged between 17 and 120 nm and it was not altered after the loading of ETOX (2.7–11.5 mg drug g–1 poloxamine). Drug solubilization ability ranked in the order: T904 (50-fold increase in the apparent solubility) > T1107 ≅ T1307 > T908. Mixed micelles showed an intermediate capability to host ETOX but a greater physical stability, maintaining almost 100 per cent drug solubilized after 28 days. Furthermore, the different structural features of poloxamines and their combination in mixed micelles enabled the tuning of drug release profiles, sustaining the release in the 1–5 days range. These findings together with promising hen's egg test-chorioallantoic membrane biocompatibility tests make poloxamine micelles promising nanocarriers for carbonic anhydrase inhibitors in the treatment of glaucoma. PMID:22491977

  17. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system.

    PubMed

    Hu, Mei; Zhang, Jinjie; Ding, Rui; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2017-04-01

    The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus ® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.

  18. The development of phytosterol-lecithin mixed micelles and organogels.

    PubMed

    Matheson, Andrew B; Dalkas, Georgios; Gromov, Andrei; Euston, Stephen R; Clegg, Paul S

    2017-12-13

    We demonstrate that by mixing the phytosterol-ester oryzanol with lecithin in an organic solvent, both components may be dispersed at much higher concentrations than they may be individually. Dynamic light scattering and molecular dynamics simulations show that the mechanism for this is the formation of r ∼ 4 nm mixed micelles. Infrared spectroscopy and simulations suggest that these micelles are formed due in part to hydrogen bonding of the phosphate of the lecithin head-group, and the phenol group of the oryzanol. Rheology shows that by mixing these materials at an equimolar ratio, highly viscous suspensions are created. Furthermore, by adding water to these samples, a solid-like gel may be formed which offers mechanical properties close to those desired for a margarine type spread, whilst still solubilizing the oryzanol.

  19. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  20. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel.

    PubMed

    Xiong, Xiang Yuan; Pan, Xiaoqian; Tao, Long; Cheng, Feng; Li, Zi Ling; Gong, Yan Chun; Li, Yu Ping

    2017-10-01

    Targeted drug delivery systems have great potential to overcome the side effect and improve the bioavailability of conventional anticancer drugs. In order to further improve the antitumor efficacy of paclitaxel (PTX) loaded in folated Pluronic F87/poly(lactic acid) (FA-F87-PLA) micelles, D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS or Vitamin E TPGS) were added into FA-F87-PLA to form FA-F87-PLA/TPGS mixed micelles. The LE of PTX-loaded mixed micelles (13.5%) was highest in the mass ratio 5 to 3 of FA-F87-PLA to TPGS. The in vitro cytotoxicity assays indicated that the IC50 values for free PTX injections, PTX-loaded FA-F87-PLA micelles and PTX-loaded FA-F87-PLA/TPGS mixed micelles after 72h of incubation were 1.52, 0.42 and 0.037mg/L, respectively. The quantitative cellular uptake of coumarin 6-loaded FA-F87-PLA/TPGS and FA-F87-PLA micelles showed that the cellular uptake efficiency of mixed micelles was higher for 2 and 4h incubation, respectively. In vivo pharmacokinetic studies found that the AUC of PTX-loaded FA-F87-PLA/TPGS mixed micelles is almost 1.4 times of that of PTX-loaded FA-F87-PLA micelles. The decreased particle size and inhibition of P-glycoprotein effect induced by the addition of TPGS could result in enhancing the cellular uptake and improving the antitumor efficiency of PTX-loaded FA-F87-PLA/TPGS mixed micelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE PAGES

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    2017-09-29

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  2. Designing Mixed Detergent Micelles for Uniform Neutron Contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.

    Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less

  3. Photoionization of N,N,N',N'-tetramethylbenzidine in anionic-cationic mixed micelles of sodium dodecyl sulfate-dodecyltrimethylammonium chloride: electron spin resonance and electron spin echo modulation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivara-Minten, E.; Baglioni, P.; Kevan, L.

    1988-05-05

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less

  4. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    NASA Astrophysics Data System (ADS)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  5. Structure and oil responsiveness of viscoelastic fluids based on mixed anionic/cationic wormlike surfactant micelles

    NASA Astrophysics Data System (ADS)

    Shibaev, A. V.; Makarov, A. V.; Aleshina, A. L.; Rogachev, A. V.; Kuklin, A. I.; Philippova, O. E.

    2017-05-01

    In this work, a combination of small-angle neutron scattering, dynamic light scattering and rheometry was applied in order to investigate the structure and oil responsiveness of anionic/cationic wormlike surfactant micelles formed in a mixture of potassium oleate and n-octyltrimethylammonium bromide (C8TAB). A new facile method of calculating the structure factor of charged interacting wormlike micelles was proposed. It was shown that the mean distance between the micelles decreases upon the increase of the amount of cationic co-surfactant and lowering of the net micellar charge. It was demonstrated that highly viscous fluids containing mixed anionic/cationic wormlike micelles are highly responsive to oil due to its solubilization inside the micellar cores, which leads to the disruption of micelles and formation of microemulsion droplets. Experimental data suggest that solubilization of oil proceeds differently in the case of mixed anionic/cationic micelles in the absence of salt, and anionic micelles of the same surfactant in the presence of KCl.

  6. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.

    PubMed

    Duan, Yuwei; Wang, Juan; Yang, Xiaoye; Du, Hongliang; Xi, Yanwei; Zhai, Guangxi

    2015-01-01

    Although curcumin (CUR) can inhibit proliferation and induce apoptosis of tumors, the poor water solubility restricted its clinical application. The aim of this study was to improve the aqueous solubility of CUR and make more favorable changes to bioactivity by preparing curcumin-loaded phospholipid-sodium deoxycholate-mixed micelles (CUR-PC-SDC-MMs). CUR-PC-SDC-MMs were prepared by the thin-film dispersion method. Based on the results of single factor exploration, the preparation technology was optimized using the central composite design-response surface methodology with drug loading and entrapment efficiency (EE%) as indicators. The images of transmission electron microscopy showed that the optimized CUR-PC-SDC-MMs were spherical and well dispersed. The average size of the mixed micelles was 66.5 nm, the zeta potential was about -26.96 mV and critical micelle concentration was 0.0087 g/l. CUR was encapsulated in PC-SDC-MMs with loading capacity of 13.12%, EE% of 87.58%, and the solubility of CUR in water was 3.14 mg/ml. The release results in vitro showed that the mixed micelles presented sustained release behavior compared to the propylene glycol solution of CUR. The IC50 values of CUR-loaded micelles and free drug in human breast carcinoma cell lines were 4.10 μg/ml and 6.93 µg/ml, respectively. It could be concluded from the above results that the CUR-PC-SDC-MMs system might serve as a promising nanocarrier to improve the solubility and bioactivity of CUR.

  7. Pressure effect on micellization of non-ionic surfactant Triton X-100

    NASA Astrophysics Data System (ADS)

    Espinosa, Yanis R.; Caffarena, Ernesto R.; Martínez, Yanina Berrueta; Grigera, J. Raúl

    2018-02-01

    Micellar aggregates can be arranged in new types of conformational assemblies when they are isotropically compressed. Thus, the pressure effects in the underlying fundamental interactions leading to self-assembly of micellar aggregates can be represented by changes in the phase boundaries with increasing pressure. In this paper, we have employed molecular dynamics simulations to study the self-assembly of micelles composed of the non-ionic surfactant Triton X-100 at the atomic scale, monitoring the changes in the solvation dynamics when the micelles are subjected to a wide range of hydrostatic pressures. The computational molecular model was capable of self-assembling and forming a non-ionic micelle, which subsequently was coupled to a high-pressure barostat producing a geometric transition of the micelle due to changes in the solvation dynamics. Accordingly, under a high pressure regime, the hydrogen bonds are redistributed, the water density is modified, and water acts as an unstructured liquid, capable of penetrating into the micelle.

  8. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures

    NASA Astrophysics Data System (ADS)

    Kalogirou, Andreas; Gergidis, Leonidas N.; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic A B copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  9. Entropic effects, shape, and size of mixed micelles formed by copolymers with complex architectures.

    PubMed

    Kalogirou, Andreas; Gergidis, Leonidas N; Moultos, Othonas; Vlahos, Costas

    2015-11-01

    The entropic effects in the comicellization behavior of amphiphilic AB copolymers differing in the chain size of solvophilic A parts were studied by means of molecular dynamics simulations. In particular, mixtures of miktoarm star copolymers differing in the molecular weight of solvophilic arms were investigated. We found that the critical micelle concentration values show a positive deviation from the analytical predictions of the molecular theory of comicellization for chemically identical copolymers. This can be attributed to the effective interactions between copolymers originated from the arm size asymmetry. The effective interactions induce a very small decrease in the aggregation number of preferential micelles triggering the nonrandom mixing between the solvophilic moieties in the corona. Additionally, in order to specify how the chain architecture affects the size distribution and the shape of mixed micelles we studied star-shaped, H-shaped, and homo-linked-rings-linear mixtures. In the first case the individual constituents form micelles with preferential and wide aggregation numbers and in the latter case the individual constituents form wormlike and spherical micelles.

  10. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo.

    PubMed

    Ding, Yingying; Wang, Changyuan; Wang, Yutong; Xu, Youwei; Zhao, Jing; Gao, Meng; Ding, Yanfang; Peng, Jinyong; Li, Lei

    2018-05-27

    Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus ® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect. Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG 2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG 2 liver cancer cells. Free piperine or piperine-loaded Soluplus ® /TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2 mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo. The diameter of piperine-loaded Soluplus ® /TPGS (4:1) mixed micelles was about 61.9 nm and the zeta potential -1.16 ± 1.06 mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus ® /TPGS. The release results in vitro showed that the piperine-loaded Soluplus ® /TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG 2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p < .05). The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine

  11. Biodegradable mixed MPEG-SS-2SA/TPGS micelles for triggered intracellular release of paclitaxel and reversing multidrug resistance

    PubMed Central

    Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin

    2016-01-01

    In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy. PMID:27785018

  12. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider.

    PubMed

    Ding, Jiaojiao; Sun, Yujiao; Li, Jinfeng; Wang, Huimin; Mao, Shirui

    2017-07-01

    The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.

  13. Electrochemical and optical study of carotenoids in TX 100 micelles: Electron transfer and a large blue shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Kispert, L.D.

    1999-10-21

    The first oxidation waves of 8{prime}-apo-{beta}-caroten-8{prime}-al (I) and 8{prime}-apo-{beta}-caroten-8{prime}nitrile (II) in TX100 micelles are clearly observed in their cyclic voltammograms (CVs). The CV of {beta}-carotene (III) in TX100 micelles shows that III is not oxidized. It is proposed that the hydrophobic barrier of the micelle is an important reason for the failure to oxidize III, which is totally located in the hydrophobic center of the micelle. The oxidation of I and II demonstrates that electrons can be transferred through the terminal groups over a distance of ca. 22 {angstrom}. An unusually large blue band shift (100 nm, relative to thatmore » in CH{sub 2}Cl{sub 2}) is observed in the optical absorption spectrum of 7{prime}-apo-7{prime},7{prime}-dicyano-{beta}-carotene (IV) in TX100 micelles. This phenomenon is not observed in the absorption spectra of other studied carotenoids. A change in the ground-state electronic structure of IV, due to the influence of water near the terminal dicyanomethylidene group, is proposed to be the major reason for this large band shift.« less

  14. Solubilization of pyrene by anionic-nonionic mixed surfactants.

    PubMed

    Zhou, Wenjun; Zhu, Lizhong

    2004-06-18

    Surfactant-enhanced remediation (SER) is an effective approach for the removal of sorbed hydrophobic organic compounds from contaminated soils. The solubilization of pyrene by four anionic-nonionic mixed surfactants, sodium dodecyl sulfate (SDS) with Triton X-405 (TX405), Brij35, Brij58, and Triton X-100 (TX100), has been studied from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (Kmc), and the critical micelle concentration (CMC). The MSRs of pyrene in mixed surfactants are found to be larger than those predicted according to an ideal mixing rule. The mixing effect of anionic and nonionic surfactants on MSR for pyrene follows the order of SDS-TX405 > SDS-Brij35 > SDS-Brij58 > SDS-TX100 and increases with an increase in the hydrophile-lipophile balance (HLB) value of nonionic surfactant in mixed systems. In addition, the mixture of anionic and nonionic surfactants cause the Kmc value for pyrene to be greater than the ideal value in SDS-TX405 mixed system, but to be smaller than the ideal value in SDS-Brij35, SDS-Brij58, and SDS-TX100 mixed systems. Meanwhile, in the four mixed systems, the experimental CMCs are lower than the ideal CMCs at almost all mixed surfactant solution compositions. The mixing effect of anionic and nonionic surfactants on MSR for pyrene can be attributed to the conjunct or the net result of the negative deviation of the CMCs from ideal mixture and the increasing or decreasing Kmc.

  15. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy

    PubMed Central

    Zhao, Yiqiao; Yu, Hua; Zhou, Haiyu; Chen, Meiwan

    2017-01-01

    Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer. PMID:28919756

  16. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers.

    PubMed

    Hou, Jian; Wang, Jing; Sun, E; Yang, Lei; Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2016-11-01

    An effective anti-cancer drug, icariside II (IS), has been used to treat a variety of cancers in vitro. However, its poor aqueous solubility and permeability lead to low oral bioavailability. The aim of this work was to use Solutol®HS15 and Pluronic F127 as surfactants to develop novel mixed micelles to enhance the oral bioavailability of IS by improving permeability and inhibiting efflux. The IS-loaded mixed micelles were prepared using the method of ethanol thin-film hydration. The physicochemical properties, dissolution property, oral bioavailability of the male SD rats, permeability and efflux of Caco-2 transport models, and gastrointestinal safety of the mixed micelles were evaluated. The optimized IS-loaded mixed micelles showed that at 4:1 ratio of Solutol®HS15 and Pluronic F127, the particle size was 12.88 nm with an acceptable polydispersity index of 0.172. Entrapment efficiency (94.6%) and drug loading (9.7%) contributed to the high solubility (11.7 mg/mL in water) of IS, which increased about 900-fold. The SF-IS mixed micelle release profile showed a better sustained release property than that of IS. In Caco-2 cell monolayer models, the efflux ratio dramatically decreased by 83.5%, and the relative bioavailability of the mixed micelles (AUC 0-∞ ) compared with that of IS (AUC 0-∞ ) was 317%, indicating potential for clinical application. In addition, a gastrointestinal safety assay also provided reliable clinical evidence for the safe use of this micelle.

  17. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    PubMed

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary

  18. Kinetic characterization of Escherichia coli outer membrane phospholipase A using mixed detergent-lipid micelles.

    PubMed

    Horrevoets, A J; Hackeng, T M; Verheij, H M; Dijkman, R; de Haas, G H

    1989-02-07

    The substrate specificity of Escherichia coli outer membrane phospholipase A was analyzed in mixed micelles of lipid with deoxycholate or Triton X-100. Diglycerides, monoglycerides, and Tweens 40 and 85 in Triton X-100 are hydrolyzed at rates comparable to those of phospholipids and lysophospholipids. p-Nitrophenyl esters of fatty acids with different chain lengths and triglycerides are not hydrolyzed. The minimal substrate characteristics consist of a long acyl chain esterified to a more or less hydrophilic headgroup as is the case for the substrate monopalmitoylglycol. Binding occurs via the hydrocarbon chain of the substrate; diacyl compounds are bound three to five times better than monoacyl compounds. When acting on lecithins, phospholipase A1 activity is six times higher than phospholipase A2 activity or 1-acyl lysophospholipase activity. Activity on the 2-acyl lyso compound is about two times less than that on the 1-acyl lysophospholipid. The enzyme therefore has a clear preference for the primary ester bond of phospholipids. In contrast to phospholipase A1 activity, phospholipase A2 activity is stereospecific. Only the L isomer of a lecithin analogue in which the primary acyl chain was replaced by an alkyl ether group is hydrolyzed. The D isomer of this analogue is a competitive inhibitor, bound with the same affinity as the L isomer. On these ether analogues the enzyme shows the same preference for the primary acyl chain as with the natural diester phospholipids. Despite its broad specificity, the enzyme will initially act as a phospholipase A1 in the E. coli envelope where it is embedded in phospholipids.

  19. Surfactant-enhanced remediation of a trichloroethene-contaminated aquifer. 1. Transport of triton X-100

    USGS Publications Warehouse

    Smith, J.A.; Sahoo, D.; Mclellan, H.M.; Imbrigiotta, T.E.

    1997-01-01

    Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer at Picatinny Arsenal, NJ, has been studied through a series of laboratory and field experiments. In the laboratory, batch and column experiments were conducted to quantify the rate and amount of Triton X-100 sorption to the aquifer sediments. In the field, a 400 mg/L aqueous Triton X-100 solution was injected into the aquifer at a rate of 26.5 L/min for a 35-d period. The transport of Triton X-100 was monitored by sampling and analysis of groundwater at six locations surrounding the injection well. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to critical micelle concentration. Batch, soil column, and field experimental data were analyzed with zero-, one-, and two- dimensional (respectively) transient solute transport models with either equilibrium or rate-limited sorption. These analyses reveal that Triton X- 100 sorption to the aquifer solids is slow relative to advective and dispersive transport and that an equilibrium sorption model cannot simulate accurately the observed soil column and field data. Comparison of kinetic sorption parameters from batch, column, and field transport data indicate that both physical heterogeneities and Triton X-100 mass transfer between water and soil contribute to the kinetic transport effects.Transport of a nonionic surfactant (Triton X-100) at aqueous concentrations less than 400 mg/L through a trichloroethene-contaminated sand-and-gravel aquifer was studied. Equilibrium batch sorption experiments showed that Triton X-100 sorbs strongly and nonlinearly to the field soil with the sharpest inflection point of the isotherm occurring at an equilibrium aqueous Triton X-100 concentration close to

  20. Aggregation study in mixture surfactant system TX-100+SDS in heavy water solutions by SANS method

    NASA Astrophysics Data System (ADS)

    Rajewska, A.; Islamov, A. Kh.; Bakeeva, R. F.

    2018-03-01

    The mixing of amphiphiles in water may lead to the formation of mixed micelles which often present new properties with respect to the pure component solutions [1,2]. The mixture system of classic surfactants SDS (sodium dodecyl sulfate)+TX-100(p-(1,1,3,3- tetramethyl) poly(oxyethylene) (anionic + non-ionic) in heavy water solutions was investigated at temperatures 30°, 50°, 70°C for compositions 1:1, 2:1, 3:1 by the small-angle neutron scattering(SANS) method on spectrometer (‘YuMO’) at the IBR-2 pulsed neutron source at FLNP, JINR in Dubna (Russia). Measurements have covered Q range from 8x10-3 to 0.4 Å-1. From the measured dependence of the scattered intensity on the scattering angle, we derived the size, shape of micelles, aggregation number at various compositions and temperatures. The size of mixed micelle is a weak function of the mixing ratio between the two components.

  1. Achiral and Chiral Separations Using Micellar Electrokinetic Chromatography, Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques with Molecular Micelles

    PubMed Central

    Luces, Candace A.; Warner, Isiah M.

    2014-01-01

    Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738

  2. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities.

    PubMed

    Cohen, D E; Carey, M C

    1991-08-01

    We determined the distribution of lecithin molecular species between vesicles and mixed micelles in cholesterol super-saturated model biles (molar taurocholate-lecithin-cholesterol ratio 67:23:10, 3 g/dl, 0.15 M NaCl, pH approximately 6-7) that contained equimolar synthetic lecithin mixtures or egg yolk or soybean lecithins. After apparent equilibration (48 h), biles were fractionated by Superose 6 gel filtration chromatography at 20 degrees C, and lecithin molecular species in the vesicle and mixed micellar fractions were quantified as benzoyl diacylglycerides by high performance liquid chromatography. With binary lecithin mixtures, vesicles were enriched with lecithins containing the most saturated sn-1 or sn-2 chains by as much as 2.4-fold whereas mixed micelles were enriched in the more unsaturated lecithins. Vesicles isolated from model biles composed of egg yolk (primarily sn-1 16:0 and 18:0 acyl chains) or soy bean (mixed saturated and unsaturated sn-1 acyl chains) lecithins were selectively enriched (6.5-76%) in lecithins with saturated sn-1 acyl chains whereas mixed micelles were enriched with lecithins composed of either sn-1 18:1, 18:2, and 18:3 unsaturated or sn-2 20:4, 22:4, and 22:6 polyunsaturated chains. Gel filtration, lipid analysis, and quasielastic light scattering revealed that apparent micellar cholesterol solubilities and metastable vesicle cholesterol/lecithin molar ratios were as much as 60% and 100% higher, respectively, in biles composed of unsaturated lecithins. Acyl chain packing constraints imposed by distinctly different particle geometries most likely explain the asymmetric distribution of lecithin molecular species between vesicles and mixed micelles in model bile as well as the variations in apparent micellar cholesterol solubilities and vesicle cholesterol/lecithin molar ratios.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    PubMed

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Structuration in the Interface of Direct and Reversed Micelles of Sucrose Esters, Studied by Fluorescent Techniques

    PubMed Central

    Sandoval, Catalina; Ortega, Anakenna; Sanchez, Susana A.; Morales, Javier; Gunther, German

    2015-01-01

    Background Reactors found in nature can be described as micro-heterogeneous systems, where media involved in each micro-environment can behave in a markedly different way compared with the properties of the bulk solution. The presence of water molecules in micro-organized assemblies is of paramount importance for many chemical processes, ranging from biology to environmental science. Self-organized molecular assembled systems are frequently used to study dynamics of water molecules because are the simplest models mimicking biological membranes. The hydrogen bonds between sucrose and water molecules are described to be stronger (or more extensive) than the ones between water molecules themselves. In this work, we studied the capability of sucrose moiety, attached to alkyl chains of different length, as a surface blocking agent at the water-interface and we compared its properties with those of polyethylenglycol, a well-known agent used for this purposes. Published studies in this topic mainly refer to the micellization process and the stability of mixed surfactant systems using glycosides. We are interested in the effect induced by the presence of sucrose monoesters at the interface (direct and reverse micelles) and at the palisade (mixtures with Triton X-100). We believe that the different functional group (ester), the position of alkyl chain (6-O) and the huge capability of sucrose to interact with water will dramatically change the water structuration at the interface and at the palisade, generating new possibilities for technological applications of these systems. Results Our time resolved and steady state fluorescence experiments in pure SEs micelles show that sucrose moieties are able to interact with a high number of water molecules promoting water structuration and increased viscosity. These results also indicate that the barrier formed by sucrose moieties on the surface of pure micelles is more effective than the polyoxyethylene palisade of Triton X-100

  5. Self dispersing mixed micelles forming systems for enhanced dissolution and intestinal permeability of hydrochlorothiazide.

    PubMed

    Sultan, Amal A; El-Gizawy, Sanaa A; Osman, Mohamed A; El Maghraby, Gamal M

    2017-01-01

    Mixed micelles provide promising strategy for enhancing dissolution and permeability of drugs. However, their fluid nature limited the stability of the loaded drug and hindered the development of stable oral dosage form. Accordingly, the objective was to develop solid self dispersing mixed micelle forming systems (MMFS) for enhanced dissolution and intestinal permeability of hydrochlorothiazide. Pseudoternary phase diagrams were constructed using sodium cholate, lecithin with either poloxamer 407 or PEG 4000 to determine the composition of MMFS. Both polymer free and poloxamer or PEG containing MMFS were prepared as homogenous matrices or as solid self dispersing powder. The later was developed by adsorption of MMFS on avicel-aerosil mixture. Differential scanning calorimetry provided an evidence for existence of hydrochlorothiazide as molecular dispersion in the MMFS. Dispersing polymer free, PEG 4000 or poloxamer based MMFS in aqueous medium produced micelles having size values of 119, 52.6 and 28nm, respectively. The zeta potential values were -61.8, -59.5 and -19.5mV for the same systems, respectively. Preparation of solid self dispersing MMFS enhanced the dissolution rate of hydrochlorothiazide. The intestinal absorption of hydrochlorothiazide from its aqueous solution and polymer incorporating mixed micellar systems was monitored using in situ rabbit intestinal perfusion technique. The permeability results showed a clear trend for enhanced membrane transport of the drug after being incorporated into poloxamer containing mixed micellar system. The study thus introduced a versatile easily formulated solid self dispersing system with high potential for solving the dissolution and permeability problems of class IV drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Synergistic Growth of Giant Wormlike Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid.

    PubMed

    Georgieva, Gergana S; Anachkov, Svetoslav E; Lieberwirth, Ingo; Koynov, Kaloian; Kralchevsky, Peter A

    2016-12-06

    The synergistic growth of giant wormlike micelles in ternary mixed solutions composed of an anionic surfactant (sodium laurylethersulfate, SLES), a zwitterionic surfactant (cocamidopropyl betaine, CAPB), and octanoic acid (HC8) is studied. Rheological data and their analysis in terms of Cole-Cole plots and micellar characteristic times are presented, and the micellar structures behind the observed rheological behavior are revealed by cryo-TEM micrographs. The surfactant composition is fixed near the maximal micelle size of the binary SLES + CAPB system, whereas the concentration of HC8 is varied. At a given HC8 concentration, the viscosity of the ternary micellar solutions exhibits a very high and sharp peak. Polarized-light optical microscopy indicates that all investigated solutions are isotropic rather than liquid-crystalline. The cryo-TEM imaging shows complex phase behavior: wormlike micelles to the left of the peak, giant entangled wormlike micelles at the peak, and long wormlike micelles coexisting with multiconnected micellar aggregates to the right of the peak. The formation of multiconnected micelles leads to a drop in viscosity at the higher concentrations. The results contribute to a better understanding of the structure-rheology relations in micellar surfactant solutions and could be useful for controlling the properties of formulations in personal-care and house-hold detergency.

  7. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    PubMed Central

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Background Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake. PMID:25709451

  8. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs.

    PubMed

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

  9. Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system.

    PubMed

    Zhang, Zhenhai; Cui, Changchang; Wei, Fang; Lv, Huixia

    2017-08-01

    The aim of this study was to develop a novel mix micelles system composing of two biocompatible copolymers of Soluplus ® and Pluronic F127 to improve the solubility, oral bioavailability of insoluble drug apigenin (AP) as model drug. The AP-loaded mixed micelles (AP-M) were prepared by ethanol thin-film hydration method. The formed optimal formulation of AP-M were provided with small size (178.5 nm) and spherical shape at ratio of 4:1 (Soluplus ® :Pluronic F127), as well as increasing solubility of to 5.61 mg/mL in water which was about 3442-fold compared to that of free AP. The entrapment efficiency and drug loading of AP-M were 95.72 and 5.32%, respectively, and a sustained release of AP-M was obtained as in vitro release study indicated. Transcellular transport study showed that the cell uptake of AP was increased in Caco-2 cell transport models. The oral bioavailability of AP-M was 4.03-fold of free AP in SD rats, indicating the mixed micelles of Soluplus ® and Pluronic F127 is an industrially feasible drug delivery system to promote insoluble drug oral absorption in the gastrointestinal tract.

  10. Thermoresponsive complex amphiphilic block copolymer micelles investigated by laser light scattering.

    PubMed

    Zhao, Fang; Xie, Dinghai; Zhang, Guangzhao; Pispas, Stergios

    2008-05-22

    Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.

  11. Mixed micelles for encapsulation of doxorubicin with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines versus Doxil®.

    PubMed

    Cagel, Maximiliano; Bernabeu, Ezequiel; Gonzalez, Lorena; Lagomarsino, Eduardo; Zubillaga, Marcela; Moretton, Marcela A; Chiappetta, Diego A

    2017-11-01

    Doxorubicin (DOX) is used as a "first-line" antineoplastic drug in ovarian and metastatic breast cancer. However, serious side effects, such as cardiotoxicity have been reported after DOX intravenous administration. Hence, we investigated different micelle-former biomaterials, as Soluplus ® , Pluronic F127, Tetronic T1107 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) to develop a potential mixed micellar nanocarrier for DOX delivery. Since DOX hydrochloride is a poor candidate to be encapsulated inside the hydrophobic core of the mixed micelles, we assayed a hydrophobic complex between DOX and sodium deoxycholate (NaDC) as an excellent candidate to be encapsulated within polymeric micelles. The combination of T1107:TPGS (1:3, weight ratio) demonstrated the best physicochemical properties together with a high DL capacity (6.43% w/v). Particularly, DOX in vitro release was higher at acidic tumour microenvironment pH value (5.5) than at physiological counterpart (7.4). The hydrodynamic diameter of the DOX/NaDC-loaded mixed micellar system was 10.7nm (PDI=0.239). The in vitro cytotoxicity of the mixed micellar formulation resulted significantly (p<0.05) higher than Doxil ® against ovarian (SKOV-3) and triple-negative breast cancer cells (MDA-MB- 231). Further, the in vitro cellular uptake assays demonstrated a significant increment (p<0.05) of the DOX intracellular content for the mixed micelles versus Doxil ® for both, SKOV-3 (at 2, 4 and 6h of incubation) and MDA-MB-231 (at 4h of incubation) cells. These findings suggest that T1107:TPGS (1:3) mixed micelles could be employed as a potential nanotechnological platform for drug delivery of DOX. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical

    PubMed Central

    Shen, Roger; Kim, Jane J; Yao, Mingyi; Elbayoumi, Tamer A

    2016-01-01

    Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy. PMID:27217747

  13. Curcumin-Loaded TPGS/F127/P123 Mixed Polymeric Micelles for Cervical Cancer Therapy: Formulation, Characterization, and InVitro and InVivo Evaluation.

    PubMed

    Wang, Jiao; Liu, Qiang; Yang, Linnan; Xia, Xiaofei; Zhu, Rongrong; Chen, Shengguang; Wang, Mei; Cheng, Liming; Wu, Xianzheng; Wang, Shilong

    2017-12-01

    Cervical cancer is the fourth most common cancer in women worldwide, and existing treatments cause severe side effects and great burdens. Thus, the development of safe, inexpensive therapeutic agents is necessary. Curcumin (Cur), a well-known natural product, exerts promising anti-cancer activities against various cancer types. However, its therapeutic efficacy is severely restrained due to rapid degradation, poor aqueous solubility, and low bioavailability. The objective of this study was to investigate the therapeutic potential of novel curcumin-loaded TPGS/F127/P123 mixed polymeric micelles (Cur@NPT100) for cervical cancer treatment. The Cur@NPT100 exhibited an average size of approximately 19 nm, a zeta potential of around -4 mV, a drug loading of 8.18 ± 0.36%, and an encapsulation efficiency of 79.38 ± 4.65%. Unlike free Cur, Cur@NPT100 are readily dispersed in aqueous medium, showing enhanced stability and a sustained release profile over a 6-day period. In vitro cell culture experiments revealed that TPGS/F127/P123 mixed polymeric micelles (NPT100) based nanocarriers substantially promoted the selective cellular uptake of Cur into HeLa cells rather than by non-cancerous NIH3T3 cells, inducing higher cytotoxicity and greater apoptosis and significantly increasing the percentage of cells arrested at the G2/M phase of the cell cycle. Additionally, the Cur@NPT100 facilitated more Cur accumulation in the mitochondria and decreased the mitochondrial membrane potential. In addition, western blot assays demonstrated that Cur@NPT100 were more potent than free Cur at activating the mitochondria-mediated apoptosis pathway. In vivo results further confirmed that Cur@NPT100 exhibited a much higher antitumor efficacy than free Cur and had excellent biocompatibility. In conclusion, Cur@NPT100 might be an effective therapeutic agent for cervical cancer.

  14. pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity.

    PubMed

    Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang

    2017-01-01

    The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of -48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy.

  15. pH-sensitive and folic acid-targeted MPEG-PHIS/FA-PEG-VE mixed micelles for the delivery of PTX-VE and their antitumor activity

    PubMed Central

    Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang

    2017-01-01

    The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of −48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy. PMID:28860753

  16. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    PubMed Central

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  17. Photoionization of N,N,N[prime],N[prime]-tetramethylbenzidine in a mixed micelle of ionic and nonionic surfactants: Electron spin-echo modulation and electron spin resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglioni, P.; Rivara-Minten, E.; Stenland, C.

    1991-11-28

    Electron spin-echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation radical in frozen mixed micelles of sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTAC) and hexakis(ethylene glycol) monododecyl ether (C[sub 12]E[sub 6]), selectively deuterated along the poly(ethylene glycol) group (C[sub 12]D[sub 6]) or along the alkyl chain ((CD)[sub 12]E[sub 6]), have been studied as a function of the mixed-micelle composition in H[sub 2]O and D[sub 2]O. ESEM effects due to TMB[sup +] interactions with deuterium in D[sub 2]O show a decrease of the TMB[sup +]-water interactions for the system DTAC/C[sub 12]E[sub 6] and anmore » increase for the system SDS/C[sub 12]E[sub 6] that depend on the composition of the mixed micelle. The location of TMB[sup +] in the mixed micelles, deduced by comparing the modulation effects due to interactions of the photocation with water deuteriums or deuteriums of deuterated surfactants, is reported for the SDS/C[sub 12]E[sub 6] and DTAC/C[sub 12]E[sub 6] mixed micelles. The efficiency of charge separation upon the photoionization of TMB to produce TMB[sup +] measured by ESR correlates with the surface charge and with the degree of water penetration into the mixed micelle.« less

  18. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-inducedmore » for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.« less

  19. Mixed micelle cloud point-magnetic dispersive μ-solid phase extraction of doxazosin and alfuzosin

    NASA Astrophysics Data System (ADS)

    Gao, Nannan; Wu, Hao; Chang, Yafen; Guo, Xiaozhen; Zhang, Lizhen; Du, Liming; Fu, Yunlong

    2015-01-01

    Mixed micelle cloud point extraction (MM-CPE) combined with magnetic dispersive μ-solid phase extraction (MD-μ-SPE) has been developed as a new approach for the extraction of doxazosin (DOX) and alfuzosin (ALF) prior to fluorescence analysis. The mixed micelle anionic surfactant sodium dodecyl sulfate and non-ionic polyoxyethylene(7.5)nonylphenylether was used as the extraction solvent in MM-CPE, and diatomite bonding Fe3O4 magnetic nanoparticles were used as the adsorbent in MD-μ-SPE. The method was based on MM-CPE of DOX and ALF in the surfactant-rich phase. Magnetic materials were used to retrieve the surfactant-rich phase, which easily separated from the aqueous phase under magnetic field. At optimum conditions, a linear relationship between DOX and ALF was obtained in the range of 5-300 ng mL-1, and the limits of detection were 0.21 and 0.16 ng mL-1, respectively. The proposed method was successfully applied for the determination of the drugs in pharmaceutical preparations, urine samples, and plasma samples.

  20. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles

    NASA Astrophysics Data System (ADS)

    Singla, Pankaj; Singh, Onkar; Chabba, Shruti; Aswal, V. K.; Mahajan, Rakesh Kumar

    2018-02-01

    In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (Δ G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3 months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.

  1. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  2. Picosecond to nanosecond reorganization of water in AOT/lecithin mixed reverse micelles of different morphology

    NASA Astrophysics Data System (ADS)

    Narayanan, S. Shankara; Sinha, Sudarson Sekhar; Sarkar, Rupa; Pal, Samir Kumar

    2008-02-01

    We report the effect of different geometrical restrictions on the dynamical properties of water using dynamic light scattering (DLS), Fourier transform infrared (FTIR) and picosecond-resolved fluorescence studies. By preparing AOT/lecithin mixed reverse micelles (RMs) of different morphologies (spherical and ellipsoidal), we have investigated the effect of the degree of confinement on the mobility of water in the mixed RMs of similar degree of hydration. The FTIR studies along with solvation dynamics of two fluorescent probes, ANS and coumarin 500 in the RMs reveal structural and dynamical information about the micellar water, which varies with the morphology of the mixed RMs.

  3. Optimization and anticancer activity in vitro and in vivo of baohuoside I incorporated into mixed micelles based on lecithin and Solutol HS 15.

    PubMed

    Yan, Hong-Mei; Song, Jie; Zhang, Zhen-Hai; Jia, Xiao-Bin

    2016-10-01

    Baohuoside I, extracted from the Herba epimedii, is an effective but a poorly soluble antitumor drug. To improve its solubility, formulation of baohuoside I-loaded mixed micelles with lecithin and Solutol HS 15 (BLSM) has been performed in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using non-small cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of around 62.54 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, BLSM displayed a more potent antiproliferative action on A549 cell lines than baohuoside I; half-maximal inhibitory concentration (IC 50 ) was 6.31 versus 18.28 µg/mL, respectively. The antitumor efficacy test in nude mice showed that BLSM exhibited significantly higher antitumor activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the mixed micelles formulation achieved effective and targeted drug delivery. Therefore, BLSM might be a potential antitumor formulation.

  4. d-Fructose Modification Enhanced Internalization of Mixed Micelles in Breast Cancer Cells via GLUT5 Transporters.

    PubMed

    Zhou, Xu; Qin, Xianyan; Gong, Tao; Zhang, Zhi-Rong; Fu, Yao

    2017-07-01

    d-Fructose modified poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru) diblock amphiphile is synthesized via Cu(I)-catalyzed click chemistry, which self-assembles with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL-PEG-Fru/TPGS mixed micelles (PPF MM). It has been proven that glucose transporter (GLUT)5 is overexpressed in MCF-7 cells other than L929 cells. In this study, PPF MM exhibit a significantly higher uptake efficiency than fructose-free PCL-PEG-N 3 /TPGS mixed micelles in both 2D MCF-7 cells and 3D tumor spheroids. Also, the presence of free d-fructose competitively inhibits the internalization of PPF MM in MCF-7 cells other than L929 cells. PPF MM show selective tumor accumulation in MCF-7 breast tumor bearing mice xenografts. Taken together, PPF MM represent a promising nanoscale carrier system to achieve GLUT5-mediated cell specific delivery in cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Small angle x ray scattering studies of reverse micelles in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pfund, D. M.; Fulton, J. L.

    1994-10-01

    The nature of aggregates formed in a supercritical fluid determines its solvent power and selectivity. Small angle X ray scattering (SAXS) is a powerful tool for studying the properties of aggregates with sizes in the 10(angstrom) to 200(angstrom) range. It is also useful in studying those interparticle interactions which operate over a similar distance. The authors have used SAXS to examine the aggregates formed in pure fluids, in mixtures and in fluid/surfactant/water systems. The scattered intensity as a function of angle depends on the geometry, polydispersity, X ray contrast, and interaction strength of the particles as well as on the phase behavior of the system. In this paper the authors present the results of modeling the X-ray scattering from AOT/water reverse micelles in supercritical propane and in propane/carbon dioxide mixtures. They examine the effect of dilution with CO2 anti-solvent on the phase behavior of the system and on the strength of intermicellar attractions. A better understanding of these systems must be obtained before the applications of supercritical reverse micelle systems to extractions, reactions, and enhanced oil recovery can be fully developed.

  6. Polymeric micelle for tumor pH and folate-mediated targeting.

    PubMed

    Lee, Eun Seong; Na, Kun; Bae, You Han

    2003-08-28

    Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.

  7. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  8. Effect of Cerium(III) and ionic liquids on the clouding behavior of Triton X-100 micelles

    NASA Astrophysics Data System (ADS)

    Sen, Indrani Das; Negi, Charu; Jayaram, Radha V.

    2018-04-01

    In the present study, the effect of Ce(III) on the clouding behavior of Triton X-100 has been investigated in the presence and absence of imidazolium based ionic liquids of varying chain length and counter ions. Thermodynamic parameters of clouding were calculated to comprehend the underlying interactions between the surfactant and the additives. The cloud point (CP) of Triton X-100 was found to increase with the concentration of Ce(III) and that of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar solution1.

  9. Size And Shape of Detergent Micelles Determined By Small-Angle X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipfert, Jan; Columbus, Linda; Chu, Vincent B.

    2009-04-29

    We present a systematic analysis of the aggregation number and shape of micelles formed by nine detergents commonly used in the study of membrane proteins. Small-angle X-ray scattering measurements are reported for glucosides with 8 and 9 alkyl carbons (OG/NG), maltosides and phosphocholines with 10 and 12 alkyl carbons (DM/DDM and FC-10/FC-12), 1,2-dihexanoyl-sn-glycero-phosphocholine (DHPC), 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG), and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS). The SAXS intensities are well described by two-component ellipsoid models, with a dense outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core. These models provide an intermediate resolution view of micelle size and shape.more » In addition, we show that Guinier analysis of the forward scattering intensity can be used to obtain an independent and model-free measurement of the micelle aggregation number and radius of gyration. This approach has the advantage of being easily generalizable to protein-detergent complexes, where simple geometric models are inapplicable. Furthermore, we have discovered that the position of the second maximum in the scattering intensity provides a direct measurement of the characteristic head group-head group spacing across the micelle core. Our results for the micellar aggregation numbers and dimensions agree favorably with literature values as far as they are available. We de novo determine the shape of FC-10, FC-12, DM, LPPG, and CHAPS micelles and the aggregation numbers of FC-10 and OG to be ca. 50 and 250, respectively. Combined, these data provide a comprehensive view of the determinants of micelle formation and serve as a starting point to correlate detergent properties with detergent-protein interactions.« less

  10. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration.

    PubMed

    Duan, Yuwei; Zhang, Baomei; Chu, Lianjun; Tong, Henry Hy; Liu, Weidong; Zhai, Guangxi

    2016-05-01

    The aim of this work is to prepare and characterize curcumin-loaded methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA)/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) mixed micelles (CUR-MPP-TPGS-MMs), analyze the influence of formulation on enhancing the solubility of curcumin in water, and evaluate the improvement of intestinal absorption after oral administration. CUR-MPP-TPGS-MMs were prepared using the thin film diffusion method and optimized with the uniform design. The optimal CUR-MPP-TPGS-MMs were provided with high drug-loading (16.1%), small size (46.0 nm) and spherical shape. Low critical micelle concentration (CMC) and superior dilution stability showed that CUR-MPP-TPGS-MMs could keep integrity during the dilution of gastrointestinal fluid. In vitro drug release study indicated a sustained release of curcumin from CUR-MPP-TPGS-MMs in simulated gastrointestinal solution. The absorption mechanism of passive diffusion was obtained by measuring in situ intestinal absorption of CUR-MPP-TPGS-MMs in rats, and the best absorption segment was found to be the duodenum. The pharmacokinetics was evaluated in rats at the dose of 75 mg/kg by intragastric administration. The Cmax and mean retention time (MRT0-24) for CUR-MPP-TPGS-MMs were both increased, and the relative bioavailability of micelle formulation to curcumin suspension was 927.3%. These results suggested that mPEG-PLA/TPGS mixed micelle system (MPP-TPGS-MMs) showed great potential in improving oral bioavailability of curcumin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Structure and rheological behavior of casein micelle suspensions during ultrafiltration process

    NASA Astrophysics Data System (ADS)

    Pignon, F.; Belina, G.; Narayanan, T.; Paubel, X.; Magnin, A.; Gésan-Guiziou, G.

    2004-10-01

    The stability and mechanism underlying the formation of deposits of casein micelles during ultrafiltration process were investigated by small-angle and ultra small-angle x-ray scattering (SAXS and USAXS). The casein micelle dispersions consisted of phospho-caseinate model powders and the measurements probed length scales ranging from 1 to 2000 nm. Rheometric and frontal filtration measurements were combined with SAXS to establish the relationship between the rheological behavior of deposits (shear and/or compression) and the corresponding microstructure. The results revealed two characteristic length scales for the equilibrium structure with radius of gyrations Rg, about 100 and 5.6 nm pertaining to the globular micelles and their non-globular internal structure, respectively. The SAXS measurements further indicated that the increase of temperature from 20 to 70 °C or the decrease of pH from 6.6 to 6 lead to agglomeration of the globular micelles. In situ scattering measurements showed that the decrease of permeation flows is directly related to the deformation and compression of the micelles in the immediate vicinity of the membrane.

  12. Mixed micellization between natural and synthetic block copolymers: β-casein and Lutrol F-127.

    PubMed

    Portnaya, Irina; Khalfin, Rafail; Kesselman, Ellina; Ramon, Ory; Cogan, Uri; Danino, Dganit

    2011-02-28

    Amphiphilic block copolymers and mixtures of amphiphiles find broad applications in numerous technologies, including pharma, food, cosmetic and detergency. Here we report on the interactions between a biological charged diblock copolymer, β-casein, and a synthetic uncharged triblock copolymer, Lutrol F-127 (EO(101)PO(56)EO(101)), on their mixed micellization characteristics and the micelles' structure and morphology. Isothermal titration calorimetry (ITC) experiments indicate that mixed micelles form when Lutrol is added to monomeric as well as to assembled β-casein. The main driving force for the mixed micellization is the hydrophobic interactions. Above β-casein CMC, strong perturbations caused by penetration of the hydrophobic oxypropylene sections of Lutrol into the protein micellar core lead to disintegration of the micelles and reformation of mixed Lutrol/β-casein micelles. The negative enthalpy of micelle formation (ΔH) and cooperativity increase with raising β-casein concentration in solution. ζ-potential measurements show that Lutrol interacts with the protein micelles to form mixed micelles even below its critical micellization temperature (CMT). They further indicate that Lutrol effectively masks the protein charges, probably by forming a coating layer of the ethyleneoxide rich chains. Small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM) indicate relatively small changes in the oblate micellar shape, but do show swelling along the small axis of β-casein micelles in the presence of Lutrol, thereby confirming the formation of mixed micelles.

  13. Morphology, stability, and X-ray absorption spectroscopic study of iron oxide (Hematite) nanoparticles prepared by micelle nanolithography

    NASA Astrophysics Data System (ADS)

    Bera, Anupam; Bhattacharya, Atanu; Tiwari, N.; Jha, S. N.; Bhattacharyya, D.

    2018-03-01

    Currently, considerable effort is being made towards synthesis and characterization of iron oxide nanoparticles. In this article, we report on the preparation and characterization of iron oxide nanoparticle (NP) arrays supported on natively oxidized Si(100) surface. The NPs are synthesized by reverse micelle nanolithography technique and are then deposited onto natively oxidized Si(100) surface via spin-coating. Plasma oxidation followed by high temperature annealing results in a unimodal size distribution of pseudohexagonally-ordered array of iron oxide NPs (with ∼14 nm mean diameter and ∼5 nm mean height). High temperature annealing does not fragment the NPs. Particles are sinter-resistant: the unimodal arrays are robust with respect to thermal treatment. X-ray absorption spectroscopy (XAS), including X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS), reveals that structure of the iron oxide particle resembles closely the hematite α-Fe2O3 structure. Furthermore, with the help of EXAFS spectra, we eliminate the possibility of γ-Fe2O3, Fe3O4, FeO and FeO(OH) structures for the NPs.

  14. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  15. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 1. Discriminative recognition of mixed micelles versus liposomes.

    PubMed

    Mateos-Diaz, Eduardo; Bakala N'Goma, Jean-Claude; Byrne, Deborah; Robert, Sylvie; Carrière, Frédéric; Gaussier, Hélène

    2018-03-01

    Guinea pig pancreatic lipase-related protein 2 (GPLRP2) is an interesting model enzyme that can hydrolyze a large set of acylglycerols in vitro but displays however some selectivity depending on the supramolecular structure of substrate and the presence of surfactants like bile salts. We showed that GPLRP2 hydrolyzes 1,2-dipalmitoyl phosphatidylcholine (DPPC) present in mixed micelles with sodium taurodeoxycholate (NaTDC) but not in multilamellar (MLV) and large unilamellar (LUV) vesicles of DPPC. After characterization of these lipid aggregates by dynamic light scattering (DLS), the discriminative recognition of DPPC in DPPC/NaTDC micelles versus MLV and LUV by an inactive variant (S152G) of GPLRP2 to avoid the effect of substrate hydrolysis was investigated using Fourier transform infrared spectroscopy (FTIR). IR spectra were recorded after hydrogen/deuterium exchange, at pD 6 and various temperatures to study phase transitions. We analyzed the methylene asymmetric stretching (ν(CH2) as ), the carbonyl stretching (ν(CO)) and the composite polar head-group vibration bands, first to characterized differences in DPPC micelles and vesicles, and second to estimate the degree of interaction of GPLRP2 S152G with phospholipid. Our results indicate that a significant interaction between GPLRP2 S152G and DPPC is only observed when NaTDC is added to the system to form micelles and this can be explained by the different organization of DPPC in mixed micelles compared to lamellar vesicles (higher hydration of polar head, higher mobility of alkyl chains) that favors GPLRP2 penetration into the phospholipid layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  17. Mixed Micelle System Produced by Interaction Between Transglycosylated Stevia and an Ionic Surfactant Improves Dissolution Profile of Mefenamic Acid.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Tozuka, Yuichi

    2017-04-01

    Transglycosylated stevia (stevia-G) can effectively improve the dissolution and bioavailability of poorly water-soluble drugs. Furthermore, addition of an ionic surfactant to stevia-G solution has been shown to enhance the dissolution effect of stevia-G on flurbiprofen. Herein, 4 surfactants, namely sodium dodecyl sulfate, sodium N-dodecanoylsarcosinate, sodium monododecyl phosphate, and lauryltrimethylammonium chloride (LTAC) were screened to investigate their synergistic effect with stevia-G in enhancing the solubility of mefenamic acid (MFA). The ternary formulation containing LTAC produced the highest increase in solubility, whereas the binary MFA/LTAC formulation did not increase the solubility of MFA. Surface tension was evaluated to analyze the interaction between stevia-G and each ionic surfactant, wherein the Rubingh model was applied to predict mixed micelle formation between stevia-G and LTAC. Interaction parameters calculated by the Rubingh model reflected mixed micelle formation between stevia-G and LTAC relative to the self-interactions of the 2 individual surfactants. All interaction parameters in this system showed negative values, indicating a favorable interaction (e.g., hydrogen bond or electrostatic and dipole) between binary components in the mixed micelles. Spray-dried particles of ternary formulations (MFA/stevia-G/LTAC) were prepared to evaluate the dissolution profile and physicochemical properties. Dissolution profiling showed that the concentration of MFA released from spray-dried particles was significantly higher than untreated MFA. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Influence of hydrophobic micelle structure on crystallization of the photosynthetic RC-LH1-PufX complex from Rhodobacter blasticus.

    PubMed

    Barret, Laurie-Anne; Barrot-Ivolot, Cherone; Raynal, Simon; Jungas, Colette; Polidori, Ange; Bonneté, Françoise

    2013-07-25

    Small angle X-ray scattering (SAXS) experiments are performed on two non-ionic surfactants, the dodecyl β-maltoside (DDβM) and the propyl(bi)cyclohexyl α-maltoside (PCCαM), a maltoside derivative containing a rigid bicyclohexyl group as hydrophobic chain, in order to compare the influence of both hydrophobic moiety structure and anomeric form on micelle form factors and intermicellar interactions relevant for membrane protein crystallization. Density and refractive index measurements were performed in order to determine volumetric and optical properties of surfactants, essential for determination of micelle molar masses by both SAXS and SEC-MALLS. SAXS form factors were analyzed by Guinier approximation and inverse Fourier transformation, to obtain the radius of gyration (RG) and the pair distribution function (P(r)) of each surfactant. Form factor model fitting was also performed to describe the shape and the assembly of both surfactant micelles. Finally, second virial coefficients were measured at different percentages of polyethylene glycol 3350, in order to correlate surfactant intermicellar interactions and RC-LH1-PufX phase diagram. It is thus found that while size, shape, and dimensions of micelles are slightly similar for both surfactants, their molar mass and aggregation number differ significantly. PCCαM are more densely packed than DDβM, which reflects (1) an increase in van der Waals contacts between PCCαM hydrophobic chains in the micelle bulk and (2) a supplementary intermicellar attraction compared to DDβM. Finally addition of PEG, which induces a depletion attraction, decreases the solubility of the RC-LH1-PufX complex in PCCαM.

  19. Micelle-induced versatile sensing behavior of bispyrene-based fluorescent molecular sensor for picric acid and PYX explosives.

    PubMed

    Ding, Liping; Bai, Yumei; Cao, Yuan; Ren, Guijia; Blanchard, Gary J; Fang, Yu

    2014-07-08

    The effect of surfactant micelles on the photophysical properties of a cationic bispyrene fluorophore, Py-diIM-Py, was systemically examined. The results from series of measurements including UV-vis absorption, steady-state fluorescence emission, quantum yield, fluorescence lifetime, and time-resolved emission spectra reveal that the cationic fluorophore is only encapsulated by the anionic sodium dodecyl sulfate (SDS) surfactant micelles and not incorporated in the cationic dodecyltrimethylammonium bromide (DTAB) and neutral Triton X-100 (TX100) surfactant micelles. This different fluorophore location in the micellar solutions significantly influences its sensing behavior to various explosives. Fluorescence quenching studies reveal that the simple variation of micellar systems leads to significant changes in the sensitivity and selectivity of the fluorescent sensor to explosives. The sensor exhibits an on-off response to multiple explosives with the highest sensitivity to picric acid (PA) in the anionic SDS micelles. In the cationic DTAB micelles, it displays the highest on-off responses to PYX. Both the sensitivity and selectivity to PYX in the cationic micelles are enhanced compared with that to PA in the anionic micelles. However, the poor encapsulation in the neutral surfactant TX100 micelles leads to fluorescence instability of the fluorophore and fails to function as a sensor system. Time-resolved fluorescence decays in the presence of explosives reveal that the quenching mechanism of two micellar sensor systems to explosives is static in nature. The present work demonstrates that the electrostatic interaction between the cationic fluorophore and differently charged micelles plays a determinative role in adjusting its distribution in micellar solutions, which further influences the sensing behavior of the obtained micellar sensor systems.

  20. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles.

    PubMed

    Hou, Jian; Sun, E; Zhang, Zhen-Hai; Wang, Jing; Yang, Lei; Cui, Li; Ke, Zhong-Cheng; Tan, Xiao-Bin; Jia, Xiao-Bin; Lv, Huixia

    2017-11-01

    The aim of this study was to establish a paclitaxel (PTX)-loaded mixed micelle delivery system (PTX-TP-M) with vitamin E-TPGS (TPGS) and Plasdone®S-630 Copovidone (PVPS630) as carriers to improve the solubility, oral absorption, and anti-tumor activity of PTX against lung cancer. In this study, PTX-TP-M was prepared using the ethanol thin-film dispersion method followed by characterization of the binary mixed micelles system. The average size of the PTX-TP-M was 83.5 ± 1.8 nm with a polydispersity index of 0.265 ± 0.007 and the drug loading (DL%) and entrapment efficiency (EE%) were 3.09 ± 0.09% and 95.67 ± 2.84%, respectively, which contributed to a high solubility of PTX about 24947-fold increase in water (4.78 ± 0.14 mg/mL). In addition, TEM analysis showed that the PTX-TP-M appeared spherical in structure and was well dispersed without aggregation and adhesion. In vitro release studies showed that the PTX-TP-M displayed a sustained release compared to free PTX in the dialysis bag. The efflux ratio of PTX reduced from 44.83 to 3.52 when formulated as PTX-TP-M; a 92.15% reduction, studied using the Caco-2 monolayer model. The oral bioavailability of PTX also improved by 4.35-fold, suggesting that PTX-TP-M can markedly promote the absorption in the gastrointestinal tract. Using in vitro MTT assays, it was observed that cytotoxicity was markedly increased, and IC 50 values of PTX-TP-M (3.14 ± 0.85 and 8.28 ± 1.02 μg/mL) were lower than those of PTX solution (5.21 ± 0.93 and 14.53 ± 1.96 μg/mL) in A549 and Lewis cell, respectively. In vivo anti-tumor studies showed that PTX-TP-M achieved higher anti-tumor efficacy compared with PTX in Lewis bared C57BL/6 mice. Furthermore, a gastrointestinal safety assay also proved the safety of PTX-TP-M. All results demonstrated that the PTX-TP-M exhibited great potential for delivering PTX with increased solubility, oral bioavailability, and anti-cancer activity and this

  1. Controlling the Size and Shape of the Elastin-Like Polypeptide based Micelles

    NASA Astrophysics Data System (ADS)

    Streletzky, Kiril; Shuman, Hannah; Maraschky, Adam; Holland, Nolan

    Elastin-like polypeptide (ELP) trimer constructs make reliable environmentally responsive micellar systems because they exhibit a controllable transition from being water-soluble at low temperatures to aggregating at high temperatures. It has been shown that depending on the specific details of the ELP design (length of the ELP chain, pH and salt concentration) micelles can vary in size and shape between spherical micelles with diameter 30-100 nm to elongated particles with an aspect ratio of about 10. This makes ELP trimers a convenient platform for developing potential drug delivery and bio-sensing applications as well as for understanding micelle formation in ELP systems. Since at a given salt concentration, the headgroup area for each foldon should be constant, the size of the micelles is expected to be proportional to the volume of the linear ELP available per foldon headgroup. Therefore, adding linear ELPs to a system of ELP-foldon should result in changes of the micelle volume allowing to control micelle size and possibly shape. The effects of addition of linear ELPs on size, shape, and molecular weight of micelles at different salt concentrations were studied by a combination of Dynamic Light Scattering and Static Light Scattering. The initial results on 50 µM ELP-foldon samples (at low salt) show that Rh of mixed micelles increases more than 5-fold as the amount of linear ELP raised from 0 to 50 µM. It was also found that a given mixture of linear and trimer constructs has two temperature-based transitions and therefore displays three predominant size regimes.

  2. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  3. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  4. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based onmore » these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.« less

  5. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells.

    PubMed

    Eckman, Allison M; Tsakalozou, Eleftheria; Kang, Nayon Y; Ponta, Andrei; Bae, Younsoo

    2012-07-01

    To test physicochemical and biological properties of PEG-poly(aspartate) [PEG-p(Asp)] block copolymer micelles entrapping doxorubicin hydrochloride (DOX) through ionic interaction. PEG-p(Asp) was synthesized from 5 kDa PEG and 20 Asp units. Carboxyl groups of p(Asp) were present as benzyl ester [PEG-p(Asp/Bz)], sodium salt [PEG-p(Asp/Na)] or free acid [PEG-p(Asp/H)]. Block copolymers and DOX were mixed at various ratios to prepare polymer micelles, which were subsequently characterized to determine particle size, drug loading and release patterns, and cytotoxicity against prostate (PC3 and DU145) and lung (A549) cancer cell lines. PEG-p(Asp/Bz), Na- and H-micelles entrapped 1.1, 56.8 and 40.6 wt.% of DOX, respectively. Na- and H-micelles (<100 nm) showed time-dependent DOX release at pH 7.4, which was accelerated at pH 5.0. Na-micelles were most stable at pH 7.4, retaining 31.8% of initial DOX for 48 h. Cytotoxicity of Na-micelles was 23.2% (A549), 28.5% (PC3) and 45.9% (DU145) more effective than free DOX. Ionic interaction appeared to entrap DOX efficiently in polymer micelles from PEG-p(Asp) block copolymers. Polymer micelles possessing counter ions (Na) of DOX in the core were the most stable, releasing drugs for prolonged time in a pH-dependent manner, and suppressing cancer cells effectively.

  6. How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study.

    PubMed

    Bouchoux, Antoine; Gésan-Guiziou, Geneviève; Pérez, Javier; Cabane, Bernard

    2010-12-01

    By combining the osmotic stress technique with small-angle x-ray scattering measurements, we followed the structural response of the casein micelle to an overall increase in concentration. When the aqueous phase that separates the micelles is extracted, they behave as polydisperse repelling spheres and their internal structure is not affected. When they are compressed, the micelles lose water and shrink to a smaller volume. Our results indicate that this compression is nonaffine, i.e., some parts of the micelle collapse, whereas other parts resist deformation. We suggest that this behavior is consistent with a spongelike casein micelle having a triple hierarchical structure. The lowest level of the structure consists of the CaP nanoclusters that serve as anchors for the casein molecules. The intermediate level consists of 10- to 40-nm hard regions that resist compression and contain the nanoclusters. Those regions are connected and/or partially merged with each other, thus forming a continuous and porous material. The third level of structure is the casein micelle itself, with an average size of 100 nm. In our view, such a structure is consistent with the observation of 10- to 20-nm casein particles in the Golgi vesicles of lactating cells: upon aggregation, those particles would rearrange, fuse, and/or swell to form the spongelike micelle. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. How to Squeeze a Sponge: Casein Micelles under Osmotic Stress, a SAXS Study

    PubMed Central

    Bouchoux, Antoine; Gésan-Guiziou, Geneviève; Pérez, Javier; Cabane, Bernard

    2010-01-01

    By combining the osmotic stress technique with small-angle x-ray scattering measurements, we followed the structural response of the casein micelle to an overall increase in concentration. When the aqueous phase that separates the micelles is extracted, they behave as polydisperse repelling spheres and their internal structure is not affected. When they are compressed, the micelles lose water and shrink to a smaller volume. Our results indicate that this compression is nonaffine, i.e., some parts of the micelle collapse, whereas other parts resist deformation. We suggest that this behavior is consistent with a spongelike casein micelle having a triple hierarchical structure. The lowest level of the structure consists of the CaP nanoclusters that serve as anchors for the casein molecules. The intermediate level consists of 10- to 40-nm hard regions that resist compression and contain the nanoclusters. Those regions are connected and/or partially merged with each other, thus forming a continuous and porous material. The third level of structure is the casein micelle itself, with an average size of 100 nm. In our view, such a structure is consistent with the observation of 10- to 20-nm casein particles in the Golgi vesicles of lactating cells: upon aggregation, those particles would rearrange, fuse, and/or swell to form the spongelike micelle. PMID:21112300

  8. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors: An Investigation of Design Flexibility.

    PubMed

    Kumar, E K Pramod; Jølck, Rasmus I; Andresen, Thomas L

    2015-09-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630

    PubMed Central

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was −10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs. PMID:28260893

  10. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630.

    PubMed

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was -10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs.

  11. Glycation Reactions of Casein Micelles.

    PubMed

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  12. Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo

    PubMed Central

    Zhang, Youwen; Tong, Deyin; Che, Daobiao; Pei, Bing; Xia, Xiaodong; Yuan, Gaofeng; Jin, Xin

    2017-01-01

    The roles of ginsenoside compound K (CK) in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP)/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS) mixed micelles were prepared as a delivery system to increase the absorption and targeted antitumor effect of CK. Consequently, the solubility of CK increased from 35.2±4.3 to 1,463.2±153.3 μg/mL. Furthermore, in an in vitro A549 cell model, CK AP/TPGS mixed micelles significantly inhibited cell growth, induced G0/G1 phase cell cycle arrest, induced cell apoptosis, and inhibited cell migration compared to free CK, all indicating that the developed micellar delivery system could increase the antitumor effect of CK in vitro. Both in vitro cellular fluorescence uptake and in vivo near-infrared imaging studies indicated that AP/TPGS mixed micelles can promote cellular uptake and enhance tumor targeting. Moreover, studies in the A549 lung cancer xenograft mouse model showed that CK AP/TPGS mixed micelles are an efficient tumor-targeted drug delivery system with an effective antitumor effect. Western blot analysis further confirmed that the marked antitumor effect in vivo could likely be due to apoptosis promotion and P-gp efflux inhibition. Therefore, these findings suggest that the AP/TPGS mixed micellar delivery system could be an efficient delivery strategy for enhanced tumor targeting and antitumor effects. PMID:28144142

  13. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    PubMed

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  14. Effect of calcium concentration on the structure of casein micelles in thin films.

    PubMed

    Müller-Buschbaum, P; Gebhardt, R; Roth, S V; Metwalli, E; Doster, W

    2007-08-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of kappa-casein surrounding the casein micelles.

  15. Effect of Calcium Concentration on the Structure of Casein Micelles in Thin Films

    PubMed Central

    Müller-Buschbaum, P.; Gebhardt, R.; Roth, S. V.; Metwalli, E.; Doster, W.

    2007-01-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of κ-casein surrounding the casein micelles. PMID:17496032

  16. Micelle Morphology and Mechanical Response of Triblock Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Michelle E.; Burghardt, Wesley R.; Shull, Kenneth R.

    2010-01-12

    The effect of polymer concentration on mechanical response and micelle morphology of ABA and AB copolymers in B-selective solvents has been systematically studied. Micelle morphology was determined using a combination of small-angle X-ray scattering, shear, and birefringence while mechanical response at low and high strains was determined using indentation techniques. Self-consistent field theory calculations were used to determine micelle volume fraction profiles and to construct an equilibrium phase map. The transition from spherical to cylindrical micelles increases the triblock gel modulus and energy dissipation. Combining knowledge of gel relaxation time, which determines the rate at which the gel can equilibratemore » its micelle structure, with the equilibrium phase map allows estimation of the experimental temperatures and time scales over which kinetic trapping will arrest micelle structure evolution. Kinetic trapping enables cylindrical morphologies to be obtained at significantly lower polymer fractions than is possible in equilibrated systems.« less

  17. The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins.

    PubMed Central

    McIntyre, J C; Hundley, P; Behnke, W D

    1987-01-01

    Fluorescence techniques have been employed to study the interaction of porcine and equine colipase with pure taurodeoxycholate and mixed micelles. Nitrotyrosine-55 of porcine colipase is obtained by modification with tetranitromethane (low excess, in the presence of taurodeoxycholate) of the protein followed by gel filtration and ion-exchange chromatography. Verification of the residue modified was obtained by h.p.l.c. peptide purification and sequence analysis. Reduction and quantitative reaction with dansyl chloride yields a fluorescent derivative that is twice as active in conjunction with lipase as is native colipase and that exhibits a strong emission band at 550 nm. Addition of micellar concentrations of taurodeoxycholate causes a 4.3-fold increase in the emission maximum as well as a 70 nm blue shift to 480 nm. Inclusion of oleic acid to form a mixed micelle reduces these spectral effects. Scatchard analysis of the data yield a Kd of 6.8 X 10(-4) M and a single colipase-binding site for taurodeoxycholate micelles. The data, by analogy to a phospholipase system, are consistent with a direct insertion of dansyl-NH-tyrosine-55 into the micelle. The presence of a single tryptophan residue (Trp-52) in equine colipase provides an intrinsic fluorescent probe for studying protein-micelle interaction. The emission maximum of horse colipase at 345 nm indicates a solvent-accessible tryptophan residue which becomes less so on binding of micelles. A blue shift of 8 nm and a 2-fold increase in amplitude is indicative of a more hydrophobic environment for tryptophan induced by taurodeoxycholate micelles. There is also a decrease in KSV for acrylamide quenching in the presence of micelles, which further supports a loss of solvent accessibility. The most dramatic pH effects are observed with KI quenching, and may indicate the presence of negative charges near Trp-52. PMID:3663193

  18. Reformation of casein particles from alkaline-disrupted casein micelles.

    PubMed

    Huppertz, Thom; Vaia, Betsy; Smiddy, Mary A

    2008-02-01

    In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10.0, and subsequently reformed by decreasing milk pH to 6.6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH 7.0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelles.

  19. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration

    USGS Publications Warehouse

    Kile, D.E.; Chiou, C.T.

    1989-01-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) and 1,2,3-trichlorobenzene (TCB) by aqueous surfactants below and above their critical micelle concentrations (CMCs) have been studied at room temperature with the following surfactants: Triton X-100, Triton X-114, Triton X-405, Brij 35, sodium dodecyl sulfate, and cetyltrimethylammonium bromide. While the solubilities of DDT and TCB are greatly enhanced by all surfactants above the measured CMC, DDT also exhibits significant solubility enhancements below the CMC of the molecularly nonhomogeneous surfactants (the Triton series and Brij 35). The plot of the apparent DDT solubility against the concentration of Triton and Brij surfactants shows an uprising curve below the nominal CMC, which is attributed to the successive micellization of the heterogeneous monomer species. Above the CMC, the enhancement effect with the nonionic surfactants is closely proportional to the nonpolar chain content of the surfactant, whereas the effect with the ionic surfactants is less accountable in terms of their nonpolar chain contents. The solubilization power of a micelle relative to a bulk solvent is evaluated by a comparison of the observed micelle-water and solvent-water partition coefficients.

  20. Optimization of long circulating mixed polymeric micelles containing vinpocetine using simple lattice mixture design, in vitro and in vivo characterization.

    PubMed

    El-Dahmy, Rania Moataz; Elsayed, Ibrahim; Elshafeey, Ahmed Hassen; Gawad, Nabaweya Abdelaziz Abd El; El-Gazayerly, Omaima Naim

    2014-12-30

    The aim of this study was to increase the in vivo mean residence time of vinpocetine after IV injection utilizing long circulating mixed micellar systems. Mixed micelles were prepared using Pluronics L121, P123 and F127. The systems were characterized by testing their entrapment efficiency, particle size, polydispersity index, zeta potential, transmission electron microscopy and in vitro drug release. Simple lattice mixture design was planned for the optimization using Design-Expert(®) software. The optimized formula was lyophilized, sterilized and imaged by scanning electron microscope. Moreover, the in vivo behavior of the optimized formula was evaluated after IV injection in rabbits. The optimized formula, containing 68% w/w Pluronic L121 and 32% w/w Pluronic F127, had the highest desirability value (0.621). Entrapment efficiency, particle size, polydispersity index and zeta potential of the optimized formula were 50.74 ± 3.26%, 161.50 ± 7.39 nm, 0.21 ± 0.03 and -22.42 ± 1.72 mV, respectively. Lyophilization and sterilization did not affect the characteristics of the optimized formula. Upon in vivo investigation in rabbits, the optimized formula showed a significantly higher elimination half-life and mean residence time than the market product. Finally, mixed micelles could be considered as a promising long circulating nanocarrier for lipophilic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles.

    PubMed

    van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F

    2009-01-19

    The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.

  2. A high yield reverse micelle synthesis of catalysts and catalyst precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1995-04-01

    Reverse micelles or water-in-oil microemulsions have been prepared using a mixed AOT/SDS surfactant to increase the stability of the microemulsion and thereby allow a high loading of particle-forming precursors in the aqueous cores. The Modified Reverse Micelles (MRM), as these new binary surfactant microemulsions are called, have proven useful for the laboratory-scale synthesis of nanoscale metals, metal oxides, metal sulfides, and mixed metal materials. The system allows control over the phase and size of the precipitated crystallites and is ideal for producing nanocrystalline powders and suspensions.

  3. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  4. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size.

    PubMed

    Anema, Skelte G; Li, Yuming

    2003-02-01

    When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller

  5. Polymeric micelles: nanocarriers for cancer-targeted drug delivery.

    PubMed

    Zhang, Yifei; Huang, Yixian; Li, Song

    2014-08-01

    Polymeric micelles represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10-100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. In this review, the importance of rational design was highlighted by summarizing the recent progress on the development of micellar formulations. Emphasis is placed on the new strategies to enhance the drug/carrier interaction for improved drug-loading capacity. In addition, the micelle-forming drug-polymer conjugates are also discussed which have both drug-loading function and antitumor activity.

  6. Structure and dynamics of water in nonionic reverse micelles: a combined time-resolved infrared and small angle x-ray scattering study.

    PubMed

    van der Loop, Tibert H; Panman, Matthijs R; Lotze, Stephan; Zhang, Jing; Vad, Thomas; Bakker, Huib J; Sager, Wiebke F C; Woutersen, Sander

    2012-07-28

    We study the structure and reorientation dynamics of nanometer-sized water droplets inside nonionic reverse micelles (water/Igepal-CO-520/cyclohexane) with time-resolved mid-infrared pump-probe spectroscopy and small angle x-ray scattering. In the time-resolved experiments, we probe the vibrational and orientational dynamics of the O-D bonds of dilute HDO:H(2)O mixtures in Igepal reverse micelles as a function of temperature and micelle size. We find that even small micelles contain a large fraction of water that reorients at the same rate as water in the bulk, which indicates that the polyethylene oxide chains of the surfactant do not penetrate into the water volume. We also observe that the confinement affects the reorientation dynamics of only the first hydration layer. From the temperature dependent surface-water dynamics, we estimate an activation enthalpy for reorientation of 45 ± 9 kJ mol(-1) (11 ± 2 kcal mol(-1)), which is close to the activation energy of the reorientation of water molecules in ice.

  7. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.

    PubMed

    Liu, Jie; Gong, Tao; Wang, Changguang; Zhong, Zhirong; Zhang, Zhirong

    2007-08-01

    Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.

  8. Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    PubMed Central

    Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    ABSTRACT Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward. PMID:20725771

  9. Persistence length of wormlike micelles composed of ionic surfactants: self-consistent-field predictions.

    PubMed

    Lauw, Y; Leermakers, F A M; Stuart, M A Cohen

    2007-07-19

    The persistence length of a wormlike micelle composed of ionic surfactants C(n)E(m)X(k) in an aqueous solvent is predicted by means of the self-consistent-field theory where C(n)E(m) is the conventional nonionic surfactant and X(k) is an additional sequence of k weakly charged (pH-dependent) segments. By considering a toroidal micelle at infinitesimal curvature, we evaluate the bending modulus of the wormlike micelle that corresponds to the total persistence length, consisting of an elastic/intrinsic and an electrostatic contribution. The total persistence length increases with pH and decreases with increasing background salt concentration. We estimate that the electrostatic persistence length l(p,e)(0) scales with respect to the Debye length kappa(-1) as l(p,e)(0) approximately kappa(-p) where p approximately 1.98 for wormlike micelles consisting of C(20)E(10)X(1) surfactants and p approximately 1.54 for wormlike micelles consisting of C(20)E(10)X(2) surfactants. The total persistence length l(p,t)(0) is a weak function of the head group length m but scales with the tail length n as l(p,t)(0) approximately n(x) where x approximately 2-2.6, depending on the corresponding head group length. Interestingly, l(p,t)(0) varies nonmonotonically with the number of charged groups k due to the opposing trends in the electrostatic and elastic bending rigidities upon variation of k.

  10. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  11. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  12. Applications of polymeric micelles with tumor targeted in chemotherapy

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Wang, Xiaojun; Zhang, Song; Liu, Xinli

    2012-11-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core-shell structure (with diameters of 10 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles' surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  13. TR-ESR Investigation on Reaction of Vitamin C with Excited Triplet of 9,10-phenanthrenequinone in Reversed Micelle Solutions

    NASA Astrophysics Data System (ADS)

    Xu, Xin-sheng; Shi, Lei; Liu, Yi; Ji, Xue-han; Cui, Zhi-feng

    2011-04-01

    Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3PAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3PAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol ·s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG-H2O reversed micelle solutions, 3PAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3PAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3PAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As.- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3PAQ* from VC.

  14. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation.

    PubMed

    Sosnik, Alejandro; Menaker Raskin, Maya

    2015-11-01

    Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  16. Impact of the green tea ingredient epigallocatechin gallate and a short pentapeptide (Ile-Ile-ala-Glu-Lys) on the structural organization of mixed micelles and the related uptake of cholesterol.

    PubMed

    Giangreco, Francesco; Höfinger, Siegfried; Bakalis, Evangelos; Zerbetto, Francesco

    2018-06-07

    High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys. Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it. Self-assembly of physiological micelles occurs on the order of 35-50 ns; most of the structural properties of mixed micelles are unaffected by epigallocatechin gallate or Ile-Ile-Ala-Glu-Lys which integrate into the micellar surface; the diffusive motion of constituting lipids palmitoyl-oleoyl-phosphatidylcholine and cholesterol is significantly down-regulated by both epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys; CONCLUSIONS: The molecular mode of action of natural compounds epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys is a significant down-regulation of the diffusive motion of micellar lipids. Natural compounds like the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys, lead to a significant down-regulation of the diffusive motion of micellar lipids thereby modulating cholesterol absorption into physiological micelles. Copyright © 2018. Published by Elsevier B.V.

  17. Casein polymorphism heterogeneity influences casein micelle size in milk of individual cows.

    PubMed

    Day, L; Williams, R P W; Otter, D; Augustin, M A

    2015-06-01

    Milk samples from individual cows producing small (148-155 nm) or large (177-222 nm) casein micelles were selected to investigate the relationship between the individual casein proteins, specifically κ- and β-casein phenotypes, and casein micelle size. Only κ-casein AA and β-casein A1A1, A1A2 and A2A2 phenotypes were found in the large casein micelle group. Among the small micelle group, both κ-casein and β-casein phenotypes were more diverse. κ-Casein AB was the dominant phenotype, and 3 combinations (AA, AB, and BB) were present in the small casein micelle group. A considerable mix of β-casein phenotypes was found, including B and I variants, which were only found in the small casein micelle group. The relative amount of κ-casein to total casein was significantly higher in the small micelle group, and the nonglycosylated and glycosylated κ-casein contents were higher in the milks with small casein micelles (primarily with κ-casein AB and BB variants) compared with the large micelle group. The ratio of glycosylated to nonglycosylated κ-casein was higher in the milks with small casein micelles compared with the milks with large casein micelles. This suggests that although the amount of κ-casein (both glycosylated and nonglycosylated) is associated with micelle size, an increased proportion of glycosylated κ-casein could be a more important and favorable factor for small micelle size. This suggests that the increased spatial requirement due to addition of the glycosyl group with increasing extent of glycosylation of κ-casein is one mechanism that controls casein micelle assembly and growth. In addition, increased electrostatic repulsion due to the sialyl residues on the glycosyl group could be a contributory factor. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Simultaneous injection effective mixing flow analysis of urinary albumin using dye-binding reaction.

    PubMed

    Ratanawimarnwong, Nuanlaor; Ponhong, Kraingkrai; Teshima, Norio; Nacapricha, Duangjai; Grudpan, Kate; Sakai, Tadao; Motomizu, Shoji

    2012-07-15

    A new four-channel simultaneous injection effective mixing flow analysis (SIEMA) system has been assembled for the determination of urinary albumin. The SIEMA system consisted of a syringe pump, two 5-way cross connectors, four holding coils, five 3-way solenoid valves, a 50-cm long mixing coil and a spectrophotometer. Tetrabromophenol blue anion (TBPB) in Triton X-100 micelle reacted with albumin at pH 3.2 to form a blue ion complex with a λ(max) 625nm. TBPB, Triton X-100, acetate buffer and albumin standard solutions were aspirated into four individual holding coils by a syringe pump and then the aspirated zones were simultaneously pushed in the reverse direction to the detector flow cell. Baseline drift, due to adsorption of TBPB-albumin complex on the wall of the hydrophobic PTFE tubing, was minimized by aspiration of Triton X-100 and acetate buffer solutions between samples. The calibration graph was linear in the range of 10-50μg/mL and the detection limit for albumin (3σ) was 0.53μg/mL. The RSD (n=11) at 30μg/mL was 1.35%. The sample throughput was 37/h. With a 10-fold dilution, interference from urine matrix was removed. The proposed method has advantages in terms of simple automation operation and short analysis time. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Decarboxylation of 6-nitrobenzisoxazole-3-carboxylate in mixed micelles of zwitterionic and positively charged surfactants.

    PubMed

    Maximiano, Flavio A; Chaimovich, Hernan; Cuccovia, Iolanda M

    2006-09-12

    The rate of decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, NBOC, was determined in micelles of N-hexadecyl-N,N,N-trimethylammonium bromide or chloride (CTAB or CTAC), N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (DPS), N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), hexadecylphosphocholine (HPC), and their mixtures. Quantitative analysis of the effect on micelles on the velocity of NBOC decarboxylation allowed the estimation of the rate constants in the micellar pseudophase, k(m), for the pure surfactants and their mixtures. The extent of micellar catalysis for NBOC decarboxylation, expressed as the ratio k(m)/k(w), where k(w) is the rate constant in water, varied from 240 for HPS to 62 for HPC. With HPS or DPS, k(m) decreased linearly with CTAB(C) mole fraction, suggesting ideal mixing. With HPC, k(m) increased to a maximum at a CTAB(C) mole fraction of ca. 0.5 and then decreased at higher CTAB(C). Addition of CTAB(C) to HPC, where the negative charge of the surfactant is close to the hydrophobic core, produces tight ion pairs at the interface and, consequently, decreases interfacial water contents. Interfacial dehydration at the surface in equimolar HPC/CTAB(C) mixtures, and interfacial solubilization site of the substrate, can explain the observed catalytic synergy, since the rate of NBOC decarboxylation increases markedly with the decrease in hydrogen bonding to the carboxylate group.

  20. Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.

    PubMed

    Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2007-11-01

    High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.

  1. Dynamic nuclear polarization enhanced nuclear magnetic resonance and electron spin resonance studies of hydration and local water dynamics in micelle and vesicle assemblies.

    PubMed

    McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi

    2008-09-16

    We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain

  2. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    PubMed

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Micelle Delivery of Parthenolide to Acute Myeloid Leukemia Cells

    PubMed Central

    Baranello, Michael P.; Bauer, Louisa; Jordan, Craig T.; Benoit, Danielle S. W.

    2018-01-01

    Parthenolide (PTL) has shown great promise as a novel anti-leukemia agent as it selectively eliminates acute myeloid leukemia (AML) blast cells and leukemia stem cells (LSCs) while sparing normal hematopoietic cells. This success has not yet translated to the clinical setting because PTL is rapidly cleared from blood due to its hydrophobicity. To increase the aqueous solubility of PTL, we previously developed micelles formed from predominantly hydrophobic amphiphilic diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (e.g., PSMA100-b-PS258) that exhibit robust PTL loading (75%efficiency, 11% w/w capacity) and release PTL over 24 h. Here, PTL-loaded PSMA-b-PS micelles were thoroughly characterized in vitro for PTL delivery to MV4-11 AML cells. Additionally, the mechanisms governing micelle-mediated cytotoxicity were examined in comparison to free PTL. PSMA-b-PS micelles were taken up by MV4-11 cells as evidenced by transmission electron microscopy and flow cytometry. Specifically, MV4-11 cells relied on clathrin-mediated endocytosis, rather than caveolae-mediated endocytosis and macropinocytosis. In addition, PTL-loaded PSMA-b-PS micelles exhibited a dose-dependent cytotoxicity towards AML cells and were capable of reducing cell viability by 75% at 10 μM PTL, while unloaded micelles were nontoxic. At 10 μM PTL, the cytotoxicity of PTL-loaded micelles increased gradually over 24 h while free PTL achieved maximal cytotoxicity between 2 and 4 h, demonstrating micelle-mediated delivery of PTL to AML cells and stability of the drug-loaded micelle even in the presence of cells. Both free PTL and PTL-loaded micelles induced NF-κB inhibition at 10 μM PTL doses, demonstrating some mechanistic similarities in cytotoxicity. However, free PTL relied more heavily on exofacial free thiol interactions to induce cytotoxicity than PTL-loaded micelles; free PTL cytotoxicity was reduced by over twofold when cell surface free thiols were depleted, where PTL

  4. Synthesis and characterization of Fe colloid catalysts in inverse micelle solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, A.; Stoker, M.; Hicks, M.

    1995-12-31

    Surfactant molecules, possessing a hydrophilic head group and a hydrophobic tail group, aggregate in various solvents to form structured solutions. In two component mixtures of surfactant and organic solvents (e.g., toluene and alkanes), surfactants aggregate to form inverse micelles. Here, the hydrophilic head groups shield themselves by forming a polar core, and the hydrophobic tails groups are free to move about in the surrounding oleic phase. The formation of Fe clusters in inverse miscelles was studied.Iron salts are solubilized within the polar interior of inverse micelles, and the addition of the reducing agent LiBH{sub 4} initiates a chemical reduction tomore » produce monodisperse, nanometer sized Fe based particles. The reaction sequence is sustained by material exchange between inverse micelles. The surfactant interface provides a spatial constraint on the reaction volume, and reactions carried out in these micro-heterogeneous solutions produce colloidal sized particles (10-100{Angstrom}) stabilized in solution against flocculation of surfactant. The clusters were stabilized with respect to size with transmission electron microscopy (TEM) and with respect to chemical composition with Mossbauer spectroscopy, electron diffraction, and x-ray photoelectron spectroscopy (XPS). In addition, these iron based clusters were tested for catalytic activity in a model hydrogenolysis reaction. The hydrogenolysis of naphthyl bibenzyl methane was used as a model for coal pyrolysis.« less

  5. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 3. Monitoring DPPC lipolysis in mixed micelles.

    PubMed

    Mateos-Diaz, Eduardo; Sutto-Ortiz, Priscila; Sahaka, Moulay; Rodriguez, Jorge A; Carrière, Frédéric

    2018-03-01

    Usual methods for the continuous assay of lipolytic enzyme activities are mainly based on the titration of free fatty acids, surface pressure monitoring or spectrophotometry using substrates labeled with specific probes. These approaches only give a partial information on the chemistry of the lipolysis reaction and additional end-point analyses are often required to quantify both residual substrate and lipolysis products. We used transmission infrared (IR) spectroscopy to monitor simultaneously the hydrolysis of phospholipids by guinea pig pancreatic lipase-related protein 2 (GPLRP2) and the release of lipolysis products. The substrate (DPPC, 1,2-Dipalmitoyl phosphatidylcholine) was mixed with sodium taurodeoxycholate (NaTDC) to form mixed micelles in D 2 O buffer at pD 6 and 8. After hydrogen/deuterium exchange, DPPC hydrolysis by GPLRP2 (100nM) was monitored at 35°C in a liquid cell by recording IR spectra and time-course variations in the CO stretching region. These changes were correlated to variations in the concentrations of DPPC, lysophospholipids (lysoPC) and palmitic acid (Pam) using calibration curves established with these compounds individually mixed with NaTDC. We were thus able to quantify each compound and its time-course variations during the phospholipolysis reaction and to estimate the enzyme activity. To validate the IR analysis, variations in residual DPPC, lysoPC and Pam were also quantified by thin-layer chromatography coupled to densitometry and similar hydrolysis profiles were obtained using both methods. IR spectroscopy can therefore be used to monitor the enzymatic hydrolysis of phospholipids and obtain simultaneously chemical and physicochemical information on substrate and all reaction products (H-bonding, hydration, acyl chain mobility). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  7. Structural changes of casein micelles in a calcium gradient film.

    PubMed

    Gebhardt, Ronald; Burghammer, Manfred; Riekel, Christian; Roth, Stephan Volkher; Müller-Buschbaum, Peter

    2008-04-09

    Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium phosphate. At length scales within the beam size the film surface is flat and detection of size distribution in a macroscopic casein gradient becomes accessible. The model used to analyze the data is based on a set of three log-normal distributed particle sizes. Increasing calcium concentration causes a decrease in casein micelle diameter while the size of casein mini-micelles increases and micellar calcium phosphate particles remain unchanged.

  8. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  9. Glycopolymer micelles with reducible ionic cores for hepatocytes-targeting delivery of DOX.

    PubMed

    Wang, Yanxia; Zhang, Xinge; Yu, Peien; Li, Chaoxing

    2013-01-30

    A novel galactose-decorated cross-linked micelles (cl-micelles) with ionic cores using cystamine (Cys) as a biodegradable cross-linker was prepared by using block ionomer complexes of poly(ethylene glycol)-b-poly(2-acryloxyethyl-galactose)-b-poly(acrylic acid) (PEG-b-PAEG-b-PAA) and Ca(2+) (PEG-b-PAEG-b-PAA cl-micelles/Cys). Doxorubicin (DOX) was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. Proton nuclear magnetic resonance spectrum and Fourier transform infrared spectrometer indicated galactose ligands were exposed at the micellar surface. The micelles were spherical in shape, with an average size of 100nm. The in vitro release studies confirmed that DOX-loaded PEG-b-PAEG-b-PAA cl-micelles/Cys accomplished rapid drug release under reducing condition. Remarkably, PEG-b-PAEG-b-PAA cl-micelles/Cys efficiently delivered and released DOX into the cell nucleus of HepG2 cells, and the intensity of fluorescence observed in HepG2 cells was stronger than that incubated with the micelles without galactose ligands. In contrast, little fluorescence was observed in NIH3T3 cells after incubation with PEG-b-PAEG-b-PAA cl-micelles/Cys. Interestingly, cytotoxicity assays showed that DOX-loaded PEG-b-PAEG-b-PAA cl-micelles/Cys retained higher cell inhibition efficiency in HepG2 cells as compared with NIH3T3 cells, and were more potent than the micelles without galactose ligands and the micelles with non degradable cross-links. These results indicate that PEG-b-PAEG-b-PAA cl-micelles/Cys have great potential in liver tumor-targeted chemotherapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  11. Investigating Block-Copolymer Micelle Dynamics for Tunable Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Kidd, Bryce; Cooksey, Tyler; Robertson, Megan; Madsen, Louis

    Block-copolymer micelles (BCPMs) can carry molecular cargo in a nanoscopic package that is tunable using polymer structure in combination with cargo properties, as well as with external stimuli such as temperature or pH. For example, BCPMs can be used in targeted anticancer drug delivery due to their biocompatibility, in vivo degradability and prolonged circulation time. We are using NMR spectroscopy and diffusometry as well as SANS to investigate BCPMs. Here we study a diblock poly(ethylene oxide)-b-(caprolactone) (PEO-PCL) that forms spherical micelles at 1% (w/v) in the mixed solvent D2O/THF-d8. We quantify the populations and diffusion coefficients of coexisting micelles and free unimers over a range of temperatures and solvent compositions. We use temperature as a stimulus to enhance unimer exchange and hence trigger cargo release, in some cases at a few degrees above body temperature. We present evidence for dominance of the insertion-expulsion mechanism of unimer exchange in these systems, and we map phase diagrams versus temperature and solvent composition. This study sheds light on how intermolecular interactions fundamentally affect cargo release, unimer exchange, and overall micelle tunability.

  12. Structural changes of deposited casein micelles induced by membrane filtration.

    PubMed

    Gebhardt, R; Steinhauer, T; Meyer, P; Sterr, J; Perlich, J; Kulozik, U

    2012-01-01

    Casein micelles undergo shape changes when subjected to frontal filtration forces. Grazing incidence small angle X-ray scattering (GISAXS) and atomic force microscopy (AFM) allow a quantification of such structural changes on filtration cakes deposited on smooth silicon micro-sieves. A trans-membrane pressure of deltap = 400 mbar across the micro-sieve leads to an immediate film formation after deposition of casein solution. We observe significant changes in the GISAXS pattern depending on how many layers are stacked on top of each other. Compared to a deposit formed by one layer, GISAXS on a deposit formed by three layers of casein micelles leads to less scattering in the vertical and more scattering in the horizontal direction. Simulations show that the experimental results can be interpreted by a structural transformation from an originally spherical micelle shape to an ellipsoidal-deformed shape. The results are supported by AFM measurements showing a reduced lateral size of casein micelles deposited on top of a membrane pore. The observed shape changes could be due to filtration forces acting on densely packed deposits confining the micelles into ellipsoidal shapes.

  13. Rennet-induced coagulation properties of yak casein micelles: A comparison with cow casein micelles.

    PubMed

    Zhang, Yan; Li, Yuan; Wang, Pengjie; Tian, Yanbao; Liang, Qi; Ren, Fazheng

    2017-12-01

    It is essential for yak cheese processing to understand the rennet-induced coagulation properties of gel formation from casein micelles. We have previously discovered that yak milk requires a longer incubation time but forms stronger gels compared with cow milk. In this study, we are aiming to understand the rennet-induced coagulation properties of yak casein micelles comparing with cow casein micelles. Rheological analyses revealed that the gelling times of yak and cow casein micelles were 11.6±0.5 and 8.7±0.4min (P<0.05) respectively, but yak casein gel had a higher elastic modulus G' (6.5±0.2Pa) than cow casein gel (2.5±0.2Pa; P<0.05). This is consistent with the results obtained by micro-rheology. Confocal laser scanning microscopic images (CLSM) and cryo-scanning electron microscopic images (cryo-SEM) showed that yak casein gel was more homogeneous and had smaller pore size than cow casein gels. Yak casein micelles had higher calcium (26.00mM), phosphate (19.90mM) and β-casein (relative 32%) concentrations. In addition, yak casein micelles were larger (Z-average 218.6nm) than cow casein micelles, and contained lower κ-casein (relative 13%). By comparison with cow casein micelles, yak casein micelle composition corresponding to their micellar calcium phosphate and κ-casein content may greatly contribute to the longer coagulation time and denser gel structure. An initial slower caseinomacropeptide (CMP) release rate and the slower rate of aggregation between para-casein micelles contributed to a more homogeneous yak gel network. Higher colloidal calcium phosphate is crucial for yak casein micelle aggregation and gel firmness because sufficient colloidal calcium phosphates can firmly glue sub-micelles and links casein micelles. This study provides valuable information for yak cheese production. Copyright © 2017. Published by Elsevier Ltd.

  14. First principles investigation of half-metallicity and spin gapless semiconductor in CH3NH3Cr x Pb1- x I3 mixed perovskites

    NASA Astrophysics Data System (ADS)

    Huang, H. M.; Zhu, Z. W.; Zhang, C. K.; He, Z. D.; Luo, S. J.

    2018-04-01

    The structural, electronic and magnetic properties of organic-inorganic hybrid mixed perovskites CH3NH3Cr x Pb1- x I3 ( x = 0.25, 0.50, 0.75, 1.00) in cubic, tetragonal and orthorhombic phases have been investigated by first-principles calculation. The results indicate that the tetragonal CH3NH3Cr0.75Pb0.25I3 is a spin gapless semiconductor with Curie temperature of 663 K estimated using mean field approximation. All other CH3NH3Cr x Pb1- x I3 mixed perovskites are half-metallic ferromagnets together with 100% spin polarization, and their total magnetic moment are 4.00, 8.00, 12.00 and 16.00 µB per unit cell for x = 0.25, 0.50, 0.75 and 1.00, respectively. The effect of <100>, <110> and <111> orientation of organic cation CH3NH3 + on the electronic properties of CH3NH3Cr0.50Pb0.50I3 was investigated. The results show that the CH3NH3 + in different orientations have a slight effect on the lattice constants, the energy gap in minority-spin states, half-metallic gap, local magnetic moment, and Curie temperature.

  15. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing.

    PubMed

    Chen, Zhiquan; He, Changcheng; Li, Fengbin; Tong, Ling; Liao, Xingzhi; Wang, Yong

    2010-06-01

    We reported the deliberate control on the micelle opening and closing of amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar films by exposing them to selective solvents. We first treated the micellar films with polar solvents including ethanol and water (pH = 4, 8, and 12) that have different affinities to P2VP. We observed opening of the micelles in all the cases. Both the size of opened pores and the opening rate are dependent on the solvency of different solvents for P2VP. We then explored the closing behavior of the opened micelles using solvents having different affinities to PS. We found that the opened micelles were recovered to their initial closed micelle forms. The recovery was accompanied by a slow micelle disassociation process which gradually reduced the micelle size. The rates of the micelle closing and disassociation are also dependent on the solvency of different solvents for PS.

  16. Formation of Worm-Like Micelles in Mixed N-Hexadecyl-N-Methylpyrrolidinium Bromide-Based Cationic Surfactant and Anionic Surfactant Systems

    PubMed Central

    Dai, Caili; Yan, Zhihu; You, Qing; Du, Mingyong; Zhao, Mingwei

    2014-01-01

    Through the descriptive and rheological characterization of worm-like micelles formed by N-hexadecyl-N-methylpyrrolidinium bromide and sodium laurate, the formation and properties of the worm-like micelles were affected by the concentrations of sodium laurate and temperature. Additionally, cryogenic transmission electron microscopy images further validated the formation of worm-like micelles. PMID:25019152

  17. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    PubMed

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  18. Spectroscopic study of harmane in micelles at 77 K using fluorescent probes

    NASA Astrophysics Data System (ADS)

    Marques, A. D. S.; Souza, H. F.; Costa, I. C.; de Azevedo, W. M.

    2000-03-01

    Steady-state and time-resolved emission for spectroscopic techniques at 77 K, and molecular orbital calculations using PM3-MOPAC/93 and HAM/3-CI have been used to study the two forms of harmane, the neutral (HN) and the monoprotonated (HH), in different environments. In hydrophobic media, for (HN), four species were determined and in hydrophilic medium, for (HH), we found just one species. The photophysical properties of all these species were determined, and we verified that each one of them displays distinct photophysical properties from one to another. For example, for monomer of (HN), the lowest electronic singlet state S 1 is (π,π ∗) and the lowest electronic triplet state T 1 is (π,π ∗), due to the phosphorescence lifetime it is t=0.8 s. For the (HH) monomer, the S 1 is (π,π ∗) and T 1 is (π,π ∗) and the spin-orbital coupling is inefficient. These determinations were used to characterise and to identify the harmane species that is solubilised into the interior of neutral (triton X-100), anionic (dodecyl lithium sulphate) and cationic (hexadecyltrimethyl ammonium bromide) micelles, all of them were prepared under physiological conditions. The results indicated that active species in the interior of the micelles is a hydrogen bond complex between (HN) and micellar environments that is anchored in the aqueous region of micelles.

  19. Extracting Aggregation Free Energies of Mixed Clusters from Simulations of Small Systems: Application to Ionic Surfactant Micelles.

    PubMed

    Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T

    2017-11-14

    Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.

  20. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  1. Spectroscopic investigation of the influence of calcium ion on the structures of casein micelles.

    PubMed

    Wang, Peng-Jie; Wu, Jian-Ping; Zhang, Hao; Guo, Hui-Yuan; Liu, Hong-Na; Ren, Fa-Zheng

    2014-01-01

    The effects of calcium ion on the structural properties of casein micelles in the course of heat treatment were synthetically examined by non-structure-invasive spectrometry. The hydrophobicity, reflected by extrinsic fluorescence (ANS fluorescence), was positively correlated with the concentration of the calcium ion, within the range of 0 to 12 mmol x L(-1). Meanwhile, the turbidity and stability of casein micelles also increased with the growth of calcium concentrations. However, opposite results were observed for hydrodynamic diameter and polydispersity index. Compared with the calcium ion, the calcium-chelator (citrate) has an opposite effect on the structural characteristics of casein micelles. Within the calcium concentrations range of 0 to 12 mmol x L(-1), the hydrophobicity, stability and turbidity were negatively correlated with the concentration of the calcium ion, nevertheless, opposite results were observed for hydrodynamic diameter and polydispersity index. All the results indicate that the calcium ion could be used to modify the structures of casein micelles during heat heatment.

  2. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles.

    PubMed

    Bachar, Michal; Mandelbaum, Amitai; Portnaya, Irina; Perlstein, Hadas; Even-Chen, Simcha; Barenholz, Yechezkel; Danino, Dganit

    2012-06-10

    β-casein is an amphiphilic protein that self-organizes into well-defined core-shell micelles. We developed these micelles as efficient nanocarriers for oral drug delivery. Our model drug is celecoxib, an anti-inflammatory hydrophobic drug utilized for treatment of rheumatoid arthritis and osteoarthritis, now also evaluated as a potent anticancer drug. This system is unique as it enables encapsulation loads >100-fold higher than other β-casein/drug formulations, and does not require additives as do other formulations that have high loadings. This is combined with the ability to lyophilize the formulation without a cryoprotectant, long-term physical and chemical stability of the resulting powder, and fully reversible reconstitution of the structures by rehydration. The dry dosage form, in which >95% of the drug is encapsulated, meets the daily dose. Cryo-TEM and DLS prove that drug encapsulation results in micelle swelling, and X-ray diffraction shows that the encapsulated drug is amorphous. Altogether, our novel dosage form is highly advantageous for oral administration. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    NASA Astrophysics Data System (ADS)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli; Liu, Jianping

    2016-09-01

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10-100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer-polymer and polymer-cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.

  4. The effect of the hydrophilic/hydrophobic ratio of polymeric micelles on their endocytosis pathways into cells.

    PubMed

    Zhang, Zhao; Qu, Qianqian; Li, Jinrong; Zhou, Shaobing

    2013-06-01

    Fluorescein isothiocyanate (FITC), a fluorescent probe, is coupled to amphiphilic monomethoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) copolymers. FITC-labeled mPEG-PCL copolymers self-assemble into micelles through the solvent evaporation method. The cellular internalization is examined using fluorescence microscopy on incubation of NIH-3T3 fibroblasts with micelles or free FITC solution. The effect of the hydrophilic/hydrophobic ratio on the endocytosis mechanisms is evaluated by fluorescence microscopy on culturing of human hepatoblastoma cells and human umbilical vein endothelial cells, individually, mixed with the micelles holding the same parameters including micelle size, shape, and surface charges. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structural ordering of casein micelles on silicon nitride micro-sieves during filtration.

    PubMed

    Gebhardt, Ronald; Holzmüller, Wolfgang; Zhong, Qi; Müller-Buschbaum, Peter; Kulozik, Ulrich

    2011-11-01

    The paper reports on the structure and formation of casein micelle deposits on silicon nitride micro-sieves during the frontal filtration. The most frequent radius of the fractionated casein micelles we use is R=60 nm as detected by static light scattering (SLS) and atomic force microscopy (AFM). We estimate the size and size distribution of the casein micelles which pass through the micro-sieve during the filtration process. A sharpening of the size distribution at the beginning of the filtration process (t=40s) is followed by a broadening and a shift of the most frequent radii towards smaller sizes at later times (t=840 s). The size distribution of the micelles deposited on the micro-sieve during filtration is bimodal and consists of the largest and smallest micelles. At larger filtration times, we observe a shift of both deposited size classes towards smaller sizes. The atomic force micrographs of the reference sample reveal a tendency of the casein micelles to order in a hexagonal lattice when deposited on the micro-sieves by solution casting. The deposition of two size classes can be explained by a formation of a mixed hexagonal lattice with large micelles building up the basis lattice and smaller sizes filling octahedral and tetrahedral holes of the lattice. The accompanied compression with increasing thickness of the casein layer could result from preferential deposition of smaller sizes in the course of the filtration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Mixed micelles loaded with silybin-polyene phosphatidylcholine complex improve drug solubility

    PubMed Central

    Duan, Rui-ling; Sun, Xun; Liu, Jie; Gong, Tao; Zhang, Zhi-rong

    2011-01-01

    Aim: To prepare a novel formulation of phosphatidylcholine (PC)-bile salts (BS)-mixed micelles (MMs) loaded with silybin (SLB)-PC complex for parenteral applications. Methods: SLB-PC-BS-MMs were prepared using the co-precipitation method. Differential scanning calorimetry (DSC) analysis was used to confirm the formation of the complex and several parameters were optimized to obtain a high quality formulation. The water-solubility, drug loading, particle size, zeta potential, morphology and in vivo properties of the SLB-PC-BS-MMs were determined. Results: The solubility of SLB in water was increased from 40.83±1.18 μg/mL to 10.14±0.36 mg/mL with a high drug loading (DL) of 14.43%±0.44% under optimized conditions. The SLB-PC-BS-MMs were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed spherical shapes. The particle size and zeta potential, as measured by photon correlation spectroscopy (PCS), were about 30±4.8 nm and −39±5.0 mV, respectively. In vivo studies showed that incorporation of the SLB-PC complex into PC-BS-MMs led to a prolonged circulation time of the drug. Conclusion: This novel formulation appears to be a good candidate for drug substances that exhibit poor solubility for parenteral administration. PMID:21170082

  7. Casein micelles and their internal structure.

    PubMed

    de Kruif, Cornelis G; Huppertz, Thom; Urban, Volker S; Petukhov, Andrei V

    2012-01-01

    The internal structure of casein micelles was studied by calculating the small-angle neutron and X-ray scattering and static light scattering spectrum (SANS, SAXS, SLS) as a function of the scattering contrast and composition. We predicted experimental SANS, SAXS, SLS spectra self consistently using independently determined parameters for composition size, polydispersity, density and voluminosity. The internal structure of the casein micelles, i.e. how the various components are distributed within the casein micelle, was modeled according to three different models advocated in the literature; i.e. the classical sub-micelle model, the nanocluster model and the dual binding model. In this paper we present the essential features of these models and combine new and old experimental SANS, SAXS, SLS and DLS scattering data with new calculations that predict the spectra. Further evidence on micellar substructure was obtained by internally cross linking the casein micelles using transglutaminase, which led to casein nanogel particles. In contrast to native casein micelles, the nanogel particles were stable in 6M urea and after sequestering the calcium using trisodium citrate. The changed scattering properties were again predicted self consistently. An important result is that the radius of gyration is independent of contrast, indicating that the mass distribution within a casein micelle is homogeneous. Experimental contrast is predicted quite well leading to a match point at a D(2)O volume fraction of 0.41 ratio in SANS. Using SANS and SAXS model calculations it is concluded that only the nanocluster model is capable of accounting for the experimental scattering contrast variation data. All features and trends are predicted self consistently, among which the 'famous' shoulder at a wave vector value Q=0.35 nm(-1) In the nanocluster model, the casein micelle is considered as a (homogeneous) matrix of caseins in which the colloidal calcium phosphate (CCP) nanoclusters are

  8. Casein micelles and their internal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Kruif, Cornelis G; Huppertz, Thom; Urban, Volker S

    2012-01-01

    The internal structure of casein micelles was studied by calculating the small-angle neutron and X-ray scattering and static light scattering spectrum (SANS, SAXS, SLS) as a function of the scattering contrast and composition. We predicted experimental SANS, SAXS, SLS spectra self consistently using independently determined parameters for composition size, polydispersity, density and voluminosity. The internal structure of the casein micelles, i.e. how the various components are distributed within the casein micelle, was modeled according to three different models advocated in the literature; i.e. the classical sub-micelle model, the nanocluster model and the dual binding model. In this paper we presentmore » the essential features of these models and combine new and old experimental SANS, SAXS, SLS and DLS scattering data with new calculations that predict the spectra. Further evidence on micellar substructure was obtained by internally cross linking the casein micelles using transglutaminase, which led to casein nanogel particles. In contrast to native casein micelles, the nanogel particles were stable in 6 M urea and after sequestering the calcium using trisodium citrate. The changed scattering properties were again predicted self consistently. An important result is that the radius of gyration is independent of contrast, indicating that the mass distribution within a casein micelle is homogeneous. Experimental contrast is predicted quite well leading to a match point at a D{sub 2}O volume fraction of 0.41 ratio in SANS. Using SANS and SAXS model calculations it is concluded that only the nanocluster model is capable of accounting for the experimental scattering contrast variation data. All features and trends are predicted self consistently, among which the 'famous' shoulder at a wave vector value Q = 0.35 nm{sup -1}. In the nanocluster model, the casein micelle is considered as a (homogeneous) matrix of caseins in which the colloidal calcium phosphate (CCP

  9. Polymer nano-particle hybrid micelles: Encapsulation of POSS into semi-fluorinated polymer micelles

    NASA Astrophysics Data System (ADS)

    Ratnaweera, Dilru; Perahia, Dvora; Iacono, Scott; Mabry, Joseph; Smith, Dennis

    2012-02-01

    Self-assembly of block copolymers in selective solvents was used to form a nanoparticle (NP)/polymer hybrid micelles. These micelles can be used as a cargo vehicle for other substances such as drug delivery, and as building blocks for polymer-nanocomposites with controlled NP distribution. Association of NPs into specific blocks of the copolymer depends on the compatibility between the NPs and the block as well as their preference to the solvent that micellization takes place. The current work introduces a small angle neutron scattering study of association of Polyhedral Oligomeric Silsesquioxane (POSS) NPs into micelles of a highly segregating random copolymer, Biphenyl Perfluorocyclobutane (BPh-PFCB), in toluene, which is a good solvent for BPh. Incompatibility between the blocks drives copolymer into micelles with PFCB in the core and BPh in swollen corona. Modification of NPs with polymer chains drives POSS cages into the micelle core and prevents the micelle dissociation at higher temperatures.

  10. Hydration behavior of casein micelles in thin film geometry: a GISANS study?

    PubMed

    Metwalli, E; Moulin, J F; Gebhardt, R; Cubitt, R; Tolkach, A; Kulozik, U; Müller-Buschbaum, P

    2009-04-07

    The water content of casein micelle films in water vapor atmosphere is investigated using time-resolved grazing incidence small-angle neutron scattering (GISANS). Initial dry casein films are prepared with a spin-coating method. At 30 degrees C, the formation of a water-equilibrated casein protein film is reached after 11 min with a total content of 0.36 g of water/g of protein. With increasing water vapor temperature up to 70 degrees C, an increase in the water content is found. With GISANS, lateral structures on the nanometer scale are resolved during the swelling experiment at different temperatures and modeled using two types of spheres: micelles and mini-micelles. Upon water uptake, molecular assemblies in the size range of 15 nm (mini-micelles) are attributed to the formation of a high-contrast D2O outer shell on the small objects that already exist in the protein film. For large objects (>100 nm), the mean size increases at high D2O vapor temperature because of possible aggregation between hydrated micelles. These results are discussed and compared with various proposed models for casein micelle structures.

  11. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, C.; Pileni, M.P.

    1988-04-21

    The synthesis in situ of cadmium sulfide semiconductors in AOT reverse micelles produces smaller and more monodispersed particles than are obtained in Triton reverse micelles or in aqueous solution. When gelatine is added to the previous solution, the semiconductor is entrapped in a hydrocarbon gel and it size remains the same as that obtained in reverse micelles. The size of the sulfite cadmium aggregate formed in AOT hydrocarbon gels is similar to that obtained under similar conditions in AOT reverse micelles. AOT surfactant can play the role of stabilizing agent. However, a more efficient stabilization is obtained by adding tomore » AOT reverse micelles another stabilizing agent such as sodium hexametaphosphate. The crystallite size is strongly dependent on the ratio of the cadmium and sulfur ions, defined by x = (Cd/sup 2 +/)/(S/sup 2 -//. The yield of reduced viologen obtained by CdS irradiation in AOT reverse micelles is 15 times more efficient than that formed in aqueous solutions whereas it is only three times more in hydrocarbon gels.« less

  12. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  13. Structural characterization of casein micelles: shape changes during film formation.

    PubMed

    Gebhardt, R; Vendrely, C; Kulozik, U

    2011-11-09

    The objective of this study was to determine the effect of size-fractionation by centrifugation on the film structure of casein micelles. Fractionated casein micelles in solution were asymmetrically distributed with a small distribution width as measured by dynamic light scattering. Films prepared from the size-fractionated samples showed a smooth surface in optical microscopy images and a homogeneous microstructure in atomic force micrographs. The nano- and microstructure of casein films was probed by micro-beam grazing incidence small angle x-ray scattering (μGISAXS). Compared to the solution measurements, the sizes determined in the film were larger and broadly distributed. The measured GISAXS patterns clearly deviate from those simulated for a sphere and suggest a deformation of the casein micelles in the film. © 2011 IOP Publishing Ltd

  14. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy.

    PubMed

    Wu, Xiang Lan; Kim, Jong Ho; Koo, Heebeom; Bae, Sang Mun; Shin, Hyeri; Kim, Min Sang; Lee, Byung-Heon; Park, Rang-Woon; Kim, In-San; Choi, Kuiwon; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Doo Sung

    2010-02-17

    Herein, we prepared tumor-targeting peptide (AP peptide; CRKRLDRN) conjugated pH-responsive polymeric micelles (pH-PMs) in cancer therapy by active and pH-responsive tumor targeting delivery systems, simultaneously. The active tumor targeting and tumoral pH-responsive polymeric micelles were prepared by mixing AP peptide conjugated PEG-poly(d,l-lactic acid) block copolymer (AP-PEG-PLA) into the pH-responsive micelles of methyl ether poly(ethylene glycol) (MPEG)-poly(beta-amino ester) (PAE) block copolymer (MPEG-PAE). These mixed amphiphilic block copolymers were self-assembled to form stable AP peptide-conjugated and pH-responsive AP-PEG-PLA/MPEG-PAE micelles (AP-pH-PMs) with an average size of 150 nm. The AP-pH-PMs containing 10 wt % of AP-PEG-PLA showed a sharp pH-dependent micellization/demicellization transition at the tumoral acid pH. Also, they presented the pH-dependent drug release profile at the acidic pH of 6.4. The fluorescence dye, TRITC, encapsulated AP-pH-PMs (TRITC-AP-pH-PMs) presented the higher tumor-specific targeting ability in vitro cancer cell culture system and in vivo tumor-bearing mice, compared to control pH-responsive micelles of MPEG-PAE. For the cancer therapy, the anticancer drug, doxorubicin (DOX), was efficiently encapsulated into the AP-pH-PMs (DOX-AP-pH-PMs) with a higher loading efficiency. DOX-AP-pH-PMs efficiently deliver anticancer drugs in MDA-MB231 human breast tumor-bearing mice, resulted in excellent anticancer therapeutic efficacy, compared to free DOX and DOX encapsulated MEG-PAE micelles, indicating the excellent tumor targeting ability of AP-pH-PMs. Therefore, these tumor-targeting peptide-conjugated and pH-responsive polymeric micelles have great potential application in cancer therapy.

  15. Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals.

    PubMed

    Pérez Quiñones, Javier; Brüggemann, Oliver; Kjems, Jørgen; Shahavi, Mohammad Hassan; Peniche Covas, Carlos

    2018-02-21

    Two synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity. Spectroscopic studies confirmed quantitative disubstitution of studied PEGs with the brassinosteroids, while elemental analysis assessed purity of the synthesized conjugates. Conjugates were also characterized by X-ray diffraction and thermal analysis. Dynamic and static light scattering showed stable and homogeneous approximately spherical micelles with average hydrodynamic diameters of 22-120 nm and almost neutral ζ potential. Spherical 30-140 nm micelles were observed by electron microscopy. Sustained in vitro releases at pH 5.5 were extended up to 96 h. Prepared PEG micelles showed good agrochemical activity in the radish seed bioassay and no cytotoxicity to the human microvascular endothelial cell line in the MTS test.

  16. Photoinduced electron transfer in a room temperature ionic liquid 1-butyl-3-methylimidazolium octyl sulfate micelle: a temperature dependent study.

    PubMed

    Sarkar, Souravi; Mandal, Sarthak; Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni

    2011-05-19

    The effect of temperature on the dynamics of photoinduced electron transfer (PET) between different coumarin dyes and N,N-dimethyl aniline in a room temperature ionic liquid 1-butyl-3-methylimidazolium octyl sulfate ([C(4)mim][C(8)SO(4)]) micelle have been investigated using steady-state and time-resolved fluorescence quenching measurements at four different temperatures: 208, 298, 308, and 318 K. The quenching rates (k(q)(TR)) of the PET process in this micellar system are found to be lower than the PET rate in sodium dodecyl sulfate and Triton-X 100 micelle and almost comparable to the dodecyl trimethyl ammonium bromide and cetyl trimethyl ammonium bromide micelle due to larger donor–acceptor separation in the micellar phase. The temperature dependent PET rates are well correlated with the Arrhenius type of correlation for all the coumarin dyes. Marcus type of inversion in PET rates has been observed at relatively lower exergonicity, and the correlation plots gradually move upward with the increase of temperature. © 2011 American Chemical Society

  17. Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment.

    PubMed

    Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Cook, Joanne L; Stott, Ian P; Pelan, Eddie G

    2018-06-01

    Despite the considerable advances of molecular-thermodynamic theory of micelle growth, agreement between theory and experiment has been achieved only in isolated cases. A general theory that can provide self-consistent quantitative description of the growth of wormlike micelles in mixed surfactant solutions, including the experimentally observed high peaks in viscosity and aggregation number, is still missing. As a step toward the creation of such theory, here we consider the simplest system - nonionic wormlike surfactant micelles from polyoxyethylene alkyl ethers, C i E j . Our goal is to construct a molecular-thermodynamic model that is in agreement with the available experimental data. For this goal, we systematized data for the micelle mean mass aggregation number, from which the micelle growth parameter was determined at various temperatures. None of the available models can give a quantitative description of these data. We constructed a new model, which is based on theoretical expressions for the interfacial-tension, headgroup-steric and chain-conformation components of micelle free energy, along with appropriate expressions for the parameters of the model, including their temperature and curvature dependencies. Special attention was paid to the surfactant chain-conformation free energy, for which a new more general formula was derived. As a result, relatively simple theoretical expressions are obtained. All parameters that enter these expressions are known, which facilitates the theoretical modeling of micelle growth for various nonionic surfactants in excellent agreement with the experiment. The constructed model can serve as a basis that can be further upgraded to obtain quantitative description of micelle growth in more complicated systems, including binary and ternary mixtures of nonionic, ionic and zwitterionic surfactants, which determines the viscosity and stability of various formulations in personal-care and house-hold detergency. Copyright © 2018

  18. Dextran based Polymeric Micelles as Carriers for Delivery of Hydrophobic Drugs.

    PubMed

    Mocanu, Georgeta; Nichifor, Marieta; Sacarescu, Liviu

    2017-01-01

    The improvement of drugs bioavailability, especially of the hydrophobic ones, by using various nanoparticles is a very exciting field of the modern research. The applicability of nano-sized shell crosslinked micelles based on dextran as supports for controlled release of several hydrophobic drugs (nystatin, rifampicin, resveratrol, and curcumin) was investigated by in vitro drug loading/release experiments. The synthesized crosslinked micelles were loaded with drugs of various hydrophobicities and their retention/release behavior was followed by dialysis procedure. Crosslinked micelles obtained from dextran with octadecyl end groups, with or without N-(2- hydroxypropyl)-N,N-dimethyl-N-benzylammonium chloride groups attached to the main dextran chains, could retain the drugs in amounts which increased with increasing drug hydrophobicity (water insolubility), as follows: 30-60 mg rifampicin/g, 70-100 mg nystatin/g, 120-144 mg resveratrol/g and 146-260 mg curcumin/g. The rate of drug release from the loaded micelles was also dependent on the drug hydrophobicity and was always slower than the free drug recovery. Antioxidant activity of curcumin and resveratrol released from the loaded micelles was preserved. The results highlighted the potential of the new nano-sized micelles as carriers for prolonged and controlled delivery of various hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  20. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  1. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  2. Gadolinium-Functionalized Peptide Amphiphile Micelles for Multimodal Imaging of Atherosclerotic Lesions

    PubMed Central

    2016-01-01

    The leading causes of morbidity and mortality globally are cardiovascular diseases, and nanomedicine can provide many improvements including disease-specific targeting, early detection, and local delivery of diagnostic agents. To this end, we designed fibrin-binding, peptide amphiphile micelles (PAMs), achieved by incorporating the targeting peptide cysteine-arginine-glutamic acid-lysine-alanine (CREKA), with two types of amphiphilic molecules containing the gadoliniuim (Gd) chelator diethylenetriaminepentaacetic acid (DTPA), DTPA-bis(stearylamide)(Gd), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(poly(ethylene glycol) (PEG))-2000]-DTPA(Gd) (DSPE-PEG2000-DTPA(Gd)). The material characteristics of the resulting nanoparticle diagnostic probes, clot-binding properties in vitro, and contrast enhancement and safety for dual, optical imaging–magnetic resonance imaging (MRI) were evaluated in the atherosclerotic mouse model. Transmission electron micrographs showed a homogenous population of spherical micelles for formulations containing DSPE-PEG2000-DTPA(Gd), whereas both spherical and cylindrical micelles were formed upon mixing DTPA-BSA(Gd) and CREKA amphiphiles. Clot-binding assays confirmed DSPE-PEG2000-DTPA(Gd)-based CREKA micelles targeted clots over 8-fold higher than nontargeting (NT) counterpart micelles, whereas no difference was found between CREKA and NT, DTPA-BSA(Gd) micelles. However, in vivo MRI and optical imaging studies of the aortas and hearts showed fibrin specificity was conferred by the peptide ligand without much difference between the nanoparticle formulations or shapes. Biodistribution studies confirmed that all micelles were cleared through both the reticuloendothelial system and renal clearance, and histology showed no signs of necrosis. In summary, these studies demonstrate the successful synthesis, and the molecular imaging capabilities of two types of CREKA-Gd PAMs for atherosclerosis. Moreover, we demonstrate the differences in

  3. Penetration of blood-brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system.

    PubMed

    Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou

    2017-01-01

    For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.

  4. Enhanced transmucosal delivery of itraconazole by thiolated d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate micelles for the treatment of Candida albicans.

    PubMed

    Suksiriworapong, Jiraphong; Mingkwan, Thawanrat; Chantasart, Doungdaw

    2017-11-01

    This study aimed to investigate the transmucosal delivery of itraconazole (ITZ) by thiolated d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS-Cys) micelles. TPGS-Cys polymer was successfully synthesized by the simple coupling between carboxyl-activated TPGS and Cys as confirmed by NMR and FTIR techniques. Afterwards, the TPGS/TPGS-Cys micelles were prepared using the blend of TPGS and TPGS-Cys at 10:0, 7:3, 5:5, 3:7 and 0:10mass ratios. All micelles had the size ranged from 8 to 10nm with narrow size distribution and showed spherical in shape. The surface of the 10:0 TPGS micelles exhibited negatively charge while, the TPGS-Cys micelles demonstrated the slightly positive surface charge. The critical micelle concentration, loading capacity and release profiles of TPGS/TPGS-Cys micelles were comparable to the TPGS micelles. The release of ITZ from all micelles was biphasic and sustained in simulated saliva fluid over 48h. The 3:7 and 0:10 TPGS/TPGS-Cys micelles had a good mucoadhesive property. Meanwhile, only 0:10 TPGS/TPGS-Cys micelles enhanced the permeability through buccal mucosa and potentiated the antifungal activity of ITZ against Candida albicans by at least 1.35 folds as compared to ITZ alone. Therefore, this formulation can be further developed for the transmucosal delivery of ITZ for the treatment of C. albicans. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protochlorophyll complexes with similar steady-state fluorescence characteristics can differ in fluorescence lifetimes. A model study in Triton X-100.

    PubMed

    Myśliwa-Kurdziel, Beata; Solymosi, Katalin; Kruk, Jerzy; Böddi, Béla; Strzałka, Kazimierz

    2007-03-01

    The steady-state and time-resolved fluorescence characteristics of protochlorophyll (Pchl) dissolved in neat Triton X-100 and in Triton X-100 micelles were investigated, and the fluorescence lifetimes of different Pchl spectral forms were studied. Varying the concentration of Pchl or diluting the micellar solutions either with a buffer or with a micellar solution, 631-634, 645-655, 680-692 and above 700 nm emitting Pchl complexes were prepared, the ratios of which varied from one another. The fluorescence decay of the 631-634 nm emitting (monomeric) form had a mono-exponential character with a 5.4-ns fluorescence lifetime. The long-wavelength Pchl complexes (aggregates) had two fluorescence lifetime values within a range of 1.4-3.9 ns and 0.15-0.84 ns, which showed high variability in different environments. Depending on the conditions, either mono- or double-exponential fluorescence decay was found for a fluorescence band at 680-685 nm. These data show that despite their very similar steady-state fluorescence properties, Pchl complexes can differ in fluorescence lifetimes, which may reflect different molecular structures, intrinsic geometries or different molecular interactions. This underlines the importance of complex spectroscopic analysis for a precise description of native and artificial chlorophyllous pigment forms.

  6. Glucose-installed, SPIO-loaded PEG- b-PCL micelles as MR contrast agents to target prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Theerasilp, Man; Sunintaboon, Panya; Sungkarat, Witaya; Nasongkla, Norased

    2017-11-01

    Polymeric micelles of poly(ethylene glycol)- block-poly(ɛ-caprolactone) bearing glucose analog encapsulated with superparamagnetic iron oxide nanoparticles (Glu-SPIO micelles) were synthesized as an MRI contrast agent to target cancer cells based on high-glucose metabolism. Compared to SPIO micelles (non-targeting SPIO micelles), Glu-SPIO micelles demonstrated higher toxicity to human prostate cancer cell lines (PC-3) at high concentration. Atomic absorption spectroscopy was used to determine the amount of iron in cells. It was found that the iron in cancer cells treated by Glu-SPIO micelles were 27-fold higher than cancer cells treated by SPIO micelles at the iron concentration of 25 ppm and fivefold at the iron concentration of 100 ppm. To implement Glu-SPIO micelles as a MR contrast agent, the 3-T clinical MRI was applied to determine transverse relaxivities ( r 2*) and relaxation rate (1/ T 2*) values. In vitro MRI showed different MRI signal from cancer cells after cellular uptake of SPIO micelles and Glu-SPIO micelles. Glu-SPIO micelles was highly sensitive with the r 2* in agarose gel at 155 mM-1 s-1. Moreover, the higher 1/ T 2* value was found for cancer cells treated with Glu-SPIO micelles. These results supported that glucose ligand increased the cellular uptake of micelles by PC-3 cells with over-expressing glucose transporter on the cell membrane. Thus, glucose can be used as a small molecule ligand for targeting prostate cancer cells overexpressing glucose transporter.

  7. Dependence of the form factor of ganglioside micelles on a conformational change with temperature

    NASA Astrophysics Data System (ADS)

    Corti, Mario; Boretta, Marco; Cantù, Laura; Del Favero, Elena; Lesieur, Pierre

    1996-09-01

    The gangliosides GM2, GM1 and GD1b, biological amphiphiles with a double tail hydrophobic part and an oligosaccharide chain headgroup, form micelles in solution. Light scattering experiments have shown that ganglioside micelles which have gone through a temperature cycle have a smaller molecular mass and hydrodynamic radius than those which have been kept at room temperature. This fact has been interpreted with the hypothesis that, with temperature, the ganglioside molecules undergo a conformational change which affects their micellar properties appreciably. Careful small angle X-ray experiments, aimed to confirm the light scattering data and to evidence differences in the micellar internal structure are presented. Ganglioside micelles are quite inhomogeneous particles with respect to X-ray scattering, since there is a large contrast variation between the inner lipid part and the external hydrated sugar layer. Experimental form factors are fitted with a double-shell oblate-ellipsoid model.

  8. 31 CFR 100.12 - Exchange of fused and mixed coins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Exchange of fused and mixed coins... OF PAPER CURRENCY AND COIN Exchange of Coin § 100.12 Exchange of fused and mixed coins. (a... the majority of which are readily and clearly identifiable as U.S. coins. (2) Mixed coins are U.S...

  9. Musk Oxen and Micelles

    NASA Astrophysics Data System (ADS)

    Hill, John W.

    1996-09-01

    Musk oxen behavior provides an analogy to micelle formation by amphipathic substances. Mature male musk oxen protect their young and females from wolves by forming a protective circle around them. The males stand with their tails to the inside and their heads facing outward. Amphipathic substances such as soap form micelles. The hydrophobic hydrocarbon tails of the soap are turned to the inside of the micelle and the hydrophilic carboxylate heads are on the outside at the interface with the polar water molecules.

  10. Multimodality CT/SPECT Evaluation of Micelle Drug Carriers for Treatment of Breast Tumors

    DTIC Science & Technology

    2006-07-01

    through the inclusion of a radiolabel. In this study , PEG/PLA or PEG/PCL micelles were modified through the addition of a cRGD targeting ligand and a...macro-initiator and Sn(Oct)2 as a catalyst . Synthesized polymer was then characterized with NMR and gel permeation chromatography (GPC). The resulting...radiolabeled micelle distribution with in vivo animal studies . Reportable Outcomes • Refereed publications - Ai, H., C. Flask, B. Weinberg, X.-T. Shuai

  11. Development of casein microgels from cross-linking of casein micelles by genipin.

    PubMed

    Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric

    2014-09-02

    Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of κ-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article.

  12. Solving the mystery of the internal structure of casein micelles.

    PubMed

    Ingham, B; Erlangga, G D; Smialowska, A; Kirby, N M; Wang, C; Matia-Merino, L; Haverkamp, R G; Carr, A J

    2015-04-14

    The interpretation of milk X-ray and neutron scattering data in relation to the internal structure of the casein micelle is an ongoing debate. We performed resonant X-ray scattering measurements on liquid milk and conclusively identified key scattering features, namely those corresponding to the size of and the distance between colloidal calcium phosphate particles. An X-ray scattering feature commonly assigned to the particle size is instead due to protein inhomogeneities.

  13. Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.

    PubMed

    Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E

    2018-05-02

    The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.

  14. Micelles based on methoxy poly(ethylene glycol)-cholesterol conjugate for controlled and targeted drug delivery of a poorly water soluble drug.

    PubMed

    Li, Junming; He, Zhiyao; Yu, Shui; Li, Shuangzhi; Ma, Qing; Yu, Yiyi; Zhang, Jialin; Li, Rui; Zheng, Yu; He, Gu; Song, Xiangrong

    2012-10-01

    In this study, quercetin (QC) with cancer chemoprevention effect and anticancer potential was loaded into polymeric micelles of methoxy poly(ethylene glycol)-cholesterol conjugate (mPEG-Chol) in order to increase its water solubility. MPEG-Chol with lower critical micelle concentration (CMC) value (4.0 x 10(-7) M - 13 x 10(-7) M) was firstly synthesized involving two steps of chemical modification on cholesterol by esterification, and then QC was incorporated into mPEG-Chol micelles by self-assembly method. After the process parameters were optimized, QC-loaded micelles had higher drug loading (3.66%) and entrapment efficiency (93.51%) and nano-sized diameter (116 nm). DSC analysis demonstrated that QC had been incorporated non-covalently into the micelles and existed as an amorphous state or a solid solution in the polymeric matrix. The freeze-dried formulation with addition of 1% (w/v) mannitol as cryoprotectant was successfully developed for the long-term storage of QC-loaded micelles. Compared to free QC, QC-loaded micelles could release QC more slowly. Moreover, the release of QC from micelles was slightly faster in PBS at pH 5 than that in PBS at pH 7.4, which implied that QC-loaded micelles might be pH-sensitive and thereby selectively deliver QC to tumor tissue with unwanted side effects. Therefore, mPEG-Chol was a promising micellar vector for the controlled and targeted drug delivery of QC to tumor and QC-loaded micelles were also worth being further investigated as a potential formulation for cancer chemoprevention and treatment.

  15. Structure and stabilizing interactions of casein micelles probed by high-pressure light scattering and FTIR.

    PubMed

    Gebhardt, Ronald; Takeda, Naohiro; Kulozik, Ulrich; Doster, Wolfgang

    2011-03-17

    Caseins form heterogeneous micelles composed of three types of disordered protein chains (α, β, κ), which include protein-bound calcium phosphate particles. We probe the stability limits of the micelle by applying hydrostatic pressure. The resulting changes of the size distribution and the average molecular weight are recorded in situ with static and dynamic light scattering. Pressure induces irreversible dissociation of the micelles into monomers above a critical value depending on their size. The critical pressure increases with temperature, pH, and calcium concentration due to the interplay of hydrophobic and electrostatic interactions. The pressure transition curves are biphasic, reflecting the equilibrium of two micelle states with different stability, average size, entropy, and calcium bound. The fast process of pressure dissociation is used to probe the slow equilibrium of the two micelle states under various conditions. Binding and release of β-casein from the micelle is suggested as the molecular mechanism of stabilization associated with the two states. In situ FTIR spectroscopy covering the P-O stretching region indicates that bound calcium phosphate particles are released from serine phosphate residues at pressures above 100 MPa. The resulting imbalance of charge triggers the complete decomposition of the micelle. © 2011 American Chemical Society

  16. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy.

    PubMed

    Parida, Sheetal; Maiti, Chiranjit; Rajesh, Y; Dey, Kaushik K; Pal, Ipsita; Parekh, Aditya; Patra, Rusha; Dhara, Dibakar; Dutta, Pranab Kumar; Mandal, Mahitosh

    2017-01-01

    Gold nanorods, by virtue of surface plasmon resonance, convert incident light energy (NIR) into heat energy which induces hyperthermia. We designed unique, multifunctional, gold nanorod embedded block copolymer micelle loaded with GW627368X for targeted drug delivery and photothermal therapy. Glutathione responsive diblock co-polymer was synthesized by RAFT process forming self-assembled micelle on gold nanorods prepared by seed mediated method and GW627368X was loaded on to the reduction responsive gold nanorod embedded micelle. Photothermal therapy was administered using cwNIR laser (808nm; 4W/cm 2 ). Efficacy of nanoformulated GW627368X, photothermal therapy and combination of both were evaluated in vitro and in vivo. In response to photothermal treatment, cells undergo regulated, patterned cell death by necroptosis. Combining GW627368X with photothermal treatment using single nanoparticle enhanced therapeutic outcome. In addition, these nanoparticles are effective X-ray CT contrast agents, thus, can help in monitoring treatment. Reduction responsive nanorod embedded micelle containing folic acid and lipoic acid when treated on cervical cancer cells or tumour bearing mice, aggregate in and around cancer cells. Due to high glutathione concentration, micelles degrade releasing drug which binds surface receptors inducing apoptosis. When incident with 808nm cwNIR lasers, gold nanorods bring about photothermal effect leading to hyperthermic cell death by necroptosis. Combination of the two modalities enhances therapeutic efficacy by inducing both forms of cell death. Our proposed treatment strategy achieves photothermal therapy and targeted drug delivery simultaneously. It can prove useful in overcoming general toxicities associated with chemotherapeutics and intrinsic/acquired resistance to chemo and radiotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Iron Oxide Nanoparticle-Micelles (ION-Micelles) for Sensitive (Molecular) Magnetic Particle Imaging and Magnetic Resonance Imaging

    PubMed Central

    Starmans, Lucas W. E.; Burdinski, Dirk; Haex, Nicole P. M.; Moonen, Rik P. M.; Strijkers, Gustav J.; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Background Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. Methods and Results IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. Conclusions The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for

  18. Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

    PubMed

    Starmans, Lucas W E; Burdinski, Dirk; Haex, Nicole P M; Moonen, Rik P M; Strijkers, Gustav J; Nicolay, Klaas; Grüll, Holger

    2013-01-01

    Iron oxide nanoparticles (IONs) are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI) was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles). Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS) measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem) and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles) bound to blood clots. The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular) MPI and warrants further investigation of the FibPep-ION-Micelle platform for in vivo, non-invasive imaging of fibrin in

  19. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    PubMed

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  20. Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models

    NASA Astrophysics Data System (ADS)

    Song, Hua; Geng, Hongquan; Ruan, Jing; Wang, Kan; Bao, Chenchen; Wang, Juan; Peng, Xia; Zhang, Xueqing; Cui, Daxiang

    2011-04-01

    Docetaxel (DTX) is a very important member of taxoid family. Despite several alternative delivery systems reported recently, DTX formulated by Polysorbate 80 and alcohol (Taxotere®) is still the most frequent administration in clinical practice. In this study, we incorporated DTX into Polysorbate 80/Phospholipid mixed micelles and compared its structural characteristics, pharmacokinetics, biodistribution, and blood compatibility with its conventional counterparts. Results showed that the mixed micelles loaded DTX possessed a mean size of approximately 13 nm with narrow size distribution and a rod-like micelle shape. In the pharmacokinetics assessment, there was no significant difference between the two preparations ( P > 0.05), which demonstrated that the DTX in the two preparations may share a similar pharmacokinetic process. However, the Polysorbate 80/Phospholipid mixed micelles can increase the drug residence amount of DTX in kidney, spleen, ovary and uterus, heart, and liver. The blood compatibility assessment study revealed that the mixed micelles were safe for intravenous injection. In conclusion, Polysorbate 80/Phospholipid mixed micelle is safe, can improve the tumor therapeutic effects of DTX in the chosen organs, and may be a potential alternative dosage form for clinical intravenous administration of DTX.

  1. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing.

    PubMed

    Tan, Chun Hua; Huang, Zhen Jian; Huang, Xu Guang

    2010-06-01

    We describe a simple and rapid method for determining the critical micelle concentration (CMC) of surfactants from fiber-optic measurements of refractive index. The refractive index of an aqueous surfactant solution was monitored as the surfactant concentration was increased using an automated dispensing system. On reaching the surfactant's CMC value, an abrupt change was observed in the rate of increase of the refractive index with increasing concentration. The measurement system provides rapid semiautomatic data collection and analysis, increasing the precision, sensitivity, and range of applicability of the technique while substantially decreasing the amount of manual intervention required. Measurements of CMC for sodium dodecyl sulfate (8.10mM), cetyltrimethylammonium chloride (1.58mM), and Triton X-100 (0.21mM) were in excellent agreement with values previously reported in the literature. The method is applicable to cationic, anionic, and nonionic surfactants, and it offers a facile, in situ, and sensitive means of detecting micelle formation over a broad range of CMC values larger than 10(-1)mM. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Effect of counterions on the shape, hydration, and degree of order at the interface of cationic micelles: the triflate case.

    PubMed

    Lima, Filipe S; Cuccovia, Iolanda M; Horinek, Dominik; Amaral, Lia Q; Riske, Karin A; Schreier, Shirley; Salinas, Roberto K; Bastos, Erick L; Pires, Paulo A R; Bozelli, José Carlos; Favaro, Denize C; Rodrigues, Ana Clara B; Dias, Luís Gustavo; El Seoud, Omar A; Chaimovich, Hernan

    2013-04-02

    Specific ion effects in surfactant solutions affect the properties of micelles. Dodecyltrimethylammonium chloride (DTAC), bromide (DTAB), and methanesulfonate (DTAMs) micelles are typically spherical, but some organic anions can induce shape or phase transitions in DTA(+) micelles. Above a defined concentration, sodium triflate (NaTf) induces a phase separation in dodecyltrimethylammonium triflate (DTATf) micelles, a phenomenon rarely observed in cationic micelles. This unexpected behavior of the DTATf/NaTf system suggests that DTATf aggregates have unusual properties. The structural properties of DTATf micelles were analyzed by time-resolved fluorescence quenching, small-angle X-ray scattering, nuclear magnetic resonance, and electron paramagnetic resonance and compared with those of DTAC, DTAB, and DTAMs micelles. Compared to the other micelle types, the DTATf micelles had a higher average number of monomers per aggregate, an uncommon disk-like shape, smaller interfacial hydration, and restricted monomer chain mobility. Molecular dynamic simulations supported these observations. Even small water-soluble salts can profoundly affect micellar properties; our data demonstrate that the -CF3 group in Tf(-) was directly responsible for the observed shape changes by decreasing interfacial hydration and increasing the degree of order of the surfactant chains in the DTATf micelles.

  3. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-07

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.

  4. Stabilized micelles as delivery vehicles for paclitaxel.

    PubMed

    Yoncheva, Krassimira; Calleja, Patricia; Agüeros, Maite; Petrov, Petar; Miladinova, Ivanka; Tsvetanov, Christo; Irache, Juan M

    2012-10-15

    Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol(®)), longer mean residence time (9-times longer than i.v. Taxol(®)) and high distribution volume (2-fold higher than i.v. Taxol(®)) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol(®), in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation.

    PubMed

    Liou, Jiun-You; Sun, Ya-Sen

    2015-09-28

    We investigated the structural evolution of truncated micelles in ultrathin films of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, of monolayer thickness on bare silicon substrates (SiOx/Si) upon UV irradiation in air- (UVIA) and nitrogen-rich (UVIN) environments. The structural evolution of micelles upon UV irradiation was monitored using GISAXS measurements in situ, while the surface morphology was probed using atomic force microscopy ex situ and the chemical composition using X-ray photoelectron spectroscopy (XPS). This work provides clear evidence for the interpretation of the relationship between the structural evolution and photochemical reactions in PS-b-P2VP truncated micelles upon UVIA and UVIN. Under UVIA treatment, photolysis and cross-linking reactions coexisted within the micelles; photolysis occurred mainly at the top of the micelles, whereas cross-linking occurred preferentially at the bottom. The shape and size of UVIA-treated truncated micelles were controlled predominantly by oxidative photolysis reactions, which depended on the concentration gradient of free radicals and oxygen along the micelle height. Because of an interplay between photolysis and photo-crosslinking, the scattering length densities (SLD) of PS and P2VP remained constant. In contrast, UVIN treatments enhanced the contrast in SLD between the PS shell and the P2VP core as cross-linking dominated over photolysis in the presence of nitrogen. The enhancement of the SLD contrast was due to the various degrees of cross-linking under UVIN for the PS and P2VP blocks.

  6. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors.

    PubMed

    Sethuraman, Vijay A; Bae, You Han

    2007-04-02

    A novel drug targeting system for acidic solid tumors has been developed based on ultra pH-sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of poly(l-lactic acid) (PLLA) and a hydrophilic shell consisting of polyethylene glycol (PEG) conjugated to TAT (TAT micelle), 2) an ultra pH-sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TAT micelles had particle sizes between 20 and 45 nm and their critical micelle concentrations were 3.5 mg/l to 5.5 mg/l. The TAT micelles, upon mixing with pH-sensitive PSD-b-PEG, showed a slight increase in particle size between pH 8.0 and 6.8 (60-90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flow cytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The confocal microscopy indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above micelles would be able to target any hydrophobic drug near the nucleus.

  7. Novel thermosensitive polymeric micelles for docetaxel delivery.

    PubMed

    Yang, Mi; Ding, Yitao; Zhang, Leyang; Qian, Xiaoping; Jiang, Xiqun; Liu, Baorui

    2007-06-15

    Targeted delivery of antitumor drugs triggered by hyperthermia has significant advantages in clinical applications, since it is easy to implement and side effects are reduced. To release drugs site-specifically upon local heating often requires the drugs to be loaded into a thermosensitive polymer matrix with a low critical solution temperature (LCST) between 37 and 42 degrees C. However, the LCSTs of most thermosensitive materials were below 37 degrees C, which limits their application in clinic because they would precipitate once injected into human body and lost thermal targeting function. Herein, we prepared a novel thermosensitive copolymer (poly(N-isopropylacrylamide-co-acrylamide)-b-poly (DL-lactide)) that exhibits no obvious physical change up to 41 degrees C when heated. Docetaxel loaded micelles made of such thermosensitive polymer were prepared by dialysis method and the maximum loading content was found to be up to 27%. The physical properties, such as structure, morphology, and size distribution of the micelles with and without docetaxel were investigated by NMR, X-ray diffraction, dynamic light scattering, atomic force microscopy, etc. The efficacy of this drug delivery system was also evaluated by examining the proliferation inhibiting activity against different cell lines in vitro. After hyperthermia, the cytotoxicity of docetaxel-loaded micelles increased prominently. Our results demonstrated that this copolymer could be an ideal candidate for thermal targeted antitumor drug delivery. (c) 2007 Wiley Periodicals, Inc.

  8. Investigation of phase transitions in LiK 1- x(NH 4) xSO 4 mixed crystal

    NASA Astrophysics Data System (ADS)

    Freire, P. T. C.; Paraguassu, W.; Silva, A. P.; Pilla, O.; Teixeira, A. M. R.; Sasaki, J. M.; Mendes Filho, J.; Guedes, I.; Melo, F. E. A.

    1999-02-01

    We present Raman scattering results on LiK 1- x(NH 4) xSO 4 mixed crystal for temperatures between 100 and 300 K. We observed that in this temperature range the crystal undergoes two different phase transitions, which we call Bansal and Tomaszewski phase transitions. The introduction of ammonium ions in the potassium sites increases the C 66→C 3v4 (Bansal) phase transition temperature and decreases the Tomaszewski phase transition temperature. Finally, the most impressive effect of the presence of ammonium impurity in the LiKSO 4 structure is the decrease in the temperature hysteresis of Bansal phase transition and the almost complete destruction of hysteresis in the Tomaszewski phase transition, leading to a high temperature range of stability of the trigonal phase.

  9. Interaction of lactoferrin and lysozyme with casein micelles.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2011-11-14

    On addition of lactoferrin (LF) to skim milk, the turbidity decreases. The basic protein binds to the caseins in the casein micelles, which is then followed by a (partial) disintegration of the casein micelles. The amount of LF initially binding to casein micelles follows a Langmuir adsorption isotherm. The kinetics of the binding of LF could be described by first-order kinetics and similarly the disintegration kinetics. The disintegration was, however, about 10 times slower than the initial adsorption, which allowed investigating both phenomena. Kinetic data were also obtained from turbidity measurements, and all data could be described with one equation. The disintegration of the casein micelles was further characterized by an activation energy of 52 kJ/mol. The initial increase in hydrodynamic size of the casein micelles could be accounted for by assuming that it would go as the cube root of the mass using the adsorption and disintegration kinetics as determined from gel electrophoresis. The results show that LF binds to casein micelles and that subsequently the casein micelles partly disintegrate. All micelles behave in a similar manner as average particle size decreases. Lysozyme also bound to the casein micelles, and this binding followed a Langmuir adsorption isotherm. However, lysozyme did not cause the disintegration of the casein micelles.

  10. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells.

    PubMed

    Moretton, Marcela A; Bernabeu, Ezequiel; Grotz, Estefanía; Gonzalez, Lorena; Zubillaga, Marcela; Chiappetta, Diego A

    2017-05-01

    Breast cancer represents the top cancer among women, accounting 521.000 deaths per year. Development of targeted nanomedicines to breast cancer tissues represents a milestone to reduce chemotherapy side effects. Taking advantage of the over-expression of glucose (Glu) membrane transporters in breast cancer cells, we aim to expand the potential of a paclitaxel (PTX)-loaded mixed micellar formulation based on polyvinyl caprolactam-polyvinylacetate-polyethylene glycol graft copolymer (Soluplus®) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) by its surface decoration with Glu moieties. The glycopolymer (Soluplus(Glu)) was obtained by microwave-assisted ring opening reaction of δ-gluconolactone initiated by Soluplus®. The glycosylation was confirmed by 1 H NMR and by agglutination assays employing Concanavalin A. The hydrodynamic diameter of Soluplus(Glu) micelles was characterized by dynamic light scattering (100.3±3.8nm) as well as the critical micellar concentration value (0.0151% w/v). Then, a mixed micelle formulation employing Soluplus®, Soluplus(Glu) and TPGS (3:1:1wt ratio) loaded with PTX (4mg/mL) was developed as a multifunctional nanocarrier. Its in vitro anticancer performance in MCF-7 (1.6-fold) and MDA-MB-231 (14.1-fold) was significantly enhanced (p<0.05) versus the unique commercially available micellar-based PTX-nanoformulation (Genexol®). Furthermore, the in vitro PTX cellular uptake assays revealed that the drug intracellular/cell content was significantly (p<0.05) higher for the Glu-containing mixed micelles versus Genexol® after 6h of incubation with MCF-7 (30.5-fold) and MDA-MB-231 (5-fold). Overall, results confirmed the potential of our Glu-decorated mixed colloidal formulation as an intelligent nanocarrier for PTX-targeted breast cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Casein micelle dispersions under osmotic stress.

    PubMed

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their kappa-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.

  12. Chemical reactions in reverse micelle systems

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  13. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  14. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury.

    PubMed

    Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong

    2017-01-01

    The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.

  15. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    PubMed

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  16. Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant

    PubMed Central

    Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu

    2014-01-01

    The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131

  17. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.

    PubMed

    Jule, Eduardo; Nagasaki, Yukio; Kataoka, Kazunori

    2003-01-01

    Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 n

  18. Aripiprazole-Loaded Polymeric Micelles: Fabrication, Optimization and Evaluation using Response Surface Method.

    PubMed

    Patil, Payal Hasmukhlal; Wankhede, Pooja R; Mahajan, H S; Zawar, Laxmikant

    2018-01-04

    The fundamental objective of current study was to encapsulate Ari-piprazole (ARP) within Pluronic F127 micelles to improve its aqueous solubility. The recent patents on Ar-ipiprazole (JP2013136621) and micelles (WO2016004369A1) facilitated selection of drug and polymer. The drug-laden micelles were fabricated using thin-film hydration technique. Optimization of the micellar formulation was done by using response surface method (RSM). The Pluronic F127 concentration of 150 mg and 75 rpm rotational speed of rotary evaporator were found to be optimized conditions for formulating micelles. The prepared batches were further characterized for PDI (polydispersity index), zeta potential, % DLC (% Drug loading content), % EE (% Entrapment Efficiency) and % drug release study; results of these parameters were found to be 0.228, −4.04 mV and 76.50 % and 18.56 % respectively. It was observed from the In vitro release study that 97.37 ± 1.81 % drug had released from micelles after 20 hrs which were found about thrice as compared to that of pure drug. The optimized ARP micellar for-mulation was characterized using DSC (Differential Scanning Colorimetry), FT-IR (Fourier Trans-formed Infrared Spectroscopy), P-XRD (Powdered X-ray Diffraction Study) and TEM (Transmission Electronic Microscopy) studies. ARP-loaded micelles displayed a hydrodynamic diameter of 170.3 nm and a sphere-shaped morphology as determined by dynamic light scattering as well as TEM study. It is concluded that the prepared polymeric micellar system has an excellent potential to be used as a delivery carrier for Aripiprazole with increased solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Treating acute cystitis with biodegradable micelle-encapsulated quercetin

    PubMed Central

    Wang, Bi Lan; Gao, Xiang; Men, Ke; Qiu, Jinfeng; Yang, Bowen; Gou, Ma Ling; Huang, Mei Juan; Huang, Ning; Qian, Zhi Yong; Zhao, Xia; Wei, Yu Quan

    2012-01-01

    Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU) is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of <34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy. PMID:22661886

  20. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  1. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  2. Stopped-flow kinetic studies of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt.

    PubMed

    Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong

    2007-12-15

    The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain

  3. Fluorophotometric determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants with carbon dots via Stokes shift.

    PubMed

    Lavkush Bhaisare, Mukesh; Pandey, Sunil; Shahnawaz Khan, M; Talib, Abou; Wu, Hui-Fen

    2015-01-01

    A new and facile method for the determination of critical micelle concentration (CMC) of ionic and non-ionic surfactants is proposed in this article. Carbon dots exhibited substantial fluorescence and therefore enhanced the sensitivity of this evaluation. Understanding the formation of surfactant micelles is vital for the applications of biomedicine such as drug fabrication and smart molecular vehicles in delivering therapeutic dosage to various molecular sites. The fluorescence property of carbon dots was utilized for the first time to estimate the critical micelle concentration of surfactants. The central concept of the approach is based on the Stokes shift determination of a system composed of constant amount of carbon dots with varying concentrations of ionic and non-ionic surfactants. The synthesized carbon dots were characterized by FTIR, TEM, XRD, Raman, UV, and fluorescence spectroscope. The carbon dots were excited at 280 nm so as to obtain maximum emission for the Stokes shift measurement. The CMC value of cetyltrimethyl ammonium bromide (CTAB), sodium dodecyl sulfate (SDS), Triton X-100, dodecyldimethyl(3-sulfopropyl)ammonium hydroxide (SB-12) evaluated by this approach was found to be 0.98, 7.3, 0.19, and 3.5mM, respectively. The signals of spectra were assigned and explained in terms of both electron transitions between specific molecular orbital and the interaction with solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structural singularities in Ge(x)Te(100-x) films.

    PubMed

    Piarristeguy, A A; Micoulaut, M; Escalier, R; Jóvári, P; Kaban, I; van Eijk, J; Luckas, J; Ravindren, S; Boolchand, P; Pradel, A

    2015-08-21

    Structural and calorimetric investigation of Ge(x)Te(100-x) films over wide range of concentration 10 < x < 50 led to evidence two structural singularities at x ∼ 22 at. % and x ∼ 33-35 at. %. Analysis of bond distribution, bond variability, and glass thermal stability led to conclude to the origin of the first singularity being the flexible/rigid transition proposed in the framework of rigidity model and the origin of the second one being the disappearance of the undercooled region resulting in amorphous materials with statistical distributions of bonds. While the first singularity signs the onset of the Ge-Ge homopolar bonds, the second is related to compositions where enhanced Ge-Ge correlations at intermediate lengthscales (7.7 Å) are observed. These two threshold compositions correspond to recently reported resistance drift threshold compositions, an important support for models pointing the breaking of homopolar Ge-Ge bonds as the main phenomenon behind the ageing of phase change materials.

  5. Effect of hydrostatic pressure on gas solubilization in micelles.

    PubMed

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  6. Cellular uptake and trafficking of polydiacetylene micelles

    NASA Astrophysics Data System (ADS)

    Gravel, Edmond; Thézé, Benoit; Jacques, Isabelle; Anilkumar, Parambath; Gombert, Karine; Ducongé, Frédéric; Doris, Eric

    2013-02-01

    Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells.Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells. Electronic supplementary information (ESI) available: Detailed synthetic procedures and supplementary figures. See DOI: 10.1039/c2nr34149b

  7. Celecoxib Encapsulation in β-Casein Micelles: Structure, Interactions, and Conformation.

    PubMed

    Turovsky, Tanya; Khalfin, Rafail; Kababya, Shifi; Schmidt, Asher; Barenholz, Yechezkel; Danino, Dganit

    2015-07-07

    β-Casein is a 24 kDa natural protein that has an open conformation and almost no folded or secondary structure, and thus is classified as an intrinsically unstructured protein. At neutral pH, β-casein has an amphiphilic character. Therefore, in contrast to most unstructured proteins that remain monomeric in solution, β-casein self-assembles into well-defined core-shell micelles. We recently developed these micelles as potential carriers for oral administration of poorly water-soluble pharmaceuticals, using celecoxib as a model drug. Herein we present deep and precise insight into the physicochemical characteristics of the protein-drug formulation, both in bulk solution and in dry form, emphasizing drug conformation, packing properties and aggregation state. In addition, the formulation is extensively studied in terms of structure and morphology, protein/drug interactions and physical stability. Particularly, NMR measurements indicated strong drug-protein interactions and noncrystalline drug conformation, which is expected to improve drug solubility and bioavailability. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were combined for nanostructural characterization, proving that drug-protein interactions lead to well-defined spheroidal micelles that become puffier and denser upon drug loading. Dynamice light scattering (DLS), turbidity measurements, and visual observations complemented the analysis for determining formulation structure, interactions, and stability. Additionally, it was shown that the loaded micelles retain their properties through freeze-drying and rehydration, providing long-term physical and chemical stability. Altogether, the formulation seems greatly promising for oral drug delivery.

  8. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    NASA Astrophysics Data System (ADS)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  9. Ternary lanthanum sulfide selenides {alpha}-LaS{sub 2-x}Se{sub x} (0<x<2) with mixed dichalcogenide anions X{sub 2}{sup 2-} (X=S, Se)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartsch, Christian; Doert, Thomas, E-mail: thomas.doert@chemie.tu-dresden.de

    2012-01-15

    Mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2) were obtained by metathesis reactions starting from anhydrous lanthanum chloride and alkali metal polychalcogenides. The LaS{sub 2-x}Se{sub x} compounds crystallize in space group P2{sub 1}/a, no. 14, and adopt the {alpha}-LnS{sub 2} (Ln=Y, La-Lu) structure type with a pronounced site preference for the chalcogen atoms. The mixed chalcogenides form a complete miscible series with lattice parameters a=820-849 pm, b=413-425 pm and c=822-857 pm ({beta} Almost-Equal-To 90 Degree-Sign) following Vegard's rule. Raman signals indicate the presence of mixed X{sub 2}{sup 2-} dianions, a species rarely evidenced in literature, besides the well known anionsmore » S{sub 2}{sup 2-} and Se{sub 2}{sup 2-}. The band gaps of the LaS{sub 2-x}Se{sub x} compounds, determined by optical spectroscopy, decrease nearly linearly with increasing amount of selenium. - Graphical abstract: Raman spectra and site occupancies in the structures of selected lanthanum sulfide selenides. Highlights: Black-Right-Pointing-Pointer Vegard series of mixed lanthanum sulfide selenides LaS{sub 2-x}Se{sub x} (0<x<2). Black-Right-Pointing-Pointer Pronounced site ordering of chalcogen positions. Black-Right-Pointing-Pointer Optical band gaps decrease with Se content. Black-Right-Pointing-Pointer Raman measurements evidence mixed X{sub 2}{sup 2-} dimeric anions.« less

  10. Response of TLD-100 in mixed fields of photons and electrons.

    PubMed

    Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A

    2013-01-01

    Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.

  11. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery.

    PubMed

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Poly(lactic- co -glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene- b -ethylene oxide) (PS- b -PEO) micelles. PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS- b -PEO micelles (ie, ~7%). Increasing the PLGA:PS- b -PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.

  12. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  13. Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics.

    PubMed

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-08-01

    Novel casein (CAS)-based micelles loaded with the poorly soluble anti-cancer drug, flutamide (FLT), were successfully developed in a powdered form via spray-drying technique. Genipin (GNP) was used to crosslink CAS micelles as demonstrated by color variation of the micelles. Drug solubilization was enhanced by incorporation within the hydrophobic micellar core which was confirmed by solubility study and UV spectra. Spherical core-shell micelles were obtained with a particle size below 100 nm and zeta potential around -30 mV. At low drug loading, FLT was totally incorporated within micellar core as revealed by thermal analysis. However, at higher loading, excess non-incorporated drug at micelle surface caused a significant reduction in the surface charge density. Turbidity measurements demonstrated the high physical stability of micelles for 2 weeks dependent on GNP-crosslinking degree. In a dry powdered form, the micelles were stable for 6 months with no significant changes in drug content or particle size. A sustained drug release from CAS micelles up to 5 days was observed. After i.v. administration into rats, CAS micelles exhibited a prolonged plasma circulation of FLT compared to drug solution. Furthermore, a more prolonged drug systemic circulation was observed for GNP-crosslinked micelles. Overall, this study reports the application of spray-dried natural protein-based micelles for i.v. delivery of hydrophobic anti-cancer drugs such as FLT. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    PubMed

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  15. Disruption and reassociation of casein micelles under high pressure: influence of milk serum composition and casein micelle concentration.

    PubMed

    Huppertz, Thom; de Kruif, Cornelis G

    2006-08-09

    In this study, factors influencing the disruption and aggregation of casein micelles during high-pressure (HP) treatment at 250 MPa for 40 min were studied in situ in serum protein-free casein micelle suspensions. In control milk, light transmission increased with treatment time for approximately 15 min, after which a progressive partial reversal of the HP-induced increase in light transmission occurred, indicating initial HP-induced disruption of casein micelles, followed by reformation of casein aggregates from micellar fragments. The extent of HP-induced micellar disruption was negatively correlated with the concentration of casein micelles, milk pH, and levels of added ethanol, calcium chloride, or sodium chloride and positively correlated with the level of added sodium phosphate. The reformation of casein aggregates during prolonged HP treatment did not occur when HP-induced disruption of casein micelles was limited (<60%) or very extensive (>95%) and was promoted by a low initial milk pH or added sodium phosphate, sodium chloride, or ethanol. On the basis of these findings, a mechanism for HP-induced disruption of casein micelles and subsequent aggregation of micellar fragments is proposed, in which the main element appears to be HP-induced solubilization of micellar calcium phosphate.

  16. Stimuli-sensitive polymeric micelles as anticancer drug carriers.

    PubMed

    Na, Kun; Sethuraman, Vijay T; Bae, You Han

    2006-11-01

    Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.

  17. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study.

    PubMed

    Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A

    2018-11-01

    This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.

  18. Cellular lysis of Streptococcus faecalis induced with triton X-100.

    PubMed Central

    Cornett, J B; Shockman, G D

    1978-01-01

    Lysis of exponential-phase cultures of Streptococcus faecalis ATCC 9790 was induced by exposure to both anionic (sodium dodecyl sulfate) and nonionic (Triton X-100) surfactants. Lysis in response to sodium dodecyl sulfate was effective only over a limited range of concentrations, whereas Triton X-100-induced lysis occurred over a broad range of surfactant concentrations. The data presented indicate that the bacteriolytic response of growing cells to Triton X-100: (i) was related to the ratio of surfactant to cells and not the surfactant concentration per se; (ii) required the expression of the cellular autolytic enzyme system; and (iii) was most likely due to an effect of the surfactant on components of the autolytic system that are associated with the cytoplasmic membrane. The possibility that Triton X-100 may induce cellular lysis by releasing a lipid inhibitor of the cellular autolytic enzyme is discussed. PMID:97265

  19. Structural characterization of Co100-xFex nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Endo, Hiroaki; Doi, Masaaki; Hasegawa, Naoya; Sahashi, Masashi

    2006-04-01

    For the structural characterization of a Co100-xFex nano-oxide layer (NOL), the exchange bias properties of the Co100-xFex-natural oxidized NOL in the specular spin-valve (SPSV) system were investigated. The exchange bias energy (Jex) increased monotonically with the increasing Fe content for the Co100-xFex-NOL. The enhancement of both the magnetoresistance ratio and the exchange bias field (Hex) was realized by increasing the Fe content in the Co100-xFex-NOL. It should be mentioned that Hex more than 800 Oe is obtained by the insertion of Co30Fe70-NOL, even in NOL-SPSV, which is a remarkably higher pinning field than that ever reported on IrMn-SV. This high exchange bias field is considered to be realized by the formation of an Fe-rich fcc phase at the interface of IrMn.

  20. Polysaccharide-Based Micelles for Drug Delivery

    PubMed Central

    Zhang, Nan; Wardwell, Patricia R.; Bader, Rebecca A.

    2013-01-01

    Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date. PMID:24300453

  1. Chiral micellar electrokinetic chromatography-atmospheric pressure photoionization of benzoin derivatives using mixed molecular micelles.

    PubMed

    He, Jun; Shamsi, Shahab A

    2011-05-01

    In the present work we report, for the first time, the successful on-line coupling of chiral MEKC (CMEKC) to atmospheric pressure photoionization MS (APPI-MS). Four structurally similar neutral test solutes (e.g. benzoin (BNZ) derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of BNZs are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators, hydrobenzoin, BNZ, benzoin methyl ether, benzoin ethyl ether, were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving %v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method were used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of the hydrophilic head size and hydrophobic tail length of surfactants on the ability of micelles to stabilize citral.

    PubMed

    Hong, Chi Rac; Park, Sung Joon; Choi, Seung Jun

    2016-07-01

    Surfactant-made micelles can control the rate of chemical degradation of poorly water-soluble food flavors. To evaluate how the molecular structure of surfactant has an influence on the chemical decomposition rate of citral, micelles were prepared with polyoxyethylene alkyl ether-type surfactants that had similar molecular structures but various hydrophilic head sizes and hydrophobic tail lengths. At a critical 20× micelle concentration of surfactant, there was no significant difference in the chemical degradation rate of citral in micelles in neutral pH, regardless of the hydrophilic head size or hydrophobic tail length. In an acidic environment, the degradation rate constant of citral generally increased proportionally with increasing hydrophilic head size of surfactant (0.1563 and 0.2217 for surfactants with 23 and 100 oxyethylene units, respectively) but the length of hydrophobic tail did not affect the citral stability. Also, little difference (0.2217 and 0.2265 for surfactant having 100 oxyethylene units with and without Fe(3+) ) in degradation rate constant of citral between simple micellar solution and micellar solution containing iron suggested that iron ions could not accelerate citral degradation in micelles, regardless of the form of iron (Fe(2+) and Fe(3+) ). This work concludes that although the concentration of surfactant could be relevant, if its concentration could be controlled in the same manner as the critical micelle concentration, then a polyethylene alkyl ether-type surfactant with a small hydrophilic head could more efficiently stabilize citral at an acidic pH. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in

  4. Chiral micellar electrokinetic chromatography (CMEKC)-atmospheric pressure photoionization of benzoin derivatives using mixed molecular micelles

    PubMed Central

    He, Jun; Shamsi, Shahab A.

    2012-01-01

    In the present work we report, for the first time, the successful on-line coupling of chiral micellar electrokinetic chromatography (CMEKC) to atmospheric pressure photo-ionization mass spectrometry (APPI-MS). Four structurally similar neutral test solutes (e.g., benzoin derivatives) were successfully ionized by APPI-MS. The mass spectra in the positive ion mode showed that the protonated molecular ions of benzoins are not the most abundant fragment ions. Simultaneous enantioseparation by CMEKC and on-line APPI-MS detection of four photoinitiators: hydrobenzoin (HBNZ), benzoin (BNZ), benzoin methyl ether (BME), benzoin ethyl ether (BEE), were achieved using an optimized molar ratio of mixed molecular micelle of two polymeric chiral surfactants (polysodium N-undecenoxy carbonyl-L-leucinate and polysodium N-undecenoyl-L,L-leucylvalinate). The CMEKC conditions, such as voltage, chiral polymeric surfactant concentration, buffer pH, and BGE concentration, were optimized using a multivariate central composite design (CCD). The sheath liquid composition (involving % v/v methanol, dopant concentration, electrolyte additive concentration, and flow rate) and spray chamber parameters (drying gas flow rate, drying gas temperature, and vaporizer temperature) were also optimized with CCD. Models built based on the CCD results and response surface method was used to analyze the interactions between factors and their effects on the responses. The final overall optimum conditions for CMEKC-APPI-MS were also predicted and found in agreement with the experimentally optimized parameters. PMID:21500208

  5. Monomeric α-Synuclein Binds Congo Red Micelles in a Disordered Manner

    PubMed Central

    2011-01-01

    The histological dye Congo Red (CR) previously has been shown to inhibit α-synuclein (aS) fibrillation, but the mode of this inhibition remained unclear. Because of favorable exchange kinetics, interaction between CR and aS lends itself to a detailed nuclear magnetic resonance study, and relaxation dispersion measurements yield the bound fraction and time scales for the interaction of aS with CR. We find that at pH 6, CR exists as a micelle, and at a CR:aS molar ratio of ∼1, only a small fraction of aS (∼2%) is bound to these micelles. Rapid exchange (kex ∼ 3000 s–1) between the free and CR-bound states broadens and strongly attenuates resonances of aS by two processes: a magnetic field-dependent contribution, caused by the chemical shift difference between the two states, and a nearly field-independent contribution caused by slower tumbling of aS bound to the CR micelle. The salt dependence of the interaction suggests a predominantly electrostatic mechanism for the 60 N-terminal residues, while the weaker interaction between residues 61–100 and CR is mostly hydrophobic. Chemical shift and transferred NOE data indicate that aS becomes slightly more helical but remains largely disordered when bound to CR. Results indicate that inhibition of fibril formation does not result from binding of CR to free aS and, therefore, must result from interaction of aS fibrils or protofibrils with CR micelles. PMID:22242826

  6. Monomeric α-synuclein binds Congo Red micelles in a disordered manner.

    PubMed

    Maltsev, Alexander S; Grishaev, Alexander; Bax, Ad

    2012-01-17

    The histological dye Congo Red (CR) previously has been shown to inhibit α-synuclein (aS) fibrillation, but the mode of this inhibition remained unclear. Because of favorable exchange kinetics, interaction between CR and aS lends itself to a detailed nuclear magnetic resonance study, and relaxation dispersion measurements yield the bound fraction and time scales for the interaction of aS with CR. We find that at pH 6, CR exists as a micelle, and at a CR:aS molar ratio of ~1, only a small fraction of aS (~2%) is bound to these micelles. Rapid exchange (k(ex) ~ 3000 s(-1)) between the free and CR-bound states broadens and strongly attenuates resonances of aS by two processes: a magnetic field-dependent contribution, caused by the chemical shift difference between the two states, and a nearly field-independent contribution caused by slower tumbling of aS bound to the CR micelle. The salt dependence of the interaction suggests a predominantly electrostatic mechanism for the 60 N-terminal residues, while the weaker interaction between residues 61-100 and CR is mostly hydrophobic. Chemical shift and transferred NOE data indicate that aS becomes slightly more helical but remains largely disordered when bound to CR. Results indicate that inhibition of fibril formation does not result from binding of CR to free aS and, therefore, must result from interaction of aS fibrils or protofibrils with CR micelles.

  7. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  8. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  9. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    NASA Astrophysics Data System (ADS)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  10. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.

    PubMed

    Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge

    2018-06-08

    A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.

  11. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    PubMed

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  12. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma☆

    PubMed Central

    Chung, Eun Ji; Cheng, Yu; Morshed, Ramin; Nord, Kathryn; Han, Yu; Wegscheid, Michelle L.; Auffinger, Brenda; Wainwright, Derek A.; Lesniak, Maciej S.; Tirrell, Matthew V.

    2013-01-01

    Glioblastoma-targeted drug delivery systems facilitate efficient delivery of chemotherapeutic agents to malignant gliomas, while minimizing systemic toxicity and side effects. Taking advantage of the fibrin deposition that is characteristic of tumors, we constructed spherical, Cy7-labeled, targeting micelles to glioblastoma through the addition of the fibrin-binding pentapeptide, cysteine–arginine–glutamic acid–lysine–alanine, or CREKA. Conjugation of the CREKA peptide to Cy7-micelles increased the average particle size and zeta potential. Upon intravenous administration to GL261 glioma bearing mice, Cy7-micelles passively accumulated at the brain tumor site via the enhanced permeability and retention (EPR) effect, and Cy7-CREKA-micelles displayed enhanced tumor homing via active targeting as early as 1 h after administration, as confirmed via in vivo and ex vivo imaging and immunohistochemistry. Biodistribution of micelles showed an accumulation within the liver and kidneys, leading to micelle elimination via renal clearance and the reticuloendothelial system (RES). Histological evaluation showed no signs of cytotoxicity or tissue damage, confirming the safety and utility of this nanoparticle system for delivery to glioblastoma. Our findings offer strong evidence for the glioblastoma-targeting potential of CREKA-micelles and provide the foundation for CREKA-mediated, targeted therapy of glioma. PMID:24211079

  13. Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.

    PubMed

    Huang, Wei; Smarsly, Emanuel; Han, Jinsong; Bender, Markus; Seehafer, Kai; Wacker, Irene; Schröder, Rasmus R; Bunz, Uwe H F

    2017-01-25

    We report two hyperbranched conjugated polymers (HCP) with truxene units as core and 1,4-didodecyl-2,5-diethynylbenzene as well as 1,4-bis(dodecyloxy)-2,5-diethynylbenzene as comonomers. Two analogous poly(para-phenyleneethynylene)s (PPE) are also prepared as comparison to demonstrate the difference between the truxene and the phenyl moieties in their optical properties and their sensing performance. The four polymers are tested for nitroaromatic analytes and display different fluorescence quenching responses. The quenching efficiencies are dependent upon the spectral overlap between the absorbance of the analyte and the emission of the fluorescent polymer. Optical fingerprints are obtained, based on the unique response patterns of the analytes toward the polymers. With this small sensor array, one can distinguish nine nitroaromatic analytes with 100% accuracy. The amphiphilic polymer F127 (a polyethylene glycol-polypropylene glycol block copolymer) carries the hydrophobic HCPs and self-assembles into micelles in water, forming highly fluorescent HCP micelles. The micelle-bound conjugated polymers detect nitroaromatic analytes effectively in water and show an increased sensitivity compared to the sensing of nitroaromatics in organic solvents. The nitroarenes are also discriminated in water using this four-element chemical tongue.

  14. Response of TLD-100 in mixed fields of photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff

    Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less

  15. Lysosome-oriented, dual-stage pH-responsive polymeric micelles for β-Lapachone delivery.

    PubMed

    Zhou, Yinjian; Dong, Ying; Huang, Gang; Wang, Yiguang; Huang, Xiaonan; Zhang, Fayun; Boothman, David A; Gao, Jinming; Liang, Wei

    2016-12-14

    β-Lapachone (β-lap), a novel anticancer agent, is bioactivated by NADP(H):quinone oxidoreductase 1 (NQO1), an enzyme over-expressed in numerous tumors, including lung, pancreas, breast, and prostate cancers. Fast renal clearance and methemaglobinemia / hemolytic side-effects from the clinical formulation (β-lap-hydroxyl propyl-β-cyclodextrin complex) hindered its clinical translation. Here, we investigated a dual model pH responsive polymers for β-lap delivery. Three pH-sensitive linkages, including acylhydrazone, ketal and imine bonds for β-lap prodrug syntheses result in an aryl imine linkage the most optimal linkage. The conversion to β-lap was 2.8%, 4.5% and 100% at pH 7.4, 6.5 and 5.0 in 8 h, respectively. β-lap aryl imine prodrug conjugated ultra pH-sensitive (UPS) polymer reached high β-lap loading density (8.3%) and exhibited dual-stages responsiveness to pH variation. In pHs under pH t , at stage I, micelle immediately dissociation and subsequently entering stage II, micelles start quickly release β-lap. In vitro release study showed that the micelles constantly release β-lap (14.9 ± 0.1%) at pHs above pH t in 72 h, whereas boosted release of β-lap (79.4 ± 1.2%) at pH 5.0. Micelle intracellular distribution predominantly in the lysosome organelle guaranteed their pH responsive dissociation and subsequently β-lap controlled release. The M-P micelles retained NQO1-dependent cytotoxicity in A549 lung cancer cells, similar to free drug in both efficacy and mechanism of cell death. The lysosome-oriented dual-stage ultra pH responsive β-lap prodrug micelles potentially offer an alternative nanotherapeutic strategy for lung, as well as other NQO1+ cancer therapies.

  16. CFD analysis of jet mixing in low NO(x) flametube combustors

    NASA Technical Reports Server (NTRS)

    Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor has been identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3D CFD analyses for optimizing jet mixing was demonstrated.

  17. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

    PubMed Central

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Purpose Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Methods Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles. Results PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS-b-PEO micelles (ie, ~7%). Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Conclusion Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications. PMID:29391794

  18. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy.

    PubMed

    Ma, Zhen-Gang; Ma, Rui; Xiao, Xiao-Lin; Zhang, Yong-Hui; Zhang, Xin-Zi; Hu, Nan; Gao, Jin-Lai; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie

    2016-10-15

    Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our previous work found that dimethyl fumarate (DMF), the approved drug by the FDA for the treatment of multiple sclerosis, exhibited anti-tumor activity on colon cancer cells. Based on the pharmacological properties of DMF and azo bond in olsalazine chemical structure, we designed azo polymeric micelles for colon-targeted dimethyl fumarate delivery for colon cancer therapy. We synthesized the star-shape amphiphilic polymer with azo bond and fabricated the DMF-loaded azo polymeric micelles. The four-arm polymer star-PCL-azo-mPEG (sPCEG-azo) (constituted by star-shape PCL (polycaprolactone) and mPEG (methoxypolyethylene glycols)-olsalazine) showed self-assembly ability. The average diameter and polydispersity index of the DMF-loaded sPCEG-azo polymeric micelles were 153.6nm and 0.195, respectively. In vitro drug release study showed that the cumulative release of DMF from the DMF-loaded sPCEG-azo polymeric micelles was no more than 20% in rat gastric fluid within 10h, whereas in the rat colonic fluids, the cumulative release of DMF reached 60% in the initial 2h and 100% within 10h, indicating that the DMF-loaded sPCEG-azo polymeric micelles had excellent colon-targeted property. The DMF-loaded sPCEG-azo polymeric micelles had no significant cytotoxicity on colon cancer cells in phosphate buffered solution (PBS) and rat gastric fluid. In rat colonic fluid, the micelles showed significant cytotoxic effect on colon cancer cells. The blank sPCEG-azo polymeric micelles (without DMF) showed no cytotoxic effect on colon cancer cells in rat colonic fluids. In conclusion, the DMF-loaded sPCEG-azo polymeric micelles show colon-targeted DMF release and anti-tumor activity, providing a novel approach potential for colon cancer therapy. Colon-targeted drug delivery and circumventing drug resistance are extremely important for colon cancer chemotherapy. Our

  19. Nanoparticle Contrast Agents for Computed Tomography: A Focus on Micelles

    PubMed Central

    Cormode, David P.; Naha, Pratap C.; Fayad, Zahi A.

    2014-01-01

    Computed tomography (CT) is an X-ray based whole body imaging technique that is widely used in medicine. Clinically approved contrast agents for CT are iodinated small molecules or barium suspensions. Over the past seven years there has been a great increase in the development of nanoparticles as CT contrast agents. Nanoparticles have several advantages over small molecule CT contrast agents, such as long blood-pool residence times, and the potential for cell tracking and targeted imaging applications. Furthermore, there is a need for novel CT contrast agents, due to the growing population of renally impaired patients and patients hypersensitive to iodinated contrast. Micelles and lipoproteins, a micelle-related class of nanoparticle, have notably been adapted as CT contrast agents. In this review we discuss the principles of CT image formation and the generation of CT contrast. We discuss the progress in developing non-targeted, targeted and cell tracking nanoparticle CT contrast agents. We feature agents based on micelles and used in conjunction with spectral CT. The large contrast agent doses needed will necessitate careful toxicology studies prior to clinical translation. However, the field has seen tremendous advances in the past decade and we expect many more advances to come in the next decade. PMID:24470293

  20. Influence of succinylation on the conformation of yak casein micelles.

    PubMed

    Yang, Min; Cui, Na; Fang, Yan; Shi, Ying; Yang, Jitao; Wang, Jiangyu

    2015-07-15

    Succinylation modifies the physicochemical characteristics and improves the functional properties of proteins. This study assessed the effects of succinylation on the conformation of yak casein micelles with seven degree of modification. The results revealed that succinylation contributed to the dissociation of casein micelles. With the increase of succinylated degree, soluble nitrogen and minerals content increased, while casein micelle size and polydispersity index of micelles decreased. Succinylation affected the spatial conformation of yak casein micelles: turn decreased, ß-sheet and α-helix increased, and irregular structure were non-significantly affected. The intrinsic and ANS fluorescence intensity decreased and the maximum emission wavelength shifted red with increasing succinylation. Based on the results, the structure of yak casein micelles was characteristic of the sub-micelle model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hailong; Li, Ji; Shi, Ke

    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. Themore » results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.« less

  2. High-temperature thermogravimetric analysis and differential scanning calorimetry of nanocomposites (FeCoZr)x(CaF2)100-x

    NASA Astrophysics Data System (ADS)

    Bondariev, Vitalii

    2016-09-01

    In this work thermogravimetric-DTG/DSC analysis result for samples of nanocomposite metal-dielectric (FeCoZr)x(CaF2)100-x are presents. Series of samples with, metallic phase content x = 24 - 68 at.% were produced by ionbeam sputtering method in mixed atmosphere of gas argon and oxygen. Study of thermal properties, phase shifts and process of change in mass of nanocomposites were performed using the thermoanalytical system TGA/DSC-1/1600 HF (MettlerToledoInstruments). High-precision weight has a weighing range 1μg - 1g with an accuracy 1μg. The furnace makes it possible to regulate the temperature in range from room temperature to 1600°C and heating rate is 0.01 - 150°C min. After analysis of the results established that initial and final mass of samples of the nanocomposite (FeCoZr)x(CaF2)100-x are different, namely the sample mass is increased by 2 - 20%. It is related to the oxidation of metallic phase particles of nanocomposite. DTG and DSC analysis demonstrated that oxidation of metallic phase is held in two steps, at first oxidized iron atoms, and followed oxidation of the cobalt atoms, what can be seen on the waveform in the form of two humps and whereby oxides Fe2O3, Fe3O4, Co2O3, Co3O4 are formed. Oxide coatings on the surface of atoms represents an additional barrier to electron transfer charges. When a voltage is applied to the layer of the nanocomposite are three possible ways to transfer of charges between atoms and particles of metal, whereby each has its own relaxation time.

  3. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors

    PubMed Central

    Sethuraman, Vijay A; Bae, You Han

    2007-01-01

    A novel drug targeting system for acidic solid tumors has been developed based on ultra pH sensitive polymer and cell penetrating TAT. The delivery system consisted of two components: 1) A polymeric micelle that has a hydrophobic core made of Poly(L-lactic acid) (PLLA) and a hydrophilic shell consisting of Polyethylene Glycol (PEG) conjugated to TAT (TATmicelle), 2) An ultra pH sensitive diblock copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The anionic PSD is complexed with cationic TAT of the micelles to achieve the final carrier, which could systemically shield the micelles and expose them at slightly acidic tumor pH. TATmicelles had particle sizes between 20 to 45 nm and their critical micelle concentrations were 3.5 mg/L to 5.5 mg/L. The TATmicelles, upon mixing with pH sensitive PSD-b-PEG, showed slight increase in particle size between pH 8.0 and 6.8 (60–90 nm), indicating complexation. As the pH was decreased (pH 6.6 to 6.0) two populations were observed, one that of normal TAT micelles (45 nm) and the other of aggregated hydrophobic PSD-b-PEG. Zeta potential measurements showed similar trend substantiating the shielding/deshielding process. Flowcytometry and confocal microscopy showed significantly higher uptake of TAT micelles at pH 6.6 compared to pH 7.4 indicating shielding at normal pH and deshielding at tumor pH. The flowcytometry indicated that the TAT not only translocates into the cells but is also seen on the surface of the nucleus. These results strongly indicate that the above drug loaded micelles would be able to target any hydrophobic drug near the nucleus. PMID:17239466

  4. Neutral Polymeric Micelles for RNA Delivery

    PubMed Central

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  5. Structural changes in block copolymer micelles induced by cosolvent mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.

    2012-11-26

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (lowmore » interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles.« less

  6. Structural changes in block copolymer micelles induced by cosolvent mixtures†

    PubMed Central

    Kelley, Elizabeth G.; Smart, Thomas P.; Jackson, Andrew J.; Sullivan, Millicent O.

    2013-01-01

    We investigated the influence of tetrahydrofuran (THF) addition on the structure of poly(1,2-butadiene-b-ethylene oxide) [PB-PEO] micelles in aqueous solution. Our studies showed that while the micelles remained starlike, the micelle core-corona interfacial tension and micelle size decreased upon THF addition. The detailed effects of the reduction in interfacial tension were probed using contrast variations in small angle neutron scattering (SANS) experiments. At low THF contents (high interfacial tensions), the SANS data were fit to a micelle form factor that incorporated a radial density distribution of corona chains to account for the starlike micelle profile. However, at higher THF contents (low interfacial tensions), the presence of free chains in solution affected the scattering at high q and required the implementation of a linear combination of micelle and Gaussian coil form factors. These SANS data fits indicated that the reduction in interfacial tension led to broadening of the core-corona interface, which increased the PB chain solvent accessibility at intermediate THF solvent fractions. We also noted that the micelle cores swelled with increasing THF addition, suggesting that previous assumptions of the micelle core solvent content in cosolvent mixtures may not be accurate. Control over the size, corona thickness, and extent of solvent accessible PB in these micelles can be a powerful tool in the development of targeting delivery vehicles. PMID:24282441

  7. The vesicle-to-micelle transition of phosphatidylcholine vesicles induced by nonionic detergents: effects of sodium chloride, sucrose and urea.

    PubMed

    Walter, A; Kuehl, G; Barnes, K; VanderWaerdt, G

    2000-11-23

    The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.

  8. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery

    NASA Astrophysics Data System (ADS)

    Han, Xiaoxiong; Gong, Feirong; Sun, Jing; Li, Yueqi; Liu, XiaoFei; Chen, Dan; Liu, Jianwen; Shen, Yaling

    2018-02-01

    Stimulus-responsive polymeric micelles (PMs) have recently received attention due to the controlled delivery of drug or gene for application in cancer diagnosis and treatment. In this work, novel glutathione-responsive PMs were prepared to encapsulate hydrophobic antineoplastic drug, cabazitaxel (CTX), to improve its solubility and toxicity. These CTX-loaded micelles core cross-linked by disulfide bonds (DCL-CTX micelles) were prepared by a novel copolymer, lipoic acid grafted mPEG-PLA. These micelles had regular spherical shape, homogeneous diameter of 18.97 ± 0.23 nm, and a narrow size distribution. The DCL-CTX micelles showed high encapsulation efficiency of 98.65 ± 1.77%, and the aqueous solubility of CTX was improved by a factor of 1:1200. In vitro release investigation showed that DCL-CTX micelles were stable in the medium without glutathione (GSH), whereas the micelles had burst CTX release in the medium with 10 mM GSH. Cell uptake results implied that DCL-CTX micelles were internalized into MCF-7 cells through clathrin-mediated endocytosis and released cargo more effectively than Jevtana (commercially available CTX) owing to GSH-stimulated degradation. In MTT assay against MCF-7 cells, these micelles inhibited tumor cell proliferation more effectively than Jevtana due to their GSH-responsive CTX release. All results revealed the potency of GSH-responsive DCL-CTX micelles for stable delivery in blood circulation and for intracellular GSH-trigged release of CTX. Therefore, DCL-CTX micelles show potential as safe and effective CTX delivery carriers and as a cancer chemotherapy formulation.

  9. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma.

    PubMed

    Chung, Eun Ji; Cheng, Yu; Morshed, Ramin; Nord, Kathryn; Han, Yu; Wegscheid, Michelle L; Auffinger, Brenda; Wainwright, Derek A; Lesniak, Maciej S; Tirrell, Matthew V

    2014-01-01

    Glioblastoma-targeted drug delivery systems facilitate efficient delivery of chemotherapeutic agents to malignant gliomas, while minimizing systemic toxicity and side effects. Taking advantage of the fibrin deposition that is characteristic of tumors, we constructed spherical, Cy7-labeled, targeting micelles to glioblastoma through the addition of the fibrin-binding pentapeptide, cysteine-arginine-glutamic acid-lysine-alanine, or CREKA. Conjugation of the CREKA peptide to Cy7-micelles increased the average particle size and zeta potential. Upon intravenous administration to GL261 glioma bearing mice, Cy7-micelles passively accumulated at the brain tumor site via the enhanced permeability and retention (EPR) effect, and Cy7-CREKA-micelles displayed enhanced tumor homing via active targeting as early as 1 h after administration, as confirmed via in vivo and ex vivo imaging and immunohistochemistry. Biodistribution of micelles showed an accumulation within the liver and kidneys, leading to micelle elimination via renal clearance and the reticuloendothelial system (RES). Histological evaluation showed no signs of cytotoxicity or tissue damage, confirming the safety and utility of this nanoparticle system for delivery to glioblastoma. Our findings offer strong evidence for the glioblastoma-targeting potential of CREKA-micelles and provide the foundation for CREKA-mediated, targeted therapy of glioma. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles.

    PubMed

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60°C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from ß-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35°C. The presence of Mg²(+) ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component b-casein constructs.

  11. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    NASA Astrophysics Data System (ADS)

    Lin, Wen Jen; Chien, Wei Hsuan

    2015-09-01

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly( d,l-lactide- co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  12. Smart wormlike micelles.

    PubMed

    Chu, Zonglin; Dreiss, Cécile A; Feng, Yujun

    2013-09-07

    A major scientific challenge of the past decade pertaining to the field of soft matter has been to craft 'adaptable' materials, inspired by nature, which can dynamically alter their structure and functionality on demand, in response to triggers produced by environmental changes. Amongst these, 'smart' surfactant wormlike micelles, responsive to external stimuli, are a particularly recent area of development, yet highly promising, given the versatility of the materials but simplicity of the design-relying on small amphiphilic molecules and their spontaneous self-assembly. The switching 'on' and 'off' of the micellar assembly structures has been reported using electrical, optical, thermal or pH triggers and is now envisaged for multiple stimuli. The structural changes, in turn, can induce major variations in the macroscopic characteristics, affecting properties such as viscosity and elasticity and sometimes even leading to a spontaneous and effective 'sol-gel' transition. These original smart materials based on wormlike micelles have been successfully used in the oil industry, and offer a significant potential in a wide range of other technological applications, including biomedicine, cleaning processes, drag reduction, template synthesis, to name but a few. This review will report results in this field published over the last few years, describe the potential and practical applications of stimuli-responsive wormlike micelles and point out future challenges.

  13. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  14. Evaluation of Doxorubicin-loaded 3-Helix Micelles as Nanocarriers

    PubMed Central

    Dube, Nikhil; Shu, Jessica Y.; Dong, He; Seo, Jai W.; Ingham, Elizabeth; Kheirolomoom, Azadeh; Chen, Pin-Yuan; Forsayeth, John; Bankiewicz, Krystof; Ferrara, Katherine W.; Xu, Ting

    2013-01-01

    Designing stable drug nanocarriers, 10-30 nm in size, would have significant impact on their transport in circulation, tumor penetration and therapeutic efficacy. In the present study, biological properties of 3-helix micelles loaded with 8 wt% doxorubicin (DOX), ~15 nm in size, were characterized to validate their potential as a nanocarrier platform. DOX-loaded micelles exhibited high stability in terms of size and drug retention in concentrated protein environments similar to conditions after intravenous injections. DOX-loaded micelles were cytotoxic to PPC-1 and 4T1 cancer cells at levels comparable to free DOX. 3-helix micelles can be disassembled by proteolytic degradation of peptide shell to enable drug release and clearance to minimize long-term accumulation. Local administration to normal rat striatum by convection enhanced delivery (CED) showed greater extent of drug distribution and reduced toxicity relative to free drug. Intravenous administration of DOX-loaded 3-helix micelles demonstrated improved tumor half-life and reduced toxicity to healthy tissues in comparison to free DOX. In vivo delivery of DOX-loaded 3-helix micelles through two different routes clearly indicates the potential of 3-helix micelles as safe and effective nanocarriers for cancer therapeutics. PMID:24050265

  15. Cationizable lipid micelles as vehicles for intraarterial glioma treatment.

    PubMed

    Nguyen, Juliane; Cooke, Johann R N; Ellis, Jason A; Deci, Michael; Emala, Charles W; Bruce, Jeffrey N; Bigio, Irving J; Straubinger, Robert M; Joshi, Shailendra

    2016-05-01

    The relative abundance of anionic lipids on the surface of endothelia and on glioma cells suggests a workable strategy for selective drug delivery by utilizing cationic nanoparticles. Furthermore, the extracellular pH of gliomas is relatively acidic suggesting that tumor selectivity could be further enhanced if nanoparticles can be designed to cationize in such an environment. With these motivating hypotheses the objective of this study was to determine whether nanoparticulate (20 nm) micelles could be designed to improve their deposition within gliomas in an animal model. To test this, we performed intra-arterial injection of micelles labeled with an optically quantifiable dye. We observed significantly greater deposition (end-tissue concentration) of cationizable micelles as compared to non-ionizable micelles in the ipsilateral hemisphere of normal brains. More importantly, we noted enhanced deposition of cationizable as compared to non-ionizable micelles in glioma tissue as judged by semiquantitative fluorescence analysis. Micelles were generally able to penetrate to the core of the gliomas tested. Thus we conclude that cationizable micelles may be constructed as vehicles for facilitating glioma-selective delivery of compounds after intraarterial injection.

  16. Micelles As Delivery System for Cancer Treatment.

    PubMed

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Supramolecular structure of the casein micelle.

    PubMed

    McMahon, D J; Oommen, B S

    2008-05-01

    The supramolecular structure of colloidal casein micelles in milk was investigated by using a sample preparation protocol based on adsorption of proteins onto a poly-l-lysine and parlodion-coated copper grid, staining of proteins and calcium phosphate by uranyl oxalate, instantaneous freezing, and drying under a high vacuum. High-resolution transmission electron microscopy stereo-images were obtained showing the interior structure of casein micelles. On the basis of our interpretation of these images, an interlocked lattice model was developed in which both casein-calcium phosphate aggregates and casein polymer chains act together to maintain casein micelle integrity. The caseins form linear and branched chains (2 to 5 proteins long) interlocked by the casein-stabilized calcium phosphate nanoclusters. This model suggests that stabilization of calcium phosphate nanoclusters by phosphoserine domains of alpha(s1)-, alpha(s2)-, or beta-casein, or their combination, would orient their hydrophobic domains outward, allowing interaction and binding to other casein molecules. Other interactions between the caseins, such as calcium bridging, could also occur and further stabilize the supramolecule. The combination of having an interlocked lattice structure and multiple interactions results in an open, sponge-like colloidal supramolecule that is resistant to spatial changes and disintegration. Hydrophobic interactions between caseins surrounding a calcium phosphate nanocluster would prevent complete dissociation of casein micelles when the calcium phosphate nanoclusters are solubilized. Likewise, calcium bridging and other electrostatic interactions between caseins would prevent dissociation of the casein micelles into casein-calcium phosphate nanocluster aggregates when milk is cooled or urea is added to milk, and hydrophobic interactions are reduced. The appearance of both polymer chains and small aggregate particles during milk synthesis would also be expected based on

  18. Disulphide bonds in casein micelle from milk.

    PubMed

    Bouguyon, Edwige; Beauvallet, Christian; Huet, Jean-Claude; Chanat, Eric

    2006-05-05

    Mammary epithelial cells synthesised and secreted caseins, the major milk proteins in most mammals, as large aggregates called micelles into the alveolar lumen they surround. We investigated the implication of the highly conserved cysteine(s) of kappa-casein in disulphide bond formation in casein micelles from several species. Dimers were found in all milks studied, confirming previous observation in ruminants. More importantly, the study of interchain disulphide bridges in mouse and rat casein micelles revealed that any casein possessing a cysteine is engaged in disulphide bond interchange; these species express four or five cysteine-containing caseins, respectively. We found that the main rodent caseins form both homo- and heterodimers. Additionally, disulphide bond formation among milk proteins was specific since the interaction of the caseins with cysteine-containing whey proteins was not observed in native casein micelles.

  19. Block copolymer micelles for controlled delivery of glycolytic enzyme inhibitors.

    PubMed

    Akter, Shanjida; Clem, Brian F; Lee, Hyun Jin; Chesney, Jason; Bae, Younsoo

    2012-03-01

    To develop block copolymer micelles as an aqueous dosage form for a potent glycolytic enzyme inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). The micelles were prepared from poly(ethylene glycol)-poly(aspartate hydrazide) [PEG-p(HYD)] block copolymers to which 3PO was conjugated through an acid-labile hydrazone bond. The optimal micelle formulation was determined following the screening of block copolymer library modified with various aromatic and aliphatic pendant groups. Both physical drug entrapment and chemical drug conjugation methods were tested to maximize 3PO loading in the micelles during the screening. Particulate characterization showed that the PEG-p(HYD) block copolymers conjugated with 3PO (2.08∼2.21 wt.%) appeared the optimal polymer micelles. Block copolymer compositions greatly affected the micelle size, which was 38 nm and 259 nm when 5 kDa and 12 kDa PEG chains were used, respectively. 3PO release from the micelles was accelerated at pH 5.0, potentiating effective drug release in acidic tumor environments. The micelles retained biological activity of 3PO, inhibiting various cancer cells (Jurkat, He-La and LLC) in concentration ranges similar to free 3PO. A novel micelle formulation for controlled delivery of 3PO was successfully prepared.

  20. Casein micelle dissociation in skim milk during high-pressure treatment: effects of pressure, pH, and temperature.

    PubMed

    Orlien, V; Boserup, L; Olsen, K

    2010-01-01

    The effect of pH (from 5.5 to 7.5) and temperature (from 5 to 40 degrees C) on the turbidity of reconstituted skim milk powder was investigated at ambient pressure and in situ under pressure (up to 500MPa) by measurement of light scattering. High-pressure treatment reduced the turbidity of milk for all combinations of pH and temperature due to micelle dissociation. The turbidity profiles had a characteristic sigmoidal shape in which almost no effect on turbidity was observed at low pressures (100MPa), followed by a stronger pressure dependency over a pressure range of 150MPa during which turbidity decreased extremely. From the turbidity profiles, the threshold pressure for disruption of micelle integrity was determined and ranged from 150MPa at low pH to 350-400MPa at high pH. The threshold pressure diagram clearly showed a relationship between the barostability of casein micelles and pH, whereas almost no effect of temperature was shown. This remarkable pH effect was a consequence of pressure-induced changes in the electrostatic interactions between colloidal calcium phosphate and the caseins responsible for maintaining micellar structure and was explained by a shift in the calcium phosphate balance in the micelle-serum system. Accordingly, a mechanism for high pressure-induced disruption of micelle integrity is suggested in which the state of calcium plays a crucial role in the micelle dissociation process. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Affinity Chromatography in Nonionic Detergent Solutions

    NASA Astrophysics Data System (ADS)

    Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle

    1980-10-01

    Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.

  2. The influence of polarity of additive molecules on micelle structures of polystyrene-block-poly(4-vinylpyridine) in the fabrication of nano-porous templates.

    PubMed

    Chua, Kee Sze; Koh, Ai Peng; Lam, Yeng Ming

    2010-11-01

    Block copolymers are useful for in situ synthesis of nanoparticles as well as producing nanoporous templates. As such, the effects of precursors on the block copolymer micelle structure is important. In this study, we investigate the effects of polarity of molecules introduced into block copolymer micelle cores on the micelle structure. The molecular dipole moment of the additive molecules has been evaluated and their effects on the block copolymer micelles investigated using light scattering spectroscopy, small-angle X-ray scattering, transmission electron microscopy and atomic force microscopy. The molecule with the largest dipole moment resulted in spherical structures with a polydispersity of less than 0.06 in a fully translational diffusion system. Surprisingly, the less polar additive molecules produced elongated micelles and the aspect ratio increases with decreasing polarity. The change in structure from spherical to elongated structure was attributed to P4VP chain extension, where compounds with polarity most similar to P4VP induce the most chain extension. The second virial coefficients of the solutions with elongated micelles are lower than that for spherical micelle systems by up to one order in magnitude, indicating a strong tendency for micelles to coalesce. On rinsing the spin-cast films, pores were obtained from spherical micelles and ridges from elongated micelles, suggesting a viable alternative for morphology modification using mild conditions where external annealing treatments to the film are not preferred. The knowledge of polarity effects of additive molecules on micelle structure has wider implications for supramolecular block copolymer systems where, depending on the application requirements, changes to the shape of the micelle structure can be induced or avoided. Copyright 2010 Elsevier Inc. All rights reserved.

  3. -X Mixing in T- and V-Shaped Quantum Wires

    NASA Astrophysics Data System (ADS)

    di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.

    1997-11-01

    We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.

  4. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  5. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer.

    PubMed

    Wan, Xiaomeng; Min, Yuanzeng; Bludau, Herdis; Keith, Andrew; Sheiko, Sergei S; Jordan, Rainer; Wang, Andrew Z; Sokolsky-Papkov, Marina; Kabanov, Alexander V

    2018-03-27

    Nanoparticle-based systems for concurrent delivery of multiple drugs can improve outcomes of cancer treatments, but face challenges because of differential solubility and fairly low threshold for incorporation of many drugs. Here we demonstrate that this approach can be used to greatly improve the treatment outcomes of etoposide (ETO) and platinum drug combination ("EP/PE") therapy that is the backbone for treatment of prevalent and deadly small cell lung cancer (SCLC). A polymeric micelle system based on amphiphilic block copolymer poly(2-oxazoline)s (POx) poly(2-methyl-2-oxazoline- block-2-butyl-2-oxazoline- block-2-methyl-2-oxazoline) (P(MeOx- b-BuOx- b-MeOx) is used along with an alkylated cisplatin prodrug to enable co-formulation of EP/PE in a single high-capacity vehicle. A broad range of drug mixing ratios and exceptionally high two-drug loading of over 50% wt. drug in dispersed phase is demonstrated. The highly loaded POx micelles have worm-like morphology, unprecedented for drug loaded polymeric micelles reported so far, which usually form spheres upon drug loading. The drugs co-loading in the micelles result in a slowed-down release, improved pharmacokinetics, and increased tumor distribution of both drugs. A superior antitumor activity of co-loaded EP/PE drug micelles compared to single drug micelles or their combination as well as free drug combination was demonstrated using several animal models of SCLC and non-small cell lung cancer.

  6. The flotation and adsorption of mixed collectors on oxide and silicate minerals.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua

    2017-12-01

    The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on

  7. Targeted polymeric micelles for delivery of poorly soluble drugs.

    PubMed

    Torchilin, V P

    2004-10-01

    Polymeric micelles (micelles formed by amphiphilic block copolymers) demonstrate a series of attractive properties as drug carriers, such as high stability both in vitro and in vivo and good biocompatibility, and can be successfully used for the solubilization of various poorly soluble pharmaceuticals. These micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. Immunomicelles prepared with cancer-specific monoclonal antibody 2C5 specifically bind to different cancer cells in vitro and demonstrate increased therapeutic activity in vivo. This new family of pharmaceutical carriers can be used for the solubilization and targeted delivery of poorly soluble drugs to various pathological sites in the body.

  8. Premature drug release of polymeric micelles and its effects on tumor targeting.

    PubMed

    Miller, Tobias; Breyer, Sandra; van Colen, Gwenaelle; Mier, Walter; Haberkorn, Uwe; Geissler, Simon; Voss, Senta; Weigandt, Markus; Goepferich, Achim

    2013-03-10

    Based on the enhanced permeability and retention (EPR) effect, nanoparticles are believed to accumulate in tumors. In this conjunction, the stability of drug encapsulation is assumed to be sufficient. For clarification purposes, PEGylated poly-(D,L-lactic acid) (PEG-PDLLA) micelles which incorporated the hydrophobic model drug dechloro-4-iodo-fenofibrate (IFF) were investigated. H2N-PEG-PDLLA was synthesized, coupled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with 111-indium. From this polymeric species, mixed micelles with H3CO-PEG-PDLLA were prepared which encapsulated the 125-iodine or 131-iodine labeled drug IFF. Bioimaging and biodistribution experiments in healthy and AR42J-tumor bearing mice were carried out to quantify the uptake of the drug and its carrier in single organs. As a result, upon injection of this system, a rapid dissociation of the polymeric carrier and the incorporated drug (<10 min post inj.) was revealed. Regardless of the premature release, the drug showed an enhanced tumor accumulation compared to the polymeric carrier. In conclusion, the self-assembling system allowed for successful solubilization of the hydrophobic drug by physical incorporation into micelles whereas the tumor targeting properties of the drug delivery system could not be sufficiently shown. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Micelle-induced depletion interaction and resultant structure in charged colloidal nanoparticle system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D.; Aswal, V. K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, J.

    2015-04-28

    The evolution of the interaction and the resultant structure in the mixed system of anionic silica nanoparticles (Ludox LS30) and non-ionic surfactant decaethylene glycol monododecylether (C12E10), undergoing phase separation, have been studied using small-angle neutron scattering and dynamic light scattering. The measurements have been carried out for a fixed concentration of nanoparticle (1 wt. %) with varying concentration of surfactant (0 to 1 wt. %), in the absence and presence of an electrolyte. It is found that the micelles of non-ionic surfactant adsorb on the nanoparticle in the absence of electrolyte (form stable system), whereas these micelles become non-adsorbing in the presence of electrolytemore » (show phase separation). The phase separation arises because of C12E10 micelles, causing depletion interaction between nanoparticles and leading to their aggregation. The interaction is modeled by double Yukawa potential accounting for attractive depletion as well as repulsive electrostatic forces. Both the interactions (attraction and repulsion) are found to be of long-range. The nanoparticle aggregation (phase separation) is governed by the increase in the magnitude and the range of the depletion attraction with the increase in the surfactant concentration. The nanoparticle aggregates formed are quite large in size (order of micron) and are characterized by the surface fractal having simple cubic packing of nanoparticles within the aggregates.« less

  10. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    NASA Astrophysics Data System (ADS)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  11. Rheology and phase behavior of dense casein micelle dispersions

    NASA Astrophysics Data System (ADS)

    Bouchoux, A.; Debbou, B.; Gésan-Guiziou, G.; Famelart, M.-H.; Doublier, J.-L.; Cabane, B.

    2009-10-01

    Casein micelle dispersions have been concentrated through osmotic stress and examined through rheological experiments. In conditions where the casein micelles are separated from each other, i.e., below random-close packing, the dispersions have exactly the flow and dynamic properties of the polydisperse hard-sphere fluid, demonstrating that the micelles interact only through excluded volume effects in this regime. These interactions cause the viscosity and the elastic modulus to increase by three orders of magnitude approaching the concentration of random-close packing estimated at Cmax≈178 g/l. Above Cmax, the dispersions progressively turn into "gels" (i.e., soft solids) as C increases, with elastic moduli G' that are nearly frequency independent. In this second regime, the micelles deform and/or deswell as C increases, and the resistance to deformation results from the formation of bonds between micelles combined with the intrinsic mechanical resistance of the micelles. The variation in G' with C is then very similar to that observed with concentrated emulsions where the resistance to deformation originates from a set of membranes that separate the droplets. As in the case of emulsions, the G' values at high frequency are also nearly identical to the osmotic pressures required to compress the casein dispersions. The rheology of sodium caseinate dispersions in which the caseins are not structured into micelles is also reported. Such dispersions have the behavior of associative polymer solutions at all the concentrations investigated, further confirming the importance of structure in determining the rheological properties of casein micelle systems.

  12. Rheology and phase behavior of dense casein micelle dispersions.

    PubMed

    Bouchoux, A; Debbou, B; Gésan-Guiziou, G; Famelart, M-H; Doublier, J-L; Cabane, B

    2009-10-28

    Casein micelle dispersions have been concentrated through osmotic stress and examined through rheological experiments. In conditions where the casein micelles are separated from each other, i.e., below random-close packing, the dispersions have exactly the flow and dynamic properties of the polydisperse hard-sphere fluid, demonstrating that the micelles interact only through excluded volume effects in this regime. These interactions cause the viscosity and the elastic modulus to increase by three orders of magnitude approaching the concentration of random-close packing estimated at C(max) approximately 178 g/l. Above C(max), the dispersions progressively turn into "gels" (i.e., soft solids) as C increases, with elastic moduli G(') that are nearly frequency independent. In this second regime, the micelles deform and/or deswell as C increases, and the resistance to deformation results from the formation of bonds between micelles combined with the intrinsic mechanical resistance of the micelles. The variation in G(') with C is then very similar to that observed with concentrated emulsions where the resistance to deformation originates from a set of membranes that separate the droplets. As in the case of emulsions, the G(') values at high frequency are also nearly identical to the osmotic pressures required to compress the casein dispersions. The rheology of sodium caseinate dispersions in which the caseins are not structured into micelles is also reported. Such dispersions have the behavior of associative polymer solutions at all the concentrations investigated, further confirming the importance of structure in determining the rheological properties of casein micelle systems.

  13. Intelligent polymeric micelles: development and application as drug delivery for docetaxel.

    PubMed

    Li, Yimu; Zhang, Hui; Zhai, Guang-Xi

    2017-04-01

    Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.

  14. Miscibility and interaction between 1-alkanol and short-chain phosphocholine in the adsorbed film and micelles.

    PubMed

    Takajo, Yuichi; Matsuki, Hitoshi; Kaneshina, Shoji; Aratono, Makoto; Yamanaka, Michio

    2007-09-01

    The miscibility and interaction of 1-hexanol (C6OH) and 1-heptanol (C7OH) with 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) in the adsorbed films and micelles were investigated by measuring the surface tension of aqueous C6OH-DHPC and aqueous C7OH-DHPC solutions. The surface density, the mean molecular area, the composition of the adsorbed film, and the excess Gibbs energy of adsorption g(H,E), were estimated. Further, the critical micelle concentration of the mixtures was determined from the surface tension versus molality curves; the micellar composition was calculated. The miscibility of the 1-alkanols and DHPC molecules in the adsorbed film and micelles was examined using the phase diagram of adsorption (PDA) and that of micellization (PDM). The PDA and the composition dependence of g(H,E) indicated the non-ideal mixing of the 1-alkanols and DHPC molecules due to the attractive interaction between the molecules in the adsorbed film, while the PDM indicated that the 1-alkanol molecules were not incorporated in the micelles within DHPC rich region. The dependence of the mean molecular area of the mixtures on the surface composition suggested that the packing property of the adsorbed film depends on the chain length of 1-alkanol: C6OH expands the DHPC adsorbed film more than C7OH.

  15. Supersaturation-Limited and Unlimited Phase Spaces Compete to Produce Maximal Amyloid Fibrillation near the Critical Micelle Concentration of Sodium Dodecyl Sulfate.

    PubMed

    So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji

    2015-09-15

    Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.

  16. Protons in non-ionic aqueous reverse micelles.

    PubMed

    Rodriguez, Javier; Martí, Jordi; Guàrdia, Elvira; Laria, Daniel

    2007-05-03

    Using molecular dynamics techniques, we investigate the solvation of an excess proton within an aqueous reverse micelle in vacuo, with the neutral surfactant diethylene glycol monodecyl ether [CH3(CH2)11(OC2H4)2OH]. The simulation experiments were performed using a multistate empirical valence bond Hamiltonian model. Our results show that the stable solvation environments for the excess proton are located in the water-surfactant interface and that its first solvation shell is composed exclusively by water molecules. The relative prevalence of Eigen- versus Zundel-like solvation structures is investigated; compared to bulk results, Zundel-like structures in micelles become somewhat more stable. Characteristic times for the proton translocation jumps have been computed using population relaxation time correlation functions. The micellar rate for proton transfer is approximately 40x smaller than that found in bulk water at ambient conditions. Differences in the computed rates are examined in terms of the hydrogen-bond connectivity involving the first solvation shell of the excess charge with the rest of the micellar environment. Simulation results would indicate that proton transfers are correlated with rare episodes during which the HB connectivity between the first and second solvation shells suffers profound modifications.

  17. Effect of A-317491 delivered by glycolipid-like polymer micelles on endometriosis pain.

    PubMed

    Yuan, Ming; Ding, Shaojie; Meng, Tingting; Lu, Binbin; Shao, Shihong; Zhang, Xinmei; Yuan, Hong; Hu, Fuqiang

    2017-01-01

    Endometriosis is a common gynecological disease with a lack of effective clinical treatment. Current therapy often results in endometriosis pain recurrence and serious side effects. P2X 3 receptor, an adenosine triphosphate (ATP)-gated ion channel, might be implicated in endometriosis pain. In this study, chitosan oligosaccharide-g-stearic acid (CSOSA) polymer micelles-coated nanostructured lipid carriers (NLCs) were developed as a novel delivery system for A-317491, a selective P2X 3 receptor antagonist for endometriosis pain therapy. A-317491-loaded NLC (NLC/A-317491) could be coated by CSOSA micelles to form CSOSA/NLC/A-317491 nanoparticles. Pheochromocytoma PC12 cells, which highly expressed P2X 3 receptors, were used as a cell model, and the CSOSA/NLC/A-317491 partly blocked the Ca 2+ influx induced by ATP stimulation. In nude mouse and rat endometriotic models, CSOSA/NLC could accumulate into endometriotic lesions after vein injection. In endometriotic rats, CSOSA/NLC/A-317491 reversed mechanical and heat hyperalgesia with long-term efficacy, which might be attributed to the massive CSOSA/NLC/A-317491 distribution in the endometriotic lesions. In conclusion, A-317491 delivered by CSOSA/NLC nanoparticles attenuated endometriosis pain in rats, and CSOSA/NLC/A-317491 could be used as an effective treatment strategy for P2X 3 -targeted therapy in endometriosis pain.

  18. Micelle-templated composite quantum dots for super-resolution imaging.

    PubMed

    Xu, Jianquan; Fan, Qirui; Mahajan, Kalpesh D; Ruan, Gang; Herrington, Andrew; Tehrani, Kayvan F; Kner, Peter; Winter, Jessica O

    2014-05-16

    Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.

  19. Detection of hydrogen peroxide with chemiluminescent micelles

    PubMed Central

    Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren

    2008-01-01

    The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona. PMID:19337415

  20. Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range

    NASA Astrophysics Data System (ADS)

    Gaines, J. L.; Wittmayer, F. J.

    1986-08-01

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  1. Spectroscopic Analysis of 10MAG/LDAO Reverse Micelles to Determine Characteristic Properties and Behavioral Extrema

    NASA Astrophysics Data System (ADS)

    Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel

    Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.

  2. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    PubMed

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  3. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    NASA Astrophysics Data System (ADS)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  4. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  5. Formulation and evaluation of mixed polymeric micelles of quercetin for treatment of breast, ovarian, and multidrug resistant cancers.

    PubMed

    Patra, Arjun; Satpathy, Swaha; Shenoy, Anitha K; Bush, Jason A; Kazi, Mohsin; Hussain, Muhammad Delwar

    2018-01-01

    Quercetin (QCT), a naturally occurring flavonoid has a wide array of pharmacological properties such as anticancer, antioxidant and anti-inflammatory activities. QCT has low solubility in water and poor bioavailability, which limited its use as a therapeutic molecule. Polymeric micelles (PMs) is a novel drug delivery system having characteristics like smaller particle size, higher drug loading, sustained drug release, high stability, increased cellular uptake and improved therapeutic potential. In the present study, we have formulated and characterized mixed PMs (MPMs) containing QCT for increasing its anticancer potential. The MPMs were prepared by thin film hydration method, and their physicochemical properties were characterized. The in vitro anticancer activity of the MPMs were tested in breast (MCF-7 and MDA-MB-231, epithelial and metastatic cancer cell lines, respectively), and ovarian (SKOV-3 and NCI/ADR, epithelial and multi-drug resistant cell lines, respectively) cancer. The optimal MPM formulations were obtained from Pluronic polymers, P123 and P407 with molar ratio of 7:3 (A16); and P123, P407 and TPGS in the molar ratio of 7:2:1 (A22). The size of the particles before lyophilization (24.83±0.44 nm) and after lyophilisation (37.10±4.23 nm), drug loading (8.75±0.41%), and encapsulation efficiency (87.48±4.15%) for formulation A16 were determined. For formulation A22, the particle size before lyophilization, after lyophilization, drug loading and encapsulation efficiency were 26.37±2.19 nm, 45.88±13.80 nm, 9.01±0.11% and 90.07±1.09%, respectively. The MPMs exhibited sustained release of QCT compared to free QCT as demonstrated from in vitro release experiments. The solubility of QCT was markedly improved compared to pure QCT. The MPMs were highly stable in aqueous media as demonstrated by their low critical micelle concentration. The concentration which inhibited 50% growth (IC 50 ) values of both micellar preparations in all the cancer cell lines

  6. Enhancing curcumin anticancer efficacy through di-block copolymer micelle encapsulation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Liu, Jieying; Wang, Feihu; Li, Min; Li, Min; Guo, Aijie; Wang, Yun; Zhou, Dejian; Guo, Shengrong

    2014-02-01

    We report herein the development of a novel aqueous formulation and improved antitumor activity for curcumin by encapsulating it into a biocompatible and biodegradable poly(L-lactic acid) based poly(anhydride-ester)-b-poly(ethylene glycol) (PAE-b-PEG) micelle. The resulting curcumin loaded micelles were completely water-dispersible, overcoming the problem of poor water solubility that limited its efficacy and bioavailability. In vitro cellular studies revealed that the curcumin-loaded micelles were taken up mainly via endocytosis route and exhibited higher cytotoxicities toward model cancer cell lines (HeLa and EMT6) than free curcumin. An in vivo biodistribution study revealed that the curcumin-loaded micelles displayed significantly enhanced accumulation inside the tumor of EMT6 breast tumor-bearing mice. More impressively, the curcumin-loaded micelles showed stronger antitumor activity, higher anti-angiogenesis effects and induced apoptosis on the EMT6 breast tumor model bearing mice than free curcumin. Furthermore, the curcumin-loaded micelles showed no significant toxicity towards hemotological system, major organs or tissues in mice. Combined with a high antitumor activity and low toxic side-effects, the curcumin-loaded micelles developed here thus appear to be a highly attractive nanomedicine for effective, targeted cancer therapy.

  7. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles.

    PubMed

    Geng, Yan; Discher, Dennis E

    2005-09-21

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation-induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly(ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by polycaprolactone hydrolysis, with distinct mechanism and kinetics from that which occurs in bulk material.

  8. Magnetic properties of x(Fe2O3).(100-x)[P2O5.Li2O] and x(Fe2O3).(100-x)[P2O5.CaO] glass systems

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin; Racolta, Dania; Ardelean, Gheorghe

    2017-12-01

    Magnetic properties of x(Fe2O3).(100-x)[P2O5 .Li2O] and x(Fe2O3).(100-x)[P2O5 .CaO] with 0 < x ≤ 50 mol % were investigated using magnetic susceptibility measurements. The both glass systems were prepared in the same condition. The valence states and the distribution of iron ions in the glass matrix depend on the Fe2O3 content. For the P2O5.CaO glass matrix with x≤35mol%, the data revealed iron ions as isolated or participating in dipole-dipole interaction. For x > 35 mol% an antiferromagnetic coupling is observed. For the P2O5.Li2O glass matrix, the iron ions behave magnetically similarly as in other oxide glasses, but concentration of Fe2O3 over which magnetic superexchange interactions occur is lower. The absolute magnitude of θp values increases when content of Fe2O3 are increased. If the content of the magnetic ions is increased in the glass, the exchange integral increased and as a result the magnitude of the θP increases.

  9. pH-dependent structures and properties of casein micelles.

    PubMed

    Liu, Yan; Guo, Rong

    2008-08-01

    The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.

  10. Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods.

    PubMed

    Chandrapala, Jayani; Martin, Gregory J O; Kentish, Sandra E; Ashokkumar, Muthupandian

    2014-09-01

    The effect of shear on the solubilization of a range of dairy powders was investigated. The rate of solubilization of low solubility milk protein concentrate and micellar casein powders was examined during ultrasonication, high pressure homogenization and high-shear rotor-stator mixing and compared to low-shear overhead stirring. The high shear techniques were able to greatly accelerate the solubilization of these powders by physically breaking apart the powder agglomerates and accelerating the release of individual casein micelles into solution. This was achieved without affecting the structure of the solubilized proteins. The effect of high shear on the re-establishment of the mineral balance between the casein micelles and the serum was examined by monitoring the pH of the reconstituted skim milk powder after prior exposure to ultrasonication. Only minor differences in the re-equilibration of the pH were observed after sonication for up to 3 min, suggesting that the localized high shear forces exerted by sonication did not significantly affect the mass transfer of minerals from within the casein micelles. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interaction between casein micelles and whey protein/κ-casein complexes during renneting of heat-treated reconstituted skim milk powder and casein micelle/serum mixtures.

    PubMed

    Kethireddipalli, Prashanti; Hill, Arthur R; Dalgleish, Douglas G

    2011-02-23

    Casein micelles were separated from unheated reconstituted skim milk powder (RSMP) and were resuspended in the serum of RSMP that had been heated, with and without dialysis of this serum against unheated RSMP. Using size-exclusion chromatography, it was found that the soluble complexes of whey protein (WP) with κ-casein in the serum of the heated milk bind progressively to unheated casein micelles during renneting, even prior to the onset of clotting. Similar trends were noted when casein micelles from RSMP heated at pH values of 6.7, 7.1, or 6.3, each with different amounts of WP coating the micelles, were renneted in the presence of soluble WP/κ-casein complexes. No matter what was the initial load of micelle-bound WP complexes, all micelle types were capable of binding additional serum protein complexes during renneting. However, it is not clear that this binding of WP/κ-casein complexes to the micellar surface is a direct cause of the impaired rennet clotting of the RSMP.

  12. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  13. Designing Dendrimers to Offer Micelle-Type Nanocontainers

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    The properties of a dendrimer with hydrophobic and hydrophilic substituents on an orthogonal plane is synthesized and studied. The resulting polymer contains one of the substituents in its concave interior and the other at the convex surface and the design promotes micelle-like behavior in polar solvent and inverted micelle arrangement in…

  14. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  15. Simvastatin Prodrug Micelles Target Fracture and Improve Healing

    PubMed Central

    Dusad, Anand; Yuan, Hongjiang; Ren, Ke; Li, Fei; Fehringer, Edward V.; Purdue, P. Edward; Goldring, Steven R.; Daluiski, Aaron; Wang, Dong

    2014-01-01

    Simvastatin (SIM), a widely used anti-lipidaemic drug, has been identified as a bone anabolic agent. Its poor water solubility and the lack of distribution to the skeleton, however, have limited its application in the treatment of bone metabolic diseases. In this study, an amphiphilic macromolecular prodrug of SIM was designed and synthesized to overcome these limitations. The polyethylene glycol (PEG)-based prodrug can spontaneously self-assemble to form micelles. The use of SIM trimer as the prodrug’s hydrophobic segment allows easy encapsulation of additional free SIM. The in vitro studies showed that SIM/SIM-mPEG micelles were internalized by MC3T3 cells via lysosomal trafficking and consistently induced expression of both BMP2 and DKK1 mRNA, suggesting that the prodrug micelle retains the biological functions of SIM. After systemic administration, optical imaging suggests that the micelles would passively target to bone fracture sites associated with hematoma and inflammation. Furthermore, flow cytometry study revealed that SIM/SIM-mPEG micelles had preferred cellular uptake by inflammatory and resident cells within the fracture callus tissue. The treatment study using a mouse osteotomy model validated the micelles’ therapeutic efficacy in promoting bone fracture healing as demonstrated by micro-CT and histological analyses. Collectively, these data suggest that the macromolecular prodrug-based micelle formulation of SIM may have great potential for clinical management of impaired fracture healing. PMID:25542644

  16. Influence of race and crossbreeding on casein micelles size.

    PubMed

    Freitas, Denise R; Fonseca, Leorges M; Souza, Fernando N; Ladeira, Cristiane V G; Diniz, Soraia A; Haddad, João Paulo A; Ferreira, Diêgo S; Santoro, Marcelo M; Cerqueira, Mônica M O P

    2015-05-01

    Casein (CN) micelles are colloidal aggregates of protein dispersed in milk, the importance of which in the dairy industry is related to functionality and yield in dairy products. The objective of this work was to investigate the correlation of milk CN micelles diameter from Holstein and Zebu crossbreds with milk composition (protein, fat, lactose, total and nonfat solids and milk urea nitrogen), somatic cell count (SCC), age, lactation stage and production. Average casein micelles diameters of milk samples obtained from 200 cows were measured using photon correlation spectroscopy and multiple regression analysis was used to find relationship between variables. CN micelle diameter, SCC and nonfat solids were different between animals with different Holstein crossbreed ratios, which suggests influence of genetic factors, mammary gland health and milk composition. Overall, results indicate the potential use of CN micelle diameter as a tool to select animals to produce milk more suitable to cheese production. © 2014 Japanese Society of Animal Science.

  17. Curcumin Cocrystal Micelles-Multifunctional Nanocomposites for Management of Neurodegenerative Ailments.

    PubMed

    Desai, Preshita P; Patravale, Vandana B

    2018-04-01

    Curcumin, a potent antioxidant polyphenol with neuroprotective and antiamyloid activities, has significant potential in the treatment of neurodegenerative disorders such as Alzheimer's disease. However, its clinical translation is delayed due to poor bioavailability. For effective use of curcumin in Alzheimer's disease, it is imperative to increase its bioavailability with enhanced delivery at a therapeutic site that is, brain. With this objective, pharmaceutical cocrystals of curcumin were developed and incorporated in micellar nanocarriers for nose-to-brain delivery. For cocrystals, an antioxidant hydrophilic coformer was strategically selected using molecular modeling approach. The cocrystals were formulated using a planetary ball mill, and the process was optimized using 3 2 factorial design followed by characterization using differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy analysis. The cocrystal micelles exhibited globule size of 28.79 ± 0.86 nm. Further, curcumin cocrystal and co-crystal micelles exhibited a significantly low (p value <0.01) IC 50 concentration for antioxidant activity as compared to curcumin corroborating superior antioxidant performance. In vivo studies revealed about 1.7-fold absolute bioavailability of curcumin cocrystal micelles with C max of 1218.38 ± 58.11 ng/mL and showed significantly high brain distribution even beyond 6 hours of dosing. Thus, the studies confirmed enhanced bioavailability, higher brain uptake, retention, and delayed clearance with curcumin cocrystal micellar nanocarriers. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  19. Influence of electrolytes on the microenvironment of F127 triblock copolymer micelles: a solvation and rotational dynamics study of coumarin dyes.

    PubMed

    Kumbhakar, Manoj; Ganguly, Rajib

    2007-04-19

    Dynamic Stokes' shift and fluorescence anisotropy measurements of coumarin 153 (C153) and coumarin 151 (C151) as fluorescence probes have been carried out to understand the influence of electrolytes (NaCl and LiCl) on the hydration behavior of aqueous (ethylene oxide)100-(propylene oxide)70-(ethylene oxide)100 (EO100-PO70-EO100, F127) block copolymer micelles. A small blue shift in the fluorescence spectra of C153 has been observed in presence of electrolytes due to the dehydration of the oxyethylene chains in the PEO-PPO region, although fluorescence spectra of C151 remain unaltered. The close vicinity of bulk water for C151 probably negates the effect of dehydration in the PEO region. Fluorescence anisotropy measurements indicate a gradual increase in microviscosity with electrolyte concentrations. The partial collapse of copolymer blocks in the presence of electrolytes has been suggested as a reason for the increase in microviscosity along with the strong hydration of ions in the corona region. The interplay between the ion hydration and the mechanically trapped water content, and specific interaction of ions, such as complexation of Li+ ions with the copolymer block, is found to control solvation dynamics in the corona region. In addition to that, it has been established that Na+ ions reside deep into the corona region whereas Li+ ions prefer to reside closer to the surface. Owing to its higher lyotropicity, LiCl influences the corona hydration to a greater extent than NaCl and sets in micelle-micelle interaction above the 2 M LiCl concentration, as reflected in the saturation of solvation time constants. The formation of larger clusters of F127 micelles above 2 M LiCl has been confirmed by dynamic light scattering measurements; however, such cluster formation is not evident with NaCl.

  20. The fabrication of nanopatterns with Au nanoparticles-embedded micelles via nanoimprint lithography.

    PubMed

    Lee, Jung-Pil; Kim, Eun-Uk; Koh, Haeng-Deog; Kang, Nam-Goo; Jung, Gun-Young; Lee, Jae-Suk

    2009-09-09

    We fabricated nanopatterns with Au nanoparticles-embedded micelles (Au-micelles) by self-assembly of block copolymers via nanoimprint lithography. The micelle structure prepared by self-assembled block copolymers was used as a template for the synthesis of Au nanoparticles (Au NPs). Au NPs were synthesized in situ inside the micelles of polystyrene-block-poly(2-vinylpyridine) (PS- b-P2VP). Au-micelles were arranged on the trenches of the polymer template, which was imprinted by nanoimprint lithography. The fabrication of line-type and dot-type nanopatterns was carried out by the combined method. In addition, multilayer nanopatterns of the Au-micelles were also proposed.

  1. Critical micelle concentration values for different surfactants measured with solid-phase microextraction fibers.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M

    2016-09-01

    The amphiphilic nature of surfactants drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic surfactants. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a surfactant, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic surfactants cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.

  2. In Vitro Release and Bioavailability of Silybin from Micelle-Templated Porous Calcium Phosphate Microparticles.

    PubMed

    Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing

    2016-10-01

    Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.

  3. Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si

    NASA Technical Reports Server (NTRS)

    Manasevit, H. M.; Gergis, I. S.; Jones, A. B.

    1982-01-01

    Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.

  4. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  5. Structural Characterization of Biocompatible Reverse Micelles Using Small-Angle X-ray Scattering, 31P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy.

    PubMed

    Odella, Emmanuel; Falcone, R Darío; Ceolín, Marcelo; Silber, Juana J; Correa, N Mariano

    2018-04-19

    The most critical problem regarding the use of reverse micelles (RMs) in several fields is the toxicity of their partial components. In this sense, many efforts have been made to characterize nontoxic RM formulations on the basis of biological amphiphiles and/or different oils. In this contribution, the microstructure of biocompatible mixed RMs formulated by sodium 1,4-bis-2-ethylhexylsulfosuccinate (AOT) and tri- n-octylphosphine oxide (TOPO) surfactants dispersed in the friendly solvent methyl laurate was studied by using SAXS and 31 P NMR and by following the solvatochromic behavior of the molecular probe 4-aminophthalimide (4-AP). The results indicated the presence of RM aggregates upon TOPO incorporation with a droplet size reduction and an increase in the interfacial fluidity in comparison with pure AOT RMs. When confined inside the mixed systems, 4-AP showed a red-edge excitation shift and confirmed the increment of interfacial fluidity upon TOPO addition. Also, the partition between the external nonpolar solvent and the RM interface and an increase in both the local micropolarity and the capability to form a hydrogen bond interaction between 4-AP and a mixed interface were observed. The findings have been explained in terms of the nonionic surfactant structure and its complexing nature expressed at the interfacial level. Notably, we show how two different approaches, i.e., SAXS and the solvatochromism of the probe 4-AP, can be used in a complementary way to enhance our understanding of the interfacial fluidity of RMs, a parameter that is difficult to measure directly.

  6. A Novel Solubility-Enhanced Rubusoside-Based Micelles for Increased Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Meiying; Dai, Tongcheng; Feng, Nianping

    2017-04-01

    Many anti-cancer drugs have a common problem of poor solubility. Increasing the solubility of the drugs is very important for its clinical applications. In the present study, we revealed that the solubility of insoluble drugs was significantly enhanced by adding rubusoside (RUB). Further, it was demonstrated that RUB could form micelles, which was well characterized by Langmuir monolayer investigation, transmission electron microscopy, atomic-force microscopy, and cryogenic transmission electron microscopy. The RUB micelles were ellipsoid with the horizontal distance of 25 nm and vertical distance of 1.2 nm. Insoluble synergistic anti-cancer drugs including curcumin and resveratrol were loaded in RUB to form anti-cancer micelles RUB/CUR + RES. MTT assay showed that RUB/CUR + RES micelles had more significant toxicity on MCF-7 cells compared to RUB/CUR micelles + RUB/RES micelles. More importantly, it was confirmed that RUB could load other two insoluble drugs together for remarkably enhanced anti-cancer effect compared to that of RUB/one drug + RUB/another drug. Overall, we concluded that RUB-based micelles could efficiently load insoluble drugs for enhanced anti-cancer effect.

  7. Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation

    PubMed Central

    Liu, Yuling; Fu, Sai; Lin, Longfei; Cao, Yuhong; Xie, Xi; Yu, Hua; Chen, Meiwan; Li, Hui

    2017-01-01

    Pluronic F127 (F127), an amphiphilic triblock copolymer, has been shown to have significant potential for drug delivery, as it is able to incorporate hydrophobic drugs and self-assemble into nanosize micelles. However, it suffers from dissociation upon dilution owing to the relatively high critical micelle concentration and lack of stimuli-responsive behavior. Here, we synthesized the α-tocopherol (TOC) modified F127 polymer (F127-SS-TOC) via a redox-sensitive disulfide bond between F127 and TOC, which formed stable micelles at relatively low critical micelle concentration and was sensitive to the intracellular redox environment. The particle size and zeta potential of the F127-SS-TOC micelles were 51.87±6.39 nm and -8.43±2.27 mV, respectively, and little changes in both particle size and zeta potential were observed within 7 days at room temperature. With 10 mM dithiothreitol stimulation, the F127-SS-TOC micelles rapidly dissociated followed by a significant change in size, which demonstrated a high reduction sensitivity of the micelles. In addition, the micelles showed a high hemocompatibility even at a high micelle concentration (1,000 μg/mL). Low cytotoxicity of the F127-SS-TOC micelles at concentrations ranging from 12.5 μg/mL to 200 μg/mL was also found on both Bel 7402 and L02 cells. Overall, our results demonstrated F127-SS-TOC micelles as a stable and safe aqueous formulation with a considerable potential for drug delivery. PMID:28435248

  8. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  9. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.

    PubMed

    Jin, Rong; Guo, Xuelian; Dong, Lingli; Xie, Enyuan; Cao, Aoneng

    2017-10-01

    A group of micelles self-assembled from deoxycholic acid-doxorubicin-conjugated dextran (denoted as Dex-DCA-DOX) prodrugs were designed and prepared for pH-triggered drug release and cancer chemotherapy. These prodrugs could be successfully produced by chemically coupling hydrophobic deoxycholic acid (DCA) to dextran hydrazine (denoted as Dex-NHNH 2 ) and hydrazone linker formation between doxorubicin (DOX) and Dex-NHNH 2 . These Dex-DCA-DOX prodrugs self-assembled to form micelles under physiological conditions with varied particle sizes depending on molecular weight of dextran, degree of substitution (DS) of DCA and DOX. After optimization, Dex10k-DCA9-DOX5.5 conjugate comprising dextran of 10kDa, DCA of DS 9 and DOX loading content of 5.5wt%, formed the micelles with the smallest size (110nm). These prodrug micelles could slowly liberate DOX under physiological conditions but efficiently released the drug at an acidified endosomal pH by the hydrolysis of acid-labile hydrazone linker. In vitro cytotoxicity experiment indicated that Dex10k-DCA9-DOX5.5 micelles exerted marked antitumor activity against MCF-7 and SKOV-3 cancer cells. Besides, intravenous administration of the micelles afforded growth inhibition of SKOV-3 tumor bearing in nude mice at a dosage of 2.5mg per kg with anti-cancer efficacy comparable to free DOX-chemotherapy but low systemic toxicity. This study highlights the feasibility of bio-safe and efficient dextran-based prodrug micelles designed for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Research and Development of Ultra-High Strength X100 Welded Pipe

    NASA Astrophysics Data System (ADS)

    Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang

    Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained

  11. Interactions of casein micelles with calcium phosphate particles.

    PubMed

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  12. Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage.

    PubMed

    Loewen, Anisa; Chan, Benny; Li-Chan, Eunice C Y

    2018-02-01

    The objectives of this study were to apply response surface methodology to optimize fat-soluble vitamin loading in re-assembled casein micelles, and to evaluate vitamin D stability of dry formulations during ambient or accelerated storage and in fortified fluid skim milk stored under refrigeration. Optimal loading of vitamin A (1.46-1.48mg/100mgcasein) was found at 9.7mM phosphate, 5.5mM citrate and 30.0mM calcium, while optimal loading of vitamin D (1.38-1.46mg/100mg casein) was found at 4.9mM phosphate, 4.0mM citrate and 26.1mM calcium. In general, more vitamin D was retained in vitamin D-re-assembled casein micelles than control powders during storage, while vitamin D loss was not different for vitamin D-re-assembled casein micelles and control fortified milks after 21days of refrigerated storage with light exposure. In conclusion, re-assembled casein micelles with high loading efficiency show promise for improving vitamin D stability during dry storage. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  14. Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity

    DOE PAGES

    Kim, Sung A.; Jeong, Kyeong-Jun; Yethiraj, Arun; ...

    2017-04-03

    We report the discovery of an ionic small molecule surfactant that undergoes water-drive self- assembly into quasispherical micelles, which pack into the first lyotropic liquid crystalline Frank–Kasper σ phase. Small-angle X-ray scattering studies indicate that this unexpected, low-symmetry phase is characterized by a tetragonal unit cell, in which 30 sub-2 nm micelles of five discrete types are arranged into a tetrahedral close packing with exceptional translational order. Varying the relative amounts of surfactant and water in these lyotropic phases enables formation of a Frank–Kasper A15 sphere packing and a more common body-centered cubic structure. MD simulations reveal that the symmetrymore » breaking that drives the selection of the σ and A15 phases arises from a delicate interplay between the drive to maintain local spherical particle symmetry and the maximization of electrostatic cohesion between the soft micellar particles.« less

  15. RNA-based micelles: A novel platform for paclitaxel loading and delivery.

    PubMed

    Shu, Yi; Yin, Hongran; Rajabi, Mehdi; Li, Hui; Vieweger, Mario; Guo, Sijin; Shu, Dan; Guo, Peixuan

    2018-04-28

    RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  17. DNA-polymer micelles as nanoparticles with recognition ability.

    PubMed

    Talom, Renée Mayap; Fuks, Gad; Kaps, Leonard; Oberdisse, Julian; Cerclier, Christel; Gaillard, Cédric; Mingotaud, Christophe; Gauffre, Fabienne

    2011-11-25

    The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Apparent voluminosity of casein micelles determined by rheometry.

    PubMed

    Nöbel, Stefan; Weidendorfer, Konrad; Hinrichs, Jörg

    2012-11-15

    The voluminosity of casein micelles was studied by means of static rheometry. In concentrated casein micelle suspensions with fluid-like flow properties to random-close packing, the reduced viscosity was obtained and linked via the Krieger-Dougherty model of volume fraction effect. The temperature dependency of hydration was fitted in a wide temperature (5°C≤θ≤35°C) and mass fraction range (0.01≤w≤0.16). The results of our study suggested that the voluminosity of casein micelles decreased with increasing temperature and asymptotically reached a plateau (θ>30°C) as a consequence of the protein swelling and decreasing water immobilization. The obtained apparent voluminosity of native casein micelles dispersed in UF permeate was 5.0 ml g(-1) at 5°C, 4.1 ml g(-1) at 20°C, and 3.7 ml g(-1) at 35°C. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  20. Worm-like micelles of CTAB and sodium salicylate under turbulent flow.

    PubMed

    Rodrigues, Roberta K; da Silva, Marcelo A; Sabadini, Edvaldo

    2008-12-16

    Polymers with high molecular weight and worm-like micelles are drag-reducing agents under turbulent flow. However, in contrast to the polymeric systems, the worm-like micelles do not undergo mechanical degradation due to the turbulence, because their macromolecular structure can be spontaneously restored. This very favorable property, together with their drag-reduction capability, offer the possibility to use such worm-like micelles in heating and cooling systems to recirculate water while expending less energy. The formation, growth, and stability of worm-like micelles formed by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) were investigated using the self-fluorescence of salicylate ions and the ability of the giant micelles to promote hydrodynamic drag reduction under turbulent flow. The turbulence in solutions of CTAB-Sal was produced within the double-gap cell of a rotational rheometer. Detailed diagrams were obtained for different ratios of Sal and CTAB, which revealed transitions associated with the thermal stability of giant micelles under turbulent flow.

  1. Cryo-transmission electron tomography of native casein micelles from bovine milk

    PubMed Central

    Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.

    2013-01-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067

  2. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    PubMed

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    PubMed Central

    Hofman, Jan-Willem; Carstens, Myrra G.; van Zeeland, Femke; Helwig, Conny; Flesch, Frits M.; Hennink, Wim E.

    2008-01-01

    Purpose To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg®). Results Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30% (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. PMID:18597164

  4. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 2. Discriminative recognition of various micellar systems and characterization of PLRP2-DPPC-bile salt complexes.

    PubMed

    Mateos-Diaz, Eduardo; Sutto-Ortiz, Priscila; Sahaka, Moulay; Byrne, Deborah; Gaussier, Hélène; Carrière, Frédéric

    2018-03-01

    The interaction of pancreatic lipase-related protein 2 (PLRP2) with various micelles containing phospholipids was investigated using pHstat enzyme activity measurements, differential light scattering, size exclusion chromatography (SEC) and transmission IR spectroscopy. Various micelles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and lysophosphatidylcholine were prepared with either bile salts (sodium taurodeoxycholate or glycodeoxycholate) or Triton X-100, which are substrate-dispersing agents commonly used for measuring phospholipase activities. PLRP2 displayed a high activity on all phospholipid-bile salt micelles, but was totally inactive on phospholipid-Triton X-100 micelles. These findings clearly differentiate PLRP2 from secreted pancreatic phospholipase A2 which is highly active on both types of micelles. Using an inactive variant of PLRP2, SEC experiments allowed identifying two populations of PLRP2-DPPC-bile salt complexes corresponding to a high molecular weight 1:1 PLRP2-micelle association and to a low molecular weight association of PLRP2 with few monomers of DPPC/bile salts. IR spectroscopy analysis showed how DPPC-bile salt micelles differ from DPPC-Triton X-100 micelles by a higher fluidity of acyl chains and higher hydration/H-bonding of the interfacial carbonyl region. The presence of bile salts allowed observing changes in the IR spectrum of DPPC upon addition of PLRP2 (higher rigidity of acyl chains, dehydration of the interfacial carbonyl region), while no change was observed with Triton X-100. The differences between these surfactants and their impact on substrate recognition by PLRP2 are discussed, as well as the mechanism by which high and low molecular weight PLRP2-DPPC-bile salt complexes may be involved in the overall process of DPPC hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. pH protective Y1 receptor ligand functionalized antiphagocytosis BPLP-WPU micelles for enhanced tumor imaging and therapy with prolonged survival time.

    PubMed

    Jiang, Zhenqi; Tian, Yuchen; Shan, Dingying; Wang, Yinjie; Gerhard, Ethan; Xia, Jianbi; Huang, Rong; He, Yan; Li, Aiguo; Tang, Jianchao; Ruan, Huimin; Li, Yong; Li, Juan; Yang, Jian; Wu, Aiguo

    2018-07-01

    Nanoparticle-based tumor therapies are extensively studied; however, few are capable of improving patient survival time due to premature drug leakage, off target effects, and poor tissue penetration. Previously, we successfully synthesized a novel family of Y 1 receptor (Y 1 R) ligand modified, photoluminescent BPLP nanobubbles and nanoparticles for targeted breast cancer ultrasound imaging; however, increased accumulation could also be observed in the liver, kidney, and spleen, suggesting significant interaction of the particles with macrophages in vivo. Herein, for the first time, we imparted antiphagocytosis capability to Y 1 R ligand functionalized BPLP-WPU polymeric micelles through the incorporation of a CD47 human glycoprotein based self-peptide. Application of self-peptide modified, DOX loaded micelles in vivo resulted in a 100% survival rate and complete tumor necrosis over 100 days of treatment. In vivo imaging of SPION loaded, self-peptide modified micelles revealed effective targeting to the tumor site while analysis of iron content demonstrated reduced particle accumulation in the liver and kidney, demonstrating reduced macrophage interaction, as well as a 2-fold increase of particles in the tumor. As these results demonstrate, Y 1 R ligand, self-peptide modified BPLP-WPU micelles are capable of target specific cancer treatment and imaging, making them ideal candidates to improve survival rate and tumor reduction clinically. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Multifunctional polymeric micelles for delivery of drugs and siRNA

    PubMed Central

    Jhaveri, Aditi M.; Torchilin, Vladimir P.

    2014-01-01

    Polymeric micelles, self-assembling nano-constructs of amphiphilic copolymers with a core-shell structure have been used as versatile carriers for delivery of drugs as well as nucleic acids. They have gained immense popularity owing to a host of favorable properties including their capacity to effectively solubilize a variety of poorly soluble pharmaceutical agents, biocompatibility, longevity, high stability in vitro and in vivo and the ability to accumulate in pathological areas with compromised vasculature. Moreover, additional functions can be imparted to these micelles by engineering their surface with various ligands and cell-penetrating moieties to allow for specific targeting and intracellular accumulation, respectively, to load them with contrast agents to confer imaging capabilities, and incorporating stimuli-sensitive groups that allow drug release in response to small changes in the environment. Recently, there has been an increasing trend toward designing polymeric micelles which integrate a number of the above functions into a single carrier to give rise to “smart,” multifunctional polymeric micelles. Such multifunctional micelles can be envisaged as key to improving the efficacy of current treatments which have seen a steady increase not only in hydrophobic small molecules, but also in biologics including therapeutic genes, antibodies and small interfering RNA (siRNA). The purpose of this review is to highlight recent advances in the development of multifunctional polymeric micelles specifically for delivery of drugs and siRNA. In spite of the tremendous potential of siRNA, its translation into clinics has been a significant challenge because of physiological barriers to its effective delivery and the lack of safe, effective and clinically suitable vehicles. To that end, we also discuss the potential and suitability of multifunctional polymeric micelles, including lipid-based micelles, as promising vehicles for both siRNA and drugs. PMID:24795633

  7. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin.

    PubMed

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin-PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities.

  8. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin

    PubMed Central

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin–PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities. PMID:29497294

  9. Structure of a Unimolecular Dendritic Reverse Micelle in Dense CO2 Via Small Angle Scattering

    NASA Astrophysics Data System (ADS)

    Lin, J. S.

    1997-03-01

    Dilute solutions in dense CO2 (5Kpsi and 25 degC) of a unimolecular reverse micelle were studied via small angle x ray scattering (SAXS). The unimolecular micelle was based on a fourth generation poly(propylene imine) dendrimer, functionalized with perfluoropolyether acid fluoride chains. A value of 26 added chains per dendrimer was obtained from other characterization techniques, and this number of chains was fixed in the fitting of the SAXS data to an f-arm star model. The molecular weight ( 33.5K g mol-1) agreed well with estimates from other techniques. The observed negative second virial coefficient, A2 = -1.2 x 10-4 cm^3 g-2 mol, correlates with prior observations, as does the observed radius of gyration, Rg = 32ÅSponsors: Div. of Mat. Sci., Basic Energy Sc., USDOE, contract DE-AC05-96OR22464, Oak Ridge Nat. Lab., managed by Lockheed Martin Energy Research Corp.; The Royal Commission for the Exhibition of 1851; National Science Foundation; Consortium for the Sythesis and Processing of Polymeric Materials in Carbon Dioxide.

  10. Predicting critical micelle concentration and micelle molecular weight of polysorbate 80 using compendial methods.

    PubMed

    Braun, Alexandra C; Ilko, David; Merget, Benjamin; Gieseler, Henning; Germershaus, Oliver; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    This manuscript addresses the capability of compendial methods in controlling polysorbate 80 (PS80) functionality. Based on the analysis of sixteen batches, functionality related characteristics (FRC) including critical micelle concentration (CMC), cloud point, hydrophilic-lipophilic balance (HLB) value and micelle molecular weight were correlated to chemical composition including fatty acids before and after hydrolysis, content of non-esterified polyethylene glycols and sorbitan polyethoxylates, sorbitan- and isosorbide polyethoxylate fatty acid mono- and diesters, polyoxyethylene diesters, and peroxide values. Batches from some suppliers had a high variability in functionality related characteristic (FRC), questioning the ability of the current monograph in controlling these. Interestingly, the combined use of the input parameters oleic acid content and peroxide value - both of which being monographed methods - resulted in a model adequately predicting CMC. Confining the batches to those complying with specifications for peroxide value proved oleic acid content alone as being predictive for CMC. Similarly, a four parameter model based on chemical analyses alone was instrumental in predicting the molecular weight of PS80 micelles. Improved models based on analytical outcome from fingerprint analyses are also presented. A road map controlling PS80 batches with respect to FRC and based on chemical analyses alone is provided for the formulator. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Structure and dynamics of ionic micelles: MD simulation and neutron scattering study.

    PubMed

    Aoun, B; Sharma, V K; Pellegrini, E; Mitra, S; Johnson, M; Mukhopadhyay, R

    2015-04-16

    Fully atomistic molecular dynamics (MD) simulations have been carried out on sodium dodecyl sulfate (SDS), an anionic micelle, and three cationic (CnTAB; n = 12, 14, 16) micelles, investigating the effects of size, the form of the headgroup, and chain length. They have been used to analyze neutron scattering data. MD simulations confirm the dynamical model of global motion of the whole micelle, segmental motion (headgroup and alkyl chain), and fast torsional motion associated with the surfactants that is used to analyze the experimental data. It is found that the solvent surrounding the headgroups results in their significant mobility, which exceeds that of the tails on the nanosecond time scale. The middle of the chain is found to be least mobile, consolidating the micellar configuration. This dynamical feature is similar for all the ionic micelles investigated and therefore independent of headgroup form and charge and chain length. Diffusion constants for global and segmental motion of the different micelles are consistent with experimentally obtained values as well as known structural features. This work provides a more realistic model of micelle dynamics and offers new insight into the strongly fluctuating surface of micelles which is important in understanding micelle dispersion and related functionality, like drug delivery.

  12. A 1H-n.m.r. study of casein micelles.

    PubMed Central

    Griffin, M C; Roberts, G C

    1985-01-01

    The 1H-n.m.r. spectrum of casein micelles consists of a small number of moderately sharp (linewidth approx. 60 Hz) resonances superimposed on the envelope of very broad lines expected for particles of this size. These sharp lines resemble, in chemical shift and relative intensity, the spectrum of the isolated 'macropeptide' released from the micelles by treatment with chymosin. The sharp lines in the casein micelle spectrum are further sharpened by addition of chymosin and broadened markedly by addition of ethanol. These observations are consistent with the proposal that the 'macropeptide' (the C-terminal 64 residues of K-casein) forms flexible 'hairs' on the surface of the micelles. PMID:3924034

  13. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Process of forming compounds using reverse micelle or reverse microemulsion systems

    DOEpatents

    Linehan, John C.; Fulton, John L.; Bean, Roger M.

    1998-01-01

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  15. Structure of block copolymer micelles in the presence of co-solvents

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis

    2015-03-01

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  16. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles

    PubMed Central

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-01-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals’ force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages. PMID:27905567

  17. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles.

    PubMed

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-12-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1 H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals' force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages.

  18. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles

    NASA Astrophysics Data System (ADS)

    Deng, Ling-Li; Taxipalati, Maierhaba; Que, Fei; Zhang, Hui

    2016-12-01

    Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals’ force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages.

  19. Cryo-transmission electron tomography of native casein micelles from bovine milk.

    PubMed

    Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F

    2011-12-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  1. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles.

    PubMed

    Chen, Ying-Chen; Su, Chia-Yu; Jhan, Hua-Jun; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-01-01

    To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic(®), Kolliphor(®), d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone(®), the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone(®) did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect.

  2. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles

    PubMed Central

    Chen, Ying-Chen; Su, Chia-Yu; Jhan, Hua-Jun; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-01-01

    To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic®, Kolliphor®, d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone®, the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone® did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect. PMID:26664117

  3. A new unsteady mixing model to predict NO(x) production during rapid mixing in a dual-stage combustor

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1992-01-01

    An advanced gas turbine engine to power supersonic transport aircraft is currently under study. In addition to high combustion efficiency requirements, environmental concerns have placed stringent restrictions on the pollutant emissions from these engines. A combustor design with the potential for minimizing pollutants such as NO(x) emissions is undergoing experimental evaluation. A major technical issue in the design of this combustor is how to rapidly mix the hot, fuel-rich primary zone product with the secondary diluent air to obtain a fuel-lean mixture for combustion in the second stage. Numerical predictions using steady-state methods cannot account for the unsteady phenomena in the mixing region. Therefore, to evaluate the effect of unsteady mixing and combustion processes, a novel unsteady mixing model is demonstrated here. This model has been used to study multispecies mixing as well as propane-air and hydrogen-air jet nonpremixed flames, and has been used to predict NO(x) production in the mixing region. Comparison with available experimental data show good agreement, thereby providing validation of the mixing model. With this demonstration, this mixing model is ready to be implemented in conjunction with steady-state prediction methods and provide an improved engineering design analysis tool.

  4. Preparation and in vivo/in vitro evaluation of formononetin phospholipid/vitamin E TPGS micelles.

    PubMed

    Cheng, Xudong; Yan, Hongmei; Jia, Xiaobin; Zhang, Zhenhai

    2016-01-01

    To enhance the formononetin (FN) antitumor effect, we developed a passive targeting FN-contained formulation. FN-contained Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS)/phospholipid micelles were prepared by the solvent injection method. Particle size, polydispersity, zeta potential, encapsulation efficiency, drug release profile, and micelles morphology were evaluated and characterized by various methods including high-performance liquid chromatography, dynamic light scattering, and transmission electron microscopy. Cellular uptake of micelles was evaluated with fluorescence imaging coupled with HPLC method. Cytotoxicity of FN micelles and free FN was compared using MTT method. In vivo imaging was employed to assess the accumulation of DiR micelles and free DiR at tumor site. The antitumor effect of FN micelles was examined in tumor-bearing mice. The results showed that prepared FN micelles had an average particle diameter of 111.91 ± 5.82 nm with good stability. FN micelles enhanced the cellular uptake and improved cell cytotoxicity than free FN. Furthermore, DiR micelles quickly accumulated at the tumor site than free DiR. FN micelles significantly improved tumor inhibition rate compared to that observed with free FN in tumor-bearing mice with great biosafety. Thus, FN micelles demonstrated a clear treatment advantage and provided an ideal drug administration system to improve the antitumor effect of FN.

  5. Statistical thermodynamics of amphiphile chains in micelles

    PubMed Central

    Ben-Shaul, A.; Szleifer, I.; Gelbart, W. M.

    1984-01-01

    The probability distribution of amphiphile chain conformations in micelles of different geometries is derived through maximization of their packing entropy. A lattice model, first suggested by Dill and Flory, is used to represent the possible chain conformations in the micellar core. The polar heads of the chains are assumed to be anchored to the micellar surface, with the other chain segments occupying all lattice sites in the interior of the micelle. This “volume-filling” requirement, the connectivity of the chains, and the geometry of the micelle define constraints on the possible probability distributions of chain conformations. The actual distribution is derived by maximizing the chain's entropy subject to these constraints; “reversals” of the chains back towards the micellar surface are explicitly included. Results are presented for amphiphiles organized in planar bilayers and in cylindrical and spherical micelles of different sizes. It is found that, for all three geometries, the bond order parameters decrease as a function of the bond distance from the polar head, in accordance with recent experimental data. The entropy differences associated with geometrical changes are shown to be significant, suggesting thereby the need to include curvature (environmental)-dependent “tail” contributions in statistical thermodynamic treatments of micellization. PMID:16593492

  6. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  7. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  8. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Boehler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  9. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel

    PubMed Central

    Kim, Sungwon; Kim, Ji Young; Huh, Kang Moo; Acharya, Ghanshyam; Park, Kinam

    2008-01-01

    Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI tract. Acrylic acid (AA) was introduced, as a release modulator, into HPs by copolymerization with 4-(2-vinylbenzyloxy)-N,N-(diethylnicotinamide) (VBODENA). The AA content was varied from 0% to 50 % (in the molar ratio to VBODENA). HPs spontaneously produced micelles in water, and their critical micelle concentrations (CMCs) ranged from 31 μg/mL to 86 μg/mL. Fluorescence probe study using pyrene showed that blank HP micelles possessed a good pH-sensitivity, which was clearly observed at relatively high AA contents and pH > 6. The pH sensitivity also affected the PTX loading property. Above pH 5, the PTX loading content and loading efficiency in HP micelles were significantly reduced. Although this may be primarily due to the AA moieties, other factors may include PTX degradation and polymer aggregation. The PTX release from HP micelles with more than 20% (mol) AA contents was completed within 12 h in a simulated intestinal fluid (SIF, pH=6.5). The HP micelles without any AA moiety showed very slow release profiles. In the simulated gastric fluid (SGF, pH=1.6), severe degradation of the released PTX was observed. The pH-dependent release of PTX from HP micelles can be used to increase the bioavailability of PTX upon oral delivery. PMID:18672013

  10. Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.

    PubMed

    Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun

    2014-03-25

    Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.

  11. β-Lapachone and Paclitaxel Combination Micelles with Improved Drug Encapsulation and Therapeutic Synergy as Novel Nanotherapeutics for NQO1-Targeted Cancer Therapy.

    PubMed

    Zhang, Ling; Chen, Zhen; Yang, Kuan; Liu, Chun; Gao, Jinming; Qian, Feng

    2015-11-02

    β-Lapachone (LPC) is a novel cytotoxic agent that is bioactivated by NADP(H): quinone oxidoreductase 1 (NQO1), an enzyme elevated in a variety of tumors, such as non-small cell lung cancer (NSCLC), pancreatic cancer, liver cancer, and breast cancer. Despite its unique mechanism of action, its clinical evaluation has been largely hindered by low water solubility, short blood half-life, and narrow therapeutic window. Although encapsulation into poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-PLA) micelles could modestly improve its solubility and prolong its half-life, the extremely fast intrinsic crystallization tendency of LPC prevents drug loading higher than ∼2 wt %. The physical stability of the LPC-loaded micelles is also far from satisfactory for further development. In this study, we demonstrate that paclitaxel (PTX), a front-line drug for many cancers, can provide two functions when coencapsulated together with LPC in the PEG-PLA micelles; first, as a strong crystallization inhibitor for LPC, thus to significantly increase the LPC encapsulation efficiency in the micelle from 11.7 ± 2.4% to 100.7 ± 2.2%. The total drug loading efficiency of both PTX and LPC in the combination polymeric micelle reached 100.3 ± 3.0%, and the drug loading density reached 33.2 ± 1.0%. Second, the combination of LPC/PTX demonstrates strong synergistic cytotoxicity effect against the NQO1 overexpressing cancer cells, including A549 NSCLC cells, and several pancreatic cancer cells (combination index <1). In vitro drug release study showed that LPC was released faster than PTX either in phosphate-buffered saline (PH = 7.4) or in 1 M sodium salicylate, which agrees with the desired dosing sequence of the two drugs to exert synergistic pharmacologic effect at different cell checkpoints. The PEG-PLA micelles coloaded with LPC and PTX offer a novel nanotherapeutic, with high drug loading, sufficient physical stability, and biological synergy to increase drug delivery efficiency

  12. PEG-poly(amino acid) block copolymer micelles for tunable drug release.

    PubMed

    Ponta, Andrei; Bae, Younsoo

    2010-11-01

    To achieve tunable pH-dependent drug release in tumor tissues. Poly(ethylene glycol)-poly(aspartic acid) [PEG-p(Asp)] containing 12 kDa PEG and pAsp (5, 15, and 35 repeating units) were prepared. Hydrazide linkers with spacers [glycine (Gly) and 4-aminobenzoate (Abz)] were introduced to PEG-p(Asp), followed by drug conjugation [doxorubicin (DOX)]. The block copolymer-drug conjugates were either reconstituted or dialyzed in aqueous solutions to prepare micelles. Drug release patterns were observed under sink conditions at pH 5.0 and 7.4, 37°C, for 48 h. A collection of six block copolymers with different chain lengths and spacers was synthesized. Drug binding yields were 13-43.6%. The polymer-drug conjugates formed <50 nm polymer micelles irrespective of polymer compositions. Gly-introduced polymer micelles showed marginal change in particle size (40 ± 10 nm), while the size of Abz-micelles increased gradually from 10 to 40 nm as the polymer chain lengths increased. Drug release patterns of both Gly and Abz micelles were pH-dependent and tunable. The spacers appear to play a crucial role in controlling drug release and stability of polymer micelles in combination with block copolymer chain lengths. A drug delivery platform for tunable drug release was successfully developed with polymer micelles possessing spacer-modified hydrazone drug-binding linkers.

  13. The use of XAFS to determine the nature of interaction of iron and molybdenum metal salts within PS-b-P2VP micelles.

    PubMed

    Riskin, Alexander; Beale, Andrew M; Boyen, Hans-Gerhard; Vantomme, André; Hardy, An; Van Bael, Marlies K

    2013-02-07

    The poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) micelle route is a well established method for the preparation of bimetallic nanoparticles used for the catalysis of carbon nanotubes and other applications like ultrahigh density storage devices, yet to date no information is available concerning the internal structure of the P2VP-metal salt complex. For the first time, XAFS measurements were performed on micelles loaded with either iron(III) chloride or molybdenum(V) chloride and a combination of both. Analysis of the data revealed that iron is tetrahedrally coordinated within the core, whereas molybdenum is octahedrally coordinated in the pure loaded micelles and trigonally coordinated in the mixed micelles. For the bimetallic samples, analysis of the Fe and Mo K-edge data revealed the existence of an interaction between iron and molybdenum. This approach to obtain detailed structural information during the preparation of these catalyst samples will allow for a deeper understanding of the effects of structure on the function of catalysts used for CNT growth i.e. to explain differences in yield as well as potentially providing a deeper understanding of the CNT growth mechanism itself.

  14. Curcumin-Loading-Dependent Stability of PEGMEMA-Based Micelles Affects Endocytosis and Exocytosis in Colon Carcinoma Cells.

    PubMed

    Chang, Teddy; Trench, David; Putnam, Joshua; Stenzel, Martina H; Lord, Megan S

    2016-03-07

    Polymeric micelles were formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(PEGMEMA)-b-PS) block copolymer of two different chain lengths. The micelles formed were approximately 16 and 46 nm in diameter and used to encapsulate curcumin. Upon loading of the curcumin into the micelles, their size increased to approximately 34 and 80 nm in diameter, respectively, with a loading efficiency of 58%. The unloaded micelles were not cytotoxic to human colon carcinoma cells, whereas only the smaller loaded micelles were cytotoxic after 72 h of exposure. The micelles were rapidly internalized by the cells within minutes of exposure, with the loaded micelles internalized to a greater extent owing to their enhanced stability compared to that of the unloaded micelles. The larger micelles were more rapidly internalized and exocytosed than the smaller micelles, demonstrating the effect of micelle size and drug loading on drug delivery and cytotoxicity.

  15. Effect of microfluidization on casein micelle size of bovine milk

    NASA Astrophysics Data System (ADS)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  16. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    PubMed

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (<10 mg/L). Micelle morphology depended on the nature of the hydrophobic block, with PBO- and PSO-based micelles yielding monodisperse spherical and cylindrical nanosized aggregates, respectively. The maximum solubilization capacity for DCTX ranged from 0.7 to 4.2% and was the highest for PSO micelles exhibiting the longest hydrophobic segment. Despite their high affinity for DCTX, PEO-b-PSO micelles were not able to efficiently protect DCTX against hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.

  17. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

    PubMed

    Mi, Peng; Cabral, Horacio; Kokuryo, Daisuke; Rafi, Mohammad; Terada, Yasuko; Aoki, Ichio; Saga, Tsuneo; Takehiko, Ishii; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    NASA Astrophysics Data System (ADS)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  19. Self-assembled penetratin-deferasirox micelles as potential carriers for hydrophobic drug delivery.

    PubMed

    Goswami, Dibakar; Vitorino, Hector Aguilar; Machini, M Teresa; Espósito, Breno P

    2015-11-01

    There has been a growing interest in the use of micelles with nanofiber geometry as nanocarriers for hydrophobic drugs. Here we show that the conjugate of penetratin, a cell-penetrating peptide (CPP) with blood-brain barrier (BBB) permeability, and deferasirox (DFX), a hydrophobic iron chelator, self-assembles to form micelles at a very low concentration (∼15 mg/L). The critical micelle concentration (CMC) was determined, and the micelles were used for solubilizing curcumin, a hydrophobic anti-neurodegenerative drug, for successful delivery across RBE4 cells, a BBB model. Transmission Electron Microscope images of the curcumin-loaded micelles confirmed the formation of nanofibers. These results indicate the potential of CPP-drug conjugates for use as nanocarriers. © 2015 Wiley Periodicals, Inc.

  20. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  1. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanic, Vesna; Broadbent, Charlotte; DiMasi, Elaine

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such datamore » make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.« less

  2. The forensic value of X-linked markers in mixed-male DNA analysis.

    PubMed

    He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian

    2018-05-04

    Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.

  3. Design of polymer conjugated 3-helix micelles as nanocarriers with tunable shapes.

    PubMed

    Ma, Dan; DeBenedictis, Elizabeth P; Lund, Reidar; Keten, Sinan

    2016-11-24

    Amphiphilic peptide-polymer conjugates have the ability to form stable nanoscale micelles, which show great promise for drug delivery and other applications. A recent design has utilized the end-conjugation of alkyl chains to 3-helix coiled coils to achieve amphiphilicity, combined with the side-chain conjugation of polyethylene glycol (PEG) to tune micelle size through entropic confinement forces. Here we investigate this phenomenon in depth, using coarse-grained dissipative particle dynamics (DPD) simulations in an explicit solvent and micelle theory. We analyze the conformations of PEG chains conjugated to three different positions on 3-helix bundle peptides to ascertain the degree of confinement upon assembly, as well as the ordering of the subunits making up the micelle. We discover that the micelle size and stability is dictated by a competition between the entropy of PEG chain conformations in the assembled state, as well as intermolecular cross-interactions among PEG chains that promote cohesion between neighboring conjugates. Our analyses build on the role of PEG molecular weight and conjugation site and lead to computational phase diagrams that can be used to design 3-helix micelles. This work opens pathways for the design of multifunctional micelles with tunable size, shape and stability.

  4. Tuning Structural Properties of Biocompatible Block Copolymer Micelles by Varying Solvent Composition

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan

    The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.

  5. Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

    PubMed

    Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed

    2017-09-01

    Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  6. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Cao, Yanwu; Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Peer, Dan; Zhao, Yanjun

    2015-03-01

    Nanoscale drug delivery platforms have been developed over the past four decades that have shown promising clinical results in several types of cancer and inflammatory disorders. These nanocarriers carrying therapeutic payloads are maximizing the therapeutic outcomes while minimizing adverse effects. Yet one of the major challenges facing drug developers is the dilemma of premature versus on-demand drug release, which influences the therapeutic regiment, efficacy and potential toxicity. Herein, we report on redox-sensitive polymer-drug conjugate micelles for on-demand intracellular delivery of a model active agent, curcumin. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide bond or ester bond (control), respectively. The self-assembled redox-sensitive micelles exhibited a hydrodynamic size of 115.6 ± 5.9 (nm) with a zeta potential of -10.6 ± 0.7 (mV). The critical micelle concentration was determined at 6.7 ± 0.4 (μg mL-1). Under sink conditions with a mimicked redox environment (10 mM dithiothreitol), the extent of curcumin release at 48 h from disulfide bond-linked micelles was nearly three times higher compared to the control micelles. Such rapid release led to a lower half maximal inhibitory concentration (IC50) in HeLa cells at 18.5 ± 1.4 (μg mL-1), whereas the IC50 of control micelles was 41.0 ± 2.4 (μg mL-1). The cellular uptake study also revealed higher fluorescence intensity for redox-sensitive micelles. In conclusion, the redox-sensitive polymeric conjugate micelles could enhance curcumin delivery while avoiding premature release, and achieving on-demand release under the high glutathione concentration in the cell cytoplasm. This strategy opens new avenues for on-demand drug release of nanoscale intracellular delivery platforms that ultimately might be translated into pre-clinical and future clinical practice.

  7. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    PubMed

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  8. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    PubMed Central

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

  9. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  10. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Gupta, Umesh

    2016-01-01

    Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

  11. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.

    PubMed

    Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su

    2014-02-10

    Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.

  12. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity

    PubMed Central

    Liu, Yuling; Xu, Yingqi; Wu, Minghui; Fan, Lijiao; He, Chengwei; Wan, Jian-Bo; Li, Peng; Chen, Meiwan; Li, Hui

    2016-01-01

    Mitoxantrone (MIT) is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES) amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT) micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50) value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines). In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy. PMID:27471384

  13. Soft ferromagnetism in mixed valence Sr(1-x)La(x)Ti(0.5)Mn(0.5)O₃ perovskites.

    PubMed

    Qasim, Ilyas; Blanchard, Peter E R; Kennedy, Brendan J; Ling, Chris D; Jang, Ling-Yun; Kamiyama, Takashi; Miao, Ping; Torii, Shuki

    2014-05-14

    The structural, magnetic and electrical properties of the mixed Ti-Mn oxides Sr(1-x)La(x)Ti(0.5)Mn(0.5)O3 (0 ≤ x ≤ 0.5) are reported. At room temperature the oxides have a cubic structure in space group Pm3m for x ≤ 0.25 and rhombohedral in R3c for 0.3 ≤ x ≤ 0.50. X-ray absorption spectroscopic measurements demonstrate the addition of La(3+) is compensated by the partial reduction of Mn(4+) to Mn(3+). Variable temperature neutron diffraction measurements show that cooling Sr(0.6)La(0.4)Ti(0.5)Mn(0.5)O3 results in a first order transition from rhombohedra to an orthorhombic structure in Imma. Complex magnetic behaviour is observed. The magnetic behaviour of the mixed valent (Mn(3+/4+)) examples is dominated by ferromagnetic interactions, although cation disorder frustrates long range magnetic ordering.

  14. Kinetic study of sunflower phospholipase Dα: interactions with micellar substrate, detergents and metals.

    PubMed

    Abdelkafi, Slim; Abousalham, Abdelkarim

    2011-07-01

    Phospholipase Dα (PLDα) purified from six-day post-germinated sunflower seeds was inactive in vitro on bilamellar substrates. It was fully active on mixed micelles made with phospholipids and a mixture of Triton-X100 and SDS at equal concentrations. It had an absolute need for divalent ions and calcium ions at millimolar concentration were the most efficient. Calcium had two effects. Firstly, using the fluorescent probe 2-p-toluidinylnaphtalene-6-sulfonate, we showed that the enzyme was able to bind calcium with a dissociation constant of 40-50 mM. This high value is probably due to the modification of the C2 domain which lacks some coordination residues allowing the binding of the metal. Secondly, using turbidity measurements, we showed that the metal ions interact with the SDS contained in the mixed micelles thus leading to an aggregated form of the substrate which is more easily hydrolyzed by PLDα. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles.

    PubMed

    Kheiri Manjili, Hamidreza; Ghasemi, Parisa; Malvandi, Hojjat; Mousavi, Mir Sajjad; Attari, Elahe; Danafar, Hossein

    2017-07-01

    Curcumin (CUR) has been associated with anti-inflammatory, antimicrobial, antioxidant, anti-amyloid, and antitumor effects, but its application is limited because of its low aqueous solubility and poor oral bioavailability. To progress the bioavailability and water solubility of CUR, we synthesized five series of mono methoxy poly (ethylene glycol)-poly (ε-caprolactone) (mPEG-PCL) diblock copolymers. The structure of the copolymers was characterized by H NMR, FTIR, DSC and GPC techniques. In this study, CUR was encapsulated within micelles through a single-step nano-precipitation method, leading to formation of CUR-loaded mPEG-PCL (CUR/mPEG-PCL) micelles. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxicity of void CUR, mPEG-PCL and CUR/mPEG-PCL micelles was compared to each other by performing MTT assay of the treated MCF-7 and 4T1 cell line. Study of the in vivo pharmacokinetics of the CUR-loaded micelles was also carried out on selected copolymers in comparison with CUR solution formulations. The results showed that the zeta potential of CUR-loaded micelles was about -11.5mV and the average size was 81.0nm. CUR was encapsulated into mPEG-PCL micelles with loading capacity of 20.65±0.015% and entrapment efficiency of 89.32±0.34%. The plasma AUC (0-t), t 1/2 and C max of CUR micelles were increased by 52.8, 4.63 and 7.51-fold compared to the CUR solution, respectively. In vivo results showed that multiple injections of CUR-loaded micelles could prolong the circulation time and increase the therapeutic efficacy of CUR. These results suggested that mPEG-PCL micelles would be a potential carrier for CUR. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  17. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    NASA Astrophysics Data System (ADS)

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu; Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang; Li, Youxin

    2013-10-01

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly( d, l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  18. Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littrell, K.; Thiyagarajan, P.; Tiede, D.

    1999-07-02

    In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.

  19. Chain exchange in triblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  20. Evaporative concentration of skimmed milk: effect on casein micelle hydration, composition, and size.

    PubMed

    Liu, Dylan Z; Dunstan, David E; Martin, Gregory J O

    2012-10-01

    Understanding the effect of evaporative concentration on casein micelle composition is of high importance for milk processing. Alterations to the hydration, composition and size of casein micelles were investigated in skimmed milk evaporated to concentrations of 12-45% total solids content. The size of casein micelles was determined by dynamic light scattering, and the water content and composition determined by analysis of supernatants and pellets obtained by ultracentrifugation. The mass balance and hydration results showed that during the evaporation process, while micelles were dehydrated, water was removed preferentially from the serum. The amount of soluble casein and calcium in the serum decreased as a function of increasing solids content, indicating a shift of these components to the micelles. The formation of a small proportion of micelle aggregates at high concentrations appeared dependent on the time kept at these concentrations. Upon redilution with water, casein micelles were immediately rehydrated and aggregates were broken up in a matter of minutes. Soluble calcium and pH returned to their original state over a number of hours; however, only a small percentage of original soluble casein returned to the serum over the 5h period investigated. These results showed that casein micelles are significantly affected by evaporative concentration and that the alterations are not completely and rapidly reversible. Copyright © 2012. Published by Elsevier Ltd.

  1. Stability of casein micelles in milk

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  2. Statistical crystallography of surface micelle spacing

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    The aggregation of the recently reported surface micelles of block polyelectrolytes is analyzed using techniques of statistical crystallography. A polygonal lattice (Voronoi mosaic) connects center-to-center points, yielding statistical agreement with crystallographic predictions; Aboav-Weaire's law and Lewis's law are verified. This protocol supplements the standard analysis of surface micelles leading to aggregation number determination and, when compared to numerical simulations, allows further insight into the random partitioning of surface films. In particular, agreement with Lewis's law has been linked to the geometric packing requirements of filling two-dimensional space which compete with (or balance) physical forces such as interfacial tension, electrostatic repulsion, and van der Waals attraction.

  3. Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy

    NASA Astrophysics Data System (ADS)

    Xu, Wenjin; Burke, Jocelyn F.; Pilla, Srikanth; Chen, Herbert; Jaskula-Sztul, Renata; Gong, Shaoqin

    2013-09-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor (NET) that is often resistant to standard therapies. Resveratrol suppresses MTC growth in vitro, but it has low bioavailability in vivo due to its poor water solubility and rapid metabolic breakdown, as well as lack of tumor-targeting ability. A novel unimolecular micelle based on a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for NET-targeted delivery. The hyperbranched amphiphilic block copolymer consisted of a dendritic Boltorn® H40 core, a hydrophobic poly(l-lactide) (PLA) inner shell, and a hydrophilic poly(ethylene glycol) (PEG) outer shell. Octreotide (OCT), a peptide that shows strong binding affinity to somatostatin receptors, which are overexpressed on NET cells, was used as the targeting ligand. Resveratrol was physically encapsulated by the micelle with a drug loading content of 12.1%. The unimolecular micelles exhibited a uniform size distribution and spherical morphology, which were determined by both transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cellular uptake, cellular proliferation, and Western blot analyses demonstrated that the resveratrol-loaded OCT-targeted micelles suppressed growth more effectively than non-targeted micelles. Moreover, resveratrol-loaded NET-targeted micelles affected MTC cells similarly to free resveratrol in vitro, with equal growth suppression and reduction in NET marker production. These results suggest that the H40-based unimolecular micelle may offer a promising approach for targeted NET therapy.

  4. Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles

    NASA Astrophysics Data System (ADS)

    Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.

    2015-07-01

    The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well

  5. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary

  7. Sampling the kinetic pathways of a micelle fusion and fission transition.

    PubMed

    Pool, René; Bolhuis, Peter G

    2007-06-28

    The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.

  8. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo.

    PubMed

    Gou, MaLing; Men, Ke; Shi, HuaShan; Xiang, MingLi; Zhang, Juan; Song, Jia; Long, JianLin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, ZhiYong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 ± 0.011) with a mean particle size of 27.3 ± 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 ± 1.02%, and drug loading of 12.95 ± 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t(1/2) and AUC of curcumin in vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesis in vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cells in vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg(-1) curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  9. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  10. Block Copolymer Micelles as Nanocontainers for Controlled Release of Proteins from Biocompatible Oil Phases

    PubMed Central

    2009-01-01

    Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil−water interface. Self-assembly of the block copolymer, poly(ϵ-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12−30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene. PMID:19235932

  11. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  12. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  13. Influence of succinylation on physicochemical property of yak casein micelles.

    PubMed

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH < 3. Succinylation increased yak casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Interactions between tea catechins and casein micelles and their impact on renneting functionality.

    PubMed

    Haratifar, Sanaz; Corredig, Milena

    2014-01-15

    Many studies have shown that tea catechins bind to milk proteins. This research focused on the association of tea polyphenols with casein micelles, and the consequences of the interactions on the renneting behaviour of skim milk. It was hypothesized that epigallocatechin-gallate (EGCG), the main catechin present in green tea, forms complexes with the casein micelles and that the association modifies the processing functionality of casein micelles. The binding of EGCG to casein micelles was quantified using HPLC. The formation of catechin-casein micelles complexes affected the rennet induced gelation of milk, and the effect was concentration dependent. Both the primary as well as the secondary stage of gelation were affected. These experiments clearly identify the need for a better understanding of the effect of tea polyphenols on the processing functionality of casein micelles, before milk products can be used as an appropriate platform for delivery of bioactive compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Utilization of Triton X-100 and polyethylene glycols during surfactant-mediated biodegradation of diesel fuel.

    PubMed

    Wyrwas, Bogdan; Chrzanowski, Łukasz; Ławniczak, Łukasz; Szulc, Alicja; Cyplik, Paweł; Białas, Wojciech; Szymański, Andrzej; Hołderna-Odachowska, Aleksandra

    2011-12-15

    The hypothesis regarding preferential biodegradation of surfactants applied for enhancement of microbial hydrocarbons degradation was studied. At first the microbial degradation of sole Triton X-100 by soil isolated hydrocarbon degrading bacterial consortium was confirmed under both full and limited aeration with nitrate as an electron acceptor. Triton X-100 (600 mg/l) was utilized twice as fast for aerobic conditions (t(1/2)=10.3h), compared to anaerobic conditions (t(1/2)=21.8h). HPLC/ESI-MS analysis revealed the preferential biodegradation trends in both components classes of commercial Triton X-100 (alkylphenol ethoxylates) as well as polyethylene glycols. The obtained results suggest that the observed changes in the degree of ethoxylation for polyethylene glycol homologues occurred as a consequence of the 'central fission' mechanism during Triton X-100 biodegradation. Subsequent experiments with Triton X-100 at approx. CMC concentration (150 mg/l) and diesel oil supported our initial hypothesis that the surfactant would become the preferred carbon source even for hydrocarbon degrading bacteria. Regardless of aeration regimes Triton X-100 was utilized within 48-72 h. Efficiency of diesel oil degradation was decreased in the presence of surfactant for aerobic conditions by approx. 25% reaching 60 instead of 80% noted for experiments without surfactant. No surfactant influence was observed for anaerobic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Epitope characterization of a supramolecular protein assembly with a collection of monoclonal antibodies: the case of casein micelle.

    PubMed

    Johansson, Annette; Lugand, Damien; Rolet-Répécaud, Odile; Mollé, Daniel; Delage, Marie-Madeleine; Peltre, Gabriel; Marchesseau, Sylvie; Léonil, Joëlle; Dupont, Didier

    2009-03-01

    In milk, kappa-, beta-, alphas(1)- and alphas(2)-casein (CN) are associated into a supramolecular assembly, the micelle. In this work, CN micelles contained in fresh skim milk were used to produce over 100 monoclonal antibodies. The specificity of these probes was determined using libraries of synthetic peptides and peptides fractionated from tryptic hydrolysis of purified CNs. Although kappa-CN and alphas(2)-CN are minor proteins in the micelle (ratio 1:1:4:4 for kappa, alphas(2), alphas(1), beta) a proportionally high number of clones were produced towards these two proteins (32 for each), compared to 9 and 29 for alphas(1)-CN and beta-CN, respectively. Most of the beta-CN and kappa-CN epitopes were identified, while about 50% of alphas(1)-CN and alphas(2)-CN antibodies were suspected to react to conformational linear or discontinuous epitopes, since no peptide binding could be identified. Antibody binding to the phosphoserine rich regions of the three calcium sensitive CNs was weak or non-existing, suggesting them to be hidden in the micelle structure together with alphas(1)-CN. The C-terminal glycomacropeptide of kappa-CN and the C-terminal moiety of beta-CN were well exposed generating the majority of the antibodies specific for these two proteins. The two major antigenic sites of alphas(2) were alphas(2)-CN (f96-114) and (f16-35). Cross-reaction between alphas(2)-CN specific antibodies with alphas(1)-CN illustrated the tangled structure between the two proteins. Immuno-dominant epitopes identified in the present study totally differ from those known for the purified caseins suggesting they were specific for the micelle supramolecular structure.

  17. Multiscale Molecular Dynamics Simulations of Model Hydrophobically Modified Ethylene Oxide Urethane Micelles.

    PubMed

    Yuan, Fang; Larson, Ronald G

    2015-09-24

    The flower-like micelles of various aggregation numbers of a model hydrophobically modified ethylene oxide urethane (HEUR) molecule, C16E45C16, and their corresponding starlike micelles, containing the surfactants C16E22 and C16E23, were studied by atomistic and coarse-grained molecular dynamic (MD) simulations. We used free energies from umbrella sampling to calculate the size distribution of micelle sizes and the average time for escape of a hydrophobic group from the micelle. Using the coarse-grained MARTINI force field, the most probable size of the model HEUR molecule was thereby determined to be about 80 hydrophobes per micelle and the average hydrophobe escape time to be about 0.1 s, both of which are consistent with previous experimental studies. Atomistic simulations reveal that hydrogen bond formation and the mean lifetime of hydration waters of the poly(ethylene oxide) (or PEO) groups are location-dependent in the HEUR micelle, with PEO groups immediately adjacent to the C16 groups forming the fewest hydrogen bonds with water and having hydration waters with longer lifetimes than those of the PEO groups located further away from the C16 groups.

  18. Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery.

    PubMed

    Almeida, Andreia; Silva, Daniella; Gonçalves, Virginia; Sarmento, Bruno

    2018-04-01

    In this work, self-assembled amphiphilic micelles based on chitosan (CS) and polycaprolactone (PCL) were produced and used as carriers of paclitaxel (PTX) to improve its intestinal pharmacokinetic profile. Chitosan-grafted-polycaprolactone (CS-g-PCL) was synthesized through a carbodiimide reaction by amidation and confirmed by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance analysis ( 1 H NMR), and contact angle evaluation. Micelles were produced by solvent evaporation method, and the critical micelle concentration was investigated by conductimetry. The obtained micelles were of 408-nm mean particle size, narrow size distribution (polydispersity index of 0.335) and presented positive surface charge around 30 mV. The morphology of micelles assessed by transmission electron microscopy (TEM) revealed round and smooth surface, in agreement with dynamic light scattering measurements. The association efficiency determined by high-performance liquid chromatography (HPLC) was as high as 82%. The in vitro cytotoxicity of the unloaded and PTX-loaded micelles was tested against Caco-2 and HT29-MTX intestinal epithelial cells, resulting in the absence of cell toxicity for all formulations. Moreover, the permeability of PTX-loaded micelles in Caco-2 monolayer and Caco-2/HT29-MTX co-culture model was determined. Results showed that the permeability of PTX was higher in Caco-2/HT29-MTX co-culture model compared with Caco-2 monolayer due to the mucoadhesive character of micelles, acting as a platform to deliver PTX at the sites of absorption. Therefore, it can be concluded that the PTX-loaded CS-g-PCL micelles, employed for the first time as PTX carriers, may be a potential drug carrier for the intestinal delivery of hydrophobic drugs, particularly anticancer agents.

  19. Antimicrobial activity of topically-applied soyaethyl morpholinium ethosulfate micelles against Staphylococcus species.

    PubMed

    Yang, Shih-Chun; Aljuffali, Ibrahim A; Sung, Calvin T; Lin, Chwan-Fwu; Fang, Jia-You

    2016-03-01

    Here we evaluated the antibacterial efficacy of soyaethyl morpholinium ethosulfate (SME) micelles as an inherent bactericide against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The antimicrobial activity was examined by in vitro culture model and murine model of skin infection. Cationic micelles formed by benzalkonium chloride or cetylpyridinium chloride were used for comparison. The minimum inhibitory concentration and minimum bactericidal concentration against S. aureus and MRSA were 1.71-3.42 and 1.71-6.84 μg/ml, respectively. Topical administration of SME micelles significantly decreased the cutaneous infection and MRSA load in mice. The killing of bacteria was caused by direct cell wall/membrane rupture. SME micelles also penetrated into the bacteria to elicit a Fenton reaction and oxidative stress. SME micelles have potential as antimicrobial agents due to their lethal effect against S. aureus and MRSA with a low toxicity to mammalian cells.

  20. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles

    PubMed Central

    Kuo, Cheng-Hsiang; Leon, Lorraine; Chung, Eun Ji; Huang, Ru-Ting; Sontag, Timothy J.; Reardon, Catherine A.; Getz, Godfrey S.; Tirrell, Matthew; Fang, Yun

    2015-01-01

    Polyelectrolyte complex micelles have great potential as gene delivery vehicles because of their ability to encapsulate charged nucleic acids forming a core by neutralizing their charge, while simultaneously protecting the nucleic acids from non-specific interactions and enzymatic degradation. Furthermore, to enhance specificity and transfection efficiency, polyelectrolyte complex micelles can be modified to include targeting capabilities. Here, we describe the design of targeted polyelectrolyte complex micelles containing inhibitors against dys-regulated microRNAs (miRNAs) that promote atherosclerosis, a leading cause of human mortality and morbidity. Inhibition of dys-regulated miRNAs in diseased cells associated with atherosclerosis has resulted in therapeutic efficacy in animal models and has been proposed to treat human diseases. However, the non-specific targeting of microRNA inhibitors via systemic delivery has remained an issue that may cause unwanted side effects. For this reason, we incorporated two different peptide sequences to our miRNA inhibitor containing polyelectrolyte complex micelles. One of the peptides (Arginine-Glutamic Acid-Lysine-Alanine or REKA) was used in another micellar system that demonstrated lesion-specific targeting in a mouse model of atherosclerosis. The other peptide (Valine-Histidine-Proline-Lysine-Glutamine-Histidine-Arginine or VHPKQHR) was identified via phage display and targets vascular endothelial cells through the vascular cell adhesion molecule-1 (VCAM-1). In this study we have tested the in vitro efficacy and efficiency of lesion- and cell-specific delivery of microRNA inhibitors to the cells associated with atherosclerotic lesions via peptide-targeted polyelectrolyte complex micelles. Our results show that REKA-containing micelles (fibrin-targeting) and VHPKQHR-containing micelles (VCAM-1 targeting) can be used to carry and deliver microRNA inhibitors into macrophages and human endothelial cells, respectively

  1. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery.

    PubMed

    Cao, Yanwu; Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Peer, Dan; Zhao, Yanjun

    2015-03-20

    Nanoscale drug delivery platforms have been developed over the past four decades that have shown promising clinical results in several types of cancer and inflammatory disorders. These nanocarriers carrying therapeutic payloads are maximizing the therapeutic outcomes while minimizing adverse effects. Yet one of the major challenges facing drug developers is the dilemma of premature versus on-demand drug release, which influences the therapeutic regiment, efficacy and potential toxicity. Herein, we report on redox-sensitive polymer-drug conjugate micelles for on-demand intracellular delivery of a model active agent, curcumin. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a disulfide bond or ester bond (control), respectively. The self-assembled redox-sensitive micelles exhibited a hydrodynamic size of 115.6 ± 5.9 (nm) with a zeta potential of -10.6 ± 0.7 (mV). The critical micelle concentration was determined at 6.7 ± 0.4 (μg mL(-1)). Under sink conditions with a mimicked redox environment (10 mM dithiothreitol), the extent of curcumin release at 48 h from disulfide bond-linked micelles was nearly three times higher compared to the control micelles. Such rapid release led to a lower half maximal inhibitory concentration (IC50) in HeLa cells at 18.5 ± 1.4 (μg mL(-1)), whereas the IC50 of control micelles was 41.0 ± 2.4 (μg mL(-1)). The cellular uptake study also revealed higher fluorescence intensity for redox-sensitive micelles. In conclusion, the redox-sensitive polymeric conjugate micelles could enhance curcumin delivery while avoiding premature release, and achieving on-demand release under the high glutathione concentration in the cell cytoplasm. This strategy opens new avenues for on-demand drug release of nanoscale intracellular delivery platforms that ultimately might be translated into pre-clinical and future clinical practice.

  2. Reduction-responsive interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry for drug controlled release

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Wang, Hongquan; Zhang, Xiaojin

    2017-12-01

    To improve the stability of polymeric micelles, here we describe interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry. The formation of interlayer-crosslinked micelles was investigated and confirmed by proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The morphology of un-crosslinked micelles and crosslinked micelles observed by transmission electron microscope is both uniform nano-sized spheres (approximately 20 nm). The crosslinking enhances the stability of polymeric micelles and improves the drug loading capacity of polymeric micelles. The interlayer-crosslinked micelles prepared from star-shaped copolymer and a crosslinker containing a disulfide bond are reduction-responsive and can release the drug quickly in the presence of the reducing agents such as glutathione (GSH).

  3. Polymeric microcapsules assembled from a cationic/zwitterionic pair of responsive block copolymer micelles.

    PubMed

    Addison, Timothy; Cayre, Olivier J; Biggs, Simon; Armes, Steven P; York, David

    2010-05-04

    Using a layer-by-layer (LbL) approach, this work presents the preparation of hollow microcapsules with a membrane constructed entirely from a cationic/zwitterionic pair of pH-responsive block copolymer micelles. Our previous work with such systems highlighted that, in order to retain the responsive nature of the individual micelles contained within the multilayer membranes, it is important to optimize the conditions required for the selective dissolution of the sacrificial particulate templates. Consequently, here, calcium carbonate particles have been employed as colloidal templates as they can be easily dissolved in aqueous environments with the addition of chelating agents such as ethylenediaminetetraacetic acid (EDTA). Furthermore, the dissolution can be carried out in solutions buffered to a desirable pH so not to adversely affect the pH sensitive micelles forming the capsule membranes. First, we have deposited alternating layers of anionic poly[2-(dimethylamino)ethyl methacrylate-block-poly(2-(diethylamino)ethyl methacrylate)] (PDMA-PDEA) and cationic poly(2-(diethylamino)ethyl)methacrylate-block-poly(methacrylic acid) (PDEA-PMAA) copolymer micelles onto calcium carbonate colloidal templates. After deposition of five micelle bilayers, addition of dilute EDTA solution resulted in dissolution of the calcium carbonate and formation of hollow polymer capsules. The capsules were imaged using atomic force microscopy (AFM) and scanning electron microscopy (SEM), which shows that the micelle/micelle membrane is sufficiently robust to withstand dissolution of the supporting template. Quartz crystal microbalance studies were conducted and provide good evidence that the micelle multilayer structure is retained after EDTA treatment. In addition, a hydrophobic dye was incorporated into the micelle cores prior to adsorption. After dissolution of the particle template, the resulting hollow capsules retained a high concentration of dye, suggesting that the core

  4. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    NASA Astrophysics Data System (ADS)

    Gou, MaLing; Shi, HuaShan; Guo, Gang; Men, Ke; Zhang, Juan; Zheng, Lan; Li, ZhiYong; Luo, Feng; Qian, ZhiYong; Zhao, Xia; Wei, YuQuan

    2011-03-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ~ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  5. Water dynamics in large and small reverse micelles: From two ensembles to collective behavior

    PubMed Central

    Moilanen, David E.; Fenn, Emily E.; Wong, Daryl; Fayer, Michael D.

    2009-01-01

    The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two ensembles: slow interfacial water and bulklike core water. As the reverse micelle size decreases, the slowing effect of the interface and the collective nature of water reorientation begin to slow the dynamics of the core water molecules. In the smallest reverse micelles, these effects dominate and all water molecules have the same long time reorientational dynamics. To understand and characterize the transition in the water dynamics from two ensembles to collective reorientation, polarization and frequency selective infrared pump-probe experiments are conducted on the complete range of reverse micelle sizes from a diameter of 1.6–20 nm. The crossover between two ensemble and collective reorientation occurs near a reverse micelle diameter of 4 nm. Below this size, the small number of confined water molecules and structural changes in the reverse micelle interface leads to homogeneous long time reorientation. PMID:19586114

  6. Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of doxorubicin.

    PubMed

    Chen, Jen-Ing; Wu, Wen-Chung

    2013-05-01

    A new type of fluorescent polymeric micelles is developed by self-assembly from a series of amphiphilic block copolymers, poly(ethylene glycol)-b-poly[styrene-co-(2-(1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate)] [PEG-b-P(S-co-PPSEMA)]. Their capability of loading doxorubicin (DOX) is investigated by monitoring the loading content, encapsulation efficiency, and photophysical properties of micelles. Förster resonance energy transfer from PPSEMA to DOX is observed in DOX-loaded micelles, which can serve as an indication of successful encapsulation of DOX in these micelles. The application of this new type of fluorescent polymeric micelles as a fluorescent probe and an anticancer drug carrier simultaneously is explored by studying the intracellular uptake of DOX-loaded micelles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛmicelles. Even though ɛ is small, the interaction energy between a macromolecule and a micelle can be a few kBT due to many contacts, and thus leads to polymer adsorption on micelles' surfaces. The rapid growth of the viscosity with surfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  8. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging.

    PubMed

    Xin, Keting; Li, Man; Lu, Di; Meng, Xuan; Deng, Jun; Kong, Deling; Ding, Dan; Wang, Zheng; Zhao, Yanjun

    2017-01-11

    Catechol-Fe 3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe 3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe 3+ endowed the micelles T 1 -weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.

  9. Structural differences between bovine A(1) and A(2) β-casein alter micelle self-assembly and influence molecular chaperone activity.

    PubMed

    Raynes, J K; Day, L; Augustin, M A; Carver, J A

    2015-04-01

    Within each milk protein there are many individual protein variants and marked alterations to milk functionality can occur depending on the genetic variants of each protein present. Bovine A(1) and A(2) β-casein (β-CN) are 2 variants that contribute to differences in the gelation performance of milk. The A(1) and A(2) β-CN variants differ by a single AA, the substitution of histidine for proline at position 67. β-Casein not only participates in formation of the casein micelle but also forms an oligomeric micelle itself and functions as a molecular chaperone to prevent the aggregation of a wide range of proteins, including the other caseins. Micelle assembly of A(1) and A(2) β-CN was investigated using dynamic light scattering and small-angle X-ray scattering, whereas protein functionality was assessed using fluorescence techniques and molecular chaperone assays. The A(2) β-CN variant formed smaller micelles than A(1) β-CN, with the monomer-micelle equilibrium of A(2) β-CN being shifted toward the monomer. This shift most likely arose from structural differences between the 2 β-CN variants associated with the adoption of greater polyproline-II helix in A(2) β-CN and most likely led to enhanced chaperone activity of A(2) β-CN compared with A(1) β-CN. The difference in micelle assembly, and hence chaperone activity, may provide explain differences in the functionality of homozygous A(1) and A(2) milk. The results of this study highlight that substitution of even a single AA can significantly alter the properties of an intrinsically unstructured protein such as β-CN and, in this case, may have an effect on the functionality of milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. AFM imaging of milk casein micelles: evidence for structural rearrangement upon acidification.

    PubMed

    Ouanezar, Mustapha; Guyomarc'h, Fanny; Bouchoux, Antoine

    2012-03-20

    Milk casein micelles are natural association colloids that we all encounter in everyday life, yet we still lack an accurate description of their internal structure and the interactions that stabilize it. In this letter, we provide for the first time detailed images of intact casein micelles as obtained through atomic force microscopy under liquid conditions close to physiological. The micelles appear as heterogeneous raspberry-like particles, which is consistent with a hierarchical/spongelike structure made of connected 10-40 nm dense casein regions. Upon in situ acidification to pH 5, the micelles decrease in size and lose their surface heterogeneities, indicating that this structure is highly sensitive to variations in mineral content and caseins net charge.

  11. Blood-Stable, Tumor-Adaptable Disulfide Bonded mPEG-(Cys)4-PDLLA Micelles for Chemotherapy

    PubMed Central

    Lee, Seung-Young; Kim, Sungwon; Tyler, Jacqueline; Park, Kinam; Cheng, Ji-Xin

    2012-01-01

    Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier made of disulfide (DS) bonded mPEG-(Cys)4-PDLLA micelles. Intravenously injected disulfide bonded micelles stably retained doxorubicin in the bloodstream and efficiently delivered the drug to a tumor, with a 7-fold increase of the drug in the tumor and 1.9-fold decrease in the heart, as compared with self-assembled (SA), non-crosslinked mPEG-PDLLA micelles. In vivo administration of disulfide bonded micelles led to doxorubicin accumulation in cancer cell nuclei, which was not observed after administration of self-assembled micelles. With a doxorubicin dose as low as 2 mg/kg, disulfide bonded micelles almost completely suppressed tumor growth in mice. PMID:23079665

  12. SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.

    PubMed

    Lawless, M; Junell, S; Hammer, C; DeWerd, L

    2012-06-01

    Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.

  13. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.

    PubMed

    Talelli, Marina; Iman, Maryam; Varkouhi, Amir K; Rijcken, Cristianne J F; Schiffelers, Raymond M; Etrych, Tomas; Ulbrich, Karel; van Nostrum, Cornelus F; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-10-01

    Doxorubicin (DOX) is clinically applied in cancer therapy, but its use is associated with dose limiting severe side effects. Core-crosslinked biodegradable polymeric micelles composed of poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAm-Lac(n))) diblock copolymers have shown prolonged circulation in the blood stream upon intravenous administration and enhanced tumor accumulation through the enhanced permeation and retention (EPR) effect. However a (physically) entrapped anticancer drug (paclitaxel) was previously shown to be rapidly eliminated from the circulation, likely because the drug was insufficiently retained in the micelles. To fully exploit the EPR effect for drug targeting, a DOX methacrylamide derivative (DOX-MA) was covalently incorporated into the micellar core by free radical polymerization. The structure of the doxorubicin derivative is susceptible to pH-sensitive hydrolysis, enabling controlled release of the drug in acidic conditions (in either the intratumoral environment and/or the endosomal vesicles). 30-40% w/w of the added drug was covalently entrapped, and the micelles with covalently entrapped DOX had an average diameter of 80 nm. The entire drug payload was released within 24 h incubation at pH 5 and 37 degrees C, whereas only around 5% release was observed at pH 7.4. DOX micelles showed higher cytotoxicity in B16F10 and OVCAR-3 cells compared to DOX-MA, likely due to cellular uptake of the micelles via endocytosis and intracellular drug release in the acidic organelles. The micelles showed better anti-tumor activity than free DOX in mice bearing B16F10 melanoma carcinoma. The results presented in this paper show that mPEG-b-p(HPMAm-Lac(n)) polymeric micelles with covalently entrapped doxorubicin is a system highly promising for the targeted delivery of cytostatic agents. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    PubMed Central

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-01-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 → 2I15/2 and 4S3/2 → 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K−1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers. PMID:24572638

  15. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method

    NASA Astrophysics Data System (ADS)

    Gavrilović, Tamara V.; Jovanović, Dragana J.; Lojpur, Vesna; Dramićanin, Miroslav D.

    2014-02-01

    Synthesis of Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu3+-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er3+/Yb3+-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from 2H11/2 --> 2I15/2 and 4S3/2 --> 4I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K-1, which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  16. Multifunctional Eu3+- and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method.

    PubMed

    Gavrilović, Tamara V; Jovanović, Dragana J; Lojpur, Vesna; Dramićanin, Miroslav D

    2014-02-27

    Synthesis of Eu(3+)- and Er(3+)/Yb(3+)-doped GdVO4 nanoparticles in reverse micelles and their multifunctional luminescence properties are presented. Using cyclohexane, Triton X-100, and n-pentanol as the oil, surfactant, and co-surfactant, respectively, crystalline nanoparticles with ~4 nm diameter are prepared at low temperatures. The particle size assessed using transmission electron microscopy is similar to the crystallite size obtained from X-ray diffraction measurements, suggesting that each particle comprises a single crystallite. Eu(3+)-doped GdVO4 nanoparticles emit red light through downconversion upon UV excitation. Er(3+)/Yb(3+)-doped GdVO4 nanoparticles exhibit several functions; apart from the downconversion of UV radiation into visible green light, they act as upconvertors, transforming near-infrared excitation (980 nm) into visible green light. The ratio of green emissions from (2)H11/2 → (2)I15/2 and (4)S3/2 → (4)I15/2 transitions is temperature dependent and can be used for nanoscale temperature sensing with near-infrared excitation. The relative sensor sensitivity is 1.11%K(-1), which is among the highest sensitivities recorded for upconversion-luminescence-based thermometers.

  17. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    NASA Astrophysics Data System (ADS)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  18. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.

    PubMed

    Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul

    2015-06-01

    Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.

  19. Loading and release mechanisms of a biocide in polystyrene-block-poly(acrylic acid) block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2008-07-24

    The kinetics of loading of polystyrene197-block-poly(acrylic acid)47 (PS197-b-PAA47) micelles, suspended in water, with thiocyanomethylthiobenzothiazole biocide and its subsequent release were investigated. Loading of the micelles was found to be a two-step process. First, the surface of the PS core of the micelles is saturated with biocide, with a rate determined by the transfer of solid biocide to micelles during transient micelle-biocide contacts. Next, the biocide penetrates as a front into the micelles, lowering the Tg in the process (non-Fickian case II diffusion). The slow rate of release is governed by the height of the energy barrier that a biocide molecule must overcome to pass from PS into water, resulting in a uniform biocide concentration within the micelle, until Tg is increased to the point that diffusion inside the micelles becomes very slow. Maximum loading of biocide into micelles is approximately 30% (w/w) and is achieved in 1 h. From partition experiments, it can be concluded that the biocide has a similar preference for polystyrene as for ethylbenzene over water, implying that the maximum loading is governed by thermodynamics.

  20. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing.

    PubMed

    Dellera, Eleonora; Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Ferrari, Franca; Del Fante, Claudia; Perotti, Cesare; Grisoli, Pietro; Caramella, Carla

    2014-11-01

    In the treatment of chronic wounds, topical application of anti-infective drugs such as silver sulfadiazine (AgSD) is of primary importance to avoid infections and accelerate wound repair. AgSD is used in burns and chronic wounds for its wide antibacterial spectrum, but presents limitations due to poor solubility and cytotoxicity. In the present work polymeric micelles obtained by self-assembling of chitosan ionically modified by interaction with oleic acid were developed as carriers for AgSD to overcome the drawbacks of the drug. The AgSD loaded micelles were intended to be associated in wound healing with platelet lysate (PL), a hemoderivative rich in growth factors. Unloaded micelles demonstrated good compatibility with both fibroblasts and PL. The relevance of chitosan concentration and of the ratio between chitosan and oleic acid to the drug loading and the particle size of nanoparticles was studied. A marked increase (up to 100 times with respect to saturated solution) of AgSD concentration in micelle dispersion was obtained. Moreover, the encapsulation reduced the cytotoxic effect of the drug towards fibroblasts and the drug incompatibility with PDGF-AB (platelet derived growth factor), chosen as representative of platelet growth factors. Copyright © 2014. Published by Elsevier B.V.

  1. EPR spin probe and spin label studies of some low molecular and polymer micelles

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Timofeev, V. P.

    1998-12-01

    The rotational mobility of spin probes of different shape and size in low molecular and polymer micelles has been studied. Several probes having nitroxide fragment localized either in the vicinity of micelle interface or in the hydrocarbon core have been used. Upon increasing the number of carbon atoms in hydrocarbon chain of detergent from 7 to 13 (sodium alkyl sulfate micelles) or from 12 to 16 (alkyltrimethylammonium bromide micelles) the rotational mobility of spin probes is decreased by the factor 1.5-2.0. The spin probe rotational mobility in polymer micelles (the complexes of alkyltrimethylammonium bromides and polymethacrylic or polyacrylic acids) is less than mobility in free micelles of the same surfactants. The study of EPR-spectra of spin labeled polymethacrylic acid (PMA) indicated that formation of water soluble complexes of polymer and alkyltrimethylammonium bromides in alkaline solutions (pH 9) does not affect the polymer segmental mobility. On the other hand, the polymer complexes formation in slightly acidic water solution (pH 6) breaks down the compact PMA conformation, thus increasing the polymer segmental mobility. Possible structures of polymer micelles are discussed.

  2. Crystal structure of YbCu6In6 and mixed valence behavior of Yb in YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution.

    PubMed

    Subbarao, Udumula; Peter, Sebastian C

    2012-06-04

    High quality single crystals of YbCu(6)In(6) have been grown using the flux method and characterized by means of single crystal X-ray diffraction data. YbCu(6)In(6) crystallizes in the CeMn(4)Al(8) structure type, tetragonal space group I4/mmm, and the lattice constants are a = b = 9.2200(13) Å and c = 5.3976(11) Å. The crystal structure of YbCu(6)In(6) is composed of pseudo-Frank-Kasper cages filled with one ytterbium atom in each ring. The neighboring cages share corners along [100] and [010] to build the three-dimensional network. YbCu(6-x)In(6+x) (x = 0, 1, and 2) solid solution compounds were obtained from high frequency induction heating and characterized using powder X-ray diffraction. The magnetic susceptibilities of YbCu(6-x)In(6+x) (x = 0, 1, and 2) were investigated in the temperature range 2-300 K and showed Curie-Weiss law behavior above 50 K, and the experimentally measured magnetic moment indicates mixed valent ytterbium. A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb(2+) to Yb(3+) as the temperature decreases. An increase in doping of Cu at the Al2 position enhances the disorder in the system and enhancement in the trivalent nature of Yb. Electrical conductivity measurements show that all compounds are of a metallic nature.

  3. Structure formation in binary mixtures of surfactants: vesicle opening-up to bicelles and octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    Micelle formation in binary mixtures of surfactants is studied using a coarse-grained molecular simulation. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle, the bicelle, is typically formed. It is found that cup-shaped vesicles and bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and critical micelle concentration. The obtained octopus shape of micelles agree with those observed in the cryo-TEM images reported in [S. Jain and F. S. Bates, Macromol. 37, 1511 (2004).]. Two types of connection structures between the worm-like micelles and the bicelles are revealed.

  4. Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles

    PubMed Central

    Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian

    2016-01-01

    Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877

  5. Mixing and NO(x) Emission Calculations of Confined Reacting Jet Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Oechsle, Victor L.

    2003-01-01

    Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A 3-dimensional tool has been used to predict the mixing flow field characteristics and NOx emission in a quench section of an RQL combustor, Eighteen configurations have been analyzed in a circular geometry in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying three parameters: 1) jet-to-mainstream momentum-flux ratio (J), 2) orifice shape or orifice aspect ratio, and 3) slot slant angle. The results indicate that the mixing flow field significantly varies with the value of the jet penetration and subsequently, slanting elongated slots generally improve the mixing uniformity at high J conditions. Round orifices produce more uniform mixing and low NO(x) emissions at low J due to the strong and adequate jet penetration. No significant correlation was found between the NO(x) production rates and the mixing deviation parameters, however, strong correlation was found between NO(x) formation and jet penetration. In the computational results, most of the NO(x) formation occurred behind the orifice starting at the orifice wake region. Additional NO(x) is formed upstream of the orifice in certain configurations with high J conditions due to the upstream recirculation.

  6. Charged triblock copolymer self-assembly into charged micelles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  7. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment.

    PubMed

    Tonglairoum, Prasopchai; Woraphatphadung, Thisirak; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Sajomsang, Warayuth; Opanasopit, Praneet

    2017-03-01

    Clotrimazole (CZ)-loaded N-naphthyl-N,O-succinyl chitosan (NSCS) micelles have been developed as an alternative for oral candidiasis treatment. NSCS was synthesized by reductive N-amination and N,O-succinylation. CZ was incorporated into the micelles using various methods, including the dropping method, the dialysis method, and the O/W emulsion method. The size and morphology of the CZ-loaded micelles were characterized using dynamic light scattering measurements (DLS) and a transmission electron microscope (TEM), respectively. The drug entrapment efficiency, loading capacity, release characteristics, and antifungal activity against Candida albicans were also evaluated. The CZ-loaded micelles prepared using different methods differed in the size of micelles. The micelles ranged in size from 120 nm to 173 nm. The micelles prepared via the O/W emulsion method offered the highest percentage entrapment efficiency and loading capacity. The CZ released from the CZ-loaded micelles at much faster rate compared to CZ powder. The CZ-loaded NSCS micelles can significantly hinder the growth of Candida cells after contact. These CZ-loaded NSCS micelles offer great antifungal activity and might be further developed to be a promising candidate for oral candidiasis treatment.

  8. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    PubMed

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  9. Low frequency sonic waves assisted cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator.

    PubMed

    Murugesan, Sivananth; Iyyaswami, Regupathi

    2017-08-15

    Low frequency sonic waves, less than 10kHz were introduced to assist cloud point extraction of polyhydroxyalkanoate from Cupriavidus necator present within the crude broth. Process parameters including surfactant system variables and sonication parameters were studied for their effect on extraction efficiency. Introduction of low frequency sonic waves assists in the dissolution of microbial cell wall by the surfactant micelles and release of cellular content, polyhydroxyalkanoate granules released were encapsulated by the micelle core which was confirmed by crotonic acid assay. In addition, sonic waves resulted in the separation of homogeneous surfactant and broth mixture into two distinct phases, top aqueous phase and polyhydroxyalkanoate enriched bottom surfactant rich phase. Mixed surfactant systems showed higher extraction efficiency compared to that of individual Triton X-100 concentrations, owing to increase in the hydrophobicity of the micellar core and its interaction with polyhydroxyalkanoate. Addition of salts to the mixed surfactant system induces screening of charged surfactant head groups and reduces inter-micellar repulsion, presence of ammonium ions lead to electrostatic repulsion and weaker cation sodium enhances the formation of micellar network. Addition of polyethylene glycol 8000 resulted in increasing interaction with the surfactant tails of the micelle core there by reducing the purity of polyhydroxyalkanoate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Urea on the Thermodynamics of Hexadecyltrimethylammonium Bromide Micelle Formation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Velikov, A. A.

    2018-02-01

    The effect of urea on the thermodynamics of hexadecyltrimethylammonium bromide (CTAB) micelle formation in aqueous urea solutions was studied by isothermal titration microcalorimetry. The thermodynamic functions of Δ H, Δ G, and Δ S of CTAB micelle formation were calculated. The critical micelle concentrations (CMC) were determined. The addition of urea to the solution decreased the micelle formation entropy. This was attributed to the "lowering" of the structural temperature of the solution, which led to an increased number of hydrogen bonds and structure formation of water.

  11. Growth and characterization of PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers on Si (100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachar, H.K.; Chao, I.; Fang, X.M.

    1998-12-31

    Crack-free layers of PbSe were grown on Si (100) by a combination of liquid phase epitaxy (LPE) and molecular beam epitaxy (MBE) techniques. The PbSe layer was grown by LPE on Si(100) using a MBE-grown PbSe/BaF{sub 2}/CaF{sub 2} buffer layer structure. Pb{sub 1{minus}x}Sn{sub x}Se layers with tin contents in the liquid growth solution equal to 3%, 5%, 6%, 7%, and 10%, respectively, were also grown by LPE on Si(100) substrates using similar buffer layer structures. The LPE-grown PbSe and Pb{sub 1{minus}x}Sn{sub x}Se layers were characterized by optical Nomarski microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electronmore » microscopy (SEM). Optical Nomarski characterization of the layers revealed their excellent surface morphologies and good growth solution wipe-offs. FTIR transmission experiments showed that the absorption edge of the Pb{sub 1{minus}x}Sn{sub x}Se layers shifted to lower energies with increasing tin contents. The PbSe epilayers were also lifted-off from the Si substrate by dissolving the MBE-grown BaF{sub 2} buffer layer. SEM micrographs of the cleaved edges revealed that the lifted-off layers formed structures suitable for laser fabrication.« less

  12. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

    2014-08-01

    This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content

  13. Reduction-Degradable Polymeric Micelles Decorated with PArg for Improving Anticancer Drug Delivery Efficacy.

    PubMed

    Cui, Yani; Sui, Junhui; He, Mengmeng; Xu, Zhiyi; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-01-27

    In this study, five kinds of reduction-degradable polyamide amine-g-polyethylene glycol/polyarginine (PAA-g-PEG/PArg) micelles with different proportions of hydrophilic and hydrophobic segments were synthesized as novel drug delivery vehicles. Polyarginine not only acted as a hydrophilic segment but also possessed a cell-penetrating function to carry out a rapid transduction into target cells. Polyamide amine-g-polyethylene glycol (PAA-g-PEG) was prepared for comparison. The characterization and antitumor effect of the DOX-incorporated PAA-g-PEG/PArg cationic polymeric micelles were investigated in vitro and in vivo. The cytotoxicity experiments demonstrated that the PAA-g-PEG/PArg micelles have good biocompatibility. Compared with DOX-incorporated PAA-g-PEG micelles, the DOX-incorporated PAA-g-PEG/PArg micelles were more efficiently internalized into human hepatocellular carcinoma (HepG2) cells and more rapidly released DOX into the cytoplasm to inhibit cell proliferation. In the 4T1-bearing nude mouse tumor models, the DOX-incorporated PAA-g-PEG/PArg micelles could efficiently accumulate in the tumor site and had a longer accumulation time and more significant aggregation concentration than those of PAA-g-PEG micelles. Meanwhile, it excellently inhibited the solid tumor growth and extended the survival period of the tumor-bearing Balb/c mice. These results could be attributed to their appropriate nanosize and the cell-penetrating peculiarity of polyarginine as a surface layer. The PAA-g-PEG/PArg polymeric micelles as a safe and high efficiency drug delivery system were expected to be a promising delivery carrier that targeted hydrophobic chemotherapy drugs to tumors and significantly enhanced antitumor effects.

  14. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    PubMed

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  15. Bile Salt Mediated Growth of Reverse Wormlike Micelles in Nonpolar Liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang; Huang, Yi-En; Raghavan, Srinivasa

    2006-03-01

    We report the growth of reverse wormlike micelles induced by the addition of a bile salt in trace amounts to solutions of the phospholipid, lecithin in nonpolar organic solvents. Previous recipes for reverse wormlike micelles have usually required the addition of water to induce reverse micellar growth; here, we show that bile salts, due to their unique ``facially amphiphilic'' structure, can play a role analogous to water and promote the longitudinal aggregation of lecithin molecules into reverse micellar chains. The formation of transient entangled networks of these reverse micelles transforms low-viscosity lecithin organosols into strongly viscoelastic fluids. The zero-shear viscosity increases by more than five orders of magnitude, and it is the molar ratio of bile salt to lecithin that controls this viscosity enhancement. The growth of reverse wormlike micelles is also confirmed by small-angle neutron scattering (SANS) experiments on these fluids.

  16. Dynamics of micelle-nanoparticle systems undergoing shear. A coarse-grained molecular dynamics approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolfe, Bryan A.; Chun, Jaehun; Joo, Yong L.

    2013-09-05

    Recent experimental work has shown that polymeric micelles can template nanoparticles via interstitial sites in shear-ordered micelle solutions. In the current study, we report simulation results based on a coarse-grained molecular dynamics (CGMD) model of a solvent/polymer/nanoparticle system. Our results demonstrate the importance of polymer concentration and the micelle corona length in 2D shear-ordering of neat block copolymer solutions. Although our results do not show strong 3D ordering during shear, we find that cessation of shear allows the system to relax into a 3D configuration of greater order than without shear. It is further shown that this post-shear relaxation ismore » strongly dependent on the length of the micelle corona. For the first time, we demonstrate the presence and importance of a flow disturbance surrounding micelles in simple shear flow at moderate Péclet numbers. This disturbance is similar to what is observed around simulated star polymers and ellipsoids. The extent of the flow disturbance increases as expected with a longer micelle corona length. It is further suggested that without proper consideration of these dynamics, a stable nanoparticle configuration would be difficult to obtain.« less

  17. High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles

    NASA Astrophysics Data System (ADS)

    Menéndez-Aguirre, O.; Stuetz, W.; Grune, T.; Kessler, A.; Weiss, J.; Hinrichs, J.

    2011-03-01

    For the encapsulation of vitamin D2, native casein micelles and vitamin D2 with or without additional Ca2+-Pi were treated at 600 MPa and 37 °C for 60 min. The pressure release rate was set at 20 or 600 MPa/min. Vitamin D2 was quantified by reversed-phase high-performance liquid chromatography, and physical properties of the micelles were analysed by photon correlation spectroscopy. The results demonstrate that simultaneous application of Ca2+-Pi and high pressure treatment with a fast release rate significantly increased loading of vitamin D2 per casein by 6.9-fold. The addition of Ca2+-Pi enhanced micelle aggregation and the vitamin was entrapped within the formed aggregates. However, high pressure treatment without Ca2+-Pi with a slow pressure release rate revealed similar results, increasing vitamin D2 per casein by 6.7-fold. The vitamin D2 loading in reassembled casein micelles is supposed to be due to hydrophobic interactions between the hydrophobic domains of the micelles.

  18. Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging.

    PubMed

    Hu, Jun; Zhuang, Weihua; Ma, Boxuan; Su, Xin; Yu, Tao; Li, Gaocan; Hu, Yanfei; Wang, Yunbing

    2018-05-10

    Intelligent polymeric micelles have been developed as potential nanoplatforms for efficient drug delivery and diagnosis. Herein, we successfully prepared redox-sensitive polymeric micelles combined aggregation-induced emission (AIE) imaging as an outstanding anticancer drug carrier system for simultaneous chemotherapy and bioimaging. The amphiphilic copolymer TPE-SS-PLAsp- b-PMPC could self-assemble into spherical micelles, and these biomimetic micelles exhibited great biocompatibility and remarkable ability in antiprotein adsorption, showing great potential for biomedical application. Anticancer drug doxorubicin (DOX) could be encapsulated during the self-assembly process, and these drug-loaded micelles showed intelligent drug release and improved antitumor efficacy due to the quick disassembly in response to high levels of glutathione (GSH) in the environment. Moreover, the intracellular DOX release could be traced through the fluorescent imaging of these AIE micelles. As expected, the in vivo antitumor study exhibited that these DOX-carried micelles showed better antitumor efficacy and less adverse effects than that of free DOX. These results strongly indicated that this smart biomimetic micelle system would be a prominent candidate for chemotherapy and bioimaging.

  19. Composition effect in luminescence properties of Y(NbxTa1-x)O4 mixed crystals

    NASA Astrophysics Data System (ADS)

    Spassky, D.; Vasil'ev, A.; Vielhauer, S.; Sidletskiy, O.; Voloshyna, O.; Belsky, A.

    2018-06-01

    The luminescence properties of Y(NbxTa1-x)O4 mixed crystals were studied. Local structure modifications arise due to the inhomogeneous distribution of the substitutional ions in the mixed crystal and can be traced using the luminescence spectroscopy. In particular, it is shown that the intensity of exciton emission under interband VUV excitation increases for intermediate values of x with the maximum at x = 0.4 relatively to the intensity observed in the constituents of the mixed crystals - YTaO4 and YNbO4. From the luminescence excitation spectra it follows that the probability of exciton creation from the separated e-h pairs increases for intermediate values of x as well. Using numerical simulation it is shown that the effect is connected with the variation of the thermalization length of hot electrons and holes, which is minimal at x = 0.4.

  20. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    PubMed

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  1. From micelle supramolecular assemblies in selective solvents to isoporous membranes.

    PubMed

    Nunes, Suzana P; Karunakaran, Madhavan; Pradeep, Neelakanda; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; He, Haoze; Peinemann, Klaus-Viktor

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values.

  2. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field-Flow Fractionation/Multiangle Laser Light Scattering.

    PubMed

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin

    2016-09-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles

  3. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  4. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model.

    PubMed

    Wu, Wei; He, Zhifen; Zhang, Zhaoliang; Yu, Xinxin; Song, Zongming; Li, Xingyi

    2016-11-20

    The therapeutic efficacy of rapamycin conjugated monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles (rapamycin micelles) was evaluated in a rat experimental autoimmune uveitis (EAU) model. Rapamycin micelles exhibited spherical morphology and had a mean particle size of 40nm and a zeta-potential of -0.89mv. The water solubility of rapamycin improved by more than 1000-fold in a micellar formulation. Intravitreal injection of MPEG-PCL micelles did not result in vitreous hemorrhage or retinal detachment. Fluorescence microscopy demonstrated that labeled micelles localized to the retinal pigment epithelium for at least 14 days following injection and the drug concentration of rapamycin micelles in the retinal tissue was significantly higher than unconjugated rapamycin over this period. At the optimal concentration of rapamycin micelles (9μg/eye), clinical signs of EAU were abolished via the downregulation of the Th1 and Th17 response. There were no significant difference in T cell proliferation and delayed-type hypersensitivity between the treatment and control groups, suggesting that the therapeutic effect of rapamycin manifested locally in the eye and not systemically. These results indicate that intravitreal injection of rapamycin micelles is a promising therapy for controlling sterile intraocular inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  6. Chirality plays critical roles in enhancing the aqueous solubility of nocathiacin I by block copolymer micelles.

    PubMed

    Feng, Kun; Wang, Shuzhen; Ma, Hairong; Chen, Yijun

    2013-01-01

    Although drug solubilization by block copolymer micelles has been extensively studied, the rationale behind the choice of appropriate block copolymer micelles for various poorly water-soluble drugs has been of relatively less concern. The objective of this study was to use methoxy-poly(ethylene glycol)-polylactate micelles (MPEG-PLA) to solubilize glycosylated antibiotic nocathiacin I and to compare the effects of chirality on the enhancement of aqueous solubility. Nocathiacin I-loaded MPEG-PLA micelles with opposite optical property in PLA were synthesized and characterized. The drug release profile, micelle stability and preliminary safety properties of MPEG-PLA micelles were evaluated. Meanwhile, three other poorly water-soluble chiral compound-loaded micelles were also prepared and compared.  The aqueous solubility of nocathiacin I was greatly enhanced by both L- and D-copolymers, with the degree of enhancement appearing to depend on the chirality of the copolymers. Comparison of different chiral compounds confirmed the trend that aqueous solubility of chiral compounds can be more effectively enhanced by block copolymer micelles with specific stereochemical configuration. The present study introduced chiral concept on the selection and preparation of block copolymer micelles for the enhancement of aqueous solubility of poorly water-soluble drugs. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  7. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells.

    PubMed

    Cai, Li-Li; Liu, Ping; Li, Xi; Huang, Xuan; Ye, Yi-Qing; Chen, Feng-Ying; Yuan, Hong; Hu, Fu-Qiang; Du, Yong-Zhong

    2011-01-01

    Solid tumors need new blood vessels to feed and nourish them as well as to allow tumor cells to escape into the circulation and lodge in other organs, which is termed "angiogenesis." Some tumor cells within solid tumors can overexpress integrins α(v)β(3) and α(v)β(5), which can specifically recognize the peptide motif Arg-Gly-Asp (RGD). Thus, the targeting of RGD-modified micelles to tumor vasculature is a promising strategy for tumor-targeting treatment. RGD peptide (GSSSGRGDSPA) was coupled to poly(ethylene glycol)-modified stearic acid-grafted chitosan (PEG-CS-SA) micelles via chemical reaction in the presence of N,N'-Disuccinimidyl carbonate. The critical micelle concentration of the polymeric micelles was determined by measuring the fluorescence intensity of pyrene as a fluorescent probe. The micelle size, size distribution, and zeta potential were measured by light scattering and electrophoretic mobility. Doxorubicin (DOX) was chosen as a model anticancer drug to investigate the drug entrapment efficiency, in vitro drug-release profile, and in vitro antitumor activities of drug-loaded RGD-PEG-CS-SA micelles in cells that overexpress integrins (α(ν)β(3) and α(ν)β(5)) and integrin-deficient cells. Using DOX as a model drug, the drug encapsulation efficiency could reach 90%, and the in vitro drug-release profiles suggested that the micelles could be used as a controlled-release carrier for the hydrophobic drug. Qualitative and quantitative analysis of cellular uptake indicated that RGD-modified micelles could significantly increase the DOX concentration in integrin-overexpressing human hepatocellular carcinoma cell line (BEL-7402), but not in human epithelial carcinoma cell line (Hela). The competitive cellular-uptake test showed that the cellular uptake of RGD-modified micelles in BEL-7402 cells was significantly inhibited in the presence of excess free RGD peptides. In vitro cytotoxicity tests demonstrated DOX-loaded RGD-modified micelles could

  8. Novel Redox-Responsive Amphiphilic Copolymer Micelles for Drug Delivery: Synthesis and Characterization.

    PubMed

    Bae, Jungeun; Maurya, Abhijeet; Shariat-Madar, Zia; Murthy, S Narasimha; Jo, Seongbong

    2015-11-01

    A novel redox-responsive amphiphilic polymer was synthesized with bioreductive trimethyl-locked quinone propionic acid for a potential triggered drug delivery application. The aim of this study was to synthesize and characterize the redox-responsive amphiphilic block copolymer micelles containing pendant bioreductive quinone propionic acid (QPA) switches. The redox-responsive hydrophobic block (polyQPA), synthesized from QPA-serinol and adipoyl chloride, was end-capped with methoxy poly(ethylene glycol) of molecular weight 750 (mPEG750) to achieve a redox-responsive amphiphilic block copolymer, polyQPA-mPEG750. PolyQPA-mPEG750 was able to self-assemble as micelles to show a critical micelle concentration (CMC) of 0.039% w/v (0.39 mg/ml, 0.107 mM) determined by a dye solubilization method using 1,6-diphenyl-1,3,5-hexatriene (DPH) in phosphate-buffered saline (PBS). The mean diameter of polymeric micelles was found to be 27.50 nm (PI = 0.064) by dynamic light scattering. Furthermore, redox-triggered destabilization of the polymeric micelles was confirmed by (1)H-NMR spectroscopy and particle size measurements in a simulated redox state. PolyQPA-mPEG750 underwent triggered reduction to shed pendant redox-responsive QPA groups and its polymeric micelles were swollen to be dissembled in the presence of a reducing agent, thereby enabling the release of loaded model drug, paclitaxel. The redox-responsive polyQPA-mPEG750 polymer micelles would be useful as a drug delivery system allowing triggered drug release in an altered redox state such as tumor microenvironments with an altered redox potential and/or redox enzyme upregulation.

  9. Ga2O3 and GaN nanocrystalline film: reverse micelle assisted solvothermal synthesis and characterization.

    PubMed

    Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra

    2008-03-01

    Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.

  10. Fluorescence in the system Eu(III) - oxytetracycline - co-ligand -sodium dodecylbenzene sulphonate micelles and its analytical application

    NASA Astrophysics Data System (ADS)

    Shtykov, Sergei N.; Smirnova, Tatyana D.; Kalashnikova, Natalja V.; Bylinkin, Yurii G.; Zhemerichkin, Dmitry A.

    2006-07-01

    Fluorescence enhancement of the Eu 3+ - oxytetracycline (OTC) chelate by addition of phenanthroline (Phen) and trioctyiphosphine oxide (TOPO) as well as micelles of anionic, catiomic and nonionic surfactants has been studied. As was found, in the presence of Phen as co-ligand and micelles of dodecylbenzene sulfonate as anionic surfactant the analytical signal increased by a factor of 8.5 and reached maximum value at pH 8.0 +/- 0.5. The dynamic concentration range of OTC determination was found to be 8.0 x 10 -8 - 4.0 × 10 -5 M (R2 = 0.991) and the detection limit 5.3 × 10 -8 M (3 σ criterion). The procedure based on europium-sensitized fluorescence has been developed for the determination of OTC in chicken meat with the recovery of 98.0-103.3%.

  11. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  12. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane.

    PubMed

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-21

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  13. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    PubMed Central

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740

  14. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    PubMed

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    PubMed

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Parenterally administrable nano-micelles of 3,4-difluorobenzylidene curcumin for treating pancreatic cancer.

    PubMed

    Kesharwani, Prashant; Banerjee, Sanjeev; Padhye, Subhash; Sarkar, Fazlul H; Iyer, Arun K

    2015-08-01

    Pancreatic cancer remains one of the most devastating diseases in terms of patient mortality rates for which current treatment options are very limited. 3,4-Difluorobenzylidene curcumin (CDF) is a nontoxic analog of curcumin (CMN) developed in our laboratory, which exhibits extended circulation half-life, while maintaining high anticancer activity and improved pancreas specific accumulation in vivo, compared with CMN. CDF however has poor aqueous solubility and its dose escalation for systemic administration remains challenging. We have engineered self-assembling nano-micelles of amphiphilic styrene-maleic acid copolymer (SMA) with CDF by non-covalent hydrophobic interactions. The SMA-CDF nano-micelles were characterized for size, charge, drug loading, release, serum stability, and in vitro anticancer activity. The SMA-CDF nano-micelles exhibited tunable CDF loading from 5 to 15% with excellent aqueous solubility, stability, favorable hemocompatibility and sustained drug release characteristics. The outcome of cytotoxicity testing of SMA-CDF nano-micelles on MiaPaCa-2 and AsPC-1 pancreatic cancer cell lines revealed pronounced antitumor response due to efficient intracellular trafficking of the drug loaded nano-micelles. Additionally, the nano-micelles are administrable via the systemic route for future in vivo studies and clinical translation. The currently developed SMA based nano-micelles thus portend to be a versatile carrier for dose escalation and targeted delivery of CDF, with enhanced therapeutic margin and safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Micelles as Delivery Vehicles for Oligofluorene for Bioimaging

    PubMed Central

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R.

    2011-01-01

    With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields. PMID:21915324

  18. Micelles as delivery vehicles for oligofluorene for bioimaging.

    PubMed

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R

    2011-01-01

    With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH(2)) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

  19. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.

    PubMed

    Iyyappan, E; Wilson, P; Sheela, K; Ramya, R

    2016-06-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Manipulating interfacial polymer structures through mixed surfactant adsorption and complexation.

    PubMed

    Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Prescott, Stuart W

    2012-04-17

    The effects of a nonionic alcohol ethoxylate surfactant, C(13)E(7), on the interactions between PVP and SDS both in the bulk and at the silica nanoparticle interface are studied by photon correlation spectroscopy, solvent relaxation NMR, SANS, and optical reflectometry. Our results confirmed that, in the absence of SDS, C(13)E(7) and PVP are noninteracting, while SDS interacts strongly both with PVP and C(13)E(7) . Studying interfacial interactions showed that the interfacial interactions of PVP with silica can be manipulated by varying the amounts of SDS and C(13)E(7) present. Upon SDS addition, the adsorbed layer thickness of PVP on silica increases due to Coulombic repulsion between micelles in the polymer layer. When C(13)E(7) is progressively added to the system, it forms mixed micelles with the complexed SDS, reducing the total charge per micelle and thus reducing the repulsion between micelle and the silica surface that would otherwise cause the PVP to desorb. This causes the amount of adsorbed polymer to increase with C(13)E(7) addition for the systems containing SDS, demonstrating that addition of C(13)E(7) hinders the SDS-mediated desorption of an adsorbed PVP layer. © 2012 American Chemical Society

  1. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  2. Multimodality CT/SPECT Evaluation of Micelle Drug Carriers for Treatment of Breast Tumors

    DTIC Science & Technology

    2008-07-01

    Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer -targeted, MRI-ultrasensitive drug delivery systems , Nano Lett. 6 (11) (2006...1–4) (1999) 3–27. [40] D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems for cancer targeted drug delivery . Pharm. Res. (in...Polymer micelles are nanoscale drug delivery systems that have the potential to improve breast tumor treatment. Micelles can increase the half-life

  3. Importance of casein micelle size and milk composition for milk gelation.

    PubMed

    Glantz, M; Devold, T G; Vegarud, G E; Lindmark Månsson, H; Stålhammar, H; Paulsson, M

    2010-04-01

    The economic output of the dairy industry is to a great extent dependent on the processing of milk into other milk-based products such as cheese. The yield and quality of cheese are dependent on both the composition and technological properties of milk. The objective of this study was to evaluate the importance and effects of casein (CN) micelle size and milk composition on milk gelation characteristics in order to evaluate the possibilities for enhancing gelation properties through breeding. Milk was collected on 4 sampling occasions at the farm level in winter and summer from dairy cows with high genetic merit, classified as elite dairy cows, of the Swedish Red and Swedish Holstein breeds. Comparisons were made with milk from a Swedish Red herd, a Swedish Holstein herd, and a Swedish dairy processor. Properties of CN micelles, such as their native and rennet-induced CN micelle size and their zeta-potential, were analyzed by photon correlation spectroscopy, and rennet-induced gelation characteristics, including gel strength, gelation time, and frequency sweeps, were determined. Milk parameters of the protein, lipid, and carbohydrate profiles as well as minerals were used to obtain correlations with native CN micelle size and gelation characteristics. Milk pH and protein, CN, and lactose contents were found to affect milk gelation. Smaller native CN micelles were shown to form stronger gels when poorly coagulating milk was excluded from the correlation analysis. In addition, milk pH correlated positively, whereas Mg and K correlated negatively with native CN micellar size. The milk from the elite dairy cows was shown to have good gelation characteristics. Furthermore, genetic progress in relation to CN micelle size was found for these cows as a correlated response to selection for the Swedish breeding objective if optimizing for milk gelation characteristics. The results indicate that selection for smaller native CN micelles and lower milk pH through breeding would

  4. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    PubMed

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Viscoelastic wormlike micelles formed by ionic liquid-type surfactant [C16imC8]Br towards template-assisted synthesis of CdS quantum dots.

    PubMed

    Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong

    2018-01-31

    In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.

  6. Therapeutic surfactant-stripped frozen micelles

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.

    2016-05-01

    Injectable hydrophobic drugs are typically dissolved in surfactants and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound surfactant, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of surfactant-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.

  7. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content.

    PubMed

    Abi-Rizk, Georges; Besson, Françoise

    2008-10-15

    The presence of microdomains, called lipid rafts, in biological membranes is usually explained by lateral segregation between specific lipids and proteins. These rafts present similarities with the membrane domains isolated by their non-ionic detergent-resistance at 4 degrees C. They are enriched in sphingomyelin and cholesterol as compared with the outer leaflet of eukaryotic cell membranes. To understand the role played by the lipids enriched in rafts in their resistance to solubilization by detergents, the interactions between these lipids and the non-ionic detergent Triton X-100 were studied by using different lipid monolayers at the air-water interface. The influence of Triton X-100 on the Langmuir isotherms (i.e. surface pressure/area isotherms) of monolayers containing sphingomyelin and cholesterol at different mole ratios was analyzed and the results were compared with the influence of Triton X-100 on monolayers containing a phosphatidylcholine bearing a saturated and an unsaturated fatty acid (i.e. palmitoyloleylphosphatidylcholine) and cholesterol. This phosphatidylcholine was chosen since the phosphatidylcholines present in rafts isolated from bovine kidney could contain about 50% of saturated fatty acids. Triton X-100 induces an increase in the condensing effect observed as compared with ideal mixture of phospholipid/cholesterol. Triton X-100-induced changes in the morphology of the monolayers were visualized by Brewster angle microscopy, which confirmed the differences of behavior observed by analyzing the isotherms.

  8. Chemotherapeutic Effect of CD147 Antibody-labeled Micelles Encapsulating Doxorubicin Conjugate Targeting CD147-Expressing Carcinoma Cells.

    PubMed

    Asakura, Tadashi; Yokoyama, Masayuki; Shiraishi, Koichi; Aoki, Katsuhiko; Ohkawa, Kiyoshi

    2018-03-01

    CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells

    PubMed Central

    Wang, Ke; Zhang, Tao; Liu, Lina; Wang, Xiaolei; Wu, Ping; Chen, Zhigang; Ni, Chao; Zhang, Junshu; Hu, Fuqiang; Huang, Jian

    2012-01-01

    Background and methods: Curcumin has extraordinary anticancer properties but has limited use due to its insolubility in water and instability, which leads to low systemic bioavailability. We have developed a novel nanoparticulate formulation of curcumin encapsulated in stearic acid-g-chitosan oligosaccharide (CSO-SA) polymeric micelles to overcome these hurdles. Results: The synthesized CSO-SA copolymer was able to self-assemble to form nanoscale micelles in aqueous medium. The mean diameter of the curcumin-loaded CSO-SA micelles was 114.7 nm and their mean surface potential was 18.5 mV. Curcumin-loaded CSO-SA micelles showed excellent internalization ability that increased curcumin accumulation in cancer cells. Curcumin-loaded CSO-SA micelles also had potent antiproliferative effects on primary colorectal cancer cells in vitro, resulting in about 6-fold greater inhibition compared with cells treated with a solution containing an equivalent concentration of free curcumin. Intravenous administration of curcumin-loaded CSO-SA micelles marginally suppressed tumor growth but did not increase cytotoxicity to mice, as confirmed by no change in body weight. Most importantly, curcumin-loaded CSO-SA micelles were effective for inhibiting subpopulations of CD44+/CD24+ cells (putative colorectal cancer stem cell markers) both in vitro and in vivo. Conclusion: The present study identifies an effective and safe means of using curcumin-loaded CSO-SA micelles for cancer therapy. PMID:22927762

  10. Modular Design Features of a Peptide Amphiphile Micelle Vaccine Platform and Their Impact on an Immune Response

    NASA Astrophysics Data System (ADS)

    Barrett, John Christopher

    Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Modular platforms are attractive for their engineerability and broad potential applications. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors. Peptide amphiphiles (PAs) consist of a hydrophilic peptide antigen conjugated to a hydrophobic lipid tail. The PAs then self-assemble into micelles, with the micelle characteristics determined by the chemical composition of the PA and micelle preparation methods. PA micelles contain a large design space, so it is important to have a basic understanding of how each design feature can affect the platform's interaction with the immune system. In this dissertation, the structure, composition, and biodistribution properties of PA micelles are evaluated for their ability to impact an immune response against a Group A Streptococcus B cell antigen (J8). Through structural design and physical characterization, micelles are shown to self-assemble into either short rod-like or long cylindrical shapes. Analyzing these shape effects on the immune response showed that cylindrical micelles induced higher antibody titers than rod-like micelles, providing evidence that the cylindrical micelle shape is important to induce immune responses and a possible mechanism of action. Shape was also seen to impact the activation profile of dendritic cells, B cells and T cells. Assembly into cylindrical micelles also stabilizes the secondary structure of peptide antigens, which may impact the immune response raised. In composition, the hydrophobic

  11. Origin of the sphere-to-rod transition in cationic micelles with aromatic counterions: specific ion hydration in the interfacial region matters.

    PubMed

    Geng, Yan; Romsted, Laurence S; Froehner, Sandro; Zanette, Dino; Magid, Linda J; Cuccovia, Iolanda M; Chaimovich, Hernan

    2005-01-18

    Sphere-to-rod transitions of cetyltrimethylammonium (CTA+) micelles with dichlorobenzoate counterions are remarkably substituent dependent. Simultaneous estimates of the interfacial molarities of H2O, MeOH, and Cl- and 2,6- and 3,5-dichlorobenzoate (2,6OBz and 3,5OBz) counterions were obtained by the chemical trapping method in mixed micelles of CTACl/CTA3,5OBz and CTACl/CTA2,6OBz without added salt. Increasing the CTA3,5OBz mole fraction produces a marked concurrent increase in interfacial 3,5OBz- and a decrease in interfacial H2O concentrations through the sphere-to-rod transition. No abrupt concentration changes are observed with increasing CTA2,6OBz mole fraction. Counterion-specific changes in the interfacial water concentration may be a major contributor to the delicate balance of forces governing micellar morphology.

  12. Structural heterogeneity of milk casein micelles: a SANS contrast variation study.

    PubMed

    Bouchoux, Antoine; Ventureira, Jorge; Gésan-Guiziou, Geneviève; Garnier-Lambrouin, Fabienne; Qu, Peng; Pasquier, Coralie; Pézennec, Stéphane; Schweins, Ralf; Cabane, Bernard

    2015-01-14

    We examine the internal structure of milk casein micelles using the contrast variation method in Small-Angle Neutron Scattering (SANS). Experiments were performed with casein dispersions of different origins (i.e., milk powder or fresh milk) and extended to very low q-values (∼9 × 10(-4) Å(-1)), thus making it possible to precisely determine the apparent gyration radius Rg at each contrast. From the variation of I(q → 0) with contrast, we determine the distribution of composition of all the particles in the dispersions. As expected, most of these particles are micelles, made of casein and calcium phosphate, with a narrow distribution in compositions. These micelles always coexist with a very small fraction of fat droplets, with sizes in the range of 20-400 nm. For the dispersions prepared from fresh milk, which were purified under particularly stringent conditions, the number ratio of fat droplets to casein micelles is as low as 1 to 10(6). In that case, we are able to subtract from the total intensity the contribution of the fat droplets and in this way obtain the contribution of the micelles only. We then analyze the variation of this contribution with contrast using the approach pioneered by H. B. Stuhrmann. We model the casein micelle as a core-shell spherical object, in which the local scattering length density is determined by the ratio of calcium phosphate nanoclusters to proteins. We find that models in which the shell has a lower concentration of calcium phosphate than the core give a better agreement than models in which the shell has a higher density than the core.

  13. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%-93%, 50%-58%, 55%-62%, 24%-28% and 2%-7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6-48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  14. Therapeutic and scintigraphic applications of polymeric micelles: combination of chemotherapy and radiotherapy in hepatocellular carcinoma

    PubMed Central

    Shih, Ying-Hsia; Peng, Cheng-Liang; Chiang, Ping-Fang; Lin, Wuu-Jyh; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2015-01-01

    This study evaluated a multifunctional micelle simultaneously loaded with doxorubicin (Dox) and labeled with radionuclide rhenium-188 (188Re) as a combined radiotherapy and chemotherapy treatment for hepatocellular carcinoma. We investigated the single photon emission computed tomography, biodistribution, antitumor efficacy, and pathology of 188Re-Dox micelles in a murine orthotopic luciferase-transfected BNL tumor cells hepatocellular carcinoma model. The single photon emission computed tomography and computed tomography images showed high radioactivity in the liver and tumor, which was in agreement with the biodistribution measured by γ-counting. In vivo bioluminescence images showed the smallest size tumor (P<0.05) in mice treated with the combined micelles throughout the experimental period. In addition, the combined 188Re-Dox micelles group had significantly longer survival compared with the control, 188ReO4 alone (P<0.005), and Dox micelles alone (P<0.01) groups. Pathohistological analysis revealed that tumors treated with 188Re-Dox micelles had more necrotic features and decreased cell proliferation. Therefore, 188Re-Dox micelles may enable combined radiotherapy and chemotherapy to maximize the effectiveness of treatment for hepatocellular carcinoma. PMID:26719687

  15. Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia.

    PubMed

    Gong, Feirong; Chen, Dan; Teng, Xin; Ge, Junhua; Ning, Xianfeng; Shen, Ya-Ling; Li, Jian; Wang, Shanfeng

    2017-08-07

    Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.

  16. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting.

    PubMed

    Pawar, Atmaram; Singh, Srishti; Rajalakshmi, S; Shaikh, Karimunnisa; Bothiraja, C

    2018-01-15

    The natural flavonoid fisetin (FS) has shown anticancer properties but its in-vivo administration remains challenging due to its poor aqueous solubility. The aim of the study was to develop FS loaded pluronic127 (PF)-folic acid (FA) conjugated micelles (FS-PF-FA) by the way of increasing solubility, bioavailability and active targetability of FS shall increase its therapeutic efficacy. FA-conjugated PF was prepared by carbodiimide crosslinker chemistry. FS-PF-FA micelles were prepared by thin-film hydration method and evaluated in comparison with free FS and FS loaded PF micelles (FS-PF). The smooth surfaces with spherical in shape of FS-PF-PF micelles displayed smaller in size (103.2 ± 6.1 nm), good encapsulation efficiency (82.50 ± 1.78%), zeta potential (-26.7 ± 0.44 mV) and sustained FS release. Bioavailability of FS from FS-PF-PF micelles was increased by 6-fold with long circulation time, slower plasma elimination and no sign of tissue toxicity as compared to free FS. Further, the FS-PF-FA micelles demonstrated active targeting effect on folate overexpressed human breast cancer MCF-7 cells. The concentration of the drug needed for growth inhibition of 50% of cells in a designed time period (GI50) was 14.3 ± 1.2 µg/ml for FS while it was greatly decreased to 9.8 ± 0.78 µg/ml, i.e. a 31.46% decrease for the FS-PF. Furthermore, the GI50 value for FS-PF-FA was 4.9 ± 0.4 µg/ml, i.e. a 65.737% decrease compared to FS and 50% decrease compare to FS-PF. The results indicate that the FS-PF-FA micelles have the potential to be applied for targeting anticancer drug delivery.

  17. Skew scattering dominated anomalous Hall effect in Co x (MgO)100-x granular thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Wen, Yan; Zhao, Yuelei; Li, Peng; He, Xin; Zhang, Junli; He, Yao; Peng, Yong; Yu, Ronghai; Zhang, Xixiang

    2017-10-01

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100 nm-thick thin films of Co x (MgO)100-x with a Co volume fraction of 34  ⩽  x  ⩽  100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity ({{ρ }xx} ) and anomalous Hall resistivity ({{ρ }AHE} ) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of {{ρ }xx} and {{ρ }AHE} respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient ({{R}s} ) and of {{ρ }xx} to log({{R}s})˜ γ log({{ρ }xx}) , we found that our results perfectly fell on a straight line with a slope of γ = 0.97  ±  0.02. This fitting value of γ in {{R}s}\\propto ρ xxγ ~ clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both {{ρ }xx} and {{ρ }AHE} significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ   =  0.99  ±  0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scattering of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  18. Progress towards Growth and Characterization of Rare-Earth Nanoparticles using the Inverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Romero, Dulce G.; Ho, Pei-Chun

    2008-03-01

    Nano-sized particles and clusters have promising electrical, chemical, and magnetic properties as compared to the bulk materials. Due to their reduced dimensionality, it makes their physical properties significantly different from the bulk material. The nano-sized materials have great potential for technical applications, such as, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the preliminary results on the growth and characterization of rare-earth metallic nanoparticles of Gd and Nd synthesized by the inverse micelle method [1]. These results will be compared to the bulk properties of Gd and Nd, as well as, to those exhibited by metallic nanoparticles, such as Co (by inverse micelle), and Gd (by laser evaporation cluster source), which have been found to show superparamagnetic behavior, enhanced magnetization, and self-organization [2-4]. [1] X.M. Lin, et al. Langmuir. 14, 7140 (1998). [2] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995).

  19. Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-08-01

    To investigate the effects of small aliphatic pendent groups conjugated through an acid-sensitive linker to the core of brushed block copolymer micelles on particle properties. The brushed block copolymers were synthesized by conjugating five types of 2-alkanone (2-butanone, 2-hexanone, 2-octanone, 2-decanone, and 2-dodecanone) through an acid-labile hydrazone linker to poly(ethylene glycol)-poly(aspartate hydrazide) block copolymers. Only block copolymers with 2-hexanone and 2-octanone (PEG-HEX and PEG-OCT) formed micelles with a clinically relevant size (< 50 nm in diameter), low critical micelle concentration (CMC, < 20 μM), and drug entrapment yields (approximately 5 wt.%). Both micelles degraded in aqueous solutions in a pH-dependent manner, while the degradation was accelerated in an acidic condition (pH 5.0) in comparison to pH 7.4. Despite these similar properties, PEG-OCT micelles controlled the entrapment and pH-dependent release of a hydrophobic drug most efficiently, without altering particle size, shape, and stability. The molecular weight of PEG (12 kDa vs 5 kDa) induced no change in pH-controlled drug release rates of PEG-OCT micelles. Acid-labile small aliphatic pendant groups are useful to control the entrapment and release of a hydrophobic drug physically entrapped in the core of brushed block copolymer micelles.

  20. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a

  1. GRP78 enabled micelle-based glioma targeted drug delivery.

    PubMed

    Ran, Danni; Mao, Jiani; Shen, Qing; Xie, Cao; Zhan, Changyou; Wang, Ruifeng; Lu, Weiyue

    2017-06-10

    GRP78, a specific cancer cell-surface marker, is implicated in cancer cells proliferation, apoptosis resistance, metastasis and drug resistance. l-VAP (SNTRVAP) is a tumor homing peptide exhibiting high binding affinity in vitro to GRP78 protein overexpressed on glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Even though short peptides are often non-immunogenic and demonstrate high affinity to tumor cells, their targeting efficacy is always undermined by rapid blood clearance and enzymatic degradation. In the present study, two d peptides RI-VAP (retro inverso isomer of l-VAP) and d-VAP (retro isomer of l-VAP) were developed by structure-guided peptide design and retro-inverso isomerization technique for glioma targeting. RI-VAP and d-VAP were predicted to bind their receptor GRP78 protein with similar binding affinity, which was experimentally confirmed. The results of in vivo imaging demonstrated that RI-VAP and d-VAP had remarkably advantage over l-VAP for tumor accumulation. In addition, RI-VAP and d-VAP modified paclitaxel-loaded polymeric micelle had better anti-tumor efficacy in comparison to taxol, paclitaxel-loaded plain micelles and l-VAP modified micelles. Overall, the VAP modified micelles suggested in the present study could effectively achieve glioma-targeted drug delivery, validating the potential of the stable VAP peptides in improving the therapeutic efficacy of paclitaxel for glioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biochemical characterization of GM1 micelles-Amphotericin B interaction.

    PubMed

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M

    2015-01-01

    In this work a thorough characterization of the GM1 micelle-Amphotericin B (AmB) interaction was performed. The micelle formation as well as the drug loading occurs spontaneously, although influenced by the physicochemical conditions, pH and temperature. The chromatographic profile of GM1-AmB complexes at different molar ratios shows the existence of two populations. The differential absorbance of GM1, monomeric and aggregate AmB, allowed us to discriminate the presence of all of them in both fractions. Thus, we noted that at higher proportion of AmB in the complex, increases the larger population which is composed mainly of aggregated AmB. The physical behavior of these micelles shows that both GM1- AmB complexes were stable in solution for at least 30 days. However upon freeze-thawing or lyophilization-solubilization cycles, only the smallest population, enriched in monomeric AmB, showed a complete solubilization. In vitro, GM1-AmB micelles were significantly less toxic on cultured cells than other commercial micellar formulations as Fungizone, but had a similar behavior to liposomal formulations as Ambisome. Regarding the antifungal activity of the new formulation, it was very similar to that of other formulations. The characterization of these GM1-AmB complexes is discussed as a potential new formulation able to improve the antifungal therapeutic efficiency of AmB.

  3. Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.

    PubMed

    Liu, Dylan Z; Weeks, Michael G; Dunstan, David E; Martin, Gregory J O

    2013-12-15

    Milk is a complex colloidal system that responds to changes in temperature imposed during processing. Whilst much has been learned about the effects of temperature on milk, little is known about the dynamic response of casein micelles to changes in temperature. In this study, a comprehensive physico-chemical study of casein micelles in skim milk was performed between 10 and 40 °C. When fully equilibrated, the amount of soluble casein, soluble calcium and the pH of skim milk all decreased as a function of increasing temperature, whilst the hydration and volume fraction of the casein micelles decreased. The effect of temperature on casein micelle size, as determined by dynamic light scattering and differential centrifugation, was less straightforward. Real-time measurements of turbidity and pH were used to investigate the dynamics of the system during warming and cooling of milk in the range 10-40 °C. Changes in pH are indicative of changes to the mineral system and the turbidity is a measure of alterations to the casein micelles. The pH and turbidity showed that alterations to both the casein micelles and the mineral system occurred very rapidly on warming. However, whilst mineral re-equilibration occurred very rapidly on cooling, changes to the casein micelle structure continued after 40 min of measurement, returning to equilibrium after 16 h equilibration. Casein micelle structure and the mineral system of milk were both dependent on temperature in the range 10-40 °C. The dynamic response of the mineral system to changes in temperature appeared almost instantaneous whereas equilibration of casein was considerably slower, particularly upon cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    PubMed

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  5. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Versatile polyion complex micelles for peptide and siRNA vectorization to engineer tolerogenic dendritic cells.

    PubMed

    Mebarek, Naila; Vicente, Rita; Aubert-Pouëssel, Anne; Quentin, Julie; Mausset-Bonnefont, Anne-Laure; Devoisselle, Jean-Marie; Jorgensen, Christian; Bégu, Sylvie; Louis-Plence, Pascale

    2015-05-01

    Dendritic cells (DCs) are professional antigen-presenting cells that play a critical role in maintaining the balance between immunity and tolerance and, as such are a promising immunotherapy tool to induce immunity or to restore tolerance. The main challenge to harness the tolerogenic properties of DCs is to preserve their immature phenotype. We recently developed polyion complex micelles, formulated with double hydrophilic block copolymers of poly(methacrylic acid) and poly(ethylene oxide) blocks and able to entrap therapeutic molecules, which did not induce DC maturation. In the current study, the intrinsic destabilizing membrane properties of the polymers were used to optimize endosomal escape property of the micelles in order to propose various strategies to restore tolerance. On the first hand, we showed that high molecular weight (Mw) copolymer-based micelles were efficient to favor the release of the micelle-entrapped peptide into the endosomes, and thus to improve peptide presentation by immature (i) DCs. On the second hand, we put in evidence that low Mw copolymer-based micelles were able to favor the cytosolic release of micelle-entrapped small interfering RNAs, dampening the DCs immunogenicity. Therefore, we demonstrate the versatile use of polyionic complex micelles to preserve tolerogenic properties of DCs. Altogether, our results underscored the potential of such micelle-loaded iDCs as a therapeutic tool to restore tolerance in autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  8. Thermodynamic study on competitive solubilization of cholesterol and beta-sitosterol in bile salt micelles.

    PubMed

    Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu

    2007-07-01

    Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.

  9. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    PubMed Central

    2010-01-01

    Biocompatible poly-[N-(2-hydroxyethyl)-d,l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd. PMID:21170410

  10. Biocompatible Polyhydroxyethylaspartamide-based Micelles with Gadolinium for MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Jeong, Sang Young; Kim, Hyo Jeong; Kwak, Byung-Kook; Lee, Ha-Young; Seong, Hasoo; Shin, Byung Cheol; Yuk, Soon Hong; Hwang, Sung-Joo; Cho, Sun Hang

    2010-12-01

    Biocompatible poly-[ N-(2-hydroxyethyl)- d, l-aspartamide]-methoxypoly(ethyleneglycol)-hexadecylamine (PHEA-mPEG-C16) conjugated with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (DOTA-Gd) via ethylenediamine (ED) was synthesized as a magnetic resonance imaging (MRI) contrast agent. Amphiphilic PHEA-mPEG-C16-ED-DOTA-Gd forms micelle in aqueous solution. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Micelle size and shape were examined by dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelles with PHEA-mPEG-C16-ED-DOTA-Gd showed higher relaxivities than the commercially available gadolinium contrast agent. Moreover, the signal intensity of a rabbit liver was effectively increased after intravenous injection of PHEA-mPEG-C16-ED-DOTA-Gd.

  11. Core-Shell-Corona Micelles with a Responsive Shell.

    PubMed

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  12. Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles.

    PubMed

    Gohain, Biren; Dutta, Robin K

    2008-07-15

    The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.

  13. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

    PubMed Central

    Zheng, Songping; Gao, Xiang; Liu, Xiaoxiao; Yu, Ting; Zheng, Tianying; Wang, Yi; You, Chao

    2016-01-01

    Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol)-poly(lactide) copolymers (MPEG-PLAs). After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles) exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy. PMID:27354801

  14. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo.

    PubMed

    Yang, Xi; Li, Zhaojun; Wang, Ning; Li, Ling; Song, Linjiang; He, Tao; Sun, Lu; Wang, Zhihan; Wu, Qinjie; Luo, Na; Yi, Cheng; Gong, Changyang

    2015-05-18

    To develop injectable formulation and improve the stability of curcumin (Cur), Cur was encapsulated into monomethyl poly (ethylene glycol)-poly (ε-caprolactone)-poly (trimethylene carbonate) (MPEG-P(CL-co-TMC)) micelles through a single-step solid dispersion method. The obtained Cur micelles had a small particle size of 27.6 ± 0.7 nm with polydisperse index (PDI) of 0.11 ± 0.05, drug loading of 14.07 ± 0.94%, and encapsulation efficiency of 96.08 ± 3.23%. Both free Cur and Cur micelles efficiently suppressed growth of CT26 colon carcinoma cells in vitro. The results of in vitro anticancer studies confirmed that apoptosis induction and cellular uptake on CT26 cells had completely increased in Cur micelles compared with free Cur. Besides, Cur micelles were more effective in suppressing the tumor growth of subcutaneous CT26 colon in vivo, and the mechanisms included the inhibition of tumor proliferation and angiogenesis and increased apoptosis of tumor cells. Furthermore, few side effects were found in Cur micelles. Overall, our findings suggested that Cur micelles could be a stabilized aqueous formulation for intravenous application with improved antitumor activity, which may be a potential treatment strategy for colon cancer in the future.

  15. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials.

    PubMed

    Yokoyama, Masayuki

    2010-02-01

    A polymeric micelle is a macromolecular assembly composed of an inner core and an outer shell, and most typically is formed from block copolymers. In the last two decades, polymeric micelles have been actively studied as a new type of drug carrier system, in particular for drug targeting of anticancer drugs to solid tumors. In this review, polymeric micelle drug carrier systems are discussed with a focus on toxicities of the polymeric micelle carrier systems and on pharmacological activities of the block copolymers. In the first section, the importance of the above-mentioned evaluation of these properties is explained, as this importance does not seem to be well recognized compared with the importance of targeting and enhanced pharmacological activity of drugs, particularly in the basic studies. Then, designs, types and classifications of the polymeric micelle system are briefly summarized and explained, followed by a detailed discussion regarding several examples of polymeric micelle carrier systems. Readers will gain a strategy of drug delivery with polymeric carriers as well as recent progress of the polymeric micelle carrier systems in their basic studies and clinical trials. The purpose of this review is to achieve tight connections between the basic studies and clinical trials.

  16. Photoenhanced gene transfection by a curcumin loaded CS-g-PZLL micelle.

    PubMed

    Lin, Jian-Tao; Pan, Wen-Jia; Zhang, Jun-Ai; Wang, Wei; Zhong, Jia; Su, Jia-Min; Li, Tong; Zou, Ying; Wang, Guan-Hai

    2017-09-01

    The codelivery of drug and gene is a promising method for cancer treatment. In our previous works, we prepared a cationic micelles based on chitosan and poly-(N-3-carbobenzyloxylysine) (CS-g-PZLL), but transfection ratio of CS-g-PZLL to Hela cell was low. Herein, to improve the transfection efficiency of CS-g-PZLL, curcumin was loaded in the CS-g-PZLL micelle. After irradiation, the obtained curcumin loaded micelle showed a better transfection, and the p53 protein expression in Hela cells was higher. The apoptosis assay showed that the complex could induce a more significant apoptosis to Hela cells than that of curcumin or p53 used alone, and the curcumin loaded micelle inducing apoptosis was best after irradiation. Therefore, CS-g-PZLL is a safe and effective carrier for the codelivery of drug/gene, and curcumin could be used as a photosensitizer to induce a photoenhanced gene transfection, which should be encouraged in improving transfection and tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  17. Casein micelles: size distribution in milks from individual cows.

    PubMed

    de Kruif, C G Kees; Huppertz, Thom

    2012-05-09

    The size distribution and protein composition of casein micelles in the milk of Holstein-Friesian cows was determined as a function of stage and number of lactations. Protein composition did not vary significantly between the milks of different cows or as a function of lactation stage. Differences in the size and polydispersity of the casein micelles were observed between the milks of different cows, but not as a function of stage of milking or stage of lactation and not even over successive lactations periods. Modal radii varied from 55 to 70 nm, whereas hydrodynamic radii at a scattering angle of 73° (Q² = 350 μm⁻²) varied from 77 to 115 nm and polydispersity varied from 0.27 to 0.41, in a log-normal distribution. Casein micelle size in the milks of individual cows was not correlated with age, milk production, or lactation stage of the cows or fat or protein content of the milk.

  18. Analysis of the Δ(X) - L intervalley mixing in group-IV heterostructures

    NASA Astrophysics Data System (ADS)

    Kiselev, A. A.; Kim, K. W.; Yablonovitch, E.

    2005-06-01

    We provide a treatment of the problem of Δ(X) - L intervalley mixing in differently oriented SiGe heterostructures in the transparent effective mass method. Mixing potentials can be calculated, considering changes in the constituent Concentrations of individual heterolayers from some "virtual crystal level" as a bunch of microscopic single-ion perturbations. Strong mixing between lowest localized Δ and L states can be achieved in (113) structures, making them favorable for the electrically controlled gigantic intervalley g factor modulation. We provide estimates for the mixing potential and further consider limitations related to the strength of the in-plane localization and quality of the interface.

  19. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    PubMed

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight (< 1000 g/mol) do not significantly contribute to the solubilization of Hyp. However, PEGs with molecular weight > 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  20. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs.

    PubMed

    Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H

    2015-02-09

    The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.